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Abstract

Visual perception is the conscious experience that is unique to each individual. However,

conventional neuroscience studies tend to focus on the commonality in visual perception across

different individuals and fail to address the key properties of any conscious experience - its in-

dividuality and subjectivity. In my thesis, I investigated the neurobiological basis of perceptual

variability across healthy human adults, through a combined approach of psychophysics, in-

vivo MR imaging, in-vitro histological imaging, and computational modeling. I found that

perception of local and global visual features, as assessed respectively from visual discrimina-

tion of local feature details and visual illusion induced by global feature contexts, exhibits a

ten-fold inter-individual variability that correlates with the morphology of primary visual cor-

tex. Specifically, an increase in the surface area of primary visual cortex is associated with

a shift in the scope of visual feature perception from global-context-oriented to local-detail-

oriented, where individuals with smaller visual cortical surface area experience stronger visual

illusion and individuals with larger visual cortical surface area perform more accurate visual

discrimination. Intriguingly, an increase in the thickness of primary visual cortex has the oppo-

site impact, where visual discrimination is less accurate at visual field locations corresponding

to thicker parts of primary visual cortex. The functional impact that visual cortical anatomy

exerts on visual feature perception is recapitulated in visual neural selectivity. I found that in

individuals with larger surface area of primary visual cortex, visual cortical neurons exhibit

higher selectivity and respond to a smaller, localised visual field range. By contrast, at thicker

parts of primary visual cortex, visual cortical neurons exhibit lower selectivity and respond to

a larger, globalised visual field range. The opposite functional impacts exhibited by the two

morphological dimensions, the surface area and the thickness, of primary visual cortex can

nonetheless be unified under the framework of intracortical scaling. I found that the scaling

of intracortical connectivity with visual cortical morphology shifts the scope of both visual

feature perception and visual neural selectivity between global- and local-oriented. Together

these findings revealed that the individuality in visual feature perception arises neurobiologi-

cally from the variability in visual cortical morphology, through the mediation of intracortical

connectivity and visual neural selectivity.
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Chapter 1

General Introduction

1.1 Overlooked existence of perceptual variability

It is well recognized that a substantial degree of variability exists across healthy human

individuals in high-level cognitive functions such as the style of thinking and the skill of com-

munication, where such variability is considered as examples of personality. At the same time,

it is often overlooked that a substantial degree of inter-individual variability also exists in low-

level perceptual functions. Instead, it is usually assumed that perception of the same physical

stimulus is more or less identical across healthy human individuals. Consequently, conven-

tional neuroscience studies tend to focus on the perceptual commonality across individuals and

treat inter-individual perceptual variability as a source of noise [1].

Whereas conventional neuroscience studies are focused on the perceptual commonality

across individuals, perception is by definition a subjective experience that is unique to each

individual. As such, the key properties of any perceptual experiences are their individuality

and subjectivity. Indeed, a close look at many of our perceptual experiences suggests that in-

dividuals differ in their low-level perceptual functions just as much as they do in high-level

cognitive functions [2, 3]. As perceptual experiences are the basis of human cognition, such

inter-individual variability in low-level perceptual functions may in fact shape inter-individual

variability in everyday decision-making, memory formation, or other high-level cognitive func-

tions.

Given the importance of inter-individual perceptual variability, it is essential to understand

the mechanisms underlying the individuality and the subjectivity of our perceptual experiences.

Among different perceptual domains, the visual domain accounts for more than 80% of our

perceptual experiences. Moreover, compared to other perceptual systems, the visual system is

probably the best studied, and we have gained substantial knowledge spanning multiple levels,
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from the anatomy of visual cortices, to the connectivity between visual neural populations, to

the response properties of single visual neurons. Therefore, the visual domain may serve as a

good starting point for exploring the mechanisms underlying inter-individual perceptual vari-

ability.

Indeed, a number of researchers have started to explore the variability across healthy hu-

man adults in visual perception. It was found that perception of visual contextual illusion,

where the presence of a surrounding context biased the perceived feature of a central stimulus,

varied across individuals over ten-folds [3]. Inter-individual variability was observed not only

in visual illusion, but also in visual discrimination [2, 4, 5, 6]. Intriguingly, inter-individual

variability in visual discrimination exhibited covariance across different categories of visual

features, such that individuals with higher performance in discriminating one visual feature

(e.g., orientation) also performed better at discriminating another (e.g., luminance). By con-

trast, inter-individual variability in visual contextual illusion was dissociated among different

categories of visual features [3].

These findings suggest that inter-individual variability in visual perception may not arise

purely from generic factors such as decision-making ability, but instead has its neurobiological

basis in the specific ways that the visual system processed visual input. In this thesis, I explored

how the differences across individuals in cortical processing of the same visual input gave rise

to inter-individual variability in visual perception, and how such inter-individual differences in

visual cortical processing were in turn shaped by the variability in visual cortical anatomy. To

this end, I would review in this chapter our existing knowledge of visual processing. First, I

would discuss how the light signal, the very fundamental visual input, is transduced into the

neural signal. Then, I would discuss how the seemingly identical neural signals give rise to

the radically different perceptual experiences. Last, I would discuss how our existing knowl-

edge of visual processing might contribute to our understanding of inter-individual variability

in visual perception.

1.2 From light signal to neural signal

When we open our eyes, we see a world full of visual richness. To us, each object has its

own shape, color, size, location, and many other visual features. The visual world is so rich

that for a moment, we may even think that perception of different visual features are triggered

by signals of distinct forms, as if our perception of color blue is triggered by a blue signal and

our perception of an oriented line by a line signal. However, when we think about the nature of
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visual processing, we soon realize that our seemingly diverse perceptual experience is in fact

triggered by the same signal, a light signal. The wavelength and the intensity of light signal

determine the color and the luminance that we perceive, whereas the visual field location of

light signal defines the spatial pattern that we perceive [7]. The fact that a simple light signal

could give rise to the complex visual world that we experience illustrates the remarkable power

of visual processing. It also suggests that the perceptual variability across individuals is a result

of inter-individual differences in visual processing of the same light signal. To understand the

neurobiological basis of inter-individual variability in visual perception, it is therefore essential

to start from the beginning of visual processing and examine how the light signal is transduced

into a neural signal [8, 9].

Visual processing begins with the light entering the pupil, where the lens and the cornea

project the inverted light onto the back of the eye. At the back of the eye is the retina, a layered

structure composed of interconnected cells (Figure 1.1). Different retinal layers contain cells

of different types that serve different functions [8, 9]. From the outmost to the innermost, the is

the layer of Muller cells, the layer of ganglion cells, the layer of biopolar, horizontal, amacrine

cells, and the layer of photoreceptor cells, respectively [10]. The Muller cell is a type of glial

cell that serves as the supporting cell for neurons in the retina, whereas the ganglion cell, the

biopolar cell, the horizontal cell, the amacrine cell, and the photoreceptor cell are different

types of neurons.

Light travels through the outer retinal layers and reaches the layer of photoreceptor cells,

where it gets transduced into neural signal via phototransduction (Figure 1.2). Playing the

key role in phototransduction is a molecular called photopigment, located on the membrane of

photoreceptor cells [11]. Photopigment is composed of a light-absorbing chromophore (reti-

nal) and a G-protein-coupled receptor (opsin). Upon the absorption of light photon, the retinal

changes its configuration from 11-cis to all-trans and breaks away from the opsin. This change

leads to the activation of transducin (a G-protein) and phosphodiesterase (an enzyme), which

then hydrolyzes cGMP (a second messenger). The decrease in cGMP concentration causes

the closure of sodium channels, which in turn causes the hyperpolarization of photoreceptor

membrane and the reduction of neurotransmitter release at photoreceptor synapse.

This chain of phototransduction reactions gives rise to a series of response properties that

are unique to photoreceptor cells and enable the encoding of light intensity. In most sensory

system, stimulation of a receptor cell causes its membrane to depolarize, which ultimately

triggers an action potential and the release of neurotransmitter onto its postsynaptic cell. By



1.2. From light signal to neural signal 13

Ganglion 
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Bipolar        
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LIGHT

Figure 1.1: Layering of retina. The enlarged retina illustrates the relative positions of different

retinal layers. The light signal travels through the layer of Muller cells, the layer of ganglion

cells, the layer of biopolar, horizontal, amacrine cells, and arrives at the layer of photoreceptor

cells where it is transduced into the neural signal. Then, the neural signal travels the opposite

direction, from the layer of photoreceptor cells, via the layer of biopolar, horizontal, amacrine

cells, to the layer of ganglion cells where it gets inputted into the brain. Figure adapted from

[7].

contrast, light stimulation of a photoreceptor cell leads to the hyperpolarization rather than the

depolarization of its membrane. Consequently, the photoreceptor cell does not exhibit action

potential, but instead has its membrane potential and its neurotransmitter release changed in a

graded fashion where the rate of change is determined by the intensity of light signal [12]. As

such, the light intensity is encoded in the membrane potential of photoreceptor cells and this

information is passed onto bipolar cells via the rate of neurotransmitter release.

While sharing similar mechanisms of phototransduction, photoreceptor cells can be di-

vided into two classes (rod, cone) that have different photopigments. Specifically, the pho-

topigment in rod cells can be stimulated by a single photon yet that in cone cells requires

a large number of photons [11]. As a result, the rod cells exhibit high sensitivity (but low

specificity) and function at dim light, whereas the cone cells exhibit high specificity (but low
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             cGMP 
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Figure 1.2: From light signal to neural signal. Phototransduction is the process by which

the physical signal of light is converted into the biological signal of neural activity. This

process occurs via the molecular photopigment that locates on the membrane of photoreceptor

cell. Upon the absorption of light, photopigment changes its configuration, which leads to

the closure of sodium channels and in turn causes the hyperpolarization of photoreceptor cell.

Figure adapted from [7].

sensitivity) and function at normal light. In humans, the cone cells can be further divided into

three classes (S, M, L), according to the wavelength of light photons that the photopigment

absorbs. The photopigment in S, M, and L cone cells responds respectively to light of short,

medium, and long wavelength [13, 14]. The diversity among photoreceptor cells in their wave-

length responses allows the encoding of light wavelength and the relay of this information onto

bipolar cells.

The intensity and the wavelength of light signal are encoded in the membrane potential of

photoreceptor cells. The visual field location of light signal, on the other hand, is encoded in

the receptive field of photoreceptor cells. By nature, the retina is a tissue sheet, where the pho-

toreceptor cells at different retinal locations have different receptive fields and respond to light

at different visual field locations. Specifically, the receptive field of a single photoreceptor cell

is a cone-shaped visual field volume whose apex is located at the center of the lens and whose

angle covers all directions from which the light signal can alter the membrane potential of that
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cell. This spatial specificity, where a single photoreceptor cell does not respond uniformly to

lights from anywhere but responds selectively to lights from certain directions, enables the en-

coding of light location.

In summary, the transduction of light signal into neural signal occurs via photoreceptor

cells. A single photoreceptor cell responds to light signal from a certain range of wavelength

and a certain range of visual field location, by hyperpolarizing its membrane potential and re-

ducing its neurotransmitter release according to the intensity of light. Such spatially-organized,

wavelength-dependent, intensity-regulated responses of photoreceptor cells form the basis of

visual processing. However, the amount of information that photoreceptor cells can encode on

their own is very limited, despite the large number (150 million) of photoreceptor cells present

in adult human [8, 9]. The complexity of visual encoding is accomplished via the diversity of

visual neural responses. For example, regardless of the properties (intensity, wavelength, loca-

tion) of the input light signal, the same neural signal (excitatory neurotransmitter glutamate) is

outputted from photoreceptor cells to bipolar cells. It is via the diversity in membrane recep-

tor of bipolar cells that the same signal from photoreceptor cells (excitatory neurotransmitter

glutamate) gets to produce different effects on different bipolar cells [15, 16]. To understand

how the seemingly identical neural signals give rise to our diverse perceptual experiences, it

is therefore essential to examine the diversity and complexity of visual neural responses along

visual processing.

1.3 From neural signal to perceptual experience

1.3.1 Emergence of center-surround receptive field

Via phototransduction, the light signal gets transduced into the neural signal, in the form

of hyperpolarized membrane potential and reduced neurotransmitter release of photoreceptor

cells. To enter cortical processing, the neural signal needs to travel through retina in the op-

posite direction of light signal, from the layer of photoreceptor cells, via the layer of biopolar,

horizontal, amacrine cells, to the layer of ganglion cells where it gets inputted into the brain

[8, 9]. Along this chain of signal relay, the diversity and complexity in visual neural responses

begin to emerge, as a result of the neural interconnections within and between retinal layers.

The neural interconnections in the retina follow two paths: a direct path and an indirect

path [15, 16]. In the direct path, the photoreceptor cells feedforward directly to the bipolar

cells, and the bipolar cells feedforward directly to the ganglion cells. In the indirect path, the

photoreceptor cells feedforward to the bipolar cells through the horizontal cells, and the bipo-
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lar cells feedforward to the ganglion cells through the amacrine cells. This indirect path gives

rise to the increased response complexity from photoreceptor cells to bipolar cells to ganglion

cells; and even along the direct path, the neural responses are in fact not passively relayed but

increased in complexity.

Along the direct path, the photoreceptor cells output the neural signal, the excitatory neu-

rotransmitter glutamate, to bipolar cells. The effect of this same signal, however, differs for

different bipolar cells, depending on the type of receptor embedded on cell membrane. Upon

the binding of glutamate, metabotropic receptors will hyperpolarize the bipolar cells whereas

ionotropic receptors will cause cell depolarization [15, 16]. Therefore, the bipolar cells with

metabotropic receptors (ON bipolar cell) are depolarized, and the bipolar cells with ionotropic

receptors (OFF bipolar cell) are hyperpolarized by light stimulation. As such, the direct path

gives rise to the ON, OFF response diversity of bipolar cells that is absent in photoreceptor

cells.

The indirect path, on the other hand, gives rise to the center-surround receptive field orga-

nization of bipolar cells that is absent in photoreceptor cells. This center-surround organization

arises from the opposition between horizontal cells and photoreceptor cells in the signal they

output to bipolar cells [15, 16]. Specifically, the horizontal cells release the inhibitory neu-

rotransmitter GABA, whereas the photoreceptor cells release the excitatory neurotransmitter

glutamate, upon light stimulation. As a result, the center-only receptive field of photoreceptor

cells and horizontal cells, where the light falling anywhere in the receptive field has the same

influence on cell activity, forms the center-surround receptive field of bipolar cells, where the

light falling in the receptive field center and that falling in the receptive field surround exerts

the opposite influence on cell activity (Figure 1.3). For ON bipolar cells, light stimulation of

receptive field center causes cell depolarization and light stimulation of receptive field surround

causes cell hyperpolarization; for OFF bipolar cells, the opposite is observed.

The response properties of bipolar cells are relayed and form the center-surround receptive

field organization of ON, OFF ganglion cells. However, the responses of ganglion cells are not

a mere clone of the bipolar cells. Instead, the graded membrane potential in photoreceptor,

horizontal, bipolar cells, is replaced by the action potential in ganglion cells, and the further re-

lay of neural signal in the visual system all takes the form of action potential [8, 9]. Compared

to the graded membrane potential, the action potential consumes much less metabolic energy.

This advantage is particularly important, since the neural signal from ganglion cells needs to

travel a long distance along optic nerve before entering cortical processing. By contrast, the
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Figure 1.3: Emergence of center-surround receptive field. An example circuit shows how the

center-surround receptive field of bipolar cells is formed from the center-only receptive filed

of photoreceptor cells and horizontal cells. The receptive field center of an example bipolar

cell is built up from a small number of photoreceptor cells that make direct excitatory synaptic

contacts with the bipolar cell. The receptive field surround is built up instead from a much

larger number of photoreceptor cells that make indirect inhibitory synaptic contacts with the

bipolar cell through a horizontal cell. Figure adapted from [7].
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travel of neural signal within retina between photoreceptor cells and ganglion cells is short in

distance and does not require the form of action potential.

In summary, the retinal processing gives rise to the ON, OFF diversity and the center-

surround complexity in receptive field organization. The OFF cells respond to dark (black)

in exactly the same way as the ON cells respond to light (white). This duality may appear

counter-intuitive at first thought, because we are accustomed to the physics concept that dark

is the absence of light. As such, the ON cells that encode light (white) can also encode dark

(black), and it would be redundant to have the set of OFF cells specialized for encoding dark

(black). However, in nature stimulation, dark (black) is as frequently encountered as light

(white). If our visual system were to have only one set of cells that encode the light intensity in

the form of membrane potential, more metabolic energy would be needed to cover the natural

range of light intensity. Therefore, it is biologically more efficient to have two separate sets of

cells that respond to opposing polarity of light. Such design of visual system has interesting

consequences for visual perception. Perceptually, dark (black) feels as real and intense as light

(white), although physically, dark (black) is the void and light (white) is the full. This discrep-

ancy indicates that our perception is not bounded by the law of physics and is instead created

largely by visual neural responses.

The dissociation between the physical and the perceptual is furthered by the center-

surround receptive field of bipolar and ganglion cells. Due to their center-surround receptive

field organization, the cells do not respond to the absolute level of light intensity but respond to

the local gradient in light intensity. This response property renders these cells a good encoder

for contour information and a poor encoder for surface information, which in turn improves

the efficiency of visual system. Indeed, in nature stimulation, contours, compared to surfaces,

tend to occupy less space in visual field yet contain more information of ecological importance.

If the responses of bipolar and ganglion cells were to faithfully represent the visual input, the

majority of metabolic energy would be wasted on encoding surface information that is of little

ecological relevance. This design of visual system has interesting correlates in visual percep-

tion. Similar to the responses of bipolar and ganglion cells, perceptually we are insensitive to

surface information or to absolute value of light intensity, but sensitive to contour information

or to local gradient in light intensity.

Together, the ON, OFF response diversity and the center-surround receptive field com-

plexity of bipolar and ganglion cells suggest that the output of retinal processing contains

information far more complex than the point representation of visual input in photoreceptor
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cells. In this sense, the retina plays the role of a creative artist rather than a boring photogra-

pher. The artwork (retinal processing) seems to follow the principle of minimizing metabolic

energy consumption. By so doing, the retina creates a perceptual world that works against the

law of physics yet feels as vivid as (or in fact, much more vivid than) the physical reality.

1.3.2 Emergence of feature selectivity

Via retinal processing, the simple neural signal at the layer of photoreceptor cells, where

the cell membrane potential represents the visual input in a non-distorted, photograph-like fash-

ion, gives rise to the complex neural signal at the layer of ganglion cells, where the cell firing

rate represents the visual input in a distorted, contour-highlighting fashion. This neural signal

then travels along the optical nerve, is relayed at lateral geniculate body (LGN), and enters

primary visual cortex (V1) for cortical processing [7, 17]. Similar to retina, V1 is composed

of interconnected layers, where the optic nerve enters layer 4C of V1. There, the axons divide.

The upper half of layer 4C (layer 4Cα) receives axons from the bottom two layers of LGN,

which in turn receive inputs from rod cells in retina. The lower half of layer 4C (layer 4Cβ)

receives axons from the upper four layers of LGN, which in turn receive inputs from cone cells

in retina. The two halves of layer 4C differ not only in their afferent but also in their efferent

projections [18, 19, 20, 21]. The upper half of layer 4C (layer 4Cα) projects to layer 4B. The

lower half of layer 4C (layer 4Cβ) projects to layer 2 / 3. These different information flow then

converge and feedforward to higher visual cortices.

As such, V1 is involved in feedforward visual processing, where layer 4C and layer 2

/ 3 / 4B of V1 serve respectively as the input and the output ports [22, 23, 24]. The feed-

back visual processing, on the other hand, involves layer 5 / 6 of V1, which integrate signals

from higher visual cortices with signals from layer 2 / 3 / 4B of V1, and project back to LGN

[25]. Clearly, the layering in V1 is far more complex than the layering in retina [26, 27]. In

fact, the layering complexity of V1 exceeds that of any other cortical region, including that of

higher visual cortices, as illustrated below in the histological image of V1 versus V2 (Figure

1.4). Such anatomical complexity of V1 layering is likely to be driven by V1’s unique role as

the coordinator between cortical processing and subcortical processing. Correspondingly, the

anatomical complexity of V1 layering is accompanied by the physiological complexity of V1

neural responses.

Compared to the neurons in retina or LGN, the neurons in V1 exhibit a much greater di-

versity and complexity in their responses. Here, the neurons are concerned not just with the
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Figure 1.4: Layering of early visual cortex. The Nissl stain of the occipital lobe shows the

layering complexity of V1 versus V2. Figure adapted from [7].

visual field location of the stimulus, as the neurons in retina or LGN do, but also with the

orientation, length, eye-of-origin, and possibly other features of the stimulus [28, 29, 30]. As

a result, while a neuron in retina or LGN will respond to any visual stimulus that falls in its

receptive field, a neuron in V1 will respond only to the visual stimulus that exhibits certain

features apart from falling in its receptive field. Among the features that the neurons in V1 ex-

hibit selectivity for, the most prominent one is the stimulus orientation. Intriguingly, different

orientation-selective V1 neurons differ, not just in the stimulus orientation that they respond

optimally to or the visual field location of their receptive field, but in the way that they behave.

The behavior of orientation selectivity can be divided into two categories (simple, complex):

the complex neurons respond to any optimally oriented stimulus, as long as the stimulus is in

their receptive field; by contrast, the simple neurons respond only when the optimally oriented

stimulus is placed at certain location in their receptive field [7, 31]. In this sense, the complex

neurons, compared to the simple neurons, have higher degree of invariance in their orientation

selectivity.

The two categories of orientation-selective neurons are not evenly distributed across V1

layers. Instead, layer 5 / 6 of V1 contains only the complex neurons, whereas layer 2 / 3 / 4B

of V1 contains both categories [31]. The neurons in layer 4C of V1, on the other hand, inherit

their responses directly from the neurons in LGN, and as such, lack any feature selectivity but

have center-surround receptive field. This increase in response complexity from layer 4C to
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layer 2 / 3 / 4B to layer 5 / 6 suggests that the feature selectivity of V1 neurons emerges from

feedforward visual processing [32, 33, 34]. Indeed, when a neuron receives its inputs from

a set of non orientation-selective neurons that have aligned receptive field, this neuron would

develop simple, non-invariant orientation selectivity (Figure 1.5A). Similarly, when a neuron

receives inputs from a set of simple orientation-selective neurons that have identical orientation

selectivity but different receptive field, this neuron would develop complex, invariant orienta-

tion selectivity (Figure 1.5B).

simple neuron

non orientation-selective neuron simple neuron

complex neuron

A B

Figure 1.5: Emergence of orientation selectivity. Two example circuits show how the orienta-

tion selectivity of simple neuron (A) and complex neuron (B) is formed via feedforward visual

processing. The simple neuron receives feedforward inputs from a group of non orientation-

selective neurons whose receptive field lies along a line (A), and the complex neuron receives

feedforward inputs from a group of simple neurons that have identical orientation selectivity

but different receptive field (B). As a result, the simple neuron exhibits non-invariant orien-

tation selectivity and responds only when the optimally oriented stimulus is placed at certain

location in its receptive field, whereas the complex neuron exhibits invariant orientation selec-

tivity and responds to any optimally oriented stimulus that falls in its receptive field. Figure

adapted from [7].

This example of orientation selectivity illustrates how the visual cortical neurons are able

to extract visual features and respond selectively to extracted features, through feedforward

visual processing. Via similar mechanisms, the visual cortical neurons get to develop selec-

tivity for visual features with progressive levels of abstraction and complexity along cortical

hierarchy [35, 36]. For example, whereas the neurons in V1 respond to rather simple visual

features such as orientation, the neurons in V2 start to exhibit selectivity for more complex vi-

sual features such as disparity, and the neurons higher up respond to even more complex visual
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features such as faces and objects.

Therefore, the feedforward visual processing, mediated by the vertical connections be-

tween cortical layers, gives rise to the feature selectivity of visual cortical neurons. Yet, the

visual cortical neurons are interconnected not only by vertical connections between cortical

layers, but also by lateral connections within cortical layers [7, 37, 38]. These lateral con-

nections play an important role in modulating the feature selectivity of visual cortical neurons.

Specifically, the lateral inhibitory connections ensure that the visual cortical neuron does not re-

spond to visual features other than the one that it exhibits selectivity for. Such lateral inhibition,

in turn, sharpens the feature selectivity of visual cortical neurons. Intriguingly, within each cor-

tical layer, the visual cortical neurons are distributed in an orderly fashion where neighboring

neurons exhibit selectivity for similar (but not identical) visual features [39, 40, 41, 42, 43].

Consequently, the lateral inhibition is able to take place locally between neighboring neurons,

and does not require the development of long-distance lateral connections. As such, the orderly

distribution of visual cortical neurons facilitates the sharpening of feature selectivity and saves

the materials of cortical connections.

In summary, via cortical processing, the center-surround receptive field of retina and LGN

neurons gives rise to the feature selectivity of visual cortical neurons. As a result of such

feature selectivity, a stimulus in the visual field will activate only a fraction of all the visual

cortical neurons whose receptive field it falls in. Moreover, the more complex the stimulus is,

the larger fraction of neurons it will activate. For example, a face stimulus will activate not

only the object-selective neurons in high-level visual cortices that respond to the face identity,

but also the orientation-selective neurons in low-level visual cortices that respond to the face

contours; by contrast, an oriented line will activate only the orientation-selective neurons in

low-level visual cortices. Such a match between the level of stimulus complexity and the num-

ber of activated neurons allows the visual system to encode the maximum amount of visual

information with the minimum spent of metabolic energy. In this sense, the feature selectivity,

similar to the center-surround receptive field, results naturally from the visual system’s ten-

dency to maximum its energy efficiency, and results naturally in the diversity and complexity

of visual neural responses. It is due to such emergence of response diversity and complex-

ity that the seemingly identical neural signals from phototransduction get to produce radically

different perceptual experiences.
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1.4 Exploring the neurobiological basis of perceptual variability

Our existing knowledge of the visual system, as discussed above, suggests that the exter-

nal light signal generates the internal perceptual experience via a chain of visual processing,

including transduction of light signal into neural signal by photoreceptor cells, development of

center-surround receptive field at retina, and emergence of feature selectivity in visual cortices.

These visual processing gives rise to the diversity and complexity of visual neural responses,

which in turn enable the induction of rich perceptual experience from the seemingly simple

light signal, and the induction of different perceptual experience in different individuals.

As such, inter-individual differences in perceptual experience are likely to arise neurobi-

ologically from inter-individual variability in visual processing. Inter-individual variability in

visual processing, on the other hand, may have its basis in visual cortical anatomy. In essence,

the cortex is a tissue sheet that is anatomically composed of interconnected layers, and mor-

phologically characterized by cortical thickness and cortical surface area. The visual cortical

processing takes place via the intracortical connections that run vertically between cortical lay-

ers and laterally within cortical layers. The vertical connections and the lateral connections,

in turn, scale with the cortical thickness and the cortical surface area [44, 45]. Therefore, the

two morphological dimensions, the thickness and the surface area, of visual cortices, may get

to affect visual processing via their covariance with intracortical connections.

In this sense, inter-individual differences in visual perception may arise ultimately from

inter-individual variability in visual cortical anatomy. Indeed, parallel to inter-individual vari-

ability in subjective visual perception, the objective visual cortical anatomy also exhibits a

substantial degree of variability. For example, the size of early visual cortices (V1, V2, V3)

varies across healthy human adults over three-fold and is regulated by a set of genes including

GPCPD1 and MECP2 [46, 47, 48, 49, 50]. Moreover, the two dimensions of cortical anatomy,

the cortical surface area and the cortical thickness, are modulated by independent genetic fac-

tors [46, 51, 52, 53, 54, 55, 56, 57, 58]. The genetic independency between cortical surface

area and cortical thickness is predicted by radial unit hypothesis, which suggests that the cor-

tical surface area is dependent on the proliferation of cortical columns whereas the cortical

thickness is dependent on the cell divisions within the cortical column [46].

As such, the origin of anatomical variability is relatively well studied. By contrast, the

consequence of anatomical variability is less studied. It remains unclear whether the vari-

ability in visual cortical anatomy serves any function, perceptually or neurally. Possibly, as
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a natural consequence of genetic variability, the visual cortical anatomy exhibits a substantial

degree of inter-individual variability, which gives rise to inter-individual differences in visual

cortical processing that shapes visual perception. In my thesis, I explore the contributions of

visual cortical processing and visual cortical anatomy to inter-individual perceptual variability,

with a particular focus on primary visual cortex (V1). This choice of focus is motivated by the

recent advances in magnetic resonance imaging (MRI), which offer a fine measure for human

V1, including the delineation of V1 boundary, the characterization of V1 morphology, and

the estimate of V1 intracortical connectivity. While these measures are still at the macro-level,

neurophysiology studies on animal models have revealed the micro-level anatomy and function

of V1, which allow one to link the macro-level observations with the micro-level mechanisms.

By contrast, our knowledge about higher visual cortices remains rather limited, both at the

micro-level and at the macro-level.

I began my thesis by studying the extent to which perception of elementary visual fea-

tures (orientation, visual field location, contrast, luminance) varied across healthy human adults

(Chapter Three). I then studied how such inter-individual variability in subjective visual feature

perception related with objective visual cortical anatomy, and specifically, with the surface area

(Chapter Four) and the thickness (Chapter Five) of early visual cortices. Based on these empir-

ical observations, I applied computational model to examine whether the relationships between

visual feature perception and visual cortical anatomy were in fact mediated by the scaling of

intracortical connections (Chapter Six). The computational model suggested that the scaling

of intracortical connections affected the feature selectivity of visual cortical neurons that in

turn mediated the relationships between visual feature perception and visual cortical anatomy.

These predictions from the computational model were tested empirically, where I explored the

dependence of neural feature selectivity on visual cortical anatomy (Chapter Seven) and the

dependence of visual feature perception on intracortical connections (Chapter Eight).

Taken together, my thesis revealed that the individuality in visual feature perception arose

from inter-individual differences in visual cortical anatomy, where the links between visual cor-

tical anatomy and visual feature perception were built gradually through intracortical connec-

tions and neural feature selectivity. My thesis involved a combined approach of psychophysics,

in-vivo MR imaging, in-vitro histological imaging, and computational modeling. In the next

chapter (Chapter Two), I review how recent advances in MR imaging have allowed a fine mea-

sure of visual cortical anatomy and visual cortical processing.



Chapter 2

General Method

2.1 The hardware: acquisition of magnetic resonance image

2.1.1 MRI scanner composition

To study the neurobiological basis of inter-individual variability in visual perception, it is

essential to acquire a noninvasive measure of human visual cortices. This is made possible by

the invention of magnetic resonance imaging (MRI), a radiology technique that measures the

anatomy and the physiology of a tissue sample (e.g., visual cortices) in vivo through the appli-

cation of magnetic fields and radio waves [59]. In the field of cognitive neuroscience, MRI is

widely applied to acquire the noninvasive MR image of brain anatomy and brain activity [60].

Before discussing how knowledge of visual cortices can be gained from the analysis of MR

image (the software), I will first discuss how the MR image is acquired from the MRI scanner

(the hardware).

The basic parts of a MRI scanner include a superconducting magnet that generates a static

magnetic field, two radiofrequency coils (transmitter coil, receiver coil) that collect the MR

signal, three gradient coils (X-gradient coil, Y-gradient coil, Z-gradient coil) that provide the

spatial information for the MR signal, and several shimming coils that ensure the uniformity of

the magnetic field [61]. The superconducting magnet generates a strong, static magnetic field

that aligns the atomic nuclei in the tissue sample and results in their equilibrium state. The

radiofrequency transmission coil, on the other hand, generates a radiofrequency pulse at the

resonant frequency of the atomic nuclei that perturbs their equilibrium state. This process, dur-

ing which the atomic nuclei absorb the radiofrequency energy and break the equilibrium state,

is known as excitation [62]. When the radiofrequency pulse ends, the atomic nuclei return to

the equilibrium state and release the absorbed energy. The released energy is received by the
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radiofrequency receiver coil and forms the MR signal.

The MR signal alone does not contain any spatial information of which location in the

space that the signal comes from, and cannot be used to form the MR image. The gradient

coils, which generate the spatial variations in the magnetic field, provide the spatial informa-

tion needed for imaging [61]. In essence, the gradient coils cause the MR signal to become

spatially dependent in a controlled manner where different locations in the space contribute

differently to the MR signal [63]. This spatial information can then be reconstructed from the

MR signal using the Fourier transform [64]. To make the image reconstruction as simple as

possible, three gradient coils are typically applied where each gradient coil generates the spa-

tial variation in the magnetic field along one single direction (X, Y, Z). For the accuracy of

image reconstruction, the spatial variation generated by the gradient coils needs to be linear,

and the magnetic field generated by the superconducting magnet needs to be homogeneous.

However, these are rarely the case in reality, and the shimming coils are applied to compensate

for the spatial inhomogeneity in the magnetic field [61].

In summary, the four parts of a MRI scanner, the superconducting magnet, the radiofre-

quency coils, the gradient coils, and the shimming coils, work together to produce the MR

signal containing spatial information of brain anatomy and brain activity. The signal quality is

dependent on the amount of radiofrequency energy transmitted and received, which is in turn

dependent on the distance between the radiofrequency coils and the tissue sample. Typically,

the radiofrequency coils are placed either adjacent to the scalp surface on the brain-region-of-

interest (surface coil) or further from the scalp surface surround the entire brain (volume coil).

The surface coil offers a high signal quality but has a poor spatial coverage. The volume coil,

by contrast, provides a uniform coverage for a large tissue volume but is traded-off by a poor

signal quality.

2.1.2 MRI image formation

To understand how exactly the MR image is formed [65], it is necessary to explain the

physics underlying the MR signal and introduce the concept of nuclear spin. The spin is a

type of angular momentum that is carried by the atomic nuclei. Under natural condition, the

thermal energy causes the atomic nuclei to spin about itself. By contrast, the application of

an external magnetic field causes the spins to exhibit rapid gyroscopic precession around the

axis parallel to the magnetic field (the longitudinal direction) and in the plane orthogonal to

the magnetic field (the transverse plane). If the external magnetic field is static, such as the
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one generated by the superconducting magnet, each spin will adopt either a low-energy state

or a high-energy state, and the net magnetization across all spins will be along the longitudinal

direction. If instead, a radiofrequency pulse is applied, such as the process of excitation, the

net magnetization will be tipped from the longitudinal direction into the transverse plane. Once

the radiofrequency pulse ends, the net magnetization will recover from the transverse plane to

the longitudinal direction.

These physical processes can be captured by a single formula [66], known as the Bloch

equation.

dM/dt = γM(B0 +B1 +G) + (M0 −Mz)/T1 − (Mx +My)/T2 (2.1)

In the equation, B0 denotes the static magnetic field generated by the superconducting mag-

net, B1 denotes the radiofrequency field generated by the radiofrequency coils, G denotes

the spatially varying magnetic field generated by the gradient coils, and M denotes the net

magnetization. The net magnetization M can be broke down into the transverse component

(Mx+My) that is orthogonal to the magnetic field, and the longitudinal component Mz that is

parallel to the magnetic field. Following the excitation process where the net magnetization is

tipped from the longitudinal direction into the transverse plane, the longitudinal magnetization

is zero and the transverse magnetization is maximum. The recovery of longitudinal magnetiza-

tion from zero to maximum is governed by time constant T1, whereas the decay of transverse

magnetization from maximum to zero is governed by time constant T2.

Such decay of transverse magnetization (Mx +My) is detected by the radiofrequency re-

ceiver coil and forms the MR signal. However, because the MRI scanner does not have separate

receiving coils for individual voxels but has only one receiver coil, the MR signal reflects the

transverse magnetization summed across all voxels in the tissue volume and contains no spatial

information about the contribution of different voxels in the tissue volume [61]. Due to the lack

of such spatial information, the MR signal on its own cannot form the MR image. The forma-

tion of MR image requires the application of spatially varying magnetic gradients generated

by the gradient coils [63]. Specifically, three gradient coils, X-gradient coil, Y-gradient coil,

Z-gradient coil, are used together to create magnetic gradients along X, Y, and Z directions,

respectively. The three gradient coils cause the static magnetic field to vary across the body,

so that different spatial locations are associated with different precession frequencies. Such

spatial information is then encoded in K-space representation of MR signal, and is converted



2.1. The hardware: acquisition of magnetic resonance image 28

into spatially informative MR image through Fourier transform [64].

In summary, the formation of MR image takes place via the joint efforts of the radiofre-

quency pulse generated by the radiofrequency coils and the spatially varying magnetic gradi-

ents generated by the gradient coils. The radiofrequency pulse causes the net magnetization to

tip from the longitudinal direction into the transverse plan, and as such, gives rise to the MR

signal that can be detected by the radiofrequency coil. The spatially varying magnetic gradi-

ents cause different voxels in the tissue volume to have different contribution to the MR signal,

and as such, enable the encoding of spatial information in the MR signal. Through the Fourier

transform, this spatial information is extracted from the MR signal and forms the MR image.

2.1.3 MRI contrast selection

The series of radiofrequency pulses and spatially varying magnetic gradients used by the

MRI scanner is known as a pulse sequence [67], which determines the type of MR image be-

ing acquired. In this sense, the MR image is not a photograph of the tissue sample per se but

is instead a spatial map depicting some properties related with the spins in the tissue sample

[59, 60]. Depending on the exact pulse sequence used, the MR image can be acquired where the

image intensity reflects specific tissue properties such as the density of the spins or the rate of

change in the net magnetization, and the image contrast distinguishes between specific tissues

types such as between low proton density and high proton density or between gray matter and

white matter. The design of pulse sequence for capturing the tissue-property-of-interest consti-

tutes the concept of MR contrast selection. Typically used in the field of cognitive neuroscience

are the T1- or T2-contrast MR image that reveals the brain anatomy, and the blood-oxygen-

level dependent (BOLD) MR image that reveals the brain activity.

To reveal the brain anatomy, the T1- or T2-contrast MR image relies on the differences

across brain tissues (gray matter, white matter, cerebrospinal fluid) in the magnetization change

after the excitation process where the net magnetization is tipped from the longitudinal di-

rection into the transverse plane [59]. Specifically, the T1-contrast MR image measures the

differences across brain tissues in the recovery of longitudinal magnetization, whereas the T2-

contrast MR image measures the differences across brain tissues in the decay of transverse

magnetization. In the T1-contrast MR image, the gray matter has medium intensity (appears

as gray), the white matter appears has high intensity (appears as white) and the cerebrospinal

fluid has low intensity (appear as black). In the T2-contrast MR image, the gray matter has

medium intensity (appears as gray), the white matter has low intensity (appears as black), and
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the cerebrospinal fluid has high intensity (appears as white).

To reveal the brain activity, the blood-oxygen-level dependent (BOLD) MR image relies

on the consumption of metabolic energy by the information-processing activity of neurons

[68, 69]. Specifically, the BOLD signal measures the change in magnetic properties of wa-

ter molecules that reflects the influence of paramagnetic deoxyhemoglobin, while deoxyhe-

moglobin is itself a physiological correlate of oxygen consumption that is in turn driven by

the neural activity (Figure 2.1). The exact neurovascular events that link the neural activity to

the hemodynamic activity are as follows [70]. The activity of neurons consists of the change

in membrane potential and the release of neurotransmitter, both of which is supported by the

movements of ions across neural membrane. The restoration of ions concentration level fol-

lowing the neural activity consumes most of the brain’s metabolic energy. Such metabolic

energy is supplied to the active neurons in the form of adenosine triphosphate (ATP). How-

ever, since the brain does not store metabolic energy, it has to synthesis ATP on site through

the oxidation of glucose, and both oxygen and glucose are carried by the increased blood flow.

Such increase of blood flow and oxygen delivery flushes deoxyhemoglobin from blood vessels.

Because deoxyhemoglobin molecules generate magnetic field gradients that alter the spins of

nearby water molecules, the displacement of deoxyhemoglobin in turn leads to a local increase

in MR signal. This chain of neurovascular events allows the inference of neural activity, which

is difficult to measure noninvasively in human participants, from the MR image of hemody-

namic activity.

In summary, the choice of multiple image contrast or multiple pulse sequence renders

magnetic resonance imaging an extremely versatile technique. Using it, noninvasive brain im-

age can be acquired that emphasize contrast due to different tissue properties. This in essence

allows the same MRI scanner to serve different purposes and reveal different aspects of the

brain. In particular, the MRI scanner can be used to reveal the brain anatomy, based on the dif-

ferences across brain tissues in the magnetization change after the radiofrequency excitation, or

to reveal the brain activity, based on the local displacement of paramagnetic deoxyhemoglobin

induced by neural activity.

2.2 The software: analysis of magnetic resonance image

2.2.1 Delineation of visual cortical boundary

As discussed above, the MRI scanner allows the acquisition of MR image that reflects the

brain activity or the brain anatomy. However, the MR image on its own cannot reveal much
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Figure 2.1: Relationship between neural signal and MR signal. Illustrated here is the chain of

neurovascular events that link the underlying neural activity, which is difficult to measure in

human participants, to the hemodynamic activity, which can be measured noninvasively from

the MR BOLD signal. Figure adapted from [59].

about either visual cortical processing or visual cortical anatomy. To gain a deep understanding

of visual cortices from the MR image, one needs the appropriate experiment paradigm and the

corresponding data analysis method. I will therefore discuss how the recent advances in MRI

have provided us with such techniques, beginning from the noninvasive delineation of visual

cortical boundary. Indeed, before being able to measure any properties of visual cortices, the

boundaries of visual cortices need to be delineated accurately. As such, the noninvasive delin-

eation of visual cortical boundary forms the basis of any further visual cortical measures.

The delineation of visual cortical boundary is based on the orderly representation of vi-

sual field in visual cortices, where cortically adjacent neurons respond to spatially adjacent

visual field locations [71, 72, 73, 74]. The orderly representation is known as retinotopic map,

meaning the map of retina. In essence, the retinotopic map reflects the hierarchy of visual

processing, where the retina that resides at the bottom of visual hierarchy feedforwards its or-

derly representation of visual field to the rest of visual system. As a result, each visual cortex,

low-level or high-level, contains a retinotopic map whose boundary defines the visual corti-
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cal boundary [74, 75, 76, 77]. This property, in turn, allows the delineation of visual cortical

boundary from the measure of retinotopic map.

The retinotopic map is typically measured with respect to two orthogonal dimensions, po-

lar angle and eccentricity, that defines polar coordinate. Since its invention, the phase-encoded

method has served as the standard paradigm for retinotopic mapping in human participants

[71]. This method measures for individual visual cortical location (e.g., voxel), the visual field

location that elicits its largest response. In the experiment, two types of periodic visual stimuli

are used. The first stimulus, designed to elicit each voxel’s preferred polar angle, is a high-

contrast, flickering, wedge-shape checkerboard that spans the fovea to periphery along a small

range of specific polar angles, and rotates either clockwise or counterclockwise around the

central fixation (Figure 2.2A). The second stimulus, designed to elicit each voxel’s preferred

eccentricity, is a high-contrast, flickering, ring-shape checkerboard that spans a small range of

specific eccentricities, and expands or contracts along fovea to periphery (Figure 2.2B).

A B

Figure 2.2: Delineation of visual cortical boundary. To delineate the boundaries between early

visual cortices (V1, V2, V3), the method of phase-encoded retinotopic mapping is typically ap-

plied. In the method, a set of high-contrast, flickering, checkerboard patterns cycle through the

visual field along iso-eccentricity (A) or iso-polar-angle (B) lines. This reveals for individual

visual cortical location, its preferred polar angle (A) and its preferred eccentricity (B). From

the retinotopic map of polar angle preference, the boundaries between early visual cortices are

delineated as the mirror reversals in the polar-angle gradient. Figure adapted from [74].

In a single experiment run, only one stimulus is presented, and the visual field is cycled
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through several times with this stimulus. Such cycling creates a travelling wave of cortical

activity that travels from one end of retinotopic map to the other end, along the iso-eccentricity

or the iso-polar-angle lines (Figure 2.2). Thus, the phase of the peak response varies smoothly

across the visual cortical surface, and this phase defines the preferred polar angle or the pre-

ferred eccentricity for individual voxel. Such encoding of preferred visual field location in the

phase of cortical response gives the method the name of phase-encoded reinotopic mapping.

Notably, the phase-encoded method is not only capable of revealing the retinotopic organiza-

tion of visual cortices, but also ensures that only the retinotopically-organized cortical regions

get activated. As such, the retinotopic map has a high signal-to-noise ratio, which in turn en-

ables the accurate localization of visual cortices.

To visualize the reinotopic map, a color-coded scheme is usually applied where the color

represents the preferred polar angle or the preferred eccentricity. As illustrated in the color-

coded eccentricity map (Figure 2.2B), the foveal representation of early visual cortices (V1,

V2, V3) is positioned at the occipital pole, with more peripheral representation extending pro-

gressively into more anteromedial cortex and forming an eccentricity gradient. The color-

coded polar-angle map (Figure 2.2A), on the other hand, illustrates the topological relationship

between early visual cortices. In particular, V1 has a contiguous polar angle gradient that rep-

resents the full hemifield, whereas both V2 and V3 are constituted of split polar angle gradients

that bound V1 dorsally or ventrally (V2d, V2v, V3d, V3v) and represent the lower or upper

visual quarterfield. Thus, the boundaries between V1, V2, V3 can be delineated according to

the mirror reversals in the polar-angle gradient [71].

In summary, the retinotopic organization of visual cortices, where the visual cortical neu-

rons that respond to adjacent visual field location are also adjacent on the cortical surface

[73, 74], allows the delineation of visual cortical boundary from the retinotopic map. To ac-

quire the retinotopic map, the phase-encoded method is standardly applied where a periodic

visual stimulus moves smoothly in the visual field along iso-eccentricity or iso-polar-angle

lines. This reveals for individual visual cortical location, its preferred visual field location,

defined in polar coordinate by eccentricity and polar angle. Based on the retinotopic map of

polar angle preference, the boundaries of early visual cortices (V1, V2, V3) are delineated as

the mirror reversals in the polar-angle gradient.
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2.2.2 Characterization of visual cortical morphology

Using the method of phase-encoded retinotopic mapping, the boundaries of early visual

cortices (V1, V2, V3) can be delineated accurately yet noninvasively from the MR image of

brain activity. This allows the measure of cortical morphology (cortical thickness, cortical sur-

face area) for the delineated visual cortices, from the MR image of brain anatomy. However,

the original MR image of brain anatomy, acquired directly from the MRI scanner, is in the

three-dimensional volume space. Yet, the cerebral cortex is a two-dimensional, highly folded

tissue sheet [46], whose morphology can only be properly measured in the two-dimensional

surface space. In order to measure the human visual cortical morphology, it is essential to re-

construct the two-dimensional surface representation from the three-dimensional volume data,

for individual participants in an automated analysis.

The reconstruction of two-dimensional cortical surface is a complex task that requires the

solution to a number of subtasks, such as intensity normalization, skull stripping, spatial filter-

ing, tissue segmentation, and surface deformation. Such tasks are made soluble by the recent

advances in MRI analysis, and the solutions are implemented in software such as Freesurfer

[78, 79]. Specifically, the surface-based analysis in Freesurfer involves tissue segmentation

(where the original MR image of brain anatomy is segmented into different brain tissues), sur-

face reconstruction (where the cortical surface is reconstructed from the tissue segments), and

morphology calculation (where the cortical thickness and the cortical surface area is calculated

from the surface reconstruction).

First, the raw MR image of brain anatomy goes through intensity normalization that com-

pensates the influence of inhomogeneous magnetic field, and skull stripping that removes extra-

cerebral voxels. The pre-processed image is then segmented into different brain tissues (gray

matter, white matter, cerebrospinal fluid) using a procedure that combines intensity-based tis-

sue classification and plane-of-least intensity variance detection. Based on the prior informa-

tion that the locally planer structure sits on the border between different tissues, the plane-of-

least variance detection complements the intensity-based classification by resolving the clas-

sification of voxels with ambiguous intensity. The series of tissue segmentation procedure

overcomes the common problems of partial volume, radiofrequency field inhomogeneity, and

magnetic susceptibility artifacts.

After the tissue segmentation, the two cerebral hemispheres are partitioned and any in-

terior holes in the white matter segments are filled, resulting in a single filled white matter
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segment for each hemisphere. Then, this white matter segment is covered with triangular tes-

sellation that produces smooth triangle-mesh representations of the white and the pial surfaces

with subvoxel accuracy. A triangle-mesh is a collection of vertices (points), edges (connec-

tions between vertices) and triangle faces (closet sets of three edges) that defines the shape of a

three-dimensional object in geometric modeling. Two triangle faces are used to represent each

voxel face (i.e., square face) at the white / gray matter border, and the resulting triangle tes-

sellation is smoothed with deformable surface algorithum to reconstruct the white and the pial

surfaces. Notably, because the size of a single MRI voxel is smaller than the cortical thickness,

the trillinear interpolation used in deformable surface algorithm allows the cortical surface to

be reconstructed with subvoxel and submillimeter accuracy.

From the surface reconstruction, the cortical thickness is computed as the vertical distance

between the white and the pial surfaces for individual location (vertex) in a cortical region,

while the cortical surface area is computed as the summed surface area of all triangle faces in

a cortical region. To enable such morphology calculation, a surface-based coordinate system

is built by transforming the convoluted cortical surface into a spherical surface. The use of a

spherical surface allows the preservation of the topological structure (local connectivity) in the

original cortical surface. This is in contrast to the use of a flattened surface, which requires cuts

to be introduced prior to flattening. These cuts would change the topological structure of the

cortical surface, where the points that are adjacent on the original cortical surface but reside

on the opposite sides of a cut would become far apart in the final flattened surface. Yet at the

same time, the choice of a spherical surface retains the computational easiness of a flattened

space and facilitates the calculation of morphological properties (distances, areas, angles) that

are difficult to compute on less symmetric surfaces.

In summary, the characterization of cortical morphology (cortical thickness, cortical sur-

face area) is realized through the automated surface-based analysis implemented in software

such as Freesurfer [78, 79]. In the analysis, the original MR image of brain anatomy is seg-

mented into different brain tissues (gray matter, white matter, cerebrospinal fluid). From the

gray matter and the white matter segments, the cortical surface is reconstructed as a triangle-

mesh, where each vertex of the mesh represents a single cortical location distinguishable by

MRI. Based on the cortical surface reconstruction, the thickness at individual visual cortical

locations (vertices) and the surface area summed over different visual cortical locations are

calculated.
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2.2.3 Estimate of visual cortical connectivity

Similar to the measure of visual cortical morphology, the measure of visual cortical con-

nectivity is made possible by the recent advances in MRI analysis, such as the Dynamic Causal

Modeling (DCM) analysis. DCM analysis provides a validated measure of effective con-

nectivity, which reflects the directional connectivity from one neural population to another

[80, 81, 82]. The concept of effective connectivity is to be distinguished from the better-known

concept of functional connectivity, which reflects the statistical dependence between the activ-

ities of two neural populations. Effective connectivity and functional connectivity are two em-

pirically dissociable measures suitable for addressing different questions [82, 83, 84, 85, 86].

Specifically, functional connectivity is a descriptive measure of the statistical relation-

ships in the observed data (e.g., BOLD signal) with no inferences about the underlying causes

(e.g., neural connectivity). However, the statistical dependence between the activities of two

neural populations can arise from confounding causes, such as shared inputs, other than the

underlying neural connectivity [82, 83, 84]. By contrast, the concept of effective connectivity

originates from the field of single-unit electrophysiology, as an attempt to disambiguate the ef-

fects of confounding causes from those induced by the underlying neural connectivity [85, 86].

It refers explicitly to the directional connectivity from one neural population to another, and

represents inference of the causes (e.g., neural connectivity) underlying the observed data (e.g.,

BOLD signal). As such, the measure of effective connectivity rests upon the comparison be-

tween different models that hypothesize different causes (e.g., different neural connectivity).

The different nature of the two measures, inferential for effective connectivity and descrip-

tive for functional connectivity, determines the types of questions that each measure is suitable

for addressing [82]. The analysis of effective connectivity recapitulates the scientific process of

hypothesis testing, where one tests different models, each incorporating a hypothesis of neural

connectivity, that are made to explain the observed data. For example, DCM analysis is typ-

ically applied to making inferences about the changes in neural connectivity under different

experimental conditions such as different visual stimuli, by testing models with or without an

effect of experimental manipulation on neural connectivity. In contrast to the inferential nature

of effective connectivity, functional connectivity is a descriptive parameter of the statistical

relationships in the observed data. In functional connectivity analysis, no hypothesis of neural

connectivity is tested; instead, the hypothesis tested is statistical dependency versus no depen-

dency [82]. In this sense, functional connectivity can be used for identifying statistical patterns

(e.g., covariance network) in the data, but not for drawing inference about the underlying neu-
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ral connectivity.

To make inferences concerning the underlying neural connectivity from the observed

BOLD signal, DCM analysis models the links between neural connectivity and BOLD signal

via hemodynamic state equations and neural state equations. The hemodynamic state equa-

tions describe the neurovascular mechanisms that link the BOLD signal to the neural activity

[87], whereas the neural state equations describe how the activity of one neural population is

modulated by the directional connectivity from another neural population multiplied by the

activity of that neural population [88]. Different models incorporating different hypothesis of

neural connectivity are constructed, and Bayesian model comparison is applied to select the

model with the highest posterior probability [82, 89].

The posterior probability of a model is a function of its prior probability and its model

evidence. The model evidence quantifies the probability of the observed data given the model.

It is a reflection of both how accurate the model fits the data (the more accurate, the higher

the model evidence) and how simple the model structure is (the simpler, the higher the model

evidence). The model evidence can be approximated by Free Energy (FC), Akaike’s Infor-

mation Criterion (AIC), or Bayesian Information Criterion (BIC), and free energy is used in

DCM analysis as an approximation to model evidence [90]. The prior probability is specified

to indicate prior knowledge about the plausibility of model structure. When there exists no

strong prior against or for specific models, different models are given equal prior probabilities

and their posterior probability effectively reflects their model evidence. Due to the nature of

Bayesian model comparison, the models with implausible structure, even when included in the

model space and given the same prior probability as the other models, would be less explana-

tory of the empirical data and have lower posterior probabilities.

In summary, DCM analysis offers an estimate of effective connectivity, which reflects the

casual influence that the activity of one neural population has on another [81, 82]. For this

purpose, DCM models implement neural state equations and hemodynamic state equations to

link neural connectivity to neural activity and in turn to BOLD signal. Usually, several dif-

ferent models are constructed that incorporate different hypothesis of neural connectivity, and

Bayesian model comparison is applied to select the model with the highest posterior probabil-

ity. Whereas the classical functional connectivity analysis is suitable for describing the statis-

tical relationships in the BOLD signal, the DCM effective connectivity analysis is suitable for

making inferences of the neural connectivity underlying the BOLD signal.



Chapter 3

Variability in Visual Feature Perception

3.1 Introduction

Living in the same objective world, we tend to assume that our subjective perception of this

world is also more or less similar across individuals. Yet, a close look at many of our perceptual

experiences suggests that this is not the case. Individuals differ in their visual perception just

as much as they do in higher-level cognitive functions such as memory and decision-making.

The topic of perceptual variability is not very well addressed in neuroscience literatures [2, 3],

where most studies focus on the commonality in perceptual experiences across individuals and

treat inter-individual variability as a pure source of noise. Consequently, not much is known

about the extent to which subjective perception of the objective world varies among healthy

human adults, and even less is known about the neurobiological basis of such perceptual vari-

ability.

In this chapter, I explored perceptual variability in healthy human adults. Given the di-

versity of visual stimulation in the external environment, visual perception has multiple levels

of complexity, ranging from perception of elementary visual features such as luminance and

contrast to perception of complicated visual images such as faces and houses. Regardless of

the exact complexity level, any given visual stimulation can usually be decomposed into ele-

mentary visual features through a combined approach of filtering and independent component

analysis [91, 92, 93, 94, 95]. The neural processing of elementary visual features is relatively

well studied, allowing one to explore how the variability in subjective perception of elementary

visual features stems from the objective neural processing. Therefore, I focused my study on

the perceptual variability of elementary visual features.

Different elementary visual features can be divided into different categories according to

the neural response patterns. Specifically, the response of visual cortical neurons to orienta-
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tion or visual field location is a Gaussian-shaped function where the neural firing rate is the

highest for the preferred orientation or the preferred visual field location; moreover, the neural

response is arranged in an orderly cortical representation where neurons responding to more

similar orientations or more similar visual field locations are more likely to be intracortically

connected (Figure 3.1) [37, 38, 43]. Conversely, the response of visual cortical neurons to

contrast is a monotonic function where the firing rate increases monotonically with stimulus

contrast, and is arranged without any orderly cortical representation (Figure 3.1) [37, 96, 97].

As a third category, visual cortical neurons respond to luminance in a Gaussian-shaped func-

tion with no orderly cortical representation (Figure 3.1) [37, 97, 98]. These neural response

patterns are largely based on observations in animal models. Nevertheless, limited studies in

human participants hint towards similar patterns [41, 71]. The distinct patterns of neural re-

sponse to different elementary visual features allow one to explore whether perception of these

visual features also exhibits different patterns of variability. Therefore, I studied the perceptual

variability for a variety of elementary visual features - orientation, visual field location, con-

trast, and luminance - that covered three different categories of neural response patterns.

Perception of elementary visual features has two key aspects to it - local feature perception,

as assessed from visual discrimination of local feature details [2, 99], and global feature percep-

tion, as assessed from visual illusion induced by global feature contexts [100, 101, 102]. These

two aspects of visual perception correspond very well with two key properties of visual neural

response - the response selectivity for local details [36, 38, 43, 96, 98, 103] and the response

modulation by global contexts [30, 104, 105, 106, 107]. As such, local and global perception

of elementary visual features may very well represent neural-based personal traits, allowing

one to explore the neurobiological basis of inter-individual perceptual variability. Therefore, I

studied the variability across individuals in local and global perception of orientation, contrast,

and luminance.

Local perception of feature details varies not only across individuals, but also within indi-

viduals across the visual field, as assessed by the differences in visual discrimination threshold

between different visual field locations [99]. The exact pattern of intra-individual perceptual

variability, on its own, may be unique for each individual and represent a personalized per-

ceptual fingerprint. This allows one to explore whether intra-individual perceptual variability

shares the same neurobiological basis with, or have a different neurobiological basis to, inter-

individual perceptual variability. Therefore, apart from studying the variability across individ-
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Figure 3.1: Neural response to elementary visual features. Neurons in early visual cortices

respond to different elementary visual features in different patterns, where the response is a

Gaussian-shaped function for orientation, visual field location, or luminance, and a mono-

tonic function for contrast (A). The cortical representation of neural response also differs

across elementary visual features (B). In particular, the orientation preference or the visual

field location preference has an orderly cortical representation where intracortical connec-

tivity correlates with the similarity in preferred orientation or preferred visual field location

between connected neurons; conversely, the contrast preference or the luminance preference

has a randomized cortical representation where there exists no systematic relationship between

intracortical connectivity and neural feature selectivity (C).

uals, I also studied the variability within individuals in local perception of visual field location.

Taken together, in this chapter, I explored the perceptual variability in healthy human

adults with three specific aims. First, I studied to which extent local and global perception of

elementary visual features varied across and within individuals. Then, I tested whether such

perceptual variability represented robust personal traits or was dependent on nuisance factors
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such as the experimental paradigm. Last, I addressed how the perceptual variability differed

between different categories of elementary visual features that had different neural response

patterns. To this end, I assessed the variability across individuals in perception of orientation,

contrast, and luminance, by measuring the visual discrimination threshold and the contextual

illusion magnitude at the visual field center (fovea). I also assessed the variability within indi-

viduals in perception of visual field location, by measuring the location discrimination thresh-

old at different visual field locations.

3.2 Methods

3.2.1 Participants and Apparatus

A group of forty-five healthy participants (aged 21 to 35, twenty females, twenty-five

males) gave written informed consent to take part in the experiments measuring the percep-

tual variability across individuals, and a second group of twenty healthy participants (aged

19 to 34, ten females, ten males) gave written informed consent to take part in the experi-

ments measuring the perceptual variability within individuals. All participants had normal or

corrected-to-normal vision and no neurological history. All experiments were approved by the

UCL ethics committee.

The psychophysics experiments took place in a dark room where the computer monitor

provided the only significant source of light. The visual stimuli were presented on the com-

puter monitor and viewed through a chin and forehead rest. For the display, I sought to use a

monitor with a high spatial resolution (i.e., a small pixel size) that improved the measurement

accuracy, as well as a large visual field coverage that facilitated the measure of intra-individual

perceptual variability. However, there is a natural trade-off between the spatial resolution and

the visual field coverage of any display. Consequently, I applied two different displays, a 17

inch monitor (size = 34.2 x 27.5 cm, viewing distance = 3 m, resolution = 1280 x 960 pixels)

that offered a high spatial resolution (pixel size = 0.005 degree of visual angle) yet a limited

visual field coverage (radius = 2.4 degree of visual angle), and a 22 inch monitor (size = 41 x

30.6 cm, viewing distance = 67 cm, resolution = 2048 x 1536 pixels) that offered a large visual

field coverage (radius = 12.9 degree of visual angle) yet a limited spatial resolution (pixel size

= 0.017 degree of visual angle). I used the 17 inch monitor for the measures at the visual field

center, and the 22 inch monitor for the measures at the peripheral visual field.
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3.2.2 Inter-individual variability in global feature perception

To assess inter-individual variability in global feature perception, I measured the mag-

nitude of visual contextual illusion for orientation (tilt illusion), contrast (contrast-contrast

illusion), and luminance (simultaneous brightness contrast illusion), in separate experiments

(Figure 3.2A). Uniform gray stimuli that contained no contrast and no orientation were used in

the luminance experiments; low-pass filtered white noise stimuli that contained no orientation

and had constant average luminance were used in the contrast experiments; sinusoidal grating

stimuli (spatial frequency =1.5 cycles per degree of visual angle) that had constant contrast

(full contrast) and constant average luminance were used in the orientation experiments.

Luminance contextual illusion

Contrast contextual illusion

Orientation contextual illusion

A

Luminance discrimination

Contrast discrimination

Orientation discrimination

B C

Location discrimination

Figure 3.2: Psychophysics measure of perceptual variability. Inter-individual variability in

global feature perception was assessed using visual contextual illusion for orientation, con-

trast, and luminance, in three separate experiments (A). Inter-individual variability in local

feature perception was assessed using visual discrimination for orientation, contrast, and lu-

minance, in three separate experiments (B). Intra-individual variability in local feature per-

ception was assessed using visual discrimination for visual field location, in thirteen separate

experiments that took place at thirteen non-overlapping visual field locations (C).

The orientation, contrast, and luminance experiments differed only in the visual stim-

uli and shared the same experiment procedures. Specifically, I used the standard method of

constant stimuli with a temporal forced-choice task, where participants judged the parametric

difference between two sequentially presented visual stimuli at the visual field center. In a
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single experiment trial, two central circular stimuli (diameter = 1.5 degree of visual angle),

one with and one without a surrounding annular context (inner diameter = 1.5 degree of vi-

sual angle, outer diameter = 6 degree of visual angle), were presented in succession on the

computer monitor. The parametric difference between the surrounding context and the central

stimulus was optimized to reach the maximum contextual illusion. Specifically, in the orienta-

tion experiment, the surrounding context was tilted 15 degree from the central stimulus; in the

contrast experiment, the surrounding context had a contrast of 100% and the central stimulus

a contrast of 40%; in the luminance experiment, the surrounding context alternated between

black and white. The interval (first or second) where the surrounding context appeared was

randomized but counter-balanced across trials. The duration of each stimulus was 300 ms

and the inter-stimulus-interval was 500 ms. While maintaining central fixation throughout the

experiment, participants made an unspeeded forced-choice regarding whether the central stim-

ulus in the second interval, compared with the one in the first interval, was rotated clockwise

or anti-clockwise (orientation experiment), had higher or lower contrast (contrast experiment),

or had higher or lower luminance (luminance experiment).

Prior to the experiment, each participant performed four trials in which they manually ad-

justed the orientation, contrast, or luminance of the central stimulus presented in isolation till

it matched the perceived orientation, contrast, or luminance of the central stimulus presented

in the surrounding context. The parametric difference between the two central stimuli at the

point of perceptual equality reflected the adjustment-derived measure of contextual illusion

magnitude. In the subsequent experiment, the orientation, contrast, or luminance of the cen-

tral stimulus presented in the surrounding context was kept constant, while that of the central

stimulus presented in isolation was varied around this adjustment-derived point of perceptual

equality for seven different parametric values. In a single experiment, a total of 112 trials (16

trials per parametric value) were taken to produce a psychometric curve. The parametric dif-

ference between the two central stimuli at the 50% threshold point of the psychometric curve

where they appeared perceptually equal reflected the psychometric-derived measure of con-

textual illusion magnitude. The robustness of contextual illusion measure was addressed by

comparing the psychometric-derived measure with the adjustment-derived measure.

3.2.3 Inter-individual variability in local feature perception

To assess inter-individual variability in local feature perception, I measured the threshold

of visual discrimination for orientation, contrast, and luminance, in separate experiments (Fig-

ure 3.2B). Similar to the visual stimuli used in the contextual illusion experiments, uniform
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gray stimuli, low-pass filtered white noise stimuli, and sinusoidal grating stimuli were used for

the measure of luminance, contrast, and orientation discrimination threshold, respectively.

The orientation, contrast, and luminance experiments differed only in the visual stimuli

and shared the same experiment procedures. Specifically, I used the standard 2-up-1-down

staircase procedure with a temporal forced-choice task, where participants judged the para-

metric difference between two sequentially presented visual stimuli at the visual field center.

In contrast to the spatial forced-choice task where participants judge the parametric difference

between two concurrently presented stimuli at different visual field locations, the temporal

forced-choice task avoids the complication of spatial inhomogeneity between different visual

field locations [108]. However, for the measure of orientation discrimination threshold, the

application of temporal forced-choice task has the pitfall of confounding orientation discrim-

ination with visual field location discrimination, since participants may in theory use the lo-

cation of sinusoidal grating stripes as cues for orientation discrimination. Therefore, to test

whether the measure of orientation discrimination threshold was robust against the experimen-

tal paradigm, I conducted control experiments where I replaced the temporal forced-choice

task with a spatial forced-choice task.

For the temporal forced-choice task, in a single experiment trial, two central circular stim-

uli (diameter = 1.5 degree of visual angle), one with a constant parametric value (45 degree

for orientation experiment, 40% for contrast experiment, 50% of the monitor maximum lumi-

nance for luminance experiment) and the other a variable parametric value, were presented in

succession on the computer monitor. The interval (first or second) where the stimulus with a

constant parametric value appeared was randomized across trials. The duration of each stimu-

lus was 300 ms and the inter-stimulus-interval was 500 ms. While maintaining central fixation

throughout the experiment, participants made an unspeeded forced-choice regarding whether

the second stimulus, compared with the first one, was rotated clockwise or anti-clockwise (ori-

entation discrimination), had higher or lower contrast (contrast discrimination), or had higher

or lower luminance (luminance discrimination).

For the spatial forced-choice task, in a single experiment trial, a circle (eccentricity = 6.9

degree) of six sinusoidal grating stimuli (diameter = 2.8 degree of visual angle) was presented

twice on the computer monitor. In one presentation, the six gratings were exactly identical,

and in the other presentation, one of the six gratings popped-out from the rest by a slightly

different orientation. The presentation (first or second) and the location (one of the six) of the

pop-out grating were randomized across trials. The duration of each presentation was 200 ms



3.2. Methods 44

and the inter-presentation-interval was 500 ms. While maintaining central fixation throughout

the experiment, participants made an unspeeded forced-choice judgment regarding whether the

first or the second presentation contained the pop-out grating.

The parametric difference between the two successively presented stimuli (temporal

forced-choice task) or between the pop-out grating and the rest of the gratings (spatial forced-

choice task) was varied in a 2-up-1-down staircase fashion that assessed the threshold value at

which the discrimination performance converged to 70.7% correct [109]. Specifically, two con-

secutive correct answers led to a one-step decrease in the orientation, contrast, or luminance

difference in the next trial, whereas one incorrect answer lead to a one-step increase in the

parametric difference. The experiment stopped after eighteen reversals, and the discrimination

threshold was calculated as the parametric difference averaged over the last ten reversals.

3.2.4 Intra-individual variability in local feature perception

To assess intra-individual variability in local perception, I measured the threshold of visual

field location discrimination for each participant at thirteen non-overlapping locations across

the visual field through thirteen independent experiments (Figure 3.2C). These thirteen loca-

tions covered three eccentricities (0, 4.7, 6.7 degree) and six polar angles (45, 90, 135, 225,

270, 315 degree). Such a distributed coverage of the visual field allowed a comprehensive as-

sessment of intra-individual perceptual variability. I used white bar stimuli that contained no

luminance, contrast, or orientation for the measure of location discrimination threshold.

The thirteen experiments differed only in the location of visual stimuli and shared the same

experiment procedures. Specifically, I used the standard 2-up-1-down staircase procedure with

a spatial forced-choice task, where participants judged the location difference between two

concurrently presented bar stimuli (Vernier stimuli). Similar to the study on inter-individual

perceptual variability, I conducted control experiments where I replaced the spatial forced-

choice task with a temporal forced-choice task, in order to test whether the measure of location

discrimination threshold was robust against the experimental paradigm.

For the spatial forced-choice task, in a single experiment trial, one pair of collinear bars

and one pair of horizontally offset bars (single bar width = 0.15 degree of visual angle, sin-

gle bar length = 0.6 degree of visual angle, vertical distance between two bars = 0.3 degree

of visual angle) were presented in succession on the computer screen with randomized order.

The duration of each bar pair was 300 ms and the inter-stimulus-interval was 500 ms. While

maintaining central fixation throughout the experiment, participants made an unspeeded forced
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choice regarding which temporal interval contained the pair of horizontally offset bars.

For the temporal forced-choice task, in a single experiment trial, two bars (bar width =

0.15 degree of visual angle, bar length = 1.5 degree of visual angle), one at a constant visual

field location and the other a horizontally different visual field location, were presented in suc-

cession on the computer monitor with randomized order. The duration of each bar was 300 ms

and the inter-stimulus-interval was 500 ms. While maintaining central fixation throughout the

experiment, participants made an unspeeded forced-choice regarding whether the second bar,

compared with the first bar, was moved horizontally rightwards or leftwards.

The horizontal location difference between the pair of horizontally offset bars (spatial

forced-choice task) or between the two successively presented bars (temporal forced-choice

task) was varied in a 2-up-1-down staircase fashion that assessed the threshold value at which

the discrimination performance converged to 70.7% correct [109]. Specifically, two consecu-

tive correct answers led to a one-step decrease in the horizontal location difference in the next

trial, whereas one incorrect answer lead to a one-step increase in the parametric difference.

The experiment stopped after eighteen reversals, and the location discrimination threshold was

calculated as the horizontal location difference averaged over the last ten reversals.

3.3 Results

3.3.1 Extent of perceptual variability

Across participants, I observed a substantial degree of variability both in the threshold of

visual discrimination for local feature details and in the magnitude of visual illusion induced

by global feature contexts. Specifically, the orientation discrimination threshold varied inter-

individually from 0.73 degree to 7.04 degree, the contrast discrimination threshold from 1.92%

to 9.23%, and the luminance discrimination threshold from 1.32% to 6.70%. Such a large de-

gree of inter-individual variability in local perception was surpassed by an even larger degree

of inter-individual variability in global perception, where the orientation contextual illusion

magnitude varied across participants from 0.48 degree to 14.72 degree, the contrast contextual

illusion magnitude from 0.79% to 24.38%, and the luminance contextual illusion magnitude

from 1.42% to 35.35%.

Within participants, I observed a substantial degree of variability across the visual field in

the threshold of visual discrimination for local location differences. Consistent with previous

reports [99], the location discrimination threshold increased intra-individually along the visual
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field eccentricity from as small as 0.008 degree of visual angle at the visual field center (fovea),

to as large as 0.127 degree of visual angle at the peripheral visual field (6.7 degree eccentric-

ity). Moreover, at the same visual field eccentricity, I found that the location discrimination

thresholds still exhibited a two- to three-fold intra-individual variability across different visual

field locations. Intriguingly, the exact pattern of intra-individual variability in location discrim-

ination threshold was quite different for different participants. Whereas some participants had

a nine-fold increase in their location discrimination threshold from the visual field center to the

peripheral visual field, other participants exhibited a less than two-fold increase.

3.3.2 Robustness of perceptual variability

To test whether intra-individual variability in local perception represented robust personal

traits, I compared the measures of location discrimination threshold from different experi-

mental paradigms where participants judged the location difference between two concurrently

(spatial forced-choice) and sequentially (temporal forced-choice) presented stimuli, respec-

tively. I found that the location discrimination thresholds measured from different experimental

paradigms were correlated across participants (r = 0.652, 95% CI = [0.295, 0.849], p < 0.01,

N = 20 participants), suggesting that the measure reflected trait-like perceptual variability.

To address the robustness of inter-individual variability in local perception, I applied a

similar analysis where I compared the orientation discrimination thresholds measured from the

spatial and the temporal forced-choice paradigms, respectively. Again, I observed correlation

across participants in the measure of orientation discrimination threshold from different exper-

imental paradigms (r = 0.555, 95% CI = [0.150, 0.800], p < 0.05, N = 20 participants), sug-

gesting that the measure reflected trait-like perceptual variability. In addition to explicitly com-

paring different experimental paradigms, I further addressed the robustness of inter-individual

variability in local perception using an implicit approach, by deriving the visual discrimination

threshold from the slope of psychometric curve acquired in the contextual illusion experiments.

Specifically, the parametric difference between the 50% threshold point (pure guess) and the

70.7% threshold point (matching 2-up-1-down staircase) of the psychometric curve reflected

the visual discrimination threshold under the presence of the surrounding context. I found that

this psychometric-derived, implicit measure and the staircase-derived, explicit measure of vi-

sual discrimination threshold were highly correlated across participants in all three experiments

- orientation (r = 0.770, 95% CI = [0.616, 0.867], p < 10−9, N = 45 participants), contrast (r

= 0.470, 95% CI = [0.205, 0.670], p < 0.001, N = 45 participants), and luminance (r = 0.420,
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95% CI = [0.145, 0.635], p < 0.005, N = 45 participants).

These correlations suggested that local perception, as assessed from the threshold of visual

discrimination for local details, represented robust personal traits independent of the specific

experimental paradigm and the specific stimulus layout. To test whether global perception, as

assessed from the magnitude of visual illusion induced by global contexts, also represented

robust personal traits, I compared the contextual illusion magnitudes derived from the psy-

chometric curve (method of constant stimuli) and the manual adjustments, respectively. In all

three experiments - orientation (r = 0.480, 95% CI = [0.218, 0.678], p < 0.001, N = 45 par-

ticipants), contrast (r = 0.520, 95% CI = [0.268, 0.705], p < 0.001, N = 45 participants), and

luminance (r = 0.860, 95% CI = [0.758, 0.921], p < 10−13, N = 45 participants), I observed

significant correlations across participants between the psychometric-derived measure and the

adjustment-derived measure of contextual illusion magnitude. This observation demonstrated

the robustness of inter-individual variability in global perception.

3.3.3 Relationship between different perceptual variability

The analyses above revealed that local perception of feature details and global perception

of feature contexts both exhibited a substantial degree of trait-like variability that was robust

against the experimental paradigm. Moreover, the extent and the robustness of perceptual vari-

ability were comparable across different categories of elementary visual features. Building

upon these observations, I next explored how inter-individual variability in local perception

and that in global perception related with each other, and whether such relationship differed

between different categories of elementary visual features.

Across participants, I found that the orientation discrimination threshold correlated

strongly with the orientation contextual illusion magnitude (Figure 3.3; r = 0.780, 95% CI

= [0.631, 0.873], p < 10−8, N = 45 participants). By contrast, I did not observe any significant

correlation across participants between the contrast discrimination threshold and the contrast

contextual illusion magnitude (Figure 3.3; r = 0.03, 95% CI = [-0.27, 0.320], p = 0.82, N =

45 participants), or between the luminance discrimination threshold and the luminance con-

textual illusion magnitude (Figure 3.3; r = -0.25, 95% CI = [-0.51, 0.046], p = 0.10, N = 45

participants). Moreover, the correlation between the visual discrimination threshold and the

contextual illusion magnitude in orientation perception was significantly higher than that in

contrast perception (t(42) = 7, p < 10−7, N = 45 participants) or that in luminance perception

(t(42) = 11, p < 10−13, N = 45 participants).
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Figure 3.3: Relationship between different perceptual variability. Across participants, the

orientation discrimination threshold was plotted against the orientation contextual illusion

magnitude, illustrating a trade-off between local and global perception of orientation. For

contrast or luminance perception, no such trade-off was observed between the discrimination

threshold and the contextual illusion magnitude. Each point represents a single participant (N

= 45) and the line is the best-fitting linear regression. Statistical values reflect Spearman’s rho

with FDR correction for multi-comparisons (α = 0.025).

Thus, there was an inter-individual trade-off between local and global perception of ori-

entation, where individuals who were able to perform finer discrimination of local orientation

details tended to experience weaker modulation by global orientation contexts. This trade-off,

however, was not observed in perception of contrast or luminance, suggesting that it was not a

perceptual phenomenon generalizable across different categories of elementary visual features.

3.4 Discussion

In summary, this study revealed a substantial degree of inter-individual variability in local

perception of feature details and global perception of feature contexts, for all three categories

of elementary visual features studied - orientation, contrast, and luminance. While the extent

of inter-individual perceptual variability was similar across different visual features, local and

global perception of orientation exhibited an inter-individual trade-off that was not observed in

perception of contrast or luminance. In addition to such inter-individual variability, my study

revealed a large degree of intra-individual variability in local perception of feature details, not

only across visual field eccentricities but also across different visual field locations at the same

eccentricity.

Both local perception of feature details and global perception of feature contexts were

robust against nuisance factors such as the experimental paradigm, suggesting that their vari-

ability across individuals represents personal traits. The trait-like variability in local and global
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perception of elementary visual features may be partially accounted for by non-neurobiological

factors such as cultural influences [110, 111]. However, non-neurobiological factors alone are

not able to explain the distinct patterns of perceptual variability associated with different cat-

egories of elementary visual features. The observation of inter-individual trade-off between

local and global perception of orientation but not between local and global perception of con-

trast or luminance hints towards a neurobiological contribution.

The neurobiological factors that contribute to inter-individual perceptual variability may

span multiple levels from the anatomy of visual cortices to the response function of visual

cortical neurons. Importantly, this neurobiological contribution would need to explain for the

difference between orientation perception and contrast or luminance perception in the pattern

of inter-individual variability. The neural response to orientation and the neural response to

luminance share the same Gaussian-shaped function [38, 96]. However, the neural response

to orientation is unique in its orderly cortical representation, where visual cortical neurons re-

sponding to more similar orientation are more likely to be cortically adjacent and connected

[37, 38, 43]. This orderly cortical representation is not observed in neural response to contrast

or luminance. In fact, whereas there is a relatively large number of different visual features,

visual cortices can only accommodate a limited number of orderly representations [97], among

which the orientation representation is an ecologically robust pattern observable in many mam-

malian species from rodents to human [37, 38, 41, 42, 43]. As such, inter-individual perceptual

variability is likely to be neurobiologically based in the cortical representation of visual fea-

tures.

Whereas inter-individual perceptual variability may be accounted for by a combination of

non-neurobiological and neurobiological factors, intra-individual perceptual variability across

the visual field may arise purely from a neurobiological basis, as a non-neurobiological expla-

nation of the visual field heterogeneity appears difficult. By the same token, the exact neurobi-

ological basis of intra-individual perceptual variability may differ from that of inter-individual

perceptual variability. Specifically, inter-individual perceptual variability, likely shaped by the

neurobiological differences between individuals in the representation of visual features over

the visual cortex, represents a region-level characteristic. In contrast, given the retinotopic cor-

respondence between visual field locations and visual cortical locations [71], intra-individual

perceptual variability between different visual field locations is likely to be shaped by the

neurobiological differences between corresponding visual cortical locations and therefore rep-
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resents a point-level characteristic.

Intriguingly, the region-level characteristic of inter-individual perceptual variability and

the point-level characteristic of intra-individual perceptual variability resemble the distinct

nature exhibited by the two morphological dimensions, the surface area and the thickness,

of cerebral cortex. Although the cortical surface area and the cortical thickness jointly de-

termine the cortical volume, the two morphological dimensions are controlled by indepen-

dent sets of genetic-developmental factors and capture different aspects of cortical anatomy

[49, 57, 58, 46]. Specifically, the cortical surface area captures the region-level cortical

anatomy, where the surface area of a cortical region is determined jointly by the set of cor-

tical locations it bounds. By contrast, the cortical thickness captures the point-level cortical

anatomy, where the thickness at different cortical locations within the same cortical region can

be assessed independently. This characteristic similarity between perceptual variability and

anatomical variability is further illustrated in the different extent of variability exhibited by the

cortical surface area versus the cortical thickness. The cortical surface area has expanded over

one thousand fold from small mammals to humans [46, 112]. Even within human species, the

surface area of a cortical region (e.g., early visual cortices) can vary three-fold across healthy

adults [48]. In contrast to the substantial inter-individual variability in cortical surface area,

cortical thickness differs marginally across human individuals and has only doubled during

mammalian evolution [46, 112]. Nevertheless, the cortical thickness exhibits substantial intra-

individual variability, where it can vary over three-fold across different cortical locations within

the same cortical region of the same individual [113, 114].

As such, the variability in visual cortical thickness reflects the neurobiological differences

between different visual cortical locations within the same individual and may underlie intra-

individual perceptual variability, whereas the variability in visual cortical surface area reflects

the neurobiological differences between different individuals and may underlie inter-individual

perceptual variability. This hypothesis was tested in the next two chapters (Chapter Four, Chap-

ter Five), where I explicitly explored how the surface area and the thickness of early visual

cortices related to inter-individual and intra-individual variability in perception of elementary

visual features.



Chapter 4

Role of Visual Cortical Surface Area

4.1 Introduction

The cerebral cortex is divided into a number of distinct cortical regions that each has its

unique functions. Controlled by the interplay between genetic and developmental factors, this

process of cortical arealization exhibits a substantial degree of inter-individual variability. As

a notable example, the retinotopically defined surface area of early visual cortices (V1, V2)

varies over three-fold across healthy human adults [48]. Such variability in visual cortical

surface area is much greater than the variability in overall cortical surface area [115]. It has

been suggested that the retinotopically defined surface area of early visual cortices may be an

important endophenotype determining individual visual experiences [50]. Nevertheless, the

exact relationships between inter-individual perceptual variability and visual cortical surface

area remain largely unclear. Moreover, the possible mechanisms underlying such relationships

remain unexplored.

In this chapter, I studied how the surface area of early visual cortices (V1, V2) related with

inter-individual variability in local and global perception of elementary visual features. To this

end, I hypothesized two possible mechanisms. The retinotopically defined surface area of

early visual cortices represents neurobiological differences between individuals in the amount

of cortical surface devoted to the same visual field space [71]. Consequently, a visual stimulus

of the same physical size will activate a larger cortical area and have a larger effective size in

individuals with a larger visual cortical surface area. One intuitive hypothesis is that visual

cortical surface area influences perception through this scaling of effective stimulus size. The

threshold of visual discrimination for local details and the magnitude of visual illusion (modu-

lation) by global contexts, which reflect respectively local and global perception of elementary

visual features, are both dependent on the stimulus size. Increasing the stimulus size gener-

ally leads to improved detail discrimination [116, 117, 118] but weakened contextual illusion
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[119, 120, 121]. As such, individuals with a larger visual cortical surface area may perform

finer visual discrimination of local details, whereas individuals with a smaller visual cortical

surface area may experience stronger visual illusion (modulation) by global contexts. This first

hypothesis suggests a generic change in the scope of visual perception from global, context-

oriented to local, detail-oriented as visual cortical surface area increases across individuals.

A second, competing, hypothesis is that visual cortical surface area influences perception

not just through the scaling of effective stimulus size, but also through the scaling of intra-

cortical connectivity. When visual cortical surface area increases, physical constraints tend

to prevent intracortical connections from lengthening at the same rate as the expansion of vi-

sual cortical surface, and different neurons within a neural population activated by a visual

stimulus are thus less inter-connected [44, 45]. This intracortical scaling is likely to influence

perception of different visual features differently, depending on their cortical representation.

Specifically, for visual features (e.g., orientation) with a continuous, orderly cortical represen-

tation where the intracortical connectivity co-varies with the similarity in feature selectivity

(e.g., orientation selectivity) between connected neurons [37, 97], the intracortical scaling will

predominantly influence the connectivity between neurons responding to similar feature val-

ues (e.g., similar orientations). By contrast, for other visual features, the connectivity between

neurons responding to similar versus opposite feature values will be equally affected and will

counteract each other. Since local perception of feature details and global perception of feature

contexts involve, respectively, discrimination and modulation between visual features close in

values, the scaling of intracortical connectivity with the similarity in feature selectivity between

connected neurons may be a mechanism through which visual cortical surface area influences

visual feature perception. This second hypothesis suggests that the relationships between inter-

individual perceptual variability and visual cortical surface area are not generic but are instead

visual-feature-dependent.

To test these two hypotheses, I studied how the surface area of early visual cortices (V1,

V2) related with inter-individual perceptual variability, for a variety of elementary visual fea-

tures - orientation, contrast, and luminance. The visual discrimination threshold and the con-

textual illusion magnitude for orientation, contrast, or luminance are all dependent on the stim-

ulus size [116, 117, 118, 119, 120, 121]. However, whereas the cortical representation of

contrast or luminance is not orderly [97], the continuous, orderly representation of orientation

in V1 is an ecologically robust pattern observable in many mammalian species from rodents to

human [37, 41, 42, 97]. The commonality in stimulus size dependence versus the difference in
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cortical representation between orientation and contrast or luminance allows one to disentangle

the two hypotheses.

Taken together, in this chapter, I explored the relationships between inter-individual per-

ceptual variability and visual cortical surface area in healthy human adults with two specific

aims. First, I studied to which extent the surface area of early visual cortices varied across in-

dividuals, and whether such variability represented robust anatomical traits. Then, I tested how

inter-individual variability in visual cortical surface area related with inter-individual variabil-

ity in orientation perception, and whether such relationships, if observed, generalized to con-

trast or luminance perception. To this end, I assessed the variability across individuals in visual

cortical surface area, using three different experimental paradigms where early visual cortices

(V1, V2) were delineated retinotopically according to phase-encoded map, retinotopically ac-

cording to population-receptive-field map, or morphologically according to cortical folding

patterns. I also assessed inter-individual perceptual variability, by measuring the threshold of

visual discrimination and the magnitude of contextual illusion for orientation, contrast, and

luminance.

4.2 Methods

4.2.1 Participants and Apparatus

A group of twenty healthy participants (aged 19 to 34, ten females, ten males) gave writ-

ten informed consent to take part in the experiments studying the robustness of the measure

of visual cortical surface area, as well as the experiments studying the relationships between

visual cortical surface area and orientation perception. For test-retest reliability, I repeated the

experiments studying the relationships between visual cortical surface area and orientation per-

ception, in a second group of twenty healthy participants (aged 21 to 35, nine females, eleven

males). The second group of participants further took part in the experiments studying the

relationships between visual cortical surface area and contrast or luminance perception. All

participants had normal or corrected-to-normal vision and no neurological history. All experi-

ments were approved by the UCL ethics committee.

The psychophysics experiments took place in a dark room where the computer monitor

provided the only significant source of light. The visual stimuli were presented on a 22 inch

computer monitor (size = 41 x 30.6 cm, resolution = 2048 x 1536 pixels) and viewed through a

chin and forehead rest (viewing distance = 67 cm). The neuroimaging experiments took place

in a Siemens Trio 3T MRI scanner with a 32-channel head-coil. The visual stimuli were pro-
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jected onto a screen (size = 28.6 x 21.5 cm) in the back of the scanner and viewed through a

mirror on the head-coil, where the viewing distance was 85 cm (the first group of participants)

or 72 cm (the second group of participants). The stimuli covered a portion of the visual field

extending from 0.25 to 7.2 degree eccentricity (the first group of participants) or 8.5 degree

eccentricity (the second group of participants). For both groups of participants, structural MRI

data were collected using a T1-weighted sequence at 1 mm resolution (TR = 7.92 ms, TE =

2.48 ms, matrix = 256 x 240). For the first group of participants, functional MRI data were

collected using a 3D EPI sequence at 1.5 mm resolution (volume TR = 3.2 s, TE = 32.86 ms,

matrix = 128 x 128). For the second group of participants, functional MRI data were collected

using a 2D EPI sequence at 2.3 mm resolution (volume TR = 3.06 s, TE = 56 ms, matrix = 96

x 96). Functional MRI data were preprocessed in SPM8 through bias correction, realignment,

unwarping, coregistration, and physiology noise correction.

4.2.2 Psychophysics experiments

To assess inter-individual variability in local and global perception, in separate experi-

ments I measured the visual discrimination threshold and the contextual illusion magnitude for

orientation, contrast, or luminance. Uniform gray stimuli that contained no contrast and no

orientation were used in the luminance experiments; low-pass filtered white noise stimuli that

contained no orientation and had constant average luminance were used in the contrast experi-

ments; sinusoidal grating stimuli (spatial frequency =1.5 cycles per degree of visual angle) that

had constant contrast (full-contrast) and constant average luminance were used in the orien-

tation experiments. The orientation, contrast, and luminance experiments differed only in the

visual stimuli and shared the same experiment procedures. Specifically, I used the standard 2-

up-1-down staircase procedure to measure the visual discrimination threshold, and the standard

method of constant stimuli to measure the contextual illusion magnitude. The visual discrim-

ination threshold and the contextual illusion magnitude were both measured with a temporal

forced-choice task, where participants judged the feature difference between two sequentially

presented visual stimuli at the visual field center.

To measure the visual discrimination threshold, in a single experiment trial, two central

circular stimuli (diameter = 1.5 degree of visual angle), one with a constant feature value (45

degree for orientation experiment, 40% for contrast experiment, 50% of the monitor maximum

luminance for luminance experiment) and the other a variable feature value, were presented in

succession on the computer monitor. The interval (first or second) where the stimulus with a

constant feature value appeared was randomized across trials. The duration of each stimulus
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was 300 ms and the inter-stimulus-interval was 500 ms. While maintaining central fixation

throughout the experiment, participants made an unspeeded forced-choice regarding whether

the second stimulus, compared with the first one, was rotated clockwise or anti-clockwise (ori-

entation discrimination), had higher or lower contrast (contrast discrimination), or had higher

or lower luminance (luminance discrimination). The feature difference between the two suc-

cessively presented stimuli was varied in a 2-up-1-down staircase fashion that assessed the

threshold value at which the discrimination performance converged to 70.7% correct [109].

Specifically, two consecutive correct answers led to a one-step decrease in the orientation, con-

trast, or luminance difference in the next trial, whereas one incorrect answer lead to a one-step

increase in the feature difference. The experiment stopped after eighteen reversals, and the

discrimination threshold was calculated as the feature difference averaged over the last ten re-

versals.

To measure the contextual illusion magnitude, in a single experiment trial, two central

circular stimuli (diameter = 1.5 degree of visual angle), one with and one without a surround-

ing annular context (inner diameter = 1.5 degree of visual angle, outer diameter = 6 degree of

visual angle), were presented in succession on the computer monitor. The feature difference

between the surrounding context and the central stimulus was optimized to reach the maxi-

mum contextual illusion. Specifically, in the orientation experiment, the surrounding context

was tilted 15 degree from the central stimulus; in the contrast experiment, the surrounding

context had a contrast of 100% and the central stimulus a contrast of 40%; in the luminance

experiment, the surrounding context alternated between black and white. The interval (first or

second) where the surrounding context appeared was randomized but counter-balanced across

trials. The duration of each stimulus was 300 ms and the inter-stimulus-interval was 500 ms.

While maintaining central fixation throughout the experiment, participants made an unspeeded

forced-choice regarding whether the central stimulus in the second interval, compared with the

one in the first interval, was rotated clockwise or anti-clockwise (orientation experiment), had

higher or lower contrast (contrast experiment), or had higher or lower luminance (luminance

experiment). Prior to the experiment, each participant performed four trials in which they

manually adjusted the orientation, contrast, or luminance of the central stimulus presented in

isolation till it matched the perceived orientation, contrast, or luminance of the central stimulus

presented in the surrounding context. In the subsequent experiment, the orientation, contrast,

or luminance of the central stimulus presented in the surrounding context was kept constant,

while that of the central stimulus presented in isolation was varied around this point of percep-
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tual equality for seven different feature values. In a single experiment, a total of 112 trials (16

trials per feature value) were taken to produce a psychometric curve. The contextual illusion

magnitude was calculated as the feature difference between the two central stimuli at the 50%

threshold point of the psychometric curve where they appeared perceptually equal.

4.2.3 Phase-encoding retinotopic delineation of early visual cortices

Standard phase-encoded retinotopic mapping was applied to delineate early visual cortices

(V1, V2) for both groups of participants [71]. Each participant took part in two experiment runs

of polar-angle mapping and one experiment run of eccentricity mapping. The mapped visual

field covered an eccentricity range from 0.25 to 7.2 degree of visual angle (the first group of

participants) or 8.5 degree of visual angle (the second group of participants).

For polar-angle mapping, participants viewed full-contrast flickering checkerboard wedges

(width = 40 degree) rotating smoothly around a small fixation cross for ten cycles per exper-

iment run at a speed of twenty volumes per cycle. For eccentricity mapping, participants

viewed full-contrast flickering checkerboard rings (width = 7.8% of the screen length) con-

tracting smoothly around a small fixation cross for fifteen cycles per experiment run at a speed

of fifteen volumes per cycle. To maintain participants’ attention, at random temporal intervals

the retinotopic mapping stimuli underwent a small pattern shift for 200 ms. Participants were

asked to indicate whenever this happened with a button press while keeping their eyes fixated

at the central cross during the whole experiment.

The polar-angle maps and the eccentricity maps were generated by applying Fast Fourier

Transform to fMRI BOLD time series of each voxel that extracted the phase and the power

at the stimulation frequency. The polar angle boundaries (representing vertical and horizon-

tal meridians) were delineated manually according to the mirror reversals in the polar-angle

maps. The eccentricity boundaries (representing 7.2 degree eccentricity for the first group of

participants, representing 8.5 degree eccentricity for the second group of participants) were

delineated automatically by thresholding the eccentricity maps.

4.2.4 Population-receptive-field retinotopic delineation of early visual cortices

To improve the reliability of retinotopic delineation, I conducted additional experiments

for the first group of participants, where I applied population-receptive-field retinotopic map-

ping [122] to delineate early visual cortices (V1, V2). Each participant took part in two exper-

iment runs. The mapped visual field covered an eccentricity range from 0.25 to 7.2 degree of
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visual angle.

Participants viewed full-contrast flickering checkerboard bars (width = 1.8 degree of vi-

sual angle) moving smoothly in the visual field for eight cycles per experiment run at a speed

of sixteen volumes per cycle (one visual field location per volume, sixty-four different visual

field locations per experiment run, each visual field location repeated twice per experiment

run). The bars were oriented at one of the four orientations (horizontal, vertical, 45 degree,

135 degree) and moved along the corresponding orthogonal direction (north/south for horizon-

tal bar, west/east for vertical bar, northwest/southeast for 45 degree bar, northeast/southwest for

135 degree bar), where the orientation and the moving direction were counterbalanced across

cycles. A blank screen was inserted into the last quarter of the second, fourth, sixth, and eighth

cycle to provide a baseline condition that improved the measurement accuracy. To maintain

participants’ attention, at random temporal intervals the central fixation cross underwent a color

change for 80 ms. Participants were asked to indicate whenever this happened with a button

press while keeping their eyes fixated at the central cross during the whole experiment.

The polar-angle maps and the eccentricity maps were generated by fitting fMRI BOLD

time series of each voxel with a two-dimensional Gaussian function f(x0, y0, σ) multiplied by

the stimulus location function and convolved with hemodynamic response function [123, 124].

The two-dimensional Gaussian function characterized the visual field range (σ) that the voxel

responded to and the visual field location (x0, y0) that the voxel responded strongest to [122].

Based on the two-dimensional Gaussian fit, the polar-angle maps and the eccentricity maps

were calculated as arctan(y0/x0) and sqrt(x20 + y20), respectively. The polar angle bound-

aries (representing vertical and horizontal meridians) were delineated manually according to

the mirror reversals in the polar-angle maps. The eccentricity boundaries (representing 7.2

degree eccentricity) were delineated automatically by thresholding the eccentricity maps.

4.2.5 Morphologic delineation of early visual cortices

As the retinotopic delineation covered a fraction rather than the overall extent of early vi-

sual cortices, it was potentially confounded by inter-individual variability in delineated fraction

of early visual cortices. This potential confounding influence was assessed through additional

experiments in the first group of participants, where I applied Freesurfer to delineate early vi-

sual cortices (Freesurfer pericalcarine segment and Freesurfer cuneus segment) according to

the cortical folding patterns [125]. The morphologically delineated early visual cortices ex-

tended along the anterior-posterior axis from the rostral to the caudal ends of the calcarine
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sulcus, and along the ventral-dorsal axis from the inferomedial end of the calcarine sulcus to

the most medial portion of the occipital cortex.

4.3 Results

4.3.1 Variability in visual cortical surface area

The measure of visual cortical surface area was based on the retinotopic delineation of

early visual cortices (V1, V2) [71, 48]. To improve the reliability of retinotopic delineation, I

conducted two different retinotopic mapping experiments using phase-encoded paradigm [71]

and population-receptive-field paradigm [122], respectively. I then compared the results from

the two different experiments for each participant. Specifically, the polar-angle measures from

the two different retinotopic mapping experiments were plotted against each other on a voxel

basis, where voxels responding to similar polar angle were binned to generate 30 data points

for each participant. I found that the measures were correlated between the two different retino-

topic mapping paradigms (r > 0.9, p < 0.0001, N = 30 data points per participant). This high

level of consistency demonstrated the robustness of retinotopic delineation against the delin-

eation paradigm.

Based on the retinotopic delineation of early visual cortices, I applied the surface-based

analysis to measure visual cortical surface area for each participant. In the surface-based anal-

ysis, structural MRI data were segmented into the white and the gray matter, from which the

three-dimensional triangle-mesh models of the white and the pial cortical surfaces were built

with each vertex of this mesh representing a single cortical location distinguishable by MRI

[78]. Visual cortical surface area was calculated as the surface area summed over all visual

cortical locations (vertices) delineated through retinotopic mapping. Consistent with previous

reports [48], the retinotopically delineated surface area of early visual cortices exhibited a two-

fold inter-individual variability (Figure 4.1A, V1 = 2213 mm2 to 3328 mm2, V2 = 1611 mm2

to 2936 mm2, summed across left and right hemispheres).

As the retinotopic delineation covered a fraction rather than the overall extent of early

visual cortices, the measure of retinotopically delineated visual cortical surface area was po-

tentially confounded by inter-individual variability in the delineated fraction of early visual

cortices. To address this potential confounding influence, I estimated the delineation fraction

for each participant, based on the distribution of mapped visual field eccentricity derived from

the eccentricity map (Figure 4.1B). This distribution was best fitted with an exponential func-

tion y = ae−bx . It reflected the number of voxels that responded to each visual field eccentric-
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Figure 4.1: Variability in visual cortical surface area. Variability in visual cortical surface

area was studied in a group of twenty participants, where retinotopic mapping was applied

to delineate the part of early visual cortices (V1, V2) that responded to the visual field be-

tween 0.25 and 7.2 degree eccentricity. Based on the retinotopy delineation, visual cortical

surface area was calculated as the surface area summed over all cortical locations in the

retinotopically-delineated part of V1 or V2. This retinotopically-delineated visual cortical sur-

face area exhibited a two-fold inter-individual variability (illustrated in the marginal histogram

of A) that was correlated between V1 and V2 (illustrated in the scatter plot of A). To quantify

the fraction of retinotopically delineated V1 or V2 to full V1 or V2, the distribution of mapped

visual field eccentricity was plotted on a voxel basis, where voxels responding to similar eccen-

tricity were binned to generate 30 data points for each participant (B). From the exponential

fit to the eccentricity distribution, the retinotopically-delineated V1 or V2 was estimated as

the area under the exponential fit between x equaled 0.25 and x equaled 7.2, and the full V1

or V2 as the area under the exponential fit between x equaled 0 and x approximated infinite.

Data points are color coded according to the participant (B). Parameters reflect the fraction of

retinotopically-delineated V1 or V2 (B).

ity. Given that different voxels were equal in volume, I estimated the retinotopically-delineated

extent of early visual cortices as the area under the exponential curve from x equaled 0.25 to

x equaled 7.2, and the overall extent of early visual cortices as the area under the exponential

curve from x equaled 0 to x approximated infinite. I found that the retinotopic delineation
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covered about three-fourths of the overall early visual cortices. Importantly, this delineation

fraction was rather consistent across participants (V1: mean = 78.3%, std = 3.7%, N = 20

participants; V2: mean = 78.8%, std = 3.3%, N = 20 participants) and did not correlate with

inter-individual variability in visual cortical surface area (V1: r = -0.120, 95% CI = [-0.53,

0.340], p = 0.564, N = 20 participants; V2: r = 0.080, 95% CI = [-0.38, 0.504], p = 0.768, N =

20 participants). Therefore, the retinotopically-delineated surface area of early visual cortices

was more likely to reflect a true anatomical variability than a simple measurement artifact.

To further assess the reliability of retinotopic delineation, I performed morphologic delin-

eation of early visual cortices based on the cortical folding patterns. The part of early visual

cortices that extended along the anterior-posterior axis from the rostral to the caudal ends of

the calcarine sulcus, and along the ventral-dorsal axis from the inferomedial end of the cal-

carine sulcus to the most medial portion of the occipital cortex, was delineated automatically

in Freesurfer. I found that the morphologically delineated and the retinotopically delineated

surface area of early visual cortices exhibited correlated inter-individual variability (V1: r =

0.709, 95% CI = [0.389, 0.876], p < 0.001, N = 20 participants; V2: r = 0.475, 95% CI =

[0.042, 0.758], p < 0.05, N = 20 participants). The consistency with the morphologic de-

lineation further demonstrated the reliability of retinotopic delineation in measuring visual

cortical surface area.

4.3.2 Visual cortical surface area and perceptual variability

The analyses above revealed that the retinotopically delineated surface area of early visual

cortices (V1, V2) exhibited a substantial degree of trait-like variability that was robust against

the delineation paradigm. Building upon these observations, I explored how inter-individual

variability in visual cortical surface area related with that in local or global perception of ori-

entation, and whether such relationships, if observed, generalized to perception of contrast or

luminance.

Across participants, I found that the retinotopically delineated surface area of V1 corre-

lated negatively with the orientation discrimination threshold (Figure 4.2A, r = -0.700, 95% CI

= [-0.87, -0.37], p < 0.001, N = 20 participants), suggesting that individuals with a larger V1

surface area were able to perform finer visual discrimination of local orientation details. Con-

versely, individuals with a larger V1 surface area tended to experience weaker visual illusion

(modulation) by global orientation contexts, as the retinotopically delineated surface area of

V1 correlated negatively with the orientation contextual illusion magnitude (Figure 4.2A, r =
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-0.580, 95% CI = [-0.81, -0.19], p < 0.01, N = 20 participants). These correlations suggested

that, as V1 increased in surface area across individuals, the scope of orientation perception

shifted from global, context-oriented to local, detail-oriented.

Intriguingly, the correlations with orientation perception were not observed in V2, where

the retinotopically delineated surface area of V2 exhibited no significant correlations with the

orientation discrimination threshold (Figure 4.2B, r = -0.190, 95% CI = [-0.58, 0.275], p = 0.43,

N = 20 participants) or the orientation contextual illusion magnitude (Figure 4.2B, r = -0.240,

95% CI = [-0.62, 0.226], p = 0.33, N = 20 participants). Moreover, the correlations between

orientation perception and V1 surface area were significantly higher than the correlations be-

tween orientation perception and V2 surface area (T = 2.8, p < 0.01, N = 20 participants).

These results hinted towards a selective dependence of orientation perception on V1 surface

area that did not generalize to V2.

For test-retest reliability, I recruited a second group of twenty healthy participants. In this

group of participants, I tested whether the relationships between visual cortical surface area

and orientation perception were robust against the visual field coverage used in the retinotopic

measure of visual cortical surface area. Specifically, I extended the visual field coverage from

7.2 degree eccentricity (the first group of participants) to 8.5 degree eccentricity (the second

group of participants). The results in the second group of participants replicated these in the

first group, where the orientation discrimination threshold and the orientation contextual illu-

sion magnitude correlated significantly with the surface area of V1 (orientation discrimination

threshold: r = -0.680, 95% CI = [-0.86, -0.34], p < 0.001, N = 20 participants; orientation

contextual illusion magnitude: r = -0.580, 95% CI = [-0.81, -0.19], p < 0.001, N = 20 partici-

pants) but not V2 (orientation discrimination threshold: r = -0.340, 95% CI = [-0.68, 0.120], p

= 0.14, N = 20 participants; orientation contextual illusion magnitude: r = -0.310, 95% CI = [-

0.66, 0.153], p = 0.18, N = 20 participants). Thus, the relationships between the retinotopically

delineated surface area of early visual cortices and the scope of orientation perception were

robust against the exact visual field coverage used in the retinotopic measure of visual cortical

surface area.

In the second group of participants, I also tested whether the relationships between visual

cortical surface area and orientation perception were robust against the stimulus orientation

used in the assessment of orientation perception. Specifically, I measured the orientation dis-

crimination threshold and the orientation contextual illusion magnitude using two different se-

tups where the grating stimuli were obliquely and cardinally oriented, respectively [126, 127].



4.3. Results 62

A

2400 3400

2

4

6

2900
V1 surface area (mm2)

r=-0.70, p<10-3

2400 2900 3400

6

10

14

V1 surface area (mm2)

r=-0.58, p<0.01

B

2100 2600 3100

2

4

6

V2 surface area (mm2)

r=-0.19, p=0.43

2100 2600 3100

6

10

14

V2 surface area (mm2)

r=-0.24, p=0.33

2100 2300 2600

2

4

6

V3 surface area (mm2)

r=-0.21, p=0.41

2100 2300 2600

6

10

14

V3 surface area (mm2)

r=-0.36, p=0.14

C

2400 3400
0.07

0.15

0.23

2900
V1 surface area (mm2)

Co
nt

ra
st

  c
on

te
xt

ua
l 

 il
lu

si
on

 m
ag

ni
tu

de

r=-0.29, p=0.21

2400 2900 3400

0.04

0.06

0.02

V1 surface area (mm2)

 C
on

tr
as

t d
is

cr
im

in
at

io
n 

   
   

   
   

  t
hr

es
ho

ld

r=0.10, p=0.66

2400 3400

0.15

0.25

0.35

2900
V1 surface area (mm2)

Lu
m

in
an

ce
 c

on
te

xt
ua

l 
   

ill
us

io
n 

m
ag

ni
tu

de

r=0.14, p=0.56

2400 2900 3400

0.02

0.03

0.04

0.05

V1 surface area (mm2)   
Lu

m
in

an
ce

 d
is

cr
im

in
at

io
n 

   
   

   
   

   
   

 th
re

sh
ol

d

r=-0.12, p=0.60

O
rie

nt
at

io
n 

di
sc

rim
in

at
io

n 
   

   
   

   
 th

re
sh

ol
d 

(  
)

O
rie

nt
at

io
n 

co
nt

ex
tu

al
 

 il
lu

si
on

 m
ag

ni
tu

de
 ( 

 ) 

O
rie

nt
at

io
n 

di
sc

rim
in

at
io

n 
   

   
   

   
 th

re
sh

ol
d 

(  
)

O
rie

nt
at

io
n 

co
nt

ex
tu

al
 

 il
lu

si
on

 m
ag

ni
tu

de
 ( 

 ) 

O
rie

nt
at

io
n 

di
sc

rim
in

at
io

n 
   

   
   

   
 th

re
sh

ol
d 

(  
)

O
rie

nt
at

io
n 

co
nt

ex
tu

al
 

 il
lu

si
on

 m
ag

ni
tu

de
 ( 

 ) 

Figure 4.2: Visual cortical surface area and perceptual variability. Across a group of twenty

participants, the orientation discrimination threshold and the orientation contextual illusion

magnitude were plotted against the retinotopically defined surface area of V1, V2, or V3. The

analysis revealed an inter-individual correlation between V1 surface area and orientation dis-

crimination threshold or orientation contextual illusion magnitude (A), but a lack of correlation

between V2 or V3 surface area and orientation perception (B). The discrimination threshold

and the contextual illusion magnitude of contrast or luminance perception were plotted against

V1 surface area, illustrating a lack of correlation between V1 surface area and contrast or lu-

minance perception (C). Each point represents a single participant (N = 20) and the line is the

best-fitting linear regression. Statistical values reflect Spearman’s rho with FDR correction for

multi-comparisons (α = 0.025).
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I found that the correlations between V1 surface area and orientation perception were observed

for both the oblique setup (orientation discrimination threshold: r = -0.680, 95% CI = [-0.86,

-0.34], p < 0.001, N = 20 participants; orientation contextual illusion magnitude: r = -0.580,

95% CI = [-0.81, -0.19], p < 0.001, N = 20 participants) and the cardinal setup (orientation

discrimination threshold: r = -0.590, 95% CI = [-0.82, -0.20], p < 0.01, N = 20 participants;

orientation contextual illusion magnitude: r = -0.580, 95% CI = [-0.81, -0.19], p < 0.01, N

= 20 participants). Therefore, the relationships between the retinotopically delineated surface

area of early visual cortices and the scope of orientation perception were not affected by the

stimulus orientation used in the assessment of orientation perception.

Finally, I explored whether the relationships between visual cortical surface area and ori-

entation perception generalized to contrast or luminance perception. I measured the threshold

of visual discrimination and the magnitude of contextual illusion for contrast and luminance.

I found that the surface area of V1 exhibited no significant correlations with the contrast dis-

crimination threshold (Figure 4.2C, r = 0.100, 95% CI = [-0.36, 0.519], p = 0.66, N = 20

participants), the contrast contextual illusion magnitude (Figure 4.2C, r = -0.290, 95% CI =

[-0.65, 0.174], p = 0.21, N = 20 participants), the luminance discrimination threshold (Figure

4.2C, r = -0.120, 95% CI = [-0.53, 0.340], p = 0.60, N = 20 participants), or the luminance

contextual illusion magnitude (Figure 4.2C, r = 0.140, 95% CI = [-0.32, 0.548], p = 0.56, N =

20 participants). Moreover, the correlations between V1 surface area and orientation percep-

tion were significant higher than the correlations between V1 surface area and contrast (T =

2.3, p < 0.05, N = 20 participants) or luminance perception (T = 3.1, p < 0.01, N = 20 partic-

ipants). These results revealed a selective correlation between V1 surface area and orientation

perception that did not generalize to luminance or contrast perception.

4.4 Discussion

In summary, my study revealed a substantial degree of inter-individual variability in visual

cortical surface area that mediated an inter-individual perceptual trade-off between visual dis-

crimination of local details and visual illusion (modulation) by global contexts. Specifically,

I found that an inter-individual increase in V1 surface area was associated with a shift in the

scope of orientation perception from global context-oriented to local detail-oriented, where in-

dividuals with a smaller V1 surface area experienced stronger visual illusion (modulation) by

global orientation contexts and those with a larger V1 surface area performed finer visual dis-

crimination of local orientation details. Intriguingly, this inter-individual correlation between
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visual cortical surface area and perceptual trade-off was specific to V1 and to orientation per-

ception; it was not observed for V2 or for contrast and luminance perception.

Such specificity of the anatomy-perception correlation to V1 and to orientation perception

indicates that it is mediated by the unique way that V1 processes orientation. Compared to the

cortical processing of contrast or luminance, the cortical processing of orientation is unique

in its orderly representation where neurons selective for more similar orientation are more

strongly connected [37, 38, 43]. In V1, this orderly orientation representation has a continuous

coverage over the cortical surface [37]. As such, the change in V1 surface area would have

a systematic influence on V1 connectivity, where the connectivity between V1 neurons with

similar orientation selectivity would be scaled to a larger degree than the connectivity between

neurons with opposite orientation selectivity. In V2, however, the orientation representation

(thick stripe) is interleaved with the color representation (thin stripe) [35, 36]. As a result,

the connectivity between V2 neurons with similar orientation selectivity is less likely to scale

with V2 surface area but may instead vary with the stripe patterns. In contrast to the cortical

processing of orientation, the cortical processing of contrast or luminance has no orderly rep-

resentation [97]. Consequently, the connectivity between neurons with similar versus opposite

feature (contrast, luminance) selectivity would be scaled to the same degree by the change in

visual cortical surface area. Since local perception of feature details and global perception of

feature contexts involve, respectively, discrimination and modulation between visual features

close in values, the scaling of intracortical connectivity with the similarity in feature selectivity

between connected neurons may be a mechanism through which visual cortical surface area

influences visual feature perception.

My experiment observations therefore support my second hypothesis that visual cortical

surface area influences perception of elementary visual features by an interaction between the

scaling of effective stimulus size, where individuals with a larger visual cortical surface area in

effect perceive the visual world through a magnifier relative to their colleagues, and the scaling

of intracortical connectivity, where perception of different visual features is influenced differ-

ently depending on their cortical representations. Specifically, my experiment observations

suggest that a continuous, orderly cortical representation of elementary visual features, where

the net connectivity between neurons with similar feature selectivity scales systematically with

visual cortical surface area, is essential for perception of this visual feature to be influenced

by visual cortical surface area. Indeed, while there exists a relatively large number of dif-

ferent elementary visual features, visual cortices can only accommodate a limited number of
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continuous, orderly representations [97]. Among these, the orientation representation in V1 is

an ecologically robust pattern observable in many mammalian species from rodents to human

[37, 41, 42, 97].

In addition to the continuous, orderly orientation representation in V1, other visual cortices

also contain continuous, orderly representations of other elementary visual features. My hy-

pothesis therefore suggests that the correlations between orientation perception and V1 surface

area would be generalizable to perception of other elementary visual features and to surface

area of other visual cortices, where that visual feature is represented in a continuous and orderly

fashion in that visual cortex. For example, similar to orientation, ocular dominance has a con-

tinuous, orderly V1 representation that is prominently observed in mammalians from rodents to

human [37, 97, 128]. As such, my hypothesis predicts that, an inter-individual increase in V1

surface area would lead to weakened intracortical inhibition between neurons with opposite

ocular preference, and weakened interocular suppression in binocular rivalry where percep-

tion alternates between incompatible monocular stimuli [129, 130]. Indeed, an inter-individual

correlation has been observed between the surface area of V1 and the level of intercoular sup-

pression in binocular rivalry [131]. This observation supports my hypothesis, suggesting that

the correlation with V1 surface area is not a specific property of orientation perception but is

instead generalizable to perception of other elementary visual features with a continuous, or-

derly V1 representation.

While V2 does not have a continuous representation of orientation, it nonetheless con-

tains a continuous representation of visual field location (retinotopy) that resembles the visual

field representation in V1 [37]. As such, my hypothesis predicts a correlation between the

surface area of V2 or V1 and perception of visual filed location. The relationship between

visual cortical surface area and location discrimination was tested in the next chapter (Chapter

Five), where I compared the thickness and the surface area of early visual cortices (V1, V2)

in their contribution to perceptual variability. Apart from V1 and V2, V5/MT also contains

continuous, orderly representations of elementary visual features, and in particular, of motion

direction [132]. My hypothesis therefore predicts that individuals with a larger V5/MT surface

area would perform finer discrimination of motion direction and individuals with a smaller

V5/MT surface area would experience stronger contextual illusion (modulation) by motion

direction. V5/MT can be delineated functionally using retinotopic mapping [72] or morpho-

logically using myelination mapping [133]. It will be of interest for future studies to explore

whether the correlation with inter-individual perceptual variability is generalizable to V5/MT
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surface area.

By using psychophysical methods to assess visual perception and neuroimaging methods

to assess visual cortical surface area, my experiments provided an implicit test for the involve-

ment of intracortical connectivity in linking the surface area of early visual cortices to percep-

tion of elementary visual features. For an explicit test, in the next few chapters I addressed

directly the role of intracortical connectivity. Specifically, in Chapter Six, I took a theoretical

approach and built a visual cortical model, to test whether the simulated scaling of intracortical

connectivity with model visual cortical surface area could reproduce the empirically observed

correlations between visual cortical surface area and visual perception. Then, in Chapter Eight,

I took an empirical approach and measured the intracortical connectivity in early visual cor-

tices, to explore whether the weakening of intracortical connectivity indeed shifted the scope

of visual perception from global context-oriented to local detail-oriented.



Chapter 5

Role of Visual Cortical Thickness

5.1 Introduction

The cerebral cortex is a sheet of neural tissue composed of vertical ontogenetic columns

and horizontal laminar layers [46, 134]. As such, the morphology of cerebral cortex is charac-

terized by two geometrically-orthogonal dimensions, the cortical surface area and the cortical

thickness, shaped respectively by the proliferation of cortical columns and the generation of

cortical layers [46, 134, 135, 136, 137]. Although the cortical surface area and the cortical

thickness are controlled by independent sets of genetic-developmental factors, these two mor-

phological dimensions jointly determine the cortical volume (i.e., the gray matter volume)

[49, 57, 58, 46]. A lot of recent progress has been made in identifying the correlations between

a larger cortical volume and a higher behavioral performance [1]. However, the fundamental

question of whether a larger cortical volume is in essence behaviorally advantageous remains

unclear. One approach to address this question is by studying whether the cortical surface area

and the cortical thickness, which have the same contribution to the cortical volume, exert sim-

ilar or different influence on behavioral performance.

In the last chapter (Chapter Four), I explored the influence of visual cortical surface area

on perception of elementary visual features. In this chapter, I focused on the influence of visual

cortical thickness and tested two alternative hypotheses. Intuitively, it is possible that increases

in visual cortical volume, arising either from visual cortical surface area or visual cortical

thickness, may influence visual perception by engaging responses from more neurons [138]

and increasing the overall signal-to-noise ratio [139]. Such a hypothesis suggests that visual

cortical surface area and visual cortical thickness would exert similar influence on visual per-

ception. Alternatively, it is also possible that any influence on visual perception would differ

between visual cortical surface area and visual cortical thickness, as these two morphological

dimensions capture distinct aspects of cortical anatomy that may affect different components
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of intracortical processing [45]. Specifically, visual cortical surface area captures the regional-

level cortical anatomy, where it is determined jointly by all visual cortical locations and reflects

the result of cortical arealization. By contrast, visual cortical thickness captures the point-level

cortical anatomy, where it is determined independently for individual visual cortical location

and reflects the result of tissue proliferation. Therefore, the variability in visual cortical sur-

face area is likely to influence all the cortical columns within a visual cortical region and the

inter-columnar processing between them, whereas the variability in visual cortical thickness is

likely to influence only the local cortical column and the inter-laminar processing within it.

In addition to affecting different components of intracortical processing, visual cortical

surface area and visual cortical thickness exhibit dissociable patterns of variability that fur-

ther hint towards their different influence on visual perception. Specifically, from mice to

humans, the cortical surface area has expanded over one thousand fold [46, 112], and even

across healthy human adults, the surface area of a cortical region such as visual cortical surface

area may vary up to three-fold [48]. In contrast to the substantial inter-individual variability

exhibited by the cortical surface area, the cortical thickness differs marginally across human

individuals and has only doubled from mice to humans [46, 112]. However, the cortical thick-

ness exhibits substantial intra-individual variability, where it may vary over three-fold across

different cortical locations within the same cortical region of the same individual [113, 114].

As such, the variability in visual cortical surface area may reflect the differences across in-

dividuals in visual processing over the visual cortex and is likely to underlie inter-individual

perceptual variability, whereas the variability in visual cortical thickness may reflect the differ-

ences within individuals in visual processing at different visual field locations and is likely to

underlie intra-individual perceptual variability.

To test these two hypotheses, I compared the surface area and the thickness of early visual

cortices (V1, V2) in their contribution to perceptual variability. Inter-individual and intra-

individual perceptual variability can be similarly measured using the visual discrimination

threshold such as the location discrimination threshold (i.e., visual acuity). Specifically, by

measuring the visual discrimination threshold at a set of non-overlapping visual field loca-

tions, one can assess not only the perceptual variability across individuals but also the percep-

tual variability within an individaul across the visual field [2, 99]. Moreover, by distributing

the set of visual field locations along both the axis of eccentricity and the axis of polar an-

gle, one can decompose the perceptual variability further into an eccentricity-dependent and

an eccentricity-independent component that reflects respectively, how the visual discrimination
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threshold varies along the visual field eccentricity and across different visual field locations at

the same eccentricity.

Taken together, in this chapter, I explored the relationships between perceptual variability

and visual cortical thickness in healthy human adults with three specific aims. First, I studied

the extent to which visual cortical thickness varied across different visual cortical locations, and

whether such variability represented robust anatomical traits. Then, I tested how the variabil-

ity in visual cortical thickness related with the variability in location discrimination threshold,

separately for the eccentricity-dependent and the eccentricity-independent component. Last, I

addressed whether the influence of visual cortical thickness on location discrimination thresh-

old resembled that of visual cortical surface area. To this end, I assessed the variability in visual

cortical thickness, using different experimental paradigms where structural data were acquired

from T1-weighted MRI imaging (in-vivo), quantitative-T1 MRI imaging (in-vivo), or histology

sectioning (in-vitro), and then analyzed in SPM [140], FSL [141], Freesurfer [142], or MIPVA

CBS [143]. I also assessed the perceptual variability, by measuring the location discrimination

threshold at thirteen non-overlapping visual field locations covering three eccentricities (0, 4.7,

6.7 degree) and six polar angles (45, 90, 135, 225, 270, 315 degree).

5.2 Methods

5.2.1 Participants and Apparatus

A group of twenty healthy participants (aged 19 to 34, ten females, ten males), with nor-

mal or corrected-to-normal vision and no neurological history, gave written informed consent

to take part in this study approved by the UCL ethics committee. All participants took part

in the psychophysics experiments where I measured the location discrimination threshold at

thirteen non-overlapping visual field locations, as well as the neuroimaging experiments where

I measured visual cortical thickness from T1-weighted structural MRI data at 1 mm resolution.

Eight of the participants further took part in the neuroimaging experiments where I measured

visual cortical thickness from quantitative-T1 structural MRI data, at 1 mm and 0.8 mm reso-

lution.

The psychophysics experiments took place in a dark room where the computer monitor

provided the only significant source of light. The visual stimuli were presented on the com-

puter monitor and viewed through a chin and forehead rest. For the monitor display, I sought

to acquire a high spatial resolution (i.e., a small pixel size) that improved the measurement

accuracy, as well as a large visual field coverage that facilitated the measure of intra-individual
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perceptual variability. However, there is a natural trade-off between the spatial resolution and

the visual field coverage of any display. Consequently, I employed two different monitor dis-

plays, one 17 inch monitor (size = 34.2 x 27.5 cm, viewing distance = 3 m, resolution = 1280 x

960 pixels) that offered a high spatial resolution (pixel size = 0.005 degree of visual angle) yet

a limited visual field coverage (radius = 2.4 degree of visual angle), and one 22 inch monitor

(size = 41 x 30.6 cm, viewing distance = 67 cm, resolution = 2048 x 1536 pixels) that offered a

large visual field coverage (radius = 12.9 degree of visual angle) yet a limited spatial resolution

(pixel size = 0.017 degree of visual angle). I used the 17 inch monitor for the measures at the

visual field center, and the 22 inch monitor for the measures at the peripheral visual field.

The neuroimaging experiments took place in a Siemens Trio 3T MRI scanner with a 32-

channel head-coil. The visual stimuli were projected onto a screen (size = 28.6 x 21.5 cm) in the

back of the scanner and viewed through a mirror on the head-coil (viewing distance = 85 cm).

The stimuli covered a portion of the visual field extending from 0.25 to 7.2 degree eccentricity.

Structural MRI data were collected using a T1-weighted sequence at 1 mm resolution (TR =

7.92 ms, TE = 2.48 ms, matrix = 256 x 240), or a quantitative-T1 sequence at 1 mm resolution,

or a quantitative-T1 sequence at 0.8 mm resolution. The quantitative-T1 sequence involved ac-

quisitions of five different MRI signals, and in particular, the proton-density-weighted signals

(1 mm resolution: TR = 23.7 ms, TE = 2.2 ms to 19.7 ms by steps of 2.5 ms, matrix = 256 x

240; 0.8 mm resolution: TR = 25.25 ms, TE = 2.39 ms to 18.91 ms by steps of 2.36 ms, matrix

= 320 x 280), the magnetization-transfer-weighted signals (1 mm resolution: TR = 23.7 ms, TE

= 2.2 ms to 14.7 ms by steps of 2.5 ms, matrix = 256 x 240; 0.8 mm resolution: TR = 29.25 ms,

TE = 2.39 ms to 18.91 ms by steps of 2.36 ms, matrix = 320 x 280), the T1-weighted signals

(1 mm resolution: TR = 18.7 ms, TE = 2.2 ms to 14.7 ms by steps of 2.5 ms, matrix = 256 x

240; 0.8 mm resolution: TR = 25.25 ms, TE = 2.39 ms to 18.91 ms by steps of 2.36 ms, matrix

= 320 x 280), the radio-frequency transmit field B1+ signals (1 mm resolution: TR = 500 ms,

TE = 18.53 ms / 37.06 ms, matrix = 64 x 48; 0.8 mm resolution: TR = 500 ms, TE = 19.69 ms

/ 39.38 ms, matrix = 64 x 48), and the static magnetic field B0 signals (TR = 1020 ms, TE = 10

ms / 12.46 ms, matrix = 64 x 64). From these five MRI signals, quantitative-T1 structural MRI

data were calculated according to the methods developed by [144, 145] including corrections

for imperfect spoiling [146] and field (B1+, B0) inhomogeneities [147, 148]. Functional MRI

data were collected using a 3D EPI sequence at 1.5 mm resolution (volume TR = 3.2 s, TE =

32.86 ms, matrix = 128 x 128). Functional MRI data were preprocessed in SPM8 through bias

correction, realignment, unwarping, coregistration, and physiology noise correction.



5.2. Methods 71

5.2.2 Psychophysics experiments

To assess inter-individual and intra-individual perceptual variability, I measured the thresh-

old of visual field location discrimination (i.e., visual acuity) for each participant at thirteen

non-overlapping locations across the visual field through thirteen independent experiments.

These thirteen locations covered three eccentricities (0, 4.7, 6.7 degree) and six polar angles

(45, 90, 135, 225, 270, 315 degree). The thirteen experiments differed only in the location of

visual stimuli and shared the same experiment procedures. Specifically, I used the standard

2-up-1-down staircase procedure with a spatial forced-choice task, where participants judged

the location difference between two concurrently presented bar stimuli (Vernier stimuli).

In a single experiment trial, one pair of collinear bars and one pair of horizontally offset

bars (single bar width = 0.15 degree of visual angle, single bar length = 0.6 degree of visual

angle, vertical distance between two bars = 0.3 degree of visual angle) were presented in suc-

cession on the computer screen with randomized order. The duration of each bar pair was 300

ms and the inter-stimulus-interval was 500 ms. While maintaining central fixation through-

out the experiment, participants made an unspeeded forced choice regarding which temporal

interval contained the pair of horizontally offset bars. The horizontal location difference be-

tween the pair of horizontally offset bars was varied in a 2-up-1-down staircase fashion that

assessed the threshold value at which the discrimination performance converged to 70.7% cor-

rect. Specifically, two consecutive correct answers led to a one-step decrease in the horizontal

location difference in the next trial, whereas one incorrect answer lead to a one-step increase

in the feature difference. The experiment stopped after eighteen reversals, and the location

discrimination threshold was calculated as the horizontal location difference averaged over the

last ten reversals.

5.2.3 MRI measure of visual cortical thickness

To measure visual cortical thickness, I applied standard phase-encoded retinotopic map-

ping to delineate early visual cortices (V1, V2) for each participant through two experiment

runs of polar-angle mapping and one experiment run of eccentricity mapping. For polar-angle

mapping, participants viewed full-contrast flickering checkerboard wedges (width = 40 degree)

rotating smoothly around a small fixation cross for ten cycles per experiment run at a speed of

twenty volumes per cycle. For eccentricity mapping, participants viewed full-contrast flick-

ering checkerboard rings (width = 7.8% of the screen length) contracting smoothly around a

small fixation cross for fifteen cycles per experiment run at a speed of fifteen volumes per

cycle. To maintain participants’ attention, at random temporal intervals the retinotopic map-
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ping stimuli underwent a small pattern shift for 200 ms. Participants were asked to indicate

whenever this happened with a button press while keeping their eyes fixated at the central cross

during the whole experiment. The polar-angle maps and the eccentricity maps were generated

by applying Fast Fourier Transform to fMRI BOLD time series of each voxel that extracted the

phase and the power at the stimulation frequency. The polar angle boundaries (representing

vertical and horizontal meridians) were delineated manually according to the mirror reversals

in the polar-angle maps. The eccentricity boundaries (representing 7.2 degree eccentricity)

were delineated automatically by thresholding the eccentricity maps.

Based on the retinotopic delineation of early visual cortices, the thickness at individual

visual cortical locations and the surface area summed over all visual cortical locations were

measured, by applying the surface-based analysis to structural MRI data [78]. In the surface-

based analysis, structural MRI data were preprocessed through skull stripping and non-uniform

intensity correction, after which the data were segmented into the white and the gray matter

according to intensity-based tissue classification. From the white and the gray matter seg-

ments, the three-dimensional triangle-mesh models of the white and the pial cortical surfaces

were built with each vertex representing a single cortical location distinguishable by MRI.

The three-dimensional triangle-mesh model is a collection of vertices (points), edges (connec-

tions between vertices), and triangle faces (closet sets of three edges) that defines the shape

of a three-dimensional object. From the three-dimensional triangle-mesh models, the cortical

thickness was computed as the distance between the white and the pial cortical surfaces, and

the cortical surface area was computed as the summed surface area of triangle faces in a corti-

cal region.

The MRI measure of visual cortical thickness was vulnerable to the confounding influence

of data analysis software. To separate the contribution of software specific versus software in-

dependent factors, I repeated the analysis in four established software (SPM, FSL, Freesurfer,

MIPVA CBS). For each participant, the pre-processing of raw data and the segmentation of

cortical tissues were repeated in four different software (SPM, FSL, Freesurfer, MIPVA CBS),

after which the reconstruction of cortical surfaces and the computation of cortical thickness

were repeated in two different software (Freesurfer, MIPVA CBS). On a voxel basis, I com-

pared the segmentation of cortical tissues across software by calculating the standard deviation

of inner and outer cortical boundaries; I also compared the computation of cortical thickness

(as well as the reconstruction of cortical surfaces) across software by calculating the correla-
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tion in the cortical thickness measures.

Apart from the concern of data analysis software, the MRI measure of visual cortical thick-

ness was also vulnerable to the confounding influence of data acquisition sequence. Specifi-

cally, despite being a widely used standard protocol, the T1-weighted sequence in fact detects

a mixture of magnetic-field-specific and biological-tissue-specific signals. As a result, T1-

weighted structural MRI data have inhomogenous intensity and low tissue contrast that are

likely to bias the segmentation of cortical tissues and the computation of cortical thickness.

To address the limited quality of the standard T1-weighted sequence, I further collected struc-

tural MRI data using the advanced quantitative-T1 sequence. Through the detection of multi-

ple parametric signals, the quantitative-T1 sequence effectively factors out the magnetic-field-

specific component and directly reflects the physical property (proton longitudinal relaxation

rate, R1 = 1/T1) of the underlying biological tissue [145]. Consequently, quantitative-T1 struc-

tural MRI data have homogeneous intensity and high tissue contrast that greatly reduce poten-

tial bias in the surface-based analysis. The surface-based analysis of quantitative-T1 structural

MRI data were carried out in MIPVA CBS, as the software was developed for high resolution

structural data and had no constrain of voxel size [143]. On a voxel basis, I compared the

measure of visual cortical thickness from 1 mm resolution T1-weighted structural MRI data,

1 mm resolution quantitative-T1 structural MRI data, and 0.8 mm resolution quantitative-T1

structural MRI data.

5.2.4 Histology measure of visual cortical thickness

Although structural MRI data offer a non-invasive in-vivo measure of visual cortical thick-

ness, the measure is at the same time limited by its indirect nature. In contrast, a direct measure

of visual cortical thickness (albeit in-vitro) is possible from histology data. To assess the re-

liability of the MRI measure of visual cortical thickness, I therefore acquired the measure of

visual cortical thickness from histology data. To this end, I searched publicly available sources

of histology data (e.g., brainmaps.org, LONI, Allen Institute) for a dataset with high resolution,

fine alignment, and little distortion. Despite the efforts, I was not able to find a public dataset

that met my needs. Nevertheless, through extensive search of private resources, I managed to

access a dataset of high-resolution (40 µm isotropic pixel), whole-brain (4992 pixel x 3328

pixel), histology images (502 images in total), taken consecutively every 300 µm along the

dorsoventral axis of a postmodern human body.

This dataset was generously shared by Drs. Yuchun Tang and Shuwei Liu (Research Cen-
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ter for Sectional and Imaging Anatomy, Shandong University, China) under approval from

local ethics committee. The postmodern body came from a deceased 38-year-old male who

had donated his body for medical research purposes and had no neurological history. After

the body was frozen and fixed, the head was dissected from the plane of thyroid cartilage

and embedded in blue-stained gelatine. Serial transverse sectioning was performed along the

dorsoventral axis using computerised freezing milling technique (milling machine: SKC500,

Jinan, China; milling accuracy: 1 µm) [149]. A high-resolution digital camera (Canon EOS

1D MARK II, Japan) was used to take the histology images along with the images of length

markers and color charts. The images of length markers and color charts were subsequently

used as reference in affine alignment of the histology images. The results of affine alignment

were independently checked by two experienced neuroanatomists (Yuchun Tang and Bo Sun)

and confirmed through three-dimensional volume reconstruction of the head.

Compared to the standard 1000 µm resolution of structural MRI data, the 40 µm in-plane

resolution of histology data enabled much more accurate measure of visual cortical thickness.

However, conventional histology data analysis employs a slice-based approach that is con-

strained by the slice orientation and limited in sampling coverage. For example, the sliced-

based measure of visual cortical thickness is only valid for histology slices orthogonal to the

cortical surface. By contrast, conventional MRI data analysis employs a surface-based ap-

proach that is unrestricted by the slice orientation and offers an unbiased sampling coverage.

Because the purpose of my analysis was to compare visual cortical thickness measured from

structural MRI data with that from histology data, I tried to minimize the confounds associated

with different sampling coverage of the two measures. Therefore, I developed a surface-based

approach to analyze histology data. Similar to the surface-based analysis of structural MRI

data, I performed tissue segmentation for each histology image, built the three-dimensional

cortical surface models, and extracted the surface-based measure of visual cortical thickness.

As the first step of the surface-based analysis, I performed tissue segmentation for each

of the 502 histology images. At first I tried to use automatic segmentation, since manual seg-

mentation for 502 images would be labor-intensive and time-consuming. However, existing

algorithms of automatic tissue segmentation all relied on the image intensity information and

were developed mainly for structural MRI data, yet histology data differed substantially from

structural MRI data in the image intensity distribution. This rendered MRI-based algorithms of

automatic tissue segmentation unsuitable for histology data. Indeed, when I analyzed histology

data in MRI-based software such as SPM and FSL, the results of automatic tissue segmentation
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were rather inaccurate (Figure 5.1).
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Figure 5.1: Histology measure of visual cortical thickness. To build the three-dimensional

cortical surface models from the two-dimensional histology images, I segmented each histology

image into the white and the gray matter. The approaches of automatic tissue segmentation,

using existing software such as FSL (A) and SPM (B) or using custom-written code, all failed

to reach satisfactory accuracy. Therefore, I took the approach of manual tissue segmentation

(C). The differences between automatic and manual approaches in the performances of skull

stripping, tissue segmentation, and cortical surface reconstruction, were illustrated in the two-

dimensional cortical section images and the three-dimensional cortical surface images.

Consequently, I sought to write custom code that performed automatic tissue segmenta-

tion based on the color information and the consecutive nature of the histology images. To this

end, I tried several approaches, including using the built-in functions of Mathematica (e.g., Im-

ageForestingComponents, ClusteringComponents), using saliency detection algorithms (e.g.,

visual-feature-based, spectral-based), or a combination of both. However, neither of these

approaches managed to reach satisfactory accuracy. Due to the failure of automatic tissue seg-
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mentation, I resorted to manual tissue segmentation. I took advantage of the color information

of the histology images, by performing manual segmentation on the red, green, and blue chan-

nel images in addition to the original image. Non-uniform intensity correction [150] was also

applied, resulting in a total of eight images (corrected/uncorrected red/green/blue/all channel)

per transverse section. Based on these images, I manually performed skull strip and tissue

segmentation for each transverse section using the software Amira [151].

From these two-dimensional manual segments of the white and the gray matter, I built the

three-dimensional triangle-mesh models of the white and the pial cortical surfaces in the soft-

ware MIPVA CBS. During the analysis, the two-dimensional segments were binarized, down-

sampled to generate 300 µm isotropic voxels, and refined through three-dimensional topology

correction. While traditional software such as Freesurfer was developed for low resolution

structural data and had constrain of voxel size [142], this relatively new software MIPVA CBS

was developed specifically for high resolution structural data and had no constrain of voxel

size [143]. Using MIPVA CBS, I computed the cortical thickness was as the distance between

the white and the pial cortical surfaces, with the biomechanics of cerebral cortex taken into

consideration.

The surface-based analysis of histology data, although demanding, allowed direct com-

parison with structural MRI data in the measure of visual cortical thickness. To make the com-

parison, I delineated the occipital regions-of-interest in histology data according to the average

retinotopic map acquired from the fMRI experiments. The regions-of-interest was transformed

from the original image space to the histology image space through coregistration and reslice.

5.3 Results

5.3.1 Variability in visual cortical thickness

I acquired the measure of visual cortical thickness from the surface-based analysis on

structural MRI data, where the cortical thickness was computed as the distance between the

white and the pial cortical surfaces reconstructed from the white and the gray matter segments.

This MRI measure of visual cortical thickness was potentially confounded by the choice of

data analysis software. To assess the influence of data analysis software, I repeated the seg-

mentation of cortical tissues in four different software (SPM, FSL, Freesurfer, MIPVA CBS),

and the computation of cortical thickness (as well as the reconstruction of cortical surfaces)

in two different software (Freesurfer, MIPVA CBS). Across software, I compared the segmen-

tation of cortical tissues, by calculating the standard deviation of the inner cortical boundary
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(white matter was given the value of one, gray matter the value of zero, the rest of the brain

NaN) and that of the outer cortical boundary (gray or white matter was given the value of one,

the rest of the brain the value of zero). The standard deviation was first calculated for individ-

ual voxel and then averaged across all voxels for individual participant. I also compared the

computation of cortical thickness across software, by calculating the correlation in the cortical

thickness measures. Specifically, the cortical thickness measured from Freesurfer was plotted

against the cortical thickness measured from MIPVA CBS, where voxels with similar cortical

thickness were binned to generate 30 data points. I found that the segmentation standard devi-

ation in the occipital lobe [152] was low for both the inner cortical boundary (mean = 0.075,

std = 0.009, N = 20 participants) and the outer cortical boundary (mean = 0.047, std = 0.009,

N = 20 participants). Moreover, the measure of visual cortical thickness was highly correlated

between different software (r = 0.98, p < 0.0001, N = 104158 voxels binned into N = 30 data

points).

Such consistency suggested that the MRI measured thickness of early visual cortices was

not biased by the specific choice of data analysis software. Nevertheless, the MRI mea-

sure of visual cortical thickness was still confounded by the choice of data acquisition se-

quence. Indeed, structural MRI data acquired using the standard T1-weighted sequence had

inhomogenous intensity and low tissue contrast, as illustrated by the mixed peaks of white

matter and gray matter in the image intensity histogram (Figure 5.2A). This could bias the

segmentation of cortical tissues and the computation of cortical thickness. Nevertheless, the

advanced quantitative-T1 sequence overcame this limitation and produced structural MRI data

that had clearly separated peaks of white matter and gray matter in the image intensity his-

togram (Figure 5.2B). Moreover, by factoring out the magnetic-field-specific component and

directly reflecting the biological-tissue-specific component, structural MRI data acquired us-

ing the quantitative-T1 sequence were highly reproducible across different scanning sessions

and directly comparable across participants (Figure 5.2B). Such high image quality helped to

reduce potential bias in the surface-based analysis. To assess the influence of data acquisition

sequence, I compared visual cortical thickness measured from different acquisition sequences.

I found that the MRI measure of visual cortical thickness was consistent between 1 mm resolu-

tion T1-weighted structural MRI data and 1 mm resolution quantitative-T1 structural MRI data

(r = 0.97, p < 0.0001, N = 42538 voxels binned into N = 30 data points), as well as between

1 mm resolution quantitative-T1 structural MRI data and 0.8 mm resolution quantitative-T1

structural MRI data (r = 0.97, p < 0.0001, N = 42538 voxels binned into N = 30 data points).
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Figure 5.2: MRI measure of visual cortical thickness. Two different MRI sequences, the stan-

dard T1-weighted sequence and an advanced quantitative-T1 sequence, were used to collect

the structural MRI images for eight of the twenty participants. The distribution of image in-

tensity was plotted on a voxel basis, where voxels with similar intensity value were binned to

generate 30 data points for each participant. The double Gaussian fit to the image intensity

distribution revealed mixed peaks of white matter and gray matter in the T1-weighted MRI

images, not only before but also after non-uniform intensity correction (A). By contrast, the

quantitative-T1 MRI images showed clearly separated peaks of white matter and gray matter

with consistent intensity values between 1 mm resolution and 0.8 mm resolution (B). These

improvements in intensity homogeneity and tissue contrast from the T1-weighted MRI images

to the quantitative-T1 MRI images were further illustrated in the sample cortical slices. Data

points are color coded according to the participant. Parameters are derived from the double

Gaussian fit to the image intensity distribution.
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These correlations suggested that although the standard T1-weighted sequence did not offer

high image quality, the MRI measured thickness of early visual cortices was robust against this

limitation.

Based on the MRI measure, I studied the variability in visual cortical thickness. Compared

to the substantial degree of inter-individual variability in visual cortical surface area [48], the

average thickness of early visual cortices varied across participants in a much smaller degree

from 2 mm to 2.5 mm. Nevertheless, within individual participants, the cortical thickness

varied across different visual cortical locations from 1 mm to 4 mm following a Gaussian dis-

tribution (Figure 5.3). In addition to this general intra-individual variability in visual cortical

thickness, I observed an intra-individual increase in visual cortical thickness from sulci to gyri

and from parafovea (central 2.0 degree eccentricity) to perifovea. This increase in visual cor-

tical thickness from parafovea to perifovea was observed for both sulci (V1: T = 6.533, p <

0.0001, N = 20 participants; V2: T = 8.359, p < 0.0001, N = 20 participants) and gyri (V1: T

= 6.509, p < 0.0001, N = 20 participants; V2: T = 8.874, p < 0.0001, N = 20 participants). In

a similar fashion, the increase in visual cortical thickness from sulci to gyri was observed for

both parafovea (V1: T = 7.113, p < 0.0001, N = 20 participants; V2: T = 8.357, p < 0.0001,

N = 20 participants) and perifovea (V1: T = 9.972, p < 0.0001, N = 20 participants; V2: T =

9.471, p < 0.0001, N = 20 participants).

These observations revealed that the MRI measured thickness of early visual cortices ex-

hibited a substantial degree of trait-like variability that was robust against data analysis soft-

ware and data acquisition sequence. As such, the variability was unlikely to represent a simple

measurement error. Nevertheless, the MRI measure of visual cortical thickness was limited

by its indirect nature. To address whether the variability in visual cortical thickness observed

from structural MRI data represented a true anatomical trait, I studied the variability in visual

cortical thickness measured from histology data. I found that the histology measure of visual

cortical thickness exhibited a substantial degree of intra-individual variability that was similar

in extent to the MRI measure of visual cortical thickness (V1: peak=1.896, FWHM=0.905;

V2: peak=2.121, FWHM=0.820). Moreover, the dependence of visual cortical thickness on

cortical folding and visual field eccentricity that I observed in structural MRI data was recap-

tured by histology data. Specifically, visual cortical thickness increased from sulci to gyri for

parafovea (V1: T = 13.498, p < 0.0001, N = 87455 voxels; V2: T = 18.179, p < 0.0001, N =

86466 voxels) as well as for perifovea (V1: T = 23.822, p < 0.0001, N = 230387 voxels; V2:

T = 9.507, p < 0.0001, N = 50348 voxels), and increased from parafovea to perifovea for sulci
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(V1: T = 83.929, p < 0.0001, N = 146834 voxels; V2: T = 56.089, p < 0.0001, N = 72410

voxels) as well as for gyri (V1: T = 97.783, p < 0.0001, N = 171008 voxels; V2: T = 49.674,

p < 0.0001, N = 64404 voxels).
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Figure 5.3: Variability in visual cortical thickness. Variability in visual cortical thickness was

studied in a group of twenty participants, where retinotopic mapping was applied to delineate

the part of early visual cortices (V1, V2) that responded to the visual field between 0.25 and

7.2 degree eccentricity. Based on the retinotopy delineation, visual cortical thickness was cal-

culated as the vertical distance between the white and the pial surfaces for individual cortical

locations in the retinotopically-delineated part of V1 or V2. The distribution of V1 or V2 thick-

ness was plotted on a voxel basis, where voxels with similar cortical thickness were binned to

generate 30 data points for the group of twenty participants (A) or for each participant in the

group (B). The mean and the standard deviation of V1 or V2 thickness derived from the Gaus-

sian fit to the thickness distribution illustrated the variability in visual cortical thickness across

different visual cortical locations. Data points are color coded according to the participant

(B). Parameters are derived from the Gaussian fit to the thickness distribution (B).

The consistency with the histology measure reassured the application of structural MRI

data in measuring visual cortical thickness. As such, the observed variability in the MRI mea-

sured thickness of early visual cortices was likely to reflect a true anatomical trait. Build-

ing upon this observation, I explored how the variability in visual cortical thickness (mea-
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sured using structural MRI data) related with that in location discrimination threshold (mea-

sured using psychophysics methods), and whether such relationships, if observed, resem-

bled the relationships between visual cortical surface area and location discrimination thresh-

old. The variability in location discrimination threshold had an eccentricity-dependent and an

eccentricity-independent component. Therefore, I conducted separate analysis to study the in-

fluence that visual cortical anatomy exerted on the change in location discrimination threshold

along the visual field eccentricity (eccentricity-dependent component) and the variability in

location discrimination threshold across different visual field locations at the same eccentricity

(eccentricity-independent component).

5.3.2 Visual cortical thickness and perceptual variability at fixed eccentricity

To explore the influence of V1 thickness on the eccentricity-independent variability in

location discrimination threshold, I analyzed the relationships between V1 thickness and lo-

cation discrimination threshold at a fixed visual field eccentricity (4.7 degree). Specifically, I

plotted the location discrimination threshold measured at six different visual field locations of

4.7 degree eccentricity against the thickness at corresponding V1 locations, across the group of

twenty participants. I observed a positive correlation between location discrimination thresh-

old and V1 thickness (r = 0.307, 95% CI = [0.136, 0.460], p < 0.001, N = 20 participants x 6

visual field locations), which hinted towards finer discrimination at visual field locations that

corresponded to thinner parts of V1.

This correlation, however, reflected a combined contribution of intra-individual and inter-

individual factors. To separate the contribution of the two factors, I conducted further analysis

where I calculated, for each participant, the location discrimination threshold as well as V1

thickness averaged across the six visual field locations, and for each visual field location, the

location discrimination threshold as well as V1 thickness averaged across the twenty partici-

pants. By subtracting the averages of individual participants’, I factored out inter-individual

variability and studied intra-individual relationships. Similarly, by subtracting the averages of

individual visual field locations’, I factored out intra-individual variability and studied inter-

individual relationships. In both cases, I still observed a positive correlation between location

discrimination threshold and V1 thickness (intra-individually, r = 0.339, 95% CI = [0.171,

0.488], p < 0.001, N = 20 participants x 6 visual field locations; inter-individually, r = 0.311,

95% CI = [0.140, 0.464], p < 0.001, N = 20 participants x 6 visual field locations), suggesting
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that the correlation existed both within and across individuals.

The positive correlation between location discrimination threshold and V1 thickness re-

vealed that a larger V1 volume, if came from a larger V1 thickness, was associated with a

lower performance in visual field location discrimination (i.e., a higher location discrimina-

tion threshold). To test whether the surface area of V1 would have a similar or a different

contribution to visual field location discrimination, I analyzed the relationships between V1

surface area and location discrimination threshold at a fixed visual field eccentricity (4.7 de-

gree). Specifically, across the group of twenty participants, I plotted the location discrimination

threshold measured at six different visual field locations of 4.7 degree eccentricity against the

surface area of participants’ V1. I observed a negative correlation between location discrimi-

nation threshold and V1 surface area (r = -0.318, 95% CI = [-0.47, -0.15], p < 0.001, N = 20

participants x 6 visual field locations), suggesting that individuals with a larger V1 surface area

were able to perform finer visual field location discrimination. As such, a larger V1 volume, if

came from a larger V1 surface area, was associated with a higher performance in visual field

location discrimination (i.e., a lower location discrimination threshold).

These correlations between location discrimination threshold and V1 anatomy revealed

that the visual discrimination threshold for a specific visual field location was affected jointly

by the thickness at corresponding V1 locations and the surface area of V1. To explore the

influence that the thickness and the surface area of V2 might exert on the location discrimina-

tion threshold, I applied a similar analysis where I plotted the location discrimination threshold

measured at six different visual field locations of 4.7 degree eccentricity against the thickness

at corresponding V2 locations or the surface area of participants’ V2. Similar to the observa-

tions in V1, a larger location discrimination threshold was observed at visual field locations

that corresponded to V2 locations with a larger thickness (r = 0.205, 95% CI = [0.027, 0.370],

p < 0.05, N = 20 participants x 6 visual field locations; intra-individually, r = 0.200, 95% CI =

[0.022, 0.366], p < 0.05, N = 20 participants x 6 visual field locations; inter-individually, r =

0.193, 95% CI = [0.015, 0.359], p < 0.05, N = 20 participants x 6 visual field locations). Con-

versely, a smaller location discrimination threshold was observed in participants with a larger

V2 surface area (r = -0.315, 95% CI = [-0.47, -0.14], p < 0.001, N = 20 participants x 6 visual

field locations).
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5.3.3 Visual cortical thickness and perceptual variability along eccentricity

My analyses above revealed an opposite relationship between visual cortical thickness

and visual cortical surface area in their contribution to perceptual variability. This observation

was made on the variability in location discrimination threshold across different visual field

locations at the same eccentricity (eccentricity-independent component). To explore whether

this observation was specific to certain visual field eccentricity or was generalisable across the

visual field, I compared visual cortical thickness and visual cortical surface area in their con-

tribution to the change in location discrimination threshold along the visual field eccentricity

(eccentricity-dependent component). For this purpose, the location discrimination threshold,

measured at thirteen non-overlapping visual field locations covering three eccentricities (0, 4.7,

6.7 degree) and six polar angles (45, 90, 135, 225, 270, 315 degree), was projected onto early

visual cortices to produce a cortical map of location discrimination threshold (Figure 5.4A).

This cortical projection allowed me to relate the location discrimination threshold at different

visual field locations with the anatomy (thickness, surface area) of corresponding visual corti-

cal locations on a vertex basis.

To explore the influence of V1 surface area on the eccentricity-dependent variability in

location discrimination threshold, I plotted the location discrimination threshold at individual

V1 locations (vertices) against the visual field eccentrics these locations responded to and V1

surface area of the participants, on a vertex basis. The data were binned into a data grid where

individual data point represented the location discrimination threshold averaged over V1 lo-

cations (vertices) that were from the same participant and responded to similar eccentricities

(Figure 5.4A). This three-dimensional data grid allowed me to separately address the influence

that the visual field eccentricity and V1 surface area exerted on the location discrimination

threshold. Along the axis of V1 surface area, I fitted individual plots of location discrimination

threshold - visual field eccentricity with linear regression functions, where each plot repre-

sented the data from a single participant (Figure 5.4B). I found that the slope (r = -0.532, 95%

CI = [-0.79, -0.19], p < 0.05, N = 20 participants) and the intercept (r = -0.675, 95% CI = [-

0.86, -0.33], p< 0.01, N = 20 participants) of the fit both correlated negatively with the surface

area of V1, while the goodness of the fit did not exhibit such correlation (r = -0.089, 95% CI =

[-0.51, 0.368], p = 0.709, N = 20 participants). These observations suggested that participants

with a larger V1 surface area had not only a smaller location discrimination threshold at fovea

but also a slower increase in the location discrimination threshold along the visual field eccen-

tricity. As such, the correlation between location discrimination threshold and V1 surface area
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Figure 5.4: Visual cortical thickness and perceptual variability. The location discrimination

threshold, measured at thirteen non-overlapping visual field locations, was projected onto V1

to generate a cortical surface map, based on which the location discrimination threshold at in-

dividual V1 locations was plotted against visual field eccentricities these locations responded

to and V1 anatomy at these locations (A). Along the axis of V1 surface area, each plot of lo-

cation discrimination threshold - visual field eccentricity represented the data from a single

participant and illustrated the increase in location discrimination threshold with visual field

eccentricity (B). Along the axis of visual field eccentricity, each plot of location discrimination

threshold - V1 anatomy represented the data from a single eccentricity range and illustrated the

dependence of location discrimination threshold on V1 surface area or V1 thickness (C). Data

points are color coded according to the location discrimination threshold (A), the participant

(B), or the visual field eccentricity (C). Equations reflect linear fit to the plot of location dis-

crimination threshold - visual field eccentricity (B). Statistical values reflect permutation-based

Spearman’s rank correlation with FWE correction for multiple comparisons (C).
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was not specific to certain visual field eccentricity but was instead generalisable across the vi-

sual field. Indeed, when I applied correlation analysis along the axis of visual field eccentricity

directly on individual plots of location discrimination threshold - V1 surface area, I observed

a negative correlation between location discrimination threshold and V1 surface area, for each

range of visual field eccentricity.

To explore the influence of V1 thickness on the eccentricity-dependent variability in lo-

cation discrimination threshold, I applied a similar analysis where I plotted the location dis-

crimination threshold at individual V1 locations (vertices) against the visual field eccentrics

these locations responded to and V1 thickness at these locations. The data were binned into

a data grid characterising the increase in location discrimination threshold along the visual

field eccentricity, as well as the relationships between location discrimination threshold and

V1 thickness within individual ranges of visual field eccentricity (Figure 5.4A). In contrast to

the negative correlation with V1 surface area, the location discrimination threshold correlated

positively with V1 thickness, for each range of visual field eccentricity (Figure 5.4C).

These correlations between location discrimination threshold and V1 anatomy suggested

that the observations at a fixed visual field eccentricity (4.7 degree), where the thickness and

the surface area of V1 exhibited opposition relationships with location discrimination thresh-

old, were generalisable across the visual field. To explore whether such generalization was

observable in V2, I plotted the location discrimination threshold at individual V2 locations

(vertices) against the visual field eccentricities these locations responded to and V2 anatomy

(surface area, thickness) at these locations. Mirroring the observations in V1, V2 surface area

correlated negatively with the location discrimination threshold, and specifically, with its value

near fovea (r = -0.596, 95% CI = [-0.82, -0.21], p < 0.01, N = 20 participants) as well as its

slope of increase along the visual field eccentricity (r = -0.642, 95% CI = [-0.84, -0.28], p <

0.01, N = 20 participants). Conversely, V2 thickness exhibited a positive correlation with the

location discrimination threshold, for each range of visual field eccentricity.

5.4 Discussion

In summary, my study revealed a substantial degree of variability in visual cortical thick-

ness that mediated the perceptual variability in visual field location discrimination. Specifi-

cally, I found that visual cortical thickness correlated positively with the threshold of visual

field location discrimination, where finer visual field location discrimination was observed at

visual field locations corresponding to thinner parts of early visual cortices, regardless of the
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influence of visual field eccentricity. As such, a larger visual cortical volume, if it came from

a larger visual cortical thickness, was associated with a lower performance in visual field loca-

tion discrimination. Intriguingly, the exact opposition was observed for visual cortical surface

area, where participants with a larger visual cortical surface area performed finer visual field

location discrimination. Therefore, a larger visual cortical volume, if it came from a larger

visual cortical surface area, was associated with a higher performance in visual field location

discrimination.

The opposite relationship between visual cortical thickness and visual cortical surface area

in their contribution to perceptual variability supports my second hypothesis, suggesting that

the influence of visual cortical anatomy on visual perception is not mediated by the volume

of cortical tissue involved in visual processing, but instead by the neural response function

associated with intracortical processing. Indeed, the performance in visual discrimination is

underpinned by the feature selectivity of visual cortical neurons that is in turn formed through

the inter-laminar processing between cortical layers and modulated by the inter-columnar pro-

cessing between cortical columns [103, 153, 154, 155, 156]. A thinned visual cortex with an

enlarged surface area is likely to optimize the feature selectivity of visual cortical neurons, by

maximizing the number of inter-columnar processing units and minimizing the time (delay) of

inter-laminar processing [45, 46, 134, 136, 137].

Specifically, the thickening of visual cortex is likely to burden the intracortical processing,

as the axons and the dendrites of inter-laminar connections would need to double and quadruple

in diameter to improve the inter-laminar conduction speed and maintain the same inter-laminar

processing time (delay) [45]. Due to the physical constrains on wiring costs, the inter-laminar

connections tend to fall behind the increase in cortical thickness, with the consequence of

lengthened inter-laminar processing time (delay) [44, 45, 157, 158, 159]. This lengthening of

inter-laminar processing time (delay) with visual cortical thickness would then facilitate the re-

sponse synchronization between different cortical columns, and in turn decrease the functional

specificity (feature selectivity) of individual cortical columns [44, 45, 160, 161, 162]. There-

fore, a larger visual cortical thickness is likely to be associated with a lower feature selectivity

of visual cortical neurons, and correspondingly, a lower performance in visual discrimination.

By contrast, the enlargement of visual cortical surface area is likely to benefit the intra-

cortical processing through an increase in the number of cortical columns available for inter-

columnar processing. As the absolute length of inter-columnar connections is physically con-

strained and remains independent of visual cortical anatomy [44, 45, 46, 134, 136, 137], the
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increased number of cortical columns would be accompanied by a proportionally weakened

inter-columnar connectivity (i.e., a decrease in the proportion of cortical columns with which

an individual cortical column connects). This weakening of inter-columnar connectivity with

visual cortical surface area would then lower the response synchronization between different

cortical columns, and in turn increase the functional specificity (feature selectivity) of individ-

ual cortical columns. Therefore, a larger visual cortical surface area is likely to be associated

with a higher feature selectivity of visual cortical neurons, and correspondingly, a higher per-

formance in visual discrimination.

Limited by the current resolution of non-invasive neuroimaging methods, an empirical as-

sessment of the inter-columnar and the inter-laminar processing would be difficult in human

participants. Nevertheless, a theoretical assessment would be possible, by using a visual cor-

tical model to simulate the intracortical processing. As a proof of concept, in the next chapter

(Chapter Six), I built such a visual cortical model and tested whether the simulated length-

ening of inter-laminar processing time (delay) with model visual cortical thickness and the

simulated weakening of inter-columnar connectivity with model visual cortical surface area

could reproduce the empirically observed relationships between visual cortical anatomy and

visual perception. Then, in the chapter after next (Chapter Seven), the predictions from the

visual cortical model were tested empirically, where I used neuroimaging methods to measure

the feature selectivity of visual cortical neurons and explored its dependence on visual cortical

anatomy.



Chapter 6

Computational Model of Cortical Scaling

6.1 Introduction

In the last two chapters (Chapter Four, Chapter Five), I explored the neurobiological basis

of inter-individual and intra-individual variability in perception of elementary visual features,

using a combined approach of psychophysics, in-vivo MRI imaging, and in-vitro histology

sectioning. I found that perception of local and global visual features, as assessed respectively

from visual discrimination of local feature details and visual illusion induced by global feature

contexts, exhibits a ten-fold inter-individual variability that correlates with the anatomy (sur-

face area, thickness) of early visual cortices. Specifically, an increase in visual cortical surface

area was associated with a shift in the scope of visual perception from global context-oriented

to local detail-oriented, where individuals with a smaller visual cortical surface area experi-

enced stronger illusion and individuals with a larger visual cortical surface area performed finer

discrimination. Intriguingly, an increase in visual cortical thickness had the opposite influence,

where discrimination of local feature details was finer at visual field locations corresponding

to thinner parts of early visual cortices.

These correlations between visual cortical anatomy and visual perception were not generic

but were instead contingent upon the cortical representation of visual features. Among different

elementary visual features (orientation, visual field location, contrast, luminance) and different

early visual cortices (V1, V2) studied, these correlations were observed specifically between

orientation perception and V1 anatomy, as well as between visual field location perception and

V1 or V2 anatomy. Compared to the cortical processing of luminance or contrast, the cortical

processing of orientation or visual field location was unique in its orderly representation where

neurons selective for more similar orientation or more similar visual field location were also

more strongly connected. Moreover, while this orderly representation of visual field location

was continuous over both V1 and V2 surface, the representation of orientation was continuous
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in V1 but interleaved with the representation of color in V2.

As such, it seems that a continuous, orderly representation of elementary visual features in

early visual cortex, where the intracortical connectivity between neurons with similar feature

selectivity scales systematically with visual cortical anatomy, is essential for perception of this

visual feature to be influenced by the anatomy (surface area, thickness) of this visual cortex.

My experiment observations provide implicit support for my hypothesis that visual cortical

anatomy influences visual perception through the scaling of intracortical processing. Specifi-

cally, I hypothesize that, as visual cortical surface area increases, the weakened inter-columnar

connectivity would lower the response synchronization between different cortical columns. For

visual features without a continuous, orderly cortical representation, the synchronization be-

tween cortical columns responsive to similar feature values and the synchronization between

cortical columns responsive to opposite feature values would in contrast be equally lowered

and counteract each other; for visual features with a continuous, orderly cortical representa-

tion, the weakened inter-columnar connectivity would predominantly lower the synchroniza-

tion between cortical columns responsive to similar feature values, and in turn shift the scope

of visual neural responses or the scope of visual perception from a stronger modulation (illu-

sion) by global contexts to a finer selectivity (discrimination) for local details. By contrast,

when visual cortical thickness increases, the lengthened inter-laminar processing time (delay)

would facilitate the response synchronization between different cortical columns, and have the

opposite functional impacts as the increase in visual cortical surface area.

For an explicit test of my hypothesis, in this chapter I focused directly on the role of in-

tracortical processing, where I examined how the scaling of inter-laminar processing time with

visual cortical thickness and the scaling of inter-columnar connectivity with visual cortical

surface area influenced visual perception. Given the limited resolution of non-invasive neu-

roimaging methods, an empirical assessment of intracortical processing is difficult. Therefore,

I took a theoretical approach where I applied an empirically based visual cortical model to sim-

ulate the intracortical scaling and to examine whether such theoretical simulation reproduced

the empirically observed relationships between visual cortical anatomy and visual perception.

The two aspects of visual perception - visual discrimination of local details and visual illu-

sion by global contexts - correspond respectively to the feature selectivity and the contextual

modulation of visual neural responses [102, 154]. This correspondence allows (indirect) inter-

pretations of visual perception from modeling of visual neural responses.

To model the feature selectivity and the contextual modulation of visual neural responses,
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one can apply models that belong in general to three categories - the structural models based on

intracortical architecture [88, 163], the functional models based on neural computations (e.g.,

normalization) [164], and the statistical models based on visual input statistics [165]. Since my

hypothesis concerned intracortical architecture, I applied the structural models and in particu-

lar, the neural field model. Motivated by empirical observations, the neural field model treats

the brain as a dynamic system and simulates the spatiotemporal dynamics of neural responses

based on the intracortical processing [88, 134, 157, 163, 166, 167, 168, 169]. Compared to

other structural models such as the large-scale cortical model, the neural field model retains

the same explanatory power yet relied on many fewer free parameters [170, 171]. Moreover,

by incorporating neurovascular coupling, the neural field model can be extended to simulate

the hemodynamic responses underlying fMRI BOLD signal [87, 172]. The focus of the neu-

ral field model provides a good match for my hypothesis, and the potential of the neural field

model to simulate the hemodynamic responses further allows empirical test of the model pre-

dictions in human participants using fMRI.

Taken together, in this chapter, I explored the role of intracortical processing in linking

visual cortical anatomy to visual perception with two specific aims. First, I studied whether a

neural field model of intracortical processing that incorporated neurovascular coupling could

capture the profile of neural responses with laminar-layer-specific onset of action potential

and the profile of hemodynamic responses with initial dip. Then, I addressed whether this

neural field model could recapitulate the empirically observed relationships between visual

cortical anatomy and visual perception. Specifically, I assessed how the simulated scaling of

inter-laminar processing time with model visual cortical thickness and the simulated scaling of

inter-columnar connectivity with model visual cortical surface area would influence the feature

selectivity and the contextual modulation of the model response, which corresponded respec-

tively with visual discrimination for local details and visual illusion by global contexts. More-

over, I assessed whether such influence would differ for different elementary visual features

(orientation, visual field location, contrast, luminance), depending on their cortical representa-

tions.

6.2 Methods

6.2.1 Intracortical processing in neural field model

The model visual cortex is constituted of inter-connected cortical columns where an in-

dividual cortical column is composed of inter-connected laminar layers. The inter-laminar
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connections follow an empirically-based circuitry design, where layer IV sends input signals

from hierarchically lower cortical region to layer V/VI through layer II/III, and layer V/VI sent

back signals to layer IV through layer II/III [134, 166, 167, 168, 169]. Within an individual cor-

tical column, layer II/III is the output layer that sends inter-columnar signals to other cortical

columns (Figure 6.1). The inter-columnar connections follow an empirically-based Gaussian

design where the inter-columnar connectivity decreases with the cortical distance between con-

nected cortical columns [88, 157, 171].
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Figure 6.1: Model of intracortical processing. A visual cortical model based on mammalian

cortical structure and neurovascular coupling was built to capture the spatiotemporal dynam-

ics of cortical activity. The diagrammatic representation of the model illustrated the modula-

tion of neural activity by inter-laminar connections and inter-columnar connections, as well

as the modulation of hemodynamic activity by neurovascular events.

The synaptic activities in layer IV, layer II/III, and layer V/VI of an individual cortical

column, represented respectively by x1(t), x2(t), and x3(t), are described in the equations be-

low. These equations capture the inter-laminar and the inter-columnar modulation of synaptic

activities. Specifically, the gain of reciprocal inter-laminar connections between layer II/III

and layer IV or layer V is represented by G21 (G12) or G23 (G32). The gain of inter-columnar

connections within layer IV, layer II/III, or layer V/VI is represented by G11, G22, or G33, and

the Gaussian kernel, a1, a2, or a3, describes the extent of inter-laminar connections in layer

IV, layer II/III, or layer V. The signal conduction speed is represented by δ, while He (Hi)

and τe (τi) describe the amplitude and the time constant of excitatory (inhibitory) postsynaptic
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potential. The transformation from synaptic activity v(t) to neural firing rate S(v(t)) follows

a sigmoid function.

τe
He

x1(t)
′′+

2

He
x1(t)

′+
1

Heτe
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e
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2δD
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e
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x2(t) = x2e(t)− x2i(t) (6.5)

S(v(t)) =
0.005

1 + e−560v(t)
− 0.0025 (6.6)

In the model visual cortex, the input signals from hierarchically lower cortical region to an

individual cortical column u(t) equal the convolution between the postsynaptic potential and

the effective visual stimulus Stimulus(t), where the effective visual stimulus is determined

jointly by the feature selectivity of the cortical column (θ) and the feature value of the visual

stimulus (θ0). Specifically, for orientation, visual field location, or luminance, the effective

visual stimulus is described by the Gaussian function, whereas for contrast, the effective visual

stimulus is described by the Naka-Rushton function [38, 96, 98].

u(t) = (
He

τe
e
− t
τi ) ∗ Stimulus(t) (6.7)

Stimulus(t) = e
− (θ−θ0)

2

2a2
0 (6.8)

Stimulus(t) =
θa00

θa0 + θa00
(6.9)

In the model visual cortex, the length of inter-laminar connections and inter-columnar

connections is physically constrained and remains independent of the change in model visual

cortical anatomy. Consequently, an increase in model visual cortical thickness is associated

with an increase in inter-laminar processing time, whereas an increase in model visual corti-

cal surface area is associated with a proportional decrease in inter-columnar connectivity (i.e.,

a decrease in the proportion of cortical columns with which an individual cortical column

connects). This change in inter-columnar connectivity has different influence for different ele-

mentary visual features (orientation, visual field location, contrast, luminance), depending on
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their cortical representations. Specifically, the cortical representation of orientation or visual

field location is in an orderly fashion where adjacent cortical columns responded to adjacent

orientations or adjacent visual field locations [38, 43]. As the inter-columnar connectivity co-

varies with the similarity in feature selectivity between connected cortical columns, a change

in model visual cortical surface area influences the connectivity between cortical columns with

similar feature selectivity to a larger degree than the connectivity between cortical columns

with opposite feature selectivity. By contrast, the cortical representation of luminance or con-

trast is in a randomized fashion where the distance in cortical space does not reflect the distance

in feature space [37, 97]. As the inter-columnar connectivity remains independent of the fea-

ture selectivity, the connectivity between cortical columns with similar versus opposite feature

selectivity is affected to the same degree by the change in model visual cortical surface area.

6.2.2 Neurovascular coupling in neural field model

These neural responses, shaped by these inter-laminar and inter-columnar process-

ing, in turn drive the hemodynamic responses through neurovascular coupling (Figure 6.1)

[87, 172, 173, 174, 175, 176]. Specifically, following an arteriolar vasodilation, an increase

in local cerebral blood flow (local oxygen delivery) is induced by synaptic activities. This in-

crease in local oxygen delivery (local cerebral blood flow), however, exceeds the increase in

local oxygen consumption and leads to an increase in oxyhemoglobin concentration. At the

same time, the increase in local cerebral blood flow effectively inflates a venous balloon, where

the deoxygenated blood is diluted at a greater rate and causes a decrease in deoxyhemoglobin

concentration. As the dilution of deoxygenated blood falls behind the increased delivery of de-

oxygenated blood to veins, deoxyhemoglobin concentration exhibits an initial increase before

its subsequent decrease.

These interactions between neural responses (synaptic activities) v(t), cerebral blood flow

CBF (t), cerebral blood volume CBV (t), deoxyhemoglobin concentration HbR(t), and oxy-

hemoglobin concentrationHbO(t) are described in the equations below. The equations capture

how the synaptic activates drive local cerebral blood flow and local cerebral blood volume,

which in turn modulate deoxyhemoglobin concentration and oxyhemoglobin concentration.

Specifically, the time constant and the efficacy for the synaptic-activity-induced change in

cerebral blood flow are represented respectively by τ1 and H0, while the time constant for

the auto-regulation of cerebral blood flow is represented by τ2. The transit time τ0 reflects the

time constant for the inflation of venous balloon, which equals the resting cerebral blood flow

divided by the resting cerebral blood volume. E0 represents the fraction of resting oxygen



6.2. Methods 94

extraction, and α0 the capacity of the venous balloon in diluting blood.

1

H0
CBF (t)′′ +

1

H0τ1
CBF (t)′ +

1

H0τ2
CBF (t) = v(t) +

1

H0τ2
(6.10)

1

τ0
CBV (t)′ + CBV (t)

1
α0 = CBF (t) (6.11)

1

τ0
HbR(t)′ + CBV (t)

1−α0
α0 HbR(t) = CBF (t)

1− (1− E0)
1

CBF (t)

E0
(6.12)

−HbO(t) + CBV (t) = HbR(t) (6.13)

BOLD(t) = 7CBV0E0 +2E0 +1.8− 7CBV0E0HbR(t)−
2HbR(t)

CBV (t)
− (2E0 − 0.2)CBV (t)

(6.14)

ISOI(t) = LEHbRHbR(t) + LEHbOHbO(t) (6.15)

Based on these modeling of oxyhemoglobin concentration and deoxyhemoglobin concen-

tration, the neural field model is extended to simulate the hemodynamic responses including

fMRI BOLD signal and optical imaging signal. Specifically, fMRI BOLD signal is a function

of deoxyhemoglobin concentrationHbR and local cerebral blood volumeCBV . Optical imag-

ing signal, on the other hand, captures the absorption of near-infrared light by oxyhemoglobin

and deoxyhemoglobin. According to Lambert-Beer law, the absorption of light through a sub-

stance depends on the absorption coefficient of the substance, the concentration of the sub-

stance, and the distance the light travels through the substance (the path length). Therefore,

optical imaging signal is simulated as a function of EHbR (EHbO) and L, where EHbR (EHbO)

reflects the absorption coefficient of deoxyhemoglobin (oxyhemoglobin) and L reflects the

path length. EHbR and EHbO are dependent on the wavelength of near-infrared light applied

for collecting optical imaging signal. When the wavelength is short (e.g., 530nm), EHbR and

EHbO are close in value, and as a result, deoxyhemoglobin and oxyhemoglobin concentrations

contribute roughly equally to optical imaging signal. At a longer wavelength (e.g., 600nm),

however, EHbR gets much greater than EHbO, and thus, optical imaging signal reflects largely

the deoxyhemoglobin concentration.

6.2.3 Analysis of neural field model

The neural field model describes in essence the spatiotemporal dynamics of a neural sys-

tem that falls into the scope of dynamic system and control theory. This allows classical system

analyses of the neural field model using knowledge from the control theory. For example, one

could apply the root-locus analysis to reveal the system stability from the zeros (the points
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Figure 6.2: Model diagram. The snapshots illustrated the block diagram of the visual cortical

model built in MATLAB Simulink. The block diagram was based on Laplace transform to the

differential equations in time domain, and it showed the signal flow in the model system as well

as the interrelationships among system components.
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where the numerator of the transfer function equals to zero) and the poles (the points where

the denominator of the transfer function equals to zero). One could also apply the frequency

response analysis to visualize the system behavior in Bode plot, Nyquist plot, or Nichols plot

[177].

Applying Laplace transform to the differential equations that described the model in the

time domain, I acquired the transfer functions that described the model in the complex domain,

as well as the block diagram that illustrated the signal flow among different model components

(Figure 6.2). Based on this block diagram, I built the neural field model in MATLAB Simulink

(simulation solver = Fixed-step Ode4, step size = 0.1 ms), using empirically derived model

parameters.

6.3 Results

6.3.1 Simulation of neural responses and hemodynamic responses

As a basic inspection of model performance, I studied the temporal dynamics of the model

response and its dependence on the stimulus duration. First, I tested whether the model simu-

lation could capture the profile of neural responses with laminar-layer-specific onset of action

potential and the profile of hemodynamic responses with initial dip. A model visual cortex

with default surface area (1600 mm2) and default thickness (2 mm) was simulated by a single

pulse stimulus that uniformly activated all the model cortical columns and effectively equaled

a full-field visual stimulus. I found that the simulated neural responses captured the temporal

profile of action potential (Figure 6.3), where the signal onset at different laminar layers fol-

lowed the information flow from layer IV to layer II/III to layer V/VI [134, 166, 167, 168, 169].

Moreover, the simulated hemodynamic responses captured the temporal profile of fMRI BOLD

signal and optical imaging signal (Figure 6.3), where the signal underwent an initial dip due to

the initial increase in deoxyhemoglobin concentration [87, 173].

Next, I tested how the model response was influenced by the stimulus duration. A model

visual cortex with default surface area (1600 mm2) and default thickness (2 mm) was simulated

by a repetitive pulse stimulus (frequency: 2 Hz) that lasted from two to twenty-four pulses and

effectively equaled a full-field visual stimulus of one to twelve seconds. I found that with the

increase in stimulus duration, the amplitude of simulated hemodynamic responses increased

and became saturated (Figure 6.4). By contrast, the amplitude of simulated neural responses

remained relatively independent from the change in stimulus duration (Figure 6.4). This sat-

urated dependence of hemodynamic response amplitude on stimulus duration was consistent
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Figure 6.3: Simulation of neural responses and hemodynamic responses. The visual cortical

model was simulated with a pulse stimulus. The modeled synaptic activity captured the profile

of action potential and its laminar-dependent onset delay that followed the information flow

from layer IV to layer II/III to layer V/VI. The modeled fMRI BOLD signal or intrinsic optical

imaging signal (ISOI) captured the profile of hemodynamic response including initial dip and

undershoot.

with the empirical observations in human early visual cortices [178].

6.3.2 Simulation of visual discrimination and contextual illusion

As a theoretical investigation of intracortical processing, I studied the spatial dynamics of

the model response and its dependence on the intracortical scaling. First, I explored whether

the scaling of inter-columnar connectivity with model visual cortical surface area could reca-

pitulate the empirically observed relationships between visual cortical surface area and visual

perception (Chapter Four), where an increase in visual cortical surface area was found to cor-

relate with a shift in the scope of orientation perception, from a stronger modulation (illusion)

by global orientation contexts, to a finer discrimination of local orientation details, and no such

correlation with visual cortical surface area was found for luminance or contrast perception.

A model visual cortex with variable surface area (1600 mm2 to 3400 mm2) and default

thickness (2 mm) was simulated by stimuli corresponding to those used in my psychophysics

experiments (Chapter Four, Chapter Five). Specifically, to assess the feature selectivity of the

model response (reflecting visual discrimination of local details), the model visual cortex was

simulated by a set of stimuli that varied in single feature value (orientation, luminance, con-

trast). The model response was compared between these stimuli with different feature values,

where the difference in the model response increased with the feature difference between these

stimuli (Figure 6.5A). This difference in the model response was taken to represent the abil-

ity to discriminate these stimuli. The point where the response difference reached 50% was
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Figure 6.4: Influence of stimulus duration. The visual cortical model was simulated with a

repetitive pulse stimulus that repeated every 500 msec for 1 to 24 times and thereby effectively

lasted for 0.5 to 12 sec. The amplitude of synaptic activity (A) did not increase with stimulus

duration, whereas the amplitude of hemodynamic activity (B) increased with stimulus duration

and was consistent with empirical finding [178].
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quantified as the model’s visual discrimination threshold. To assess the contextual modulation

of the model response (reflecting visual illusion induced by global contexts), the model visual

cortex was simulated by a central stimulus surrounded in a contextual stimulus of different fea-

ture value (orientation, luminance, contrast). The model response to the central stimulus was

repulsively shifted by the presence of the contextual stimulus through inter-columnar modu-

lations (Figure 6.5B). This repulsive shift in the model response was taken to represent the

phenomenon of contextual illusion, where the perceived feature value of a central stimulus dif-

fered from its physical value due to the contextual stimulus. The extent of the response shift

was quantified as the model’s contextual illusion magnitude.

Mirroring the empirical observations in earlier chapters (Chapter Four, Chapter Five), the

surface area of the model visual cortex correlated negatively with the orientation discrimina-

tion threshold, but not with the luminance or the contrast discrimination threshold (Figure 6.6).

Moreover, a negative correlation was observed between the surface area of the model visual

cortex and the orientation contextual illusion magnitude, but no correlation was observed be-

tween the surface area of the model visual cortex and the luminance or the contrast contextual

illusion magnitude (Figure 6.6). Taken together, the model simulation revealed a trade-off

between visual discrimination of local orientation details and visual modulation (illusion) by

global orientation contexts, which was not evident in luminance or contrast perception.

Next, I explored whether the scaling of inter-laminar processing time (delay) with model

visual cortical thickness could recapitulate the empirically observed relationships between vi-

sual cortical thickness and visual perception (Chapter Five), where an increase in visual cortical

thickness was found to associate with a lower performance in visual field location discrimi-

nation. As a control, I also explored whether the scaling of inter-columnar connectivity with

model visual cortical surface area could recapitulate the empirical observations that an increase

in visual cortical surface area had the opposite functional impacts as an increase in visual cor-

tical thickness and was associated instead with a higher performance in visual field location

discrimination.

A model visual cortex with variable surface area (1600 mm2 to 3400 mm2) and variable

thickness (1 mm to 4.5 mm) was simulated by stimuli corresponding to those used in my psy-

chophysics experiments (Chapter Four, Chapter Five), and specifically, by a set of stimuli that

varied in visual field locations. The model response was compared between stimuli at different

visual field locations, and the point where the difference in the model response reached 50%

was quantified as the model’s location discrimination threshold. The model simulation revealed
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Figure 6.5: Simulation of visual discrimination and contextual illusion. (A) To quantify vi-

sual discrimination threshold, the visual cortical model was simulated with a set of stimuli

that differed in only a single feature (orientation, location, contrast, luminance). The activa-

tion pattern of the model visual cortex was compared for different stimuli along each feature

dimension, where the degree of overlap in activation pattern decreased with the feature dif-

ference between stimuli. The feature difference at the threshold where the activation overlap

decreased to 50% was quantified as the model’s visual discrimination threshold. (B) To quan-

tify contextual modulation magnitude, the visual cortical model was simulated with contextual

illusion stimuli where a circular stimulus was surrounded by an annular stimulus. The response

of model neurons to the circular stimulus was modulated by the response of their neighboring

neurons to the annular stimulus, where the inhibitory connections from neighboring neurons

caused a repulsive shift in the model’s response to the circular stimulus (from black to grey

line). The extent of this shift was quantified as the model’s contextual modulation magnitude.

an increase in location discrimination threshold with model visual cortical thickness and a de-

crease in location discrimination threshold with model visual cortical surface area (Figure 6.7).

6.4 Discussion

In summary, my study revealed that a visual cortical model based on intracortical pro-

cessing was able to reproduce the profile of neural and hemodynamic responses, as well as
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Figure 6.6: Influence of visual cortical surface area. The surface area of the model visual cor-

tex was varied to investigate its influence on the model’s visual discrimination threshold and

contextual modulation magnitude. When the model visual cortex expanded in surface area,

the cortical representation of visual field location expanded accordingly, and the cortical rep-

resentation of orientation expanded as well through an increase in either the number or the

size of orientation hypercolumns (the simulation results of which were marked with black and

grey color respectively). Mirroring the empirical observations, the model simulations revealed

a tradeoff between discrimination threshold and contextual modulation magnitude that corre-

lated with the surface area of the model visual cortex. This tradeoff and its correlation with the

model visual cortical surface area were only evident in the domain of orientation or visual field

location, and were not observed in the domain of luminance or contrast. Each point represents

a single simulation (N = 10) and the line is the best-fitting linear regression. Statistical values

reflect Spearman’s rho with FDR correction for multi-comparisons (α = 0.025).

to capture the empirically observed relationships between visual cortical anatomy and visual

perception. First, I showed that the visual cortical model reproduced the profile of neural

responses with laminar-layer-specific onset of action potential, as well as the profile of hemo-

dynamic responses with initial dip and amplitude saturation. These basic inspections of model
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Figure 6.7: Influence of visual cortical thickness. The surface area and the thickness of the

model visual cortex were varied to compare their influences on the model’s location discrimi-

nation threshold. When the model visual cortex expanded in surface area, the inter-columnar

connectivity was weakened, and when the model visual cortex increased in thickness, the inter-

laminar processing time (delay) was lengthened. Mirroring the empirical observations, the

model simulations revealed a positive correlation between the location discrimination thresh-

old and the model visual cortical thickness as well as a negative correlation between the lo-

cation discrimination threshold and the model visual cortical surface area. Data points are

color coded according to the location discrimination threshold. Each point represents a single

simulation (N = 10) and the line is the best-fitting linear regression. Statistical values reflect

Spearman’s rho with FDR correction for multi-comparisons (α = 0.025).

performance demonstrated the validity of theoretical simulation. Building upon this, I showed

that the simulated scaling of inter-columnar connectivity with model visual cortical surface

area and the simulated scaling of inter-laminar processing time with model visual cortical

thickness were able to capture the empirical observations, where an increase in visual corti-

cal surface area was found to associate with a perceptual shift from global context-oriented to

local detail-oriented, for elementary visual features with a continuous orderly cortical repre-

sentation (Chapter Four), and an increase in visual cortical thickness was found to have the

opposite functional impacts (Chapter Five).

The model simulation suggests that through the scaling of intracortical processing, visual

cortical anatomy selectively influences perception of elementary visual features that have a

continuous, orderly cortical representation. For such visual features, the weakening of inter-

columnar connectivity with increasing visual cortical surface area would lower the synchro-

nization between cortical columns responsive to similar feature values, and in turn shift the

scope of visual neural responses or the scope of visual perception from a stronger modulation

by global contexts to a finer selectivity of local details. By contrast, the lengthening of inter-
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laminar processing time with increasing visual cortical thickness would facilitate response syn-

chronization between cortical columns, and in turn shift the scope of visual neural responses

or the scope of visual perception in the opposite direction. On the other hand, for visual fea-

tures without a continuous, orderly cortical representation, the influence on the synchronization

between cortical columns responsive to similar feature values would be counter-balanced by

that between cortical columns responsive to opposite feature values, and in turn lead to no net

change in the scope of visual neural responses or the scope of visual perception. Therefore, the

nonlinear scaling of intracortical processing with the similarity in feature selectivity between

connected cortical columns may be the mechanism through which visual cortical anatomy in-

fluences visual perception.

In the model, visual cortical thickness influences visual perception via inter-laminar pro-

cessing time. The variability in cortical thickness would not make much difference to the

absolute value of inter-laminar processing time (e.g., for a conduction speed of 1mm/ms, a

cortex that is 1mm thick would gain only 1ms compared to a cortex that is 2mm thick). How-

ever, this is not incompatible with my hypothesis. The hypothesis I tested in my model was

that, the decrease in inter-laminar processing time with cortical thickness would facilitate the

de-synchronization among different cortical columns and in turn increase the feature selectiv-

ity of individual cortical column. As such, compared to the absolute value of inter-laminar

processing time, the relative value of inter-laminar to inter-columnar processing time would be

more relevant. Since the inter-laminar and the inter-columnar distances are on the same scale,

the change in inter-laminar processing time with cortical thickness would not be entirely trivial

to intracortical processing.

While the visual cortical model reliably captures the profile of neural responses and repro-

duces my empirical observations, it is important to note that as with other theoretical studies,

the model is based on assumptions not fully validated. This is particularly the case given

that the relationships between macroscopic-level cortical anatomy (surface area, thickness)

and microscopic-level neural parameters (column number, conduction speed) remain largely

unclear. Specifically, the model is based on the assumption that the length of intracortical con-

nections is physically constrained and remains relatively independent of the change in visual

cortical anatomy, as such, an increase in visual cortical thickness would be associated with

an increase in inter-laminar processing time, whereas an increase in visual cortical surface

area would be associated with a decrease in inter-columnar connectivity (i.e., a decrease in the

proportion of cortical columns with which an individual cortical column connects). Although
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these assumptions are biologically plausible, especially in comparison to their oppositions such

as an association between larger visual cortical thickness and shorter inter-laminar processing

time, there are in reality many other plausible assumptions that are not fully addressed in the

model.

Therefore, at its best, the visual cortical model served as a proof of concept for the possible

mechanisms underlying the empirically observed correlations between visual cortical anatomy

and visual perception. To provide support for the model, I further conducted an empirical

test of the predictions from the model. In particular, the model suggested that visual cortical

anatomy might influence the performance in visual discrimination through the feature selec-

tivity of visual cortical neurons that was in turn shaped by the intracortical processing. As

such, the feature selectivity of visual cortical neurons would exhibit opposite dependence on

visual cortical thickness versus visual cortical surface area, and a higher selectivity would be

associated with a smaller visual cortical thickness or a larger visual cortical surface area. This

hypothesis was tested empirically in the next chapter (Chapter Seven), where I measured the

feature selectivity of visual cortical neurons through non-invasive neuroimaging methods and

explored its dependence on visual cortical anatomy.

Regardless of these efforts, the model provided only a theoretical support for the involve-

ment of intracortical processing in linking visual cortical anatomy to visual perception. To

further address the role of intracortical processing, it would be helpful to acquire an empiri-

cal measure. However, given the limited resolution of non-invasive neuroimaging methods, a

direct measure of intracortical processing (e.g., connectivity, processing time) in human par-

ticipants is difficult. Nevertheless, the method of Dynamic Causal Modeling allows an indi-

rect estimate of intracortical connectivity from non-invasive neuroimaging signals that reflects

the effective strength of intracortical connections from one neural population to another [80].

Therefore, in the chapter after next (Chapter Eight), I measured the intracortical connectivity

in early visual cortices using the method of Dynamic Causal Modeling, and explored whether

the weakening of intracortical connectivity indeed shifted the scope of visual perception from

global context-oriented to local detail-oriented.



Chapter 7

Role of Visual Neural Selectivity

7.1 Introduction

My experiment observations in the last few chapters (Chapter Three / Four / Five) revealed

a substantial degree of variability in the anatomy (surface area, thickness) of early visual cor-

tices that gave rise to the variability in perception of elementary visual features. Parallel to

my experiment observations, several recent studies have reported correlations between cortical

anatomy and behavioral performance [1]. These observations suggested that the anatomical

variability in cerebral cortex is not a genetic-developmental artifact, but is instead of neuro-

biological relevance and behavioral significance. Despite these progresses, the influence of

anatomical variability on neural response properties is unclear. Moreover, it remains unex-

plored whether it is through the mediation by neural responses that the cortical anatomy gets

to influence the behavioral performance.

Such lack of understanding may result from the limitation in non-invasive measure of neu-

ral response properties. Indeed, given the resolution of fMRI BOLD signals, different neurons

within a single voxel tend to exhibit heterogeneous responses that render the neural population

responses qualitatively different from the single neural responses. For example, neurons in

early visual cortices respond selectively to a variety of visual features including visual field

location, orientation, contrast, luminance, and many others. However, the neural responses to

most of these visual features have either no orderly cortical representation or a periodic corti-

cal representation beyond the resolution of fMRI BOLD signals [97]. Consequently, a single

voxel usually contains neurons selective for opposite feature values, which in turn leads to a

discrepancy between neural population selectivity and single neural selectivity.

An exception to this limitation is the responses of early visual cortical neurons to visual

field location. Neurons in early visual cortices respond selectively to visual field location in an
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orderly, continuous fashion where cortically adjacent neurons are selective for spatially adja-

cent visual field locations [39, 71]. Such response similarity between different neurons within a

single voxel allows the estimation of single neural selectivity from the measure of neural pop-

ulation selectivity. Specifically, neural population selectivity for visual field location can be

measured from fMRI BOLD signals using the method of population-receptive-field mapping,

which, by presenting a visual stimulation at sixty-four evenly distributed visual field locations,

estimates the visual field range to which a single voxel responds [122]. This measure of visual

field response range represents neural population selectivity for visual field location, where a

small (localized) response range corresponds to a high selectivity and a large (globalised) re-

sponse range corresponds to a low selectivity.

Utilizing the method of population-receptive-field mapping, I explored the influence of vi-

sual cortical anatomy on neural population selectivity for visual field location and tested three

different hypotheses. My theoretical (model) study in the last chapter (Chapter Six) suggests

that the feature selectivity of visual cortical neurons mediates the empirically observed influ-

ence of visual cortical anatomy on visual perception, where a larger visual cortical surface area

is associated with a finer visual discrimination and a larger visual cortical thickness is associ-

ated instead with a poorer visual discrimination. Therefore, mirroring the correlations between

visual discrimination and visual cortical anatomy, neural population selectivity would corre-

late positively with visual cortical surface area but negatively with visual cortical thickness.

This hypothesis suggests an opposition between visual cortical surface area and visual cortical

thickness in their influence on neural population selectivity. Alternatively, it is possible that

neural population selectivity is determined by visual cortical volume and therefore exhibits the

same relationship with visual cortical surface area as with visual cortical thickness. Equally, it

is plausible that neural population selectivity neither relates with visual cortical anatomy nor

mediates the influence of visual cortical anatomy on visual discrimination.

To test these hypotheses, I compared visual cortical thickness and visual cortical surface

area in their contribution to neural population selectivity for visual field location. The thick-

ness of early visual cortices, determined independently for individual visual cortical locations,

exhibited a substantial degree of intra-individual variability and reflected differences between

visual field locations in the cortical architecture at corresponding visual cortical locations. By

contrast, the surface area of early visual cortices, determined jointly by all visual cortical lo-

cations, exhibited a substantial degree of inter-individual variability and reflected differences

between individuals in the proportion of cortex devoted to early visual processing. Therefore,
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I studied how the thickness at individual visual cortical locations related to neural population

selectivity for corresponding visual field locations, and how the surface area summed over dif-

ferent visual cortical locations influenced neural population selectivity across the visual field

in general.

Taken together, in this chapter, I explored the relationships between visual cortical

anatomy and neural population selectivity in healthy human adults with three specific aims.

First, using the method of population-receptive-field mapping, I measured neural population

selectivity for visual field location from fMRI BOLD signals, and assessed how this measure

was confounded by fMRI signal properties. Then, based on this measure, I studied the variabil-

ity in neural population selectivity along the visual field eccentricity (eccentricity-dependent

component) and across different visual field locations at the same eccentricity (eccentricity-

independent component). Last, I addressed the contribution of visual cortical thickness and

visual cortical surface area to the variability in neural population selectivity, separately for its

eccentricity-dependent and its eccentricity-independent component. To this end, I acquired the

measure of neural population selectivity for visual field location from high spatial resolution

(1.5 mm) fMRI data, and quantified fMRI signal properties from high temporal resolution (1.52

second) fMRI data. I also assessed the variability in visual cortical anatomy using T1-weighted

structural MRI data.

7.2 Methods

7.2.1 Participants and Apparatus

A group of twenty healthy participants (aged 19 to 34, ten females, ten males), with normal

or corrected-to-normal vision and no neurological history, gave written informed consent to

take part in this study approved by the UCL ethics committee. All participants took part in the

main experiments where I assessed visual cortical anatomy using T1-weighted structural MRI

data, and measured neural population selectivity for visual field location using high spatial

resolution (1.5 mm) fMRI data. Eight of the participants took part in the control experiments

where I assessed fMRI signal properties using high temporal resolution (1.52 second) fMRI

data.

The experiments took place in a Siemens Trio 3T MRI scanner with a 32-channel head-

coil. The visual stimuli were projected onto a screen (size = 28.6 x 21.5 cm) in the back of the

scanner and viewed through a mirror on the head-coil (viewing distance = 85 cm). The stimuli

covered a portion of the visual field extending from 0.25 to 7.2 degree eccentricity. Structural
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MRI data were collected using a T1-weighted sequence at 1 mm resolution (TR = 7.92 ms, TE

= 2.48 ms, matrix = 256 x 240). In the main experiments, functional MRI data were collected

using a 3D EPI sequence at 1.5 mm and 3.2 second resolution (volume TR = 3.2 s, TE = 32.86

ms, matrix = 128 x 128). In the control experiments, functional MRI data were first collected

using the same 3D EPI sequence at 1.5 mm and 3.2 second resolution, then repeated with a

new 3D EPI sequence at 1.5 mm and 1.52 second resolution (volume TR = 1.52 s, TE = 37.3

ms, matrix = 128 x 128). The high temporal resolution (1.52 second) of the 3D EPI sequence

allowed fine estimation of fMRI signal properties, but was accompanied by a reduced field-of-

view as a trade-off. To accommodate the reduced field-of-view, the data for the left and the right

hemispheres were collected separately in different experimental runs. Functional MRI data

were preprocessed in SPM8 through bias correction, realignment, unwarping, coregistration,

and physiology noise correction.

7.2.2 Measure of visual cortical anatomy

Standard phase-encoded retinotopic mapping was applied to delineate early visual cortices

(V1, V2), where each participant took part in two experiment runs of polar-angle mapping and

one experiment run of eccentricity mapping. For polar-angle mapping, participants viewed

full-contrast flickering checkerboard wedges (width = 40 degree) rotating smoothly around a

small fixation cross for ten cycles per experiment run at a speed of twenty volumes per cy-

cle. For eccentricity mapping, participants viewed full-contrast flickering checkerboard rings

(width = 7.8% of the screen length) contracting smoothly around a small fixation cross for

fifteen cycles per experiment run at a speed of fifteen volumes per cycle. To maintain par-

ticipants’ attention, at random temporal intervals the retinotopic mapping stimuli underwent

a small pattern shift for 200 ms. Participants were asked to indicate whenever this happened

with a button press while maintaining eye fixation at the central cross.

The polar-angle maps and the eccentricity maps were generated by applying Fast Fourier

Transform to fMRI BOLD time series of each voxel that extracted the phase and the power

at the stimulation frequency. The polar angle boundaries (representing vertical and horizon-

tal meridians) were delineated according to the mirror reversals in the polar-angle maps. The

eccentricity boundaries (representing 7.2 degree eccentricity) were delineated by thresholding

the eccentricity maps. Based on the retinotopic delineation of early visual cortices, the thick-

ness at individual visual cortical locations and the surface area summed over all visual cortical

locations were measured through the surface-based analysis on structural MRI data. In the

surface-based analysis, structural MRI data were preprocessed using skull stripping and non-
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uniform intensity correction, after which the data were segmented into the white and the gray

matter according to intensity-based tissue classification. From the white and the gray matter

segments, the three-dimensional triangle-mesh models of the white and the pial cortical sur-

faces were built, with the cortical thickness computed as the distance between the white and

the pial cortical surfaces, and the cortical surface area computed as the summed surface area

of triangle faces in a cortical region.

7.2.3 Measure of neural selectivity

Population-receptive-field mapping was applied to measure neural population selectivity

for visual field location, where each participant took part in two experiment runs. In a single ex-

periment run, participants viewed full-contrast flickering checkerboard bars (width = 1.8 degree

of visual angle) moving smoothly in the visual field for eight cycles at a speed of sixteen vol-

umes per cycle (one visual field location per volume, sixty-four different visual field locations,

each visual field location repeated twice). The bars were oriented at one of the four orientations

(horizontal, vertical, 45 degree, 135 degree) and moved along the corresponding orthogonal

direction (north/south for horizontal bar, west/east for vertical bar, northwest/southeast for 45

degree bar, northeast/southwest for 135 degree bar), where the orientation and the moving di-

rection were counterbalanced across cycles. A blank screen was inserted into the last quarter

of the second, fourth, sixth, and eighth cycle to provide a baseline condition that improved the

measurement accuracy. To maintain participants’ attention, at random temporal intervals the

central fixation cross underwent a color change for 80 ms. Participants were asked to indicate

whenever this happened with a button press while maintaining eye fixation at the central cross.

The fMRI BOLD time series of each voxel were deconvolved with a canonical hemo-

dynamic response function h(t) = (t/5.4)6e−(t−5.4)/0.9 − 0.35 ∗ (t/10.8)12e−(t−10.8)/0.9

[123, 124] and then fitted with a two-dimensional Gaussian function f(x0, y0, σ) multiplied

by the stimulus location function. The two-dimensional Gaussian function characterized the

visual field range (σ) to which the voxel responded and the visual field location (x0, y0) to

which the voxel responded the strongest. The parameters x0, y0 (limit = 7.2 degree eccen-

tricity) and σ (lower limit = 0.001 degree of visual angle, upper limit = 7.2 degree of visual

angle) were estimated for each voxel by finding the least square fit. The measure of visual field

response range (σ) represented neural population selectivity for visual field location, where a

small (localized) response range indicated a high selectivity and a large (globalized) response

range indicated a low selectivity. Therefore, the inverse of this visual field response range (1/σ)
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was used to quantify neural population selectivity for visual field location.

7.2.4 Measure of fMRI signal properties

Although the method of population-receptive-field mapping allowed a non-invasive mea-

sure of neural population selectivity from fMRI BOLD signals, the measure was confounded

by fMRI signal properties, including the signal-to-noise ratio and the hemodynamic response

function. To assess these potential confounding influence, in control experiments I measured

the signal-to-noise ratio from the resting state BOLD responses, and the hemodynamic re-

sponse function from the visually evoked BOLD responses. These control data were collected

using the 3D EPI sequence at 3.2 second and 1.52 second resolution, in separate experiment

runs.

To quantify the signal-to-noise ratio, the resting state BOLD responses were collected for

a continuous 10 minutes, during which participants maintained awake through eye fixation at

a central cross on a black screen under the monitor of an eye tracker. From the resting state

data, the signal-to-noise ratio was calculated for each voxel as the mean divided by the stan-

dard deviation of the fMRI BOLD time series [179]. The signal-to-noise ratio was calculated

respectively before and after the application of physiological noise correction. To measure

the hemodynamic response function, the visually evoked BOLD responses were collected us-

ing the 3D EPI sequence at 3.2 second resolution or the 3D EPI sequence at 1.52 second

resolution, during which a full-contrast flickered checkerboard ring (inner radius = 0.25 de-

gree eccentricity, outer radius = 7.2 degree eccentricity) was presented on the screen for 3.2

or 3.04 second, followed by a blank screen of 28.8 or 27.36 second, and repeated for 20 or

40 cycles. Participants maintained their attention and fixation by detecting color change of

the central fixation cross. From the visually evoked data, the hemodynamic response func-

tion h(t) = (t/t1)
(5.6∗t21/w

2
1)e−(t−t1)∗(5.6∗t1/w

2
1) − d ∗ (t/t2)(5.6∗t

2
2/w

2
2)e−(t−t2)∗(5.6∗t2/w

2
2) was

estimated for each voxel by varying the peak t1, t2 (limit = 12 second), the full-width-half-

maximum w1, w2 (limit = 30 second), and the dip d (limit = 1) to find the least square fit.

7.3 Results

7.3.1 Measurement confound for neural selectivity

The measure of neural population selectivity for visual field location was based on the

method of population-receptive-field mapping [122]. By presenting visual stimulation at a set

of evenly distributed visual field locations, the method assessed, for each voxel, the visual field
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range to which it responded. This visual field response range represented neural population

selectivity for visual field location, where a small (localized) response range corresponded to

a high selectivity and a large (globalised) response range corresponded to a low selectivity.

Therefore, the inverse of this visual field response range was used to quantify neural popula-

tion selectivity for visual field location.

However, limited by the spatial resolution of fMRI BOLD signals, the measure of neural

population selectivity for visual field location reflected a combined contribution from single

neural selectivity and the response heterogeneity between different neurons within a voxel. To

lower the intra-voxel response heterogeneity, I collected fMRI data at a high spatial resolution

(1.5 mm). For tissue volumes as small as 1.5 mm, the response heterogeneity between different

neurons in the tissue volume was smaller than single neural selectivity and correlated with the

average of single neural selectivity in the tissue volume [39]. As such, the measure of neural

population selectivity in effect reflected single neural selectivity. Indeed, neural population

selectivity measured here in human early visual cortices (0.6±0.35 degree of visual angle) was

comparable with single neural selectivity in macaque visual cortices (0.35 degree of visual an-

gle) [39].

In addition to lowering the intra-voxel response heterogeneity, the high spatial resolution

of fMRI data also contributed to minimizing the inter-voxel heterogeneity in spatial sampling.

To evaluate the influence of spatial sampling, three different voxels, at upper, middle, and lower

cortical layers, were sampled for each visual cortical location with a high cortical thickness,

two different voxels, at upper and lower cortical layers, were sampled for each visual cortical

location with a medium cortical thickness, and one voxel was sampled for each visual cortical

location with a low cortical thickness (Figure 7.1). At visual cortical locations where more

than one voxel was sampled, the measure of neural population selectivity was compared across

voxels from different cortical depths. This analysis revealed that the exact cortical depth of the

sampled voxel did not affect the measure.

Together the control studies above suggested that the measure of neural population selec-

tivity for visual field location was not biased by the spatial resolution of fMRI BOLD signals.

Apart from confound in spatial domain, the measure was confounded in temporal domain by

the neurovascular coupling between neural responses and hemodynamic responses. This con-

found was taken into consideration during the analysis, where the fMRI BOLD time series of

each voxel were deconvolved with a canonical hemodynamic response function before fitting

with the two-dimensional Gaussian characterization of neural population selectivity. Since the
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Figure 7.1: MRI measure of neural selectivity. The triangle-mesh model illustrated the three-

dimensional cortical surface reconstruction in a representative participant, where individual

vertex of this triangle-mesh model represented a single cortical surface location separable by

MRI (A). To assess the influences of fMRI spatial sampling on the measure of neural population

selectivity, three different voxels, at upper, middle, and lower cortical layers, were sampled for

each cortical surface location with high thickness, two different voxels, at upper and lower

cortical layers, were sampled for each cortical surface location with medium thickness, and

one voxel was sampled for each cortical surface location with low thickness (B).

fMRI BOLD time series had a temporal resolution (3.2 second) larger than the full-width-half-

maximum and the time-to-peak of the hemodynamic response function, the effective hemody-

namic response function, namely the discrete function sampled every 3.2 second, was a Dirac

delta function that lagged the measure of visual field response peak uniformly for all voxels

without influencing the measure of visual field response range. Therefore, in theory, the mea-

sure of neural population selectivity for visual field location reflected the neural rather than the

hemodynamic contributions.

Nevertheless, to improve the reliability of the measure, I conducted a control analysis

where I replaced the canonical hemodynamic response function in the original analysis with

a voxel-level estimated hemodynamic response function. In the control analysis, the visually

evoked BOLD responses were collected, from which the hemodynamic response function was

estimated for each voxel by varying the parameters (t1, t2, w1, w2, d) to find the least square

fit. This voxel-level estimated hemodynamic response function was then applied to reanalyze

the data from the population-receptive-field mapping experiment, where the fMRI BOLD time

series of each voxel were deconvolved with this voxel-level estimated hemodynamic response

function before fitting with the two-dimensional Gaussian characterization of neural popula-

tion selectivity. I found that the measure of neural population selectivity was highly consistent

between the original analysis using the canonical hemodynamic response and this control anal-
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ysis using the voxel-level estimated hemodynamic response function (r = 0.9355, p < 0.0001,

N = 42538 voxels binned into N = 30 data points). Moreover, the parameters of this voxel-level

estimated hemodynamic response function (mean of t1 = 5.4, mean of t2 = 10.7, mean of w1 =

5.3, mean of w2 = 7.8, mean of d = 0.36) were close in value to the parameters of the canonical

hemodynamic response function (t1 = 5.4, t2 = 10.8, w1 = 5.2, w2 = 7.4, d = 0.35), suggesting

that the canonical hemodynamic response function was representative of the voxel-level esti-

mated hemodynamic response function.

Despite these efforts, both the original analysis and the control analysis replied on the ap-

plication of the hemodynamic response model h(t, t1, t2, w1, w2, d). To test whether the choice

of hemodynamic response model might confound the measure of neural population selectivity

for visual field location, I conducted a further analysis using a hemodynamic-model-free ap-

proach. In this analysis, the fMRI BOLD time series from the population-receptive-field map-

ping experiment were deconvolved directly with the visually evoked BOLD responses (rather

than with the hemodynamic response function estimated from the visually evoked BOLD re-

sponses) before fitting with the two-dimensional Gaussian characterization of neural popula-

tion selectivity. I found that the measure of neural population selectivity exhibited high level

of consistency between this hemodynamic-model-free analysis and the hemodynamic-model-

dependent analysis (r = 0.9394, p < 0.0001, N = 42538 voxels binned into N = 30 data points),

suggesting that the measure was not affected by the choice of hemodynamic response model.

Together the consistency between the analysis using the canonical hemodynamic response

function, the analysis using the voxel-level estimated hemodynamic response function, and

the hemodynamic-model-free analysis suggested that the measure of neural population selec-

tivity for visual field location was not biased by the neurovascular coupling between neural

responses and hemodynamic responses. In addition to confound in spatial or temporal domain,

the measure was confounded by the signal-to-noise ratio of fMRI data. To address this con-

found, in control experiments I measured the signal-to-noise ratio from the resting state BOLD

responses, independently for each voxel. Across voxels, I found that the signal-to-noise ratio

did not vary with the measure of neural population selectivity (r = -0.229, p = 0.114, N = 42538

voxels binned into N = 30 data points). Moreover, while the physiological noise correction im-

proved the signal-to-noise ratio by 35.95%, the degree of improvement did not correlate with

the measure of neural population selectivity (r = -0.219, p = 0.144, N = 42538 voxels binned

into N = 30 data points). These analyses suggested that the measure of neural population
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selectivity for visual field location was not biased by the signal-to-noise ratio of fMRI data.

7.3.2 Variability in neural selectivity

These control studies reassured the reliability of population-receptive-field method in mea-

suring neural population selectivity for visual field location. Based on this, I studied the vari-

ability in neural population selectivity. Consistent with previous reports [122], I observed an

intra-individual decrease in neural population selectivity along the visual field eccentricity from

parafovea to perifovea, for both sulci (V1: T = 20.894, p < 0.0001, N = 20 participants; V2:

T = 22.849, p < 0.0001, N = 20 participants) and gyri (V1: T = 16.458, p < 0.0001, N = 20

participants; V2: T = 20.240, p < 0.0001, N = 20 participants). In addition to this eccentricity-

dependent change, neural population selectivity also varied intra-individually across different

visual field locations at the same eccentricity. Moreover, even for the same visual field lo-

cation, neural population selectivity still exhibited a substantial degree of variability across

participants.

Therefore, resembling the variability in visual discrimination threshold, the variability

in neural population selectivity could be decomposed into an eccentricity-dependent and an

eccentricity-independent component. Correspondingly, I conducted separate analysis to ad-

dress, the influence that the anatomy (thickness, surface area) of early visual cortices (V1,

V2) exerted on the change in neural population selectivity along the visual field eccentricity

(eccentricity-dependent component), and the influence that the anatomy (thickness, surface

area) of early visual cortices (V1, V2) exerted on the variability in neural population selec-

tivity across different visual field locations at the same eccentricity (eccentricity-independent

component).

7.3.3 Visual cortical anatomy and neural selectivity at fixed eccentricity

To control for the factor of eccentricity and explore the influence of V1 anatomy on the

eccentricity-independent variability in V1 neural population selectivity, I analyzed the relation-

ships between V1 anatomy and V1 neural population selectivity at a fixed visual field eccen-

tricity (4.7 degree). Similar to the analysis on the relationships between V1 anatomy and visual

discrimination threshold, I plotted V1 neural population selectivity for six different visual field

locations (45, 90, 135, 225, 270, 315 degree in polar angle) from the same eccentricity (4.7

degree) against the thickness at corresponding V1 locations or the surface area of participants’

V1, across the group of twenty participants.

I found that neural populations in V1 with a larger surface area exhibited a higher se-
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lectivity (r = 0.249, 95% CI = [0.074, 0.409], p < 0.01, N = 20 participants x 6 visual field

locations). In contrast to this positive correlation with V1 surface area, V1 neural population

selectivity correlated negatively with V1 thickness, where neural populations at V1 locations

with a greater thickness exhibited a lower selectivity (r = -0.465, 95% CI = [-0.59, -0.31],

p < 0.0001, N = 20 participants x 6 visual field locations). This negative correlation be-

tween V1 neural population selectivity and V1 thickness reflected a combined contribution of

intra-individual and inter-individual factors. To separate the contribution of the two factors, I

conducted further analysis where I calculated, for each participant, V1 neural population se-

lectivity as well as V1 thickness averaged across the six visual field locations, and for each

visual field location, V1 neural population selectivity as well as V1 thickness averaged across

the twenty participants. By subtracting the averages of individual participants’, I factored out

inter-individual variability and studied the contribution of intra-individual factor. Similarly,

by subtracting the averages of individual visual field locations’, I factored out intra-individual

variability and studied the contribution of inter-individual factor. The analysis revealed that the

negative correlation between V1 neural population selectivity and V1 thickness existed both

within individuals (r = -0.394, 95% CI = [-0.54, -0.23], p < 0.0001, N = 20 participants x 6

visual field locations) and across individuals (r = -0.423, 95% CI = [-0.56, -0.26], p < 0.0001,

N = 20 participants x 6 visual field locations).

These correlations suggested that V1 neural population selectivity for a specific visual

field location was affected jointly by the thickness at corresponding V1 locations and the sur-

face area of V1, where the exact influence on V1 neural population selectivity opposed between

V1 thickness and V1 surface area. To explore the influence that V2 anatomy might exert on

V2 neural population selectivity, I applied a similar analysis, where I plotted V2 neural pop-

ulation selectivity for six different visual field locations (45, 90, 135, 225, 270, 315 degree in

polar angle) from the same eccentricity (4.7 degree) against the thickness at corresponding V2

locations or the surface area of participants’ V2. Similar to the observations in V1, I found that

V2 neural population selectivity correlated positively with V2 surface area (r = 0.295, 95% CI

= [0.123, 0.450], p < 0.01, N = 20 participants x 6 visual field locations) but negatively with

V2 thickness (r = -0.322, 95% CI = [-0.47, -0.15], p < 0.001, N = 20 participants x 6 visual

field locations; intra-individually, r = -0.366, 95% CI = [-0.51, -0.20], p < 0.0001, N = 20

participants x 6 visual field locations; inter-individually, r = -0.276, 95% CI = [-0.43, -0.11], p

< 0.01, N = 20 participants x 6 visual field locations).
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7.3.4 Visual cortical anatomy and neural selectivity along eccentricity

My analyses above at a fixed visual field eccentricity (4.7 degree) suggested that the thick-

ness and the surface area of human early visual cortices (V1, V2) had joint but opposite influ-

ence on the variability in neural population selectivity across different visual field locations at

the same eccentricity (eccentricity-independent component). To study whether this observa-

tion was specific to certain visual field eccentricity or was generalisable across the visual field,

I compared visual cortical thickness and visual cortical surface area in their contribution to

the variability in neural population selectivity along the visual field eccentricity (eccentricity-

dependent component). Specifically, by fitting neural population selectivity as a function of

visual field eccentricity, I explored how visual cortical anatomy (thickness, surface area) re-

lated to the slope and the intercept of the fit. A relationship with the slope of the fit would

suggest that neural population selectivity got more dependent on visual cortical anatomy to-

wards the peripheral visual field, whereas a relationship with the intercept of the fit would

indicate an increased dependence towards the central visual field.

To explore the influence of V1 surface area on the eccentricity-dependent variability in

V1 neural population selectivity, I plotted neural population selectivity at individual V1 loca-

tions (vertices) against the visual field eccentrics these locations responded to and V1 surface

area of the participants, across the group of twenty participants and the retinotopy coverage of

the visual field (0.25 - 7.2 degree eccentricity). The data were binned into a data grid where

individual data point represented neural population selectivity averaged over V1 locations (ver-

tices) that were from the same participant and responded to similar eccentricities (Figure 7.2A).

This three-dimensional data grid allowed me to separately address the influence that the visual

field eccentricity and V1 surface area exerted on V1 neural population selectivity. Along the

axis of V1 surface area, I fitted individual plots of neural population selectivity - visual field

eccentricity with linear regression functions, where each plot represented the data from a sin-

gle participant (Figure 7.2B). I found that the slope (r = 0.549, 95% CI = [0.141, 0.797], p <

0.05, N = 20 participants) and the intercept (r = 0.614, 95% CI = [0.236, 0.830], p < 0.01,

N = 20 participants) of the fit both correlated positively with the surface area of V1, while

the goodness of the fit did not exhibit such correlation (r = -0.272, 95% CI = [-0.63, 0.193],

p = 0.245, N = 20 participants). Therefore, neural population selectivity in V1 with a larger

surface area had not only a higher value near fovea but also a faster increase along the visual

field eccentricity. These observations suggested that the correlation between V1 neural pop-

ulation selectivity and V1 surface area was not specific to certain visual field eccentricity but
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was instead generalisable across the visual field. Indeed, when I applied correlation analysis

along the axis of visual field eccentricity directly on individual plots of V1 neural population

selectivity - V1 surface area, I observed a positive correlation between V1 neural population

selectivity and V1 surface area, for each range of visual field eccentricity (Figure 7.2C).

To explore the influence of V1 thickness on the eccentricity-dependent variability in V1

neural population selectivity, I applied a similar analysis where I plotted neural population

selectivity at individual V1 locations (vertices) against the visual field eccentrics these loca-

tions responded to and V1 thickness at these locations, across the group of twenty participants

and the retinotopy coverage of the visual field (0.25 - 7.2 degree eccentricity). The data were

binned into a data grid where individual data point represented neural population selectivity

averaged over V1 locations (vertices) that were similar in thickness and responded to similar

eccentricities (Figure 7.2A). Through this three-dimensional data grid, I separately addressed

the influence that the visual field eccentricity and V1 thickness exerted on V1 neural population

selectivity. Along the axis of V1 thickness, I fitted individual plots of neural population selec-

tivity - visual field eccentricity with linear regression functions, where each plot represented

the data from a single thickness range of 0.1 mm. I found that the slope (r = -0.528, 95% CI

= [-0.78, -0.11], p < 0.05, N = 20 participants) and the intercept (r = -0.935, 95% CI = [-0.97,

-0.84], p < 0.0001, N = 20 participants) of the fit both correlated negatively with the thickness

of V1, while the goodness of the fit did not co-vary with V1 thickness (r = 0.147, 95% CI =

[-0.32, 0.553], p = 0.534, N = 20 participants). The influence of V1 thickness on both the slope

and the intercept of the fit suggested that the dependence of V1 neural population selectivity on

V1 thickness was not specific to certain visual field eccentricity but was instead generalisable

across the visual field. To verify this, I applied correlation analysis along the axis of visual field

eccentricity directly on individual plots of V1 neural population selectivity - V1 thickness. I

observed a negative correlation between V1 neural population selectivity and V1 thickness, for

each range of visual field eccentricity (Figure 7.2C).

These correlations between V1 neural population selectivity and V1 anatomy suggested

that the observations at a fixed visual field eccentricity (4.7 degree), where the thickness and

the surface area of V1 exerted opposite influence on V1 neural population selectivity, were

generalisable across the visual field. To explore whether such generalization was observable

in V2, I plotted neural population selectivity at individual V2 locations (vertices) against the

visual field eccentrics these locations responded to and V2 anatomy (surface area, thickness) at

these locations. The data were binned into data grids characterising the increase in V2 neural
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Figure 7.2: Visual cortical anatomy and neural population selectivity. The width of neural

population tuning for visual field location, measured at individual V1 locations, was plotted

against visual field eccentricities these cortical locations responded to and V1 anatomy at

these cortical locations (A). Along the axis of V1 surface area, each plot of location tuning

width - visual field eccentricity represented the data from a single participant and illustrated

the increase in location tuning width with visual field eccentricity (B). Along the axis of visual

field eccentricity, each plot of location tuning width - V1 anatomy represented the data from a

single eccentricity range and illustrated the dependence of location tuning width on V1 surface

area or V1 thickness (C). Data points are color coded according to the location tuning width

(A), the participant (B), or the visual field eccentricity (C). Equations reflect linear fit to the plot

of location tuning width - visual field eccentricity (B). Statistical values reflected Spearman’s

rank correlation with FWE correction for multiple comparisons (C).
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population selectivity along the visual field eccentricity, as well as the relationships between

V2 neural population selectivity and V2 anatomy within individual ranges of visual field eccen-

tricity. Mirroring the observations in V1, V2 surface area correlated positively with V2 neural

population selectivity, and specifically, with its value near fovea (r = 0.729, 95% CI = [0.423,

0.885], p < 0.001, N = 20 participants) as well as its slope of increase along the visual field

eccentricity (r = 0.705, 95% CI = [0.382, 0.874], p < 0.001, N = 20 participants). Conversely,

V2 thickness exhibited a negative correlation with V2 neural population selectivity, for each

range of visual field eccentricity.

7.4 Discussion

In summary, my study revealed a substantial degree of intra- and inter-individual vari-

ability in neural population selectivity that was shaped jointly by visual cortical thickness and

visual cortical surface area. I found that neural population selectivity for a visual field loca-

tion was dependent on the anatomy of corresponding visual cortical location, where the exact

pattern of dependence opposed between visual cortical thickness and visual cortical surface

area. Specifically, higher neural population selectivity was observed at thinner parts of early

visual cortices or in early visual cortices with a larger surface area, regardless of the influence

of visual field eccentricity. As such, a larger visual cortical volume, if it came from a larger

visual cortical thickness, was associated with a lower neural population selectivity, and if it

came from a larger visual cortical surface area, was associated with a higher neural population

selectivity.

A lot of recent progress has been made in identifying the relationships between cortical

anatomy (surface area, thickness, volume) and behavioral performance. By contrast, the re-

lationships between cortical anatomy and neural response properties remain largely unclear.

Such lack of understanding may result from the difficulty in non-invasive measure of neu-

ral response properties, especially by comparison to the easiness in measuring behavioral

performance. Indeed, due to the discrepancy between the coarse resolution of non-invasive

neuroimaging signals and the fine resolution of neural responses, the neuroimaging signals

usually detect the aggregate responses from neurons with very different or even opposite re-

sponse properties, which render the neural population responses qualitatively different from

the single neural responses. An exception to this limitation is the neural responses to visual

field location in early visual cortices, where cortically adjacent neurons respond selectively

to spatially adjacent visual field locations [71]. The orderly cortical representation of visual
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field location improves the response similarity between different neurons within a voxel, and

this intra-voxel response similarity is further improvable by increasing the resolution of neu-

roimaging signals. Such combination of orderly cortical representation for visual field location

and high resolution in neuroimaging signals therefore allows the estimation of single neural

selectivity from the measure of neural population selectivity for visual field location.

To measure neural population selectivity for visual field location, the method of

population-receptive-field mapping was developed [122]. This method relies on the pre-

sentation of a visual stimulation at a set of different visual field locations distributed evenly

in the visual field. By fitting the BOLD responses to such visual stimulation with a two-

dimensional Gaussian function, the method estimates the visual field range to which each

voxel responds, as a reflection of neural population selectivity for visual field location. This

method is conceptually similar to the method of spike-triggered average (reverse correla-

tion) used in extracellular recording that measures single neural selectivity for visual field

location (spatial receptive field). Both methods depend on the assumption of a linear spatial

summation where the response to a stimulus equals the sum of the responses to the stimulus

components. This linearity of spatial summation is observed in early visual cortices, which

supports the method of population-receptive-field mapping for measuring neural population

selectivity [180]. Indeed, my experiment observations demonstrate that the method offers a

reliable measure of neural population selectivity unbiased by fMRI signal properties including

the signal-to-noise ratio, the hemodynamic response function, and the spatial resolution.

Such a reliable measure of neural population selectivity allowed me to explore the re-

lationships between visual cortical anatomy and neural response properties. My experiment

observations in this chapter, that an opposition existed between visual cortical surface area

and visual cortical thickness in their influence on neural population selectivity, mirrored the

empirically observed relationships between visual cortical anatomy and visual discrimination

threshold in Chapter Five, where a larger visual cortical surface area was found to associate

with a finer visual discrimination and a larger visual cortical thickness was found to associate

with a poorer visual discrimination. Together these findings suggest that a larger cortical vol-

ume is not always advantageous. Instead, a perceptually advantageous visual cortical design

seems to involve a thinned visual cortex with an enlarged surface area. This is consistent with

the developmental trend that the sensory experience drives the expansion of sensory cortical

map but the thinning of sensory cortex [139, 181]. Moreover, the association between a thinner

visual cortex and a finer visual function is consistent with a similar trend in the retina. In the
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retina, the part with the highest visual acuity, the fovea, is also the thinnest. The fovea has only

one photoreceptor layer that minimizes the absorption of light along the retinal pathway [182].

As such, a finer visual function may in general be achieved through the optimization of tissue

distribution rather than the simple increase in tissue volume.

The similarity between neural population selectivity and visual discrimination threshold

in their dependence on visual cortical anatomy was consistent with the predictions from the

visual cortical model in Chapter Six. Specifically, the visual cortical model, based on the

scaling of intracortical processing with visual cortical anatomy, suggested that visual cortical

anatomy influenced visual discrimination threshold through the feature selectivity of visual

cortical neurons that was in turn shaped by the intracortical processing, and as a result, neural

population selectivity and visual discrimination threshold would exhibit similar dependence

on visual cortical anatomy. The consistency between the model predictions and the experi-

ment observations consolidated the model, and thereby provided an implicit support for the

involvement of intracortical processing in linking visual cortical anatomy to visual perception.

For an explicit test, in the next chapter, I measured the intracortical connectivity in early visual

cortices using the method of Dynamic Causal Modeling [80]. I then explored whether the

weakening of intracortical connectivity indeed shifted the scope of visual perception from

global context-oriented to local detail-oriented.



Chapter 8

Role of Visual Cortical Connectivity

8.1 Introduction

Perception of a visual stimulus is rarely a true reflection of its physical properties but is

often modulated by the spatial contexts surrounding the stimulus. Such contextual modulation

of perception is widespread in everyday vision and can be easily demonstrated by contextual il-

lusions. For example, in orientation contextual illusion (tilt illusion), the perceived orientation

of a central stimulus is shifted away from its physical orientation when surrounded by a tilted

context [102]. Similar illusions exist for perception of other elementary visual features such

as contrast and luminance. The magnitude of these contextual illusions reflects the degree to

which perception of elementary visual features is global, context-oriented. However, despite

representing a key aspect to visual perception, little is known about the neural mechanisms

underlying such contextual modulation of visual perception.

In Chapter Four, I found that the magnitude of contextual illusion for elementary visual

features exhibited a ten-fold inter-individual variability that correlated with the surface area of

early visual cortices. Importantly, among different elementary visual features (orientation, con-

trast, luminance) and different early visual cortices (V1, V2) studied, this correlation between

contextual illusion magnitude and visual cortical surface area was observed specifically be-

tween orientation and V1. Such specificity suggested that one approach towards understanding

the neural mechanisms of contextual illusions was to ask what was unique about the cortical

processing of orientation in V1 that was not observed for the cortical processing of orientation

in V2 or the cortical processing of contrast or luminance. Compared to the cortical processing

of contrast or luminance, the cortical processing of orientation was unique in its orderly repre-

sentation where neurons selective for more similar orientation were more strongly connected

[37]. Moreover, while this orderly representation of orientation was continuous over the corti-

cal surface of V1, it was interleaved with the representation of color over the cortical surface
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of V2. Consequently, the change in V1 surface area would affect the orderly representation of

orientation in V1, which would in turn scale the intracortical connectivity between V1 neurons

selective for similar orientation. By contrast, this systematic relationship between the sur-

face area of early visual cortices and the intracortical processing of elementary visual features

would not apply to V2, or to contrast or luminance. My experiment observations therefore

hinted towards an involvement of intracortical connections in contextual modulation of visual

perception, where the change in contextual illusion magnitude with visual cortical surface area

was underlied by the scaling of intracortical connectivity.

In fact, long before my studies, it was hypothesized that visual contexts modulated per-

ception through visual cortical connections, such as through intracortical connections in early

visual cortices [102, 105, 183]. These hypotheses were inspired by empirical studies in ani-

mal models showing the involvement of visual cortical connections in contextual modulation

of visual neural responses. Consistent with these hypotheses, I showed, in Chapter Six using

model simulation, that the scaling of intracortical connectivity with visual cortical surface area

was able to affect contextual modulation of visual neural responses in a fashion that mirrored

the empirically observed impacts of visual cortical surface area on contextual modulation of

visual perception. However, although contextual modulation of visual perception resembled

contextual modulation of visual neural responses, they might not share similar mechanisms.

This was particularly the case given that visual perception and neural responses did not exhibit

exactly the same dependence on visual contexts [102]. Since it was difficult to acquire a non-

invasive assessment of cortical connections in human participants and it was equally difficult

to acquire a direct measure of visual perception in animal models, there existed no empirical

study addressing directly the role of visual cortical connections in contextual modulation of

visual perception, despite the rich theoretical literatures.

Nevertheless, with the recent advances in Dynamic Causal Modeling (DCM), it is now

possible to acquire a non-invasive assessment of cortical effective connectivity in human par-

ticipants from fMRI BOLD signals. Specifically, by taking into consideration the biophysical

basis of fMRI BOLD signals and the temporal dynamics of neural interactions, DCM estimates

the effective strength of synaptic connections from one neural population to another (effective

connectivity) [82]. In contrast to the functional connectivity that merely describes the statis-

tical dependency in the neuroimaging signals without inferring the underlying neural causes,

the effective connectivity reflects the coupling between the hidden neural states that give rise

to the neuroimaging signals. As such, DCM allows the separation of signals reflecting differ-
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ent cortical connections (e.g., intracortical, feedforward, feedback), which has been validated

by concurrent fMRI-intracranial recordings demonstrating the consistency between the DCM

measure of cortical connectivity and the intracranial measure of neural coupling [84].

Applying DCM, I measured the intracortical, feedforward, feedback connectivity between

the foveal and peripheral visual cortical regions that responded to the central stimulus and its

surrounding context, respectively. I then explored the role of these visual cortical connec-

tions in contextual modulation of visual neural responses, by studying their change from non-

contextual stimulation (where the central stimulus or its surrounding context was presented

in isolation) to contextual stimulation (where the central stimulus and its surrounding context

were presented simultaneously). I also explored the role of these visual cortical connections

in contextual modulation of visual perception, by studying their co-variance with the mag-

nitude of contextual illusion. A classical approach to vary the contextual illusion magnitude

was by changing the feature (e.g., orientation) difference between the central stimulus and the

surrounding context. This approach, however, had the pitfall of confounding the perceptual

variability in contextual illusion magnitude with the physical variability in contextual illusion

stimulus, which rendered it difficult to disentangle whether any correlation between visual cor-

tical connectivity and contextual illusion magnitude reflected the perceptual or the physical

effect. To overcome this, I took a novel approach utilizing the perceptual variability across

individuals in contextual illusion magnitude, and studied how such perceptual variability was

shaped by inter-individual variability in visual cortical connectivity.

Taken together, in this chapter, I explored the role of visual cortical connections in visual

contextual modulation with two specific aims. First, using DCM, I measured the intracorti-

cal, feedforward, feedback connectivity in early visual cortices, and studied how these visual

cortical connections changed within individuals from non-contextual stimulation to contextual

stimulation. Then, I studied how these visual cortical connections varied across individuals,

and addressed the contribution of their inter-individual variability to inter-individual variability

in contextual illusion magnitude. To this end, I focused on contextual modulation in orientation

domain, because neurons in early visual cortices are connected according to their selectivity

for orientation [38, 43] and their connectivity may in turn shape their modulation by orienta-

tion contexts. I acquired the DCM measure of visual cortical connectivity under different ex-

periment task (passive viewing, active judging), which addressed whether the DCM measure

was task-invariant. I also acquired the psychophysics measure of contextual illusion magni-

tude under different experiment configurations of stimulus size and stimulus contrast, which
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addressed whether inter-individual variability in contextual illusion magnitude represented a

stimulus-independent trait.

8.2 Methods

8.2.1 Participants and Apparatus

A group of twenty healthy participants (aged 19 to 34, ten females, ten males), with nor-

mal or corrected-to-normal vision and no neurological history, gave written informed consent

to take part in this study approved by the UCL ethics committee. All participants took part in

the neuroimaging experiments where I measured visual cortical connectivity using the experi-

ment task of passive viewing, and the psychophysics experiments where I tested the influence

of stimulus size on the measure of tilt illusion magnitude. Ten of the participants further took

part in the neuroimaging experiments where I measured visual cortical connectivity using the

experiment task of active judging, and the psychophysics experiments where I tested the influ-

ence of stimulus contrast on the measure of tilt illusion magnitude.

The psychophysics experiments took place in a dark room where the computer monitor

provided the only significant source of light. The visual stimuli were presented on a 22” com-

puter monitor (size = 41 x 30.6 cm, resolution = 2048 x 1536 pixels) and viewed through a chin

and forehead rest (viewing distance = 67 cm). The neuroimaging experiments took place in a

Siemens Trio 3T MRI scanner with a 32-channel head-coil. The visual stimuli were projected

onto a screen (size = 28.6 x 21.5 cm) in the back of the scanner and viewed through a mirror

on the head-coil (viewing distance = 85 cm). The stimuli covered a portion of the visual field

extending from 0.25 to 7.2 degree eccentricity. Structural MRI data were collected using a

T1-weighted sequence at 1 mm resolution (TR = 7.92 ms, TE = 2.48 ms, matrix = 256 x 240).

Functional MRI data were collected using a 3D EPI sequence at 1.5 mm resolution (volume

TR = 3.2 s, TE = 32.86 ms, matrix = 128 x 128). Functional MRI data were preprocessed

in SPM8 through bias correction, realignment, unwarping, coregistration, and physiological

noise correction.

8.2.2 Psychophysics experiments

To assess inter-individual variability in tilt illusion magnitude, the orientation difference

between the central stimulus and the surrounding context was optimized to provide the maxi-

mum tilt illusion. Specifically, the central stimulus and the surrounding context were sinusoidal

gratings (spatial frequency = 1.5 cycles per degree of visual angle) that had orientation of 45



8.2. Methods 126

and 60 degree, respectively. In the main experiments, the central stimulus had an eccentricity

coverage from 0.25 to 1.75 degree of visual angle and a contrast of 70%, whereas the surround-

ing context had an eccentricity coverage from 2.4 to 7.2 degree of visual angle and a contrast

of 70%. To test whether inter-individual variability in tilt illusion magnitude was dependent

on the stimulus size, I conducted control experiments where the eccentricity coverage of the

central stimulus and the surrounding context were from 0 to 0.75 degree of visual angle, and

from 0.75 to 3 degree of visual angle, respectively. To test whether inter-individual variability

in tilt illusion magnitude was accounted for by inter-individual variability in effective contrast

of visual stimulation [184, 185], I conducted further control experiments where the contrast

of the central stimulus and the surrounding context were individualized for each participant

according to their contrast detection threshold measured in independent experiments.

These experiments measuring the tilt illusion magnitude differed only in the visual stimuli

and shared the same experiment procedures, where the standard method of constant stimuli

was used. In a single experiment trial, two central stimuli, one with and one without a sur-

rounding context, were presented in succession on the computer monitor. The interval (first or

second) where the surrounding context appeared was randomized but counter-balanced across

trials. The duration of each stimulus was 300 ms and the inter-stimulus-interval was 500 ms.

While maintaining central fixation throughout the experiment, participants made an unspeeded

forced-choice regarding whether the central stimulus in the second interval, compared with

the one in the first interval, was rotated clockwise or anti-clockwise. Prior to the experiment,

each participant performed four trials in which they manually adjusted the orientation of the

central stimulus presented in isolation till it matched the perceived orientation of the central

stimulus presented in the surrounding context. In the subsequent experiment, the orientation

of the central stimulus presented in the surrounding context was kept constant, while that of

the central stimulus presented in isolation was varied around this point of perceptual equality

for seven different orientation values. In a single experiment, a total of 112 trials (16 trials per

orientation value) were taken to produce a psychometric curve. The tilt illusion magnitude was

calculated as the orientation difference between the two central stimuli at the 50% threshold

point of the psychometric curve where they appeared perceptually equal.

Independent of these experiments measuring the tilt illusion magnitude, I measured the

contrast detection threshold, separately for the central stimulus and the surrounding context,

using the standard 2-up-1-down staircase procedure. In a single experiment trial, a low-contrast

sinusoidal grating (spatial frequency = 1.5 cycles per degree of visual angle, eccentricity cov-
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erage = 0.25 to 1.75 degree of visual angle for the central stimulus, 2.4 to 7.2 degree of visual

angle for the surrounding context), oriented at 45 degree either towards left or towards right

of the vertical, was presented for 300ms. The orientation of the stimulus (left or right) was

randomized across trials. While maintaining central fixation throughout the experiment, par-

ticipants made an unspeeded forced-choice regarding whether the stimulus was left or right

oriented. The contrast of the stimulus was varied in a 2-up-1-down staircase fashion that as-

sessed the contrast detection threshold at which the performance converged to 70.7% correct

[109]. Specifically, two consecutive correct answers led to a one-step decrease in the stimu-

lus contrast in the next trial, whereas one incorrect answer lead to a one-step increase in the

stimulus contrast. The experiment stopped after eighteen reversals, and the contrast detection

threshold was calculated as the stimulus contrast averaged over the last ten reversals.

8.2.3 Neuroimaging experiments

To measure visual cortical connectivity between the foveal and peripheral regions-of-

interest that responded respectively to the central stimulus and the surrounding context, the

visual stimuli were presented in a block design where participants viewed a central stimulus

alone, a surrounding context alone, a central stimulus together with a surrounding context, or a

blank screen, in different experiment blocks. Two types of surrounding context were used, one

tilted (orientation = 60 degree) from the central stimulus (orientation = 45 degree) and induced

the tilt illusion, as well as one iso-oriented (orientation = 45 degree) to the central stimulus

(orientation = 45 degree) and induced no tilt illusion. For both types, the surrounding context

had eccentricity coverage from 2.4 to 7.2 degree of visual angle, whereas the central stimulus

had eccentricity coverage from 0.25 to 1.75 degree of visual angle. The eccentricity gap be-

tween the central stimulus and the surrounding context contributed to the reliable separation

of the foveal and peripheral regions-of-interest, whereas the eccentricity gap within the central

stimulus helped to avoid the activation of the foveal confluence where the boundaries of early

visual cortices were difficult to delineate.

Using the block design presentation of visual stimuli, the fMRI BOLD time series were

collected under two different experiment tasks that addressed the influence of experiment task

on the measure of visual cortical connectivity. The first experiment task was designed to min-

imize inter-individual variability in attention allocation, and involved passive viewing of the

stimulus orientation. Specifically, participants passively viewed the visual stimuli, while main-

taining eye fixation at a central cross through the detection of its color change. The second

experiment task was designed to match the psychophysics experiment task, and involved active
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judging of the stimulus orientation. Specifically, participants actively judged the orientation of

the central stimulus, which underwent a clockwise or anti-clockwise change at random inter-

val for 400 ms, while maintaining eye fixation at a central cross under the monitor of an eye

tracker. The degree of orientation change was individualized for each participant according to

their orientation discrimination threshold measured in independent experiments using the stan-

dard 2-up-1-down staircase procedure. This procedure of individualization helped to ensure

that the detection of orientation change was equally difficult for different participants. How-

ever, as a pitfall, the fMRI BOLD time series contained not only a common block component,

but also an individualized event-related component that might confound the measure of inter-

individual variability. Therefore, this individualized event-related component was filtered out

from the fMRI BOLD time series through a low-pass Butterworth filter.

From the collected fMRI BOLD time series, the foveal and peripheral regions-of-interest

were delineated in early visual cortices using two different approaches that addressed the in-

fluence of regions-of-interest delineation on the measure of visual cortical connectivity. In the

first approach, fMRI BOLD signals evoked by the central stimulus were contrasted against

fMRI BOLD signals evoked by the surrounding context at a threshold of p<0.001 (uncor-

rected), to delineate the foveal and peripheral regions-of-interest. In the second approach,

the delineated foveal and peripheral regions-of-interest were further refined according to the

visual field response range of individual fMRI voxels measured in independent experiments

using the method of population-receptive-field mapping [122]. Specifically, the fMRI voxels

whose visual field response range overlapped with the surrounding context were excluded from

the foveal region-of-interest, whereas the fMRI voxels whose visual field response range over-

lapped with the central stimulus were excluded from the peripheral region-of-interest. This pro-

cedure of refinement helped to avoid the spillover between the foveal and peripheral regions-

of-interest. In both approaches, the delineated foveal and peripheral regions-of-interest were

then projected with the boundaries of early visual cortices (V1, V2, V3), measured in indepen-

dent experiments using the standard phase-encoded retinotopic mapping [71], to define foveal

V1, peripheral V1, foveal V2, peripheral V2, foveal V3, and peripheral V3 for uses in the DCM

analysis.

Based on the regions-of-interest delineation, DCM was applied to estimate the effective

connectivity between any two of the six regions-of-interest (foveal V1, peripheral V1, foveal

V2, peripheral V2, foveal V3, peripheral V3), and to study how the effective connectivity

changed from non-contextual stimulation to contextual stimulation. To this end, anatomi-
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cally plausible DCM models comprising the six inter-connected regions-of-interest were con-

structed, where each DCM model tested a hypothesis of the change in effective connectivity

from non-contextual stimulation to contextual stimulation. These different DCM models could

be grouped into three different families that hypothesized a change in intracortical connectivity

within each early visual cortex (the first family), or a change in intercortical connectivity be-

tween different early visual cortices (the second family), or a change in both (the third family).

Specifically, the first DCM family contained three different DCM models hypothesizing, re-

spectively, a change in intracortical connectivity from peripheral to foveal regions-of-interest, a

change in intracortical connectivity from foveal to peripheral regions-of-interest, and a change

in both (Figure 8.1A). The second DCM family contained fifteen different DCM models hy-

pothesizing a change in feedback connectivity from peripheral to foveal regions-of-interest, a

change in feedback connectivity from foveal to peripheral regions-of-interest, a change in feed-

forward connectivity from peripheral to foveal regions-of-interest, a change in feedforward

connectivity from foveal to peripheral regions-of-interest, or any of these combined (Figure

8.1B). The third DCM family contained eight different DCM models (Figure 8.1C) hypothe-

sizing a combination of the change in intracortical connectivity (as in the first family) and the

change in intercortical connectivity (as in the second family).

After the construction of DCM models, Bayesian model selection was applied to iden-

tify the DCM family with the highest posterior probability (family-level inference), and in

that family, the DCM model with the highest posterior probability (model-level inference).

Based on the winning DCM model in the winning DCM family, the effective connectivity

was measured between different regions-of-interest (foveal V1, peripheral V1, foveal V2, pe-

ripheral V2, foveal V3, peripheral V3) for different visual stimulation (non-contextual, tilted

contextual, iso-oriented contextual). From this DCM measure of visual cortical connectivity,

I explored intra-individual change in visual cortical connectivity from non-contextual stimula-

tion to contextual stimulation, as well as inter-individual relationship between visual cortical

connectivity and contextual illusion magnitude.

8.3 Results

8.3.1 Visual cortical connectivity under contextual stimulation

To explore the influence of visual stimulation (non-contextual versus contextual) on visual

cortical connectivity, I constructed different DCM models where each tested a hypothesis about

the change in visual cortical connectivity from non-contextual stimulation (where the cen-
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Figure 8.1: DCM measure of visual cortical connectivity. Dynamic Causal Modeling (DCM)

analysis was applied to estimate the effective connectivity between foveal and peripheral re-

gions of early visual cortices that responded to a central stimulus and its surrounding context,

respectively. Three families of DCM models were constructed hypothesizing changes in intra-

cortical connectivity within each early visual cortex (A), or changes in intercortical connectiv-

ity between different early visual cortices (B), or changes in both (C), when the central stimulus

and its surrounding context were presented together as compared to in isolation. Within each

model family, different DCM models were constructed incorporating different directionality of

hypothesized changes in effective connectivity, as illustrated by the red arrows in the schematic

depictions of model structures. Bayesian model comparison was applied to select the model

with the highest posterior probability within each model family (model-level inference), and

the model family with the highest posterior probability (family-level inference). DCM analy-

sis for each of the four combinations of ROI definition and experimental task was carried out

independently and returned highly consistent results (D).
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tral stimulus and its surrounding context was presented in isolation) to contextual stimulation

(where the central stimulus and its surrounding context was presented together). Specifically,

three families of DCM models were constructed, hypothesizing a sole change in intracortical

connectivity within each early visual cortex (the first DCM family), or a sole change in in-

tercortical connectivity between different early visual cortices (the second DCM family), or a

change in both intracortical and intercortical connectivity (the third DCM family).

Within each DCM family, Bayesian model selection was applied to identify the DCM

model with the highest posterior probability (model-level inference). The analysis revealed

that, in the first DCM family, the DCM model hypothesizing a change in intracortical con-

nectivity from peripheral to foveal regions-of-interest had a high posterior probability (close

to one), whereas the DCM models hypothesizing a change in intracortical connectivity from

foveal to peripheral regions-of-interest had a low posterior probability (close to zero). In the

second DCM family, the DCM model hypothesizing a change in feedback connectivity from

peripheral to foveal regions-of-interest had a high posterior probability (close to one), whereas

the DCM models hypothesizing a change in feedback connectivity from foveal to peripheral

regions-of-interest, or a change in feedforward connectivity, or a change in any combination

of feedback and feedforward connectivity, all had a low posterior probability (close to zero).

In the third DCM family, the DCM model hypothesizing a change in intracortical and feed-

back connectivity from peripheral to foveal regions-of-interest had a high posterior probability

(close to one), whereas the DCM models hypothesizing a change in other combination of in-

tracortical and intercortical connectivity all had a low posterior probability (close to zero).

Across different DCM families, Bayesian model selection was applied to identify the

DCM family with the highest posterior probability (family-level inference). The analysis

revealed that, the third DCM family, which hypothesized a change in both intracortical and

intercortical connectivity, had a higher posterior probability than the other two DCM fami-

lies, which hypothesized either a sole change in intracortical connectivity or a sole change in

intercortical connectivity. Together the model-level inference and the family-level inference

consistently suggested that, contextual stimulation affected both intracortical and feedback

connectivity from peripheral to foveal visual cortical regions, while it had no influence on

other intracortical or intercortical connectivity between the foveal and peripheral visual cor-

tical regions. These results provided a qualitative estimation of the change in visual cortical

connectivity from non-contextual stimulation to contextual stimulation.

To provide a quantitative estimation of the change in visual cortical connectivity from
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non-contextual stimulation to contextual stimulation, I acquired the measure of visual corti-

cal connectivity, from the wining DCM model in the winning DCM family, separately for

the condition of non-contextual stimulation where either an isolated central stimulus, or an

isolated surrounding context, or a blank screen, was presented, and for the condition of con-

textual stimulation where the central stimulus was presented together with the surrounding

context. The analysis revealed that, the intracortical and feedback connectivity from periph-

eral to foveal visual cortical regions was very weak under non-contextual stimulation (Figure

8.2, 95% confidence interval overlapped with zero), but underwent a substantial increase from

non-contextual stimulation to contextual stimulation (Figure 8.2). Moreover, this increase was

observed regardless of whether the surrounding context had the same orientation (iso-oriented)

or a different orientation (tiled) to the central stimulus, which suggested an involvement of

generic (instead of orientation-dependent) intracortical and feedback connections in contextual

modulation of visual neural responses.
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Figure 8.2: Visual cortical connectivity under contextual stimulation. Bayesian model com-

parison revealed that contextual stimulation changed intracortical and feedback connectivity

from peripheral to foveal regions of early visual cortices (A). At the baseline condition where a

blank screen or an isolated central stimulus or an isolated surrounding context was presented,

the intracortical and feedback connectivity from peripheral to foveal regions of early visual

cortices was not significantly different from zero. Under contextual stimulation, a significant

increase was observed in intracortical and feedback connectivity from peripheral to foveal re-

gions of early visual cortices, regardless of whether the surrounding context and the central

stimulus had different or identical orientation. Bar chart reflects the mean and 95% confidence

interval of the maximum a posteriori (MAP) estimates across participants (N = 20).
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Reported above were the results from the fMRI data where the experiment task involved

passive viewing of the stimulus orientation (the first experiment task), and the regions-of-

interest were delineated according to general linear model contrast alone (the first regions-

of-interest delineation approach). To address the influence of experiment task and regions-of-

interest delineation on the DCM measure of visual cortical connectivity, I applied the same

DCM analysis to the fMRI data where the experiment task involved active judging of the stim-

ulus orientation (the second experiment task), or the regions-of-interest were stringently con-

fined according to population-receptive-field map (the second regions-of-interest delineation

approach). The results from these additional analyses (Figure 8.1) were highly consistent with

the original ones, suggesting that the DCM measure of visual cortical connectivity was reli-

able, and the observed change in visual cortical connectivity from non-contextual stimulation

to contextual stimulation was robust.

8.3.2 Visual cortical connectivity and perceptual variability

The change in intracortical and feedback connectivity from non-contextual stimulation to

contextual stimulation suggested an involvement of these visual cortical connections in con-

textual modulation of visual neural responses. To explore the role of these visual cortical

connections in contextual modulation of visual perception, I studied their co-variance with the

magnitude of contextual illusion. Specifically, I took an inter-individual variability approach

examining whether such a co-variance between brain signals and perception existed across

participants, as this approach allowed me to vary the contextual illusion magnitude without

changing the contextual illusion stimulus.

Using psychophysics methods, I measured the magnitude of orientation contextual illu-

sion (tilt illusion). All twenty participants were shown the same tilt illusion stimulus, yet the

tilt illusion magnitude varied across participants over several folds. As the tilt illusion mag-

nitude is dependent on the stimulus size and the stimulus contrast [121], I addressed whether

inter-individual variability in tilt illusion magnitude was also stimulus-specific. I compared

the measure of tilt illusion magnitude across different stimulus size (small versus large) and

different stimulus contrast (non-individualized versus individualized). I found that, while an

increase in the stimulus size led to a weaker tilt illusion (t(19) = 3.8, p < 0.005, N = 20 partici-

pants), the measure of tilt illusion magnitude under large stimulus correlated significantly with

that under small stimulus (r = 0.69, 95% CI = [0.357, 0.867], p < 0.001, N = 20 participants).

Moreover, when the stimulus contrast was individualized for each participant according to their

contrast detection threshold, I still observed a substantial degree of inter-individual variability
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in the measure of tilt illusion magnitude, which correlated with the measure of tilt illusion

magnitude under non-individualized stimulus (r = 0.77, 95% CI = [0.497, 0.904], p < 0.05, N

= 20 participants).

These results that the tilt illusion magnitude varied inter-individually in a stimulus-

independent fashion hinted towards an underlying basis in the neurobiological variability

across individuals. Indeed, inter-individually, the magnitude of tilt illusion correlated signifi-

cantly with the value of visual cortical connectivity under contextual stimulation (Figure 8.3,

r = 0.62, 95% CI = [0.245, 0.833], p < 0.005, N = 20 participants), or the change in visual

cortical connectivity from non-contextual stimulation to contextual stimulation (Figure 8.3, r

= 0.46, 95% CI = [0.022, 0.749], p < 0.05, N = 20 participants). This correlation between

visual cortical connectivity and tilt illusion magnitude exhibited circuitry specificity, in that

it was specific to the measure of intracortical connectivity from peripheral to foveal V1, as

opposed to the measure of other intracortical or intercortical connectivity between the foveal

and peripheral visual cortical regions (Figure 8.3). Moreover, this correlation exhibited orien-

tation specificity, in that it was specific to the measure of V1 intracortical connectivity under

tilted contextual stimulation, as opposed to the measure of V1 intracortical connectivity un-

der iso-oriented contextual stimulation (Figure 8.3). Such circuitry specificity and orientation

specificity hinted towards an involvement of orientation-dependent (instead of generic) intra-

cortical connections in contextual modulation of orientation perception.

In addition to addressing the contribution of visual cortical connections, I further studied

whether inter-individual variability in tilt illusion magnitude could be explained by other mea-

sures of visual cortical processing, and in particular, by the level of visually evoked BOLD

responses in the six regions-of-interest (foveal V1, peripheral V1, foveal V2, peripheral V2,

foveal V3, peripheral V3). I found that while the level of BOLD responses evoked by tilted

contextual stimulation and the change in BOLD responses from non-contextual stimulation

to tilted contextual stimulation both varied substantially across participants, neither exhibited

correlation with the magnitude of tilt illusion (Figure 8.3, r < 0.20, p > 0.39, N = 20 par-

ticipants). Therefore, whereas the level of visually evoked BOLD responses was traditionally

viewed as the neural correlates for the contents of visual perception [186, 187], my experiment

observations suggested that visual cortical connectivity might serve more reliably as the neural

correlates, at least for inter-individual variability in perception of tilt illusion.
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Figure 8.3: Visual cortical connectivity and perceptual variability. (A) Contextual stimulation

affected intracortical connectivity within each early visual cortex from its peripheral region

to its foveal region, and feedback connectivity between different early visual cortices from the

higher peripheral region to the lower foveal region. For each of these affected connectivity, I

calculated its inter-individual correlation with the tilt illusion magnitude. The correlation was

significant only for intracortical connectivity within V1. (B) Contextual stimulation affected

V1 intracortical connectivity regardless of whether the surrounding context had a different or

an identical orientation to the central stimulus. For each of these two stimulation conditions,

I calculated inter-individual correlation between V1 intracortical connectivity and tilt illusion

magnitude. The correlation was significant for the tilted contextual stimulation but not for

the iso-oriented contextual stimulation. Statistical values reflect Spearman’s rho with FDR

correction for multi-comparisons (α = 0.025).

8.4 Discussion

In summary, my study revealed a substantial degree of inter-individual variability in visual

cortical connectivity that mediated inter-individual perceptual variability in orientation contex-

tual illusion (tilt illusion). I found that, surrounding a central stimulus with a tilted context not

only shifted the perceived orientation of the central stimulus away from its physical orientation

(the phenomenon of tilt illusion), but also changed the intracortical and feedback connectivity

from peripheral to foveal visual cortical regions that responded respectively to the surround-

ing context and the central stimulus. Such context-induced shift in perceived orientation and
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context-induced change in visual cortical connectivity both varied substantially across indi-

viduals. Moreover, an inter-individual correlation with the context-induced shift in perceived

orientation (the magnitude of tilt illusion) was observed specifically for the context-induced

change in intracortical connectivity from peripheral to foveal V1.

The context-induced change in intracortical and feedback connectivity suggested an in-

volvement of these visual cortical connections in contextual modulation of visual neural re-

sponses. Indeed, neurons in early visual cortices have center-surround receptive fields, where

the neural responses to orientation at receptive field center (orientation of the central stimulus)

are modulated by orientation at receptive field surround (orientation of the surrounding con-

text), and the level of modulation increases with the orientation similarity between the central

stimulus and the surrounding context [184, 185]. Initially, it was believed that such contextual

modulation of visual neural responses took place through intracortical connection, as intracor-

tical connections preferentially linked neurons selective for similar orientation, which would

lead to an increased level of contextual modulation with the increased orientation similarity

between the central stimulus and the surrounding context [188, 189, 190]. However, empirical

studies in animal models later revealed that the spatiotemporal scales of intracortical connec-

tions were smaller than that of neural receptive fields. As such, it was suggested that feedback

connections, which covered larger visual field and had faster propagation speed than intracor-

tical connections, also played a key role in contextual modulation of visual neural responses

[191, 192]. Consistent with these animal studies, my experiment observations in human partic-

ipants provided empirical evidence for the involvement of intracortical and feedback connec-

tions in contextual modulation of visual neural responses.

In contrast to the context-induced change in visual cortical connectivity, which was ob-

served generally for different intracortical and feedback connections in early visual cortices,

the context-induced correlation between visual cortical connectivity and tilt illusion magni-

tude was observed specifically for intracortical connections in V1. Moreover, this correlation

with tilt illusion magnitude was specific to the measure of V1 intracortical connectivity under

tilted contextual stimulation, as opposed to the measure of V1 intracortical connectivity under

iso-oriented contextual stimulation. Such specificity indicated an involvement of orientation-

dependent V1 intracortical connections in contextual modulation of orientation perception.

Indeed, it was postulated, long before my study, that contextual modulation of orientation per-

ception took place through visual cortical connections between neurons selective for similar

orientation, as such neural interactions would shift the neural population responses (and cor-
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responding, the perceived orientation of the central stimulus) in a direction repulsive to the

orientation of the surrounding context [193, 194, 195]. This orientation dependency was ob-

served for intracortical connections within V1, in that V1 neurons selective for more similar

orientation were also more intracortically connected [38, 43]. By contrast, feedback connec-

tions between different early visual cortices (V1, V2, V3) lacked such orientation dependency

and linked different neurons regardless of their orientation selectivity [188, 189, 190]. These

different properties exhibited by different visual cortical connections put V1 intracortical con-

nections as the most likely candidate for contextual modulation of orientation perception. How-

ever, despite the rich theoretical literatures, it had been traditionally difficult to acquire a non-

invasive assessment of cortical connections in human participants, and no empirical study had

directly addressed the role of visual cortical connections in contextual modulation of visual

perception. Nevertheless, with the recent advances in DCM, I was able to measure V1 intra-

cortical connections non-invasively in human participants, and demonstrated their empirical

involvement in contextual modulation of orientation perception.

Because of the difficulty in non-invasive measure of cortical connections, traditional stud-

ies were limited to viewing the level of visually evoked BOLD responses as the neural corre-

lates for the contents of visual perception [186, 187]. My experiment observations, by contrast,

suggested that even when a visual stimulus (e.g., the tilt illusion stimulus) evoked equivalent

level of BOLD responses across individuals, the measure of visual cortical connectivity under

this visual stimulus might still vary substantially across individuals that predict inter-individual

variability in perception of this visual stimulus. As such, compared to the level of visually

evoked BOLD responses, visual cortical connectivity might serve more reliably as the neural

correlates, at least for inter-individual variability in perception of tilt illusion. Indeed, indi-

vidual visual cortical neurons only process isolated pieces of visual information (such as the

central stimulus alone or the surrounding context alone), whereas visual perception is an in-

tegrated process involving visual information processed by distributed visual cortical neurons.

Consequently, the contents of visual perception are more likely to be shaped by the level of neu-

ral interactions (as indicated in visual cortical connectivity), rather than by the level of overall

neural responses (as indicated in the BOLD responses). Since the level of BOLD responses

reflects the aggregated contributions of many different visual cortical connections, linking it

to the contents of visual perception cannot disentangle the effects of different visual cortical

connections and may thus fail to show any significant correlation.

In addition to its advantage over the traditional approach of examining the level of BOLD
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responses, DCM also has several advantages over other non-invasive assessment of cortical

connections in human participants. For example, whereas the anatomical connectivity analysis

using DTI can only reveal the white-matter-mediated intercortical connectivity [196], the ef-

fective connectivity analysis using DCM can also reveal the gray-matter-mediated intracortical

connectivity. Moreover, the effective connectivity analysis using DCM allows estimation of

directionality in cortical connections, which the anatomical connectivity analysis using DTI

and the functional connectivity analysis examining statistical dependency both fail to address

[197].

Despite these advantages, DCM is limited by the indirect nature and the low resolution of

fMRI BOLD signals. Consequently, DCM provides a rough population estimate, rather than

an accurate synaptic measure, of cortical connectivity. Nevertheless, utilizing such popula-

tion estimate, I am able to demonstrate that, the weakening of intracortical connectivity indeed

shifts the scope of visual perception from global context-oriented (stronger contextual illusion)

to local detail-oriented (weaker contextual illusion), which in turn provides empirical support

for my hypothesis (in Chapter Four / Five / Six) that visual cortical surface area influences

visual perception through the scaling of intracortical connectivity. Moreover, it is interesting

to note that such population estimate of cortical connectivity from DCM already contains a

considerable amount of perception-related information. With the advances of two-photon mi-

croscopy, the synaptic wiring diagram can now be characterized in awake behaving animals at

a subcellular resolution of individual dendritic spines [198, 199]. This opens up future research

into the relationship between visual perception and visual cortical connectivity at a subcellular

level, albeit in animal models.



Chapter 9

General Discussion

In my thesis, I investigated the neurobiological basis of inter-individual variability in vi-

sual feature perception. I began my studies by exploring the extent to which visual feature

perception varied across healthy human adults. I found that local feature perception, as as-

sessed from visual discrimination of local feature details [2, 99], and global feature perception,

as assessed from visual illusion induced by global feature contexts [100, 101, 102], both ex-

hibited a substantial degree of inter-individual variability. Moreover, whereas the extent of

inter-individual perceptual variability was similar across different visual features (orientation,

contrast, luminance), local and global perception of orientation exhibited an inter-individual

trade-off that was not observed in perception of contrast or luminance. This feature specificity

suggested that inter-individual perceptual variability did not arise purely from generic factors

such as decision-making ability, but instead had its neurobiological basis in visual cortical ar-

chitecture.

I then asked whether such inter-individual variability in subjective perception of visual

feature might arise from inter-individual variability in objective anatomy of visual cortex.

Specifically, I asked how the two fundamental anatomical dimensions, the surface area and

the thickness, of early visual cortices, might shape visual feature perception. I found that an

increase in the surface area of early visual cortices was associated with a shift in the scope of

visual feature perception from global-context-oriented to local-detail-oriented, where individu-

als with smaller visual cortical surface area experienced stronger visual illusion and individuals

with larger visual cortical surface area performed more accurate visual discrimination. Intrigu-

ingly, an increase in the thickness of early visual cortices had the opposite influence, where

visual discrimination was less accurate at visual field locations corresponding to thicker parts

of early visual cortex.

The fact that visual feature perception was influenced in opposite directions by the two
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fundamental anatomical dimensions, the surface area and the thickness, of early visual cortices

suggested that the perceptual variability might arise not directly from the anatomical variabil-

ity, but instead through the mediation of neural responses. Indeed, I found that in individuals

with larger surface area of early visual cortices, visual cortical neurons exhibited higher selec-

tivity and responded to a smaller, more localized visual field range. By contrast, at thicker parts

of early visual cortices, visual cortical neurons exhibited lower selectivity and responded to a

larger, more globalized visual field range. This suggested that the variability in visual feature

perception was driven by the variability in visual neural selectivity, which was in turn shaped

by the two fundamental anatomical dimensions, the surface area and the thickness, of early

visual cortices.

Based on these findings, I explored whether the opposite influences exerted by the two

anatomical dimensions (surface area, thickness) of early visual cortices might nonetheless be

unified under the framework of intracortical scaling, where the visual cortical surface area

influenced the inter-columnar connections between cortical columns and the visual cortical

thickness influenced the inter-laminar connections between cortical layers. Since an empiri-

cal measure of intracortical connections would be difficult in human participants, I tested my

hypothesis theoretically, by building a visual cortical model that captured visual neural se-

lectivity and visual feature perception through inter-columnar and inter-laminar connections.

The model simulations reproduced the empirical observations. It suggested that, as the visual

cortex enlarged in surface area, an increase in the overall number of cortical columns would

obstruct communication (connection) among different cortical columns, which would in turn

raise the response specificity (selectivity) of individual cortical columns and localise the visual

scope; by contrast, as the visual cortex enlarged in thickness, an increase in the laminar com-

munication (connection) delay within individual cortical columns would facilitate the response

synchronization among different cortical columns, which would in turn lower the response

specificity (selectivity) of individual cortical columns and globalise the visual scope.

The hypothesis that the two anatomical dimensions (surface area, thickness) of early vi-

sual cortices influenced visual neural selectivity and visual feature perception via the scaling of

intracortical connections was further test empirically, where I applied Dynamic Causal Mod-

eling (DCM) analysis to measure the effective strength of intracortical connections between

subregions of early visual cortices, as an approximation to the net strength of inter-columnar

and inter-laminar connections. Consistent with the model simulations, I found that a decrease

in intracortical connectivity led to a shift in the scope of visual feature perception from global-
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context-oriented to local-detail-oriented. Together, my studies revealed that the individuality

in visual feature perception arose neurobiologically from inter-individual differences in visual

cortical anatomy, where the links between visual cortical anatomy and visual feature percep-

tion were gradually built through intracortical circuits and neural feature selectivity.

My findings hint towards a potential mechanism underlying the anatomy-behavior cor-

relations. The correlations between cortical anatomy (surface area, thickness, volume) and

behavioral performance (perception, cognition) have received growing research interest [1].

However, most of the reported anatomy-behavior correlations remain phenomenological and

offer no inference of the possible underlying mechanisms. Such a lack of mechanistic under-

standing is likely to result from our limited knowledge in the microscopic architecture of most

cortical regions. Moreover, for most cortical regions, the delineation of their boundaries is

based on the co-registration of structural MRI image to a common brain atlas. This procedure

may fail to capture the substantial degree of inter-individual variability in the functional lo-

calization of a cortical region, which adds to the complexity of interpreting these correlations

between cortical anatomy and behavioral performance.

In contrast to most other cortical regions, early visual cortices have a relatively well-

defined microscopic architecture [37, 38, 97] and are functionally localizable through retino-

topic mapping [71]. These properties of early visual cortices provide an opportunity for explor-

ing possible mechanisms underlying the correlations between cortical anatomy and behavioral

performance. Utilizing these advantages, my studies reveal that a larger cortical volume is not

always advantageous. Instead, a perceptually advantageous visual cortical design involves a

thinned visual cortex with an enlarged surface area. This is consistent with the developmental

trend that the sensory experience drives the expansion of sensory cortical map but the thinning

of sensory cortex [139, 181]. Moreover, the association between a thinner visual cortex and a

finer visual function is consistent with a similar trend in the retina. In the retina, the part with

the highest visual acuity, the fovea, is also the thinnest. The fovea has only one photoreceptor

layer that potentially minimizes light absorption along the retinal pathway [182].

As such, a finer visual function may in general be achieved through the optimization of

tissue distribution rather than the increase in tissue volume. This assertion, however, raises

concerns for the classical approach taken in studying the anatomical basis of behavioral per-

formance, where one simply assumes that a larger cortical volume (surface area, thickness) is

beneficial, and searches for cortical region whose focal volume exhibits positive correlation

with the behavioral performance [200, 201, 202]. By demonstrating that the two determinants



142

of cortical volume, the cortical thickness and the cortical surface area, may exert opposite

functional impacts, my findings call for a more careful approach to be taken in future research,

where the cortical thickness and the cortical surface area are to be addressed separately, and

any negative correlation between cortical volume and behavioral performance is not to be ig-

nored.

In my thesis, I focused on low-level perception of elementary visual features (orientation,

visual field location, contrast, luminance). Given the substantial degree of variability in low-

level perception of elementary visual features, it is foreseeable that high-level perception of

complicated visual images will exhibit an equally large, if not larger, degree of inter-individual

variability. Moreover, such a high-level perceptual variability of complicated visual images

may be decomposable into low-level perceptual variability of elementary visual features. In-

deed, by filtering a complicated visual image into several elementary images and calculating

the pixel-by-pixel center-surround differences of each elementary image, one can compute a

saliency map that captures eye movements, visual selective attention, and face recognition

[92, 94].

When computing the saliency map, the filter bandwidth may correspond with the visual

discrimination of local feature details, whereas the center-surround differentiation may corre-

spond with the visual modulation (illusion) by global feature contexts. As such, the variability

in local and global perception of elementary visual features may be incorporated to compute

saliency maps for complicated visual images. Whether these saliency maps can capture the

variability in perception of complicated visual images, and how the high-level perceptual vari-

ability of complicated visual images is linked to the low-level perceptual variability of elemen-

tary visual features, are interesting topics for future research.

The dichotomy between visual discrimination of local feature details (visual precision) and

visual modulation by global feature contexts (visual contextual modulation) raises interesting

questions regarding their ecological significance. The Hebbian rule suggests that the brain

is optimized to identify contextual information in sensory environment by strengthening con-

nections between presynaptic and postsynaptic neurons [139]. By contrast, the anti-Hebbian

rule suggests that the brain is optimized to increase functional specificity (selectivity) and re-

duce coding redundancy by de-correlating activity between neurons [139]. The two opposing

mechanisms are both likely to operate, depending on the pressing challenges in the natural and

social environment where the animals reside. Since an orderly representation of elementary

visual features is prominent in the early visual cortices of primates [37, 41, 42], a trade-off
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between local and global perception of elementary visual features may be the ecological force

behind the evolution of early visual cortices.

Indeed, the anatomy of early visual cortices exhibits not only a large degree of intra-

species variability but an even larger degree of inter-species variability, where the size of pri-

mary visual cortex has increased 250 times from mice to macaque and 2.5 times from macaque

to human [45]. However, the human brain is not a scaled version of the mice brain or the

macaque brain. By contrast, compared to the allometric predictions from other species, hu-

mans have relatively small primary visual cortex [203], but relatively large anterior prefrontal

cortex [204]. Mirroring the inter-species scaling of cortical regions, an intra-species trade-off

between the size of primary visual cortex and the size of anterior prefrontal cortex was ob-

served in my data [205].

Specifically, I found that individuals with larger primary visual cortex had larger primary

auditory cortex but smaller anterior prefrontal cortex, regardless of the inter-individual differ-

ence in overall brain size. Moreover, the dorsal and ventral halves of primary visual cortex

exhibited focal anti-correlations with the dorsolateral and ventromedial halves of anterior pre-

frontal cortex. Primary visual cortex and anterior prefrontal cortex are located at the two op-

posite ends of the cortex. In mice, the two genes Emx2 and Pax6 are expressed in opposing

gradients along the anterior-posterior axis. In Emx2 mutant mice, anterior areas are expanded

whereas posterior areas are contracted, and the opposite is the case for Pax6 mutant mice [206].

It is possible that the human cortical arealization is also regulated by genes with contrasting ex-

pression along the anterior-posterior axis. As such, the anterior-posterior trade-off I observed

might result from the individual variations in gene expression levels and might be regulated by

environmental interventions during development [207].

This anatomical trade-off between primary visual cortex and anterior prefrontal cortex

suggests a reciprocal link, behaviorally or functionally, between two fundamental cognitive

domains - basic sensation and high-order cognition. The intriguing similarity in this scaling

pattern between intra-species and inter-species suggests its ecological significance, where the

relative expansion and contraction of different cortical regions along the path of primate evo-

lution may reflect their importance in generating behavioral complexity. Indeed, the brain

evolves through genetic changes from adaptive selection on cognitive ability, and gene expres-

sion shows consistent variations within species as well as across species [208]. For example,

two important genes for brain size, ASPM and MCPH1, which regulate neural stem cell pro-

liferation and differentiation during brain development, have evolved under strong positive se-
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lection in the human evolutionary lineage and are still evolving adaptively in modern humans

[209, 210]. The anatomical trade-off between primary visual cortex and anterior prefrontal

cortex may reflect the gene expression divergences associated with adaptive evolution. It will

be of interest for future research to explore the ecological significance of intra-species and

inter-species variability in visual cortical anatomy.
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