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Medical research is conducted to answer uncertainties and identify effective treatments for 

patients.  Different questions are best addressed by different types of study design – but the 

randomised controlled clinical trial is typically viewed as the gold standard, providing a very 

high level of evidence, when examining efficacy. 1 Whilst clinical trial methodology has 

advanced considerably with clear guidance provided as to how to avoid sources of bias, 

even the most robustly designed study can succumb to missing data.  2 3  In this statistics 

note, we discuss strategies for dealing with missing data but what we hope emerges is a 

very clear message that there is no ideal solution to missing data and prevention is the best 

strategy. 

Scenario one 

A senior colleague asks me to critique a publication of a randomised controlled clinical trial 

comparing two drugs which aim to reduce intraocular pressure in patients with primary 

open angle glaucoma.  One eye per patient has been analysed and results are provided for 

intraocular pressure at 6 months.  The study presents data on 147 subjects treated with 

drug A and 145 subjects with drug B.   The mean pressure in patients on drug A is lower than 

drug B, with an estimated treatment difference of 3.1 mmHg, 95% CI (2.5, 3.8).   A P value of 
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< 0.001 is provided.  It seems clear that drug A is more efficacious in reducing IOP at 6 

months than drug B but does this mean that I am correct in deducing that A is better than B 

and therefore that  patients should be given drug A? 

Something about the numbers doesn’t seem quite right.  147 vs 145 where I had expected 

equal numbers in the two groups.  I learn (via the internet) that the researchers may have 

used simple randomisation in which case chance imbalances can and do occur, particularly 

with smaller studies. 4 Whilst this might impact upon power, it does not itself represent an 

issue, however on careful scrutiny of the publication, I uncover that at the start of the study 

150 patients were in each arm of the study.  Three patients receiving treatment A do not 

provide 6 month outcome data and five patients allocated to treatment B do not appear in 

the final outcome analysis.  The paper is not clear as to what happened to these 8 patients, 

however, my colleague knows the authors and agrees to drop them a note to find out what 

happened.  He does however point out that 8 patients out of 300 is just 2.6 % which is well 

within the anticipated rate of loss to follow-up allowed for in the original sample size 

calculation.   

Several months later I receive the information that I was after.  Patients on treatment arm B 

had merely not attended their 6 month follow-up visit.  A couple had moved and a couple 

simply were not well at the 6 month visit.  They did, however, have data at 5 months and a 

couple had attended at 7 months.  Figures at 5 months and 7 months were fairly similar to 

each other indicating that perhaps the 5 month data (or indeed the 7 month data) could be 

viewed as a reasonable estimate of 6 month data.  The treatment differences seen in these 

patients were similar to those seen in the patients who had attended at 6 months.  Patients 

on treatment A had, however, not attended their 6 month visit or indeed any further visits.  

Contact with their general practitioners revealed that they had each suffered respiratory 

issues.  Later on, I learned that there was indeed a causal link between drug A and adverse 

respiratory problems.   Treatment A no longer seems the best treatment – particularly for 

those at risk of respiratory problems. 

This scenario is given to illustrate the potential for misleading conclusions to be drawn in 

the presence of missing data.   Missing data was the focus of a statistics note by Altman and 

Bland. 3 At the time of writing that note, the authors commented that “the topic of how to 
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handle missing data is not often discussed outside statistics journals”.   They stated also that 

the most common approach to deal with missing data was to simply analyse everyone with 

complete data only – an available case or complete case analysis – as is illustrated in 

scenario one.  Whilst this method may be appropriate when there is little missing data – it 

can lead to incorrect conclusions – again as illustrated in scenario one.  If an available case 

analysis is conducted, it is essential to examine reasons for data being missing.  If the fact 

that an observation is missing is unrelated to both the observed and the unobserved data, 

the missing data are said to be missing completely at random (MCAR).  By examining 

reasons for missingness (if possible) it may become clear that data are not MCAR but that 

they are missing because of reasons related to the treatments and that these reasons may 

differ systematically by treatment (as illustrated in scenario one).  If there is not much 

missing data, an available case analysis with a valid assumption of data being missing 

completely at random, may be unbiased (i.e. it does not over estimate or under estimate a 

treatment difference or evidence of association), but will have lower power to detect a 

difference or association than if all data were present.5 Less data equates to less 

information which in turns equates to less chance of being sure that if you fail to find a 

significant difference it is because there truly is no difference.6 

Clearly there are situations where there is no information about those who are missing.  In 

such cases, we would recommend drawing attention to the presence of missing data and 

the fact that it was not possible to investigate further.  By doing this, readers are aware of 

the potential for bias.  Best and worst case scenarios could be considered to show how 

conclusions might have differed under such circumstances.  (e.g. In a study comparing drugs 

A and B, and where the primary outcome is treatment success, a best case scenario might 

be that all those lost to follow-up on treatment A were successes whilst all those on 

treatment B were failures. A worst case scenario would reverse these assumptions. ) 

An alternative to “available case analysis”, where subjects with missing data are simply 

omitted from the analysis, is to impute data.  Imputation replaces missing data with some 

plausible value predicted from that subject (or other subject’s) data.  One method of 

imputation which is common place in ophthalmic literature is that of “last observation 

carried forward” (LOCF), where any missing data is replaced with the last observed value for 

that patient.  
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Scenario two 

A senior colleague draws my attention to a paper which has used LOCF.  It is a paper 

published in a highly regarded journal.  The primary outcome is visual acuity at one year 

after randomisation and it compares two treatments for Age Related Macular Degeneration.  

One hundred patients were randomised, three did not provide a measure at one year, 1 in 

one arm of the study and 2 in the other.  The authors have looked at the reasons for the 

subjects being unable to provide data at one year and are satisfied that there is little to 

suggest that the data are not missing completely at random.   Despite the proportion of data 

being lost to follow-up being small and within the margin expected in the sample size 

calculation and despite there being no overt evidence of data being anything other than 

missing completely at random, the authors have used LOCF.  They state that this is essential 

in order to conduct a true Intent to treat (ITT) analysis – where all randomised patients are 

included.  ITT is, the authors state, essential in order to preserve the benefits of 

randomisation and protect against bias. 7 The paper says that the patient who withdrew 

from treatment arm A actually did so prior to receiving any treatment.  This means that the 

only available observation of visual acuity was that at baseline.  The two patients who 

withdrew from treatment arm B, moved out of the area but did attend at 11 months.  

Whilst it seems entirely acceptable to use the 11 month data for treatment arm B, the use 

of baseline data for treatment arm A seems very tenuous indeed and note that our 

definition of valid imputation was “a plausible” value.   The authors did, however, compare 

their imputed analysis with the available case analysis and found little difference between 

results other than a slightly lower standard error for the effect estimate with the LOCF 

assumption, and so in this scenario, whilst the assumptions made do not appear to be 

sensible, the conclusion drawn from the LOCF analysis is similar to that which would have 

been drawn from the available case analysis.  

Whilst LOCF is widely used and indeed required by the Food and Drug Administration (FDA) 

in the United States, it has serious and in some cases, fundamental problems.  9  

An alternative to LOCF is “simple mean imputation” replacing missing data with the average 

value observed in that treatment arm.  This is not ideal because if there are many patients 
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with missing data, giving them all the same mean, will reduce variability between 

observations and suggest more confidence in findings than should be drawn.   

Scenario three 

A senior colleague draws my attention to a study comparing visual acuity in 100 patients 

with diabetic macular oedema after treatment with either drug A or drug B.   One eye only 

has been included and results are presented with imputation having been conducted by 

replacing missing data with the average observed in each treatment arm.  Five patients 

were missing at one year after treatment with drug A but no patients were lost to follow up 

from drug B.  The study concludes that there is evidence that A is better than B.  Something 

worries me however.  I look at the available case analysis and it suggests that there is no 

evidence of a difference between A and B.  I now have disagreement between the available 

case analysis and the analysis which imputed for missing subjects.  Although the authors 

have not commented upon this discrepancy I now see that it highlights how assumptions 

made about missingness and strategies to deal with missingness have potential to mislead.   

The scenarios presented thus far illustrate cases where subjects are missing at final follow-

up, yet clearly missing data presents challenges to researchers in other ways 

1) A validated questionnaire is used with a scoring algorithm provided for computing 

summary scores based on answers to all questions on the questionnaire.  You 

determine that some subjects simply have not answered some of the questions.  

There is some data, but not all. 

2) Many studies involve assessment of the eye by imaging equipment, such as OCT.  

Some of this equipment may be very expensive.  No technology is immune from 

failure and there may be times during a trial where the equipment fails – subjects 

don’t therefore have assessments at particular visits in the trial schedule. 

3) Postal questionnaires – not all individuals respond despite several attempts to 

encourage postal return. 

Whilst examples discussed here relate to tightly controlled clinical trials, it is evident that 

missing data is likely to be more of an issue outside the rigour of a randomised trial e.g. 

electronic patient records, observational studies. 
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The strategies presented here for  missing data are simple, yet many better methods are 

now well described in the statistical literature – multiple imputation and model based 

approaches such as mixed models and weighted generalized estimating equations exist.8  A 

word of caution is provided by Streiner, however  

“the easy methods are not good and the good ones … are not easy”.  9  

Whatever approach is adopted, missing data are “what it says on the tin”, “missing”, and as 

eloquently summarised by Bland and Altman “there is no satisfactory solution to this” .3 

Greater efforts should be made at the design stage to limit the likelihood of data being 

missing and one simple yet very rewarding approach can be to talk to patients in advance of 

conducting a study.  At a thyroid eye disease patient day organised by the NIHR Biomedical 

Research Centre for Ophthalmology patients were quite vocal about the need for 

researchers to carefully consider treatment schedules when designing studies.    Patients 

with thyroid eye disease may find their condition leads to fatigue and disfigurement, 

resulting in their not wanting to venture out of the house – a trial requiring monthly visits, 

when standard practise is 6 monthly is likely to suffer recruitment and retention issues. 10  

Ensuring that everyone involved in research understands the potential for missing data to 

undermine the scientific integrity of the study and ultimately do a disservice to patients and 

public might also be a simple yet rewarding approach.   

Some missing data is however inevitable:  patients are human and humans get ill; go on 

holiday; look after sick children; drop out of studies; machines fail; post can go missing.  

Missing data undermines internal validity and causes loss of power and simple methods of 

accounting for missing data can produce biased estimates of the treatment effect. Data will 

be missing for a reason and researchers are strongly encouraged to record why a value is 

missing. This paper hopefully highlights the need to be explicit in relation to the potential 

impact of missing outcome data and outlines some helpful strategies to consider when this 

does occur.  Available case analysis used to be the standard and whilst there are indeed 

occasions where this isn’t helpful, simple imputation can also lead to erroneous conclusions.  

The final comment we leave with Streiner  

“the solution is to consult with a statistician; most of them are (relatively) friendly”.9 
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Lessons learnt 

 Prevention is best, even in relation to missing data. 

 Report missing data where it occurs and reasons for missingness wherever possible. 

 Statistical methods do exist for handling missing data, but assumptions made by such 

methods must be rigorously evaluated. 
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Figure 1. Flow diagram of missing data  
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appropriate).  Consider best and worst case scenarios to 
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Data missing completely at random (MCAR)? 

Very little missing data 
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