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Estimation of Spatially Correlated Random Fields in
Heterogeneous Wireless Sensor Networks
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Abstract—We develop new algorithms for spatial field re-
construction, exceedance level estimation and classification in
heterogeneous (mixed analog & digital sensors) Wireless Sensor
Networks (WSNs). We consider spatial physical phenomena
which are observed by a heterogeneous WSN, meaning that it
consists partially of sparsely deployed high-quality sensors and
partially of low-quality sensors. The high-quality sensors transmit
their (continuous) noisy observations to the Fusion Centre (FC),
while the low-quality sensors first perform a simple thresholding
operation and then transmit their binary values over imperfect
wireless channels to the FC. The resulting observations are mixed
continuous and discrete (1-bit decisions) observations, and are
combined in the FC to solve the inference problems. We first
formulate the problem of spatial field reconstruction, exceedance
level estimation and classification in such heterogeneous networks.
We show that the resulting posterior predictive distribution, which
is key in fusing such disparate observations, involves intractable
integrals. To overcome this problem, we develop an algorithm that
is based on a multivariate series expansion approach resulting in a
Saddle-point type approximation. We then present comprehensive
study of the performance gain that can be obtained by augmenting
the high-quality sensors with low-quality sensors using real data
of insurance storm surge database known as the Extreme Wind
Storms Catalogue.

Index Terms—Wireless sensor networks, detection, Gaussian
processes, Kernel methods, imperfect communication channels.

I. INTRODUCTION

W IRELESS SENSOR NETWORKS (WSN) have at-
tracted considerable attention due to the large number

of applications, such as environmental monitoring [1], weather
forecasts [2]–[5], surveillance [6], health care [7], structural

Manuscript received September 25, 2014; revised January 07, 2015; accepted
February 20, 2015. Date of publication March 13, 2015; date of current version
April 14, 2015. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Wenwu Wang. I. Nevat would like
to acknowledge the support of the National Research Fund (NRF), Singapore.
G. W. Peters would like to acknowledge support of the Institute of Statistical
Mathematics, Tokyo, Japan, and the Commonwealth Scientific Industrial Re-
search Organisation, Sydney, Australia. F. Septier would like to acknowledge
the support of the BNPSI ANR project no ANR-13-BS-03-0006-01.
I. Nevat is with the A*STAR, Institute for Infocomm Research, Singapore

138632, Singapore.
G. W. Peters is with the Department of Statistical Sciences, University Col-

lege London (UCL), London, U.K. (e-mail: ido-nevat@i2r.a-star.edu.sg).
G. W. Peters is also with the CSIRO Sydney, North Ryde, New South Wales,

1670, Australia.
F. Septier is with the Institut Mines-Télécom/Télécom Lille/CRIStAL UMR

CNRS 9189, Villeneuve dascq, France.
T. Matsui is with the The Institute of Statistical Mathematics (ISM), Tokyo

190-8562, Japan.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2015.2412917

safety and building monitoring [8]and home automation [5],
[9]. We consider a WSN which consists of a set of spatially
distributed sensors that may have limited resources, such as
energy and communication bandwidth. These sensors monitor a
spatial physical phenomenon containing some desired attributes
(e.g., pressure, temperature, concentrations of substance, sound
intensity, radiation levels, pollution concentrations, seismic
activity etc.) and regularly communicate their observations to
a Fusion Centre (FC) in a wireless manner (for example, as in
[10]–[14]). The FC collects these observations and fuses them
in order to reconstruct the signal of interest, based on which
effective actions are made [9].
The majority of recent research on WSN address problems

relates to addressing estimation of a single point source, such as
source localization [15]–[22], or source detection (i.e., hypoth-
esis testing) [23]–[28]class of problems. In [18]–[21], location
estimation algorithms of a scalar point source were developed,
and in [22]the Posterior Cramér-Rao lower bound (PCRLB) for
a single target tracking in WSN with quantization was approx-
imated via particle filters. In [23], [24], decision fusion algo-
rithms for a single source detection were developed, and in [25]a
vector-valued quantity of a single source was estimated inWSN
with censoring and quantization. In this paper we show how to
utilize the entire set of sensor data to not just obtain estima-
tion of a given point source localization but instead to recon-
struct the entire spatial field under a statistical model. Hence, we
move beyond the estimation of a single location parameter by
developing models to reconstruct the entire spatial random field
which exhibits spatial dependency structure that we capture via
either a homogeneous or non-homogeneous spatial covariance
function, depending on the statistical properties of the observed
spatial field.
In many cases these WSN use a small set of high-quality and

expensive sensors (such as weather stations) [29]. While these
sensors are capable of reliably measuring the environmental
physical phenomenon, the low spatial deployment resolution
prohibits their use in spatial field reconstruction tasks. To over-
come this problem, sparse high-quality sensor deployment can
be augmented by the use of complementary low-quality sensors
that can be deployed more densely due to their low costs [2],
[3]. This exact same concept was further strengthened when the
US Environmental Protection Agency (EPA) published its shift
in the paradigm of data collection which promotes the notion
of augmenting sparse deployments of high-quality sensors with
dense deployment of low-quality and inaccurate sensors [30].
Two practical scenarios that are of importance are:
1) High-quality sensors may be deployed by government

agencies (e.g., weather stations). These are sparsely de-
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ployed due to their high costs, limited space constraints,
high power consumption etc. To improve the coverage of
the WSN, low-quality cheap sensors can be deployed to
augment the analog sensor network [3].

2) High-quality sensors cannot be easily deployed in remote
locations, for example in oceans, lakes, mountains and vol-
canoes. In these cases, battery operated low-cost sensors
can be deployed and use simple wireless transmission tech-
niques for data aggregation to the FC [31].

The low-quality sensors we consider in this paper are capable of
transmitting a single bit for every analog observation they ob-
tain, making them very energy efficient. The FC then receives
a vector of observations which are mixed continuous (high-
quality) and discrete (low-quality 1-bit values). This makes the
data fusion a very complex inference problem. As such, no pre-
vious attempts have been made to join (fuse) the observations
from different types of sensors to solve the problem of Spatial
Random Filed Reconstruction.
The main goal of this paper is to develop low complexity al-

gorithms to solve the problems of spatial field reconstruction,
exceedance level and spatial classification of spatial Gaussian
random fields inWSNunder practical scenarios of mixed analog
and digital sensors. More specifically, the following three fun-
damental problems are the focus of this paper:
1) Spatial field reconstruction: the task is to accurately es-

timate and predict the intensity of a spatial random field,
not only at the locations of the sensors, but at all loca-
tions. An example is the Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS) network for Ocean Colour Reconstruc-
tion from Remote Sensing Networks [32], [33]. This WSN
monitors the health and status of the world's oceans and si-
multaneously estimates both atmospheric and ocean color
data, which has been widely used to study aerosol and
ocean variations in applications such as climatic forcing,
bio-geochemical cycling, and radiative effects in the global
and regional scales [34], [35].

2) Spatial exceedance level: the task is to identify regions
where the intensity of the spatial random field exceeds
some pre-defined regulation limits. An example is air
quality monitoring, where the concentration of air pol-
lution levels, if exceeded, cause violation of air safety
standards and therefore require a public health warning
[36]. Other examples in environmental modelling include
identifying areas where ozone concentrations exceed
safety standards, meaning there is high risk for tornadoes
or floods, or heavy-metal levels are dangerously high.
Application of such problems are presented in [4], [37]and
an application in wireless communications is presented in
[38].

3) Spatial classification: the task is to perform binary classi-
fication of the spatial field. Spatial binary classification oc-
curs frequently in environmental and ecological research,
for instance when the data correspond to presence or ab-
sence of a certain invasive plant species at a location, or
when the data happen to fall into one of two categories,
say two soil types [39], [40].

We develop an algorithm to jointly solve these problems
which involves obtaining the predictive distribution of the

spatial random field. We show that calculating this quantity
requires solving intractable multiple integrals. We present
a novel method to approximate this quantity by developing
a series expansion of the Saddle-point (Laplace) type via a
Gaussian basis [41]. This transforms the intractable multiple
integrals to produce simple closed form expressions. Based
on these expressions we derive new algorithms and provide
closed form solutions for both key problems of interest. To
obtain low computational complexity algorithms, we couple
the Laplace method with Iterated Conditioning on the Modes
(ICM) method, which is an iterative optimization method [42],
[43]. The ICM method decomposes the resulting multi-variate
high-dimensional optimization problem into a sequential series
of one-dimensional optimization problems which can be solved
easily, thus obtaining efficient algorithms.
We demonstrate the usefulness of our algorithm by testing it

on real data sets of wind speeds measurements collected in Eu-
rope. In addition we study the impact that different deployments
configurations have on the performance and the trade-offs be-
tween analog and digital deployments.

II. WIRELESS SENSOR NETWORK
SYSTEM MODEL AND DEFINITIONS

We consider a generic WSN where the sensors deployed in
the field are composed of two types of sensors:
1) High-quality sensors : analog sensors which transmit their

noisy observations over Additive White Gaussian Noise
(AWGN) channels.

2) Low-quality sensors : digital sensors, which perform a
thresholding operation by processing the noisy obser-
vations to obtain a 1-bit value, and then transmit this
information over imperfect wireless channels to the FC.

The FC combines all received signals and calculates an estimate
of the spatial phenomenon at any point of interest in space. We
first provide a formal definition of the spatial random Gaussian
field followed by detailed WSN assumptions.

A. Spatial Gaussian Random Fields Background

The observed phenomenon is a spatially dependent contin-
uous process with a spatial correlation structure. The degree of
the spatial correlation in the process increases with the decrease
of the separation between two observing locations and can be
accurately modelled as a Gaussian random field1 [4], [13], [14],
[37], [38], [44]–[47]. A Gaussian process (GP) defines a distri-
bution over a space of functions and it is completely specified
by the equivalent of sufficient statistics for such a process, and
is formally defined as follows.
Definition 1: (Gaussian process [48], [49]): Let

be some bounded domain of a d-dimensional real valued
vector space. Denote by a stochastic process
parametrized by . Then, the random function is
a Gaussian process if all its finite dimensional distributions
are Gaussian, where for any , the random variables

are normally distributed.

1We use Gaussian Process and Gaussian random field interchangeably.
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We can therefore interpret a GP as formally defined by the
following class of random functions:

where at each point the mean of the function is , parame-
terized by , and the spatial dependence between any two points
is given by the covariance function (Mercer kernel) ,
parameterized by , see detailed discussion in [48].
It will be useful to make the following notational definitions

for the cross correlation vector and auto-correlation matrix, re-
spectively:

...
. . .

...

with is the manifold of symmetric positive definite
matrices. Having formally specified the semi-parametric class
of Gaussian process models, we proceed with presenting the
system model.

B. Wireless Sensor Network System Model and Definitions
We present the heterogeneous WSN system with analog/dig-

ital sensors:
1) Consider a random spatial phenomenon to be monitored

defined over a 2-dimensional space . The mean
response of the physical process is a smooth continuous
spatial function , and is modelled as a
Gaussian Process (GP) according to

2) Let be the number of sensors that are deployed over a
2-D region , with , the
physical location of the -th sensor, assumed known by the
FC. The number of analog and digital sensors is and

, respectively, so that .
3) Sensors measurement model: each sensor collects a

noisy observation of the spatial phenomenon . At the
-th sensor, the observation is expressed as:

where is i.i.d Gaussian noise .
4) Analog sensors processing: each of the analog sen-

sors transmits its noisy observation to the FC over AWGN
channels, as follows:

where is i.i.d Gaussian noise .
5) Digital Sensors processing: each of the digital sensors

first performs a thresholding based decision based on its
noisy observations and then transmits the 1-bit decision

over imperfect wireless channels [23]–[25]. These steps
are summarized as follows:
a) Thresholding: at the -th digital sensor,

, the binary decision rule is given by:

where is a pre-defined threshold.
b) Wireless Communications to Fusion Centre: the

1-bit decision, , is transmitted to the FC over
imperfect binary wireless channels [19]. Under this
model, the probability of a received sensor observa-
tion taking a specific value , conditional on
the 1-bit decision, is given by
. We denote the transition probabilities using a row-

stochastic matrix as follows:

where
, and .

We now present the following definitions:
• is the physical location (in terms of coordinates)
of the sensors deployed in the field.

• is the collection of ob-
servations from all sensors (both analog and binary) at the
fusion center.

• is the collection of observations from all
analog sensors at the fusion center.

• is the collection of observations from all digital
sensors, at the fusion center.

• is the realization of at the
sensors located at .

• is the realization of at the analog sensors, lo-
cated at .

• is the realization of at the digital sensors, lo-
cated at .

• .

C. Notations and Definitions
The following notation is used throughout: random variables

are denoted by upper case letters and their realizations by lower
case letters. In addition, bold will be used to denote a vector
or matrix quantity, and lower subscripts refer to the element of
a vector or matrix. We denote as
the Probability Density Function (PDF) of a random Normal
(Gaussian) variable with mean and variance . Its Cumula-
tive Distribution Function (CDF) is denoted by

.

III. ESTIMATION CRITERIA FOR SPATIAL INTENSITY,
EXCEEDANCE MAP & SPATIAL CLASSIFICATION

As discussed in Section I, the three problems we consider
are spatial field reconstruction, exceedance level estimation
and spatial classification. We now present formal definitions
of these three problems.
1) Objective I: MMSE spatial random field reconstruc-

tion—Accurately reconstruct (i.e., estimate) the spatial
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random field at un-monitored locations, , from
samples collected by the sensors. We denote the es-
timation of the spatial random process at any location

by . A widely used criterion is the
Minimum Mean Squared Error (MMSE), which utilizes
the following distortion metric:

The optimal solution in the sense of minimizing this dis-
tortion metric is the posterior predictive mean [50], given
by the solution to the following integral:

(1)

2) Objective II: spatial exeedance map—Construct a
spatial exceedance map estimation is quantified by the
following metric: find a region such that, with a
certain given probability, for all for a
given level . This can be specified as a set of locations
where the posterior predictive probability exceeds some
given value:

(2)

where is a pre-defined threshold and is the confidence
level and is the domain or set of values satisfying the
exceedance of the spatial field.

3) Objective III: Spatial Classification—Given the ob-
servation vector and class labels
drawn according to the probability density function

, the goal is to predict the confidence for
each class at un-monitored locations, . That means
that we find the classifier that minimizes
the error probability , at an arbitrary location

. The classifier is given by:

(3)

where is the pre-defined threshold.
The common feature of Objectives 1–3 is the posterior predic-
tive distribution , which as we show in the
next Section, involves solving intractable integrals. In the next
Section we develop a novel approach to derive this quantity, and
in Section V we present the algorithm to compute these goals.

IV. DERIVING THE POSTERIOR PREDICTIVE DISTRIBUTION

In this section we develop a novel approach to deriving the
posterior predictive distribution , which is
common to all our estimation objectives in (1), (2) and (3).

To begin, we decompose the posterior predictive distribution
as follows:

(4)

where represents the posterior distribution for
the spatial phenomenon at the digital sensor locations given ob-
servations; is the posterior distribution for
the spatial phenomenon at the analog sensor locations given ob-
servations and the values of the spatial phenomenon at the dig-
ital sensor locations; and is the conditional
predictive prior distribution. The steps we shall take to calcu-
late are presented in a generic form in Algo-
rithm 1.

Algorithm 1: Calculation of the Posterior Predictive
Distribution in (4)

1: Calculate (presented in Lemma 1).
2: Calculate (presented in Lemma 2).
3: Derive (presented in Lemma 3 and

Proposition 1).
4: Calculate by solving the integral in

(4) using the quantities derived in Steps 1–3. (presented
in Theorem 1).

We begin with the calculation of Steps 1–2 in Algorithm 1,
presented in Lemma 1 and Lemma 2.
Lemma 1: The conditional predictive prior distribution,

, is given by:

where

Proof: This is a simple application of conditional Normal
distribution properties which stems from the fact that we use a
GP prior on and therefore is a multivariate
Normal distribution.
Lemma 2: The conditional distribution at the analog sensors,

, is given by:

where

Proof: See Appendix A.
We now proceed and calculate Step 3 in Algorithm 1.
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A. Deriving Analytic Expression for via
Saddle-Point (Laplace) Method
We now derive analytic expression of the posterior distribu-

tion for the spatial phenomenon at the digital sensor locations
given observations, based on a series expansion
of the Saddle-point (Laplace) type via a Gaussian basis.
Using Bayes' law, the posterior distribution for the spatial

phenomenon at the digital sensor locations is given by

The multivariate posterior distribution is intractable due to the
fact that the marginal likelihood, , cannot be eval-
uated pointwise. We therefore utilize an approximation of the
distribution . This approximation has a specific
form such that it will make the integral in (4) to become closed
form. Our solution is based on a series expansion of the posterior
distribution of the Saddle-point (Laplace) type via a Gaussian
basis. This involves deriving a multi-variate Taylor series ex-
pansion for the posterior, explained next.
We begin by presenting the definition of the multivariate

Taylor series expansion. From this we will motivate the basic
concept of an asymptotic expansion in terms of the 2-nd order
type known as a Saddle-point approximation, which we will
show is a powerful tool for obtaining accurate expressions for
the posterior distribution.
Definition 2: (Multivariate Taylor Series Expansion [51])

Consider the function (given by
in this paper) which is a scalar function

of vector , with all partial derivatives continuous in the
neighborhood of denoted . Then in this neighborhood
the -th order multivariate Taylor series is well defined and
given by

where the partial derivatives are given by

The accuracy of such approximation has been studied in a range
of places, see [44], [51]–[53]for further details. These depend on
the regularity assumptions assumed for the function of interest
, see [52]for details. We apply this methodology to approxi-
mate the 2nd order series expansion for the posterior distribution
at the digital sensors, ([51], Section 4, Equation
4.3).
Lemma 3: The posterior distribution at the digital sensors,

, is given by:

where

Next, based on Lemma 3, we approximate as
follows.
Proposition 1: The posterior distribution is

approximated as follows:

To obtain the conditional distribution in Proposition 1, we need
to calculate the MAP estimate, , presented in the next
section.

B. Deriving the MAP Estimate

We now present an optimal and computationally efficient al-
gorithm to calculate the MAP estimate. First, in Lemma 4 we
present the objective function. Then, in Lemma 5 we prove
that the objective function is quasi-convex and can therefore be
solved exactly using any gradient based approach. Finally, in
Lemma 6we present an efficient procedure to solve the resulting
optimization problem via an application of the ICM method.
Lemma 4: The MAP estimate is given by the solution for the

following -dimensional optimization problem:

Proof: See Appendix B
We now prove that the objective function in Lemma 4 is

quasi-convex and then present an efficient algorithm to calcu-
late .
Lemma 5: The objective function in Lemma 4 is

quasi-convex (unimodal) in .
Proof: See Appendix C.

To calculate theMAP estimate in Lemma 4 efficiently, we uti-
lize the Iterative Conditioning on the Modes (ICM) estimation
method [42], [43]. The ICM approach decomposes the multi-
variate problem into a sequential series of one-dimensional
optimization problems which can be easily solved. The algo-
rithm iterates each of the univariate optimization problems
recursively until convergence.
The solution to the optimization problem is presented in the

following Lemma.
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Lemma 6: The MAP estimate of the -th component of
, is given by the

solution of the following one-dimensional non-linear equation:

Proof: See Appendix D.
We now proceed and calculate Step 4 in Algorithm 1, which

is then presented in Theorem 1.

C. Deriving the Posterior Predictive Distribution
in (4)

We now combine the results from Lemma 1, Lemma 2 and
Proposition 1 to obtain the posterior predictive distribution

in (4). We begin by deriving the posterior
distribution and then combine that with the
conditional predictive prior distribution to obtain the posterior
predictive distribution .
Lemma 7: The conditional distribution in (4)

is given by:

where

(5)

and:

with

Proof: This is the result of combining Lemma 2 and Propo-
sition 1 using the Aitken Block-Diagonalization formula [50].

Next, we evaluate the integrands of the integral in (4):
Lemma 8: The joint distribution is given

by

where

and the covariance is given by:

where

Proof: This is a simple application of the Aitken Block-
Diagonalization formula [50].
Finally, the following Theorem provides the solution for the

predictive distribution in (4).
Theorem 1: The posterior predictive distribution,

, is given by:

(6)

where

Proof: This result comes from the property of marginaliza-
tion of Normal distributions.
Remark 1: We note that the mean of the posterior predictive

distribution has the same structure as Gaussian Process
regression, where instead of using the observations directly, we
substitute them with the estimate of the intensity of the field in
all sensor locations, .
In the next section we shall utilize this result to derive the

objectives 1–3 of Section III.

V. ALGORITHM DEVELOPMENT FOR THE THREE
ESTIMATION CRITERIA

Now that we have derived the posterior predictive distribu-
tion , we present the solution to spatial field
reconstruction, exceedance level estimation and spatial classi-
fication presented in Objectives 1–3 of Section III.
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A. Objective I: Spatial Random Field Reconstruction

The MMSE estimate for the spatial random field reconstruc-
tion in (1) is given by

where is defined in (5).

B. Objective II: Spatial Exceedance Map

The exceedance map in (2) is based on solving for the fol-
lowing quantity,

which can then be used to obtain the locations required to
obtain the region

(7)

C. Objective III: Spatial Classification

In this section we present the algorithm to calculate the spatial
classification of the spatial physical phenomenon.
Theorem 2: The binary predictive distribution is given by:

where and are defined in Theorem 1.
Proof: See Appendix E

VI. SIMULATION RESULTS

In this section we consider two studies, the first is based on
synthetic data generated from a known model. We use this con-
trolled scenario to demonstrate the properties of our estimation
methods and illustrate how accurate they will be in different
settings. Then we study a real data application which involves
analysis of wind-speed data with the application in mind related
to storm surge modelling in Europe, under the class of weather
events known in insurance modelling as wind-storms or storm
surge insurance storms. This type of application is of direct rel-
evance for both safety assessment and insurance pricing pur-
poses, see [54]and [55].

A. Synthetic Example

To evaluate the performance of the proposed algorithms and
the improvement they provide we generated 2-D realizations
from a Gaussian Process with the following attributes: the mean

Fig. 1. Upper panel: realization from a 2-d Gaussian Process. The black
markers denote the locations of the 10 high-quality sensors. Lower panel:
PMSE results vor various configurations.

is and the kernel is a radial basis function with length
scale, .

A realization from the GP is shown in Fig. 1. In this example
we placed 10 high-quality sensors which are marked by the
black markers. We then tested the field reconstruction algo-
rithm for various system configuration, changing the number of
low-quality sensors, the SNR and the probabilities of incorrect
wireless channels transmission, denoted . To obtain the same
measure of SNR for both types of sensors, we set and
define . The Prediction Mean Squared Errors
(PMSE) are presented in the right side of Fig. 1. The results
show that substantial improvements can be obtained by adding
low-quality sensors. This is especially true in the cases of high
SNR and perfect wireless channels communications, where the
PMSE of the heterogeneous network is roughly 1/3 of the PMSE
based only on high-quality sensors.
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Fig. 2. Wind speed prediction of the Dagmar storm. The rectangular in the
upper left figure represents the region of interest which contains 15 high-quality
sensors. The upper right figure represents the “true” data wind speed intensities
[m/s]. The lower left figure shows the field reconstruction based solely on the
15 high-quality sensors via Gaussian Process regression. The lower right figure
shows the field reconstruction of our algorithm based on the heterogeneous net-
work with 15 high-quality sensors and 100 low-quality sensors. The Normalized
Mean Squared Error based on the high-quality sensors is 0.67 and based on both
high and low quality sensors is 0.25.

B. Sensor Networks for Insurance: Wind Speed and Insurance
Storms

In this studywe use a publicly available insurance storm surge
database known as the Extreme Wind Storms Catalogue2. The
data is available for research as theXWSDatasets: (c) Copyright
Met Office, University of Reading and University of Exeter.
Licensed under Creative Commons CC BY 4.0 International Li-
cense. The data provided is comprehensive and provides features
such as the footprint of the observations on a location grid with
a rotated pole at degrees,
degrees. As discussed in the data description provided with
the data-set, this is a standard technique used to ensure that the
spacing in km between grid points remains relatively consistent.
The footprints are on a regular grid in the rotated coordinate
system, with horizontal grid spacing 0.22 degrees. The data for
each of the storms provides a list of grid number and maximum
3-second gust speed in meters per second. The true locations
(longitude and latitude) of the grid points are given in grid loca-
tions file.We selected two storms to analyze, the first is known as

2http://www.met.reading.ac.uk/~extws/database/dataDesc

Fig. 3. Wind speed prediction of the Ulli storm. TheNormalizedMean Squared
Error based on the high-quality sensors is 0.85 and based on both high and low
quality sensors is 0.37.

Dagmar which took place on 26/12/2011 and affected Finland
and Norway; and the second was the storm known as Ulli
taking place on 3/1/2012 which affected the UK.
1) Model Calibration Wind Speed Data: To calibrate the

model we first fit the hyperparameters of the model via Max-
imum Likelihood Estimation (MLE) procedure. We used a 2-D
radial basis function, of the following form

thus decomposing the kernel into orthogonal coordinates which
we found provided a much more accurate fit. The reason for
this is it allows for inhomogeneity through differences in spatial
dependence in vertical and horizontal directions, which is highly
likely to occur in the types of wind speed data studied. TheMLE
of the length and scale parameters obtained are given by:
• Dagmar storm: and .
• Ulli storm: and .

We note that details on how to estimate the GP hyperparamarets
can be found in [Chapter 5] [48].
2) Wind Field Intensity Estimation for Insurance Wind

Storms: We performed wind field intensity estimation using our
algorithm and compared it to the case where only high-quality
sensors are utilized. The results are presented in Figs. 2–3, for
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TABLE I
FIELD RECONSTRUCTION PERFORMANCE FOR THE TWO STORMS

Fig. 4. Wind speed detection vs. false alarm probabilities of Dagmar and Ulli
storms.

the Dagmar and Ulli storms, respectively. We set the region
of interest (ROI) as shown in the upper left of Figs. 2–3. We
then chose 15 locations to place high-quality sensors. These
locations are depicted with black square markers. The actual
wind speed field intensity is shown in the upper right figures.
The lower left figures show the estimated field based only on
the 15 high-quality sensors. The lower right figures show the es-
timated field based on the 15 high-quality and 100 low-quality
sensors. To illustrate the impact of adding low-quality sensors
make, we set the error probability of the wireless channels to
zero. The figures show that a significant improvement can be
obtained by augmenting the high-quality sensor network with
many cheap low-quality sensors. The field reconstruction (the
ROI contains 14006 spatial points) prediction mean squared
error for the two storms is given in the Table I. As expected
the prediction performance for the Dagmar storm is better than
for the Ulli storm. This can be explained by the higher spatial
correlation exhibited by the Dagmar storm.
3) Wind Field Intensity Classification: We now turn our at-

tention to the classification problem presented in Objective III.
We used the same set up as the previous example and performed
spatial classification where we set the threshold to be the mean
value of each of the storms plus 5. We plot the Receiver Op-
erating Characteristic (ROC) curve for both storms in Fig. 4.

The results show that good classification performance can be
obtained for both storms. It is also clear that the detection per-
formance of the Dagmar storm is better than the Ulli storm. This
is because the spatial correlation of the Dagmar storm is much
stronger than of the Ulli storm in both axes, resulting in better
detection performance.

VII. CONCLUSION

We developed a new framework for spatial field reconstruc-
tion, exceedance level estimation and classification in hetero-
geneous (mixed analog & digital sensors) wireless sensor net-
works. We developed novel algorithms that are based on a mul-
tivariate series expansion approach resulting in a Saddle-point
type approximation. We then studied the performance gain that
can be obtained by augmenting the high-quality sensors with
low-quality sensors using real data of insurance storm surge
database. The results show a significant improvement for both
field reconstruction and spatial classification.

APPENDIX A
PROOF OF LEMMA 2

Using the fact that the spatial phenomenon is modelled a-priori
as a GP, and utilizing the properties of conditional Normal dis-
tribution, the second term in the nominator is given by:

(8)

Next, using (8) and invoking Normal-Normal conjugacy prop-
erties, we obtain
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APPENDIX B
PROOF OF LEMMA 4

The MAP estimate is given by (9) at the bottom of the page.

APPENDIX C
PROOF OF LEMMA 5

To prove that the objective function in Lemma 4 is
quasi-convex we first note that the second and third
terms are quasi-convex since these are multivariate
Normal distributions. Therefore, we only need to show that

is quasi-convex in
.

(10)

To show that (10) is quasi-convex we use the fol-
lowing property: if , and , then is
quasi-convex in [56]. The first derivative of is
given by:

Next, we evaluate the second derivative and set the first
derivative to 0 [see the equation at the bottom of the page]:

APPENDIX D
PROOF OF LEMMA 6

The MAP estimate for the -th component of
, conditional on all other components

and the observations , is ob-
tained by expressing the full conditional posterior for the -th

(9)
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component, , setting its derivative
to 0 and solving for . The MAP estimate is given by:

The -posterior is given by

Taking the derivative of , we obtain:

To calculate the derivative of T2, we express the second term
(see (9) and (8)):

The derivative is given by:

where is the indicator function for the -th element. The
derivative of T3, which is conditionally Normal, is given by:

where

Finally, we set the derivative to 0 to obtain the one-dimen-
sional equation which can be easily solved via a one-dimen-
sional line search.

APPENDIX E
PROOF OF THEOREM 2

Using convolution properties, it is easy to show that

Finally, we obtain
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