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Abstract
Chordoma is a rare malignant bone tumour with a poor prognosis and limited therapeutic options. We undertook
a focused compound screen (FCS) against 1097 compounds on three well-characterized chordoma cell lines; 154
compounds were selected from the single concentration screen (1𝛍M), based on their growth-inhibitory effect.
Their half-maximal effective concentration (EC50) values were determined in chordoma cells and normal fibroblasts.
Twenty-seven of these compounds displayed chordoma selective cell kill and 21/27 (78%) were found to be
EGFR/ERBB family inhibitors. EGFR inhibitors in clinical development were then studied on an extended cell line
panel of seven chordoma cell lines, four of which were sensitive to EGFR inhibition. Sapitinib (AstraZeneca) emerged
as the lead compound, followed by gefitinib (AstraZeneca) and erlotinib (Roche/Genentech). The compounds were
shown to induce apoptosis in the sensitive cell lines and suppressed phospho-EGFR and its downstream pathways
in a dose-dependent manner. Analysis of substituent patterns suggested that EGFR-inhibitors with small aniline
substituents in the 4-position of the quinazoline ring were more effective than inhibitors with large substituents
in that position. Sapitinib showed significantly reduced tumour growth in two xenograft mouse models (U-CH1
xenograft and a patient-derived xenograft, SF8894). One of the resistant cell lines (U-CH2) was shown to express
high levels of phospho-MET, a known bypass signalling pathway to EGFR. Neither amplifications (EGFR, ERBB2,
MET) nor mutations in EGFR, ERBB2, ERBB4, PIK3CA, BRAF, NRAS, KRAS, PTEN, MET or other cancer gene hotspots
were detected in the cell lines. Our findings are consistent with the reported (p-)EGFR expression in the majority
of clinical samples, and provide evidence for exploring the efficacy of EGFR inhibitors in the treatment of patients
with chordoma and studying possible resistance mechanisms to these compounds in vitro and in vivo.
© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Chordoma is a rare primary malignant bone tumour
showing notochordal differentiation and develops for
the most part in the bones of the base of the skull, the
vertebral bodies and the sacro-coccygeal region [1–3].
There are occasional reports of extra-axial and soft
tissue lesions [1,4]. The median survival for patients
with chordoma is 7 years [2,3]. Advances in radiation

technology with either particles or photons have allowed
delivery of higher doses of radiation [2,3] and can be
beneficial for local disease control. However, 30–40%
of chordomas metastasise and there are no approved
agents for the treatment of patients with inoperable and
metastatic chordoma [3]. Cytotoxic chemotherapy is not
active in this tumour type [3,5]. Imatinib, an inhibitor
of platelet-derived growth factor receptor (PDGFR),
has demonstrated limited activity in a phase II study
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and when used in a compassionate programme [6,7].
However, there are encouraging results, in the form
of anecdotal reports, on the response of chordoma to
epidermal growth factor receptor (EGFR) [8–13] and
vascular endothelial growth factor (VEGF) inhibitors
[5,12–14], although data from prospective randomized
clinical trials are lacking [5,14].

Chordoma is characterised by the expression of the
transcription factor T (brachyury) [15] and there is a
body of evidence supporting its critical role in this dis-
ease [16]. Specifically, study of the T regulatory network
revealed that epidermal growth factor (EGF), transform-
ing growth factor-α (TGFα) and fibroblast growth factor
1 (FGF1) ligands, amongst others, are direct products of
T-mediated transcription [17]. These findings are sup-
ported by strong immuno-expression of the phosphory-
lated proteins in chordoma [18–21].

Genotype-directed therapy represents a major strat-
egy for planning new cancer treatments, and this has
demonstrated success by improving outcome in close
to 70% of patients with non-small cell lung cancer har-
bouring EFGR mutations, albeit for 1–2 years before
developing resistance [22]. However, despite chordomas
being immunoreactive for the activated form of EGFR
(p-EGFR), they do not harbour EGFR mutations and
only infrequently other currently potentially tractable
targets, such as PIK3CA mutations [18,23–25]. In view
of the unmet need for effective treatment of patients with
chordoma, we undertook a large-scale compound screen
on three chordoma cell lines and validated the key tar-
get in an extended panel of seven cell lines, with the
aim of finding therapies and understanding the mecha-
nism by which this disease develops. Such approaches
are reported to be more successful than target-based
approaches in identifying drug candidates with clini-
cally relevant mechanisms of action [26–28].

Materials and methods

Cells and cell lines used in the screen
Seven human chordoma cell lines, U-CH1, U-CH2,
U-CH7, U-CH10, MUG-Chor1, JHC7 and UM-Chor1,
were studied (see supplementary material) and qual-
ity controlled by short-tandem-repeat (STR) analysis
(DNA Diagnostic Centre, London, UK) (see supplemen-
tary material, Table S1) and regular Mycoplasma test-
ing [29–33]. In the absence of the availability of noto-
chordal tissue, a transient embryonic structure consid-
ered to represent the origin of chordoma [15], human
dermal fibroblasts (ATCC® PCS-201-012™) were used
as a non-neoplastic control cell population. NCI-N87
(ATCC® CRL-5822™), a gastric cancer cell line which
strongly expresses EGFR and ERBB2 in the absence
of downstream mutations [34,35], served as a posi-
tive control to EGFR inhibitors. Cells were cultured
according to ATCC guidelines (see supplementary mate-
rial). All chordoma lines included derive from sacral
tumours other than UM-Chor1 which derives from a

clival neoplasm (http://www.chordomafoundation.org/)
[29–33]. Cell pellets from the chordoma cell lines were
formalin-fixed and paraffin-embedded and 3 μm sections
cut for immunohistochemistry and FISH [18]. Ethi-
cal approval was obtained from the Cambridgeshire 2
Research Ethics Service (reference 09/H0308/165) and
the UCL Biobank for Health and Disease Ethics Com-
mittee.

Protein kinase inhibitors and compound libraries
In collaboration with Cancer Research Technology
Ldt UK (CRT), 1097 compounds were selected for
the compound screen (see supplementary material,
Table S2). GlaxoSmithKline (GSK) provided 886 small
molecule kinase inhibitors comprising 365 (’PKIS’)
and 521 (’PKIS2’) compounds on which there are
published data (see supplementary material, Table
S2) [36,37]. Also screened were 160 Calbiochem
kinase inhibitors (Merck KGaA, Darmstadt, Germany)
provided by CRT, an Anticancer Library (n= 43) (Sel-
leckchem, Houston, TX, USA), and eight compounds
reported to be inhibitors of aldo-keto reductase family
1 member B10 (AKR1B10; Selleckchem) [38]. Six
commercially available epidermal growth factor recep-
tor/erythroblastic leukaemia viral oncogene homologue
(EGFR/ERBB) family inhibitors, either FDA-approved
or currently in clinical trials [39–42], were purchased
[Selleckchem: erlotinib (OSI-774), gefitinib (ZD1839),
sapitinib (AZD8931), afatinib (BIBW 2992), pozi-
otinib (NOV120101; HM781-36B)] and lapatinib
(Tykerb®; GSK).

Focused compound screen (Figure 1)
Compounds were tested on three chordoma cell
lines (U-CH1, U-CH2 and MUG-Chor1) using a
non-randomised plate layout in a 96-well plate format
(80 compounds/plate) at a single concentration of
1 μM (n= 3 minimum). Cells were seeded in medium
(90 μl/well) using a Multidrop Combi (MDC; Thermo
Fisher Scientific, Loughborough, UK) and cultured
for 24 h before the compounds were added. The com-
pounds were diluted from 10 mM stocks using an
ECHO 550 (Labcyte, CA, USA) to create 10× com-
pound plates and added (10 μl/well) using a Biomek
FX (Beckman Coulter, Brea, CA, USA). Cell survival
was assessed following 96 h of compound treatment
using the water-soluble tetrazolium salt (WST1) assay
(Roche Diagnostics, Burgess Hill, UK) according to the
manufacturer’s recommendations.

Hit selection
Hit selection thresholds were calculated independently
for each cell line. Percentage inhibition for each com-
pound at 1 μM was calculated from raw data relative
to the controls on each plate. Thresholds were calcu-
lated by combining the results of the different libraries
to give a mean percentage inhibition, or by analysing
data obtained from the libraries independently (PKIS,
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Figure 1. An overview of the screening cascade

PKIS2). From this, the standard deviations (SDs) were
calculated for each cell line. Based on the spread of
data, a threshold of 2× SD (PKIS) and 1.5× SD (other
libraries) was applied for each line.

Hit confirmation
The ‘hits’ of the single concentration screen and their
potencies were generated using the half-maximal effec-
tive concentration (EC50) in a 10-point dose–response
format, with the highest concentration at 30 μM. Max-
imum percentage inhibition (MI) was recorded at the
highest concentration of each compound. Each com-
pound was tested in three independent experiments
with two replicates/experiment. Staurosporine (SRPN;
Sigma-Aldrich, St. Louis, MO, USA) was used as a
positive control, with EC50 values monitored to ensure
reproducibility between each run. An arbitrary thresh-
old of EC50 < 5 μM in chordoma cell lines and> 10 μM

in dermal fibroblasts was applied to select compounds
which selectively killed chordoma cells. Selectivity was
defined as the fold difference between a compound’s
EC50 in fibroblasts and chordoma cells.

Hit validation
Analysis of cell death

The Caspase-Glo® 3/7 Assay (Promega, Southampton,
UK) and the CellTiter-Glo® Luminescent Cell Viabil-
ity Assay (Promega) were used on separate assay plates
to monitor cell viability and to determine induction of
apoptosis. Profiling was conducted from the highest
concentration (20 μM) in a dose-dependent manner with

a 1:3 serial dilution (minimum two independent experi-
ments/compound). Data analyses were performed using
XLfit v. 5.0 (IDBS, Guildford, UK).

Biochemical selectivity analysis

Eleven GSK compounds in addition to sapitinib,
erlotinib and gefitinib (Selleckchem) were sent for
biochemical IC50 determination against EGFR, ERBB2
and ERBB4 (Reaction Biology Corp., Malvern, PA,
USA) (see supplementary material, Table S3).

Protein extraction and western blot (WB) analysis
Details of these methods are described in Supplementary
materials and methods and primary and secondary anti-
bodies are listed in Table S4 (see supplementary material
for both).

ELISA
Lysates were prepared and experiments performed using
Human Total EGFR (cat. no. DYC1854) and Human
Phospho-EGFR (cat. no. DYC1095B) ELISA kits (R&D
Systems, Abingdon, UK).

Combination study of sapitinib with the MET
inhibitor crizotinib
The MET inhibitor crizotinib (Xalkori®, Pfizer, NY,
USA) was tested in combination with sapitinib using
a non-randomized plate layout in a 384-well format.
Details of this experiment are described in Supple-
mentary materials and methods (see supplementary
material).

Immunohistochemistry
Immunohistochemistry was performed on the Leica
Bond-III detection platform, using the Bond Polymer
Refine Detection system (Leica). Expression was evalu-
ated as reported previously (see supplementary material)
[18].

FISH analysis of EGFR, ERBB2 and MET
FISH was performed using commercial probes for
EGFR/CEP7, HER-2/CEP17 (Abbott Molecular,
Des Plaines, IL, USA) and MET/CEN7 (Zytovision,
Bremerhaven, Bremen, Germany) and reported using
the Colorado criteria (see supplementary material) [18].

Analysis for mutations in cancer gene hotspots
of chordoma cell lines
The hotspots in 22 cancer-related genes were analysed
for mutations using the Ion AmpliSeq™ Colon and Lung
Cancer Research Panel v. 2 (Thermo Scientific) (see
supplementary material).
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In vivo studies
Sapitinib (AstraZeneca, Cambridge, UK) was tested
at South Texas Accelerated Research Therapeutics
(START) on two chordoma mouse models: one model
was a cell line-derived xenograft (U-CH1) [32], the
other a patient-derived xenograft (SF8894) [43] (see
supplementary material).

Results

A focused compound screen showed that
EGFR/ERBB family inhibitors targeted chordoma
cells selectively
Of the 1097 compounds screened at a single concen-
tration in three human chordoma cell lines (U-CH1,
U-CH2 and MUG-Chor1; see supplementary mate-
rial, Table S2), 154 met our hit selection criteria (see
supplementary material, Table S2), which represented
14% (154/1097) of all compounds (see supplementary
material, Table S5). Of these, 27 compounds selec-
tively targeted chordoma cells but not human dermal
fibroblasts (Table 1), and 21 of these 27 compounds
(78%) represented EGFR/ERBB family inhibitors
(Table 1, Figure 2), of which five also represented
BRAF inhibitors. The results were reproducible using
two different batches of compounds across all cell lines
(data not shown). These 21 EGFR/ERBB inhibitors
exerted the highest potency and maximum effects on
U-CH1, whereas negligible activity was observed on
U-CH2 (Table 1).

Key targets for the remaining 6/27 non-EGFR/ERBB
compounds (Table 1) included activin receptor-like
kinase 5 (ALK5), phosphatidylinositol-3-kinase (PI3K),
BRAF, as well as protein kinase-Bα (AKT1) [44–47].
One compound, pazopanib (Votrient®; GSK), an angio-
genesis inhibitor, has been FDA-approved for renal cell
carcinoma and soft-tissue sarcomas [48,49]. Another
compound has an unknown target. When these targets
were examined for potential enrichment in signalling
pathways [50], VEGFR1/2 signalling was identified
as the pathway covering most of the non-EGFR target
genes (see supplementary material, Table S6).

Chemical substituents correlated with EGFR/ERBB
inhibitor activity in chordoma cell lines
Twenty-one EGFR/ERBB inhibitors were selected by
GSK for structural analysis on the basis of their phe-
notypic (viability) potencies (Table 2). A number of
these compounds are currently under clinical develop-
ment. These compounds were found to represent two
chemotypes, pyrimidines and two subtypes of quina-
zolines. The quinazolines were characterised by either
large substituents off the aniline group in the 4-position
of the quinazoline ring (hereafter referred to as ’quinazo-
lines large’), or small substituents on the aniline ring in
this position (’quinazolines small’). ’Quinazoline small’
compounds, including erlotinib, sapitinib and gefitinib,

exerted activity on U-CH1, U-CH7 and MUG-Chor1
and showed a trend to greater potency than ’quinazo-
line large’ compounds (Table 2). Neither subtype was
active on U-CH2. Biochemical assessment of the IC50
on a selection of these compounds (n= 14) on EGFR,
ERBB2 and ERBB4 (ERBB3 was not tested) showed
that both the size of the substituent group on the aniline
ring and the structure of the tail portion of the molecule,
which extends towards the solvent front of the kinase,
had an impact on the potencies of the three targets (see
supplementary material, Table S3).

Commercially available EGFR/ERBB family inhibitors
exerted good potency and high selectivity
in chordoma cell lines
We next tested a set of six commercially available
EGFR/ERBB inhibitors consisting of four reversible
(erlotinib, sapitinib, gefitinib and lapatinib) and two
irreversible (afatinib and poziotinib) compounds in
an extended panel of seven chordoma cell lines,
including the three previously tested ones (Table 3).
Controls included human dermal fibroblasts (ATCC®

PCS-201-012™) and the gastric cancer cell line
NCI-N87 (Table 3). Four of the chordoma cell
lines, U-CH1, U-CH7, UM-Chor1 and MUG-Chor1,
responded to EGFR inhibition with EC50 concentra-
tions< 1 μM, whereas U-CH2, U-CH10 and JHC7 were
largely resistant (Table 3). Three of four reversible
agents, erlotinib, gefitinib and sapitinib, were highly
potent, exerting an effect in the nanomolar range in
the four ‘responsive’ cell lines. In contrast, lapatinib
was potent on UM-Chor1 (EC50 320 nM and 98% MI),
showed only moderate activity (EC50 ≥ 1 μM≤ 3 μM)
on MUG-Chor1 and no activity on the other cell
lines (EC50 ≥ 3 μM) (Table 3). Of the two irreversible
EGFR/ERBB inhibitors, afatinib and poziotinib, the
former displayed a significant kill effect on UM-Chor1
(EC50 of 26 nM and 89% MI) and a cytostatic profile
on U-CH1 and MUG-Chor1. Poziotinib displayed
a cytostatic profile on U-CH1, MUG-Chor1 and
UM-Chor1: U-CH7 was resistant to both (Table 3).
Sapitinib, a ’quinazoline small’ compound, showed the
most exciting results, with EC50 concentrations in the
nanomolar range in the four ‘responsive’ lines compa-
rable to those observed in non-small cell lung cancer
(NSCLC) and head and neck cancer cell lines defined
as being sensitive to EGFR [51]. In these other cancer
models, responses to the drug were also observed in
related mouse xenograft models. The other active com-
pounds were two FDA-approved ’quinazoline small’
compounds, gefitinib and erlotinib (Table 3).

EGFR/ERBB family inhibitors suppressed p-EGFR
and downstream effectors in chordoma cell lines
and induced apoptosis in sensitive cell lines
ELISA and western blot data showed that our three most
promising compounds (sapitinib> gefitinib> erlotinib)
induced a dose-dependent suppression of the biomarker

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2016; 239: 320–334
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Figure 2. Hit compounds display varying effects on p-EGFR and EGFR levels. Of 21 EGFR/ERBB hit compounds that selectively targeted
chordoma cells, the impact of 13, comprising a selection of hit compounds across the libraries and chemical structures tested (listed in
Tables 1, 2), was studied by western blot on three chordoma cell lines (U-CH1, U-CH2, MUG-Chor1). Cells were serum-starved overnight
before being treated with EGFR inhibitors (250 nM) for 4 h and then being exposed to EGF (50 ng/ml) for 15min.

Table 2. Chemical substituent trend analysis of selected EGFR/ERBB inhibitors (n= 21)

nM μM

Drug potency [Geomean EC50 (µM)]

Compound ID Library Target Chemical substituent NAHDF U-CH1 U-CH2 MUG-Chor1 U-CH7

GSK198271A GSK PKIS2 ERBB family, BRAF Pyrimidine 3.702 0.337 3.089 0.217 0.335
102.1659.2134.0198.0000.02FARB,ylimafBBRE2SIKPKSGA081623KSG

Lapatinib Anticancer EGFR Quinazoline large 4.542 6.163 14.697 1.527 6.225
063.1697.1388.02008.0592.922BBRE/RFGE1SIKPKSGA944282WG
674.0000.03139.71193.1859.012BBRE/RFGE1SIKPKSGA373385WG
454.0426.1000.03835.0004.912BBRE/RFGE1SIKPKSGX030616WG
791.2295.0484.31447.4767.8RFGE/2BBRE2SIKPKSGA617965WG

TN431.22498.22717.1690.12RFGE/2BBRE2SIKPKSGA467285WG
390.7000.02380.31060.1031.51RFGE/2BBRE2SIKPKSGC043385WG

Compound 56 Calbiochem EGFR Quinazoline small 22.794 0.566 20.000 0.010 0.216
577.0420.0596.61971.0219.214BBRE/2BBRE/RFGEmehcoiblaC9703010TRC
072.0101.0366.91902.0000.03RFGEmehcoiblaC087471DP
233.0941.0842.31483.0000.03RFGEmehcoiblaC562471DP
842.0SC203.9521.0681.52BBRE/RFGEmehckcelleSbinitrenaC
168.0992.0668.01693.0557.41

18.669 0.226 16.983 0.150 0.410
RFGEmehckcelleSbinitolrE

Gefitinib Selleckchem EGFR
219.1750.2000.03320.2280.712BBRE/RFGE1SIKPKSGA401164WG
941.3963.0338.71952.1000.032BBRE/RFGE1SIKPKSGX191086WG
173.0881.0000.02SC178.61RFGE2SIKPKSGA923032IG
640.0510.0061.01450.0300.022BBRE/RFGEmehckcelleS)1398DZA(binitipaS
657.01SC061.9SC844.52BBRE/RFGEmehckcelleSbinitafA

Quinazoline large: large substituent on the aniline ring in the 4-position of the quinazoline ring system.
Quinazoline small, small substituent on the aniline ring in the 4-position of the quinazoline ring system; NAHDF, normal adult human dermal fibroblasts; CS, cytostatic,
no potency calculated; NT, not tested.
EC50 was extrapolated in cases of low percentage inhibition where no plateau was observed, indicating inactivity of these drugs (Geomean EC50 ≥ 30 μM).
Poziotinib (Selleckchem) was replaced by the irreversible EGFR TKI canertinib (Selleckchem) in this analysis.
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Table 3. Phenotypic activity of commercially available EGFR/ERBB inhibitors (n= 6)

nM μM 0% 100%

Drug potency [Geomean EC µ50 ( M)] Maximum percentage inhibition at highest drug concentration

Drug ID
U-

CH1 U-CH2
U-

CH7
U-

CH10 JHC7
MUG-
Chor1

UM-
Chor1 NAHDF

NCI-
N87

U-
CH1

U-
CH2

U-
CH7

U-
CH10 JHC7

MUG-
Chor1

UM-
Chor1 NAHDF NCI-N87

Erlotini
Gefitinib

b 0.396
0.226 16.983 0.410 30.000 17.928 0.150 0.304 18.669 1.674 64 61 61 42 56 72 78 50 100

10.866 0.861 30.000 30.000 0.299 0.516 14.755 2.957 66 45 61 33 36 74 71 51 84

Lapatinib 6.163 14.697 6.225 12.285 14.336 1.527 0.314 4.542 0.027 102 73 81 100 91 95 98 80 103
Sapitinib 0.054 10.160 0.046 8.565 26.132 0.015 0.040 20.003 0.128 74 69 65 58 53 78 79 57 103
Afatinib CS 9.160 10.756 11.913 8.937 CS 0.026 5.448 <0.005 103 100 109 94 99 102 89 85 105
Poziotinib CS 4.900 7.495 18.439 14.008 CS CS 3.382 <0.005 91 89 73 47 77 88 82 95 103

EC50 was extrapolated in cases of low percentage inhibition where no plateau was observed, indicating inactivity of these drugs [Geomean EC50 ≥ 30 (μM)].
NAHDF, normal adult human dermal fibroblasts; CS, cytostatic, no potency calculated.

p-EGFR at two different phosphorylation sites
(Tyr1068 and Tyr1173) in all cell lines, confirming
that the drugs hit their key target. Similar results
were shown in EGF spiked/serum-starved (Figure 3;
see also supplementary material, Figure S2) and
non-spiked/non-starved experiments (see supplemen-
tary material, Figures S3, S4). Key effectors of EGFR
signalling, including p-AKT (PI3K–AKT–mTOR)
and p-ERK1/2 (Ras–Raf–MAPK–ERK1/2) were
also dose-dependently suppressed in response to these
treatments. We did not observe significant effects on
p-STAT3 (see supplementary material, Figures S3, S4).
Inhibition of p-EGFR and downstream targets occurred
at lower doses with sapitinib than with the other EGFR
inhibitors tested. The endogenous/baseline status for all
of the markers investigated is shown in Figure S5 (see
supplementary material).

The EGFR/ERBB inhibitors induced apoptosis in a
dose-dependent manner. This resulted in a decrease in
cell viability from 24 h onwards (Figure 4; see also
supplementary material, Figure S6). Where a cytostatic
profile was generated in response to EGFR inhibitors,
such as with lapatinib in the U-CH1 cell line, minimal
caspase 3/7 activity (∼30%) was observed in support of
these phenotypic data (Figure 4; see also supplementary
material, Figure S6).

Sapitinib significantly reduced tumour growth
in chordoma mouse models
Our most promising compound, sapitinib, significantly
reduced tumour growth in two chordoma xenograft
models (Figure 3C, D).

Study of resistance mechanisms in U-CH2, JHC7
and U-CH10
Next we sought reasons why our best compounds
were not effective in the unresponsive chordoma cell
lines. We addressed the issue of EGFR tyrosine kinase
inhibitor resistance by investigating known mecha-
nisms of resistance from work in other cancer types.
Next-generation sequencing failed to detect mutations
covering the hotspots in 22 tumour-related genes,
which included EGFR, ERBB2 and ERBB4 and their

downstream effectors (KRAS, BRAF, PIK3CA, AKT1,
PTEN, NRAS and MAPK). Thus, we were not able
to detect obvious genetic explanations for sensitivity
and/or resistance in our cell line panel.

Activation of ERBB2 and MET can result in bypass
resistance pathways. Together with EGFR, no amplifi-
cations in ERBB2 and MET were identified by FISH in
the cell lines (see supplementary material, Table S7).
Moreover, no mutations were identified in MET . Fur-
thermore, MET amplification, assessed by FISH, was
only seen in two (non-clival) of 114 clinical chordomas,
66 of which were located along the spinal axis and 48
in the clivus. However, western blots and immunohis-
tochemistry for p-MET revealed strong expression in
U-CH2 (Figures 5A, 6B). To test whether this con-
tributed to the resistance observed, we treated U-CH2
with sapitinib in combination with the MET-inhibitor
crizotinib and observed a significant synergistic effect
(Figures 5B, 6A).

The loss and decreased protein expression of PTEN, a
tumour suppressor gene, has also been linked to EGFR
tyrosine kinase inhibitor (TKI) resistance [52,53].
All cell lines apart from U-CH1 showed variable
immunoreactivity with a PTEN antibody, strong in
U-CH2 and U-CH7, moderate in MUG-Chor1, JHC7
and U-CH10 and weak in UM-Chor1. These data were
confirmed by western blots for PTEN (Figure 6C and
6E). Resistance has also been associated with loss of
E-Cadherin expression: it has been proposed that this
results in epithelial–mesenchymal transition (EMT)
and a related increase in motility [52,54]. Immuno-
histochemistry for E-Cadherin showed weak and only
focal expression in U-CH7 and MUG-Chor1 and was
negative in the remaining five cell lines (Figure 6D).
The Hippo downstream effector Yes-associated pro-
tein (YAP) [55,56] has also been reported to confer
resistance to EGFR inhibitors [57–59]. Even though
YAP was highly expressed in the resistant cell line
U-CH10, strong expression levels were also observed
in MUG-Chor1, a cell line responsive to EGFR TKIs
(see supplementary material, Figure S5). Hence, PTEN,
E-Cadherin, and YAP protein expression in the cell
lines appear not to show an obvious correlation with
the presence and/or absence of resistance to EGFR
inhibitors.
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Figure 3. Western blot (A) and ELISA (B) analysis confirm suppression of the biomarker p-EGFR upon treatment with EGFR TKIs in U-CH1
and UM-Chor1. Cells were serum-starved overnight before they were treated with a range of concentrations of the EGFR inhibitors for 4 h
and then EGF-spiked (50 ng/ml) for 15min. Endogenous controls (non-serum-starved, non-EGF-spiked), untreated controls (serum-starved,
non-EGF-spiked) and vehicle controls (serum-starved, treated with 2.5% DMSO, EGF-spiked) were included. Phospho-EGFR was measured
by western blot and ELISA. Western blot results for U-CH2, U-CH7, JCH7 and MUG-Chor1 are displayed in supplementary material, Figure S2.
(C, D) Sapitinib induces a significant growth reduction in the patient-derived xenograft SF8894 (C) and in the U-CH1 xenograft (D); *p ≤ 0.05,
**p ≤ 0.01, ***p ≤ 0.001
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Figure 4. Apoptotic induction in U-CH1 (A) and UM-Chor1 (B). The Caspase-Glo® 3/7 Assay and the CellTiter-Glo® Luminescent Cell Viability
Assay were used on separate assay plates to monitor cell viability and to determine induction of apoptosis upon treatment with erlotinib,
gefitinib, sapitinib, afatinib and lapatinib. Read-outs were performed at four time points (6, 24, 48 and 72 h). Two independent experiments
were conducted for each compound (n= 3 for sapitinib and erlotinib). The results for U-CH7 and MUG-Chor1 are shown in supplementary
material, Figure S6

Discussion

In the light of the absence of recurrent genetic
alterations in chordoma, we chose a phenotypic
screening approach to identify the mechanism(s)
by which this disease is driven and/or targets that
could potentially be translated into clinical practice
[28]. We screened three chordoma cell lines (U-CH1,
U-CH2 and MUG-Chor1) against 1097 compounds,
1046 of which were small molecule kinase inhibitors.
Twenty-seven compounds remained of interest fol-
lowing exclusion of compounds that failed to mediate
a chordoma-selective cell kill effect. The majority
(21/27) of these compounds targeted the EGFR/ERBB
family. Gene enrichment analysis for non-EGFR hit
compounds revealed that VEGFR1/2 signalling covers
most of their target genes, which is in line with isolated
case reports showing activity of VEGF inhibitors in
patients with chordoma [12,13]. However, since most
of the non-EGFR hits were multikinase inhibitors and
their targets ill-defined, and/or the compounds not

phenotypically as potent as the EGFR/ERBB inhibitors,
we focused on EGFR inhibitors in this study. As the
majority of these 21 EGFR inhibitors remain under
development, we tested six other EGFR inhibitors
[erlotinib (Roche/Genentech); gefitinib (AstraZeneca);
sapitinib (AstraZeneca); lapatinib (GSK); afatinib
(Boehringer Ingelheim, Germany); and poziotinib
(Spectrum Pharmaceuticals, Irvine, CA, USA)] that
were either FDA-approved or have been in clinical
trials [39,40,42,60]. Of the seven chordoma cell lines
tested, we demonstrated that four (U-CH1, U-CH7,
MUG-Chor1 and UM-Chor1) were sensitive and three
(U-CH2, U-CH10 and JHC7) were resistant to EGFR
inhibition. The limitations of all in vitro screens apply
to our study, but we imposed a high level of quality
control measurements to ensure the generation of robust
data [26–28].

EGFR was the first tyrosine kinase receptor to be
linked to tumourigenesis [52,61–63] and therapeutic
inhibition of this pathway has yielded varying success
in the treatment of malignant disease [39,52,62]. A
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Figure 5. MET expression in the chordoma cell line panel. (A) Western blot analyses for MET-expression in the cell line panel were conducted
on endogenous (non-serum-starved, non-EGF-spiked), serum-starved (serum-starved, non-EGF-spiked) and EGF-spiked (serum-starved,
EGF-spiked) samples of each chordoma cell line. Normal adult human dermal fibroblasts (NAHDF) served as a control. Both western blots
and immunohistochemistry (data shown in supplementary material, Figure 6B) revealed strong p-MET expression in U-CH2, a cell line
resistant to EGFR TKIs, but not in the other chordoma cell lines. (B) Western blots of U-CH2 treated with reagents as indicated for 4 h

common cause for EGFR activation is the presence of
mutations and gene amplification, as seen in non-small
cell lung cancer and glioblastoma [22,39,64,65]. How-
ever, this is not the case for the cell lines in our study,
which is consistent with published EGFR genetic pro-
filing reports [19,23] and the unpublished data from
∼30 whole genomes/whole exomes from our labora-
tory. The absence of EGFR mutations in chordomas
is shared with other cancers, such as head and neck
squamous cell carcinoma and colorectal and pancre-
atic cancers, which are known to respond to anti-EGFR
therapy to varying degrees [52,66–72]. Similar to these
tumours, chordoma cell lines express the activated form
of the receptor and show suppression of the down-
stream EGFR signalling pathways following treatment
with EGFR inhibitors. The clinical relevance of our in
vitro studies is supported by the documented expression
of these markers in patients’ samples [18–21,73–75].
Specifically, up to 52% of 170 chordoma samples have
been reported to express p-EGFR [18–21,76], although
as phosphorylated protein is unstable, this is likely to
be an underestimate [19,21,73,74]. The significance of

the finding that erlotinib had a significant kill effect
on four of seven cell lines tested is supported by
the response to erlotinib seen in a well-characterised,
patient-derived chordoma xenograft mouse model [77],
which is consistent with the significant growth reduction
we observed for sapitinib in two xenograft mouse mod-
els. There are also a number of well-documented reports
of patients with chordoma showing partial regression
and/or clinical improvement following EGFR TKI treat-
ment [8–13,78]. In contrast, a small non-randomised
phase II clinical trial with the FDA-approved dual
EGFR/ERBB2 inhibitor lapatinib (Tykerb®/Tyverb®),
involving 18 patients with advanced chordoma, showed
only a modest clinical success with partial intratumoural
response in six of 18 patients, according to Choi [76].
This finding is consistent with the failure of lapatinib to
exert a kill effect at therapeutic concentrations in all but
one of our chordoma cell lines. In an attempt to address
differences in the phenotypic kill effect observed in
response to different EGFR TKIs in our large compound
panel, we undertook analysis of their chemical struc-
tures and substituents. The overall finding was that
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Figure 6. Combination treatment of the EGFR TKI sapitinib and the MET inhibitor crizotinib revealed significant synergy. (A) U-CH2 cells were
plated with a Multidrop Combi in a 384-well format: after 24 h, cells were treated with crizotinib for 72 h, followed by sapitinib for another
24 h (n= 4 for combination; n= 3 for compounds alone); a combination index (CI) was calculated and evaluated as synergistic (CI< 0.9),
additive (CI= 0.9–1.1) or antagonistic (CI> 1.1) [86]; we observed a significant synergistic effect when sapitinib (300 nM) was combined
with the MET inhibitor crizotinib (1 μM) in U-CH2 (MI 58%; CI= 0.121; combination versus control, **p= 0.0047). (B) Immunohistochemistry
was conducted on formalin-fixed, paraffin-embedded pellets of all seven chordoma cell lines, normal adult human dermal fibroblasts
(NAHDF) and positive controls (POS): all images were taken at× 20 magnification; results for p-MET showed strong expression in U-CH2,
concordant with the results obtained in western blot analysis (Figure 5), but not in the other cell lines. (C) PTEN expression was absent in
U-CH1, weak in UM-Chor1 and positive to varying degrees in the other cell lines. (D) E-Cadherin was expressed weakly and only focally
in U-CH7 and MUG-Chor1 and was negative in the remaining five cell lines. (E) Western blots on the chordoma cell line panel (n= 7) and
NAHDF confirmed an absence of PTEN in U-CH1, weak expression in UM-Chor1 and varying positivity in the other cell lines, as observed in
IHC (C)

compounds such as sapitinib, with small substituents
appended to the aniline ring in the 4-position of the
quinazoline ring system, were more effective than com-
pounds such as lapatinib, with large substituents, albeit
these findings derive from a small sample size. However,
the complexities of this potency, selectivity and pheno-
typic response relationship demand further study so that
activity can be optimized for chordoma patients.

The expression of p-EGFR in chordoma may be
explained on the basis that epidermal growth fac-
tor (EGF) ligands are direct targets of T [17], the
expression of which is considered to be critical in the
growth of this tumour. This could also explain why T
expression is not suppressed on western blot in response
to EGFR inhibitors. It is therefore interesting that
early-phase clinical trials involving vaccines against T
in patients with lung cancer and chordoma are showing
some evidence of clinical activity [79–81], and it would

be of interest to know whether p-EGFR is suppressed in
the clinical samples from these patients. The combina-
tion of one these vaccines and EGFR inhibition may be
more effective than a monotherapy.

In an attempt to understand why three of seven cell
lines were resistant to EGFR inhibitors, we studied the
common mechanisms by which EGFR TKI resistance
occurs [22,52,54]. We were unable to detect downstream
mutations in PIK3CA, BRAF, KRAS, MAPK1 and oth-
ers [22,52,54]. Nevertheless, as PIK3CA alterations
have been reported in a minority of chordomas, these
could be used to stratify patients for future EGFR
inhibitor clinical trials [23]. ERBB2 amplification,
another reported resistance mechanism [22,52], was
not identified in the cell lines. Loss of heterozygosity
for PTEN has been reported frequently in chordoma
[19,23,24,52,53,82–84]; however, based on our in vitro
results, it was not possible to predict response to EGFR
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inhibition based on PTEN expression. Other major
causes of EGFR resistance may be explained by the
activation of bypass signalling pathways such as MET
[22,52]. It is therefore noteworthy that MET signalling
was activated in the most resistant cell line, U-CH2,
and that a combination of the MET-inhibitor crizotinib
and the EGFR-inhibitor sapitinib exhibited a synergistic
effect on cell kill in this cell line. The absence of gene
amplification and a MET mutation in this cell line leaves
the mechanism of activation unanswered, although this
has not been studied exhaustively, as MET can be acti-
vated by various other mechanisms, such as crosstalk
with other receptor tyrosine kinases [85]. As there are
numerous resistance mechanisms to EGFR TKIs, many
of which remain unexplained even in common cancers
[22], it was beyond the scope of this project to pursue
this further.

The collective data from this study show that EGFR
inhibitors represent the group of compounds within
our extensive screen that were most effective against
chordoma cell growth. There have been reports that
other therapeutic agents have been found to be active
against chordoma but, ultimately, whether some patients
with chordoma benefit from EGFR inhibitors alone or
in combination with these other agents is likely only to
be resolved in a clinical trial [3,14,29]. We propose that
such a study should involve in-depth biological studies
of the tumour samples pre- and post-treatment, with
the aim of explaining the mechanism by which some
chordomas are primarily resistant or develop secondary
resistance to EGFR inhibitors.
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