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Abstract 

Beetles comprise not only the most diverse group of insects, but also contribute 

significantly to vital ecological functions. A quantitative formula to determine the 

optimal level of investment in the beneficial beetle conservation is still not 

available. I aim to establish specific attention to beetles and their role in tropical 

island ecosystems in small archipelago in Indonesia. The study aims to give 

further insights into beetle diversity patterns on islands in the Kepulauan Seribu 

Marine National Park and on Java, and how island isolation and area affect 

assemblage composition. My research also provides insights into the effects of 

anthropogenic activities on beetle diversity on these islands. 

A first important result is the substantial number of highly abundant island species 

and a high number of unique island species found in the study areas, indicating 

islands as potentially important for the global conservation of genetic resources. 

My results also highlight the highly varied results relating to the use of two 

different types of traps, pitfall traps and FITs, for sampling beetles. It underscores 

the need for complementary trapping strategies using multiple methods for beetle 

community surveys in tropical islands. When testing the equilibrium theory of 

island biogeography using beetle assemblages, the overall results of this study 

chiefly support the classic theory of island biogeography. My works also highlight 

the impacts of anthropogenic activities. The positive effects of such human 

activities on the overall species richness of beetles are clearly reflected in my 

result. More island beetle species encountered chiefly in settlement areas than 

forest species. However, when comparing the type of forest habitat on the 

islands, undisturbed forests harbour a higher number of unique species than 

disturbed forests. Finally, this study suggests that the diversity of herbivorous 

beetles on islands is strongly affected by the different levels of forest cover 

encountered.  
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Chapter 1. Introduction 

 

1.1. Insect Diversity 

1.1.1. The importance of insects 

Insects are important because of their diversity, ecological role, and influence on 

agriculture, human health, and natural resources. They have been used in 

landmark studies in biomechanics, climate change, developmental biology, 

ecology, evolution, genetics, paleolimnology, and physiology. Because of their 

many roles, they are familiar to the general public.  

Insects create the biological foundation for all terrestrial ecosystems. They cycle 

nutrients, pollinate plants, disperse seeds, maintain soil structure and fertility, 

control populations of other organisms, and provide a major food source for other 

taxa (Majer, 1987). Virtually, any depiction of a food web in a terrestrial or 

freshwater ecosystem will show insects as a key component although food web 

architectures of these two ecosystems are quite different (Shurin et al., 2005). 

Insects are of great importance as a source of food for several predators. Aquatic 

insect larvae serve as food for fishes, and many stream fish appear to be limited 

by the availability or abundance of such prey, at least on a seasonal basis 

(Richardson, 1993). Insects provide the major food supply of many lizards. Many 

amphibia are carnivorous, especially after they reach maturity, and insects form 

the bulk of their animal food (Brues, 1946). Birds of many families take insects as 

their staple food, at least during part of the year (Carpenter, 1928; Orians, 1966). 

Mammals, such as the American anteater, sloth bear, and the African and 

Oriental pangolins are especially tied to ants and termite colonies, and some 

mammalian predators use insects as food (Scudder, 1976). 

Insects are important supplementary human food source of calories and protein 

in many regions in the world (Bodenheimer, 1951; DeFoliart, 1989, 1992, 1999), 

with some 500 species in more than 260 genera, and 70 families of insects known 

to be consumed (DeFoliart, 1989; Groombridge, 1992). Insects of most major 

orders are eaten, but the most widely used species are those, such as termites, 

that habitually occur in large numbers in one place, or that periodically swarm, 
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such as locusts, or large species such as saturniid moth larvae (Scudder, 1976). 

The seasonal abundance at certain times of the year makes them especially 

important when other food resources may be lacking (Groombridge, 1992). 

As many, or perhaps more, entomophagous insects exist as do prey or hosts 

(DeBach, 1974). The habit of feeding upon other insects is found in all major 

insect orders (Clausen, 1940). Included here are predators and parasitoids, both 

of which are involved in the natural and effective control of insects (Koul and 

Dhaliwal, 2003). The control of the cottony-cushion scale Icerya purchasi Maskell 

in California by the predatory vedalia beetle Rodolia cardinalis (Mulsant) imported 

from Australia established the biological control method in 1888-1889 (DeBach, 

1974, Caltagirone, 1981; Caltagirone and Doutt, 1989). 

Conservatively, some 400,000 species of known insects are plant feeders (New, 

1988). Thus, phytophagous insects make up approximately 25% of all living 

species on earth (Strong et al., 1984). The members of many orders of insects 

are almost entirely phytophagous (Brues, 1946), conspicuous orders being the 

Hemiptera, Lepidoptera, and Orthoptera. The influence of insects, as plant-

feeding organisms, exceeds that of all other animals (Grimaldi and Engel, 2005). 

Under natural conditions, insects are a prime factor in regulating the abundance 

of all plants, particularly the flowering plants, as the latter are especially prone to 

insect attack (Brues, 1946). More thoroughly than any other animals, insects 

have exploited their food supply and profited thereby (Scudder, 2009). 

Miller (1993) have categorised how insects interact with other organisms as 

providers, eliminators, and facilitators. Insects serve as food or as hosts for 

carnivorous plants, parasites, and predatory animals. They also produce 

byproducts, such as honeydew, frass, and cadavers that sustain other species 

(Scudder, 2009). As eliminators, insects remove waste products and dead 

organisms (decomposers and detritivores), consume and recycle live plant 

materials (herbivores), and eat other animals (carnivores). 

Many insect taxa are coprophagous and well-known dung-feeders (Hanski and 

Cambefort, 1991). African dung beetle species have been introduced into North 

America to improve the yield of pasture land through effective removal of dung 

and to limit the proliferation of flies and nematodes that inhabit the dung (Fincher, 
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1986). Dung beetles in the tropical forests also play an important role in 

secondary seed dispersal because they bury seeds in dung, protecting them from 

rodent predators (Shepherd and Chapman, 1998). 

The process of insect pollination is believed to be the basis for the evolutionary 

history of flowering plants, spanning at least 135 million years (Crepet, 1979, 

1983), although the origin of insect pollination, which is an integrating factor of 

biocenosis (Vogel and Westerkamp, 1991), is still being debated (Kato and Inoue, 

1994). Approximately 85% of angiosperms are pollinated by insects (Grimaldi 

and Engel, 2005). Yucca moths (Tegeticula spp.) exhibit an extraordinarily 

adaptation for flower visitation, and the yuccas depend on these insects for 

pollination (Addicott et al., 1990; Powell, 1992). Similarly, figs and chalcid wasps 

have a significant association (Janzen, 1979; Wiebes, 1979). Orchid species 

have developed floral colour, form, and fragrance that allow these flowers to 

interject themselves into the life cycle of their pollinators to accomplish their 

fertilisation (Dodson, 1975). 

 

1.1.2. Global insect diversity and distribution  

Considerable debate continues over how many species of insects are in the 

world. Estimates range from 2 to 50 million (Stork, 1993). The lower figure is from 

Hodkinson and Carson (1991). The higher figure is up to 50 million is from Erwin 

(1988; 1993), and as an earlier estimate of 30 million (Erwin, 1982; 1983), is 

based on number obtained from canopy fogging in the tropical forest of the 

Americas. These high estimates have been questioned, however, because of the 

assumption made and the lack of real evidence for a vast number of undescribed 

species (Stork, 1993). Other methods of estimation have been used by May 

(1990), and from these other data, Stork (1993) concluded that a global total of 

5-15 million is more reasonable than the previous estimation. Gaston (1991) gave 

a figure of about 5 million, and this estimate was accepted by Grimaldi and Engel 

(2005), although Hammond (1992) gave an estimate of 12.5 million species. 

The number of insects described at present is estimated to be 925,000 (Grimaldi 

and Engel, 2005), in a total biota described to date of 1.4 to 1.8 million (Stork, 

1988; 1993; May, 1990; Hammond, 1992). Using the 925,000 species described, 
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versus the estimate of 5 million total, Grimaldi and Engel (2005) suggested that 

only 20% of the insects are named. 

A majority of the species on earth are insects. Hammond (1992) calculated that 

arthropods constitute 65% of the total known biodiversity, and Grimaldi and Engel 

(2005) put the figure at about 58% while Samways (1993) noted that they 

constitute 81.3% of described animal species, including the Protozoa. Thus, from 

a modest beginning some 400 mya, insects have become the dominant 

component of the known diversity on earth, with 100 million species having ever 

lived (Grimaldi and Engel (2005). 

Wheeler (1990) in his ‘species scape’ pictorially illustrated the current dominance 

of insects, and Samways (1993) noted that if all insect species in the world were 

described, the beetle representing the proportion of insect species in the world 

might have to be drawn up to 10 times larger. Wheeler (1990) used a beetle to 

depict the arthropods in his species scape because the Coleoptera are the 

dominant insect group, constituting 40% of the estimated total number of insects 

(Nielsen and Mound, 2000). The dominance of the Coleoptera was said to have 

led J. B. S. Haldane when asked what he could infer from the work of the Creator, 

to respond that the Creator must have had ‘an inordinate fondness for beetles’, 

although there is some doubt about the provenance of this phrase (Fisher, 1988). 

The success of the order Coleoptera is claimed to have been enabled by the rise 

of flowering plants (Farrell, 1998). 

So systematists continue to debate the issue without any hope of consensus. 

Even the number of insects already described, a number that would seem to be 

robust and beyond dispute, is contentious. On one hand, there are problems with 

synonymies. Alroy (2002) has estimated that ’24-31% of currently accepted 

names eventually will prove invalid’ due to synonymies or nomina dubla (that is, 

30% of named species are illusions created by unsettled taxonomy). On the other 

hand, new molecular results of tropical parasitoid flies in the family Tachinidae 

found that the 16 generalist species apparently represent nine generalist species 

and 73 specialist lineages. Given that parasitoids are thought to represent 20% 

of all insect species, gross underestimates of parasitoid species diversity may 

mean that global species richness of insects also may be grossly underestimated. 
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While there may not be a consensus on how many insect species remain to be 

described, an examination of known numbers is an argument for stepping up the 

inventory effort. According to the Red List (http;//www.redlist.org/), 9932 species 

of birds have been described, of which 1005 have been evaluated as to their 

ability to survive; of the 4842 species of mammals that have been described, 

4782, almost 97%, have been evaluated. By contrast, of the 1,004,898 or so 

species of insects that have been described, only 768 – about 0.08% - have been 

evaluated. Of the mammal species that have been evaluated, 1130 of 4782, or 

23.6%, are threatened; of the 9932 bird species, 1194, or 12%, are threatened. 

By contrast, of the 768 insect species that have been evaluated, 563, or 73%, 

are threatened (Figure 1) 

(a) 
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(b) 

 

Figure 1 Taxa redlisted (in blue) with extinction worldwide, (a) number 

evaluated as percentage of the species described, (b) number redlisted as a 

percentage of those species evaluated (data from www.redlist.org.2004). 

 

Insects, then, despite their almost ungraspably large numbers, are at 

disproportionate risk of extinction. How disproportionate is an open question in 

that, of all the major animal taxa on the planet, they are the least well-

characterised group.  To characterise even the majority of insect species would 

be a massive undertaking, but the fact that the rate at which species are being 

described has steadily increased since Linnaeus's day suggests that it is not an 

impossible one. If there is a general consensus that conserving biodiversity is a 

good thing, then a necessary first step is to inventory that which is to be 

conserved. It would be unfortunate that one of the most durable and time-tested 

biological observations – that there are a lot of insects – may cease to be true in 

the foreseeable future. 

 

1.1.3. The relationship of insect to human  

In attempting to characterise public attitudes toward invertebrates, Kellert (1993) 

administered a questionnaire to determine the ‘level of knowledge’ of 

http://www.redlist.org.2004/
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invertebrates in general. Individuals surveyed included randomly selected 

residents of the New Haven, Connecticut, area, along with subsamples of 

farmers, conservation organisation members, and scientists. Of the various 

categories of knowledge investigated, the general public revealed the least 

knowledge of taxonomic differences among invertebrates. Taxonomic confusion 

extended beyond the phylum Arthropoda. 

While biologists passionately debate the number of species awaiting discovery, 

the general public appears blissfully unaware of and indifferent to this discussion. 

In fact, the business of differentiating among insect species has been long 

regarded as the pursuit of trivial value. Insect species as numerous and as 

seemingly similar as they may appear, are not ecologically interchangeable, and 

failing to recognise that fact has had tremendous economic and public health 

consequences over the centuries (Barenhaum, 2009). 

Examples of the importance of differentiating among arthropod species are 

legion. In agriculture, identifying pest species correctly is often key to 

understanding their life histories and developing approaches to managing them. 

The varroa mite, for example, is a devastating parasite of European honeybee 

Apis mellifera. When mites first appeared attacking honeybee in North America 

in the 1980s, they were assumed to be Varroa jacobsoni, a species native to 

Indonesia and Malaysia that had hitherto been thought to attack only Apis cerana, 

the Eastern honeybee. However, Anderson and Trueman (2000) conducted 

morphological and molecular studies and determined that the mite attacking bees 

in North America is a distinct species, which they name Varroa destructor. Unlike 

V. jacobsoni, V. destructor infests A. cerana throughout much of Asia and is also 

capable of parasitizing A. mellifera throughout the world to devastating effect. 

No less important than identifying pest species to control them is identifying and 

appreciating the diversity of potential biological control agents that can be used 

in pest-management programs. Many programs have failed or experienced 

decades-long delays simply because the diversity of potential control agents was 

not fully recognised (Caltagirone, 1981). California red scale Aonidiella aurantii, 

for example, is an important pest of citrus that was accidentally introduced into 

California in the nineteenth century, most likely from Southeast Asia. For close to 

60 years, biocontrol efforts ignored ectoparasitoid wasps in the genus Aphytis as 
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potential control agents because Aphytis chrysomphali was already present in 

the state, having been accidentally introduced at the turn of the twentieth century, 

and apparently had little impact on the pest. Thus, dismissing ectoparasitoids as 

ineffective, entomologists concentrated on potential predators and 

endoparasitoids, without much success. Eventually, the taxonomic study of the 

genus revealed a complex of species, including two, A. lingnanensis and A. 

melirus, which, once introduced, proved to be significantly superior biocontrol 

agents for the scale (Price, 1984). 

Just as biocontrol agents are not interchangeable, neither are insect-pollinating 

agents. Establishing a fig industry in California, today second only to Turkey in 

the production of figs worldwide, was stymied for a decade in the late nineteenth 

century until entomologists recognised that one particular agaonid fig wasp 

species, one of the hundres in the genus, had to be imported to pollinate the 

trees. Similarly, cacao cultivation in Africa, outside its area of indigeneity in 

Mexico, was not profitable until the specific pollinators – midges in the genus 

Forcipomyia – were imported (Young, 1981). 

There have been significant public consequences of the failure to recognise and 

differentiate among insect species. Anopheles gambiae, for example, was long 

regarded as the most important vector of malaria in Africa south of the Sahara. 

The species, however, turned out to be in reality a complex of seven essentially 

morphologically identical species, some of which are efficient vectors and other 

are not vectors (White, 1973; Hunt et al., 1998). These species also differ in the 

degree to which they are resistant to insecticides, which has major implications 

for control efforts (Davidson, 1974). Effective management of vectors of malaria, 

a disease that kills 2 to 3 million people worldwide annually, requires precise 

identification of species (Oringanje et al., 2011). 

Even such unglamorous ecosystem services as waste disposal depend on a 

diversity of non-interchangeable arthropods. The introduction of placental 

mammals such as cattle and sheep into Australia led to significant problems with 

dung accumulation; Australian dung beetles, adapted to using dung of marsupial 

mammals, could not process the dung of introduced placental livestock species. 

The accumulated dung threatened the livestock industry by taking a substantial 

amount of pastureland out of commission but also led to a population explosion 
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of Musca vetustissima, the bush fly, whose larval stage thrived in the dung of the 

introduced species. Ultimately, over 50 species of dung beetles, with different 

habitat requirements, food preferences, and phenologies, were imported to 

manage the dung problem (Doube, 1990). 

Insects, as the most diverse group of animal with which we share our world, add 

substantial variety and diversity to the extraordinarily rare veneer of life on Earth. 

Yet, this insect diversity, the manifestation of millions of years of evolution, is 

under threat of attrition, as populations are lost, genetic diversity reduced, 

species go extinct, and the biomes and resources on which they depend 

succumb on human cupidity. It has been estimated that perhaps a quarter of all 

insect species are heading for extinction over the next few decades. In a mere 

blink of a geological eyelid, the ecological impact of humans is causing the 

demise of a vast amount of Earth’s biodiversity. This variety not only has intrinsic 

value but also may have much practical, utilitarian value that is only starting to be 

explored. 

 

1.2. Insect taxa selected in this study  

In this study, the beetle fauna (Coleoptera) has been selected for two reasons. 

Firstly, beetles represent the greatest proportion of described insects, which 

would be helpful for the identification of specimens. Secondly, the beetle fauna is 

not known equally well in all parts of the world. Studies of beetles in restricted 

area such as islands can provide important data on biodiversity at a finer scale. 

Species lists from distinct areas or habitat types are useful not only because they 

give a snapshot of current ecosystem health and function, but also because they 

can be compared to lists generated at different periods to monitor changes over 

time (Howden and Howden, 2001). 

 

1.2.1 Beetle diversity, habitat, and life cycle 

The estimated number of described species of beetles is between 300,000 and 

450,000 (Nielsen and Mound, 1999). Although Arnett and Thomas (2001) and 

Arnett et al. (2002) showed in American Beetles that the figure is more than 

375,000 species. Of the described species, many are known only from a single 
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locality or even from a single specimen (Stork, 1999; Grove and Stork, 2000). 

Beetles are so diverse, and most species are poorly known, that an estimate of 

how many species exist remain difficult. 

Erwin (1982) first proposed an estimate of the total number of beetle species on 

the planet, based on field data rather than on catalogue numbers. The technique 

used for his original estimate, possibly as many as 12,000,000 species, was 

criticised, and revised estimates of 850,000 – 4,000,000 species were proposed 

(Hammond, 1995; Stork, 1999; Nielsen and Mound, 1999). Some 70-95% of all 

beetle species, depending on the estimate, remain undescribed (Grove and 

Stork, 2000). 

Yeates et al. (2003) estimated that the known beetle diversity of Australia 

includes 23,000 species in 3265 genera and 121 families. This estimate of 

species is slightly lower that that reported for North America, a land mass of 

similar size: 25,160 species in 3526 genera and 129 families (Marske and Ivie, 

2003). While Marske and Ivie (2003) predicted that there could be as many as 

28,000 species in North America, including currently undescribed species, a 

realistic estimation of the true diversity of the little-studied Australian beetle fauna 

could be 80,000 – 100,000 (Yeates et al., 2003). 

Patterns of beetle diversity can illustrate factors that have led to the success of 

the group as a whole. Based on estimates for all 165 families, more than 358,000 

species of beetles haven been described and considered valid. Most species 

(62%) are in six megadiverse families, each with at least 20,000 described 

species: Curculionidae, Staphylinidae, Chrysomelidae, Carabidae, 

Scarabaeidae, and Cerambycidae. The smaller families of Coleoptera account 

for 22% of the total species in the group and include 127 families with 1-999 

described species and 29 families with 1000-6000 described species (Bouchard 

et al., 2009) (Figure 2) 
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Figure 2 Coleoptera biodiversity using the estimated number of described 

species. The 11 largest beetle families (each with 6000+ described species) are 

shown. The remaining 154 families (each with fewer than 6000 described 

species) are combined into ‘other families.' but together represent a significant 

proportion of beetle diversity (Bouchard et al., 2009). 

 

Body length of beetles ranges from 0.4mm (Sorensson, 1997) to more than 17cm. 

Larvae of some of the larger beetles can weight more 140 g and are the heaviest 

insects known (Acorn, 2006). The most common life cycle type in beetles is 

holometaboly, where individuals emerge from eggs as larvae, develop through 

several instars, pupae, and eventually emerge as adults (Bouchard et al., 2009). 

Sexual reproduction is predominant, although partigenesis (i.e., production of 

viable, unfertilised eggs) also occurs. More specialised or unusual life cycles, 

which include the occurrence of active and inactive larval instars in parasitoid 

species, are also known in Coleoptera (Lawrence and Britton, 1994). 

Beetles occur in most terrestrial and freshwater habitats (Lawrence and Britton, 

1994), and a few occupy marine environments (Doyen, 1976; More and Legner, 

1976). They are an important part of these habitats, have important effects on 

agriculture and forestry, and are useful model organisms for many types of 

science. A better understanding of beetle diversity will enhance our knowledge 

and provide many practical applications. 
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1.2.2. Overview of beetle taxa 

The order Coleoptera is divided into three suborders: suborder Archostemata and 

Myxophaga, suborder Adephaga, and suborder Polyphaga. Suborders 

Archostemata includes about 40 species of small to medium-sized beetles in five 

families of Ommatidae, Crowsoniellidae, Micromathildae, Cupedidae, and 

Jurodidae (Hornschemeyer, 2005). Myxophagan are small beetles (usually 

shorter than 2.5 mm) that feed on algae or blue-green algae in freshwater and 

riparian habitats (Beutel, 2005). The four myxophagan families include 

approximately 100 species worldwide.  

The suborder Adephaga includes three terrestrial families (Carabidae, 

Rhysodidae, and Trachypachidae), eight freshwater families (Gyrinidae, 

Haliplidae, Noteridae, Amphizoidae, Hygrobiidae, Dytiscidae, Aspidytidae, and 

Meruidae), and more than 40,000 species worldwide (Ball and Bousquet, 2001; 

Beutel and Ribera, 2005). Most species are predators in both the larval and adult 

stages, although several species of Carabidae are parasitoids (Ball and 

Bousquet, 2001). The most diverse family of adephagan beetles associated with 

freshwater habitat is the Dytiscidae, with approximately 4000 species worldwide. 

Because of their predatory habits, dytiscids are thought to play an important role 

in the control of larval mosquitoes that, as adults, often are infected with a variety 

of disease agents transmittable to humans (Lopez et al., 1997; Bellini et al., 2000; 

Lundkvist et al., 2003).  

The Carabidae, commonly referred to as ‘ground beetles’, represent the most 

diverse family in this suborder, with an estimated 40,000 known species (Erwin, 

1991). Ground beetles are by far the most important adephagans regarding 

anthropogenic interactions. Studies of ground beetles have enhanced our 

understanding of the ecological effects of agricultural practices (Freuler et al., 

2001; Duan et al., 2006), forestry practices (Niemela et al., 1993; Magura et al., 

2003), habitat fragmentation (Magagula, 2003), pollution of natural ecosystem 

(Freitag, 1979), and many more human activities. Ground beetles are also 

important for research on habitat conservation (Bouchard et al., 2006) and 

biogeography (Marshall and Liebherr, 2000). 
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Suborder Polyphaga includes several series: Staphyliniformia, Scarabaeiformia, 

Elateriformia, Bostrichiformia, and Cucujiformia. 

Series Staphyliniformia includes the superfamilies Hydrophiloidea, and 

Staphylinoidea. The phylogenetic evidence is mounting that the superfamily 

Scarabaeoidea also should be included in this series (Hansen, 1997; Beutel and 

Komarek, 2004; Korte et al., 2004; Beutel and Leschen, 2005; Caterino et al., 

2005, Hughes et al., 2006). However, the exact relationship of the Scarabaeoidea 

to the Staphyliniformia and the monopholy of the series Staphyliniformia, as 

presently defined, have yet to be determined. Bouchard et al., (2006) decided to 

treat the Scarabaeoidea as a separate series to follow current classification 

schemes. The total number of described species of Staphyliniformia is about 

90,000, or roughly a quarter of all beetles and considerably more than all 

Vertebrata combined. 

The superfamily Hydrophiloidea unites four families: Hydrophilidae, Histeridae, 

Sphaeritidae, and Syntellidae (Archangelsky et al., 2005). The Sphaeritidae and 

Syntellidae include fewer than 20 species each. These families are associated 

with decaying organic matter, and each includes a single genus distributed in 

both North America and Eurasia. The Histeridae (330 genera and 4000 species) 

and Hydrophilidae (170 genera and 2800 species) are two large, cosmopolitan 

families that are most diverse in the tropics (Beutel and Leschen, 2005). 

Hydrophiloid beetles are primarily aquatic, although the Sphaeridiinae are 

secondarily terrestrial and found in dung and leaf litter. Larvae of the 

Hydrophilidae are normally aquatic, go through three instars, and are predators. 

Pupation, however, takes place in the soil (Hansen, 1991). Unlike the 

Hydrophilidae, the Histeridae are strictly terrestrial predator in the adult stage, 

and their larvae have only two instars.  

The superfamily Staphylinoidea includes seven families. Beutel and Leschen 

(2005) hypothesised that the Hydraenidae and Ptiliidae for a sister group of the 

Agyrtidae plus Leiodidae while these four families are together a sister group of 

the Staphylinidae and Silphidae plus Scydmaenidae. Six of these families are 

worldwide in distribution while the Agyrtidae are known only from northern 

temperate areas, with one genus in New Zealand (Newton, 1997). The family 

Hydraenidae comprises some 1300 described detritus-feeding species in 40 
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genera. However, the true species richness is probably higher (Jach et al., 2005). 

Most hydraenid species occur in freshwater habitat, some are terrestrial and 

either riparian or associated with wet forest leaf litter. The Ptiliidae (feathering 

beetles) are strictly terrestrial and mycophagous and include more than 550 

described species in about 70 genera (Hall, 2005). . 

The Silphidae, also known as the large carrion beetles, include fewer than 200 

species in 15 genera (Sikes, 2005) and are efficient carrion decomposers. The 

Scydmaenidae mainly prey on mites and have about 82 genera with more than 

4600 species, more than half of which belong to the genus Euconnus (O’Keefe, 

2005). The family Staphylinidae includes 47,744 described species. The 

Staphylinidae are predominantly mycophagous, saprophagous, and predaceous, 

although some species are phytophagous. The Staphylinidae are organic 

components of healthy ecosystems, both natural and modified by humans 

(Bouchard et al., 2009). 

The series Scarabaeiformia, as currently classified, consists of 12 families 

(Pleocomidae, Geitrupidae, Belohinidae, Passalidae, Trogidae, Glaresidae, 

Diphyllostomatidae, Lucanidae, Ochodaeidae, Hyborosidae, Glaphyridae, and 

Scarabaeidae), 43 subfamilies, and 118 tribes (Smith, 2006). Recent estimates 

of the number of described species in this group range from 31,000 to 35,000 

(Jameson and Ratcliffe, 2002; Scholtz and Grebennikov, 2005). Scarab beetles 

are terrestrial with their larvae inhabiting soil, detritus, or decaying wood. Scarab 

species can be found in most terrestrial habitats worldwide and are most diverse 

in tropical forests. Hundreds of species of scarab beetles are nectar feeders and 

pollinators of a diverse assemblage of plant species. The benefits of dung 

removal and burial by dung beetles worldwide are well documented from the 

perspective of pastureland productivity, nutrient recycling, and health (Mittal, 

1993; Tyndall-Biscoe, 1994).  

The series Elateriformia contains five superfamilies: Scirtoidea, Dascilloidea, 

Buprestoidea, Byrrhoidea, and Elateroidea (Lawrence et al., 1995), and at least 

40,000 sepcies. Of these, about 30,000 species belong to the three largest 

families, the Buprestidae, Elateridae, and Cantharidae. Elateriform beetles are 

found throughout the world and most diverse in tropical regions (Bouchard et al., 

2009). Elateriform beetles have a wider diversity of larval feeding habits than for 
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any other series, which include feeding on deadwood (e.g. Buprestidae), 

herbivory (e.g. Buprestidae), fungivory (e.g. Elateridae), carnivory (e.g. 

Elateridae), and ectoparasitism (e.g. Rhipiceridae). 

Although the major known economic effects of elateriform beetles are negative 

(e.g. Buprestidae as forest pest and Elateridae as an agricultural pest), many are 

likely beneficial but unknown. Among the beneficial species, only a few elaterids 

have been introduced for biological control (Clausen, 1978). Similarly, the role of 

elateroids and buprestoids as pollinators is probably also undervalued (Bouchard 

et al., 2009). 

The series Bostrichiformia are composed of seven families, each contains 

relatively few species. The Jacobsoniidae, Derondotidae, Nosodendridae, and 

Endecatomidae, each contains fewer than 100 species worldwide, whereas 

Bostrichidae, Dermestidae, and Anobiidae contain between 500 and 2500 

species each. Some of the species of less diverse families are very small, their 

biology is essentially unknown, and they are collected only by using specialised 

tools such as the Berlese funnel. Overall, the species-poor families 

Jacobsoniidae, Derodontidae, Nosodendridae, and Endecatomidae have diverse 

feeding habits and habitat preferences. They occur in fungi, rotten wood, under 

bark, in leaf litter, and in bat guano (Lawrence and Hlavac, 1979; Leschen, 2002; 

Ivie, 2002).  

The larvae of most Bostrichidae are wood borers, and several are major pests. 

The grain borers (Prosthephanus and Rhyzopertha), powder post beetles (Lyctus 

and Trgocylon), and bamboo powder-post beetles (Dinoderus) are especially 

important economically (Ivie, 2002b). The Dermestidae include primarily 

scavengers of dried animals and plant material. This family includes some of the 

most important pests of stored products and museum specimens. In addition, 

some dermestids are used in forensic entomology. 

The family Anobiidae, which the most diverse in tropical and subtropical habitats, 

includes more than 2000 species worldwide (Bouchard et al., 2009). The larvae 

of Anobiidae can be separated into two groups. The first group of species bore 

into plant materials such as bark, seed, dry wood, and galls, while the other group 

feed on dry animals and plant detritus (Philips, 2002). 
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The series Cucujiformia includes six superfamilies: Cleroidea, Lymexyloidea, 

Cucujoidea, Tenebrionoidea, Chrysomeloidea, and Curculionoidea (Lawrence 

and Newton, 1995). The superfamily Lymexyloidea is the smallest, containing the 

single family Lemexylidae with more than 50 predominantly tropical species are 

organised into seven genera (Wheeler, 1986). Larvae of at least some 

Lymexylidae burrow into wood and cultivate ambrosia fungi believed to be their 

only larval food source. This larval lifestyle causes some damage to forestry in 

temperate areas, whereas, in the tropics, Promelittomma insulare is a pest of 

coconut palms (Brown, 1954). 

The superfamily Cleroidea is a group of ten families and about 10,000 species. 

Adults and larvae of most species are predators. The larvae of some species 

pursue and attack wood-boring insects inside the tunnels, benefiting the forestry 

industry. The Acanthocnemidae have a single extant species, Acanthocnemus 

nigricans native to Australia (Lawrence et al., 1999). The Chaetosomatidae 

include four genera in New Zealand and Madagascar (Lawrence et al., 1999). 

Cleridae is the second largest family in this superfamily, with about 3500 species 

worldwide (Kolibac, 2004). The Melyridae have about 5000 species worldwide 

(Kolibac, 2004). 

The superfamily Cucujoidea includes about 20,000 species in about 1500 genera 

(Pakaluk et al., 1994), which are classified in the following 35 families (Leschen 

et al., 2005): Agaphytidae, Alexiidae, Biphyllidae, Boganiidae, Bothrideridae, 

Byturidae, Cavognathidae, Cerylonidae, Coccinellidae, Corylophidae, 

Cryptophagidae, Cucujidae, Cyclaxyridae, Discolomatidae, Endomychidae, 

Erotylidae, Helotidae, Hobartiidae, Keteretidae, Laemophloidae, Latridiidae, 

Lamingtoniidae, Monotomidae, Myrabolidae, Nitidulidae, Passandridae, 

Phalacridae, Phoeostichidae, Priasilphidae, Propalticidae, Protocucujidae, 

Sivanidae, Smicripidae, Sphindidae, and Tasmosalpingidae. Some species prey 

on phytophagous arthropods, benefiting human by protecting beneficial plants. 

Other species are invasive or otherwise detrimental (Bouchard et al., 2006) 

The superfamily Tenebrionoidea is composed of 27 families. The families 

Aderidae, Anthicidae, Ciidae, Meloidae, Mordellidae, Oedemeridae, and 

Zopheridae are moderately diverse within the Tenebrionoidea, each containing 

550-3000 described species. The adults are some important pollinators of wild 
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and cultivated plants (Bouchard et al., 2009). A large proportion of these beetles 

develop in dead wood, fungi, and leaf litter and are uncommonly encountered by 

people. A few species in the family Anthicidae prey on the eggs and small larvae 

of pest species and can be useful as biological control agents (McCutcheon, 

2002). 

The most diversity of tenebrionoid family is Tenebrionidae, with nearly 20,000 

described species worldwide.Tenebrionids play a significant role in food webs 

(Crawford et al., 1993). Several tenebrionid species have been transported 

across the world by humans because of their association with stored products 

(Chaddick and Leek, 1972). Some Tenebrionidae, especially those who have lost 

their ability to fly, are recognised as endangered and in need of habitat 

conservation to avoid extinction (Bouchard et al., 2009). 

The superfamily Chrysomeloidea is a group of seven beetle families (Beutel and 

Leschen, 2005) with more than 50,000 species arranged in the cerambyciform 

(Cerambycidae, Vesteridae, Oxypeltidae, Disteniidae) and chrysomeliform 

(Megalopodidae, Orsodacnidae, Chrysomelidae) lineages. Because they are 

almost exclusively phytophagous, many of these beetles are important to 

humans, mainly as plant pests or biological agents against unwanted plants 

(Bouchard et al., 2009). Although the majority of species in the Cerambycidae 

are winged and have arboreal habits, specialised adaptations to ground-dwelling 

habits are known in the flightless genus Dorcadion and related genera 

(Plavilstshikov, 1958). 

The herbivorous superfamily Curculionoidea contains seven smaller families with 

fewer than 4500 described species each (Nemonychidae, Anthribidae, Belidae, 

Caridae, Brentidae, and Ithyceridae), as well as the most diverse family of 

beetles, the Curculionidae. Most species in this superfamily have a distinctive 

cylindrical extension of the head that leads to the buccal cavity. This adaptation, 

the rostrum, is used to prepare cavities in plant tissues for the deposition of eggs. 

The evolution of the rostrum is thought to be one of the reasons for the success 

of this group because it allows species of the Curculionoidea to exploit plant 

tissues that other groups cannot access (Anderson, 1995). 
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The family Curculionidae is one of the most diverse groups of organisms, with 

more than 60,000species described and thousands more to be described. Their 

close association with flowering plants is one of the main factors explaining their 

great diversity. Curculionids feed on plants of any terrestrial or freshwater habitat 

and any plant tissue, from roots to seeds (Anderson, 2002). Because of these 

characteristics, curculionids are important economically as serious pests of 

agricultural and forestry plants. 

 

1.2.3. Beetle of economic importance 

In agriculture, hundreds of species beetles, including many from family 

Curculionidae, Chrysomelidae, Elateridae, and Scarabaeidae, feed on crops and 

ornamental plants in their larval or adult stages or both (Campbell et al., 1989). 

One of the best-studied pest is boll weevil (Anthonomus grandis grandis), which 

reduces cotton production. This species is native to tropical and subtropical 

America but has been established in the USA since the late 1800s (Burke et al., 

1986). In the last 100 years, yield losses and control costs against this species 

have been estimated at more than $22 billion (Kaplan, 2003). 

Blister beetles that contaminate animal feed also affect agriculture. These meloid 

beetles are sometimes abundant in hay fields and possess cantharidin 

compounds that they use for defense against predators. Farm animals (cows, 

emus, goats, horses, and sheep) have become ill or died after consuming alfalfa 

contaminated by dead blister beetles (Capinera et al., 1985). 

Beetle are important vectors of pathogens to crops and livestock (Harris, 1981). 

The striped cucumber beetle, Acalymma vittatum, is a specialist herbivore that 

feeds on plants of the cucumber family Cucurbitaceae. The association of these 

beetles with the wilt-inducing plant bacterium Erwinia tracheiphila has led to 

major losses in the past (Garcia-Salazar et al., 2000). 

Hinton (1945) stated that the Coleoptera was the most important order of insects 

attacking stored products. More than 600 species of beetles are associated with 

stored products all around the world. Although many of these species eat the 

stored products, others feed on the fungi or other animals that inhabit warehouse 
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(Bousquet, 1990). Some of the most problematic groups of beetles in stored 

products are the Laemophloeidae, Dermestidae, and Tenebrionidae.  

Beetles from family Dermestidae are also one of the greatest threats to the 

world's museum collection. Species of Anthrenus and Dermestes commonly 

attack and destroy preserved animals such as pinned insects and preserved pelts 

and skins, as well as cultural artefacts that incorporate hair, wool, fur, leather, 

feathers, and other animal derivatives (Campbell et al., 1989). 

Many species of Coleoptera are also forest pests. Up to 45% of the annual wood 

volume grown in Sweden was estimated to be lost to only two bark beetles, 

Tomicus piniperda and Ips typographus (Eidmann, 1992). Weevils of the 

subfamilies Scolytinae and Platypodinae, with 5812 and 1463 species, 

respectively (Wood and Bright, 1992), are the most infamous forest pests. Many 

bark beetles use chemical signals (pheromones) to schedule a synergic attack 

by many individuals on a single tree, thus overcoming its resistance and killing it, 

making it suitable for beetle reproduction (Paine et al., 1997). 

On the other hand, many important ecological services are provided by beetles. 

Confining large mammals in small areas creates challenging waste-management 

problems. Cattle production in the United States provides a particularly pertinent 

example, because nearly 100 million head of cattle is in production (NASS, 2004), 

and each animal can produce over 9000 kilograms (kg) (Fincher, 1981), or about 

21 cubic meters (BCMAF, 1990), of solid waste per year. Fortunately, beetles in 

the family Scarabaeidae (Ratcliffe 1970) are very efficient at decomposing this 

waste. In doing so, they enhance forage palatability, recycle nitrogen, and reduce 

pest habitat (Fincher 1981), resulting in significant economic value for the cattle 

industry (Losey and Vaughan, 2006). The importance of this service is illustrated 

by the success of dung beetles introduced into Australia to deal with the dung of 

non-native cattle brought to that continent in 1788 (Australian Bureau of Statistics 

2005).Before the introduction of dung beetle species that were adapted to feed 

on cattle dung, Australia had no insect fauna to process cattle faeces. 

Consequently, rangeland across the country was fouled by slowly decomposing 

dung (Bornemissza, 1976). In addition, this dung provided fodder for pest 

species. Recent research in Western Australia has revealed that populations of 
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the pestiferous bush fly (Musca vetustissima) have been reduced by 80% 

following dung beetle introductions (Dadour and Allen, 2001). 

Another important service provided by dung beetles is promoting decomposition 

of dung into labile forms of nitrogen that can be assimilated by plants and thus 

function as fertilizer when the dung is buried. In the absence of dung beetles, 

cattle feces that remain on the pasture surface until they are dry lose a large 

proportion of their inorganic nitrogen to the atmosphere (Gillard, 1967). 

Experiments in South Africa and the United States have shown that 

approximately 2% of cattle dung is composed of nitrogen and that 80% of this 

nitrogen is lost if the dung dries in the sun before it is buried (Petersen et al.,1956; 

Gillard, 1967). 

Many cattle parasites and pest flies require a moist environment such as dung to 

complete their development. Burying dung and removing this habitat can reduce 

the density of these pests (Fincher, 1981). From field observations that reflected 

current levels of removal, Fincher (1981) estimated the annual losses due to 

mortality, morbidity, and medication of beef cattle, dairy cattle, and other livestock 

with internal parasites is about $428 million annually because of parasites and 

pests. 

Plant-feeding beetles, primarily of the families Curculionidae and Chrysomelidae, 

have been used successfully to control the spread of invasive alien plant species 

throughout the world. Weeds have been transported accidentally throughout the 

world for centuries, and the trend is increasing with the global trade (Mason et 

al., 2003). Careful studies of the biodiversity and biology of beetles in the weed’s 

country of origin are necessary for safe and efficient control (Lindgren et al., 

2002).  

Beetles, along with other insects groups, are critically important in the pollination 

of cultivated and wild plants. Pollination by beetles is often referred to as 

cantharophily. The Coleoptera are considered as the most primitive pollinators 

(Kevan and Baker, 1983). Thirty-four families of flowering plants contain at least 

one species that is pollinated primarily by beetles (Bernhardt, 2000). In some 

ecosystem, such as cloud forests, more than 45% of palms and herbs rely on 

beetles for pollination (Serez and Ramirez, 1995). 
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1.2.4. Threatened beetles  

Many beetles are especially vulnerable to local and global extinction. These 

beetles often have low powers of dispersal (flightless), only occur in extreme or 

specific microhabitats, or occur over small geographical areas. Beetles on 

islands, isolated dunes, caves, mountains, and other ecological islands fit into 

this category. In addition to beetles considered threatened locally or globally, 69 

globally threatened species appear on the International Union for Conservation 

of Nature and Natural Resources’ Red List of Threatened Species either as 

vulnerable (27), endangered (16), critically endangered (10), or extinct (16). 

These species belong to 13 families and occur in 60 countries. Human activities, 

such as habitat destruction and the introduction of invasive alien species, 

continue to threaten many of the world’s natural ecosystems and the myriad of 

beetle species in them (Spence and Spence, 1988; Martikainen and Kouki, 2003; 

Munks et al., 2004; Davis and Philis, 2005; Bouchard et al., 2006). The number 

of species currently listed as vulnerable, threatened, or extinct represents a gross 

underestimation of the number that should be targeted for conservation. Thus, 

studies on beetle diversity and the conservation of their habitats are necessary 

to ensure the sustainability of natural ecosystems and critical human activities. 

 

1.3. The biogeography of island life 

1.3.1. Island environments and the significant of island biodiversity 

Island topography is primarily determined by the geophysical origins of the island. 

Marine islands may be subdivided into two geophysically distinct categories: 

continental shelf islands (land-bridge islands) and oceanic islands. Continental 

shelf islands are likely to be physically connected to the mainland during low sea 

level periods. Due to their connection, these islands have similar geological 

structures to the nearby mainland (Williamson 1981). This similar topography, 

coupled with the island’s proximity to the continent, results in the proliferation of 

similar flora and fauna (biota) (Yu and Lei, 2001). 

Continental islands have often been compared with habitat fragments. A study 

by Walter (2004) showed that they resemble the latter in some respects: their 
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limited size and disconnection from the mainland will result in similar biodiversity 

losses and downsizing over time as can be experienced in continental remnant 

habitats. However, the different nature of the surrounding matrix – the seawater 

barrier – keeps many continental mortality factors affecting mainland fragments 

off the island, potentially lowering the extinction rate compared with what might 

occur at the place–taxon interface of a mainland remnant isolate. In addition, 

there is no terrestrial edge effect. Often, there are no endemics on such islands, 

but some island populations may have become independent from their mainland 

conspecifics thereby achieving full functional insularity (Walter, 2004). In other 

cases, continental islands may harbour relict taxa already extinct on the mainland 

or taxa that only exist on islands regardless of their connection to a mainland 

(white-crowned pigeon Columba leucocephala in the Gulf of Mexico). Thus, 

continental or near-shore island biotic space must be considered separate from 

that of oceanic islands as well as from any mainland isolate patch (Walter, 2004). 

Oceanic islands are typically more isolated, and may have never been physically 

connected to a continental landmass. Williamson (1981) divided three main types 

of oceanic islands: oceanic ridge islands, hot-spot islands, and the individual 

islands of island arcs. Oceanic ridge islands and hot-spot islands are volcanic 

islands because they are formed from ocean floor volcanoes. Islands that are 

part of island arcs also have a volcanic origin, involving the collision of continental 

and oceanic plates, resulting in islands that consist of both basalt and granite 

rock (Williamson 1981).  

Rosenzweig (1995) came up with the definition ‘an island is a self-contained 

region whose species originate entirely by immigration from outside the region’. 

The first part of this definition is acceptable because it underlines the uniqueness 

and isolation of many island ecosystems. The second part is only valid where 

there has been no in situ evolution of taxa which is true for almost all recently 

formed land bridge islands (British Isles, Elba, Dalmatian islands) but not for 

thousands of oceanic islands. In fact, for Rosenzweig, all regions ‘whose species 

originate entirely by speciation within the region’ are considered mainlands. He 

insists that Hawaii is a mainland; logically then, so should most other islands with 

endemic taxa. It would be more useful to term such islands as novel centres of 

diversity. From the perspective of functional aerography, Rosenzweig’s approach 
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fails to acknowledge the all-important biotic community and physical geocoenosis 

context in which species evolve and persist on islands (see below). Alfred Russel 

Wallace (1869, 1881) remains, of course, the patron of island biodiversity studies. 

The current renaissance of Wallace’s works (Berry, 2002) and a new biography 

(Raby, 2001) will surely lead to greater appreciation of insular biotas and of the 

diversity of physical, climatic, and cultural island environments. Brown & 

Lomolino (1998) and Whittaker (1998) review island geography and distinguish 

several types of oceanic and continental islands. Mayr (1941) had noted that 

there has been some confusion over the term oceanic island. There is a geologic 

definition (an island not situated on a continental shelf), and there is a 

zoogeographical definition: ‘an island that has received its fauna across the sea 

and not by way of land bridges’ (Mayr, 1976). 

All of the geological processes occurring volcanic islands can produce islands 

with high elevations, with peaks of at least 2,000 m (Williamson 1981). Volcanic 

islands are typically steeper and become increasingly separated with age. This 

phenomenon has important implications for island biota because a wide range of 

elevational gradients and associated ecological attributes allows for the 

persistence of diverse habitats. The elevation of islands also has important 

influences on the climatic regime. 

Island climate is determined by both external influences, such as ocean 

circulation and atmospheric circulation, and internal influences, such as island 

size, shape, and topography. Ocean circulation and atmospheric circulation 

consist of water currents and air currents, respectively, that have similar 

movements of upwelling and sinking. If an island is in the path of a moving current 

or is located where two currents intersect, this can alter the climate significantly. 

In addition to circulation influences, the proximity of an island to a continental 

landmass also affects the island’s climate. Islands located close to a mainland, 

such as land-bridge islands, are likely to be influenced by the continental climate. 

Remote oceanic islands, on the contrary, are influenced by the maritime climate 

(Yu and Lei, 2001). 

Internal influences, such as island size and elevation, can have a substantial 

impact on the precipitation regime on the island. Whittaker (1998) states that low 

islands typically have relatively dry climates, and high islands are wetter through 
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orographic rainfall, resulting in the creation of extensive arid regions due to the 

rain shadow effect. These higher islands often contain diverse habitats within a 

relatively small area. Due to the impact of elevation on island climate, research 

studies have indicated that elevation is a critical variable in analyzing species 

diversity on islands. Telescoping, a compression of elevational zones, is fairly 

common on small tropical islands. Leuschner (1996) proposes that forest lines 

on islands are generally 1,000 to 2,000 m lower than forest lines on continents. 

Hence, telescoping creates smaller patches from a variety of habitats favourable 

to many species, and permits high- and low-elevation inhabiting species to 

coexist in a relatively small area (Whittaker 1998). 

 

1.3.2. Anthropogenic losses and threats 

Islands have also been an issue in conservation biology, mainly due to 

detrimental human impacts in island environments. There are numerous heated 

debates as to what type of impact the earliest human colonizers had on island 

ecosystems. Some ecologists and biogeographers argue that most of the earliest 

island colonizers were respectful of the island ecosystem and that negative 

impacts occurred only after secondary arrivals of colonizers conflicted with the 

interests of the initial inhabitants. Others argue that earliest inhabitants of some 

islands devastated the environment because of their ignorance and negligence 

concerning island ecosystems. One rather undisputed fact is that as human 

communities on islands reached the carrying capacity, humans often modified 

island landscapes to support the rapidly growing population. A classic example 

is the terracing of steep terrain on islands to maximize agricultural productivity 

(Nunn 1994). Through history and into the modern age, negative anthropogenic 

impacts have continued and increased. Humans can easily damage pristine 

island environments in five ways: overexploitation and predation, habitat loss, 

fragmentation, degradation, and the introduction of exotic species and diseases 

(biological invasions). 

Olson (1990) reviewed the prehistoric impact of humans on island birds and 

concluded that ‘analysis of the fossil record has repeatedly shown that prehistoric 

man has had an extremely adverse effect on insular ecosystems on a global 
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scale. He documented that on many Pacific islands (from New Zealand, New 

Caledonia, Oahu, Maui, Managaia, to Huahine in the Society Islands) some 40–

80% of the native land bird species had gone extinct in prehistoric and historical 

times (Steadman, 1997). Olson showed that current distribution patterns have 

been unnaturally modified by man-caused extinctions ‘and have thus led to many 

fallacious systematic and biogeographic conclusions’. He argued that ‘at this 

point, the only safe generalization in island biogeography is that it is not safe to 

make generalizations’ (Olson, 1990). Similar effects of prehistoric and historic 

human agency have been discovered in the West Indies (Woods & Sergile, 

2001). The severe species and habitat loss experienced by many island 

ecosystems have been accompanied (and possibly accelerated) by intentional 

and accidental invasions of exotic biota. Sax et al. (2002) have shown that the 

species richness of vascular plants has approximately doubled on oceanic 

islands as a result of the recent human impact. 

For centuries, island ecosystems have been the target for habitat loss, 

fragmentation, and degradation primarily for agricultural reasons (Heywood 

1979). Such habitat destruction not only directly damages the island flora but also 

reduces the faunal biodiversity. As forested areas are diminished, suitable 

habitats and food resources for fauna also diminish. As habitat fragmentation 

(deforestation) continues at an alarming rate, it creates major ecological 

dilemmas on islands such as Madagascar. Another mechanism of habitat 

degradation or simplification is human-induced fires. Fires are often utilized for 

hunting purposes or to clear a plot for agricultural purposes. Frequent fires in 

areas with a low natural fire frequency can be tremendously destructive. Such 

prescribed burning can clearly destroy the present island ecosystem and 

permanently transform the island landscape. 

As humans travel the globe, different species have been intentionally and 

inadvertently introduced into new ecosystems. Many island species, also known 

as the native biota, are particularly vulnerable to biological invasions due to their 

isolation through evolutionary time. The absence of herbivory, for instance, has 

resulted in the persistence of many island flora with no defensive mechanisms 

against grazing pressures. Isolation, in a sense, has protected such plant species 

that, otherwise, would have become extinct on the mainland (Melville 1979). 



42 
 

Nevertheless, the presence of abundant herbivores, such as cattle, sheep, goats, 

and pigs, has led to extreme habitat degradation. Historically, humans 

intentionally introduced these grazing animals to ensure abundant food supply, 

without even considering the negative ecological consequences. However, many 

of these animals have become feral and extremely detrimental to the island 

landscape. Overgrazing has caused massive erosion on the hillsides, leading to 

large-scale landslides. Similarly, heavy grazing has encouraged the proliferation 

of exotic species. The introduction of exotic species into an island ecosystem is 

typically irreversible. Some exotic species, in fact, are more successful in these 

foreign environments than in their native landscape. Once those exotic species 

have established, their populations rapidly proliferate, making it nearly impossible 

to completely extirpate them from the island. 

 

1.3.3. Insect and island ecosystem 

Insect diversity on islands is often skewed. Some taxa and endemic insect 

diversity on islands had rarely been explored (Sugiura et al., 2009). On newly 

created islands, this is partly the result of the sweepstake effect, where only 

certain taxa successfully land and colonise an island. Especially on larger 

isolated islands or archipelagos, many species that naturally invaded new islands 

or were marooned on islands that became separated from the mainland develop 

into island endemics. This can be related to the island being separated from 

neighbouring suitable habitat by a hostile environment, the sea. Besides adaptive 

radiation, where species have evolved to occupy distinctly different niches and 

subsequently acquired evolutionary stability, there is also fugitive radiation. This, 

according to Adsersen (1995), is the appearance of 'weak species', which are 

very local and have to evolve further to avoid extinction when faced with 

competition from mainland relatives. Many insects appear to fall into this latter 

category, maintaining remarkably small populations (Samways, 2003), which 

presumably are highly susceptible to adverse changes. This emphasizes the 

risks of synergistic effects of global warming and invasive aliens on island insect 

assemblages, which are both severely impacting some island faunas (Samways, 

2005).  
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On the other hand, insects are ideal objects for studies of ecological 

biogeography because of their highly diversified ecology, also in habitats like 

islands, where some taxa, such as tenebrionidae beetles, are speciose while 

other animal groups have low diversity (Fattorini, 2002). Because insects also 

differ in dispersal ability (there are winged, wingless, and wing-dimorphic species, 

den Boer et al., 1980), they are a popular model in island ecology (Lovei and 

Sunderland, 1996; Hatteland et al., 2008; Kotze, 2008).  

Beetles have been used extensively to study island ecosystems in the past. 

Ground-beetle species (Coleoptera: Carabidae) have been employed as 

bioindicators for conservation planning over a wide range of altitudes in the 

Canary Islands (Gomez, 2010). Dung beetle (Coleoptera: Scarabaeidae) have 

been studied to look at the small island effects on their richness and communities 

in north-eastern Peninsular Malaysia (Qie et al., 2011). The study showed that 

common species and those able to forage on the forest edge have a higher 

chance of survival on small islands. Qie et al. (2011) also found that species 

richness and community composition on islands below 35.8 ha in an area clearly 

exhibited increased variability. A study from Emerson and Oromi (2005) looked 

at diversification of the flightless beetle genus Tarphius (Coleoptera: Colydiidae) 

and its evolutionary origins of island endemicity in the Canary Islands. The result 

suggested that the Canary Island species assemblage is of some antiquity, 

however, much of this species diversity is relatively recent in origin. It also 

indicated that colonization events between islands have probably been a 

significant factor in the evolutionary history of the Canary Island species 

assemblage (Emerson & Oromi, 2005). Study on Bothrometopus huntleyi, a 

flightless weevil endemic to the volcanically-formed sub-Antarctic Prince Edward 

Islands, showed that the genetically discrete B. huntleyi complexes on each of 

the islands of the Prince Edward Islands archipelago together with the low levels 

of inter-island gene flow reaffirm the need to control alien invasive mice, which 

are restricted to Marion Island, and which prey on this weevil species. 
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1.4. The development of The Equilibrium Theory of Island Biogeography 

(ETIB) 

1.4.1. Historical perspective of Island Biogeography Theory 

Research on islands has long played a fundamental part in developing our basic 

understanding of ecology and evolution. Both Darwin’s and Wallace's insight into 

evolution and speciation were shaped by studies on islands (Darwin, 1859; 

Wallace, 1881). The reasons why islands are useful in ecological studies are 

manifold. Island populations, communities and ecosystems are self-maintaining 

entities with well-defined geographical limits that contain the fundamental 

processes, properties, and interactions of ecological systems - but they often do 

so in simpler ways, without the complexity of most continental systems. 

Moreover, the influence of particular factors that control ecological phenomena 

can be studied against a relatively simple environmental setting in island 

ecosystems (Eliasson, 1995; Kaneshiro, 1995). More practically, islands provide 

clear records of anthropogenic interactions with biological diversity in contained 

areas, and of the consequences of those interactions (MacDonald and Cooper, 

1995). 

The field of Island Biogeography was particularly stimulated by the equilibrium 

theory of extinction and immigration of species on islands formulated by 

MacArthur and Wilson (1967). They stated that, while immigration rates should 

be mainly influenced by island isolation from a source landmass, extinction rates 

should mainly depend on island size. As a result, species richness on islands 

should be negatively affected by increasing island isolation as well as decreasing 

island size. An equilibrium state will eventually be reached when extinction and 

immigration rates level and lead to a constant species richness. 

MacArthur and Wilson’s equilibrium theory revolutionised the field of island 

biogeography and, to a large degree, ecology as well. Although their classic 

foundation for the Equilibrium Theory of Island Biogeography (ETIB) has been 

largely superseded by new field data and more realistic concepts, there are still 

key aspects of the ETIB paradigm that continue to influence basic 

biogeographical thinking and its application in conservation science today 

(Walter, 2004). 
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Brown & Lomolino (2000) argued that MacArthur and Wilson’s equilibrium theory 

has not kept pace with relevant theory and our growing appreciation for the 

complexity of nature, especially with empirical findings that species diversity on 

many islands. Their study found that species diversity on islands is not in 

equilibrium, influenced by differences in speciation, colonization, and extinction 

among taxa, and influenced by differences among islands in characteristics other 

than area and isolation. They also recognised that the discipline of biogeography 

itself is in a state of disequilibrium. Wherever this shift may take us, the next 

generation of biogeographers will still look to islands for insights into the forces 

that shape biological diversity. 

A large body of work (Brown & Lomolino, 1998; Lomolino, 1984, 1986, 1993, 

2000; Fox & Fox, 2000) shows clearly that the differences among both species 

and islands (in characteristics other than area and isolation) matter. Species differ 

in their ecological interactions with other organisms and their abiotic environment. 

These differences affect the assembly of insular biotas by influencing the capacity 

to disperse across different kinds of barriers, and to establish and persist on 

islands with different abiotic conditions and species composition. In addition to 

area and isolation, characteristics of islands that affect species diversity and 

composition include the influence of currents, ice formation, human transport, and 

other factors which affect the permeability of barriers, and habitat heterogeneity, 

disturbance regimes and the presence of humans and other interacting 

organisms, which affect both the establishment of colonists and the persistence 

of natives. The rescue effect, a major influence on island biogeography and 

underlying metapopulation dynamics (e.g. Brown & Kodric-Brown, 1977; 

Lomolino, 1986; Gilpin & Hanski, 1991) shows that immigration and extinction 

cannot be regarded as independent processes. 

A new theoretical framework to develop such an alternative: a species-based 

theory of island biogeography (Lomolino, 1986; 2000b) is required. This 

formulation focuses on the importance of differences among species (and also, 

implicitly, on differences among islands) in determining the assembly of insular 

biotas, and the resulting patterns of species richness and composition. This 

model is much less revolutionary than MacArthur and Wilson’s original theory. 

Yet, it seeks to preserve some of their most valuable insights, especially the 
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observation that insular biotas reflect the interplay between recurrent immigration 

and extinction events, but not necessarily an equilibrium between these 

processes. By aiming to be more realistic and more general than MacArthur and 

Wilson’s theory, such efforts might aspire to be stepping stones towards a better 

understanding of island biotas and towards new paradigms. 

 

1.4.2. Island species-area relationship 

The species–area relationship is one of the most studied patterns in ecology, 

often being referred to as one of ecology’s few laws (Schoener, 1976; 

Rosenzweig, 1995, 2003; Lawton, 1996, 1999). According to this ‘rule’, the 

number of species increases with area, and the rate of increase of species 

richness usually declines as area increases. There are a number of 

classifications for the different types of species–area relationships, depending on 

the scale at which they are analysed or whether they are measured from nested 

areas or not (Rosenzweig, 1995; Scheiner, 2003; Gray et al., 2004; Whittaker & 

Fernández-Palacios, 2007; Dengler, 2009).  

The species richness of small islands may be relatively independent of area and 

isolation (Lomolino & Weiser, 2001). On larger islands, one of the most atypical 

datasets concerns the avifauna of the Canary Islands (Lack, 1976). An arid 

climate and volcanic soil and surface have a drastically depressed bird and plant 

richness of Lanzarote and Fuerteventura compared with the other islands. 

Among land snails (see above, Solem, 1982, 1990) SAR was inverted on some 

oceanic islands. Differences in species–area relationships may provide important 

clues about the composition, history, and function of biotic communities on 

continents. An example is Keeley’s (2003) comparison of Australian and 

Californian shrub communities 

In addition, Minelli (1990) found that area was often less important for the 

observed species diversity than habitat diversity, elevation, climatic diversity, 

floristic diversity, and habitat disturbance regimes. Species diversity is positively 

increased by speciation given suitable conditions of size, time, and isolation. The 

classical ETIB model operates in ecological time omitting speciation processes. 

Minelli then scrutinized the sampling procedures used to assess equilibrium and 
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turnover states (see also Gilbert, 1980; Brown & Lomolino, 1998; Whittaker, 

1998). He questioned the census accuracy and species selection of published 

case studies (what is a proper census interval, what is the exact source pool of 

species, do we count only within or between habitats, taxon levels, guilds, native 

and introduced species?). The conclusion reached was that the available 

evidence is riddled with uncertainty because of inappropriate or non-comparable 

sampling procedures and taxon selections.  

Regional factors acting on the whole of an archipelago (such as archipelago 

isolation, age, origin of the islands) are thought to have a consistent effect on the 

local patterns of diversity at the island level. Therefore, archipelagos are usually 

considered to be homogeneous entities, and it is thus not surprising that many 

authors have used complete archipelagos as single data points in their analyses 

(e.g. Adler et al., 2005; Biber, 2002; Hamilton et al., 2009). In his discussion, 

Rosenzweig (1995) argued that ‘the diversity and the area of whole archipelagos 

fall in the same species–area curve as the separate islands that constitute them’, 

although stating that this hypothesis deserves further examination.  

Where an archipelago is composed of different groups of islands with differing 

characteristics, the processes building up island biotas might vary amongst the 

constituent islands. This can be hypothesised to happen in archipelagos in cases 

where the proximity to the source(s) of colonizers allows inter-island variation in 

colonization rates and/or the arrival probability of particular species or lineages 

(thus, different sets of widespread species will be found in different clusters of 

islands), one or some of the islands show higher speciation rates (Losos & 

Schluter, 2000), some islands suffer anomalous pulses of extinction (Whittaker & 

Fernández-Palacios, 2007) and islands vary strongly in relation to anthropogenic 

influences, for example with humans acting as deliberate or accidental vectors of 

organisms. All these cases will produce anomalous patterns of species 

accumulation with area, and the departure of the overall richness of the 

archipelago from the island species-area relationship of its constituent islands. 
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1.4.3. The distance effect 

Isolation is a critical component when examining evolutionary processes since it 

allows for allopatric speciation to occur. Islands offer prime examples of isolation 

effects on biota (Cox and Moore 1993). Specific adaptations, such as seed 

parachutes, are necessary for plants to disperse across large bodies of water. 

Such dispersal invokes survival of a sweepstakes route, an extensive barrier 

permitting only a stochastic set of immigrants to successfully colonize the island 

(Brown and Lomolino 1998). The more remote the island is from a continental 

landmass, the more severe the sweepstakes route and the smaller the number 

of species that would successfully colonize and become established on the 

island. This is known as the species-isolation relationship on islands. The number 

of species would decrease exponentially as a function of isolation because the 

species isolation correlation should account for a pool of species (Brown and 

Lomolino, 2000).  

Conceptual models in island biogeography commonly consider isolation as the 

‘distance to’, or more generally as ‘isolation from’ an unspecified source pool. 

However, correlative studies require a precise metric quantifying isolation. Many 

different metrics have been tested. The vast majority of studies have used the 

distance between a target island and the nearest mainland coast (Case, 1975, 

Abbott, 1978, Chown et al., 1998) since continental landmasses harbour large 

species pools for potential island colonization. The validity of this approach is 

supported by phylogenetic studies indicating long-distance dispersal events from 

continents to even remote islands (Alsos et al., 2007, Harbaugh and Baldwin, 

2007). However, islands may also serve as sources for immigration to other 

islands and to the mainland (Bellemain and Ricklefs, 2008, Keppel et al., 2009). 

The distance to the nearest island (Johnson and Simberloff, 1974), the nearest 

large or larger island (McMaster, 2005), the nearest older island (Cardoso et al., 

2010), or the mean distance to other islands (Borges and Hortal, 2009) have 

therefore been used in correlative studies. The UNEP isolation index (Dahl, 

2004), another frequently used metric (Boyer and Jetz 2010, Kisel and 

Barraclough 2010), incorporates the distances to the nearest mainland, nearest 

island group and nearest equally sized or larger island. However, nearest 

landmasses are not necessarily suitable source areas because colonization also 
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depends on the favourability of island environmental conditions, especially on 

climate (Steinbauer et al., 2012). Price (2004) therefore used the distance to the 

nearest island with analogous habitats as isolation metric. Moreover, long-

distance dispersal depends on dispersal vectors and is influenced by wind and 

ocean currents (Muñoz et al., 2004). Similarly, Abbott (1974) found the distance 

to the nearest landmass in a westerly direction to be a strong predictor of plant 

species richness for a set of islands within the west wind zone of the southern 

hemisphere. 

Weigelt and Kreft (2012) concluded in their study that isolation is comprised of 

multiple components that cannot be captured in a single metric. In fact, a range 

of different immigration mechanisms influence island biogeographic patterns. 

The ordinary distance to the nearest mainland is an adequate and simple-to-

calculate measure. However, accounting for stepping stones, climatic similarity 

and the area of surrounding landmasses increases the explanatory power of 

isolation for species richness. At a global scale, the proportional landmass within 

certain buffer distances around an island is the best metric. The effect of isolation 

depends on the degree of isolation of the considered system and the dispersal 

mode of the studied taxa (Lomolino 1982) as well as on abiotic factors. Weigelt 

and Kreft (2012), therefore, suggested choosing metrics for a study system on 

an empirical basis. They argued that multiple isolation metrics may be useful not 

only in analyses of species richness but also of other biogeographic patterns such 

as gene flow and genetic diversity (Slatkin 1993), speciation (Kisel and 

Barraclough 2010), endemism (Bunnefeld and Phillimore 2012), phylogeography 

(Cook and Crisp 2005), species composition and turnover (Hausdorf and Hennig 

2005), community structure (Santos et al. 2011) or species traits (Meiri, 2005).    

 

1.5. Indonesian archipelago 

1.5.1. Geography and geology 

In 1996, the Republic of Indonesia officially defined itself as an archipelagic 

nation. The approximately 17,000 islands and the seas between the islands 

shape the country.The country is the largest archipelagic state of the world with 

an area of about 5,219,000 km2 including East Timor. About 17,500 islands, 6000 
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of which are inhabited by humans, form the landmass of about 1.919,000 km2 

(land: 1,826,000 km2, inland water: 93,000 km2), encircled by about 3.3 Mio km2 

of territorial seas (Rigg, 1996). After Greenland, the biggest islands of the globe 

belong partly to Indonesia, like the Western part of New Guinea (West Papua) 

and the Southern part of Borneo (Kalimantan) (Figure 3).  

 

  

 

Figure 3 Indonesian archipelago (Nations Online Project, 2012). Indonesia is 

highlighted in white colour. 

 

1.5.2. Biogeographic importance 

Indonesia covers only 1.3% of the Earth's surface. Yet, it harbours 10% of all 

flowering plant species, 12% of the world's mammal species including four 

threatened endemic mammal species and subspecies, the Sumatran tiger, 

orang-utan, rhinoceros and Sumatran elephant, 17% of all bird species and more 

than 25% of known marine and freshwater fish species, in addition to 16% of the 

world's reptile and amphibian species (Stone, 1994). Particularly in relation to 

amphibians, Indonesia is a global hotspot, harbouring 392 of the world’s 

amphibian species in its vast area. Indonesia also has the second highest 
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number of endemic species in Asia, with 175 amphibian species endemic to its 

rainforest habitats (IUCN, 2009). 

The flora and fauna of most of the islands of this archipelago are proof of ancient 

affiliations. The animals of the Great Sunda Islands of Java, Sumatra and Borneo 

are characteristically Asian origin comprising tigers, elephants, tapirs, deer, 

monkeys and squirrels. In contrast, the island of New Guinea has no indigenous 

placental mammals other than bats, rats, and the sea-living dugong, but harbours 

tree kangaroos (Stabach et al., 2009). Fossil evidence shows that lowering and 

raising of the sea level happened several times, resulting in connections between 

mainland Asia and the islands of the Sunda Shelf, and between Australia and the 

islands of the Sahul Shelf, which were subsequently broken again. During periods 

of connectivity, many of the respective continental species spread and filled 

vacant niches on the respective shelve areas (MacKinnon, 1992). 

The important feature of colonisation and specialisation of plants and animals in 

Indonesia was systematically documented for the first time by the Victorian 

naturalist and voyager Alfred Russel Wallace. In Indonesia, Wallace noticed that 

Lombok and islands in the east were inhabited by cockatoos, parrots and 

marsupials. In contrast, monkeys, tigers, elephants and rhinoceros were found in 

Bali and on islands further west. He recorded these findings in his book "The 

Malay Archipelago" (Wallace, 1869). 

This important faunal boundary, separating Bali from Lombok and extending 

northwards through the Makassar Strait, here separating Borneo from Sulawesi, 

is dubbed the "Wallace Line" (Figure 4). Not only the Indonesian fauna and flora 

is remarkable, but Central Java is also the place where the oldest remains of 

mankind in Asia, Meganthropus sp. and Homo erectus, have been excavated. 

Another significant finding was from excavations at Liang Bua, on the Indonesian 

island of Flores, that yielded a stratified sequence of stone artifacts and faunal 

remains spanning the last 95 k.yr., which includes the skeletal remains of two 

human species, Homo sapiens in the Holocene and Homo floresiensis in the 

Pleistocene (Morwood & Jungers, 2009). 
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Figure 4 Wallace Line on Indonesian archipelago (Encyclopaedia Britannica, 

Inc., 1997) 

 

1.5.3. Small islands region in Indonesia 

Indonesia as an archipelagic country with many small island regions has 

attempted to adopt the sustainable development framework though Integrated 

Coastal Zone Management (ICZM), which has been activated under the 

Indonesian Cooperation Law, Act No. 27 in 2007. At present, the quantification 

of sustainable development for the coastal and island management is a critical 

problem.  

Farhan & Lim (2011) found that several main issues of ICZM in Indonesia are 

socio-economic issues - where the emphasis is put on new infrastructure 

development regardless of the consequences to the environment, rather than 

optimizing the existing infrastructure. Poverty is widespread, as lack of 

knowledge and use chiefly of traditional and destructive fishing methods. These 

authors also mention that there are observation, monitoring and evaluation 

issues, where there are only a few ocean and coastal observation equipment 

(such as oceanographic buoys and tidal gauges). Moreover, problems facing the 

coastal and island ecosystems in Indonesia have been worsened by the lack of 

policy and financial support, continuous overfishing and overexploitation of 
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natural resources, erosion, abrasion, pollution, losing and declining biodiversity 

and mismanagement (Sukardjo, 2002). 

 

Figure 5 Small island regions in Indonesia (Farhan & Lim, 2012) 

 

Small island regions in Indonesia (Figure 5) are the regions particularly 

threatened by the direct or indirect results of the negligence of the government 

and the coastal society. The rapid development in the five major islands has 

made the small island regions overlooked and underdeveloped. Poor 

accessibility and poor infrastructures such as lack of electricity, housing, waste 

areas and ports underline the disadvantageous situation in the small island 

regions (Farhan and Lim, 2012). 

 

1.6. Kepulauan Seribu Marine National Park 

The Kepulauan Seribu Marine National Park is used as research location 

because it represents tropical islands with varying land use patterns, sizes and 
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distance to Java as the main source area for potential colonizing species. The 

National Park is located in the northern sea of Jakarta Bay and consists of 105 

islands, each being smaller than 1 km2 and with a maximum elevation of less 

than 3m (Yates, 1994; Nur et al., 2001; Alamsyah 2003). The total number does 

not include islands that already became submerged in recent years, with their 

disappearance being linked to climate change and anthropogenic effects (Farhan 

& Lim, 2012).  Many of the remaining small islands are still unexplored and may 

serve as a home for endangered and endemic species.  

The islands of Kepulauan Seribu are all coral cays with reefs that reach a 

maximum depth of between 15 and 20 m (Yates, 1994). Until the early 1970s, 

they supported a diverse ecological community, yielding an abundance of 

environmental resources for the local population. They featured more than 130 

species of coral, which provided a habitat for a variety of reef-associated fish, 

including groupers and snappers, hawksbill turtles, and green turtles. In May 

1981, for example, 95 turtle nests were counted on seven small islands, with 51 

encountered on Gosong Rengat Island alone (Salm et al., 1982). 

This archipelago can be considered as an inner island region that is located 30 

km away from the north of Jakarta and supports a population of about 22,700 

people (The Centre of Indonesia Statistic, 2009). Administratively of Kepulauan 

Seribu Marine National Park region is divided into two districts and six villages. 

Most of the people live only on the main 11 islands, and one of the main islands 

is Pramuka Island as the center of the local government of the islands region.  

According to the Centre of Indonesia Statistic (2009), the islands have an 

average slope of 15% with a height of less than 2 m above the sea surface. They 

are influenced by both the East Monsoon between December and March and the 

West Monsoon between June and September. Wet seasons usually occur from 

November to April, with the annual rainfall amounting to approximately 1700 mm, 

and the number of raining days ranges between 10 and 20 days/month. Air 

temperature in these islands is ranging between 26.5 and 28.5 C and the humidity 

from 75 to 99%.The land use in these islands can be classified into several 

categories including settlement areas (housing, industry, government and private 

office), farmland and forest plantations (Rizali et al., 2010; Farhan & Lim, 2011). 
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Although the region is very close to the Indonesia’s capital city, Kepulauan Seribu 

Marine National Park is a typical example of a protected area lacking a general 

concept, design, central planning and development plans. It has turned out to be 

overburdened by the increased population (Verstappen, 1988), pollution (oil spill 

in Pabelokan Island by a multinational oil company), illegal unregulated and 

unreported fishing (IUUF) and marine debris originating from seven major rivers 

in Jakarta Bay (Bird and Ongkosongo, 1980). 

Due to its proximity to the capital Jakarta which is a metropolitan city of about 12 

million inhabitants, the sanctuary serves as an important holiday destination for 

people in Jakarta and vicinity. The area offers a relatively noise- and air-pollution 

free environment, something not commonly found in the areas surrounding the 

crowded capital city. In addition to their use for water sports and recreation, the 

islands are utilized for educational and military training purposes. They are 

therefore overall subjected to considerable pressure from human use (Fauzi & 

Buchary, 2002). 

 

1.6.1. The environmental degradation in the Jakarta Bay and Kepulauan 

Seribu  

Jakarta's Office of Urban Environmental Study reported in 1997 that marine 

pollution and beach litter are the main chemical pollutions in the Jakarta Bay. The 

‘inland’ area, inhabited by 20 million people, is considered the primary source of 

Jakarta Bay's degradation. The heavy metal content in its water especially of 

copper (Cu), lead (Pb) and mercury (Hg) has been increasing since 1983. Razak 

(1994) also reported that in relation to organic pollutants, the total 

polychlorobiphenyls (PCBs) content in the water of the Muara Sunter area of 

Jakarta Bay is higher than the recognized water quality standard, with a tendency 

to further increases. 
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Figure 6 Jakarta Bay and Kepulauan Seribu archipelago (Nur et al., 2001), with 

the studied area highlighted in green. 
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The transformation of natural ecosystems has taken its toll in Jakarta Bay and 

Kepulauan Seribu National Park (Figure 6). During the last decades, a rapid 

increase in urbanization along Jakarta Bay has taken place. An enormous 

reclamation project is envisaged along the Jakarta Bay coastline, both for 

housing as well as for business projects (Nur et al., 2001). 

The growing population in Jakarta Bay has also effected mangrove ecosystems 

in Jakarta. This region harbours the only mangrove conservation program in 

Jakarta. In 1960, the conservation area of mangroves was 1335 ha, but the 

remaining current mangrove protection area comprises only 173 ha. Residential 

and fishpond developments have had the greatest impact on mangrove areas 

(Nur et al., 2001). 

Another unsustainable coastal resource exploitation is blast fishing. This 

technique of using explosives to stun or kill fish is an extremely damaging 

practice. In addition to indiscriminately killing target and non-target fish and 

invertebrates of all but the largest size classes, blasts commonly damage or 

outright destroy the reef framework itself. Cyanide fishing practice using sodium 

cyanide solution to stun fish for live collection is another widespread destructive 

fishing practice in Kepulauan Seribu National Park. Before 1990, the main targets 

of cyanide fishing were ornamental fish and invertebrates for the aquarium trade. 

In the years following 1990, cyanide fishing was also used to catch live fish food. 

Unfortunately, cyanide fishing may be the most destructive practice observed in 

Kepulauan Seribu National Park (Nur, et al., 2001). 

Large-scale sand mining has taken place during the construction of the harbours 

in the Jakarta Bay area. In the 1970s, sand extraction for building activities 

occurred on a small scale and was carried out manually. From the 1980s 

onwards, extraction became more and more intensive (Nur et al., 2001). It is 

becoming an activity of great importance for the economies of various small 

communities along the coastline. Extensive dredging activities have been allowed 

to proceed, despite regulations banning the exploitation of sand, gravel and 

boulders by the local government, to provide construction material for the new 

international airport at Cengkareng (Nur et al., 2001). 
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Nur et al. (2001) also found that the exploitation of coral from the reefs started 

from the early part of the century. In the 1990s, 12,000–25,000 m3 of coral reef 

were exploited annually. In the 1930s, the annual removal of coral reef was 8500–

20,000 m3 in Kepulauan Seribu National Park. With time, it has been estimated 

that the scale of exploitation has escalated with values in 1982 double those 

recorded in 1979. The most significant removal of coral reef in the Jakarta Bay 

has been around the island of Air Kecil and Ubi Kecil. As a result of subsequent 

erosion, both islands have now disappeared. The island Ubi Besar is currently 

rapidly being eroded as the reef is dredged around it. 

   

1.6.2. Sustainable Development and Biodiversity Status in Kepulauan 

Seribu Marine National Park 

Several studies on sustainable development have been conducted in the 

Kepulauan Seribu Marine National Park (Nur et al., 2001; Farhan & Lim, 2011). 

Farhan and Lim (2011) conducted a vulnerability assessment to measure the 

ocean and coastal sustainability to have a better evaluation and redesign of the 

land development as well as policy making. The results of their study were 

measured only on the urban islands. It proved that the constructions and robust 

developments in the islands reduced the weathering process.  

Biodiversity studies conducted in the national park to date have either mostly 

focussed on the marine area, did not compare different terrestrial habitats on the 

islands in detail, nor have they looked at habitat complexity and changes caused 

by anthropogenic activities. General studies of terrestrial habitat using insects as 

indicators have been conducted by Rizali et al. (2010)  and Spengler et al. (2011), 

looking at the effects island size and isolation and 'tramp' ant species have on 

the overall ant communities and the effects of island size and isolation on bee 

and wasp ensembles, respectively.  

 

1.7. The beetle research gap on small islands in Indonesia 

Indonesia is known as one of the mega-diverse countries in the world, and the 

study of insect diversity in Indonesia has great value. Some estimated insect 

diversity in Indonesia of about 250,000 species account for 15% of the total 
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species number in Indonesia (National Development Agency, 1993). Beetles 

accounted for more than 40% of the total insect species described in Indonesia, 

and 10% of the total global species number (Noerdjito, 2003), indicating an even 

bigger contribution. However, very limited attention has been given to the 

country’s beetle communities, their conservation status, and the likely influence 

of habitat fragmentation and anthropogenic activities on these communities.  

As the largest island country in the world, surprisingly, there has been very limited 

research on island ecosystem. Land use intensity, habitat changes, and 

anthropogenic activities on the tropical islands also has strong effects on the 

diversity and abundance of functionally important beetles such as ground beetle 

(Rainio and Niemela, 2003; Kotze, 2008), bark and ambrosia beetle (Jordal et al., 

2002; Kirkendall and Jordal, 2006), and dung beetle (Qie et al., 2011; Silva and 

Hernandez, 2014). Research on beetles in Indonesia has been dominated by 

several groups, including dung beetle and ground beetle, but mostly in forest, 

agroforest, and agriculture habitats (Shahabuddin et al., 2005; Shahabuddin et 

al., 2010).  

Understanding the island ecology with human-dominated landscapes provides 

critical insights into functional diversity in the tropical islands because most 

species experience their surroundings at spatial scales beyond the plot level. 

Given this importance for island ecology and conservation, this study provides a 

comparison overview of important considerations shaping beetle functional 

groups with and without human settlement. 

The main research area of this study is located in Kepulauan Seribu Marine 

National Park. Insects from order Hymenoptera, ants and wasps, have been 

studied in some of the islands in the national park (Spengler et al., 2011; Rizali 

et al., 2010). These studies, however mainly focused on the effects of island 

isolation and area on the insect assemblages on the islands. None of these 

investigations compared different taxa compositions in Java and islands, and no 

comparison on different beetle feeding guilds and habitat specialisation were 

investigated. In addition, analyses on how the diversity of the taxa linked to 

anthropogenic factors, such as human population were not discussed. The 

authors also encouraged more works to highlight the destructive role of human 

disturbance on the islands (Rizali et al., 2010). 
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1.8. Research aim and objectives  

In this thesis, I aim to establish the diversity patterns of beetle assemblages in 

ten islands in Kepulauan Seribu Marine National Park in relation to island area 

and island isolation from Java, and how human settlement affects the distribution 

patterns of beetle with different feeding guilds and habitat requirements. The 

resulting patterns furthermore form the basis for assessment of the effects of 

different land use and habitat change scenarios on biodiversity patterns, as well 

as providing a baseline for biodiversity studies in the tropical islands of Indonesia. 

The following research questions hence will be addressed: 

1) How is the diversity of beetles on islands affected by island size and 

isolation? 

2) How is the alpha diversity and composition of beetle communities affected 

by the presence of human settlements on small islands? 

3) Do alpha- and beta-diversity patterns of different beetle families differ 

according to their trophic level and habitat requirements?  

In particular, the main hypotheses will be tested in the following chapters: 

Hypothesis 1.1:  Beetle assemblages on islands in Kepulauan Seribu Marine 

National Park effectively form impoverished subsets of the communities 

encountered on Java but retain unique island beetle species.   

Hypothesis 2.1: Beetle diversity on the studied islands decline with a decrease in 

island size, with a log-log relationship describing this relationship. 

Hypothesis 2.2: Inter-island faunal exchanges linked to the distance to the 

nearest small island are more important for faunal turnover in the island setting 

than the distance to Java. 

Hypothesis 3.1: Islands with settlements are expected to have higher beetle 

species richness. 

Hypothesis 3.2: Forest habitats on undisturbed forested islands will harbour more 

unique and distinct beetle faunas, containing species that only occur in a 

particular island setting. 
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Hypothesis 3.3: When comparing disturbed forest habitats in mixed forest and 

settlement habitat islands with undisturbed forest habitats, the former will contain 

a larger proportion of beetle generalists. 
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Chapter 2. Methodology 

 

2.1. Study area 

 

The main study area is located on ten islands in The Kepulauan Seribu Marine 

National Park (the Thousand Islands Archipelago; 106º20' - 106º50' E and 5º20' 

- 6º00' S). This island group consists of several hundred small islands near Java; 

each with an area of < 1km2 (Alamsyah, 2003). The islands have different 

characteristics of island size, island isolation from ‘mainland’, i.e. the much larger 

island of Java, and of dominant land cover types (forest, settlement, or a 

combination of both), (Rizali, 2010; Spengler, 2011). 

 

Table 1 Surveyed Islands in Kepulauan Seribu Marine National Park 

 

No Island Coordinates 

Type of Land-use 

Forest 
Human 

Settlement 
Tourism 

1 Rambut 05°58.68 S   106°41.57' E + - - 

2 Untung Jawa 05°58.61' S  106°42.18' E - + + 

3 Damar Besar 05°57.45' S  106°50.58' E + - - 

4 Bokor 05°56.74' S  106°37.92' E + - - 

5 Lancang Besar 05°55.87' S  106°35.23' E + + + 

6 Pramuka 05°44.72' S  106°36.90' E - + + 

7 Kotok Besar 05°41.98' S  106°32.25' E + + + 

8 Opak Besar 05°40.23' S  106°34.92' E + - - 

9 Pamagaran 05°38.09' S  106°34.74' E + - - 

10 Putri Barat 05°35.55' S  106°33.40’ E + - - 

 

Beetles were surveyed on all 10 islands, as well as at Java, using a combination 

of pitfall traps and flight interception traps as outlined below. Geographic 

coordinates provided for all islands were measured with a GPS at the center of 
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each surveyed island (Table 1). Distances between islands were generated from 

topographical maps. Island isolation measurements were defined in three 

categories, the distance between the respective island and the nearest coastline 

of Java, the distance to the nearest island, and mean distance to islands within 

the radius of 5km (Table 2). Data on island size, human population and land-use 

changes were provided by the authorities of Kepulauan Seribu Marine National 

Park. 

 

 

Figure 7 Surveyed islands in Kepulauan Seribu Marine National Park: (1) 

Untung Jawa, (2) Rambut, (3) Bokor, (4) Damar Besar, (5) Lancang Besar, (6) 

Pramuka, (7) Kotok Besar, (8) Opak Besar, (9) Pemagaran, (10) Putri Barat. 

 

 

Islands were categorized by looking at three main aspects: isolation, island size, 

and level of human activities. Although I expect that the intensity of human 

activities would generally decrease with distance from Java as well as with 
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decreasing island size, islands were selected with view of minimizing the 

respective correlations (see also Table 2). 

Untung Jawa Island, Lancang Besar Island, and Pramuka Island represent 

islands with high human population and activities. Data from Pemerintah 

Kecamatan Kepulauan Seribu (report of the government activities of Kecamatan 

Kepulauan Seribu in 2010) reported  on the demography of Untung Jawa Island 

(Figure 8) with a total population of 1698 and density of 50 people/ha. Lancang 

Besar Island (Figure 9) was reported to harbor a total population of 1554 and a 

density of 116 persons/ha.  

 

 

 

Figure 8 Rambut Island (left) and Untung Jawa Island (right) 

 

  

Figure 9 Lancang Besar Island 
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Meanwhile, Pramuka Island (Figure 10), harboured a total population of 1004, 

including the national park’s 41 staff, with 25 in the field and 16 in administrative 

positions. Pramuka Island not only hosts the Kepulauan Seribu Marine National 

Park headquarter, it also serves as information and visitor centre for the national 

park (Yates, 1994). 

 

 

 

Figure 10 Pramuka Island 

 

Rambut Island (Figure 8) and Bokor Island (Figure 11) are important nature 

reserves. There are three types of the forest ecosystem in Rambut Island; coastal 

forest, mixed secondary forest and mangrove forest. The island is set as 

protected area because thousands of local birds permanently breed on the island, 

while some stop over during their migration journeys. Around 24,000 birds of 54 

species can be encountered there during the breeding season, particularly water 

bird species, and is one of the important breeding location for Milky Stork 

(Mycterea cinerea), which is a critically endangered species 

(www.redlist.org.2011). From only 6,000 individuals of this bird left on the planet, 

42 nests have been recorded on the island (Birdlife International, 2012). Other 

species commonly found in Pulau Rambut are the Grey Heron (Ardea cinerea), 

Oriental Darter (Anhinga melanogaster), Black-crowned night heron (Nycticorax 

nycticorax), Purple Heron (Ardea purpurea), Great Egret (Casmerodius albus), 

Little Egret (Egretta garzetta), Intermediate Egret (Mesophoyx intermedia), 
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Pacific Reef-egret (Egretta sacra), Cattle Egret (Bubulcus ibis), Glossy Ibis 

(Plegadis falcinellus), and Black-headed Ibis (Threskiornis melanocephalus). The 

island is famously called the “Island of Birds’ Paradise” and the need for 

intervention to protect the area has made the government change the status in 

1999 from a nature reserve to Wildlife Reserve and to be included in the Essential 

Ecosystem Management by Presidential Instruction Number 3/2010 on 

Sustainable Development (Birdlife, 2012). 

Pulau Bokor was established as a nature reserve by the Dutch Government in 

1931 because of its flora diversity and mature lowland forest. This establishment 

was later adopted by the Indonesian Government after Indonesia’s declaration of 

independence in 1945. Some of the dominating plants on this island include 

Terminalia copelandii, Casuarina equisetifolia, Guettarda speciose, and 

Triphasis trifolia, which is native to South-East Asia, Malaysia, and Christmas 

Islands. 

 

 

Figure 11 Bokor Island 

 

Opak Besar Island (Figure 12) is an uninhabited island. The island also has no 

docks. Hence, it is very difficult for boats to reach the island. Opak Besar is 

dominated by mangrove and coastal plants including palm and coconut trees.  

 



67 
 

 

Figure 12 Opak Besar Island 

 

The name ‘Damar Besar’ has been given to this island by local fishermen 

because the island was originally dominated by Dammar trees from the 

Dipterocarpaceae family. Although the island has no permanent settlement, the 

Indonesian National Navy has an office on this island for its perimeter checking 

point. The island (Figure 13), used to be called Edam Island, has been used for 

different purposes for the last 130 years. In 1879, the Dutch built a 60m lighthouse 

in Damar Besar Island to help ships navigate when entering Tanjung Priok, 

Jakarta’s biggest port. During the Second World War, the Japanese built a 

fortress on the island as frontline defense. At present, the island’s lighthouse is 

still functioning well, and the ruins of the Japanese fortress can be found across 

the island, that is otherwise covered in forest. 

 

 

Figure 13 Damar Besar Island 
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Kotok Besar Island (Figure 14) has been developed mostly for tourism. However, 

Kotok Besar Island still keeps some of its forests to serve as Raptor Rehabilitation 

Centre, supported by Jakarta Animal Aid Network (JAAN) (JAAN, 2012). 

Meanwhile, Putri Barat Island, up until my last sampling, was a forested island. 

Recently, however, the island is being developed to attract tourists from Jakarta. 

 

 

Figure 14 Kotok Besar Island 

 

In Java, Dramaga Research Forest (DRF) (Figure 15) was used as sampling 

location to represent a large-island forest habitat and potential source area for 

the colonization of forests on the smaller islands. Dramaga Research Forest 

measures for 60 ha and was established in 1956 by the Forestry Investigation 

Bureau (Badan Penyelidikan Kehutanan). It is located in Bogor, West Java, about 

70km from the Jakarta Bay. This secondary forest was initially developed as an 

introduction site for new tree species from all around Indonesia and outside 

Indonesia. At present, the forest is home to 128 tree species, one bamboo 

species, and one rattan species (BPPK, 2010). The forest is also home to CIFOR 

(Centre for International Forest Research), which was based in Dramaga 

Research Forest in 1993. Collaboration between DRF, CIFOR and a local 

University, Bogor Agricultural University (IPB), has successfully promoted the 

area as a research forest (BPPK, 2010). Sampling was conducted inside the 

forest and in the surrounding area that includes agricultural land and settlement 

areas.  
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Figure 15 Darmaga Research Forest, Bogor, West Java, Indonesia (Puskonser, 

2012) 

 

2.2 Sampling plot design 

 

Fieldwork was conducted in 2010 and 2011, between April and June. Beetle 

sampling was stratified by dominant habitat types on each island and on the sites 

at Java, differentiating forest and settlement areas.  The forest habitat was 

classified as disturbed or undisturbed forest. Meanwhile, settlement habitat 

included both settlements by local fishermen and tourism infrastructure. 

Entomological sampling methods can be characterized by some criteria that 

enable the method or methods to be chosen in accordance with assigned 

objectives. One of the main differentiations in insect sampling methods is into 

passive and active sampling (Brustel, 2004). Active exploration of specimens 

found in collected litter or sediment, sweep netting   and a manual search of 

micro-habitats and sight identification are examples of active sampling. Species 

are determined either from a distance such as in typical butterfly transects, or 

following capture directly in the field or in the laboratory. Typical target groups of 

active sampling include diurnal Lepidoptera, Hymenoptera, Odonata, floricolous 

Coleoptera, Orthoptera, Hemiptera and Neuroptera. Functional groups typically 
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sampled actively include diurnal pollinators, phytophagous and many floricolous, 

saproxylic and terricolous insects (Bonneil et al., 2009). 

 

Table 2 Surveyed islands in Kepulauan Seribu Marine National Park in 2010 and 

2011 

Island 
Distance 
to Java 

(km) 

Area 
(km2) 

Number PF plots§ Number FIT plots Dates of 
sampling Forest Settlement Forest Settlement 

Java Forest 0 n/a 5 0 2 0 21-24.IV.2011 
Java Settlement 0 n/a 0 5 0 2 3-6.VI.2011 

Rambut 5 0.4580 5 0 2 0 
11-14.IV.2010 
27-30.IV.2011 

Untung Jawa 6 0.3912 0 10 0 2 
8-11.IV.2010 

26-29.IV.2011 

Bokor 7 0.1634 5 0 0 0 
9-12.IV.2010 

28.IV-1.V.2011 

Lancang Besar 10 0.2643 5 5 0 0 
9-12.IV.2010 

28.IV-1.V.2011 

Damar Besar 18 0.2951 5 0 2 0 
10-13.IV.2010 
27-30.IV.2011 

Pramuka 27 0.1992 0 10 0 2 
22-25.IV.2010 

6-9.V.2011 

Kotok Besar 32 0.2265 5 5 0 0 
24-27.IV.2010 

8-11.V.2011 

Opak Besar 37 0.0974 5 0 2 0 
24-27.IV.2010 

8-11.V.2011 

Pamagaran 40 0.1556 5 0 2 0 
23-26.IV.2010 

7-10.V.2011 

Putri Barat 45 0.0963 5 0 2 0 
23-26.IV.2010 

7-10.V.2011 
§: each plot contained two baited and three non-baited pitfall traps  

 

This study, however, was conducted primarily using passive sampling, which is 

based on the movement of the focal taxa towards a trapping device, with the 

surveyor remaining passive. Passive traps allow relatively unbiased estimates of 

species activity densities in insect populations when insects are neither attracted 

nor repelled by the traps. Sampling is commonly entrusted to standalone traps 

left in the field for varying periods between installation and collection. It includes 

all kinds of continuous traps such as pitfall traps, flight interception traps, malaise 

traps, pan traps, fixed suction traps, sticky traps, light traps and emergence traps 

(Grootaert et al., 2010). 

In this study, the sampling was conducted using pitfall traps to collect ground-

dwelling beetles in the terrestrial environments in Java and on all ten islands. In 
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addition, flight interception traps (FITs) were used to capture dispersive beetles 

in Java and on seven of the islands (Table 2). 

On each island, pitfall traps were set in 5m x 5m plots, with three non-baited pitfall 

traps and two fish-baited pitfall traps on each plot (Figure 16). Mature forest and 

settlements were sampled depending on their presence on each island, and plots 

were randomly selected within habitat types. The number of plots per island 

ranged from 5 to 10, depending on island size and habitat types occurring on 

each island. Beetle sampling on each plot lasted for three days, as it was 

logistically very difficult to allow for a longer sampling period particularly at the 

very remote sites. The samples therefore represent rather a snap-shot than a 

complete sample of the beetle fauna on each island. Nonetheless, the number of 

specimens collected indicate that the sampling approach overall was extremely 

successful, and allowed for meaningful analysis of the resulting data. 

 

 

 

 

Figure 16 Pitfall trap setting 

 

The FITs were set on seven islands, with two replicate nets placed in each habitat 

type. The islands selected for FIT sampling were Untung Jawa, Rambut, Damar 

Besar, Pramuka, Opak Besar, Pemagaran, and Putri Barat. The FITs were set 

on 3 pairs of islands, with 2 replicate nets placed in each habitat type. Islands 

that are paired for FITs are within the same distance range from Java, similar in 

size, but comprise of different habitat. The pairing islands were Untung Jawa 
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Island and Rambut Island, Damar Besar Island and Pramuka Island. The last 

group of islands comprised of Opak Besar, Pemagaran, and Putri Barat Island, 

which were in the same distance range from Java. 

 

2.3 Sampling methods for beetles 

 

2.3.1 Pitfall Traps 

Pitfall traps have been used to obtain information on the structure of invertebrate 

communities (Hammond 1990), habitat associations (Hanski & Niemela, 1990), 

relative abundance and distribution ranges (Giblin-Davis et al., 1994). Pitfall traps 

are the most frequently used technique to collect epigeal invertebrates 

(Woodcock, 2005). Ground beetles (Coleoptera: Carabidae), rove beetles 

(Coleoptera: Staphylinidae), and ants (Hymenoptera: Formicidae) are the most 

commonly sampled epigeal invertebrates using this trap type (Woodcock, 2005).  

One of the greatest advantages of pitfall traps is that they sample continuously, 

requiring only periodic emptying, which can remove biases associated with other 

techniques that sample only at specific points in time (Topping & Sunderland, 

1992). This makes the technique particularly useful for sampling invertebrate 

occurring at low density (Melbourne 1999). The low levels of disturbance, both 

physically and aesthetically, which pitfall trap installation and collection causes, 

has made then useful for sampling environmentally sensitive area (Melbourne, 

1999). Moreover, this type of sampling is low price, simple to use and easy to set 

up. It has a high efficiency regarding the ratio between the number of individuals 

and species captured and the time required. It is also in very widespread use; 

hence results are easily comparable (Woodstock, 2005). 

However, as the rate of capture of most invertebrate is proportional to their activity 

(Curtis, 1980), the number of each species caught in pitfall traps will not reflect 

their true abundance (Woodcock, 2005). Instead, their rate of capture will be 

proportional to the interaction between their abundance and activity; expressed 

by the concept of activity abundance (Thiele, 1977). Species that are largely 

sessile, but occur at high abundance, may be under-represented in pitfall traps 

compared to less abundant, but more active species. Furthermore, these traps 

chiefly catch ground-dwelling arthropods, and while most species of Carabidae 

are ground surface-active species and hence easily accessible with pitfall 
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trapping, members of the genus Dromius are arboreal, and such species are 

going to be largely absent from pitfall catches (Terell-Nield, 1990). Overall, 

without specific information on the activity of each species, it is almost impossible 

to relate pitfall catches to the true relative abundances of different species 

(Woodcock, 2005). 

Although glass cups can potentially catch more specimens (Luff, 1975), plastic 

cups (250ml) were selected because they are cost-effective, light and robust and 

hence easy to carry and extremely solid when buried in soil in forests for several 

months (Figure 17). Transparent plastic roofs were used to cover the mouth of 

traps. As the study area experiences high levels of precipitation during the 

sampling period, the roof was seen as essential to protect the killing solution from 

dilution by rain and litter contamination. The roofs were supported by wooden 

sticks so that they rested 3-4cm above the soil surface to allow free access to the 

traps. Although roofs cause bias in the catches of pitfall traps, the use of 

transparent materials for roof coverings minimizes the influence of roofs on the 

catches of invertebrate (Baars, 1979). 

Techniques for preserving and maintenance of insect specimens have been 

developed for well over a century and are described for example by Smithers 

(1982), Uys and Urban (2006) and Cooter and Barclay (2006). Preservatives also 

stop predation from predatory species and reduce levels of escape (Lemieux & 

Lindgren, 1999). At present, one of the most commonly used preservatives in 

ecological research is ethylene glycol (antifreeze).  

Ethylene glycol is not ideal for use in the Kepulauan Seribu Marine National Park, 

because it is sweet-tasting but toxic to both birds and mammals, which actively 

consume it (Hall, 1991), and can hence be a serious hazard for the animals 

inhabiting the area. This is especially important for sampling on Rambut Island, 

which serves as habitat for many bird species including the endangered milky 

stork. Another reason for not using this preservative is due to the distance from 

the mainland, which makes transporting a large quantity of liquid preservative in 

small boats problematic.    

Water and salt were used as a preservative in the pitfall traps and proved to be 

suitable as pitfall trap preservatives in taxonomic studies (Sasakawa, 2007). 

Based on 1 week of pitfall trapping using water and salt by Schmidt et al. (2006) 

demonstrated low evaporation rates (>75% of sample volume was retrieved) and 
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strong preservative effects (>85% of samples were preserved without appendage 

damage). Water and salt was also cost-effective and minimized attractant bias 

(Kotze et al., 2011). A small quantity of unscented detergent was added to the 

solution to reduce surface tension. This increases the efficiency of traps, as 

insects drown more easily and quickly (Clarke & Bloom, 1992). 

Alcohol with 70% solution was used in this study to store all beetle specimens in 

small tubes - 70% alcohol is a cheaply available, good preservative, and safe to 

be used within the national park. Every tube was given a label in the field before 

specimens were sorted and identified in the laboratory. 

Carrion bait, from fish, was used in this study (Figure 17). Human dung was 

strictly prohibited to be used on the islands for ethical reasons. Approximately 

20g of fish was suspended in the middle of the roof, immediately above the trap 

(Woodcock, 2005). To avoid ants eating the baits, Vaseline was applied on the 

roof stands. 

 

 

 

Figure 17 Fish-baited pitfall trap 
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2.3.2 Flight Interception Trap (FIT) 

This trap type uses a collection receptacle placed under an interception surface 

comprising a single vane (bidirectional interception), or two crossed vanes 

(multidirectional interception) oriented vertically. The trap will intercept mobile, 

flying insects whose flight is heavy and which allow themselves to fall on collision 

with an obstacle. This trap is often used in studies aiming to catch saproxylic 

insects, with taxa like Coleoptera, Hymenoptera, Diptera, Homoptera, and 

Heteroptera commonly caught (Bonneil et al., 2009). 

The advantages of this sampling method include capturing a representative 

selection of active insects including rare and cryptic species. It has low survey 

costs and is easy to construct. This trap can also be combined with other 

methods. However, some drawbacks can be created when plant debris, such as 

leaves and twigs, obstructs the collection pan or funnel, allowing insects to 

escape. This trap is also highly visible and may be vulnerable to vandalism. 

Many flying insects fall to the ground when they collide with a vertical surface. 

Flight interception traps utilize this behaviour to trap them. A vertical screen is 

stretched between two stakes and drop trays containing preservative fluid are 

arranged below its bottom edge. Ideally, the traps should be positioned so that 

they are either blocking a corridor or be placed perpendicular to a flight barrier 

(Peck & Davis, 1980). Flight interception traps are particularly useful for collecting 

beetles, which typically close their wings on encountering the barrier and, 

therefore, fall into the drop tray (Masner & Goulet, 1981). The traps are also very 

effective at trapping slow-flying insects such as cockroaches and crickets 

(McGavin, 1997). 

The flight interception traps used in this study acted by literally intercepting 

insects’ flight. The traps I used consisted of very thin black net measuring 1.5 x 4 

m, which was placed above six plastic containers filled with water and salt as 

preservatives, with detergent added to reduce the surface tension (Figure 18). 
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Figure 18 Flight Interception Trap 

 

2.4. Insect Specimen Sorting and Identification 

I looked at two taxonomic levels in our samples; family and species level. An 

identification at morpho-species level was conducted for all specimens, but 

subsequently more detailed family-level analysis focused chiefly on three 

families, Scarabaeidae, Carabidae, and Scolytidae. These families were chosen 

based on their important roles in the ecosystem, number of specimen’s collected, 

available data and references, and access to specialists aiding in the species 

identification. 

Specimens from this study were all sorted and labelled, with information such as 

habitat and method of collection also recorded on the label. A second label was 

used to note the taxon name given to the respective insect species. 

 

    

Figure 19 Beetle specimens were stored in tubes with 70% alcohol, dried, 

pinned and labeled 
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Collections were protected from light, heat, humidity and attack from other 

insects, with naphthalene added to the storage containers. All specimens 

collected in this study were sorted and identified to species or morpho-species 

level at the Hope Entomological Laboratory, Museum of Natural History, in Oxford 

(Figure 19). 

 

2.5. Data analysis 

The analysis of the data was conducted according to the specific research 

questions and hypotheses addressed in each chapter. These are therefore 

explained individually in the respective sections in the three data chapters. 
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Chapter 3. Beetle family diversity and assemblage structure at 

small islands of the Kepulauan Seribu Marine National Park and 

nearby Java 

 

3.1. Introduction 

Since the formulation of the equilibrium theory of island biogeography by 

MacArthur & Wilson (1963, 1967) the comparisons of the composition of island 

and mainland biotas have been, and remain, a stimulus for ecologists, 

conservation biologists and biogeographers (Williamson, 1981; Foufopoulos and 

Ives, 1999; Knapp et al., 2003; Siliceo & Diaz, 2010; Stuart et al., 2012). These 

comparisons are often done by a direct comparison of species lists, but two major 

methodological problems make this approach unjustified. First, island and 

mainland habitats often differ from each other (Williamson, 1981; Jarvinen and 

Haila, 1984) and, consequently, all species included in the mainland pool are not 

potential colonists of the islands: some of them may be excluded by the lack of 

suitable habitats. Second, the colonizing propensity of a species is probably 

influenced by its abundance in the source area. A study on the breeding land 

birds of the island Ulverso showed that there are importance of various factors 

leading to faunal impoverishment, including the effect of rarity that accounted for 

75% of the absences on the island (Jarvinen and Haila, 1984). Unfortunately, 

population sizes have mostly been neglected in insular studies (Jarvinen and 

Haila, 1984; Williamson, 1981; Simberloff & Abele, 1982). 

In this study, I compare beetle communities in similar habitat patches on nearby 

Java and islands in the Kepulauan Seribu Marine National Park on the basis of 

quantitative data. I limited the study to two definable, habitat types (forest and 

settlement patches) to make it possible to get a realistic estimate of the pool of 

'actual colonists' by using samples from equivalent habitats on the nearby Java. 

Many island-mainland comparisons have been inherently unrealistic because of 

difficulties in defining the pool of colonists adequately (Williamson, 1981; Jarvinen 

and Haila, 1984).  
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Beetles have been used extensively to study island ecosystem in the past 

(Fattorini, 2002; Gomez, 2010; Chatzimanolis et al., 2010; Grobler et al., 2011). 

They represent the most diverse insect order, and different families have been 

used as bioindicators in biodiversity, environmental, and ecological studies 

(Werner and Raffa, 2000). Comparative studies of beetle communities between 

“mainland” and island biotas can form an important basis for recommendations 

for conservation measures (Neimela et al., 1985; Palmer, 2002; Lazaro et al., 

2005; Ikeda et al., 2008; Da Silva & Hernandez, 2014).  

The islands in the Kepulauan Seribu Marine National Park have a long history of 

use by communities from mainland Java that have affected their biotas (see 

Chapter 2 on Study Area). Several of the islands have been strongly altered over 

time by settlements, tourism, military forts and the construction of other 

institutional buildings, and by a wide range of further activities relating to fishing, 

but also tourism. The resulting degradation of the islands’ ecosystems, including 

the disappearance of fish species, giant clam, and hawksbill turtles, was caused 

by increasing population on the islands that put unsustainable pressure on the 

fishery. More than 250 small and 80 medium-sized fishing boats were based in 

the south of the park in the early 1980s. The use of increasingly destructive 

fishing techniques (Salm et al., 1982) was damage to the coral reefs that 

supported the fishery, and thus the cycle of degradation intensified. The area has 

also been exposed to threats arising from developments in resource extraction 

not centred on the islands, exemplified by small oil slicks and tar balls from oil 

drilling rigs in the North Java Sea (Yates, 1994), and to domestic pollution from 

Java. At present, some of the islands are protected as nature reserves while 

others are used for permanent settlements, as tourist destinations, or are 

privately owned and inaccessible (Pemerintah Kecamatan Kepulauan Seribu, 

2010). 

Island’s limited size and its disconnection from the mainland with its diverse 

assemblages will also likely see high levels of endemism (Whittaker and 

Palacios, 2007). The different nature of the surrounding matrix, including the 

seawater barrier, keeps many continental mortality factors affecting mainland 

fragments off the island (Walter, 2004). Thus, islands may harbour relict taxa 

already extinct on the mainland, or small island specialist taxa that only occur in 
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island ecosystems regardless of the availability of mainland habitats in the vicinity 

(Walter, 2004). The finding of high levels of unique species diversity on islands 

may also suggest two important, non-exclusive explanations. First, it is quite 

possible that contemporary mainland populations are in fact more significantly 

depressed due to anthropogenic impacts (Caterino et al., 2005). Mainland 

populations, especially in coastal species, have been extirpated in many areas 

due to a combination of beach, recreational use, and invasive plants (Powell 

1992). However, islands are also simultaneously acknowledged for their lower 

species richness compared to mainland areas (Whittaker and Palacios, 2007). 

As well as island’s resource limitations, partial release from competition and 

predation, are suggested as major factors affecting population dynamics and 

morphological adaptations of island biota.  

The fragility of island life is well documented in the record of historical extinctions 

of plants and animals, which is characterised by a highly disproportionate loss of 

insular vs. mainland forms; most of this resulting from direct human actions and 

from impacts of introduced species that devastated native insular biota before 

they were able to adapt (Lomolino, 2010). Even in more recent times, when local 

extinctions on continents has arguably started to converge with that of islands 

(Lomolino et al., 2009), extinctions will often again be insular in nature. In this 

case, because human civilisations, technologies and land-use changes have 

converted once expansive continental landscapes of natural habitats to 

archipelagos of remnant habitat isolates within seas of anthropogenic 

ecosystems (Ellis & Ramankutty, 2008; Lomolino, 2010). Thus, it is hypothesised 

that beetle assemblages on islands in Kepulauan Seribu Marine National Park 

effectively form impoverished subsets of the communities encountered on Java 

but retain unique island beetle species.   

A primary purpose and mission of the Kepulauan Seribu Marine National Park is 

to preserve and protect the island system it contains, along with associated 

natural, cultural, and historical resources (Pemerintah Kecamatan Kepulauan 

Seribu, 2010). However, the focus of attention has been chiefly in the marine 

areas and resources, as is the case with most marine national parks in Indonesia, 

while relatively little is known about the park’s terrestrial natural resources. While 

surveys of marine diversity are ongoing, the largest component of biological 
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diversity, the terrestrial invertebrate fauna, has received extremely little attention 

in past regional research activities. The insect faunas of these islands are very 

poorly known and have not attracted any significant conservation efforts. Limited 

research has been conducted on assemblages of hymenopterans (Sprengler, 

2011, Rizali, 2010), whereas compositions of other orders have remained 

virtually unknown. Moreover, these previous srudies did not compare the results 

with Java assemblages. This chapter gives significant information and 

comparisons on overall ground-dwelling and dispersive beetle assemblages. 

Moreover, it identifies endemic and unique beetle species on Java and islands in 

Kepulauan Seribu Marine National Park. 

 

3.2. Sampling plots and data analysis 

All beetle data from the 70 pitfall trap plots and 11 flight interception traps (FITs) 

employed on the ten islands in Kepulauan Seribu Marine National Park were 

included as a basis for the investigations conducted here. Pitfall trap sampling 

was carried out from April to June 2010, and from April to June 2011; FIT 

sampling was carried out from April to June 2011. More details of the study area 

and the sampling design have already been provided in previous chapters. 

The abundance of all beetle families from all islands over the entire sampling 

period was pooled but differentiated based on the type of traps used in sampling. 

Specimens from baited and non-baited pitfall traps from all islands and both forest 

and settlement habitats were combined and represented the island’s pitfall trap 

specimens. FIT specimens on all islands and habitats were combined to 

represent island’s FIT’s specimens. The same methods were also applied to 

specimens from Java to generate sufficient sample sizes for robust statistical 

analyses. All specimens that were identified to species and morphospecies level 

will be called ‘species’ throughout this chapter. 

I calculated the alpha-diversity of beetle families on each island as the Shannon 

index (Shannon, 1948) and the Simpson’s index (Simpson, 1949). Shannon’s 

index more strongly emphasizes the species richness component of diversity, 

while Simpson’s index puts more emphasis on the evenness component. The 

exponential form of the Shannon index (Jost, 2006) was used in this study 
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because it weighs elements by their frequency without disproportionately 

favouring rare or common elements. Hill numbers were used to measure these 

diversity indices by simple algebraic transformations (see Appendix 1). 

Hill numbers are a mathematically unified family of diversity indices (differing by 

changing values of the exponent q) (Chao et al., 2014). Hill numbers incorporated 

relative abundance and species richness and overcome many shortcomings 

often associated with the use of diversity indices. They were first used in ecology 

by MacArthur (1965), further developed by Hill (1973), and recently re-

emphasized by Jost (2006). Indices linked to the Hill numbers were developed to 

overcome sampling problems. Observed species richness in mobile organisms 

is highly sensitive to sample size. When most species in an assemblage are rare, 

biodiversity samples are usually incomplete and undetected species are a 

common problem (Chao et al., 2014). As a consequence, the observed number 

of species in a standardized sample (Gotelli and Chao, 2013; Chao et al., 2014) 

is known to be a biased underestimate of true species richness. It is also highly 

sensitive to the area surveyed, the number of individuals counted, and the 

number of samples scored for species occurrence (Chao et al., 2014). Another 

problem with observed species richness as a measure of biodiversity is that it 

does not incorporate any information about the relative abundance of species 

(Chao et al., 2010). By counting all species equally, species richness weights rare 

species equal to common ones. Incorporating abundance into a biodiversity index 

is critical for studies of many aspects of ecosystem function because rare species 

usually make smaller contributions to ecosystem functioning (Schwartz et al. 

2000). On the other hand, rare species sometimes play key roles in ecosystem 

functioning (Terborgh et al. 2001). These species are generally of greater 

conservation and management concern than common ones (May, 1988; 

Holsinger and Gottlieb, 1991; Gaston and Fuller, 2008). Thus, from a statistical 

perspective, species richness can be very difficult to estimate accurately from a 

finite sample. Hill numbers can be effectively generalised to incorporate 

taxonomic, phylogenetic, and functional diversity, and thus provide a unified 

framework for measuring biodiversity (Chao et al. 2010, Gotelli and Chao, 2013) 

(see Appendix 1). 
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Individual-based rarefaction (Gotelli and Colwell, 2001) was furthermore 

employed to evaluate whether the relationship of beetle species richness was 

strongly driven by changing abundances. Rarefied species numbers were 

calculated as a measure suitable to compare species richness for samples of 

highly variable size (Liu et al., 2007; Axmacher et al., 2004).  

Sampling rare and unique species is especially challenging because they may 

only represent a small part of the total number of specimens caught. With five 

pitfall traps per plot, this study tried to increase the rare and unique species 

detection by using a relatively high number of traps per plot (Parmain et al., 2015). 

However, since beetle inventories of rare and unique species on tropical islands 

in Indonesia have never been conducted before, and data on beetle taxa from 

Indonesia is rather limited, the classification of species into these two groups 

proved challenging. I subsequently defined rare species as those poorly 

represented in all combined samples, following the approaches taken by Novotny 

and Basset (2005) and Grove et al. (2000). Species only found on small islands 

and absent from all Java plots were considered to belong potentially to a unique 

small island fauna.  

To assess the number of unique species on the small islands, specimens from 

all small islands were pooled, regardless of the type of traps used. The same 

approach was also used for Java specimens. The significance of the unique 

species was established by looking at the proportion of the overall species pool 

they represent and their distribution across the studied islands. 

Rarefied species richness was computed using Species Diversity and Richness 

(Henderson and Seaby, 2002). All other calculations and statistics were carried 

out in R language version 3.1.2 (R Development Core Team, 2011) with the use 

of the ‘vegan’ package (Oksanen, 2015). 
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3.3. Results 

3.3.1. Beetle family compositions on small islands and Java 

All specimens taken on the islands have no references and are poorly 

understood. Only a limited number of specimens could be identified to species 

level. In total, 6370 beetles belonging to 34 families and separated into 236 

morphospecies were caught in the studied islands and Java, combined. Among 

these, 4929 beetles representing 25 families captured in the pitfall traps. The 

remaining 1441 individuals representing 27 families were caught in the flight 

interception traps (FITs). Of the 129 species collected in pitfall traps, 17 could be 

identified to species level and 33 to genus level, while 12 of the 156 species 

collected by the FITs were identified to species level and 27 to genus level. 

In pitfall traps, 292 beetles representing seven families and 32 species were 

identified in Java, and 4637 individuals representing 24 families and 111 species 

were captured on the small islands. Rarefaction curves showed that small islands 

had higher rarefied family richness compared to Java (Figure 20a). Similar 

patterns were also shown by rarefied species richness, where Java had 

significantly lower rarefied species richness than small islands (Figure 21a).  
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(a)

 

(b)  

Figure 20 Rarefaction curves of number of families from pitfall traps in Java and 

small islands from (a) pitfall traps and (b) FITs (black lines represent 95% 

confidence intervals) 

 

Meanwhile, FITs yielded 473 beetles representing 20 families and 94 species in 

Java, and 968 beetles representing 22 families and 97 species on the small 

islands. Rarefaction curves showed similar trends to the observed number of 

families, where they were closely aligned showing small islands and Java 
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harbouring a similar number of rarefied family (Figure 20b). Rarefaction curves 

on species richness showed that, although small islands and Java harbouring a 

similar number of rarefied species, rarefied species number on small islands 

appeared to be approaching a plateau, while the number of rarefied species on 

Java showed a more ascending trends (Figure 21b). 

(a)  

(b)  

Figure 21 Rarefaction curves of beetle species richness from pitfall traps in Java 

and small islands from (a) pitfall traps and (b) FITs (black lines represent 95% 

confidence intervals) 
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In relation to family abundances, the result from pitfall traps showed that 

Scarabaeidae (157 individuals) and Scolytidae (113 indiviuals) were the most 

abundant families captured in Java. In total, Scarabaeidae accounted for 54% 

and Scolytidae for 39% of all individuals caught in Java pitfall traps. On small 

islands, Scolytidae (1524 individuals) was the most abundant family, representing 

33% of sampled individuals. The next most abundant families were 

Tenebrionidae (1000 individuals) and again Scarabaeidae (929 individuals), 

accounting for 22% and 20% of all beetle individuals, respectively (Figure 22a). 

The beetle family abundance composition from FITs in Java showed that 

individuals of Scolytidae (151 individuals) and Scarabaeidae (82 individuals) 

were again dominating the samples, accounting for 32% and 17% of all 

individuals, respectively. On small islands, more than half of the total individuals 

captured were members of the family Scolytidae, with 521 individuals (54%). 

Scarabaeidae (145 individuals) was the next most abundant families, 

representing of all individuals (Figure 22b). 

In relation to species numbers, 45% of all identified species in Java in the pitfall 

traps were Scarabaeidae (15 species). Scolytidae (7 species) and Nitidulidae (4 

species) were the next most species-rich families, accounting for 21% and 12% 

of all species, respectively. On small islands, Carabidae (16 species), Anthribidae 

(15 species), Scarabaeidae (12 species), and Nitidulidae (13 species) yielded 

almost equal numbers of species, representing 14%, 13%, 11% and 11% of all 

species, respectively (Figure 23a). 

The flight interception traps in Java showed that Scarabaeidae (14 species) and 

Nitidulidae (14 species) were equally dominant in relation to species richness, 

representing 15% of all species, each. Scolytidae (10 species) and Hydrophilidae 

(8 species) were the next most diverse families accounting for 11% and 9%, 

respectively. On small islands, Anthribidae (18 species) and Nitidulidae (14 

species) species represented 19% and 15% of the total species richness, 

respectively. Scarabaeidae (9 species) on the other hand only accounted for 6% 

of the total species (Figure 23b). 
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(a) 

 

(b) 

 

Figure 22 Beetle family composition for number of individuals on small islands 

and Java from (a) pitfall traps, and (b) FIT 
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The families Brentidae, Cerylonidae, Ciidae, Coccinellidae, Endomycidae, 

Laemophloidae, Monotnidae, Ptilidae, and Silvanidae were exclusively sampled 

from flight interception traps, while members of the families Anthicidae, 

Cerambycidae, Cucujidae Cryptophagidae, Hyborosidae, Lampyridae, and 

Trogidae were uniquely encountered in the pitfall traps. The remaining eighteen 

families were recorded by both methods. All Staphylinidae specimens were 

excluded in all analysis, because a substantial number of the specimens were 

lost during a transfer for identification purpose. 
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(a) 

 

(b) 

 

Figure 23 Beetle family composition for number of species on small islands and 

Java from (a) pitfall traps, and (b) FITs 
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3.3.2. Comparison of beetle α-diversity between small islands and Java 

Beetle diversity from pitfall traps, measured both as Shannon and Simpson’s 

diversity, was higher on small islands. Based on the Shannon index, beetle 

diversity from pitfall traps on small islands (hexp = 5.83) was higher than in Java 

(hexp = 2.65). Similarly, the Simpson’s index from pitfall traps was also higher for 

small island assemblages (Ds = 4.60) than for assemblages in Java (Ds = 2.26) 

(Figure 24a). The results of beetle diversity from FITs showed different patterns. 

Here, Java is indicated to harbour a higher level of diversity, both for the Shannon 

diversity (hexp = 9.23) and the Simpson’s diversity (Ds = 6.15), compared to small 

islands (hexp = 5.65 and Ds = 3.09, respectively) (Figure 24b). 
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(a) 

 

 

(b) 

 

Figure 24 Comparisons of beetle family diversity indices in Java and small islands 

from (a) pitfall traps and (b) FIT 

 



93 
 

 

3.3.3. Small islands family and Java family 

When the results from pitfall traps and FITs were combined, 14 beetle families 

were only recorded on small islands, and five families were only found in Java. 

All species from family Trogidae, Tenebrionidae, Mordelidae, Monotomidae, 

Lampyridae, Hyborosidae, Endomycidae, Cryptophagidae, Cucujidae, 

Clambidae, Ciidae, Cerylonidae, Cerambycidae, and Anthicidae, were only found 

on small islands. Meanwhile, all species from the families Silvanidae, Ptilidae, 

Hydrophilidae, Rhizophagidae, and Brentidae were captured exclusively on Java. 

The rest of the beetle families can be found both on small islands and in Java 

(Figure 25a).  

 On the family abundance, although small islands scolytid beetles accounted for 

more than 30% of the total observed number of Scolytidae species in the study 

area, they only represented about 2% of the total scolytid individuals captured on 

both small islands and Java. A similar pattern was also shown by scarabids from 

small islands. Their abundance was lower (3.5%) in proportion to their overall 

species richness percentage (23%). On the other hand, carabid beetles from 

small islands showed the opposite. Their abundance represented about 85% of 

the total carabid individuals captured in the study area, but the number of carabid 

beetle species observed on small islands was 65% (Figure 25b). 
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(a) 
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(b) 

 

Figure 25 Compositions of small island family, Java family and family occurring 

in Java and small islands, plotted for (a) the number of species, and (b) the 

number of individuals. 

 

At the species level, interestingly, the most abundant species both on islands and 

Java belonged to the family of Scolytidae, Xyleborus perforans, with 1023 and 83 

individuals collected, respectively. This species has wide distribution throughout 

tropical parts of the Afrotropical, Australian and Oriental regions (Beaver and Liu, 

2010) and is strongly polyphagous (Browne 1961; Schedl 1963; Gray & Wylie 
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1974; Ohno 1990). Largely due to its abundance, the species can be important 

timber pest as a result of the ‘pinholes’ caused by its galleries, and the 

surrounding black stain caused by the associated ambrosia fungus (Beaver and 

Liu, 2010). 

 

(a)  (b)  

(c) (d)  

(e)  (f)  

Figure 26 Picture of (a) Elateridae sp. 1, (b) Elateridae sp. 5, (c) Leichenum sp. 

1, (d) Tenebrionidae sp. 1, (e) Tenebrionidae sp. 2, (f) Tenebrionidae sp. 3 
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Meanwhile, all species exclusively recorded from the small islands of more than 

50 individuals belonged to the family Elateridae and Tenebrionidae. A total of 235 

individuals of Elateridae sp. 1 (Figure 26a) and 405 individuals of Elateridae sp. 

5 (Figure 26b) were collected on small islands, whereas this species was missing 

from catches in Java. From the family Tenebrionidae, the species Leichenum sp. 

1 (Figure 26c), Tenebrionidae sp. 1 (Figure 26d), Tenebrionidae sp. 2 (Figure 

26e), and Tenebrionidae sp. 3 (Figure 26f) accounted for 667, 152, 77, 89 

individuals, respectively. They were, again, only found on the small islands 

(Appendix 1). 

The most widely distributed small island species belonged to the families 

Anthribidae and Tenebrionidae, with both Anthribidae sp. 34 and Tenebrionidae 

sp. 3 recorded on five islands. Three species representing the family 

Curculionidae; Curculionidae sp. 1, Curculionidae sp. 2 (Figure 27a), 

Curculionidae sp. 3 (Figure 27b), were found on four islands. 

(a)  (b)  

Figure 27 Picture of (a) Curculionidae sp. 2, (b) Curculionidae sp. 3 

A more detailed analysis based on members of the three beetle families 

Carabidae, Scarabaeidae, and Scolytidae showed that eight Carabidae species 

recorded only in Java compared to 18 species recorded only on small islands. 

The most abundant small islands carabid species was Carabidae sp.6 with 34 

recorded individuals. The only carabid species found both on small islands and 

in Java was Perigona sp.1, with a total recorded individuals of 12. Meanwhile, 

species from Family Scolytidae were found more and abundantly both on small 

islands and in Java, with eight species.  
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Two scolytid species, Dryocoetiops coffeae (Eggers, 1923) and Xyleborinus 

perminutissimus (Schedl, 1935), recorded only in Java. Although Dryocoetiops 

coffeae (Eggers, 1923) was only recorded in Java, it is not endemic to Java. Its 

distribution ranges from India, Indonesia (Java), Japan, Malaysia, New Guinea, 

Sri Lanka, Taiwan (Beaver and Liu, 2010). It is known as a polyphagous twig 

borer and has been recorded as a secondary pest of coffee (Coffea spp.) 

(Rubiaceae) by Browne (1961) and Le Pelley (1968). A study by Hulcr and 

Cognato (2010) only recorded X. perminutissimus in Java. However, there were 

no further information whether this species is endemic to Java or not. 

The two most abundant species recorded only from Java belonged to the family 

Scarabaeidae. Species Onthophagus sp. 7 and Onthophagus javanensis 

(Balthasar, 1969) (Figure 28a), which is endemic to Java, accounted for 75 and 

33 individuals in the Java samples, respectively (Appendix 1). Another scarabid 

species endemic to Java, Onthophagus javacupreus (Huijbregts & Krikken, 2011) 

(Figure 28b) was also recorded in the Java samples and accounted for 3 

individuals. Both endemic species were only recorded in samples collected in 

Java. 

 

(a)  (b)  

Figure 28 Picture of (a) Onthophagus javanensis, (b) Onthophagus javacupreus 

 

 

 

 



99 
 

3.4. Discussion 

3.4.1. Overall beetle compositions on small islands and Java 

To the best of my knowledge, my study represents the first intensive study of 

beetle communities in Kepulauan Seribu Marine National Park. The recorded 34 

families representing 236 species in this study represent a substantial diversity 

encountered in the relatively small sampling area in Java and the ten islands, 

selected out of 105 islands in the National Park, and considering the short 

sampling time (see Chapter 2). Additionally, I combined two different types of 

traps, pitfall traps and FITs, which are very rarely used jointly in beetle studies 

and which have never before been used in combination in the study area. 

There are three main differences between my Java and small island samples. 

First, when sampling effort is equal, the number of family and species of ground 

dwelling beetles were higher on islands than Java. However, Java showed higher 

family and species diversity of dispersive beetles. Second, the total number of 

individual beetles caught was significantly larger on small islands than on Java. 

The third main difference is several species that were very abundant on Java 

sites were scarce or almost absent from the small islands, and conversely 

species with high abundance on small islands were missing on Java sites. 

The difference in sample size is to a great extent explicable regarding the high 

number and abundance of unique island species richness on islands, which 

emphasises their outstanding importance for global conservation of genetic 

resources. Although some of the studied islands’ ecosystem are still susceptible 

to the anthropogenic activities, such as tourism and settlement, they might have 

been able to maintain suitable habitat for some beetle species, while Java has 

not. Geographical barriers, habitat differentiation and ecological speciation have 

likely played a role in the diversification of island faunas (Ogden and Thorpe, 

2002, Thorpe et al., 2005 and Crews et al., 2010). The different colonizing 

propensity of single species (Niemela et al., 1985), might also explain the high 

number of beetles captured on islands. A few species are successful in inhabiting 

the island habitat. It might be that these patterns can be derived from differences 

in environmental conditions, including habitat composition in the surroundings of 

the study sites, and in ecological characteristics of the species. This explanation 



100 
 

could indicate that evolutionary assembly of island faunas can reverse the 

general pattern of reduced species richness on islands relative to Java. 

Resource levels between Java and the studied island sites are likely to differ. It 

could be because the habitats (open sandy area, field, garden and settlement) 

are relatively high on some islands. It would be tempting to suggest that the 

observed impoverishment of Java’s ground-dwelling beetle communities is at 

least partly due to food resource scarcity. Unfortunately, no data on resource 

abundances on Java and island sites are available.  

Anthropogenic activities on the studied islands are potentially affecting the 

number of island’s beetle species as well. On the other hand, with almost 58% of 

total Indonesian’s population living in Java, it is continuously experiencing the 

same problems with habitat alterations and land use changes. When land cover 

changes driven by either direct human activity (agriculture, deforestation, and 

urbanization) or climate change predicted for the year 2100 by the Millennium 

Ecosystem Assessment (2005), an apparent dichotomy surfaced between island 

and mainland regions. Whereas future habitat loss driven by land-use change is 

projected to accelerate for island regions, mainland regions are predicted to lose 

more of their original land cover because of climate change through such as 

extreme weather. 

Further factors potentially leading to an enhanced number of small island 

specimens relate to the abundance of dominant species. In Java, the three most 

abundant dispersive beetle species from FITs, Nitidulidae sp.07, Hypotheneums 

spp., and Xyleborus perforans, jointly accounted for only 24.7% of the overall 

individuals. On small islands, however, the most dominant dispersive beetle 

species Onthophagus sp.01, Onthophagus sp.03, and Xyleborus perforans, 

represented more than 50% of sampled specimens. 

The differences between the most abundance Java species and small island 

species were most striking for a Tenebrionidae species, Leichenum sp.1, and two 

Elateridae species, Elateridae sp. 1 and Elateridae sp.5, which were profoundly 

abundant on small islands but were absent completely in Java. It is not easy to 

explain why these species only occurred on the studied islands with high 

abundance.  
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However, the high diversity of tenebrionids on islands had been recorded before 

on island ecosystem while other animal groups were scarce (Fattorini and 

Fowles, 2005). As generalist detritivores, they feed primarily on vegetative matter 

from a variety of plant species (Roberts et al., 2007). Being highly mobile, they 

wander freely over hundreds of meters (Parmenter et al., 1989; Wiens and Milne, 

1989), thereby encountering a variety of habitats at both broad and fine spatial 

scales. However, there were potentially other factors may seem important or 

favourable for tenebrionid beetles on the studied islands, such as feeding or 

oviposition areas, and refugia from predators. Unfortunately, the autecology of 

the dominance of these species on islands is poorly known. It is possible only to 

suggest tentatively species-specific mechanisms that might influence their 

colonizing ability. More data are needed on the exact environmental requirements 

and over-water dispersal of the species. 

The scarcity of most of the Java dominants on the islands might also be caused 

by lower food resource level and greater isolation of favourable patches from 

each other. In addition, the habitat in Java and small islands were not structurally 

simple. Java and most of the sampling plots on islands were located in a mixed 

habitat of settlement, forest, and vegetated habitat. It is likely that the density of 

vegetation in some of the sampling areas in Java and islands does not favour the 

movement of ground-dwelling invertebrates and decreases the sampling 

efficiency. The vegetation may also increase the number of taxa that avoid pitfall 

traps by moving through overlying vegetation (Honek et al., 2003). 

3.4.2. Distribution of beetle families on islands and Java 

This study has showed that some beetle families were only observed in Java, 

and some were only on islands. In Java, scarabid beetles dominate both the 

abundance and diversity of the total observed beetles. These results might be 

suggested by the higher abundance of dung and carrion resources in Java than 

the islands. Scarcity and limited food sources would suggest that dung and 

carrion beetles compete intensively as attested by their competitive and 

combative behaviours (Halffter and Edmonds 1982; Hanski 1991). Although 

scarabid beetles occasionally use the dung produced by birds and reptiles 

(Howden and Young, 1981; Young, 1981), which are available on the studied 
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islands, some other factors might have influenced the overall population of these 

beetles. Resource partitioning, such as preference for soil and cover (Nealis 

1977; Lumaret 1978), diel flight time (diurnality versus nocturnality) and dung size 

(Peck and Howden 1984), perching heights (Howden and Nealis 1978) and dung 

removal methods (rollers versus tunnelers; Halffter and Mathews 1966) have 

been suggested as important factors affecting scarabid beetles population. In 

general, the high abundance and diversity of dung beetles in Java could suggest 

an indicator for high biodiversity. By burying the dung and carrion as food for their 

offspring, dung beetles may increase the rate of soil nutrient cycling (Halffter and 

Mathews 1966; Bornemissa and Williams 1970; Nealis 1977), they also act as 

important secondary dispersal agents for the seeds of several tree species in 

tropical forests, thus participating in the natural process of forest regeneration 

(Estrada and Coates-Estrada 1991). 

The absence of hydrophilid beetles and the low number of scarabid species on 

the studied islands might be interrelated. The lack of mammal, thus mammal’s 

dung, on the islands (S. Puspitasari, personal observation) potentially explains 

the low occurrence of scarabid beetles on the islands. Hydrophildae beetles are 

mostly predatory on dung beetles, which could indirectly affect the absence of 

these beetles on the studied islands as well. Some hydrophilids are also 

coprophagous beetles, which are known to have clear habitat associations and 

preferences to certain type of soils (Davis et al., 2002). Most hydrophilid species 

enter the soil beneath dung pad to pupate and, perhaps in some cases, to oviposit 

or escape harsh conditions. Java has fertile soils like Vertisols and Andosols, but 

also less fertile soils like Ferralsols that are mainly used for paddy rice production. 

On the other hand, the studied islands were formed by colonies of dead coral. 

The surface of the islands is dominated by Regosol (coastal sand) (www.fao.org). 

This is reflected in the domination of coastal plants such as coconut palm (Cocos 

nucifera), Pandanus spp., Casuarina equisetifolia, Morinda citrifolia, Barringtonia 

asiatica, and mangrove forest (Pemerintah Kecamatan Kepulauan Seribu, 2011).  

However, dung and carrion beetles from different families, Trogidae and 

Hyborosidae, were observed only on the studied islands. Their occurrence on the 

islands might be explained by their succession during decomposition of an 

ephemeral resource. The dung or carrion decomposition process are 
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characterised by a particular complex sequence of species arrival and mostly by 

competition among insects (Weslien et al., 2011). It is perhaps that islands have 

fewer competitors or predators for this group of insects and that food sources are 

more available, and these families are hence thriving with high abundances. 

The lack of herbivore beetles from family Brentidae and fungivore beetles from 

family Rhizophagidae on the studied islands might be explained by the different 

type of vegetation. Although this study did not include vegetation surveys, my 

general observation showed that most of the studied islands had low vegetation 

and high exposure to the sun. The lack of tall vegetation on the islands might be 

attributed to low level of microclimatic variables such as humidity, which is 

important for the natural habitat of microorganisms such as fungi and bacteria 

(Howden & Nealis, 1978; Lumaret, 1978; Doube, 1990; Tuomela et al. 2000).  

Herbivorous insects depend on plants as a direct food source for their offspring 

or themselves (Tscharntke and Brandl 2004; Almeida-Neto et al. 2011; Perre et 

al. 2011). In addition, most herbivorous insects consume only a few 

phylogenetically related plant species (Ødegaard et al. 2005; Morais et al. 2011). 

Often, island settlers brought back ornamental plants, fruit plants, and grass from 

Java. The competition with the introduced plants might have contributed to the 

loss of host plant for herbivore beetles on islands. Consequently, the availability 

of host plant and negative impacts of land use intensity on these plants on the 

studied islands are expected to propagate through higher trophic levels (Fonseca 

2009; Pearse and Altermatt 2013), particularly over the herbivore beetle 

assemblages that are intimately associated with their host plants. However, 

introduced plants from Java can potentially carry herbivore insects which flourish 

on the islands. Previous studies have demonstrated that herbivore insects’ 

response to introduced plant species and habitat alteration is often unpredictable 

due to non-uniform effects on different trophic levels in a community (Kareiva 

1987; Kruess and Tscharntke 1994). This suggests that other biotic and possibly 

abiotic factors, such as immigration/emigration rates, microclimate and predation 

may also influence their distributions on the studied islands.  

On the other hand, other beetle families flourish on the studied islands. The high 

abundance of scolytids and woodboring beetles from family Tenebrionidae, 



104 
 

Cerambycidae, Endomycidae and Mordellidae can be partly explained by the 

deadwood accumulation resulting from driftwood washed up from the sea. Such 

driftwood is one very likely source explaining the mass occurrence of Scolytidae 

as many species from this family live in dead and dying wood and are known to 

use rafting on plant material as an effective dispersal method (Kirkendall and 

Jordal, 2006). 

 

3.4.3. Unique island and Java species  

At the species level, two unique island species from family Elateridae, Elateridae 

sp. 1 and Elateridae sp. 5 were thriving in population, suggesting that suitable 

vegetation hosts were more abundant on the islands than in Java. However, the 

number and occurrence of elaterid species do not always differ according to 

vegetation type. Because the larvae of some elaterid species are generalist 

predators (Makihara & Ôhira 2005), the difference in vegetation diversity may not 

affect the number of elaterid species.   

More carabid beetle species were found on the islands than in Java. Factors that 

probably affect the colonization process include environmental differences, 

especially differences in the composition of habitats in the surroundings of the 

sampling sites, and autecological characteristics of the species, such as dispersal 

ability and habitat preferences. Unfortunately, the autecology of the carabid 

species, especially on the studied islands, is poorly known. It is possible only to 

suggest tentatively species-specific mechanisms that might influence their 

colonizing ability. On the other hand, the scarcity of the Javan dominant species 

on the islands might be caused by lower food resource level and greater isolation 

of favourable patches from each other. However, more data are needed on the 

exact environmental requirements and over-water dispersal of the species.  

The high abundance of the Genus Onthophagus in Java was also found in a study 

by Kahono and Setiadi (2007). The low degree of food specificity (Shahabudin et 

al., 2010) potentially makes this genus thriving in population. The occurrence of 

two endemic species of Java, Onthophagus javanensis (Balthasar, 1969) and 

Onthophagus javacupreus (Huijbregts and Krikken, 2011) is expected.  The 

range and ecology of O. javanensis and O. javacupreus are only on Java and 
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these species have never been seen from other regions (Huijbregts and Krikken, 

2011).  They can be found mostly in the forest habitat with an altitude between 

700-1700 m, especially O. javanensis, which has adaptation to wide range of 

altitude and different type of dung. Fish carrion traps, which were used in this 

study, have been known to attract both species (Huijbregts and Krikken, 2011; 

Kahono and Setiadi, 2007).  

Interestingly, Java and the islands share the most abundant species, Xyleborus 

perforans. This species is widely distributed and easily captured in different traps, 

such as Malaise trap and by hand, yellow pan trap, and FITs. The high 

abundance of this species both on the islands and Java might be explained by 

the possible importance of inbreeding (Kirkendall and Jordal, 2006) in this 

context. Bark beetles are not the only terrestrial arthropods with clades in 

outbreeding are found – regular close inbreeding occurs in, for example, certain 

mites, thrips, aphids, solitary bees and wasps, ants and social spiders (Thornhill, 

1993; Wrensch & Ebbert, 1993). Although my study did not look specifically at 

the breeding process of this group, however, they are apparently the only group 

in which an association between zoogeography and close inbreeding has been 

documented (Kirkendall, 1993; Jordal et al., 2001). The proportion of the scolytine 

fauna that inbreeds by repeated sib-mating increases with decreasing latitude, 

and is highest on tropical islands. In agreement with these patterns, a study by 

Jordal et al. (2002) showed that three quarters of the known scolytine fauna on 

Cocos Island were species which regularly inbreed by brother–sister mating.  

 

3.4.4. Synthesis 

Several beetle species are more successful and thriving in inhabiting the islands 

than Java. The explanations for these patterns can be derived from differences 

in environmental conditions, including habitat composition in the surroundings of 

the study sites, and in ecological characteristics of the species. My conclusions 

underline the importance of quantitative data in island-mainland comparisons. At 

present, I know of no studies on island beetles dealing with quantitative data, but 

a quantitative approach is necessary to detect important ecological patterns 

behind the documentation of the apparent differences of insular faunas. Factors 
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influencing the ability of single species to colonize insular environments deserve 

attention as well as community-level comparisons. 
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Chapter 4. Effects of island size and isolation on beetle 

assemblages: a test of Island Biogeography Theory 

 

4.1. Introduction 

According to the equilibrium theory of island biogeography, species richness on 

islands forms a dynamic equilibrium between the opposing processes of 

immigration and extinction (MacArthur & Wilson, 1967) (Figure 29). Concurrent 

with general island biogeography, many studies have confirmed that island 

isolation and size are both key predictors for the species richness of an island 

fauna (Gentile & Argano, 2005; Kalmar & Currie, 2006; Ackerman et al., 2007; 

Fattorini, 2010; Fattorini, 2011). Particularly on large islands, island area was 

shown to be an important factor in explaining the species richness in a wide range 

of arthropod taxa like Chilopoda, Orthoptera, and Tenebrionidae (Fattorini, 2011). 

The number of species unique to islands also increases with island area 

(Fattorini, 2010). In relation to plants, island area was found to be the strongest 

contributor towards explaining insular species richness in a large comparative 

survey of 488 islands and 970 mainland floras (Kreft et al., 2008). Island area is 

of great importance in determining how many species can be hosted by an island. 

Large areas also often allow more individuals of a species to exist, hence 

reducing a species’ extinction risk e.g. by catastrophic events killing off the entire 

island population (Walter, 2004). 

However, more recent studies found that island area is not considered to be the 

main influence of an island’s biotic diversity (Rosenzweig 1995, Whittaker and 

Fernandez-Palacios 2007, Trianties et al., 2005). Instead, larger islands have 

shown an increasing species richness in response to a wider range and amount 

of available resources, a wider spectrum of habitats and a higher diversity of 

microclimates (Walter, 2004). The species richness of an island or any area must, 

therefore, be seen as the result of many processes acting and interacting across 

space and time. Moreover, the explanatory power of the factor area for variations 

in island species numbers is also variable. 
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Figure 29 Equilibrium model of the species richness at a single island. The 

equilibrium species number is reached at the intersection point between the 

immigration and extinction curves (MacArthur and Wilson, 1967) 

 

Empirical studies demonstrating additional significant and sometimes dominant 

roles for an array of subsidiary variables, including habitat type, disturbance 

levels and regimes, elevational heterogeneity and island age, suggested 

spatiotemporal scale and context-dependency in species-area relationships 

(Rosenzweig 1995, Whittaker 2000, Whittaker and Fernandez-Palacios 2007, 

Trianties et al., 2008). Lomolino and Weiser (2001) showed that differences in 

elevation, the availability of freshwater resources, actual habitat quality and 

diversity, geological settings and human history are examples of key factors 

influencing biotic assemblages. With the exception potentially of altitude ranges, 

these are widely size-independent, hence further complicating the relationship 

between area and species richness. Overall, habitat diversity is believed to be of 

particular importance in determining the species richness of island biotas (Hortal 

et al., 2009). Thus, species-area relationships, as many other highly generalizing 

patterns describing complex systems, are related to the importance of all the 

processes above and factors that relate, to highly varying degrees, with this 

variable. In this chapter, I am looking at the effect of island area without 

specifically considering the other subsidiary variables. I am effectively testing if 

the classic area-species richness relationships, inherent to the theory of Island 

Biogeography, work for insular beetle assemblages on the studied islands.  I 
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hypothesise accordingly that beetle communities on the Kepulauan Seribu 

Marine National Park will decline with a decrease in island size, with a log-log 

relationship describing this relationship. 

The second key pattern associated with island biogeography relates to the 

degree of island isolation. MacArthur and Wilson (1967) considered the trend of 

increasing species richness with decreasing isolation to be the second key trend 

when predicting island species richness. This prediction was based on the 

assumption that immigration of sufficient specimens to allow for the successful 

establishment of a species’ viable population occurs more frequently on islands 

close to the main source area for colonising species. As shown by Kalmar and 

Currie (2006) for insular bird assemblages, isolation does appear to play a strong 

role in species richness on islands. A study by Weigelt and Kreft (2012) also 

found that  the isolation metric had the highest predictive power, explaining 86.1% 

of the variation for vascular plant species. 

Most of the conceptual models in island biogeography consider isolation as the 

‘distance to’ or more generally as the ‘isolation from’ source pools. Many different 

metrics of isolation have been proposed, including the distance between a target 

island and the nearest mainland coast (Rizali et al., 2010; Spengler et al., 2011), 

distance to the nearest neighbouring island (Fattorini, 2010), distance to the 

nearest island  (McMaster, 2005), and the mean distance to a set of other islands 

(Borges & Hortal, 2009). Another frequently used metric, the UNEP isolation 

index (Boyer & Jetz, 2010; Kisel & Barraclough, 2010, Weigelt and Kreft, 2012), 

incorporates the distances to the nearest mainland, nearest island group, and 

nearest equally sized or larger island. 

Previous studies looking into the effect different isolation measures have on 

different groups of insects showed diverging response patterns to these factors 

(Fattorini, 2011). Inter-island distances, especially distance to the nearest island, 

appeared overall to be more important in determining variation in species 

composition than the distance to the nearest mainland area (Fattorini, 2010; 

Fattorini, 2011). Therefore, I hypothesise that inter-island faunal exchanges 

linked to the distance to the nearest small island are more important for faunal 

turnover in my island setting than the distance to Java. 
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Taxon-specific dispersal abilities play an important role in island colonisation 

(Thornton, 1992). Differences in dispersal abilities and population size potentially 

generate a nested pattern in island biotas. On small and isolated islands where 

colonization events are rare and frequent extinctions are likely to occur due to 

small population sizes can hence be expected to harbour subsets of species 

assemblages of larger islands and islands closer to potential source areas 

(Wright et al., 1998). 

Studies on the effects of island size and isolation have in the past been highly 

biased towards plant and vertebrate taxa (Weigelt & Kreft, 2012; Kalmar & Curie, 

2006; McMaster, 2005; Price, 2004; Kreft et al., 2008). In the following chapter, I 

will in contrast assess the relative influence of island size and isolation on small, 

often highly mobile and species-rich tropical beetle assemblages on the small 

islands in Kepulauan Seribu Marine National Park. 

 

4.2 Methods and data analysis 

This chapter was based on all plots located on small islands. As outlined in 

Chapter 3, a total of 70 sampling plots were equipped with pitfall traps and 11 

with flight interception traps (FITs) on the ten small islands within Kepulauan 

Seribu Marine National Park. Information on island size and distance to Java 

were gathered from the national park office and had again already been 

presented in chapter 3. In my analysis, I used three different measurements to 

assess isolation: the distance to Java as the nearest large source area, the 

distance to the nearest neighbouring island (Fattorini, 2010), and the mean 

distance to islands within a 5 km radius (Borges & Hortal, 2009). Measurements 

for the first two were gathered from the Kepulauan Seribu Marine National Park 

Office. The two latter distance measurements were made using Google Earth-

Pro (Table 3). 
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Table 3 Isolation and area measurements of the ten islands in Kepulauan Seribu 

Marine National Park. 

 

No Island 

Area 
(km2) Distance 1 

(km) * 
Distance 2 

(km)† 
Distance 3 

(km)∞ 

No of Plots 

 PT FIT 

1 Rambut 0.4580 5 0.86 0.86 5 2 
2 Untung Jawa 0.3912 6 0.86 0.86 10 2 
3 Bokor 0.1634 7 3.44 3.915 5 0 
4 Lancang 

Besar 
0.2643 10 

0.3 2.345 
10 0 

5 Damar Besar 0.2951 18 5.25 5.25 5 2 
6 Pramuka 0.1992 27 0.69 1.0925 10 2 
7 Kotok Besar 0.2265 32 1.02 3.29 10 0 
8 Opak Besar 0.0974 37 1.04 2.395 5 2 
9 Pemagaran 0.1556 40 0.8 2.965 5 2 
10 Putri Barat 0.0963 45 0.57 2.45 5 2 

 
* Distance to Java 
† Distance to the nearest island 
∞ Mean distance to islands within radius of 5km 
 

The abundances of all beetle species from all islands over the entire sampling 

period were pooled but differentiated into pitfall trap and FIT samples. Specimens 

from baited and non-baited pitfall traps on each island were combined and 

analysed jointly to represent the island’s pitfall trap specimens.  

The observed number of species depends strongly on sample size and sampling 

efforts. Consequently, different sets of α-diversity need to be used to assess the 

sample (Axmacher et al., 2011). The α-diversity of beetle species on each island 

was calculated using Shannon’s diversity (Shannon’s H) to emphasise the 

richness component of diversity and Simpson’s diversity (Simpson’s D) to 

emphasise the evenness. As outlined by Jost (2006), Shannon’s entropy was 

converted into diversity measures using an exponential conversion. Simpson’s 

diversity was calculated as the inverse of the Simpson’s static, again following 

the approach outlined in Jost (2006). Hill numbers were again used to measure 

these diversity indices (Appendix 1). 

I computed single-predictor regression models with the rarefied beetle species 

number per island as the response variable and each environmental parameters 

in turn as the explanatory variable. Species number per island is adequately 

accounted for by regression and has been used in many studies (Kohn and 

Walsh, 1994; Morrison, 2002; Fattorini, 2002; Brose, 2003). 
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I then used Principal Components Analysis (PCA) to condense data of island size 

and island distance measurements into principal components (PCs) reflecting the 

main gradients in the changes of island size and island distance measurements. 

The resulting sets of principal components and all individual environmental 

parameters linked with PCs were used consecutively as predictors of beetle 

species diversity in a series of step-wise multiple linear regression (MLR) models. 

Detrended correspondence analysis (DCA) can be used as an indicator whether 

species responses along the investigated environmental gradient are linear or 

unimodal (Ter Braak, 1988). In DCA, the axes represent standard deviation (SD) 

units. If the first axis representation exceeds 2 SD units, then response curves 

are proposed to follow a unimodal model. On the other hand, if the gradients are 

less than 2 SD units, then most species responses are assumed to approximate 

a linear response (Meier, 2007). 

For each taxonomic rank and group investigated, a DCA was computed to check 

for the respective response patterns. The lengths of the major gradient aligned to 

the first axis were less than 2 SD in some and more than 2 SD in other cases. 

Thus, redundancy analysis (RDA) and canonical correspondence analysis (CCA) 

(Leps and Smilauer, 2003) were selected as suitable analytical approaches to 

measuring the amount of variation (sum of canonical eigenvalues) in the species 

data that can be explained by the set of environmental variables. 

The analysis of changes in the composition of beetle assemblages in relation to 

island area and distance measurements resulted in similar outcomes for Chord- 

and Hellinger-distance-transformed geometrid beetle data. Therefore, only 

results obtained after Chord- transformation will be presented here. 

MLR models were calculated using SPSS version 22. DCAs, RDAs, and CCAs 

were calculated using CANOCO (version 4.5) (Leps & Smilauer, 2003). All other 

calculations and statistical analysis were carried out in R language version 3.1.2 

(R Development Core Team, 2011) with the use of the ‘vegan’ package 

(Oksanen, 2015). 
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4.3. Results 

4.3.1 Overall number of beetle species and diversity on small islands 

The highest number of recorded ground-dwelling beetle species from pitfall traps 

was found on some of the larger islands, Untung Jawa, Lancang Besar, and 

Pramuka, with 51, 38, and 37 recorded species, respectively. Meanwhile, the 

lowest number of 11 species was recorded at Putri Barat, which is the smallest 

and the most isolated studied island (Figure 30a). Dispersive beetles from flight 

interception traps (FITs) recorded the highest number of species on larger 

islands, Untung Jawa, Pramuka, and Rambut, with 56, 43, and 18 recorded 

species, respectively. In contrast, only five species were recorded in FIT samples 

on Opak Besar. Rarefaction curves showed similar patterns of the observed 

number of species richness (Figure 30b).  
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(a) 

 

 

(b) 

 

Figure 30 Rarefaction curves of beetle species richness from pitfall traps on 

studied small islands from (a) pitfall traps and (b) FITs (black lines represent 

95% confidence intervals) 
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Overall, beetle species diversity from pitfall traps, assessed both by the Shannon 

and Simpson’s index, was highest on the larger islands. Untung Jawa Island (hexp 

= 27.29 and DS=19.2) recorded the highest beetle diversity, followed by Pramuka 

Island (hexp = 13.28 and DS = 8). The lowest beetle diversity was recorded on one 

of the smallest and more isolated island, Opak Besar (hexp = 2.61 and DS=1.64) 

(Figure 31). 

FIT samples showed similar patterns to pitfall trap samples, where larger and less 

isolated islands have higher beetle diversity. Untung Jawa (hexp = 18.48 and 

DS=15.89) and Rambut Island (hexp = 9.92 and DS=5.55) showed the highest 

diversity both measured using the Shannon and Simpson’s index. Meanwhile, 

Opak Besar island harboured the lowest Shannon (hexp = 1.63) and Simpson’s 

index (DS = 1.16) (Figure 32). 

 

RA=Rambut; UJ=Untung Jawa; BO=Bokor; LB=Lancang Besar; DB=Damar Besar; KB=Kotok 
Besar; PR=Pramuka; PE=Pemagaran; OB=Opak Besar; PB=Putri Barat 

 

Figure 31 Comparisons of beetle species diversity indices on islands from pitfall 

traps 
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RA=Rambut; UJ=Untung Jawa; DB=Damar Besar; PR=Pramuka; PE=Pemagaran; OB=Opak 
Besar; PB=Putri Barat 

  

Figure 32 Comparisons of beetle species diversity indices of small islands from 

FITs 

4.3.2 Linear regression analysis: Beetle species richness response to 

island area and island distance measurements 

Based on the results from ground-dwelling beetles recorded from pitfall traps, the 

correlation between rarefied species number and log-transformed island area 

was significantly positive (P = 0.028, R2 = 0.474) (Figure 33a). Meanwhile, the 

rarefied species number was negatively correlated with all three isolation metrics, 

most significantly with distance to Java (P = 0.035, R2 = 0.446) (Figure 33b). 

There were no significant impacts (linear regression analyses, P > 0.05) of 

distance to nearest island (P = 0.497, R2 = 0.060) (Figure 33c) and mean distance 

to islands within a radius of 5km (P = 0.096, R2 = 0.307) (Figure 33d) towards 

ground-dwelling beetle species richness on the studied islands. 
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(a)  (b)  

(c) (d)  

Figure 33 Linear regressions between rarefied species number from pitfall traps 

and (a) the log-transformed island area, (b) distance to Java, (c) distance to 

nearest island, and (d) mean distance to islands within radius 5km. 

 

From FITs, all parameters were much weaker correlates and had no significant 

impacts (linear regression analyses, P > 0.05) towards rarefied species number 

for dispersive beetles. Island area (log-transformed) (P = 0.32, R2 = 0.196) 

(Figure 34a), distance to Java (P = 0.304, R2 = 0.474) (Figure 34b) and distance 

to the nearest island (P = 0. 417, R2 = 0.135) (Figure 34c) were still relatively 

important correlate of rarefied species number from actively dispersed beetles 

from FIT. Mean distance to islands within radius 5km was the most important 

metric for dispersive beetle species richness (P = 0.114, R2 = 0.422) (Figure 34d).  
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(a)  (b)  

(c)   (d)  

Figure 34 Selected relationships between rarefied species number from FITs 

and (a) the log-transformed island area, (b) distance to Java, (c) distance to 

nearest island, and (d) mean distance to islands within radius 5km. 

 

4.3.3 Principal components analysis of island environmental data 

The PCA based on the island area and distance measurements yielded only two 

PCs (island principal components: IPCs) with eigenvalues > 1 (Table 4). These 

IPCs explained 92.26% of the overall variance. The first IPC (IPC1) accounted 

for 48.47% and was closely linked to island area, but also to the two isolation 

measures, distance to Java and mean distance to islands within a radius of 5km. 

The second IPC (IPC2), explaining 43.79% of the variance, was most strongly 

linked to the distance to the nearest island, and also to distance to Java. 
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Table 4 Loading of area and distance measurements of the ten islands on two 

principal components extracted by principal components analysis (unrotated 

island principal components, IPCs). Only PCs with eigenvalues > 1 are shown. 

 

Environmental variables Factor 1 
(IPC1) 

Factor 2 
(IPC2) 

Distance to Java 0.692 -0.648 

Distance to nearest island 0.41 0.885 

Mean distance to islands 
within radius of 5km 0.773 0.592 

Area -0.833 0.446 

Eigenvalue 1.94 1.75 

Explained variance (%) 48.47 43.79 

Cumulative explained 
variance (%) 48.47 92.26 

 

4.3.4. Multiple linear regressions: predicting beetles species number and 

diversity from island area and distance parameters 

In the MLRs, observed species number, Shannon diversity, and Simpson’s index 

of beetle assemblages were taken as the dependent variables. When the island 

principal components (IPCs) served as independent variables, the results from 

pitfall traps (Table 5) indicated that neither of the two IPCs was significant 

predictors of Shannon diversity and Simpson’s index. For the observed species 

number (adjusted R2= 0.572, F1,8 = 13.023, P = 0.007), IPC1 was a significant 

predictor (β = -0.787, P = 0.007). These results further explained that the increase 

of island area and the decrease of distance to Java increased the number of 

ground-dwelling beetles on the studied islands. 
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Table 5 Stepwise linear regression from pitfall traps using observed species 

number, Shannon diversity and Simpson’s index of beetles as the dependent 

variables. The island principal components (IPCs) served as independent 

variables. 

Dependent 
variable 

Adjusted 
R2 

F P-value d.f 
Selected 

independent 
variable 

β 
Std. 

Error of 
β 

t P-value 

Observed 
species 
number 

0.572 13.023 0.007 1,8 IPC1 -0.787 2.804 -3.609 0.007 

 

The results from FITs also showed that only 1 model with the significant input 

was explained. Shannon diversity (adjusted R2= 0.559, F1,5 = 8.612, P = 0.032) 

showed significant link with IPC1 (β = -0.795, P = 0.032), explaining that 

increasing area significantly linked with increasing dispersive beetle diversity 

(Table 6). As IPC1 was negatively linked to island area and positively to distance 

to Java, these results showed that larger islands and islands closer to Java had 

higher Shannon diversity of dispersive beetles. 

Table 6 Stepwise linear regression from FITs using rarefied species number, 

Shannon diversity and Simpson’s index of beetles as the dependent variables. 

The island principal components served, and all individual predictors associated 

with IPCs served as independent variables. 

Dependent 
variable 

Adjusted 
R2 F P-value d.f 

Selected 
independent 

variable 
β 

Std. Error of 
β 

t P-value 

Shannon 
diversity 

0.559 8.612 0.032 1,5 IPC1 -0.795 1.315 -2.935 0.032 

 

4.3.5. Redundancy analysis and canonical correspondence analysis: 

beetle species composition and island area and island distance parameters 

The first canonical correspondence analysis of beetle species from pitfall traps 

including two IPCs. These two axes explained only a small proportion of 14 and 

6.9% of the total variance in the dataset.  Hence, the IPCs investigated, although 

small, still, a significant correlation with the composition of beetle assemblages. 
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In the ordination (Figure 35a), the distribution of ground-dwelling beetle 

assemblages from pitfall traps along the first axis was significantly correlated with 

IPC1, that was negatively correlated with island area and positively correlated 

with distance to Java. Several species from family Scarabaeidae, Carabidae, 

Scolytidae, Curculionidae, and Scydmaenidae, were positioned far on the 

positive side. Their positions were negatively associated with increases in the 

value of IPC1, hence occurring on larger and less isolated islands. However, 

other species from the families above, as well as species from the family 

Anthribidae, were also found on smaller and isolated islands, which were 

positively associated with increases in the value of IPC1. 

The second canonical axis was strongly correlated with IPC2. This PC positively 

linked to the distance to the nearest island and also negatively associated with 

distance to Java. One species from the family Nitidulidae, Nitidulidae sp.14 

(Nit14), and, to a lesser degree, representative species from the family of 

Carabidae, Anthribidae, Tenebrionidae, Curculionidae, and Chrysomelidae, all 

had positive species scores. Hence, these species occurred on islands located 

remotely from other islands but closer to Java. The rest of the species were 

negatively associated with increases in the value of IPC2, showing their 

occurrence on islands positioned close to neighbouring islands but further away 

from Java (Figure 35a). 

The canonical correspondence analysis of dispersive beetle assemblages from 

FIT also including two IPCs, with the two axes, explained 17.8 and 15.2% of the 

total variance in the dataset. The IPCs have strong correlation with the 

composition of beetle assemblages. The distribution of beetle assemblages along 

the first axis was significantly correlated with IPC1. Species on small and isolated 

islands, which were positively associated with increases in the value of IPC1, 

were representatives from almost all of the families including Nitidulidae, 

Scolytidae, and Scarabaeidae. However, other Scolytidae species (Xyleborus 

perforans (Sco6) and Xyleborus affinis (Sco7)) were found on large islands and 

located closer to Java. Meanwhile, some species from family Scydmaenidae 

(Scydmaenidae sp.1 (Scy1)), Curculionidae (Curculionidae sp.8 (Cur8)), and 

Scarabaeidae (Onthophagus trituber (Sca24)) had negative species score, hence 

occurring on large and less isolated islands (Figure 35b). 
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Meanwhile, the second canonical axis was closely linked to IPC2, which is 

associated with distance to the nearest island and distance to Java. Species 

occurring on islands close to Java and far from neighbouring islands were 

showed clearly by species representative from the family Curculionidae 

(Curculionidae sp.14 (Cur14) and Curculionidae sp.10 (Cur10)),  Scolytidae 

(Xylosandrus compactus (Sco3)) Nitidulidae (Nitidulidae sp.11 (Nit11)). Some 

species from family Scolytidae also had positive scores, hence found on more 

isolated islands and close to other neighbouring islands. Species positioned in 

the middle between IPC1 and IPC2 were representatives from the family of 

Carabidae, Scarabaeidae, and Scydmaenidae. This position indicates that those 

species occurred on islands with intermediate isolation. 
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(a) 

 

(b) 

 

Figure 35 CCA ordination plots for the influence of island characteristics on the 

beetle species composition on small islands from (a) pitfall traps, and (b) FITs. 

Blue numbers indicate the studied islands. 
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More detailed analyse were conducted based on members from the three beetle 

families Carabidae, Scarabaeidae, and Scolytidae collected in the pitfall traps 

(see Chapter 2 on Sampling Methods). The results showed that the species 

composition of ground-dwelling Carabidae appeared to be strongly influenced by 

both IPC1 and IPC2. Both IPCs were more strongly associated with the first axis, 

with an overall explained variance of 18.3%, compare to the second axis, which 

only contributed an additional 0.5% towards the explained variance. Three 

carabid species (Cyindidina sp.1 (Car10) and, to a lesser degree, Cicindelini sp.1 

(Car9) and Brachinini sp.1 (Car7)) were negatively associated with the increase 

in the value of IPC1, hence occurring on larger, less isolated islands. One 

species, Pterostichinae sp.1 (Car18), was positioned in the middle between IPC1 

and IPC2, potentially occurred on islands with intermediate size and isolation. 

Meanwhile, one carabid species, Carabidae sp.21 (Car21), occurred on a more 

isolated island with neighbouring islands. The rest of the carabid species 

occurred on smaller and more isolated islands. The three smallest islands, Opak 

Besar (8), Pemagaran (9), and Putri Barat (10), were grouped together while the 

larger islands were more heterogeneous in their carabid assemblage 

compositions (Figure 36a). 

The CCA analysis of Scarabaeidae species composition from pitfall traps 

generated two canonical axes, where IPC1 and IPC2 contributed 32.1% and 

5.7% towards the original variance, respectively. Scarabid species compositions 

from pitfall traps clustered towards the centre of the CCA plot, indicating that the 

distribution patterns of these species might not be as strongly influenced by the 

environmental predictors. However, Onthophagus trituber (Sca24) showed a 

slightly clear preference for less isolated and no neighbouring islands (Figure 

36b). 

For ground dwelling Scolytidae species composition from pitfall traps, the overall 

explained variance was 13.3%, towards which IPC1 contributed 8.6% and IPC2 

an additional 4.7%. Hence, the principal components showed only a small, 

nonetheless significant correlation with the composition of island scolytid beetle 

assemblages. Xylosandrus morigerus (Blandford, 1894) (Sco4), Xylonsandrus 

crassiusculus (Sco5) and Xyleborinus perminutissimus (Sco10) were negatively 

associated with IPC1, hence occurring on islands with large and less isolated 
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islands. On the other hand, Xylosandrus compactus (Sco3) Xyleborus affinis 

(Sco7), Cryphalus spp. (Sco14) and Coccotrypes spp. (Sco15) showed a 

preference for more isolated islands and with close neighbouring islands (Figure 

36c). 
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(a) 

 

(b) 
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(c) 

 

Figure 36 Ordination plots for the influence of island characteristics on beetle 

species composition on small islands of (a) Carabidae, (b) Scarabaeidae, and 

(c) Scolytidae from pitfall traps. Blue numbers indicate the studied islands. 

 

From actively dispersed carabid species from FITs, with an overall explained 

variance of 52.7%, IPC1 contributed 41.4%, and IPC2 contributed 11.3%. 

Tachyina sp.2 (Car20), Tachyina sp.3 (Car21), and Tachyina sp.7 (Car25) were 

negatively associated with increases in the value of IPC2, hence occurring on 

more isolated islands. Tachyina sp.1 (Car19), on the other hand, was positioned 

in the middle between IPC1 and IPC2, indicating that the distribution patterns of 

these species might not strongly influenced by the environmental predictors. The 

rest of the carabid species showed a clear preference for larger but more isolated 

islands. (Figure 37a). 

The distribution of dispersive scarabid beetle assemblages from FITs along the 

first axis was significantly correlated with IPC1 (33.2% explained variance). The 

second canonical axis was strongly correlated with IPC2 (17.1% explained 
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variance). Most Scarabaeidae species from FITs were negatively associated with 

increases in the value of IPC1, hence occurring on larger and less isolated 

islands. Dynastinae sp.1 (Sca2) and Onthophagus sp.3 (Sca11), however, 

showed a negative correlation with IPC2, hence occurring on more isolated 

islands and with neighbouring islands.  Meanwhile, Onthophagus sp.1 and 

Onthophagus sp.5 (Sca9 and Sca13, respectively) were positioned in the middle 

between IPC1 and IPC2, indicating the distribution patterns of these species 

might not as strongly influenced by both IPCs (Figure 37b) 

(a) 
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(b) 

 

(c) 

 

Figure 37 Ordination plots for the influence of island characteristics on beetle 

species composition on small islands of (a) Carabidae, (b) Scarabaeidae, and 

(c) Scolytidae) from FITs. Blue numbers indicate the studied islands. 



130 
 

The canonical correspondence analysis of actively dispersed scolytid species 

from FITs also included two IPCs. The two axes explained 13.7 and 10.1% of the 

total variance in the dataset. The IPCs have strong correlation with the 

composition of scolytid beetle assemblages. The first axis was correlated with 

IPC2, which was associated with distance to the nearest island and distance to 

Java. The second canonical axis was strongly correlated with IPC1. Scolytidae 

sp.1 (Sco1), Xyleborus similis (Sco8), Hypothenemus spp. (Sco13), Cryphalus 

spp. (Sco14), and Coccotrypes spp. (Sco15), showed a preference for small and 

more isolated islands. On the other hand, Xylosandrus morigerus (Sco4), 

Xylosandrus crassiusculus (Sco5), Dryocoetiops coffeae (Sco9), Xyleborus 

perminutissimus (Sco10), and to a lesser degree, Xyleborus perforans (Sco6), 

and Xyleborus affinis (Sco7) were negatively associated with IPC1, hence 

occurred on larger islands and positioned closer to Java. Meanwhile, 

Xylosandrus compactus (Sco3) was positioned in the middle between IPC1 and 

IPC2, indicating less influenced by both principal components (Figure 37c). 

 

4.4 Discussion 

4.4.1 The response of beetle diversity to variations in island size 

Accordance to my hypothesis, island area proved to have a significant effect on 

the diversity of ground-dwelling beetles on the studied islands in Kepulauan 

Seribu Marine National Park. In models predicting beetle diversity based on the 

IPCs and individual parameters, this factor is also important in influencing the 

diversity of beetles. These results are also consistent with findings from previous 

studies that similarly revealed a significant link of species diversity patterns with 

island area for ants (Rizali et al., 2010), tenebrionid beetles (Fattorini, 2002; 

Fattorini and Fowles, 2005; Fattorini, 2011), terrestrial isopods (Sfenthourakis, 

1996), centipedes (Simaiakis, 2006) and land snails (Mylonas, 1982; Triantis et 

al., 2005; Triantis, 2006).  

The main, and most debated, explanation for the positive correlation between 

island size and species richness is that large islands generally contain more 

habitat diversity (Fox & Fox, 2000; Gillespie & Roderick, 2002; Triantis et al., 

2005) compare to small islands. This theory is difficult to prove in the field 
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because habitat diversity and island size are strongly correlated (Yu and Lei, 

2001), making it nearly impossible to distinguish the two. However, some of the 

largest islands in this study are dominated by single habitat (see Chapter 2 on 

Study Area). Thus, the results suggest that the correlation between island size 

and beetle diversity on the studied islands followed the classic island 

biogeography theory. 

However, a study by Lomolino & Weiser (2001), which analysed a large number 

of studies on island faunas, including ants, beetles, and butterflies found that 

species richness tended to vary independently of the area for islands up to 

approximately 1 km2. All islands surveyed during my study in Kepulauan Seribu 

Marine National Park are indeed much smaller (Table 1). On the other hand, 

Dengler (2009) argued that most studies, including Lomolino & Weiser (2001), 

which claimed to have detected a small island effect, used a statistically flawed 

approach. He further explained that deviating results reported in the literature can 

mostly be attributed either to methodological shortcomings or to the fact that 

authors actually studied area based SSRs (species sampling relationships) rather 

than real SARs (species-area relationships). 

Whereas a SAR arises from several plots or geographic units (e.g. islands) of 

different sizes whose species richness is known with sufficient precision, a SSR 

yields only one value for a single plot with defined area but unknown species 

richness, from which random samples are drawn to achieve this goal (Dengler, 

2009). Analysis of SARs aims to elucidate the relationship between area and 

species richness, and thus addresses a more fundamental question than that of 

SSRs (Gray et al., 2004a). SARs are more widely applicable, such as for 

extrapolation, establishing a common spatial gain for analyses, deriving β-

diversity measures, and hypothesis testing (Scheiner, 2003). SSRs, on the other 

hand, really only address species richness in a precisely delimited area (total 

plot), a property that may be extremely costly or even impossible to measure 

directly in certain taxa that are difficult to observe (e.g. insects, soil microbes or 

marine benthos). Hence, the misinterpretations and terminological confusion 

around different types of SARs and their delimitation from species sampling 

relationships SSRs might therefore show that fundamentally different shapes of 
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species–area relationships for small islands are not proven and seem 

improbable. 

Most studies concluded that the species richness of a region or area is the result 

of many processes acting across space and time. Island area has proved to be 

an important variable in explaining variation in island beetle species numbers in 

Kepulauan Seribu Marine National Park. However, it is clear that quantification of 

other factors, such as climate, habitat diversity, evolutionary history, that partially 

co-vary with the area, is necessary to model reliably and predict species number 

variations across insular systems on this archipelago. 

 

4.4.2 Influence of different island isolation measurements on beetle 

assemblages 

This study comprises of multiple island isolation metrics, not only because it 

cannot be captured in a single metric (McMaster, 2005; Borges & Hortal, 2009, 

Cardoso et al., 2010, Weigelt & Kreft, 2012), but also because different island 

isolation influence beetle diversity differently on islands in Kepulauan Seribu 

Marine National Park. This study also emphasizes that a variety of facets of 

isolations affect island colonization. Although the ordinary distance to Java or 

main source area in this study is an adequate and simple measure (Weigelt & 

Kreft, 2012), accounting for distance to the nearest island and mean distance to 

other islands has increased the explanatory power of isolation for beetle richness 

on the studied islands.  

The results indicate that distance to Java and mean distance to islands within the 

radius of 5km were strongly linked to 1st IPC. Distance to the nearest island and, 

again, distance to Java were linked to 2nd IPC. Contradicting my hypothesis and 

previous studies (Johnson and Simberloff, 1974; McMaster, 2005; Cardoso et al., 

2010; Weigelt & Kreft, 2012) which identified the important influence of distance 

to the nearest islands, this distance parameter is a poor predictor of beetle 

species richness in Kepulauan Seribu Marine National Park. In models predicting 

beetle diversity based on the IPCs and distance to the nearest island as an 

individual parameter, this factor is not significant in influencing the diversity of 

beetles.  
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Contradicting a study by Whittaker and Fernández-Palacios (2007) and Fattorini 

(2011), the results suggest that no 'stepping stone' processes were involved in 

determining beetle species richness on the studied islands and that islands 

between target and source areas did not decrease isolation. Direct dispersal and 

other mechanisms were probably the relevant immigration mechanism. The 

studied islands have different habitat (see Chapter 2 on Study Area), and species 

colonization depends on the favourability of island environmental conditions and 

suitable source areas (Steinbauer et al. 2012). Hence, the immigration process 

to the nearest islands might be more successful if this study used the nearest 

island with analogous habitats. The variations in distance of nearest-island might 

have affected the results, especially for beetle species with restricted long-

distance dispersal abilities, for which the chance of immigration depends on the 

maximum distance to cross. A study by Weigelt and Kreft (2012) showed that the 

size of these neighbouring islands can be an important driver of island species 

richness as well.  They found that large islands, as well as the mainland, serve 

as major sources for colonization and maintenance of species richness. The 

same study also showed that the absolute area of a potential source is more 

important than its size relative to the target island. All islands in this study are all 

less than 1km2, hence can be classified as small islands (Lomolino and Weiser, 

2001). Therefore, these results might also explain that small islands are less 

important sources of immigration, even for small target islands. 

On the other hand, in models predicting beetle diversity based on the IPCs, both 

mean distance to islands within a radius of 5km and distance to Java are 

important in influencing the diversity of beetles. Distance to Java was also a 

significant predictor when a linear regression predicting beetle diversity was 

calculated based on this parameter as a predictor. The results indicate that the 

more remote the island is from Java, the more severe the sweepstakes route and 

the smaller the number of species that would successfully colonize and become 

established on the island. The validity of this isolation metric has been tested in 

the vast majority of studies (Case, 1975; Abbott, 1978; Chown, 1998; Alsos et al., 

2007; Harbaugh and Baldwin 2007). Successful colonization over large bodies of 

water, however, is potentially easier for plants than for animals (Yu and Lei, 

2001). Without having a mate to reproduce with, plants only require one fertile 

seed or spore to colonize a remote island. Also, some plants can withstand long 
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periods of seawater immersion (Yu and Lei, 2001) and successfully colonize 

remote islands. On the other hand, as beetles have, in general, limited ability to 

actively disperse over the sea (Qie et al.  2001; Lomolino, 2000b), immigration 

rates are expected to be very low. This results can also indicate that most beetle 

species have probably colonized the studied islands by other means, such as 

anthropogenic activities on the islands, or dispersal by birds. In Kepulauan Seribu 

Marine National Park, anthropogenic activities are mainly in the forms of 

permanent settlement on islands and tourism. As humans travel in and out these 

islands, different species might have been intentionally and inadvertently 

introduced into new ecosystems. Many island species are particularly vulnerable 

to biological invasions due to their isolation and limited space. Moreover, some 

islands of this archipelago have been the target for habitat loss, fragmentation, 

and degradation primarily for settlement and tourism reasons (S. Puspitasari, 

pers. obs.). Such habitat destruction not only directly damages the island flora 

but also reduces the faunal biodiversity. As forested areas are diminishing, 

suitable habitats and food resources for fauna, such as beetles, also 

disappearing.  

The significance of mean distance to islands within a radius of 5km shows that 

clustered island groups make dispersal possible for species, which are not 

capable of extraordinary long-distance dispersal. This is an indication of 

successful migration among islands within island groups was high. This result 

partly contradicts the prediction by Hanski & Gyllenberg (1997) and Nieminen & 

Hanski (1998) where scattered islands accumulated actively dispersing species 

quicker than islands close to each other. The proportion of large islands or 

landmass within the island cluster is also important. A study by Diver (2008) 

suggested that the optimal buffer radius for measuring isolation depended on the 

spatial scale of the study. For this study, mean distance within the defined radius 

of 5km around the target island can thus be quantified as an important factor to 

influence beetle species diversity. 

Another factor to consider in interpreting these results is that isolation effects 

interact with species-specific dispersal properties (Lomolino, 1982; Weigelt and 

Kreft, 2012). Species differ strongly in their immigration and extinction rates (Yu 

and Lei, 2001). My analysis did not specifically integrate dispersal or population 

traits of the individual beetle species, not least since this information is widely 
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lacking for many species. Smaller beetle species, which are bad competitors but 

good colonizers due to high dispersal abilities, might also have difficulties 

establishing themselves on islands close to the coast characterized by a higher 

proportion of larger species, which are better competitors but are not able to 

colonize more isolated islands due to their low dispersal abilities. Some beetle 

taxa might also be poor island colonizers and, therefore, are often totally absent 

even on islands located in close vicinity of nearby larger landmasses, where they 

can occur in high abundances. For example, no hydrophilid beetles were 

recorded in Kepulauan Seribu Marine National Park in this study, although 

several species occurred in Java (see Appendix 1, Chapter 3). This result might 

be explained by the lack of fresh ground water sources, such as rivers, streams 

or lakes, on the studied islands (S. Puspitasari, pers. obs). Several beetle species 

from the genus Onthophagus (Scarabaeidae) were also only recorded in Java. 

Low dispersal abilities of these dung beetle species (Da Silva and Hernandez, 

2014), and resource availability (Simmons and Ridsdill-Smith, 2011) might have 

caused difficulties in establishing persisting populations of these beetles on small 

islands.  Their close association with specific habitat types – the number of some 

dung beetle species and their abundance was significantly higher in primary 

forest than another habitat (Gardner et al., 2008; Hernandez and Vaz-de-Mello, 

2009; Da Silva et al., 2013) might as well explain their lack of appearance on 

small islands such as the ones investigated in Kepulauan Seribu Marine National 

Park. 

Although they are part of Kepulauan Seribu Marine National Park, some of the 

studied islands were also a tourist destination, including the furthest island, Putri 

Barat. Busy and continuous traffic and visitors hopping from one island to another 

might have dampened the effects of island isolation. Finally, with no comparative 

studies on beetles in this area, and with limited information on beetles in 

Indonesia, only a portion of the information on specimens is available up to 

species level. Hence, there is limited information on activities, immigration ability, 

and habitat preferences of beetles on the studied islands. 
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4.4.3 Biogeographic patterns of beetles in Kepulauan Seribu Marine 

National Park  

A positive relationship exists between island size and island beetle species 

richness in Kepulauan Seribu Marine National Park. The observed trends have 

also been reported by Fattorini (2011), who found that island area was important 

for the beetle composition on a given island. Within the ground-dwelling beetles 

that were chiefly recorded in the pitfall traps, IPC1 and therefore Island area were 

strongly influenced the actual composition of beetles from the family of 

Scarabaeidae, Carabidae, Scolytidae, Curculionidae, and Scydmaenidae. For 

Carabidae beetles, this pattern might be explained because most carabid species 

are generalist predators (Lovei and Sunderland 1996). Hence, they are more 

active in their foraging. Moreover, carabids are, in general, poor fliers and the 

direction of airborne dispersal is highly influenced by wind direction (Lindroth 

1985; As 1984). Therefore, the flight may not be needed for carabids, and instead 

may be able to use energy reserves directly, and immediately, for survival and 

reproduction (Kotze, 2008) once an island is reached. At the same time, species 

representative from the family Nitidulidae, Carabidae, Anthribidae, 

Tenebrionidae, Curculionidae, and Chrysomelidae occurred on islands located 

remotely from other islands but closer to Java. Although these species occurred 

on islands near Java, where anthropogenic gene flow can be a significant risk 

(Davies et al., 2007; Grobler et al., 2011), they were not recorded in Java (see 

Appendix 1). Hence, they are unlikely to be introduced species. Moreover, beetle 

habitat preference may lead to different faunal composition, such as the absence 

of natural predators, affecting the overall beetle compositions. Some islands near 

Java, such as Rambut Island, have a very different habitat. For some of the 

flightless beetles, habitat preference can also explain the way they migrate. For 

example, beetles that occur mainly on vegetation (Chown 1998), such as 

Curculionidae and Chrysomelidae, are more likely to be transported by birds than 

beetles on rock surfaces that hide in crevices in the rocks (Grobler et al., 2001). 

Meanwhile, the dominance occurrence of actively dispersing beetle species from 

family Nitidulidae, Scolytidae, and Scarabaeidae, recorded in the FITs on small 

and isolated islands, shows their adaptive and successful approach in colonising 

remote islands. For bark beetles, their habitat consists mostly of dead wood and 



137 
 

similar materials, and the "area" they can use as habitats are strongly bound by 

the available dead wood material suitable for feeding and reproduction (Stevens 

et al., 2006). Moreover, logs and dead trees, which mainly came from Java, but 

potentially also from other islands, might drift and land on some of the remote 

islands in the archipelago.  

When focusing on carabid beetles, ground-dwelling carabids had a wide 

distribution on the studied islands. Most carabid beetles are generalist predators 

(Lovei and Sunderland 1996), although they can be classified into specialisation 

(Kotze and O’Hara 2003), and habitat association categories (Lindroth 1985, 

1986). Poor disperser carabids may also be relatively good survivors (Kotze et 

al., 2000; Zalewski and Ulrich 2006), as flightlessness is often a trait selected for 

on islands. Moreover, this characteristic might have been influenced by different 

breeding type and fecundity (Niemela, 1988a, 1988b; Desender, 2000; Zalewski 

and Ulrich, 2006) that are of considerable importance in explaining the distribution 

of carabid species on islands. Actively dispersed carabids from FIT, however 

showed a higher occurrence on more isolated islands, and most of these species, 

such as Tachyina sp.2 (Car20), Tachyina sp.3 (Car21), and Tachyina sp.7 

(Car25), were not recorded in Java (see Appendix 2). With strong selection for 

dispersal ability in island populations and selection against dispersal in Java, one 

can presume that island population dynamics of dispersive carabid beetles is 

more dependent on migrants originating from islands rather than Java. Nieminen 

and Hanski (1998) and Hanski et al., (2006) favoured a similar argument in 

explaining regional distributions of moths and butterflies. Moreover, species from 

higher trophic level, such as carabids, are often more sensitive to environmental 

changes (Zou et al., 2015). It is possible that islands closer to Java experiencing 

higher environmental disturbances than isolated islands, hence affecting the 

carabids species assemblages on islands.  

On Scarabaeidae beetles, the result was in line with study from dung beetle 

studies in fragmented tropical forests where species richness is positively 

correlated with area (Klein, 1989; Andresen, 2003; Feer & Hingrat, 2005; Qie et 

al., 2011). However, Qie at al. (2011) found that, below 35.8 ha, area became 

unimportant for scarabids and isolation, and the relative amount of forest edge 

had a strong positive effect on species richness. It is possible that other 
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geographical and environmental characters, including dung burial and nutrient 

recycling (Horgan, 2005; Slade et al., 2007; Yamada et al., 2007), secondary 

seed dispersal (Feer, 1999; Andresen, 2003), biological control (Fincher, 1973; 

Gronvold et al., 1992; Nichols et al., 2008), and the absence of mammals on the 

islands (S. Puspitasari pers. obs.) might have also affected the outcomes of this 

study.  

The influences of IPC2, which is strongly linked to the distance to the nearest 

island, are not strong for scarabids distribution patterns from both pitfall traps and 

FITs. The relative flight abilities of different dung beetle species are poorly known. 

It was suggested that there are two forage-flight patterns in dung beetles: large-

bodied dung beetles tended to fly rapidly and continuously for long distance, while 

small-bodied species perched on leaves (Qie at al., 2011) and occasionally fly  

for short distances (Larsen et al., 2008). The question here was, however, not 

only whether the dung beetles can, but also whether they will fly across the open 

water between the islands. In a study by Qie et al. (2011), floating pitfall traps 

were used and found that dung beetle captures declined significantly and sharply 

from exposed soil bank to water. On the other hand, this study found less isolated 

islands harbour more species, which provides indirect evidence for differences in 

the dispersal ability among dung beetle species.  Hence, source–sink dynamics 

may exist between neighbouring sites for species that cross the water barrier. 

The significance of both IPCs was also found in scolytid beetle assemblages, 

especially for actively dispersed Scolytidae beetles collected from FITs.  In 

general, most scolytids live in temporary habitats and are more dispersive than 

species occupying permanent habitats. Hence, migration is essential to their 

success (Langelotto and Denno, 2001). Most of the studied islands in Kepulauan 

Seribu Marine National Park have been swamped by dead wood or dying 

materials from Java (S. Puspitasari, pers. obs.). Scolytids normally use these 

materials for their reproduction (Johansson, 1994) and they fly over large areas 

in their search for host materials. Hence, the size of the island is an important 

factor affecting scolytid beetles.  

Some ground-dwelling scolyid species recorded from pitfall traps occurred on the 

smaller island. This finding contradicted study by Rigby and Lawton (1981) who 
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found that for bark insects and some other herbivore insect taxa, the island area 

was not a significant factor in influencing the species assemblages. In this study, 

Hypothenemus spp. was one of the species occurred on the smaller island. This 

species is usually associated with disturbed habitats (Wood and Pullin, 2002) and 

often able to breed in a variety of microhabitats, under bark, in the pith of twigs, 

in seeds and fruits. This species is also able to do so in a wider range of hosts 

and range of environmental conditions than most Scolytidae beetles. These 

characters help to explain the wide distribution of some of the species in the 

tropics, and the ease with which they can be introduced into new areas (Beaver 

& Maddison, 1990). Thus, the preferences of this species to live on the smaller 

island is probably also related to other factors, such as anthropogenic disturbance 

and introduced species. 

4.4.4 Synthesis 

Overall, results in this chapter clearly indicate that island area and distance to 

Java proved to have significant effects on the diversity of beetles on islands in 

Kepulauan Seribu Marine National Park. To substantiate these conclusions and 

establish if these explanations follow the classical Island Biogeography Theory, 

further quantification of other factors, such as climate, habitat diversity, 

evolutionary history, that partially co-vary with the area, is necessary to model 

reliably and predict species number variations across insular systems on this 

archipelago. Additional analysis of anthropogenic activities on islands could 

explain whether they can influence the effects of island isolation. More studies on 

beetles on islands in Indonesia would also allow a better understanding of 

information on activities, immigration ability, and habitat preferences of beetles 

on the studied islands with different size and isolation.  
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Chapter 5. Influence of settlements and human activities on 

small island beetle biota 

 

5.1. Introduction 

The negative impacts of large-scale, anthropogenic habitat alteration on islands 

have long been known (Soulé and Orians, 2001; Brooks et al., 2002; Chown et 

al., 2005). Fragmentation, alteration, and destruction of habitat caused by human 

activity have resulted in the extinctions of native species on many islands (Chown 

et al., 2005; Brooks et al., 2002). Humans also alter island diversity by introducing 

non-native species (Lonsdale, 1999; McKinney, 2002). Most of the introduced 

plant and especially insect species appear to have reached islands accidentally 

(Chown et al., 1998). It is widely assumed that at global scales, these species 

introductions will ultimately exacerbate the reduction in diversity precipitated 

largely by other human activities (Sax et al., 2002).  

However, at local and regional scales, the impacts of exotic species on diversity 

varies with both taxon and region McKinney, 2002; Sax et al., 2002; Duncan et 

al., 2013). In many cases, it appears that diversity increases with the introduction 

of non-indigenous species (Rosenzweig, 1995; Davis, 2003; Chown et al., 2005). 

It’s also found that both indigenous and exotic species respond similarly to 

environmental heterogeneity (Stohlgren et al., 2003; Hawkins et al., 1999), and 

high diversities of native and non-native plant species were compatible with one 

another (Thomas and Palmer, 2015).  There is empirical evidence that 

widespread non-native species can play an important role in maintaining 

ecosystem functions, such as pollination (Pattemore and Wilcove, 2012), with 

such roles needing to be assessed when planning invasive species control or 

eradication programmes.  

At Kepulauan Seribu Marine National Park, most of the islands are now forming 

the focus of an intense debate. There are considerable grounds for their 

conservation, as the preceding observations indicate. However, there is high 

demand for tourism on these islands, with associated land use changes and the 

associated potential for targeted and accidental new alien species introductions 
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(Rizali, 2010). This study identified three main habitats on the studied islands, 

undisturbed forest on uninhabited islands, disturbed forest on islands with mixed 

forest and human settlement, and settlement areas themselves. This chapter 

therefore looks at how anthropogenic disturbances and altered habitats link to the 

composition of the beetle assemblages on small islands. With the impacts of 

introduced non-native species, and environmental heterogeneity, it was 

hypothesised accordingly that islands with settlements are expected to have 

higher species richness. 

Beetles can serve as powerful and reliable ecological indicators, as they present 

characteristics such as rapid response to environmental changes, short life-

cycles, high abundances and wide distributions in a broad range of habitats, they 

fulfil numerous and highly diverse ecological functions, and can be easily, and 

cost-effectively sampled (Brown 1997; McGeoch 1998; Pearce & Venier 2006; 

Barlow et al. 2007; Gardner et al. 2008; Uehara-Prado et al. 2009). On islands, 

beetles have also been used to see the effects of human and habitat 

fragmentation caused by anthropogenic activities (Davis, 1994; Fox et al., 2006; 

Davidson et al., 2011). A study on carabid beetles (Coleoptera, Carabidae) on 

the Aland Islands, SW Finland found that most of the species were found in low 

numbers outside each preferred environmental type. The number of species and 

species diversity was highest in cultivated habitat and lowest in forests, 

suggested that forest habitat on the islands do not support a high diversity of adult 

carabids (Niemela and Halme, 1992). Another study showed how the New 

Zealand dung beetles have evolved a generalist diet of dung and carrion to 

persist in indigenous ecosystems despite the decline of native birds and the 

introduction of many mammal species (Stavert et al., 2014). 

However, while overall species richness is often increased following invasions by 

alien species, habitat specialists often suffer as a result. In their study in 

Kepulauan Seribu Marine National Park, Rizali et al. (2010) found that there were 

ant species that did not seem to tolerate any form of human disturbance. Some 

ant species for example were found only on Rambut Island, the largest 

undisturbed forested island. This underscores the problematic role of human 

disturbances and highlights the importance of protected areas in preserving the 

diversity of species-rich invertebrate faunas. Accordingly, I hypothesize that 
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forest habitats on undisturbed forested islands will harbour more unique and 

distinct beetle faunas, containing species that only occur in this particular island 

setting. 

When potential food is scarce and habitat areas are shrinking, generalist traits 

are likely to be advantageous. Highly varying degrees of specialisation to both 

food and habitat has been documented in beetles (Wirta et al., 2008; 2010). This 

has been studied on dung beetles (Hanski, 1991; Davies et al., 2005). In this 

group, although mammal dung comprises the major food source for many dung 

beetle species, diverse arrays of non-mammalian dung and non-dung-based 

diets have been recorded. Feeding trials confirmed that Saphobuis edwardsi 

(Scarabaeidae: Scarabaeinae) was generalist dung and carrion feeder (Stavert 

et al., 2014) and displayed preferences for avian omnivore dung, mammal 

carnivore and omnivore dung and avian carrion. The study by Stavert et al. (2014) 

also suggested that some Saphobius species were trophic generalists, with 

nitrogen isotope enrichment values that span several trophic guilds. In marine 

carrion feeding trials, S. edwardsi were found in decomposing squid indicated the 

consumption of squid and suggested that dung beetles may have been involved 

in the flow of nutrients from marine to terrestrial forest ecosystems. 

In addition to generalists, some species commonly encountered in open habitats 

often seem to occur in a wide range of other habitats, too, albeit in low numbers 

(Niemela and Halme, 1992). The same pattern was also reflected by a study of 

Warren-Thomas et al. (2014), who found low number of habitat generalist carabid 

species in forest ecosystems. The reverse patterns have also been observed for 

some forest species’ occurrence in open habitats. Some forest species for 

example appear able to breed in shaded overgrown cultivations, but many 

specimens found in fields and pastures were possibly only transients from 

surrounding forest (Niemela and Halme, 1992). Generalist species on islands 

have been introduced by human (Vitousek et al., 1996; Thompson, 1998; Fox et 

al., 2006). These species will be very likely to increase on islands with human 

settlements. Therefore, I hypothesize that when comparing disturbed forest 

habitats in mixed forest and settlement habitat islands with undisturbed forest 

habitats, the former will contain a larger proportion of generalists.  
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The ecological and evolutionary processes that influence host range evolution, 

facilitating host shifts in some species but preventing host shifts in others, are 

poorly understood. The top insect predators, including beetles, were often seen 

as generalists that will prey on nearly all other invertebrates, including each other 

(Bay, 1974; Batzer and Wissinger, 1996; Klecka and Boukal, 2012). However, 

this traditional view must be revised, because diets of predatory beetles in 

different habitats might vary from highly specialized to broadly general (Klecka 

and Boukal, 2012). Human activities have caused many species to expand their 

ranges (Pitelka, 1997; Fox et al., 2006), and humans have introduced organisms 

into many new and often novel environments (Vitousek et al., 1996) that influence 

host ranges (Thompson, 1998). For example, plants introduced to new localities 

are often colonized by local herbivores, providing an opportunity for diet 

expansion and shifts onto new hosts (Tabashnik, 1983; Thomas et al., 1987; 

Bowers et al., 1992; Carroll and Boyd, 1992; Fraser and Lawton, 1994; Leclaire 

and Brandl, 1994; Fox et al., 1996; Fox and Fox, 2000). 

However, the high dependence of herbivorous insects on their host plants implies 

that plant invaders can affect these insects directly, by not providing a suitable 

habitat, or indirectly, by altering host plant availability (Almeida-Neto et al., 2011). 

The same study also found negative effects of land use intensity on the species 

richness and taxonomic diversity of the insect herbivore assemblages. These 

effects were mediated by an increase in the proportion of exotic host plant 

species. A likely implication of such reduction in the species richness and 

taxonomic diversity of the insect herbivore assemblages is the accelerated loss 

of specialized plant-herbivore interactions, thus favouring interactions among 

generalist species and the biotic homogenization of species interactions across 

human-disturbed habitats. My final hypothesis is therefore that human 

settlements on islands will affect different beetle feeding guilds differently. 

However, herbivorous beetles will be more strongly affected because of the 

presence of human settlements 
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5.2 Methods and data analysis 

This chapter was based on the entire set of study plots. As indicated in chapter 

3, this represented a total of 70 pitfall sampling plots and 11 flight interception 

plots located on the 10 islands in Kepulauan Seribu Marine National Park. The 

islands’ dominant land covers were classed into three types of habitat, widely 

undisturbed forest encountered on uninhabited islands, disturbed forest on 

islands with human settlements and settlement areas themselves.  

This study used forest cover as one of the environmental parameters to reflect 

the level of habitat changes on the studied islands, which were originally shrub 

forest and lowland forest, before human arrivals (FWI/GWF, 2002). The 

information on the size of forest cover were generated using Google Earth-Pro 

measurements. Data on human populations were provided by the authorities of 

Kepulauan Seribu Marine National Park. (Table 7). 

 

Table 7 Island habitat characteristics, human population and forest cover of the 

10 studied islands of the Kepulauan Seribu Marine National Park, Indonesia. 

 

Island 
Human 

Population 

Forest cover 

(ha) 

Habitat 

Settlement 
Disturbed 

Forest 

Mature 

forest 

Rambut 1 44.72   X 

Untung Jawa 1698  0 X   

Bokor 1 15.74   X 

Lancang Besar 1554 6.11 X X  

Damar Besar 3 25.21   X 

Pramuka 1004 0 X   

Kotok Besar 50 17.01 X X  

Opak Besar 0 9.74   X 

Pemagaran 11 13.99   X 

Putri Barat 2 8.84   X 

 

As mentioned in chapter 4, the abundance of all beetle species were pooled 

based on the type of trap. Specimens from baited and non-baited pitfall traps on 
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each island were combined and represented island’s pitfall trap specimens (PT). 

Specimens collected by flight interception traps on each island were combined to 

represent island’s flight interception trap specimens (FIT). All specimens that 

were identified to species and morphospecies level will be called “species” in the 

following. Beetle species encountered in settlement habitats and in both or either 

undisturbed forest and disturbed forest habitats, were classed as generalists. 

Settlement specialists were beetles species found only in settlement habitats. 

Meanwhile, beetle species found in either or both undisturbed and disturbed 

forest habitats were classed as forest specialists. Individual-based rarefaction 

was use to compare the α-diversity of beetle species on each island. This was 

further underpinned by measures of exponential Shannon diversity (Jost, 2006) 

and Simpson’s diversity indices (Simpson, 1949).  

For the analysis of species turnover patterns between sites and habitat, chord-

normalized expected species shared (CNESS) dissimilarity matrices (Trueblood 

et al., 1994) were calculated. The CNESS matrices can be calculated for different 

sample sizes via changes of the sample size parameter m. The resulting matrix 

either puts a strong focus on dominant species when low figures are selected for 

m or on the composition of the entire community for large numbers of m. The 

matrix for m=1 as well as for m=number of individuals in the least well-sampled 

plot (m=30 for beetles in this study) as the largest common sample size were 

calculated. Non-metric multidimensional scaling (NMDS) of the CNESS matrices 

was subsequently used to visualize the species turnover patterns between 

islands with different habitat. To evaluate how well the particular configuration 

reproduces the distance matrix, a stress value is provided. The smaller the stress 

value, the better is the fit of the ordination plot to the observed distance matrix 

(Clarke, 1993). Practical experience suggests the following rule of thumb for 

interpreting Kruskal’s (Kruskal and Wish, 1978) stress (formula 1): stress <0.05 

gives an excellent representation with no prospect of misinterpretation; stress 

<0.1 corresponds to a good ordination with no real risk of drawing false 

inferences; stress <0.2 can still lead to usable representations, although for 

values at the upper end of this range there is potential to misleading impressions; 

stress >0.2 is likely to yield plots which could be dangerous to interpret (Clarke, 

1993). 
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Multiple linear regression models with stepwise forward selection were employed 

to measure the influence of forest cover and human population on beetle 

diversity. Beetle variables included the rarefied number of beetle species, 

Exponential Shannon diversity index, and Simpson’s diversity index. 

Multiple linear regression models with stepwise forward selection and nonmetric 

multidimensional scaling (NMDS) were calculated using SPSS version 22. I 

calculated a dissimilarity matrix based on CNESS (chord-normalized expected 

species shared) indices using the COMPAH (Combinatorial Polythetic 

Agglomerative Hierarchical Clustering) program. All other calculations and 

statistical analyses were carried out in R language version 3.1.2 (R Development 

Core Team, 2011) with the use of ‘vegan’ and ‘gplots’ packages (Oksanen et al., 

2012).  

The identification of beetle feeding guilds was conducted at the Museum of 

Natural History in Oxford. Species were compared and evaluated with help and 

assistance by Darren J. Mann, Head of Life Collection at the museum. Beetle 

species were placed in different feeding guilds of herbivores, predators, 

fungivores, saprophages and coprophages, necrophages and saproxylic species. 

Beetle species that could not be assigned to a feeding guild because of a lack of 

definitive data or a broad range of feeding guilds were identified based on 

dominant feeding guilds on family level. 

 

5.3. Result 

5.3.1. α-diversity 

In general, islands with settlements harboured the highest number of observed 

beetle species. In pitfall trap samples, the highest number of beetle species was 

observed on Untung Jawa, Pramuka, and Lancang Besar settlements, with 51, 

37, and 32 species, respectively.  On the other hand, Putri Barat has the lowest 

number with only 11 observed beetle species. Rarefaction curves showed a 

similar pattern to the observed specie richness for pitfall traps, with Untung Jawa 

being more diverse in the number of beetle species (Figure 38a).  



147 
 

Similar results were also recorded from FITs, with Untung Jawa and Pramuka 

harbouring the highest number of species at 56 and 43, respectively. The lowest 

number from FIT samples was recorded on island dominated by undisturbed 

forest, Opak Besar, with only 5 species. The similar patterns were also showed 

by rarefaction curves (Figure 38b) 
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(a) 

 

(b) 

 

 

Figure 38 Rarefaction curves of beetle species richness on the studied islands 

from (a) pitfall traps and (b) FITs (black lines represent 95% confidence 

intervals) 
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On the number of recorded generalist beetle species from pitfall traps, settlement 

dominated islands, Untung Jawa and Pramuka, and settlement habitat on mixed 

habitat island of Lancang Besar, harboured the highest number of 22 generalist 

species. This was followed by 2 forest-dominated islands, Rambut and Bokor, 

with 17 and 15 generalist species, respectively. Islands with undisturbed forest 

habitat, Putri Barat and Opak Besar, harboured the lowest recorded number of 

generalist species, with 5 and 9 species, respectively. Rarefaction curves again 

showed a similar trend to the observed species richness (Figure 39a). 

Similar patterns were also found from FITs, where settlement-dominated island 

of Untung Jawa and Pramuka harboured the highest observed generalist beetle 

species, with 15 species. The lowest number was observed on Opak Besar, with 

4 generalist beetle species. Similar trends were shown by rarefaction curves 

(Figure 39b). 
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(a) 

 

 

(b) 

  

Figure 39 Rarefaction curves of generalist beetle species richness on the 

studied islands from (a) pitfall trap and (b) FITs (black lines represent 95% 

confidence intervals) 

 



151 
 

For the observed forest specialist beetle species from pitfall traps, the island with 

undisturbed forest habitat, Rambut, harboured the highest number of forest 

specialist species, with 10 species. It is followed by Bokor and Damar Besar, with 

7 forest specialist species on each island. Rarefaction curves showed a slightly 

higher number of forest specialist species on Rambut and Bokor Island (Figure 

40a). Meanwhile, the results from FITs also showed that the highest number of 

forest specialist species was recorded on islands with undisturbed forest habitat, 

Rambut and Putri Barat, with 9 species on each island. On the other hand, only 

1 forest specialist species was recorded on Opak Besar Island. Rarefaction 

curves showed marginally lower number on the three islands above (Figure 40b). 
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(a) 

  

 

(b)  

 

Figure 40 Rarefaction curves of forest specialist beetle species richness on the 

studied islands from (a) pitfall traps and (b) FITs (black lines represent 95% 

confidence intervals) 
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Among the settlement-dominated islands from pitfall traps, Untung Jawa 

harboured the highest settlement specialist with 29 species. The lowest number 

was recorded on a mixed habitat island, Kotok Besar, on its settlement habitat 

with only 3 species. Rarefaction curves showed a slightly higher number on 

Untung Jawa and Kotok Besar Island (Figure 41a). From FITs, Untung Jawa and 

Pramuka harboured 41 and 28 settlement specialist species, respectively. Similar 

trends were shown by rarefaction curves (Figure 41b). 
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 (a)  

 

 

(b)  

 

Figure 41 Rarefaction curves of settlement specialist beetle species richness on 

the studied islands from (a) pitfall traps and (b) FITs (black lines represent 95% 

confidence intervals) 
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Beetle species diversity from pitfall traps, assessed both by the Shannon and 

Simpson’s index, was highest on settlement island of Untung Jawa (hexp = 27.29 

and DS=19.2). The lowest for both exponential Shannon and Simpson’s index 

was on island with undisturbed forest, Opak Besar (hexp = 2.61 and DS = 1.64). 

On islands with mixed habitat, both diversity index on Lancang Besar settlement 

(hexp = 6.44 and DS = 3.25) and Lancang Besar forest (hexp = 6.02 and DS = 3.65) 

showed similar level of diversity. Meanwhile, Kotok Besar settlement (hexp = 6.11 

and DS = 3.47) and Kotok Besar forest (hexp = 7.58 and DS = 3.58) showed that 

exponential Shannon index was slightly higher on forest habitat than settlement 

(Figure 42a). When islands with the same habitat combined, the results from 

pitfall traps showed that settlement habitat on the studied islands had a higher 

mean rarefied species, exponential Shannon and Simpson’s index than 

undisturbed and disturbed forest habitats (Figure 43a). 

FIT samples showed similar patterns to pitfall trap. Untung Jawa (hexp = 18.48, 

DS = 15.89), again, showed the highest diversity measured using the exponential 

Shannon and Simpson’s index. Opak Besar, on the other hand, hold the lowest 

exponential Shannon index (hexp = 1.63) and Simpson’s index (DS = 1.16) (Figure 

42b). When comparing mean diversity indices on each habitat, the results from 

FITs followed similar patterns to pitfall traps. Overall, settlement habitats showed 

higher mean rarefied species, exponential Shannon and Simpson’s index than 

undisturbed forest habitats (Figure 43b). 

The high α-diversity on Untung Jawa Island from pitfall traps was partly related to 

the low level of dominance of species. On Untung Jawa Island, the three most 

specimen-rich species Elateridae sp.1, Onthophagus sp.3, and Xyleborus 

perforans accounted for only 26.5% of the overall individuals. On Opak Besar 

Island, the most dominant species Xyleborus affinis, Xyleborus perforans, and 

Xylosandrus compactus represented more than 92% of sampled specimens. 

From FITs samples, the most dominant species on Untung Jawa Island, 

Hypothenemus spp., Onthophagus sp.3, and Onthophagus sp.1, accounted for 

only 25.5%. On the other hand, the number of individuals of Xyleborus perforans 

and Xyleborus affinis on Opak Besar Island represented 94% (see Appendix 1). 
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(a) 

 

(b) 

 

RA=Rambut; BO=Bokor; DB=Damar Besar; OB=Opak Besar; PE=Pemagaran; PB=Putri Barat 

LBF=Lancang Besar Forest; KBF=Kotok Besar Forest; LBS=Lancang Besar Settlement; 

KBS=Kotok Besar Settlement; PR=Pramuka; UJ=Untung Jawa 

 

Figure 42 Comparison of beetle diversity indices on different type of habitat on 

island from (a) pitfall traps, and (b) FITs 
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(a) 

 

(b) 

 

 

Figure 43 Mean beetle diversity indices on different type of habitat on island 

from (a) pitfall traps, and (b) FITs. From both traps, means not significantly 

different (p<0.05). 
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5.3.2. The effects of human population and forest cover on the diversity of 

beetle species on islands 

In the MLRs, rarefied species number, Shannon diversity, and Simpson’s index 

of beetle assemblages were taken as the dependent variables. The results from 

pitfall traps (Table 8) indicated that forest cover was not a significant predictor for 

all the dependent variables. While neither of human population and forest covers 

were significant for Simpson’s index. For the rarefied species number (adjusted 

R2= 0.743, F1,10 = 32.863, P = <0.001), human population was a very significant 

predictor (β = 0.876, P = <0.001), with increasing number of humans on an island 

linked significantly with higher rarefied species number. Increasing human 

population ((β = 0.651, P = 0.022) was also linked, but less significant, with 

increasing Shannon diversity (adjusted R2= 0.367, F1,10 = 7.369, P = 0.022). 

 

Table 8 Stepwise linear regression from pitfall traps using rarefied species 

number, Shannon diversity and Simpson’s index of beetles as the dependent 

variables. Human population and forest cover on islands served as independent 

variables. 

Dependent 

variable 

Adjusted 

R2 
F P-value d.f 

Selected 

independent 

variable 

β 

Std. 

Error of 

β 

t P-value 

Rarefied 

species 

number 

 

0.743 32.863 <0.001 1,10 
Human 

population 
0.876 0.003 5.733 <0.001 

Shannon 

diversity 
0.367 7.369 0.022 1,10 

Human 

population 
0.651 0.002 2.715 0.022 

 

The result from FITs showed slightly different patterns (Table 9). While forest 

cover was linked to none of the dependent variables, the effects of human 

population can be detected on all of them. Increasing size of human population 

was very significantly linked to increasing rarefied number of beetle species 

(adjusted R2 = 0.919, F1,5 = 69.086, P < 0.001) and Shannon diversity (adjusted 

R2 = 0.776, F1,5 = 21.766, P = 0.006), and least significantly on Simpson diversity 

(adjusted R2 = 0.537, F1,5 = 7.953, P = 0.037). 
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Table 9 Stepwise linear regression from FITs using rarefied species number, 

Shannon diversity and Simpson’s index of beetles as the dependent variables. 

Human population and forest cover on islands served as independent variables. 

Dependent 

variable 

Adjusted 

R2 
F P-value d.f 

Selected 

independent 

variable 

β 

Std. 

Error of 

β 

t P-value 

Rarefied 

species 

number 

 

0.919 69.086 <0.001 1,5 
Human 

population 
0.966 0.003 8.312 <0.001 

Shannon 

diversity 

 

0.776 21.766 0.006 1,5 
Human 

population 
0.902 0.002 4.665 0.006 

Simpson's 

index 
0.537 7.953 0.037 1,5 

Human 

population 
0.784 0.002 2.82 0.037 

 

5.3.3. Feeding guilds composition on beetle assemblages on islands 

In relation to feeding guilds on beetle species composition, saproxylics was the 

most abundant feeding guild from pitfall traps. It accounted for 33.4% of the total 

number of individuals caught on all islands. This feeding guild was also 

significantly abundant on 6 studied islands, with 7 species representing 89.7% of 

all sampled individuals on Kotok Besar forest, 4 species (93.6%) on Opak Besar, 

6 species (74.8%) on Pemagaran, 6 species (83%) on Putri Barat, 8 species 

(38.5%) on Pramuka, and 6 species (80.5%) on Kotok Besar settlement. (Figure 

44a). Nonetheless, on both Untung Jawa (16 species) and Pramuka (11), 

saprophages were the most species-rich group (Figure 44b). For herbivores, 

Damar Besar and Lancang Besar settlement harboured 7 species, each, 

accounting for 27.4% and 19.8% of the total number of individuals, respectively, 

while this number was much higher on Lancang Besar forest. Here, 5 herbivore 

species accounted for 58.6% of all individuals (Figure 44). 
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(a) 

 

(b) 

 

RA=Rambut; BO=Bokor; DB=Damar Besar; OB=Opak Besar; PE=Pemagaran; PB=Putri Barat 

LBF=Lancang Besar Forest; KBF=Kotok Besar Forest; LBS=Lancang Besar Settlement; 

KBS=Kotok Besar Settlement; PR=Pramuka; UJ=Untung Jawa 

 

Figure 44 Beetle feeding guilds composition from pitfall traps in relation to (a) 

abundance and (b) species richness on the studied islands 
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From FITs, saproxylic again was the most abundant feeding guild, accounted for 

54.5% of all sampled individuals. The most abundant saproxylics was recorded 

on Opak Besar with 4 species representing 99.4% of all sampled individuals 

(Figure 45a). The highest number of saproxylic species was recorded on Untung 

Jawa and Pramuka with 7 species, each. However, the most species-rich group 

was saprophagous beetles. It was recorded on the same islands, Untung Jawa 

and Pramuka, with 15 species, each (Figure 45b). The most abundant 

herbivorous beetles were found on Damar Besar, with 4 species representing 

56.7% of total sampled individuals. Nonetheless, Untung Jawa harboured the 

highest number of herbivore beetle species (6 species) (Figure 45b). 
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(a) 

 

 

(b) 

 

RA=Rambut; BO=Bokor; DB=Damar Besar; OB=Opak Besar; PE=Pemagaran; PB=Putri Barat 

LBF=Lancang Besar Forest; KBF=Kotok Besar Forest; LBS=Lancang Besar Settlement; 

KBS=Kotok Besar Settlement; PR=Pramuka; UJ=Untung Jawa 

 

Figure 45 Beetle feeding guilds composition from FITs in relation to (a) 

abundance and (b) species richness on the studied islands 
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5.3.4. The effects of human population and forest cover on different beetle 

feeding guilds on islands 

The results from pitfall traps indicated that the effect of forest cover only affected 

herbivorous and necrophagous beetle diversity on islands (Table 10). With the 

increasing forest cover, the Shannon diversity (adjusted R2= 0.288, F1,10 = 5.451, 

P = 0.042) and Simpson’s index (adjusted R2= 0.351, F1,10 = 6.941, P = 0.025) of 

herbivorous beetles increased significantly. The same independent variable was 

more significant on necrophagous beetles, both on rarefied species number 

(adjusted R2= 0.581, F1,10 = 16.222, P = 0.002) and Simpson’s index (adjusted 

R2= 0.581, F1,10 = 16.222, P = 0.002). On the other hand, human population 

appeared to be a significant predictor for the other feeding guilds, most 

significantly on rarefied species number (adjusted R2= 0.792, F1,10 = 42.963, P = 

<0.001), Shannon diversity (adjusted R2= 0.861, F1,10 = 69.175, P = <0.001),  and 

Simpson’s index (adjusted R2= 0.766, F1,10 = 37.066, P = <0.001) of beetle 

predators. None of the dependent variables were significant predictors for 

saproxylic beetles. 

Meanwhile, the results from FITs (Table 11) showed that forest cover was not a 

significant predictor for all the dependent variables. Increasing human population, 

on the other hand, was linked to all beetle feeding guilds, most significantly on 

coprophagous and fungivore beetles. Both rarefied species number (adjusted 

R2= 0.926, F1,10 = 76.500, P = <0.001) and Shannon diversity (adjusted R2= 

0.992, F1,10 = 712.206, P = <0.001) of coprophagous beetle, and rarefied species 

number of fungivore beetle (adjusted R2= 0.940, F1,10 = 94.637, P = <0.001) 

increased with higher number of human settled on the islands. 
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Table 10 Stepwise linear regression from pitfall traps using species number, Shannon diversity and Simpson’s index of beetles based on 

different feeding guilds as the dependent variables. Human population and forest cover on islands served as independent variables. 

Feeding guild 
Dependent 
variable 

Adjusted 
R2 

F 
P 

value 
d.f 

Selected 
independent 

variable 
β 

Std. 
Error of 

β 
t 

P 
value 

Coprophagous Species 
number 

0.387 7.931 0.018 1,10 
Human 

population 
0.665 0.001 2.816 0.018 

           

 Shannon 
diversity 

0.545 14.171 0.004 1,10 
Human 

population 
0.766 0.001 3.764 0.004 

           
 Simpson’s 

index 
0.448 9.926 0.01 1,10 

Human 
population 

0.706 0.001 3.151 0.01 

           
Fungivore Species 

number 
0.317 6.104 0.033 1,10 

Human 
population 

0.616 0.001 2.471 0.003 

           
 Shannon 

diversity 
0.452 10.084 0.01 1,10 

Human 
population 

0.709 <0.001 3.176 0.01 

           
 Simpson’s 

index 
0.510 12.450 0.005 1,10 

Human 
population 

0.745 <0.001 3.528 0.005 

           
Herbivore Shannon 

diversity 
0.288 5.451 0.042 1,10 Forest cover 0.594 0.029 2.335 0.042 

           
 Simpson’s 

index 
0.351 6.941 0.025 1,10 Forest cover 0.640 0.024 2.634 0.025 

           
Necrophage Species 

number 
0.581 16.222 0.002 1,10 Forest cover 0.787 0.004 4.028 0.002 

           
 Simpson’s 

index 
0.581 16.222 0.002 1,10 Forest cover 0.787 0.004 4.028 0.002 

           
Predator Species 

number 
0.792 42.963 <0.001 1,10 

Human 
population 

0.901 0.001 6.555 <0.001 

           
 Shannon 

diversity 
0.861 69.175 <0.001 1,10 

Human 
population 

0.935 <0.001 8.317 <0.001 
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Feeding guild 
Dependent 
variable 

Adjusted 
R2 

F 
P 

value 
d.f 

Selected 
independent 

variable 
β 

Std. 
Error of 

β 
t 

P 
value 

 Simpson’s 
index 

0.766 37.066 <0.001 1,10 
Human 

population 
0.887 <0.001 6.088 <0.001 

           
Saprophage Species 

number 
0.737 31.758 <0.001 1,10 

Human 
population 

0.872 0.001 5.635 <0.001 

           
 Shannon 

diversity 
0.463 10.474 0.009 1,10 

Human 
population 

0.715 0.001 3.236 0.009 

           
 Simpson’s 

index 
0.399 8.299 0.016 1,10 

Human 
population 

0.673 0.001 2.881 0.016 
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Table 11 Stepwise linear regression from FITs using species number, Shannon diversity and Simpson’s index of beetles based on different 

feeding guilds as the dependent variables. Human population and forest cover on islands served as independent variables. 

Feeding 
guilds 

Dependent 
variable 

Adjusted 
R2 

F 
P 

value 
d.f 

Selected 
independent 

variable 
β 

Std. 
Error 
of β 

t 
P 

value 

Coprophagous Species 
number 

0.926 76.500 <0.001 1,5 
Human 

population 
0.969 <0.001 8.746 <0.001 

           

 Shannon 
diversity 

0.992 712.206 <0.001 1,5 
Human 

population 
0.997 <0.001 26.687 <0.001 

           
 Simpson’s 

index 
0.758 19.749 0.007 1,5 

Human 
population 

0.893 <0.001 4.444 0.007 

           
Fungivore Species 

number 
0.940 94.637 <0.001 1,5 

Human 
population 

0.975 0.001 9.728 <0.001 

           
 Shannon 

diversity 
0.851 35.199 0.002 1,5 

Human 
population 

0.936 0.001 5.933 0.002 

           
 Simpson’s 

index 
0.691 14.426 0.013 1,5 

Human 
population 

0.862 0.001 3.798 0.013 

           
Herbivore Shannon 

diversity 
0.670 13.157 0.015 1,5 

Human 
population 

0.851 0.001 3.627 0.015 

           
 Simpson’s 

index 
0.743 18.348 0.008 1,5 

Human 
population 

0.886 0.008 4.283 0.008 

           
Predator Species 

number 
0.866 39.750 0.001 1,5 

Human 
population 

0.942 0.001 6.305 0.001 

           
 Shannon 

diversity 
0.543 8.116 0.036 1,5 

Human 
population 

0.787 0.001 2.849 0.036 

           
Saprophage Species 

number 
0.793 23.939 0.005 1,5 

Human 
population 

0.910 0.002 4.893 0.005 

           
 Shannon 

diversity 
0.726 16.936 0.009 1,5 

Human 
population 

0.879 0.001 4.115 0.009 
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Feeding 
guilds 

Dependent 
variable 

Adjusted 
R2 

F 
P 

value 
d.f 

Selected 
independent 

variable 
β 

Std. 
Error 
of β 

t 
P 

value 

 Simpson’s 
index 

0.609 10.336 0.024 1,5 
Human 

population 
0.821 0.001 3.215 0.024 

           
Saproxylic Species 

number 
0.636 11.463 0.020 1,5 

Human 
population 

0.834 0.001 3.386 0.020 

           
 Shannon 

diversity 
0.518 7.436 0.041 1,5 

Human 
population 

0.773 <0.001 2.727 0.041 

           
 Simpson’s 

index 
0.399 8.299 0.016 1,10 

Human 
population 

0.673 0.001 2.881 0.016 
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5.3.5. Species turnover and similarities 

The NMDS ordination plots based on the CNESS dissimilarity matrices from pitfall 

traps showed that, for dominant beetle species (minimum shared sample size, 

m=1) the islands formed four distinctive clusters. Settlement islands, Untung 

Jawa and Pramuka, and islands with undisturbed forest, Rambut and Bokor, 

formed two tight clusters. The two habitats on mixed habitat island of Lancang 

Besar formed another tight cluster, with the other islands forming the last close 

cluster (Figure 46a). This pattern was different for more rare species (sample size 

m=30), where Untung Jawa and Pramuka still formed a close cluster, while the 

other islands were more spread out. On mixed habitat islands, Lancang Besar 

forest and Lancang Besar settlement were more spread out than Kotok Besar 

forest and Kotok Besar settlement, indicating a higher β-diversity on Lancang 

Besar Island (Figure 47a). Overall, settlement-dominated islands, Untung Jawa 

and Pramuka, showed lower β-diversity in both dominant and rare beetle species 

than islands with forest-dominated habitat and mixed habitat. 

From FITs, Untung Jawa had a very distinctive composition of dominant beetle 

species (sample size m=1) compare to the other islands, which formed a loose 

cluster (Figure 46b). For more rare species (sample size m=30), two islands with 

undisturbed forest habitat, Opak Besar and Pemagaran, formed a very tight 

cluster. The other islands were more spread out (Figure 47b). 
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(a) 

 

(b) 

 

         

 

Figure 46 NMDS ordination plot based on the CNESS distance matrix of beetle 

species composition on islands for sample sizes at m=1 from (a) pitfall traps 

and (b) FITs.   

RA=Rambut; UJ=Untung Jawa; BO=Bokor; LBF=Lancang Besar Forest; LBS=Lancang Besar 

Settlement; DB=Damar Besar; PR=Pramuka; KBF=Kotok Besar Forest; KBS=Kotok Besar 

Settlement; OB=Opak Besar; PE=Pemagaran; PB=Putri Barat 

FST=Forest; SET=Settlement 
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(a) 

   

(b) 

 

 

          Figure 47 NMDS ordination plot based on the CNESS distance matrix of 

beetle species composition on islands with forest habitat for sample sizes at 

m=30 from (a) pitfall traps and (b) FITs. 

RA=Rambut; UJ=Untung Jawa; BO=Bokor; LBF=Lancang Besar Forest; LBS=Lancang Besar 

Settlement; DB=Damar Besar; PR=Pramuka; KBF=Kotok Besar Forest; KBS=Kotok Besar 

Settlement; OB=Opak Besar; PE=Pemagaran; PB=Putri Barat 

FST=Forest; SET=Settlement 
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5.3.6. Unique and shared species on islands with different habitats 

When islands with the same type of habitat were combined, the results from pitfall 

traps showed by both islands dominated by undisturbed forest (FF) and 

settlements (SS) had a high number of unique species of beetles (29 species). 

Meanwhile, disturbed forest habitat (FSF) and settlement habitat on mixed habitat 

islands (SSF) only have 3 unique beetle species, each. However, the structure of 

the assemblages was quite different. In total, the unique species accounted for 

45% of total beetle species in FF, while this number decreased to 43%, 17.6% 

and 9.7% in SS, FSF and SSF, respectively. Also, FF shared more beetle species 

with SS (27 species) than with FSF (9 species). Meanwhile, SS shared less 

beetle species with SSF (21 species) than with FF (27 species). The results also 

showed that, when FF and FSF combined, in total there were 34 forest species. 

While when SS and SSF combined, there were 39 settlement species. FF, SS, 

FSF, and SSF shared only 3 beetle species among them (Figure 48). 

 

Figure 48 Proportion of shared and unique species between the four different 

habitats on the studied islands from pitfall traps 

From FITs, 58 out 78 beetle species in SS were unique (74%), while the 

proportion of unique species for beetles in FF was much lower (48.7%) (Figure 

49). In total, SS and FF shared 20 beetle species between them, which was 

accounted for 20.6% of total species number caught from FITs. 
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Figure 49 Proportion of shared and unique species between the two different 

habitats on the studied islands from FITs 

 

5.4. Discussion 

5.4.1. Human impacts on beetle diversity on islands 

In accordance with my first hypothesis, beetle diversity from both pitfall traps and 

FITs peaked on islands dominated by settlements. A positive shift in beetle 

diversity in disturbed sites on patched habitats and islands has also been 

observed by other authors (Driscoll & Weir, 2005; Ganho & Marinoni 2005; 

Marinoni & Ganho 2006). Moreover, the results from MLR showed human 

population significantly increased beetle species richness. These trends can be 

related to proximity to Java and island size. With frequent public and private boat 

traffic to and from the island, visitors and island settlers potentially alter diversity 

by introducing beetle species into the island (see discussion in chapter 4).  As 

Untung Jawa is the largest and the earliest settlement island in the Kepulauan 

Seribu Marine National Park, it has attracted more human occupants and 

increased the risk of continuous propagule transfer into the island. In addition, 

island settlers often bring back seeds, fruit trees, herbs, or ornamental plants to 

the island for cooking or gardening (S.Puspitasari, personal interview). The age 
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of the settlement habitat and the heterogeneity in the introduced tree and plant 

species on Untung Jawa and Pramuka can also be expected to relate to the high 

species richness on both islands, as high plant diversity will potentially provide 

more food resources for herbivore species (Haddad and Baum, 1999; Lewinsohn 

et al. 2005; Novotny & Basset 2005; Scherer & Romanowski 2005; Barton et al. 

2012).  

Species compositions of ground-dwelling beetles between Untung Jawa and 

Pramuka Islands were very similar. This might be explained because these 

settlement islands shared the same trends, where the original beetle community 

was replaced by one more adapted to open habitats. Studies on beetles showed 

that in highly urbanized areas, native specialist species are replaced by native 

generalist and introduced species that reach very high abundances, which may 

result in an increase in total species abundance or density with urbanization 

(Germaine et al. 1998, Crooks et al. 2004, Donnelly and Marzluff 2004, Lim and 

Sodhi 2004, Donnelly and Marzluff 2006, Shochat et al. 2006, Tratalos et al. 

2007, Pennington et al. 2008, Catterall 2009). Previous studies also found that 

species composition in different urban areas were more similar to one another 

than are compositions in different natural areas (McKinney 2002, Sorace and 

Güstin 2008), which was also found in this study. 

Island settlements in the study area have also created a variety of open 

microhabitats for beetles, such as lawns, bare soil, moss and gravel ground 

covers, and plant litter-covered ground, providing different food resources and 

prey for ground-dwelling beetles and resulting in the increase in open-habitat 

beetle species richness in Untung Jawa and Pramuka Island. A study by Holland 

et al. (2007) showed the possibility of the effect of urbanization in the increase in 

slug abundance, a common prey of the carabid beetle species P. melanarius 

(Symondson et al. 2002), which was an open-habitat beetle species collected in 

their study. More food and prey in settlement areas is likely to increase the 

abundance of some settlement beetle species, possibly contributing to the 

increased species richness of this group. 

The positive effects of human population on ground-dwelling and dispersive 

beetle diversity was supported by another finding in this study, where in total there 
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were more settlement beetle species than forest species found on the islands. 

However, McMaster (2005) argued that present-day human population density 

may serve as a surrogate for a complex of other factors affecting species richness 

on islands. For Kepulauan Seribu Marine National Park, identification and 

evaluation of other potential measures of anthropogenic impact such as total day 

visitors per year, or percentage of island area under development might be 

essential for a more complete understanding of overall species richness. 

 

5.4.2. The effect of different forest habitat on beetle species on islands 

Very little information is currently available about the ecological preferences of 

individual beetle species on islands with different habitats in Indonesia. However, 

the results of this study have identified some patterns in habitat preferences for 

beetle species on the studied islands. The occurrence of a high number of 

generalist beetle species on Lancang Besar Island (Figure 38a) might be 

explained by two underlying mechanisms. Lancang Besar is a mixed habitat 

island. It may be explained either by the movement of individuals between 

habitats or by a broad habitat requirements of the species, either for reproduction 

or hibernation, which enables them to maintain their populations (Pielou 1979). 

With a combination of forest and settlement habitats, this island made it possible 

for generalist beetles to conduct a small-scale dispersal. These results were also 

supported by Niemela (1988a, 1988b), who found that beetle assemblages on 

Baltic Sea islands were more similar within islands than between them. His study, 

furthermore, found that most carabid species were found outside their preferred 

habitat, albeit in small numbers, and it appeared that carabids on small islands 

used a wide variety of vegetation types, i.e. they were generalists. In a different 

study, Niemela et al. (1993) found that the majority of dominant carabid species 

on the islands were found in almost all vegetation types. Habitat modification from 

undisturbed to selectively logged forests has little impact on beetle species 

richness, biomass and abundance (Davis, 2000; Davis and Philips, 2005; Nichols 

et al., 2007; Shahabuddin et al., 2010; Slade et al., 2011). On the other hand, 

beetle species with specific niche requirements do occur on islands. For example, 

shore environments on Baltic Sea islands were mainly occupied by hygrophilous 
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species, typical of open and moist habitats, and some field and forest carabids 

were strictly associated only with these environments (Niemela and Halme, 1992, 

Kotze, 2008). Although my data does not allow me to definitely determine whether 

specimens found in both habitat were actually members of a breeding population, 

transient individuals from the favoured environmental type, or specimens 

deliberately dispersing from one patch to another, it could be suggested that 

some beetle forest specialists on islands were likely to survive and reproduce well 

even when the forest habitat has been disturbed.  

However, when all islands with the same habitat were looked at together, there 

was a substantial overlap in beetle species between islands dominated by 

undisturbed forest and islands dominated by settlement. Thus, contradicting my 

hypothesis, the overall results show that islands dominated by undisturbed forest 

(FF) harboured more generalist species than disturbed forest habitats on mixed 

habitat islands (FSF). One potential explanation would be because of the close 

proximity of some of the forest dominated islands to settlement islands. The 

largest island dominated by undisturbed forest, Rambut, was located next to the 

largest settlement island, Untung Jawa. Although traffic between these islands is 

not as frequent as the other tourist islands, the national park’s staff commute from 

Untung Jawa to Rambut Island every day. Researchers, who conducted studies 

on Rambut Island, had to stay on Untung Jawa Island. This traffic might have 

created propagule transfers. Vacant niches on Rambut Island were potentially 

filled by generalist beetle species from adjacent settlement islands.  These 

generalist species might have been competing with settlement specialists on 

Untung Jawa Island. This notion of the ‘semipermeable island’ has been applied 

in other taxa and regions (Herzog & Kessler, 2006) and is a promising model for 

gaining new insights into the regulation of species diversity on islands. 

My results for unique species show that, in line with my hypothesis, undisturbed 

forests harboured more unique species than disturbed forests (Figure 40a and 

40b). Beetles, like other insects, are often highly associated with microhabitats 

(Barton et al. 2012) and sometimes with resources derived from particular plant 

genera (Lewinsohn et al. 2005; Novotny & Basset 2005; Scherer & Romanowski 

2005). Assuming that undisturbed forests on the studied islands still maintain their 

original habitat, it could be predicted that they have more pristine vegetation and 
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distinct plant species than disturbed forests. This also shows the significance of 

vegetation complexity on unique forest species on the studied islands. 

Interestingly, settlement habitats and undisturbed forest habitats have a similar 

number of unique species. The number of unique species as a proportion of 

overall species richness is also similar between settlement habitats and 

undisturbed forest habitats. It can therefore be speculated that both habitats can 

sustain their specialist beetle species populations. The high number of settlement 

specialist beetle species captured from FITs suggests that unique species from 

settlements generally have a higher mobility. 

Further studies, especially those based on comparison of habitat types, are 

needed to reveal more accurately the habitat requirements of different species 

and the relative species diversity of beetle assemblages in different habitats on 

islands. This knowledge is imperative in assessing, for instance, the relative 

importance of environmental factors and species interactions in structuring 

species assemblages in different island habitats. 

 

5.4.3. Different beetle feeding guilds on islands 

As hypothesised, the diversity of herbivorous beetles on islands was strongly 

affected by different levels of forest cover. One potential explanation would be 

that herbivores are closely linked with changes in forest size. Different vegetation 

compositions, which can be reflected by undisturbed and disturbed forest types, 

might also affect the diversity of herbivorous beetles on these islands. This 

argument is supported by Arnold and Asquith (2002), who found that measures 

of herbivory increased markedly with interactions with rich plant species. 

However, other theories predicted that species at the top end of food chains were 

more prone to extinction than species at lower levels because the former tended 

to have more unstable population dynamics and were less likely to persist in a 

fluctuating environment (Pimm and Lawton 1977, Lawton 1995, Holt 1996). A 

study by Davies et al. (2000 & 2007) contradicted these theories, and asserted 

that species at higher trophic levels were not affected in habitat fragments more 

than species at lower trophic levels. Based on my results, this theory might be 

applicable when human population is used as an environmental parameter. 
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Predator beetle species from pitfall traps were most significantly affected by 

human population on islands. Perhaps these results were mixed because other 

traits also determine extinction risk. For example, species at higher trophic levels 

are often large in body size, but populations of large species are thought to 

fluctuate less (Pimm 1991) and therefore, to be less extinction prone. Conversely, 

species at higher trophic levels are usually the taxa with the lowest population 

densities (Gard 1984) and, thus, at the highest risk of extinction.  

Necrophagous beetle species from pitfall traps were also significantly affected by 

forest cover. This result might be explained by the fact that Rambut and Bokor 

Island, the two largest forest dominated islands, are also sanctuaries for birds. 

The density of bird nests might have had an impact on the rate of supply of 

material inputs for these beetles. Birds transported aquatic secondary production 

in the form of fish carcasses to the forest floor beneath their breeding colonies, 

and the supply of carcasses would increase the densities of necrophagous 

insects. A study by Ueno et al. (2006) supported this argument, by showing that 

the density of necrophagous beetles in forests in Japan, where Grey Herons 

breed and drop many carcasses, was significantly higher.  

Another possible explanation for the results on necrophagous beetles might be 

related to predatory interactions, which could be associated with forest cover. 

Although many necrophagous beetle species consumed the carrion organic 

material directly (Campobasso et al. 2001), others used the resource as habitat 

or as a location to find other prey insects attracted to the carrion as food sources 

(Gibbs and Stanton 2001). My data did not specify predators for this guild, and 

studies of these predatory interactions (Gibbs & Stanton, 2001; Centeno et 

al.2002; Arnaldos et al. 2004; Tabor et al. 2004; Gill, 2005; Sharanowski et al. 

2008) have been conducted qualitatively, and with no statistical approach, which 

made it problematic to see the significant of these interactions. 

The other beetle guilds from pitfall traps, including coprophage, fungivore, 

saprophage, and saproxylic, were significantly affected only by human 

population. Again, my data did not specify native and introduced species. 

However, coprophagous beetles have been known to flourish in open areas, and 

are also known for their ability to diversify their diet (Scholtz and Grebennikov, 
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2005; Davis and Scholtz 2002). This diversification included the dung of 

domesticated animals, such as chicken (Fincher, 1973), which were associated 

with settlements. Some dung beetles also utilised non-dung food resources, and 

this occurs mostly in resource-rich regions, where carrion, fungi, fruit and plant 

matter are exploited (Davis et al., 2000). 

 

5.4.4. Synthesis   

Overall, the studied islands showed a higher α-diversity of ground-dwelling and 

dispersive beetles encountered chiefly in settlement areas than forest species. 

This results suggested that human population and settlement give positive effects 

on the increase of beetle diversity on islands. My results also indicated that, when 

all islands with the same habitat were combined, islands dominated by 

undisturbed forest harboured more generalist species than disturbed forest, 

which are potentially caused by propagule transfers and vacant niches available 

for generalist beetles. Islands dominated by undisturbed forests also harboured 

more unique species than islands with disturbed forests. Undisturbed forest 

habitats therefore have a high biodiversity conservation importance by 

maintaining their original habitat, pristine vegetation and distinct plant species. 

The diversity of herbivorous beetles on islands are also strongly affected by 

different levels of forest cover, which shows the significance of forest size to this 

feeding guild. For a comprehensive comparison of the relative importance of 

environmental factors and species interactions in structuring species 

assemblages in different island habitats, studies on habitat requirements of 

different species on islands are required. 
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Chapter 6. Discussion and Conclusion 

 

6.1. General diversity of beetles in the study areas  

Many beetle species have a relatively low dispersal ability compared with other 

insects and are thus vulnerable to isolation by geographic barriers (Ishitani 1996; 

Kubota et al. 2000). They have been widely used in studies evaluating the effects 

of disturbances on grassland (Dennis et al. 1997), agro-ecosystem (Fournier and 

Loreau 2001; Purtauf et al., 2005; Liu et al., 2007), woodland and coastal area 

(Kotze and O’Hara, 2003), as they are highly abundant in most areas of the world 

and show highly varying sensitivities to ecological and environmental change. 

The overall species richness of beetles on Earth is still widely unknown, and the 

same is also true for many smaller geographic areas in the tropics like the island 

ecosystems of Indonesia. The main focus of this research was to investigate and 

compare beetle diversity patterns on islands in the Kepulauan Seribu Marine 

National Park and on Java to establish the relationship between different beetle 

assemblages on islands, and how island isolation and area affect assemblage 

composition. In addition, my research also aimed to provide insights into the 

effects of anthropogenic activities on beetle diversity at the studied islands.   

This study focuses on ground-dwelling beetles, which were captured mainly by 

pitfall traps, and dispersive beetles that were collected using flight interception 

traps (FITs). The collected beetle families represent different feeding guilds, 

including herbivores, fungivores, predators, saprophagous, necrophagous, 

coprophagous, and saproxylic beetles. In my thesis, I present the first 

comprehensive sample of these beetles at ten studied islands in the Kepulauan 

Seribu Marine National Park. A total of 6370 beetles belonging to 34 families, 

separated into 236 morphospecies, were caught in the study area that also 

included sites on Java. Among these, 4929 beetles representing 25 families were 

captured in pitfall traps. The remaining 1441 individuals representing 27 families 

were caught in the FITs. On the small islands, 4637 individuals representing 24 

families and 111 species were captured in pitfall traps and 968 beetles 

representing 22 families and 97 species were recorded in the FITs. In Java, 292 
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beetles representing seven families and 32 species were collected from pitfall 

traps, and FITs yielded 473 beetles representing 20 families and 94 species.  

The comparatively high diversity of beetles on the small islands supports two 

assumptions. One is that islands harbour high levels of biodiversity in relation to 

beetle assemblages that also represent a high diversity in ecological traits. 

Secondly, anthropogenic activities play an important role in affecting the overall 

beetle population, diversity and composition on islands. Based on these findings, 

the role and position of the Kepulauan Seribu Marine National Park in regulating 

land use and habitat changes on the islands are significant and important towards 

the protection of the islands’ biodiversity.  

 

6.2. Main findings and lessons for biodiversity conservation  

The substantial number of highly abundant island species and a high number of 

unique island species found in the study areas are important findings. These 

results indicate that these islands are potentially important for the global 

conservation of genetic resources, and future analysis of the phylogenies of some 

of the specimens collected could allow further insights into the presence of 

distinct small-island ecotypes and species of beetles in the archipelago 

investigated.  

This work also highlights the highly varied results relating to the use of two 

different types of traps, pitfall traps and FITs, for sampling beetles. It underscores 

the need for complementary trapping strategies using multiple methods for beetle 

community surveys in tropical islands to provide an overview of the species 

present. Cleary, ground-dwelling beetles mostly captured in pitfall traps and the 

mostly dispersing beetles caught in FITs provide different results in relation to the 

species composition on the studied islands. Some beetle families, such as 

Brentidae, Cerylonidae, Ciidae, Coccinellidae, Endomycidae, Laemophloidae, 

Monotnidae, Ptilidae, and Silvanidae were exclusively sampled at FITs. On the 

other hand, members of the families Anthicidae, Cerambycidae, Cucujidae 

Cryptophagidae, Hyborosidae, Lampyridae, and Trogidae were uniquely 

encountered in the pitfall traps. Members of the families Scarabaeidae and 

Scolytidae were both dominating the total captures from pitfall traps and FITs. 



181 
 

FITs is still a key method for the understory trap and considered as one of the 

most popular sampling strategies by entomologists (Malaise 1937, Southwood, 

1978; Leather and Watt, 2005; Fraser et al. 2008). It is well appreciated that 

capture rates of pitfall traps depend on trapping efficiency, species activity and 

species density (Curtis 1980). Because of these distortions, many authors 

concluded that this trapping method is of limited value for quantitative estimations 

of population sizes or the comparison of communities (Greenslade and 

Greenslade, 1971). Nonetheless, similar limitations also apply to most other 

types of traps including FITs. The combination of high numbers of ground-

dwelling beetle species recorded in pitfall traps in the study area, coupled with 

dispersive beetles from FITs in my view provides a highly standardized overview 

of the overall beetle assemblages on the studied islands, especially given the 

very short sampling time used here and the substantial diversity of the 

encountered assemblages. 

In my work, I test the equilibrium theory of island biogeography, where species 

richness on islands forms a dynamic equilibrium between the opposing process 

of immigration and extinction (MacArthur & Wilson, 1967). Using beetle 

assemblages on the ten studied islands with different area and three different 

isolation measurements, i.e. the distance to Java, distance to the nearest island, 

and mean distance to islands within the radius of 5km, the overall results chiefly 

support the classic theory of island biogeography. Distance to Java, as the main 

potential source of immigration, and island area were linked significantly to the 

species number of beetles on the studied islands. Distance to the nearest island 

and mean distance to islands within the radius of 5km have been used as 

additional parameters for species richness on islands in previous studies. 

However, they are not significant predictors to the beetle assemblages in the 

archipelago I studied. Continuous traffic between islands and the appearance of 

visitors hopping from one island to another might have dampened the effects of 

these isolation parameters.  

Consequently, my work also highlights the impacts of anthropogenic activities, 

because although the islands form part of the Kepulauan Seribu Marine National 

Park, some of the studied islands are also tourist destinations and experience 

ongoing settlement expansions. The positive effects of such human activities on 
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the overall species richness of ground-dwelling and dispersive beetles are clearly 

reflected in my results. Overall, the studied islands harbour more beetle species 

encountered chiefly in settlement areas than forest species. However, when 

comparing the type of forest habitat on the islands, undisturbed forests harbour 

a higher number of unique species than disturbed forests. The assumption is that 

undisturbed forests on the studied islands still maintain mature and pristine 

habitat, with their pristine vegetation containing distinct plant species that are 

potentially associated with particular beetle species. 

With regards to different feeding guilds, the diversity of herbivorous beetles on 

islands is strongly affected by the different levels of forest cover encountered. 

This pattern shows the significance of forest size and maturity for this guild. My 

findings can have important implications for conservation of beetle herbivore 

assemblages. With the threat of forest habitat reduction for settlement and 

tourism on these islands, interactions between herbivore beetles and plants can 

be interrupted. As a consequence of this, the more specialised beetle herbivores 

can be lost very quickly, which can modify the structure and persistence of trophic 

interaction networks.  

Finally, beetles comprise not only the most diverse group of insects, but they also 

contribute significantly to vital ecological functions such as decomposition by bark 

beetles, increased forage, nitrogen recycling, and reduced parasite and fly 

densities due to dung processing by dung beetles. Although a quantitative 

formula to determine the optimal level of investment in the conservation of 

beneficial beetles that provide essential services is still not available, this study 

will help to pay specific attention to beetles and the role they play in island 

ecosystems.  

Second, this study recommends that ecosystem services performed by beetles 

be taken into account in land-management decisions and policy by the Kepulauan 

Seribu Marine National Park. With this goal in mind, specific practices on the 

islands such as land clearing, land-use changing, waste management and 

grazing should be tailored to protect beetle and insect biodiversity, in general.  

My study is just a beginning. With greater attention, research, and conservation, 

the importance roles and valuable services that beetles provide on island 



183 
 

ecosystem can not only be sustained but increased in capacity. In less direct but 

no less important ways, human would benefit from the facilitation of the roles and 

vital services that beetles provide. Hence, increased investment in the 

conservation of these services, especially on island ecosystem, should be 

justified. 

6.3. Further work  

Very little information is currently available about the ecological preferences of 

individual beetle species on islands and their different habitats in Indonesia. 

Moreover, with no comparative studies on beetles in the study area, and with 

limited information for beetles in Indonesia in its entirety, it is very difficult to 

analyse the data generated by my study in a wider context. There is very limited 

information on activity patterns, immigration ability and habitat preferences of 

beetles on the studied islands, and it can be assumed that not all species I 

encountered are currently known to science. Although the results of this study 

have identified some patterns in habitat preferences for a number of beetle 

species on the islands, further work including sampling over longer sampling 

periods and using a larger number of traps in a wider range of habitats is required 

for a better understanding of beetle diversity patterns in small tropical islands of 

Indonesia, and how these patterns respond to habitat changes and 

anthropogenic activities. 

A larger number of islands in Kepulauan Seribu National Park with different size, 

isolation, habitat type, and anthropogenic activities should also be included in 

such further studies. This would allow a better understanding of the general 

biogeographic patterns of beetle assemblages in the archipelago, and allow a 

clearer identification of environmental parameters affecting the beetle diversity 

on the islands. 

Secondly, the selection of these taxa should include a wider range of other 

arthropod taxa with varying dispersal activity, such as butterflies, bees and ants, 

with additional detailed surveying techniques employed such as caterpillar 

collection and sweep netting. This could decrease the taxon-specific bias in the 

information of arthropod diversity patterns. A more detailed information on 

vegetation composition and changes on the islands would furthermore help to 
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identify relationships between insects and plants on islands and provide a 

baseline for the identification of general spatiotemporal patterns, providing key 

information also for the creation of models allowing for the prediction of future 

diversity patterns and the identification of key threats. 

Finally, studies from other small island archipelagos in Indonesia and 

Southeastern Asia can provide complementary information to substantiate results 

from this study. An archipelago of small islands like the Molucca islands in the 

east of Indonesia, and a group of small islands located in the south of Sulawesi, 

would be ideal places to study insect biodiversity patterns more generally 

supported by small tropical islands ecosystems. These groups of islands would 

also be suitable to test the island biogeography theory with additional parameters, 

such as distance to the nearest island with similar habitat, distance to the nearest 

island with similar size, island age, and settlement age, overall allowing for a 

greater understanding of the ecological underpinnings of the patterns I have 

established in my thesis.   

 

6.4.  Conclusion  

The primary focus of this thesis was to investigate and compare the beetle 

assemblages on ten small islands in Kepulauan Seribu Marine National Park and 

on Java. The results of this study support the classic theory of Island 

Biogeography, where island size and distance to Java as the main source of 

immigration are linked significantly to beetle diversity on the islands. However, 

other parameters including habitat type and human population strongly affect the 

overall islands’ beetle population, too. In practice, my work highlights areas that 

require specific attention for beetle biodiversity conservation on small islands in 

an Indonesian context. These areas include more attention to be given to human 

activities and resulting habitat changes on the pristine island that currently 

harbour unique beetle assemblages, a requirement never acknowledged in 

previous conservation strategies by the national park. This study will help to 

inform future conservation strategies for the Kepulauan Seribu Marine National 

Park. The marine-focus approaches are not sufficient for the conservation of the 

biota contained within this protected area. Managing the terrestrial habitat on 
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these islands has to be considered, too. I provide strong indications that the small 

islands harbour not only a highly abundant beetle fauna, but that widely 

undisturbed islands also provide habitat for species that were not encountered 

on islands with human settlements, which underlines the potential value of 

conserving and maintaining these island ecosystem for terrestrial biodiversity 

conservation. 
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Appendix 1 Expression of used biodiversity measurement 

 

Equation 

number 
Equation names Equation expression Explanation 

1 Hill Number 

 

 
 

S is the number of species in the assemblage, and the ith 

species has relative abundance pi, i = 1, 2, ..., S. The parameter 

q determines the sensitivity of the measure to the relative 

frequencies. When q = 0, the abundances of individual species 

do not contribute to the sum in this equation. Rather, only 

presences are counted, so that 0D is simply species richness. 

2 
Exponential Shannon 

index 
 

For q = 1, equation no 1 is undefined, but its limit as q tends to 1 

is the exponential of the familiar Shannon index, reffered here as 

Exponential Shannon index 

3 
Inverse Simpson’s 

index 
 

The variable 1D weighs species in proportion to their frequency. 

When q = 2, equation 1 yields Simpson diversity, the inverse of 

the Simpson concentration is shown by equation 3. 
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Appendix 2. Number of beetle individuals for each species sampled in Java and on small islands 

 

Species 
Java Total 

Java 

Small islands 

Total Small 
islands 

Bokor 
Damar 
Besar 

Kotok 
Besar 

Lancang 
Besar 

Opak 
Besar 

Pemagaran Pramuka 
Putri 
Barat 

Rambut 
Untung 
Jawa 

PT FIT PT PT FIT PT PT PT FIT PT FIT PT FIT PT FIT PT FIT PT FIT 

Anthicidae sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 

Anthribidae sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 

Anthribidae sp.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 

Anthribidae sp.3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Anthribidae sp.4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Anthribidae sp.5 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 0 5 

Anthribidae sp.6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anthribidae sp.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

Anthribidae sp.8 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 3 

Anthribidae sp.9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 2 

Anthribidae sp.10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 5 6 

Anthribidae sp.11 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 3 

Anthribidae sp.12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Anthribidae sp.13 1 0 1 1 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 9 

Anthribidae sp.14 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anthribidae sp.15 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anthribidae sp.16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

Anthribidae sp.17 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anthribidae sp.18 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 

Anthribidae sp.19 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anthribidae sp.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 

Anthribidae sp.21 0 0 0 0 0 0 0 0 1 0 0 0 2 2 0 0 0 0 0 0 5 

Anthribidae sp.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
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Anthribidae sp.23 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 4 

Anthribidae sp.24 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Anthribidae sp.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 4 

Anthribidae sp.26 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Anthribidae sp.27 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 

Anthribidae sp.28 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Anthribidae sp.29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

Anthribidae sp.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Anthribidae sp.31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Anthribidae sp.32 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 1 0 10 

Anthribidae sp.33 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Anthribidae sp.34 0 0 0 0 0 0 4 3 1 0 2 0 0 0 0 0 7 0 0 0 17 

Anthribidae sp.35 0 0 0 4 0 0 0 0 3 0 1 0 0 0 2 0 0 0 0 0 10 

Brentidae sp.1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Brachinini sp.1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Carabidae sp.1 0 0 0 0 0 0 1 6 0 0 0 0 0 0 0 0 0 0 4 0 11 

Carabidae sp.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 

Carabidae sp.3 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 

Carabidae sp.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 2 0 6 

Carabidae sp.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 

Carabidae sp.6 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 20 0 0 0 34 

Cicindela aurulenta 0 0 0 0 0 0 0 6 0 0 0 0 12 0 0 0 0 0 0 0 18 

Cicindelini sp.1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cyindidina sp.1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 

Diplocheila sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 

Dromiina sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10 
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Harpalini sp.1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 

Harpalini sp.2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Perigona sp.1 0 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Platymetopus sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 

Pseudozaena sp.1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 15 0 17 

Pterostichinae sp.1 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 10 

Tachyina sp.1 0 0 0 1 0 0 0 0 0 0 0 1 0 2 0 0 0 1 0 0 5 

Tachyina sp.2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Tachyina sp.3 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2 4 

Tachyina sp.4 0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tachyina sp.5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tachyina sp.6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tachyina sp.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

Tachyina sp.8 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tachyina sp.9 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cerambycidae sp.1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 

Cerylonidae sp.1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 2 

Chrysomelidae sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chrysomelidae sp.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chrysomelidae sp.3 1 0 1 1 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 9 

Chrysomelidae sp.4 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Chrysomelidae sp.5 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chrysomelidae sp.6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

Chrysomelidae sp.7 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chrysomelidae sp.8 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 

Chrysomelidae sp.9 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Ciidae sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 5 6 

Clambidae sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 

Clambidae sp.2 0 0 0 0 0 0 0 0 1 0 0 0 2 2 0 0 0 0 0 0 5 

Clambidae sp.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Clambidae sp.4 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 3 

Clambidae sp.5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Clambidae sp.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 4 

Clambidae sp.7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Coccinelidae sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Coccinelidae sp.2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Coccinelidae sp.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

Coccinelidae sp.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Coccinelidae sp.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Cucujidae sp.1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Cryptophagidae 
sp.1 

0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 1 0 10 

Curculionidae sp.1 0 0 0 0 0 0 4 1 0 0 2 0 0 0 0 0 3 0 0 0 10 

Curculionidae sp.2 0 0 0 0 0 0 1 0 2 0 1 0 0 0 2 0 0 0 0 0 6 

Curculionidae sp.3 0 0 0 0 10 0 2 1 0 0 0 0 0 0 0 0 2 0 0 0 15 

Curculionidae sp.4 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 

Curculionidae sp.5 0 0 0 0 0 0 0 4 0 0 0 0 1 0 0 0 0 0 0 0 5 

Curculionidae sp.6 0 0 0 3 9 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 14 

Curculionidae sp.7 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Curculionidae sp.8 0 3 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 

Curculionidae sp.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

Curculionidae sp.10 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 5 0 0 0 0 11 

Curculionidae sp.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
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Curculionidae sp.12 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Curculionidae sp.13 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Curculionidae sp.14 0 0 0 0 0 0 0 0 0 1 0 5 0 0 0 2 0 0 0 0 8 

Curculionidae sp.15 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

Curculionidae sp.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

Curculionidae sp.17 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Curculionidae sp.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Elateridae sp.1 0 0 0 0 0 0 0 196 0 0 0 0 0 1 0 0 0 0 38 0 235 

Elateridae sp.2 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 

Elateridae sp.3 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 4 0 26 

Elateridae sp.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

Elateridae sp.5 0 0 0 0 0 0 0 211 0 0 0 0 174 2 0 0 0 0 18 0 405 

Elateridae sp.6 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 4 

Elateridae sp.7 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Elateridae sp.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Endomycidae sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Histeridae sp.1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Histeridae sp.2 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Histeridae sp.3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Histeridae sp.4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

Histeridae sp.5 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 2 5 

Histeridae sp.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

Histeridae sp.7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 21 22 

Hyborosidae sp.1 0 0 0 0 8 0 17 0 0 0 0 0 0 0 0 0 0 0 8 0 33 

Hydrophilidae sp.1 2 12 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrophilidae sp.2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Hydrophilidae sp.3 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrophilidae sp.4 0 14 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrophilidae sp.5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrophilidae sp.6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrophilidae sp.7 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrophilidae sp.8 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrophilidae sp.9 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Laemophloidae sp.1 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 

Laemophloidae sp.2 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Laemophloidae sp.3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Laemophloidae sp.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Laemophloidae sp.5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Laemophloidae sp.6 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Laemophloidae sp.7 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lampyridae sp.1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Latridiidae sp.1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Latridiidae sp.2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

Latridiidae sp.3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Latridiidae sp.4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 

Monotoma sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Mordelidae sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 

Nitidulidae sp.1 0 1 1 0 0 0 0 14 0 0 0 1 0 2 0 0 0 0 28 13 58 

Nitidulidae sp.2 1 0 1 0 1 0 0 14 0 0 10 0 4 9 0 0 0 0 12 7 57 

Nitidulidae sp.3 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 3 

Nitidulidae sp.4 0 1 1 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 6 

Nitidulidae sp.5 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Nitidulidae sp.6 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 3 5 

Nitidulidae sp.7 1 27 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nitidulidae sp.8 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nitidulidae sp.9 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 2 

Nitidulidae sp.10 0 4 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 3 

Nitidulidae sp.11 0 4 4 0 0 0 0 0 0 0 0 2 1 5 0 0 0 0 1 0 9 

Nitidulidae sp.12 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nitidulidae sp.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Nitidulidae sp.14 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 

Nitidulidae sp.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

Nitidulidae sp.16 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 5 

Nitidulidae sp.17 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nitidulidae sp.18 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 3 

Nitidulidae sp.19 0 1 1 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 1 6 

Nitidulidae sp.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 

Nitidulidae sp.21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 

Nitidulidae sp.22 12 0 12 27 22 1 0 0 0 0 0 0 0 0 0 0 2 2 1 0 55 

Nitidulidae sp.23 0 9 9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Nitidulidae sp.24 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Caccobius 
aff.unicornis 

0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 1 0 8 0 18 

Dynastinae sp.1 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 2 1 9 

Oniticellus 
tessellatus 

0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus 
accendens 

17 2 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus 
javacupreus 

3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Onthophagus 
javanensis 

32 1 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus 
limbatus 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 6 

Onthophagus rudis 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus sp.1 0 1 1 6 0 0 6 0 1 0 0 0 2 0 0 0 75 1 6 37 134 

Onthophagus sp.2 2 4 6 0 0 0 0 29 0 0 0 0 12 16 0 0 1 0 23 7 88 

Onthophagus sp.3 8 13 21 0 0 0 0 8 0 0 0 0 31 34 0 0 0 0 29 29 131 

Onthophagus sp.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6 0 7 

Onthophagus sp.5 2 1 3 391 0 0 17 0 2 0 8 1 4 0 4 5 63 0 13 2 510 

Onthophagus sp.6 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus sp.7 67 8 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus sp.8 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus sp.9 2 14 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus sp.10 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus sp.11 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus sp.12 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus sp.13 1 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus sp.14 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Onthophagus 
tricornis 

9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 

Onthophagus 
trituber 

10 20 30 0 0 0 6 100 0 0 0 0 19 8 0 0 1 0 19 4 157 

Rhysemus sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 6 

Rhysemus sp.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 6 

Platypodidae sp.1 0 4 4 0 2 14 1 0 0 0 0 0 0 3 0 0 0 3 0 0 23 

Ptiliidae sp.1 0 15 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ptiliidae sp.2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Ptilodactylidae sp.1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 6 0 0 0 0 7 

Ptilodactylidae sp.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 4 

Rhizophagidae sp.1 0 16 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Scydmaenidae sp.1 0 13 13 0 0 0 0 0 0 0 0 1 16 22 0 1 0 0 0 2 42 

Scydmaenidae sp.2 0 17 17 0 1 0 0 2 0 0 1 2 1 0 0 1 0 2 0 5 15 

Silvanidae sp.1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Allerulinae sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

Leichenum sp.1 0 0 0 0 0 0 0 639 0 0 0 0 20 0 0 0 0 0 8 0 667 

Leichenum sp.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 

Tenebrionidae sp.1 0 0 0 0 4 0 0 123 0 0 0 0 21 0 0 0 0 0 4 0 152 

Tenebrionidae sp.2 0 0 0 0 0 0 0 7 0 0 0 0 22 0 0 0 48 0 0 0 77 

Tenebrionidae sp.3 0 0 0 0 6 0 18 10 0 0 42 0 13 0 0 0 0 0 0 0 89 

Tenebrionidae sp.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 

Tenebrionidae sp.5 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 3 

Tenebrionidae sp.6 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 4 0 6 

Tenebrionidae sp.7 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 

Tenebrionidae sp.9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Tenebrionidae sp.10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 3 

Tenebrionidae sp.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

Tenebrionidae sp.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

Trogidae sp.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 

Xylosandrus 
compactus 
(Einchhoff, 1875) 

14 6 20 6 0 0 107 0 14 0 62 8 77 18 12 0 0 0 0 0 304 

Xylosandrus 
morigerus 
(Blandford, 1894) 

2 1 3 0 0 0 17 0 0 0 2 0 1 0 0 0 0 0 0 0 20 
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Xylonsandrus 
crassiusculus 
(Motcshulsky, 1866) 

29 22 51 0 0 0 165 0 0 0 3 0 1 0 0 0 7 0 0 0 176 

Xyleborus perforans 
(Wollaston, 1857) 

21 62 83 20 18 10 192 23 157 148 93 8 55 130 21 68 11 19 46 4 1023 

Xyleborus affinis 
(Eichhoff, 1868) 

23 13 36 1 18 0 29 36 16 9 40 1 99 9 10 4 4 0 21 2 299 

Xyleborus similis 
(Ferrari, 1867) 

0 9 9 29 1 1 0 0 0 0 0 1 2 0 0 5 23 14 2 0 78 

Dryocoetiops 
coffeae (Eggers, 
1923) 

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Xyleborinus 
perminutissimus 
(Schedl, 1934) 

1 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Xyleborinus 
andrewesi 
(Blandford, 1896) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

Xyleborinus exiguus 
(Walker, 1859) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

Hypothenemus spp. 0 28 28 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 28 32 

Cryphalus spp. 0 0 0 1 0 0 7 1 0 1 0 0 2 10 0 1 0 0 2 7 32 

Coccotrypes spp. 23 5 28 1 1 0 32 11 2 0 5 0 0 1 9 3 0 0 6 2 73 

Scolytidae sp. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 

Scolytidae sp. 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 3 
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Appendix 3. Abbreviation of beetle species 

Code Species Name Code Species Name Code Species Name 

Atc1 Anthicidae sp.1 Cla5 Clambidae sp.5 Nit13 Nitidulidae sp.13 

Atb1 Anthribidae sp.1 Cla6 Clambidae sp.6 Nit14 Nitidulidae sp.14 

Atb2 Anthribidae sp.2 Cla7 Clambidae sp.7 Nit15 Nitidulidae sp.15 

Atb3 Anthribidae sp.3 Coc1 Coccinelidae sp.1 Nit16 Nitidulidae sp.16 

Atb4 Anthribidae sp.4 Coc2 Coccinelidae sp.2 Nit17 Nitidulidae sp.17 

Atb5 Anthribidae sp.5 Coc3 Coccinelidae sp.3 Nit18 Nitidulidae sp.18 

Atb6 Anthribidae sp.6 Coc4 Coccinelidae sp.4 Nit19 Nitidulidae sp.19 

Atb7 Anthribidae sp.7 Coc5 Coccinelidae sp.5 Nit20 Nitidulidae sp.20 

Atb8 Anthribidae sp.8 Cuc1 Cucujidae sp.1 Nit21 Nitidulidae sp.21 

Atb9 Anthribidae sp.9 Cry1 Cryptophagidae sp.1 Nit22 Nitidulidae sp.22 

Atb10 Anthribidae sp.10 Cur1 Curculionidae sp.1 Nit23 Nitidulidae sp.23 

Atb11 Anthribidae sp.11 Cur2 Curculionidae sp.2 Nit24 Nitidulidae sp.24 

Atb12 Anthribidae sp.12 Cur3 Curculionidae sp.3 Sca1 
Caccobius 
aff.unicornis 

Atb13 Anthribidae sp.13 Cur4 Curculionidae sp.4 Sca2 Dynastinae sp.1 

Atb14 Anthribidae sp.14 Cur5 Curculionidae sp.5 Sca3 Oniticellus tessellatus 

Atb15 Anthribidae sp.15 Cur6 Curculionidae sp.6 Sca4 
Onthophagus 
accendens 

Atb16 Anthribidae sp.16 Cur7 Curculionidae sp.7 Sca5 
Onthophagus 
javacupreus 

Atb17 Anthribidae sp.17 Cur8 Curculionidae sp.8 Sca6 
Onthophagus 
javanensis 

Atb18 Anthribidae sp.18 Cur9 Curculionidae sp.9 Sca7 
Onthophagus 
limbatus 

Atb19 Anthribidae sp.19 Cur10 Curculionidae sp.10 Sca8 Onthophagus rudis 
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Atb20 Anthribidae sp.20 Cur11 Curculionidae sp.11 Sca9 Onthophagus sp.1 

Atb21 Anthribidae sp.21 Cur12 Curculionidae sp.12 Sca10 Onthophagus sp.2 

Atb22 Anthribidae sp.22 Cur13 Curculionidae sp.13 Sca11 Onthophagus sp.3 

Atb23 Anthribidae sp.23 Cur14 Curculionidae sp.14 Sca12 Onthophagus sp.4 

Atb24 Anthribidae sp.24 Cur15 Curculionidae sp.15 Sca13 Onthophagus sp.5 

Atb25 Anthribidae sp.25 Cur16 Curculionidae sp.16 Sca14 Onthophagus sp.6 

Atb26 Anthribidae sp.26 Cur17 Curculionidae sp.17 Sca15 Onthophagus sp.7 

Atb27 Anthribidae sp.27 Cur18 Curculionidae sp.18 Sca16 Onthophagus sp.8 

Atb28 Anthribidae sp.28 Ela1 Elateridae sp.1 Sca17 Onthophagus sp.9 

Atb29 Anthribidae sp.29 Ela2 Elateridae sp.2 Sca18 Onthophagus sp.10 

Atb30 Anthribidae sp.30 Ela3 Elateridae sp.3 Sca19 Onthophagus sp.11 

Atb31 Anthribidae sp.31 Ela4 Elateridae sp.4 Sca20 Onthophagus sp.12 

Atb32 Anthribidae sp.32 Ela5 Elateridae sp.5 Sca21 Onthophagus sp.13 

Atb33 Anthribidae sp.33 Ela6 Elateridae sp.6 Sca22 Onthophagus sp.14 

Atb34 Anthribidae sp.34 Ela7 Elateridae sp.7 Sca23 Onthophagus tricornis 

Atb35 Anthribidae sp.35 Ela8 Elateridae sp.8 Sca24 Onthophagus trituber 

Bre1 Brentidae sp.1 End1 Endomycidae sp.1 Sca25 Rhysemus sp.1 

Car7 Brachinini sp.1 His1 Histeridae sp.1 Sca26 Rhysemus sp.2 

Car1 Carabidae sp.1 His2 Histeridae sp.2 Pla1 Platypodidae sp.1 

Car2 Carabidae sp.2 His3 Histeridae sp.3 Pti1 Ptiliidae sp.1 

Car3 Carabidae sp.3 His4 Histeridae sp.4 Pti2 Ptiliidae sp.2 

Car4 Carabidae sp.4 His5 Histeridae sp.5 Pti1 Ptilodactylidae sp.1 
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Car5 Carabidae sp.5 His6 Histeridae sp.6 Pti2 Ptilodactylidae sp.2 

Car6 Carabidae sp.6 His7 Histeridae sp.7 Rhi1 Rhizophagidae sp.1 

Car8 Cicindela aurulenta Hyb1 Hyborosidae sp.1 Scy1 Scydmaenidae sp.1 

Car9 Cicindelini sp.1 Hyd1 Hydrophilidae sp.1 Scy2 Scydmaenidae sp.2 

Car10 Cyindidina sp.1 Hyd2 Hydrophilidae sp.2 Sil1 Silvanidae sp.1 

Car11 Diplocheila sp.1 Hyd3 Hydrophilidae sp.3 Ten14 Allerulinae sp.1 

Car12 Dromiina sp.1 Hyd4 Hydrophilidae sp.4 Ten15 Leichenum sp.1 

Car13 Harpalini sp.1 Hyd5 Hydrophilidae sp.5 Ten16 Leichenum sp.2 

Car14 Harpalini sp.2 Hyd6 Hydrophilidae sp.6 Ten1 Tenebrionidae sp.1 

Car15 Perigona sp.1 Hyd7 Hydrophilidae sp.7 Ten2 Tenebrionidae sp.2 

Car16 Platymetopus sp.1 Hyd8 Hydrophilidae sp.8 Ten3 Tenebrionidae sp.3 

Car17 Pseudozaena sp.1 Hyd9 Hydrophilidae sp.9 Ten4 Tenebrionidae sp.4 

Car18 Pterostichinae sp.1 Lae1 Laemophloidae sp.1 Ten5 Tenebrionidae sp.5 

Car19 Tachyina sp.1 Lae2 Laemophloidae sp.2 Ten6 Tenebrionidae sp.6 

Car20 Tachyina sp.2 Lae3 Laemophloidae sp.3 Ten7 Tenebrionidae sp.7 

Car21 Tachyina sp.3 Lae4 Laemophloidae sp.4 Ten8 Tenebrionidae sp.9 

Car22 Tachyina sp.4 Lae5 Laemophloidae sp.5 Ten9 Tenebrionidae sp.10 

Car23 Tachyina sp.5 Lae6 Laemophloidae sp.6 Ten10 Tenebrionidae sp.12 

Car24 Tachyina sp.6 Lae7 Laemophloidae sp.7 Ten11 Tenebrionidae sp.13 

Car25 Tachyina sp.7 Lam1 Lampyridae sp.1 Tro1 Trogidae sp.1 

Car26 Tachyina sp.8 Lat1 
Latridiidae sp.1 Sco3 Xylosandrus 

compactus (Einchhoff, 
1875) 
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Car27 Tachyina sp.9 Lat2 
Latridiidae sp.2 Sco4 Xylosandrus 

morigerus (Blandford, 
1894) 

Crb1 Cerambycidae sp.1 Lat3 
Latridiidae sp.3 Sco5 Xylonsandrus 

crassiusculus 
(Motcshulsky, 1866) 

Cry1 Cerylonidae sp.1 Lat4 
Latridiidae sp.4 Sco6 Xyleborus perforans 

(Wollaston, 1857) 

Chr1 Chrysomelidae sp.1 Mo1 
Monotoma sp.1 Sco7 Xyleborus affinis 

(Eichhoff, 1868) 

Chr2 Chrysomelidae sp.2 Mor1 
Mordelidae sp.1 Sco8 Xyleborus similis 

(Ferrari, 1867) 

Chr3 Chrysomelidae sp.3 Nit1 
Nitidulidae sp.1 Sco9 Dryocoetiops coffeae 

(Eggers, 1923) 

Chr4 Chrysomelidae sp.4 Nit2 
Nitidulidae sp.2 Sco10 Xyleborinus 

perminutissimus 
(Schedl, 1934) 

Chr5 Chrysomelidae sp.5 Nit3 
Nitidulidae sp.3 Sco11 Xyleborinus 

andrewesi (Blandford, 
1896) 

Chr6 Chrysomelidae sp.6 Nit4 
Nitidulidae sp.4 Sco12 Xyleborinus exiguus 

(Walker, 1859) 

Chr7 Chrysomelidae sp.7 Nit5 Nitidulidae sp.5 Sco13 Hypothenemus spp. 

Chr8 Chrysomelidae sp.8 Nit6 Nitidulidae sp.6 Sco14 Cryphalus spp. 

Chr9 Chrysomelidae sp.9 Nit7 Nitidulidae sp.7 Sco15 Coccotrypes spp. 

Cii1 Ciidae sp.1 Nit8 Nitidulidae sp.8 Sco1 Scolytidae sp. 1 

Cla1 Clambidae sp.1 Nit9 Nitidulidae sp.9 Sco2 Scolytidae sp. 2 

Cla2 Clambidae sp.2 Nit10 Nitidulidae sp.10   

Cla3 Clambidae sp.3 Nit11 Nitidulidae sp.11   

Cla4 Clambidae sp.4 Nit12 Nitidulidae sp.12   


