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Abstract 

Online model-based design of experiments techniques were proposed to exploit the progressive 

increase of the information resulting from the running experiment, but they currently exhibit some 

limitations: the redesign time points are chosen “a-priori” and the first design may be heavily 

affected by the initial parametric mismatch. 

In order to face such issues an Information Driven Redesign Optimization (IDRO) strategy is here 

proposed: a robust approach is adopted and a new design criterion based on the maximisation of a 

target profile of dynamic information is introduced. The methodology allows determining when to 

redesign the experiment in an automatic way, thus guaranteeing that an acceptable increase in the 

information content has been achieved before proceeding with the intermediate estimation of the 

parameters and the subsequent redesign of the experiment. The effectiveness of the new experiment 

design technique is demonstrated through two simulated case studies.  

Keywords: Online model-based design of experiments, robust design, model identification, 

parameter estimation  
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1. Introduction 

Model-based design of experiments (MBDoE) techniques (Pukelsheim, 1993) represent a valuable 

tool for the rapid assessment and development of mathematical models at different levels of the 

model building procedure (Asprey and Macchietto, 2000), allowing for the maximization of the 

experimental information in order to reduce time and costs of the model identification task. The 

effectiveness of the conventional iterative MBDoE procedure (Franceschini and Macchietto, 2008) 

has been proved in a large variety of applications (Prasad and Vlachos 2008; Galvanin et al. 2009a; 

Chakrabarty et al. 2013, Vanderlinden et al. 2013) but it is greatly  limited by the fact that the 

design activity is affected by the initial available estimates of parameter values; therefore high 

uncertainty on these values can severely affect the efficiency of the experimental design (Körkel et 

al., 2004). In fact, several approaches were proposed in order to overcome this problem. For 

example, Houska et al. (2015) proposed an iterative optimal design method that consists of a 

modified A-criterion weighting the terms information matrix trace calculated through an ad-hoc 

algorithm. As stated by Mehra (1974), an efficient design procedure may be based on the 

exploitation of the information as soon as it is generated by the running experiment through an 

online adaptive input design AID) strategy. AID strategies have been proposed and applied to linear 

stochastic control system (Lindqvist and Hjalmarsson, 2001; Gerencser et al., 2009), where the 

design task is solved over a preset time horizon after which a new measurement is taken and, 

consequently, a new estimation is acquired. Extension of this procedure to nonlinear dynamic 

system is quite a recent achievement (Stigter et al., 2006) and an online model-based redesign of 

experiments (OMBRE) approach has been recently proposed as a natural expansion of AID 

strategies (Galvanin et al., 2008, 2009). In OMBRE the manipulated variables dynamic profiles and 

the sampling points allocation are updated by performing one or more intermediate experiment 

designs (redesigns). The efficiency of this technique has been tested for a wide range of cases by 

different research groups both for model validation (Barz et al., 2013) and model discrimination 



3 

 

issues (Schenkendorf and Mangold, 2013), providing a very efficient usage of measurement data 

and a great improvement with respect to conventional MBDoE techniques. The OMBRE approach 

has been also recently extended to systems where disturbances and systematic errors may be present 

by using model updating policies including disturbance estimation procedures which are embedded 

within the OMBRE strategy (Galvanin et al., 2012).  

Unfortunately, OMBRE technique is affected by some limitations, too: firstly, the redesign policy is 

decided a priori by the user, without any rational criterion related to the achievable information; 

secondly, OMBRE approach is still affected by the initial parameter uncertainty, especially until a 

first redesign is done.  

In this work a novel information-driven redesign optimisation (IDRO) is presented, where a robust 

design approach is applied to the online redesign procedure with the purpose of determining when 

to redesign the experiment in an automatic and robust way. IDRO is based on a new design concept, 

based on the maximisation of a target profile of the dynamic information profile, which guarantees 

a reliable increase in the information content before proceeding with the intermediate estimation of 

the parameters and the subsequent redesign of the experiment. Furthermore, the technique is much 

less affected by the negative effects of parametric uncertainty, with great benefit in terms of 

robustness of the whole redesign procedure. The applicability to nonlinear dynamic systems is 

demonstrated through two simulated case studies: the first one is related to the identification of a 

fermentation bioreactor model, the second one is based on the identification of a physiological 

model which describes glucose homeostasis. 

2. Optimal design of experiments: methodology 

In this paragraph the mathematical and statistical background required to understand the basic 

features of the conventional MBDoE procedure for parameter estimation is firstly described; then 
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OMBRE approach is defined in mathematical terms; finally the new proposed method IDRO is 

presented in detail before comparing the three methods through the two simulated case studies. 

2.1 Conventional MBDoE 

A conventional MBDoE procedure (Asprey and Macchietto, 2000; Körkel et al., 2004) aims at 

decreasing the model parameter uncertainty region by acting on the nφ-dimensional experiment 

design vector φ and solving the following nonlinear optimisation problem: 
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with the set of initial conditions x(0) = x0. In (1) Vθ is the variance-covariance matrix of model 

parameters and Hθ corresponds to its approximated inverse, the dynamic Fisher information matrix;

xN
t )(x is the time-dependent state variables vector, uN

t )(u  and wN
w  are, respectively, 

the time-dependent and time-invariant control variables (manipulated inputs), 
N

 is the model 

parameters set, and t is time. The symbol ^ is used to specify the estimated value of a variable (or a 

set of variables): for example, y represents the vector of measured values of the outputs, while ŷ is 

the vector of the corresponding values estimated by the model. In equation (4) C is the Nc-

dimensional set of constraint functions expressed through the set CN
t )(G  of active constraints 

on state variables. Equation (5) represents the nφ-dimensional set of constraints on design variables, 

usually expressed by lower (superscript l) and upper (superscript u) bounds on each components of 

the experiment design vector φ, constraining the design to a hyperrectangular subspace of the 

overall design space 
n

. The experiment design vector φ is defined as: 
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It consists of the Ny-dimensional set of initial conditions for the measured variables y0, the 

manipulated input variables u(t) and w, the total duration of the experiment τ and the Nsp-

dimensional set of output variables sampling times t
sp

.  

Function ψ in (1) is an assigned metric of the variance-covariance matrix of model parameters Vθ 

and represents the design criterion adopted to maximise the expected information content of the 

experiment as predicted by the model; the most common design criteria are the alphabetical ones, 

i.e. A-, D-, E-optimal criteria which focus on trace, determinant and maximum eigenvalue of Vθ 

minimization, respectively (Pukelsheim, 1993). The dynamic information matrix Hθ for a single 

experiment is usually expressed by a discrete dynamic form of the Fisher information matrix (Bard, 

1974). According the notation proposed by Zullo (1991), Hθ  is here defined as: 
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In (7) sij is the ij-th element of the inverse of the Ny×Ny measurement error covariance matrix Σy , 

Mk represents the amount of information that can be obtained at the k-th sample and 
0

θH  is the 

preliminary information matrix, based on the preliminary statistics about the parametric system at 

the beginning of the experimental campaign. 

The conventional MBDoE (Franceschini and Macchietto, 2008) can be described as an iterative 

loop  procedure generally based on the following steps:  

1. get prior knowledge on the parametric set value (and its related uncertainty Σθ); 

2. choose an optimal design criterion and design the experiment; 

3. start the experiment; 

4. at the end of the experimental run, estimate the model parameters. 
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5. if the desired estimation quality is not reached by the end of the experiment, design a new 

experiment, based on the model parameters estimated in step 4.  

2.2 Online model-based redesign of experiments (OMBRE) 

When OMBRE procedure is used, intermediate parameter estimations are carried out at specific 

updating times while the experiment is running  in order to exploit the information obtained and use 

it to partially design the remaining part of the test. The experimental run is thus split into sub-

experiments, within which the experiment decision variables are distributed according to the “a 

priori” chosen redesign strategy (Galvanin et al., 2009). Following this approach, the global design 

vector of the experiment φ can therefore be rewritten as:  

  ,,...,,...,,
T

121 
 upnj   (8) 

where upn is the number of updating times, and φj is the design vector before the j-th update; each 

component φj of φ could have a different dimension in terms of number of discretised control 

variables and/or sampling points. Obviously, φ1 will be the only component including the initial 

values of measured variables.  

For each redesign activity an optimisation problem acting on the j-th component of φ is conducted 

in the corresponding time frame; in particular, the optimality condition for φj is given by  

       jjθjjθj
jj
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where the information acquired by the j-th redesign can be expressed as a partial contribute to the 

total dynamic information matrix: 

        LHΣHHH
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The constant term L consists on the sum between the preliminary information matrix 
1

θΣ and the 

information acquired before the j-th redesign. The symbol (~) indicates that the information matrix 
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refers to a single updating interval, and 
0

~
θ

H is the null matrix. At each given updating time the 

information is obtained by executing online a parameter estimation session followed by a redesign 

of the remaining part of the experiment. 

 

The detailed OMBRE procedure is therefore based on the following steps (Figure 1): 

1. get prior knowledge on the parametric set value (and its related prior variance-covariance Σθ); 

2. choose an updating strategy and design the first sub-experiment by calculating (9); 

3. start the experiment; 

4. if an updating time is reached, estimate the model parameters: 

a. if a statistically sound parameter estimation is achieved, then stop the redesign 

procedure (and possibly the experiment itself); otherwise 

b. redesign the remaining part of the experiment by using (9) with the update on 

dynamic information given by (10); implement the design in the running experiment, 

and go to step 4. 

5. if a satisfactory parameter estimation is not achieved by the end of the experiment, design a new 

experiment.  

Note that a possible parametric mismatch can be managed by OMBRE only by adjusting the model 

parameters according to the available observations. The optimality condition and the feasibility 

conditions will be evaluated within each time frame according to the current value of model 

parameters.  

2.3 Information-driven redesign optimisation (IDRO) for model-based design of 

experiments 

In OMBRE methodology the updating strategy is chosen a priori by the user without taking into 

account any rational criterion related to the achievable information; in order to overcome this issue 

a new updating strategy is here proposed including: i) the optimisation of the information obtainable 
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from the experiment based on a target information; ii) the identification of the best updating time to 

redesign.  

The design task, especially at the beginning of the procedure, may be affected by an initial 

parametric mismatch. Consequently, in order to preserve the quality of the experiment by poor 

starting values of the parameters, a robust optimal design approach (Asprey and Macchietto, 2002) 

based on the expected value of a measurement function of the predicted information is 

implemented. 

IDRO methodology is essentially based on a robust A-optimal criterion applied for the worst model 

parameter, by exploiting one of the most significant statistical indices used to evaluate the 

parameter estimation precision: the t-value. This index is strictly linked to the information that can 

be gained during the experimental run, as can be observed from the following equation: 

θ

iiθsp
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θ
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2

1

2
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(11) 

where ti is the t-value related to the i-th model parameter, vii is the ii-th term of the parametric 

variance-covariance matrix, t(·) is the t-value distribution with a [1/2 + (1 - α)/2]% confidence level 

and (Nsp - Nθ) degrees of freedom, where α is the statistical level of significance. As can be inferred 

from the previous equation, each ti value increases at each sampling time both for the information 

acquired by the sample itself in terms vii of and for the variation of the t-distribution due to the 

stepwise increase of Nsp at each sampling point. 

A statistically sound parameter estimation is reached for all the model parameters if each parametric 

t-value is greater than the (1 - α)% confidence reference t-value ( ref

αt 1 ), which is defined as: 

),1(1 θsp

ref

α NNαtt  . (12) 

The IDRO method consists therefore in conducting the experiment in order to overcome the ref

αt 1 -

value threshold by the end of experiment, through the online redesign of the experiment. The 
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objective function has been defined as the time integral of the difference between the updating time 

for each redesign and the total duration of the experiment
†
. Moreover, the optimisation is 

constrained by imposing that, for each redesign task, the predicted precision of all parameters 

should be greater than a preset threshold. 

The mathematical expression of the optimal values of each φj component of the φ design vector, as 

defined in equations (6), is therefore: 
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where t is the time variable, tup,j is the j-th updating time, wj-1 is a weight corrector that corresponds 

to the minimum fraction of the ref

αt 1
 to be reached by each parametric t-value by the end of the j-th 

updating time and E(·) is the expected value of the function in brackets, evaluated in the parameter 

domain Θ. In practice, for each sub-experiment, opt

j corresponds to the design vector that allows 

minimizing both a specific percentage of deviation between the ref

αt 1
and the minimum ti and the 

value of the time tup,j necessary to achieve this result.  

The robustness of IDRO is based on the fact that each opt

j is calculated by evaluating the constraint 

defined in (14), which is an average value obtained through a stochastic simulation with Nsc 

scenarios. Each scenario represents the model response at different θ values, which are randomly 

sampled in the parameter domain Θ of the parameter covariance matrix by assuming a normal 

distribution N( iθ̂ ,
θiσ̂ ), where iθ̂ is the estimate of the i-th parameter and 

θiσ̂  is the standard 

                                                 

† The integral formulation has been chosen in order to amplify the effect of the time distance between tup,j and τ. Alternative 

formulations are possible.    
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deviation of iθ̂ . In order to follow the logic of an A-optimal MBDoE, only the diagonal elements 

2σ̂θi
 of the variance-covariance matrix of model parameters are considered during the sampling 

procedure (i.e. covariance elements are ignored). Although this is an approximation, it has been 

verified that this choice does not affect the quality of the sampling in a significant way. The 

parametric set for each scenario has been randomly generated by considering only the diagonal 

terms of the parametric variance-covariance matrix (“diagonal” approach). This simplification is 

justified by the fact that the average and the standard deviation values of the sample distribution 

obtained through the “diagonal” approach only differ by 1% and 10%, with respect  to the case 

where all the terms of the variance-covariance matrix are included.  Furthermore, it should be noted 

that iθ̂ and 
θiσ̂  values are updated at each t

up,j
 in order to take into account the  results obtained 

through the parameter estimations conducted at the end of each sub-experiment, and the sampling 

effect is noticeable only at the very beginning of the design procedure (i.e. in the first design). 

The logic of IDRO iterative procedure is illustrated in Figure 2. The picture simulates the 

hypothetical behaviour of IDRO approach for a two-parameters model. The red solid stepwise 

profile represents the weighted reference t-value profile, whose value decreases after each sampling 

point has been collected (initially the profile is constant to a preset value since no distribution can 

be computed for (Nsp – N) < 0). The black solid and dashed stepwise lines represent the time 

profiles of the t-values for the two model parameters. These profiles will increase after each 

sampling point is collected as soon as additional information on parametric variability is acquired. 

Let us assume that in this case the dashed line is related to the most difficult parameter to be 

estimated (i.e. the parameter with minimum t-value); after fixing a weight w0 for the first sub-

experiment, the IDRO optimisation (Eq. 13-14) will minimise the time required for the minimum t-

value to become larger than the target w0·
ref

αt 1  value; the optimal updating time (t
up,1

) will be 

evaluated accordingly. Note that weight w0 is initially introduced to set a minimum level of 
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information to be reached within the first update; as will be shown in the actual algorithm, this 

weight is automatically adjusted to guarantee that the first update does not exploit all the available 

experimental capability in terms of variations on the input variables (i.e. the maximum number of 

switches on u(t), which is set a priori and typically depends on the equipment characteristics) as 

well as in terms of samples (i.e. the maximum number of measurements that can be taken, which is 

also set a-priori and depends on the experimental settings and on the cost and complexity of 

measurements). In other words, the procedure is built is such a way that at least one update is 

always carried out and that the remaining part of the experiment can still be designed according to 

an optimum criterion. 

The experiment then starts and will be run till t = t
up,1

, time at which a parameter estimation is 

carried out and a new (larger) weight w1 for ref

αt 1
is chosen. From this point on, an iterative procedure 

is implemented until the end of the experiment is reached (in terms of time  ) or ref

αt 1
 is achieved 

(i.e. wj  ≥ 1) or there is no experimental design capacity in terms of measurements or input switches. 

 

The detailed IDRO procedure (Figure 3) is therefore based on the following steps: 

1. get prior knowledge on the parametric set value (and its related uncertainty Σθ) and set j = 1, 

where  j is the counter index of the sub-experiment to be designed;  

2. set w0, i.e. fix the minimum amount of information, that has to be reached by all the t-values (ti) 

at the end of the first sub-experiment, defined by w0·
ref

αt 1
; 

3. design the first sub-experiment from equations (13, 14);  
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4. check if t
up,j  

< β·τ, Nsw,j < γ·Nsw or Nsp,j < Nsp,j-1 + δ·Nsp are satisfied
‡
; β, γ and δ values are a 

priori set by the user in order to guarantee both sufficient time and a sensible number of 

switching levels and sampling points for the following sub-experiment/s;  

a. if all conditions are satisfied, carry out the sub-experiment, estimate the model 

parameters and go to step 5. 

b. otherwise, set w0 =kεw0 and go to step 3. kε represents a preset reduction coefficient 

that allows to decrease the initial value assumed for w0  during the iterative 

procedure; 

At the end of the first sub-experiment, the following iterative procedure is used: 

5. set j = j +1; 

6. set wj =kwwj-1, where kw is the incremental coefficient. This index, whose value is preset by the 

user, represents the relative difference between the optimal weight wj-1 used for the design of the 

j -1 sub-experiment and the initial tentative weight wj  tested at the beginning of the optimisation 

loop for the j sup-experiment; 

7. design the j-th sub-experiment as described in (13,14);  

8. check if t
up,j 

≤ τ; 

a. if true, go to step 9; 

b. otherwise, set wj=kεwj and go to step 7; 

9. run the j-th sub-experiment (till t
up,j

) and estimate the model parameters 

10. if wj-1 < 1 and/or t
up,j  

< t
up,j-1

 + β·(τ-t
up,j-1

 ) and/or Nsw,j <  γ·(Nsw - Nsw,j-1) and/or Nsp,j < δ·(Nsp - 

Nsp,j-1) 

a. then go to step 5; 

                                                 

‡ As anticipated above, this condition is required to ensure that one update is carried out and still the remaining part of the experiment 

can be designed in an optimal way. In other words, we do not want that: a) the update is scheduled too close to the end of the 

experiment; b) there is no further possibility to excite the system (no enough switches on input variables); c) there is no possibility to 

collect a reasonable additional number of samples. Note that parameters ,   and   are the only ones that are indeed set by the users 

and somewhat reflects his/her knowledge on the experimental facility and the viability of performing portions of experiment.   
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b. otherwise, stop; 

11. if a satisfactory parameter estimation is not achieved, design a new experiment. 

 

The target t-value profile definition depends on the values assumed by kε and kw.  As practical 

guidelines, we suggest:  

 kε  should be lower than 1, in order to have a progressive decrease of w0 at each step of the 

loop: this allows testing the design feasibility without sacrificing the maximum achievable 

information at each design/redesign task;  

 kw should be higher than 1/w0. In this way wj can be higher than 1 soon after the second 

redesign of the experiment. 

Two simulated case studies are examined in order to compare, in terms of parametric estimation 

precision at the end of the experimental run, standard MBDoE and OMBRE approaches with the 

newly proposed IDRO methodology; the two case studies differ in terms of number of measured 

responses, simulated experimental error on measured variables, and for the absence/presence of 

active constraints on the state variables. For standard MBDoE and OMBRE designs A-criterion is 

used because of its similarity with IDRO approach, which is based on the diagonal terms of the 

variance-covariance matrix. This will allow a more fair comparison between different criteria. The 

gPROMS
®
 software has been adopted for designing, modelling and simulation purposes, as well as 

to conduct the “in silico” experiments and to analyse the results coming from them through its 

Parameter Estimation entity. The NLPSQP solver has been used for the optimisation/design task; it 

employs a sequential quadratic approach (SQP) method for the solution of a nonlinear programming 

(NLP) problem. gPROMS
®

 software is used in conjunction with external subroutines written in 

Fortran via Foreign Object Interface in order to implement the inversion of the information matrix 

and calculate the dynamic t-value profiles required by the IDRO approach. 
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3. Case study 1: fermentation bioreactor 

Conventional MBDoE, OMBRE and IDRO approaches are here compared and applied to a model 

that simulates a biomass fermentation process (Espie and Macchietto, 1989; Munack and Posten, 

1989). The model consists of the following set of equations: 
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where x1 is the biomass concentration (g/L), x2 is the substrate concentration (g/L), u1 is the dilution 

factor (h
-1

), and u2 is the substrate concentration in the feed (g/L). The achievable conditions that 

characterise the experimental tests are the dilution factor u1 (range 0.05÷0.20 h
-1

) and the substrate 

concentration in the feed u2 (range 5÷35 g/L). These manipulated inputs are approximated by 

piecewise constant profiles over Nsw = 6 switching intervals. The initial biomass concentration 0

1x  is 

allowed to assume values in the range 1÷10 g/L, whereas the substrate concentration 0

2x  is set to 0 

g/L, respectively. It is assumed that both x1 and x2 can be measured during the experiment (i.e. y = 

[x1 x2]
T
) and that its total duration is τ = 48 h. Measurements are affected by Gaussian noise with 

zero mean and variance-covariance matrix given by: 

.
05.00

001.0








yΣ  

 

(19) 

The “real” system is assumed to be characterised through the parameter set θ = [0.310 0.180 0.550 

0.050]
T
. It is then assumed that the initial parameter estimates are affected by a ±90% relative error 

with respect to the true parameter values (in this case, θ
0
 = [0.589 0.018 1.045 0.005]

T
). The design 

and parameter estimation activities are implemented on the normalised parametric set Θ, defined as 

the ratio between the current parametric estimates and the true parameter values θ
0
. Note that this 
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normalisation procedure is an ideal one since in practice the true value of the parameters is 

unknown. However, is a simulated case study the approach is useful to have an immediate grasp of 

the accuracy of the estimates (in fact, it is also useful for numerical reasons; in real applications the 

initial guess of the parameter values can be used for normalisation).  

The following design configurations have been considered and compared: 

 Instance I: Conventional MBDoE; 

 Instance II: OMBRE: it is assumed that n
up

 = 1 update may be performed and that for each 

manipulated input three switching levels are allowed in each updating interval; the length of 

each redesign time window has been fixed equal to 24 h.  

 Instance III: IDRO: in this case the iterative procedure, described in detail in section 2.3, 

requires to set some preliminary constants. In particular, the threshold constants β, γ and δ are 

set to 2/3; the reduction coefficient kε is set to 0.9, while the incremental coefficient kw is set 

equal to 8. The number of scenarios Nsc implemented in the stochastic simulation is set to 25: 

this value is a good compromise between the high computational cost required by the 

optimization task and the necessity to simulate a reliable representation of model parameters 

distribution (using a computer with CPU@ 2.40GHz  and RAM 8GB, IDRO requires about 5 

hours of calculation whereas OMBRE needs 45 minutes; this time is required for the first 

design and, in fact, the calculation could be carried out before initiating the experiment; the 

redesign calculation time is about 1 h). 

It is assumed that measurements (Nsp = 8) are equidistantly distributed along the maximum 

experiment duration τ.  

Results are discussed in the following sections for the three design configurations in terms of 

manipulated inputs, simulated profiles and a-posteriori statistics on the final parameter estimation. 
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3.1 Instance I: conventional MBDoE  

Results in terms of predicted profiles and manipulated inputs are given in Figures 4a and 4d .Table 

1 shows that the results obtained in terms of parameter precision are unsatisfactory; in fact, it is not 

possible to achieve a statistically sound estimation of parameter θ2 (Table 1). 

3.2 Instance II: OMBRE 

Results in terms of predicted profiles and manipulated inputs are given in Figures 4b and 4e. Also 

in this case, the estimation of the parameters values is quite unsatisfactory: as summarized in Table 

1 parameters θ2 and θ3 cannot be estimated in a statistically satisfactory way by the end of the 

experimental run. Note that OMBRE is outperformed by the conventional MBDoE configuration. 

The initial uncertainty on model parameters is such that during the first sub-experiment it is not 

possible to gather sufficient information to produce an effective redesign. In fact, this issue was 

highlighted in the original article by the authors themselves (Galvanin et al., 2009) when they 

observed that in the case of poor initial information the quality of the experiments is highly affected 

by the updating policy and that scarcely informative redesigns could be obtained in the initial 

phases.  

 

3.3 Instance III: IDRO 

Results in terms of predicted profiles and manipulated inputs are given in Figures 4c and 4f , while 

the parameter estimates are given in Table 1. It is clear that, compared to MBDoE and OMBRE 

configuration, IDRO gives final the best estimates in terms of accuracy thanks both to the robust 

approach and the innovative info-based updating time optimisation which guarantees the attainment 

of a minimum level of information in the initial experimental phases. In fact, this is the only case 

where a satisfactory estimation of all parameters can be achieved within the duration on one 

experiment. Also note that in some case also a robust formulation for OMBRE may produce 
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similarly good results, but the performance is very much dependent on the updating policy, which is 

dealt explicitly with only in the IDRO approach. 

4. Case study 2: A physiological model for type 1 diabetes mellitus 

This second case study considers a model of glucose homeostasis for the simulation of type 1 

diabetes mellitus (Galvanin et al., 2011), based on a previous work (Lynch and Bequette, 2002). 

The model is described by the following set of differential and algebraic equations: 
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(21, 22) 

 

(23) 

 

(24, 25) 

 

 

where Cg is the blood glucose concentration (mg/dL), X the variation of insulin concentration 

(mU/L) in the inaccessible compartment with respect to basal value, I the variation of insulin 

concentration (mU/L) with respect to basal value, u(t) the rate of infusion of exogenous insulin 

(mU/min). The measured response is the total subcutaneous glucose concentration Cgsc,tot, modelled 

by Eq.(23) which represents a first-order 5 min lag between Cg and Cgsc. The meal disturbances 

equation (24) is based on Hovorka and co-worker model (2004), with A being the amount of 

carbohydrates of the meal, here set to be 30 gCHO (fixed). The constant basal parameter are set to the 

following values: the basal glucose concentrations in the blood Cg,b and Cgsc,b are assumed to be 

equal to 81 mg/dL, the basal insulin concentration Ib is 15 mU/L, the glucose distribution volume 

VG is 120 dL, the insulin distribution volume VI is 12 L and the tissue rate utilization Rut is 0.75 

mg/dL/min. 
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With respect to the original formulation only the inequality constraint: 

0 Gy   (26) 

is considered, where G = 70 mg/dL is the lower conservative threshold on the subcutaneous glucose 

concentration (y). This bound is a hard constraint not to be violated because it prevents 

hypoglycaemic conditions (Cgsc,tot < 76 mg/dL) during real tests.  

The achievable condition that characterise the experimental tests is the dilution factor u (range 

0÷115 mU/min); this manipulated input is approximated as a piecewise constant function with Nsw 

= 8 switching intervals. It is assumed that Nsp = 14 samples (equally distributed) can be taken during 

a τ = 480 min long experiment. Measurements are affected by Gaussian noise with zero mean and a 

standard deviation of σ = 5 mg/dL on y. 

The real system is represented by the parameter set θ = [0.017 0.032 1.540E-5 0.096]
T
; it is then 

assumed that the initial parameter estimates are affected by a ±70% relative error with respect to the 

true parameter values (in this case, θ
0
 = [0.029 0.010 2.620E-5 0.027]

T
). The design and parameter 

estimation activities are based on the normalised parametric set Θ, defined through the ratio 

between the current parametric estimates and the true parameter values. 

 

Also in this Case study, conventional MBDoE, OMBRE and IDRO approaches have been 

compared: 

 Instance I: Conventional MBDoE; 

 Instance II: OMBRE: it is assumed that n
up

 = 1 update may be performed and that for each 

manipulated input three switching levels are allowed in each updating interval; the length of 

each redesign time window has been fixed equal to 240 min.  

 Instance III: IDRO: in the same way described for the first case study, the threshold constants 

β, γ and δ are set to 2/3; the reduction coefficient kε is set to 0.9, while the incremental 
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coefficient kw is set equal to 8. The number of scenarios Nsc implemented in the stochastic 

simulation is set to 25. The calculation time is similar to the one required for Case study 1. 

Results are discussed in the following. 

 

4.1 Instance I: MBDoE  

Results in terms of predicted profiles and manipulated inputs are given in Figures 5a and 5d. The 

parameter estimation task proves to be totally unsatisfactory; in fact, it is not possible to achieve an 

accurate estimation of parameters θ1, θ2 and θ3 (Table 2). 

 

4.2 Instance II: OMBRE 

Results in terms of predicted profiles and manipulated inputs are given in Figures 5b and 5e. The 

OMBRE approach allows for a slightly better performance (Table 2), but still both parameters θ2 

and θ3 cannot be estimated in a statistical satisfactory way. Once again, the behaviour reflects the 

initial sub-optimal design due to the initial parametric mismatch and a non-robust approach for the 

optimal design/redesign of the experiment.  

 

4.3 Instance III: IDRO 

Results in terms of predicted profiles and manipulated inputs are given in Figures 5c and 5f. Table 2 

shows that in this case the final results obtained in terms of parameter accuracy are greatly 

improved and all parameters pass the t-test. Note that IDRO sets the updating time exactly after 240 

min like OMBRE (compare Figure 5b and Figure 5c); however, the first sub-experiment is more 

informative as it is explicitly designed to guarantee some level of information in a robust manner. 

That cannot be ensured in the OMBRE case, which is affected by the initial parametric mismatch.  
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5. Conclusions 

An innovative approach for a structured online model based redesign of the experiment (IDRO) has 

been presented in this paper. This technique allows for the determination of the optimal updating 

points at which exploiting the experimental information for the online redesigning procedure, 

thanks to both a robust approach and an info driven objective function to be optimised in the design 

phase. 

This novel redesign criterion can be adopted to increase the reliability of the design task; a specific 

advantage over the conventional design techniques for improving parameter estimation is given by 

the fact that information is exploited during the experimental run; moreover, with respect to online 

redesign techniques (such as OMBRE), the great improvement consists in treating the design in a 

robust way by optimising both the redesign structure and the available information in a synergistic 

way. 

Two distinct simulated case studies have been used to assess the effectiveness of the new technique 

and compare it with conventional redesign approaches: one relates to a bioreactor system, while the 

other one to a physiological system describing the effect of insulin on patients suffering from 

diabetes; results of both case studies show the higher efficiency of the proposed technique to exploit 

the information coming from the running experiment in an info-driven way. 

Although the computational burden is still very demanding, much of the effort is required during 

the first calculation only, i.e. before starting the experiment. Furthermore, more tailored 

optimisation methods and the usage of parallel computing (especially for stochastic simulations) 

could improve the algorithm efficiency drastically.  
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Nomenclature 

General symbols 

A Glucose content in the meal  

Cg Blood glucose concentration  

Cg,b Basal blood glucose concentration 

Cgsc Subcutaneous glucose concentration 

Cgsc,b Basal subcutaneous glucose concentration 

Cgsc,tot Total subcutaneous glucose concentration 

D(t) Dynamic meal disturbance 

E(·) Expected value 

f Differential and algebraic system implicit function 

G Constraint for hypoglycaemic condition 

h                                              Measurements selection function 

kε Reduction coefficient for the weight term wj   

kw Incremental coefficient for the weight term wj   

I Variation of plasmatic insulin concentration with respect to the basal value 

Ib Basal plasmatic insulin concentration  

Nsc Number of scenarios 

Nsp Number of samples 

Nsw Number of switching for piecewise constant manipulated variables 

Nsw,j Nsw used during the j-th sub-experiment 

Nu Number of manipulated inputs 

Nx Number of state variables 

Nw Number of time invariant controls 



22 

 

Ny Number of measured variables 

Nθ Number of model parameters 

NC Number of constraints  

ND Number of constraints on estimated outputs 

NE Number of constraints on unmeasured state variables 

nsw Number of switching levels 

n
up 

Number of redesigns 

nφ Number of design variables 

nφ,i Number of design variables for the i-th redesign 

r Growth rate function for bioreactor model 

Rut Tissue rate utilization 

sij ij-th element of the inverse matrix of measurements errors 

t Time 

t(·) t-value distribution 

ti i-th t-value 

t
up

 Updating time point 

t
up,i

 Updating time point before the i-th redesign 

ref

αt 1
 Reference t-value at (1-α)% of confidence 

ispt ,  i-th sampling time 

u Generic manipulated input 

vij ij-th element of the parametric variance-covariance matrix 

VG Glucose distribution volume 

VI Insulin distribution volume 

wj Weight term for IDRO objective function calculation in (13, 14) 
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x Generic state variable 

X Variation of insulin concentration in the sub-compartment with respect to the basal value 

y Generic measured output 

α                          Statistical degree of significance 

β                          Costant term for t
up

 threshold definition 

γ                          Costant term for Nsw threshold definition 

δ                          Costant term for Nsp threshold definition 

φi i-th element of the design vector 

θi i-th model parameter 

iθ̂  
i-th estimated model parameter 

σ Standard deviation on measured variables 

θiσ̂  Standard deviation on the i-th estimated model parameter 

τ                                 Experiment/Test duration 

ψ                                  Vθ / Hθ measurement function for design optimization   

 

Vectors and Matrices [dimension] 

C Set of constraint functions [NC] 

G Set of active constraints [NC] 

θH  Dynamic information matrix [Nθ × Nθ] 

0

H  Preliminary information matrix [Nθ × Nθ] 

j
H  Information matrix for the j-the redesign [Nθ × Nθ] 

L Constant information matrix of (11) [Nθ × Nθ] 

Mk Information matrix for the k-th sample [Nθ × Nθ] 

y0 Vector of initial conditions [Ny] 
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y Measurements vector [Ny] 

ŷ  Vector of estimated responses [Ny] 

t
sp

 Vector of sampling points [nsp] 

u Vector of manipulated inputs [Nu] 

θV  Variance-covariance matrix of model parameters [Nθ × Nθ] 

w Vector of time-invariant control [Nw] 

x Vector of state variables [Nx ] 

kx̂  Vector of states estimation at the k-th instant [Nx ] 

x
0 

Vector of initial states [Nx ] 

x  Vector of derivatives on state variables [Nx ]  

φ Design vector [nφ] 

φj Design vector before the j-th update [nφ,j] 

θ Vector of true model parameters for the system [Nθ] 

θ̂  Vector of estimated values of model parameters [Nθ] 

0
θ  Vector of initial guesses of model parameters [Nθ] 

Θ Vector of normalized model parameters for the subject [Nθ] 

Σy Variance-covariance matrix of measurement errors [Ny × Ny] 

Σθ Prior information matrix [Nθ × Nθ] 

 

Acronyms  

AID Adaptive input design 

DAEs Differential and algebraic equations system 

DE-OMBRE OMBRE including disturbance estimation 

IDRO Information driven redesign optimisation 
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NLPSQP Nonlinear programming sequential quadratic approach 

MBDoE Model-based design of experiments 

OMBRE Online model-based redesign of experiments 
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Table Captions 

Table 1 Case study 1-Fermentation model: A-optimal MBDoE, OMBRE and IDRO. Results from final 

parameter estimation including standard deviation and t-value 95% of the normalized parametric set. Double 

asterisks denote t-values failing the t-test. 

Table 2 Case study 2- Diabetes model: A-optimal MBDoE, OMBRE and IDRO. Results from final parameter 

estimation including standard deviation and t-value 95% of the normalized parametric set. Double asterisks 

denote t- values failing the t-test. 
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Figure Captions 

Figure 1 Flowchart of OMBRE procedure 

Figure 2 The logic of IDRO approach applied to a generic two-parameters model: the red solid stepwise profile 

represents the dynamic weighted ref
αt 1

 profile (at each t
up,j

 the weight wj-1 is modified, as described in Figure 3). The 

black solid and dashed stepwise profiles represent the parametric t-values of the two model parameters, whose values 

increase with the number of collected samples. The dash-dot vertical lines represent the updating times t
up,j

 for the 

experimental run. 

Figure 3 Flowchart of IDRO procedure 

Figure 4 Case study 1- Fermentation model: results in terms of predicted profiles for biomass (y1) and substrate (y2) 

concentration for a) A-optimal MBDoE, b) OMBRE, c) IDRO: the experimental samples are indicated by circles (y1) 

and triangles (y2) with error bars. Optimal profiles for the dilution factor (u1) and the substrate concentration in the 

feed (u2) are reported for d) A-optimal MBDoE, e) OMBRE, f) IDRO. 

Figure 5 Case study 2- Diabetes model: results in terms of predicted profiles for biomass (y1) and substrate (y2) 

concentration for a) A-optimal MBDoE, b) OMBRE, c) IDRO: the experimental samples are indicated by circles (y1) 

and triangles (y2) with error bars. Optimal profiles for the dilution factor (u1) and the substrate concentration in the 

feed (u2) are reported for d) A-optimal MBDoE, e) OMBRE, f) IDRO. 
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Tables 

  Table 1  

 

 

      Conventional MBDoE 

Normalized 

Model Parameter 

Real  

value 

Final  

value 

Standard  

deviation 
t-value 95% 

Θ1 1 1.016 0.017 28.17 

Θ2 1 0.544 0.325 0.769** 

Θ3 1 1.046 0.025 18.94 

Θ4 1 1.188 0.082 5.075 

   Reference t-value 95% 1.783 

OMBRE 

1st sub-experiment 

Θ1 1 2.304 17.61 0.047** 

Θ2 1 3.136 32.70 0.035** 

Θ3 1 1.013 0.037 9.925 

Θ4 1 1.028 0.095 3.905 

   Reference t-value 95% 2.132 

2nd sub-experiment 

Θ1 1 2.528 20.42 0.057** 

Θ2 1 2.742 27.77 0.045** 

Θ3 1 0.988 0.034 13.19 

Θ4 1 0.948 0.088 4.92 

   Reference t-value 95% 1.783 

IDRO 

1st sub-experiment 

Θ1 1 1.042 0.043 9.959 

Θ2 1 0.779 0.435 0.731** 

Θ3 1 1.053 0.060 7.196 

Θ4 1 1.242 0.213 2.382 

   Reference t-value 95% 1.943 

2nd sub-experiment 

Θ1 1 0.999 0.013 34.72 

Θ2 1 0.912 0.145 2.88 

Θ3 1 1.003 0.023 20.29 

Θ4 1 1.020 0.079 5.917 

   Reference t-value 95% 1.783 
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Table 2  

 

 

      Conventional MBDoE 

Normalized 

Model Parameter 

Real  

value 

Final  

value 

Standard  

deviation 
t-value 95% 

Θ1 1 1.127 0.057 1.660** 

Θ2 1 1.358 1.190 0.741** 

Θ3 1 1.648 0.037 0.474** 

Θ4 1 1.019 0.082 2.955 

   Reference t-value 95% 1.812 

OMBRE 

1st sub-experiment 

Θ1 1 0.654 0.260 0.793** 

Θ2 1 0.586 0.678 0.272** 

Θ3 1 0.388 0.565 0.216** 

Θ4 1 0.312 0.920 0.107** 

   Reference t-value 95% 2.354 

2nd sub-experiment 

Θ1 1 1.019 0.185 2.478 

Θ2 1 1.657 0.560 1.327** 

Θ3 1 1.586 0.848 0.840** 

Θ4 1 1.067 0.143 3.352 

   Reference t-value 95% 1.812 

IDRO 

1st sub-experiment 

Θ1 1 1.059 0.116 2.873 

Θ2 1 1.339 0.582 0.723** 

Θ3 1 1.436 0.522 0.865** 

Θ4 1 1.044 0.256 1.282** 

   Reference t-value 95% 2.354 

2nd sub-experiment 

Θ1 1 1.106 0.055 9.035 

Θ2 1 1.034 0.170 2.736 

Θ3 1 1.247 0.169 3.322 

Θ4 1 1.082 0.073 6.625 

   Reference t-value 95% 1.812 
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Figures 

 

 

Figure 1 
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Figure 4  
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Figure 5 
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