
PHYSICAL REVIEW B 93, 115435 (2016)
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We present a comprehensive theoretical analysis and computational study of four-wave mixing (FWM)
of optical pulses co-propagating in one-dimensional silicon photonic crystal waveguides (Si-PhCWGs). Our
theoretical analysis describes a very general setup of the interacting optical pulses, namely we consider
nondegenerate FWM in a configuration in which at each frequency there exists a superposition of guiding modes.
We incorporate in our theoretical model all relevant linear optical effects, including waveguide loss, free-carrier
(FC) dispersion and FC absorption, nonlinear optical effects such as self- and cross-phase modulation (SPM,
XPM), two-photon absorption (TPA), and cross-absorption modulation (XAM), as well as the coupled dynamics
of free-carriers FCs and optical field. In particular, our theoretical analysis based on the coupled-mode theory
provides rigorously derived formulas for linear dispersion coefficients of the guiding modes, linear coupling
coefficients between these modes, as well as the nonlinear waveguide coefficients describing SPM, XPM,
TPA, XAM, and FWM. In addition, our theoretical analysis and numerical simulations reveal key differences
between the characteristics of FWM in the slow- and fast-light regimes, which could potentially have important
implications to the design of ultracompact active photonic devices.

DOI: 10.1103/PhysRevB.93.115435

I. INTRODUCTION

One of the most promising applications of photonics is the
development of ultracompact optical interconnects for chip-to-
chip and even intrachip communications. The driving forces
behind research in this area are the perceived limitations at high
frequency of currently used copper interconnects [1], com-
bined with a rapidly increasing demand to move huge amounts
of data within increasingly more confined yet increasingly
intricate communication architectures. An approach showing
great potential towards developing optical interconnects at
chip scale is based on high-index contrast optical waveguides,
such as silicon photonic waveguides (Si-PhWGs) implemented
on the silicon-on-insulator material platform [2,3]. Among
key advantages provided by this platform are the increased
potential for device integration facilitated by the enhanced
confinement of the optical field achievable in high-index
contrast photonic structures, as well as the particularly large
optical nonlinearity of silicon, which makes it an ideal
material for active photonic devices. Many of the basic device
functionalities required in networks-on-chip have in fact
already been demonstrated using Si-PhWGs, including para-
metric amplification [4–8], optical modulation [9–11], pulse
compression [12,13], supercontinuum generation [14–16],
pulse self-steepening [17], modulational instability [18], and
four-wave mixing (FWM) [19–24]; for a review of optical
properties of Si-PhWGs see [25,26]. However, since the
parameter space of Si-PhWGs is rather limited, there is little
room to engineer their optical properties.

A promising solution to this problem has its roots in the
advent of photonic crystals (PhCs) in the late 1980s [27,28].
Thus, by patterning an optical medium in a periodic manner,
with the spatial periods of the pattern being comparable to
the operating optical wavelength, the optical properties of
the resulting medium can be modified and engineered to a
remarkable extent. Following this approach, a series of pho-
tonic devices have been demonstrated using PhCs, including
optical waveguides and bends [29–33], optical microcavities

[34–39], and optical filters [40–42]. One of the most effective
approaches to modify the optical properties of PhCs is to
vary the group-velocity (GV) vg of the propagating modes.
Unlike the case of waves propagating in regular optical media,
whose GV can hardly be altered, by varying the geometrical
parameters of PhCs one can tune the corresponding GV over
many orders of magnitude. Perhaps the most noteworthy
implication of the existence of optical modes with significantly
reduced GV, the so-called slow light [43–45], is that both linear
and nonlinear optical effects can be dramatically enhanced in
the slow-light regime [46–54].

One of the most important nonlinear optical process, as
far as nonlinear optics applications are concerned, is FWM
[55]. In the generic case it consists of the combination of two
photons with frequencies ω1 and ω2 belonging to two pump
continuous waves (CWs) or pulses, followed by the generation
of a pair of photons with frequencies ω3 and ω4. The energy
conservation requires that ω1 + ω2 = ω3 + ω4. In practice,
however, an easier to implement FWM configuration is usually
employed, namely degenerate FWM. In this case one uses just
one pump with frequency ωp, the generated photons belonging
to a signal (ωs) and an idler (ωi) beam; in this case the conser-
vation of the optical energy is expressed as 2ωp = ωs + ωi .
Among the most important applications of degenerate FWM
it is noteworthy to mention optical amplification, wavelength
generation and conversion, phase conjugation, generation of
squeezed states, and supercontinuum generation. While FWM
has been investigated theoretically and experimentally in
PhC waveguides [56–61] and long-period Bragg waveguides
[24,62], a comprehensive theory of FWM in silicon PhC
waveguides (Si-PhCWGs), which rigorously incorporates in
a unitary way all relevant linear and nonlinear optical effects
as well as the influence of photogenerated free-carriers (FCs)
on the pulse dynamics is not available yet.

In this article we introduce a rigorous theoretical model
that describes FWM in Si-PhCWGs. Our model captures
the influence on the FWM process of linear optical effects,
including waveguide loss, FC dispersion (FCD) and FC
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absorption (FCA), nonlinear optical effects such as self- and
cross-phase modulation (SPM, XPM), two-photon absorption
(TPA), and cross-absorption modulation (XAM), as well as the
mutual interaction between FCs and optical field. Importantly,
we present a first-principles derivation of the formulas for the
linear and nonlinear optical coefficients of the waveguide, as
well as the spatially averaged expressions of these waveguide
optical coefficients. We also illustrate how our model can be
employed to investigate the characteristics of FWM in the
slow- and fast-light regimes, showing among other things
that by incorporating the effects of FCs on the optical pulse
dynamics new physics emerge. One noteworthy example in
this context is that the well-known linear dependence of FCA
on v−1

g is replaced in the slow-light regime by a v−3
g power-law

dependence.
Our theoretical model is based on several underlying

assumptions, which hold in commonly employed experimental
configurations. Thus, we assume that the duration of the optical
cycle of pulses considered in our study is much smaller than
the momentum relaxation time of FCs and as such we can
assume that the FCs follow practically instantaneously the
variations of the optical field. Moreover, we consider that the
duration of the optical pulses is much larger than the response
time of the electronic nonlinearity so that this (Kerr) nonlinear
optical response is assumed to be instantaneous. In addition,
the duration of the optical pulses and their spectral separation
are large enough so that they do not overlap spectrally, meaning
that treating the optical field as a superposition of optical pulses
is a valid approximation. Finally, although in the particular
cases considered in our numerical simulations the width of
the pulses is much smaller than the FCs relaxation time, the
theoretical model we derive in this work is valid when the two
characteristic times have comparable values as well.

The remainder of the paper is organized as follows. In
the next section we present the optical properties of the PhC
waveguide considered in this work. Then, in Sec. III, we
develop the theory of pulsed FWM in Si-PhCWGs, whereas
the particular case of degenerate FWM is analyzed in Sec. IV.
Then, in Sec. V, we apply these theoretical tools to explore the
physical conditions in which efficient FWM can be achieved.
The results are subsequently used, in Sec. VI, to study via
numerical simulations the main properties of pulsed FWM in
Si-PhCWGs. We conclude our paper by summarizing in the
last section the main findings of our article and discussing some
of their implications to future developments in this research
area. Finally, an averaged model that can be used in the case
of broad optical pulses is presented in an Appendix.

II. DESCRIPTION OF THE PHOTONIC CRYSTAL
WAVEGUIDE

In this section we present the geometrical and material
properties of the PhC waveguide considered in this work, as
well as the physical properties of its optical modes. Thus,
our Si-PhCWG consists of a one-dimensional (1D) waveguide
formed by introducing a line defect in a two-dimensional (2D)
honeycomb-type periodic lattice of air holes in a homogeneous
slab made of silicon (a so-called W1 PhC waveguide). The line
defect is oriented along the z axis, which is chosen to coincide
with one of the �K symmetry axes of the crystal, and is
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FIG. 1. (a) Geometry of the 1D Si-PhC slab waveguide. The
height of the slab is h = 0.6a and the radius of the holes is r = 0.22a.
The primed coordinate system shows the principal axes of the Si
crystal with the input facet of the waveguide in the (11̄0) plane of
the Si crystal lattice. (b) Projected band structure. Dark yellow and
brown areas correspond to slab leaky and guiding modes, respectively.
The red and blue curves represent the guiding modes of the 1D
waveguides.

created by filling in a row of holes [see Fig. 1(a)]. The slab
height is h = 0.6a and the radius of the holes is r = 0.22a,
where a = 412 nm is the lattice constant, whereas the index
of refraction of silicon is nSi ≡ n = 3.48.

The defect line breaks the discrete translational symmetry
of the photonic system along the y axis, so that the optical
modes of the waveguide are invariant only to discrete transla-
tion along the z axis [63]. Moreover, based on experimental
considerations, we restrict our analysis to in-plane wave
propagation, namely the wave vector k lies in the x = 0
plane. The kz component, on the other hand, can be restricted
to the first Brillouin zone kz ∈ [−π/a,π/a], which is an
immediate consequence of the Bloch theorem. Under these
circumstances, we determined numerically the photonic band
structure of the system and the guiding optical modes of
the waveguide using MPB, a freely available code based on
the plane-wave expansion (PWE) method [64]. To be more
specific, we used a supercell with size of 6a × 19

√
3/2a × a

along the x, y, and z axis, respectively, the corresponding
step size of the computational grid being a/60, a

√
3/120,

and a/60, respectively. Figure 1(b) summarizes the results of
these calculations. Thus, the waveguide has two fundamental
TE-like optical guiding modes located in the band gap of the
unperturbed PhC, one y even and the other one y odd.

In order to better understand the physical properties of the
optical guiding modes, we plot in Fig. 2 the profile of the
magnetic field Hx , which is its only nonzero component in
the x = 0 symmetry plane. These field profiles, calculated for
several values of kz, show that although the optical field is
primarily confined at the location of the defect (waveguide),
for some values of kz it is rather delocalized in the transverse
direction. This field delocalization effect is particularly strong
in the spectral domains where the modal dispersion curves
are relatively flat, namely in the so-called slow-light regime,
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FIG. 2. Left (right) panels show the amplitude of the normalized
magnetic field Hx of the y-odd (y-even) mode, calculated in the plane
x = 0 for five different values of the propagation constant kz. From
top to bottom, the panels correspond to the Bloch modes indicated in
Fig. 1(b) by the circles A, B, C, D, and E, respectively.

and increases when the group index of the mode, defined as
ng = c/vg , increases.

The dispersion effects upon pulse propagation in the
waveguide are characterized by the waveguide dispersion
coefficients, defined as βn = dnkz/dωn. In particular, the
first-order dispersion coefficient is related to the pulse GV via
β1 = 1/vg , whereas the second-order dispersion coefficient
β2 quantifies the GV dispersion (GVD) as well as pulse
broadening effects. The wavelength dependence of the first
four dispersion coefficients, determined for both guided
modes, is presented in Fig. 3, the shaded areas indicating the
spectral regions of slow light. For the sake of clarity, we set
the corresponding threshold to c/vg = 20, that is the slow-light
regime is defined by ng > 20. As it can be seen in Fig. 3, the
even mode possesses two slow-light regions, one located at the
band edge (λ ≈ 1.6 μm) and the other one at kz ≈ 0.3(2π/a),
i.e., λ ≈ 1.52 μm, whereas the odd mode contains only one
such spectral domain located at the band edge (λ ≈ 1.67 μm).
Moreover, the even mode can have both positive and negative
GVD, the zero-GVD point being at λ = 1.56 μm, whereas the
odd mode has normal GVD (β2 > 0) throughout. Since usually
efficient FWM can only be achieved in the anomalous GVD
regime (β2 < 0), we will assume that the interacting pulses
propagate in the even mode unless otherwise is specified.

III. DERIVATION OF THE MATHEMATICAL MODEL

This section is devoted to the derivation of a system of
coupled-mode equations describing the co-propagation of a set
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FIG. 3. (a), (b), (c), and (d) Frequency dependence of waveguide
dispersion coefficients ng , β2, β3, and β4, respectively, determined for
the even and odd modes. Light green, blue, and red shaded regions
correspond to slow-light regime, defined as ng > 20. The dashed
vertical line in (b) indicates the zero-GVD wavelength.

of mutually interacting optical pulses in a Si-PhCWG, as well
the influence of photogenerated FCs on the pulse evolution. We
will derive these coupled-mode equations in the most general
setting, namely the nondegenerate FWM, then show how they
can be applied to a particular case most used in practice, the so-
called degenerate FWM configuration. Our derivation follows
the general approach used to develop a theoretical model for
pulse propagation in silicon waveguides with uniform cross
section [65] and Si-PhCWGs [66].

A. Optical modes of photonic crystal waveguides

In the presence of an external perturbation described
by the polarization Ppert(r,ω), the electromagnetic field of
guiding modes with frequency ω is described by the Maxwell
equations, which in the frequency domain can be written in
the following form:

∇ × E(r,ω) = iωμH(r,ω), (1a)

∇ × H(r,ω) = −iω[εc(r,ω)E(r,ω) + Ppert(r,ω)], (1b)

where μ is the magnetic permeability, which in the case of
silicon and other nonmagnetic materials can be set to μ = μ0,
εc(r,ω) is the dielectric constant of the PhC, and E and H
are the electric and magnetic fields, respectively. In our case,
Ppert is the sum of polarizations describing the refraction index
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change induced by photogenerated FCs and nonlinear (Kerr)
effects.

In order to understand how the modes of the PhC waveguide
are affected by external perturbations, let us consider first the
unperturbed system, that is Ppert = 0. Thus, let us assume that,
at the frequency ω, the unperturbed PhC waveguide has M

guiding modes. It follows then from the Bloch theorem that
the fields of these modes can be written as

Emσ (r,ω) = emσ (r,ω)eiσβmz, m = 1,2, . . . ,M, (2a)

Hmσ (r,ω) = hmσ (r,ω)eiσβmz, m = 1,2, . . . ,M, (2b)

where βm is the mth mode propagation constant and σ =
+ (σ = −) denotes forward (backward) propagating modes.
Here we consider that the harmonic time dependence of the
fields was chosen as e−iωt . The mode amplitudes emσ and hmσ

are periodic along the z axis, with period a. Moreover, the
forward and backward propagating modes obey the following
symmetry relations:

em−(r,ω) = e∗
m+(r,ω), (3a)

hm−(r,ω) = −h∗
m+(r,ω), (3b)

where the symbol “∗” denotes complex conjugation. As such,
one only has to determine either the forward or the backward
propagating modes.

The guiding modes can be orthogonalized, the most
commonly used normalization convention being [67,68]

1

4

∫
S

(emσ × h∗
m′σ ′ + e∗

m′σ ′ × hmσ ) · ẑdS = σPmδσσ ′δmm′ , (4)

where Pm is the power carried by the mth mode. This mode
power is related to the mode energy contained in one unit cell
of the PhC waveguide Wm via the relation

Pm = Wm

a
vg = W el

m + W
mag
m

a
vg, (5)

where Wm = W el
m + W

mag
m and

W el
m = 1

4

∫
Vcell

∂

∂ω
(ωεc)|emσ (r,ω)|2dV, (6a)

Wmag
m = 1

4

∫
Vcell

μ0|hmσ (r,ω)|2dV (6b)

are the electric and magnetic energy of the mode, respectively,
and Vcell is the volume of the unit cell. Note that in the case of
PhC waveguides the waveguide dispersion is much larger than
the material dispersion so that in Eq. (6a) we can neglect the
frequency dispersion of εc.

It should be stressed that the waveguide modes defined
by Eqs. (2) are exact solutions of the Maxwell equations (1)
with Ppert = 0, and thus they should not be confused with
the so-called local modes of the waveguide. The latter optical
modes correspond to waveguides whose optical properties vary
adiabatically with the distance along the waveguide, on a scale
comparable to the wavelength, and have been used to describe,
e.g., wave propagation in tapered optical waveguides [69] and
pulse propagation in 1D long-period Bragg waveguides [70].

B. Perturbations of the photonic crystal waveguide

Due to the photogeneration of FCs and nonlinear optical
effects, the dielectric constant of Si-PhCWGs undergoes a
certain local variation δε(r) upon the propagation of optical
pulses in the waveguide. The corresponding perturbation
polarization, Ppert in Eq. (1b), can be divided into two
components according to the physical effects they describe:
the linear change of the dielectric constant via generation of
FCs and the nonlinearly induced variation of the index of
refraction.

Assuming an instantaneous response of the medium, the
linear contribution to Ppert, δPlin(r,t), is written as

δPlin(r,t) = [δεfc(r) + δεloss(r)]E(r,t), (7)

where [65]

δεfc(r) =
(

2ε0nδnfc + i
ε0cn

ω
αfc

)
�(r), (8a)

δεloss(r) = i
ε0cn

ω
αin�(r). (8b)

Here αin is the intrinsic loss coefficient of the waveguide and
�(r) is the characteristic function of the domain where FCs
can be generated, namely � = 1 in the domain occupied by Si
and � = 0 otherwise. The main contribution to the intrinsic
loss comes from photon scattering from the waveguide wall
roughness, although other loss mechanisms are present, too.
Based on the Drude model, the FC-induced change of the index
of refraction δnfc and FC losses αfc are given by [71]

δnfc = − e2

2ε0nω2

(
Ne

mce

+ N0.8
h

mch

)
, (9a)

αfc = e3

ε0cnω2

(
Ne

μem2
ce

+ Nh

μhm
2
ch

)
. (9b)

Here e is the charge of the electron, μe (μh) is the elec-
tron (hole) mobility, mce = 0.26m0 (mch = 0.39m0) is the
conductivity effective mass of the electrons (holes), with
m0 the mass of the electron, and Ne (Nh) is the induced
variation of the electrons (holes) density (in what follows we
assume that Ne = Nh ≡ N ). Moreover, for the pulse durations
considered in this work the dispersion of δnfc and αfc can
be neglected; however, these coefficients are evaluated at the
carrier frequency of the pulse, so that in this respect the vari-
ation of these factors with the carrier frequency of the pulse is
taken into account.

The nonlinear contribution to Ppert, δPnl(r,t), is described
by a third-order nonlinear susceptibility χ̂ (3)(r) and can be
written as

δPnl(r,t) = ε0χ̂
(3)(r)

...E(r,t)E(r,t)E(r,t). (10)

The real part of the susceptibility χ̂ (3) describes parametric
optical processes such as SPM, XPM, and FWM, while the
imaginary part of χ̂ (3) corresponds to TPA and XAM. Note
that in this study we neglect the stimulated Raman scattering
effect as it is assumed that the frequencies of the interacting
pulses do not satisfy the condition required for an efficient,
resonant Raman interaction.
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Since silicon belongs to the crystallographic point group
m3m the susceptibility tensor χ̂ (3) has 21 nonzero elements,
of which only 4 are independent, namely, χ1111, χ1122, χ1212,
and χ1221 [72]. In addition, the frequency dispersion of the
nonlinear susceptibility can be neglected as we consider optical
pulses with duration of a few picoseconds or larger. As a
consequence, the Kleinman symmetry relations imply that
χ1122 = χ1212 = χ1221. Moreover, experimental studies have
shown that χ̂

(3)
1111 = 2.36χ̂

(3)
1122 [73] within a broad frequency

range. Therefore, the nonlinear optical effects considered here
can be described by only one element of the tensor χ̂ (3).

Because of fabrication considerations, in many instances
the waveguide is not aligned with any of the crystal principal
axes and as such these axes are different from the coordinate
axes in which the optical modes are calculated. Therefore,
one has to transform the tensor χ̂ (3) from the crystal principal
axes into the coordinate system in which the optical modes are
calculated [74],

χ̂
(3)
ijkl = R̂iαR̂jβR̂kγ R̂lδχ̂

′(3)
αβγ δ, (11)

where χ̂ ′(3) is the nonlinear susceptibility in the crystal
principal axes and R̂ is the rotation matrix that transforms
one coordinate system into the other. In our case, R̂ is the
matrix describing a rotation with π/4 around the x axis (see
Fig. 1).

C. Coupled-mode equations for the optical field

In order to derive the system of coupled-mode equations
describing pulsed FWM in Si-PhCWGs we employ the conju-
gated form of the Lorentz reciprocity theorem [65–67,75,76].
To this end, let us consider two solutions of the Maxwell
equations (1), [Ea(r,ωa),Ha(r,ωa)] and [Eb(r,ωb),Hb(r,ωb)],
which correspond to two different spatial distribution of the
dielectric constant,εa(r,ωa) and εb(r,ωb), respectively. If we
insert the vector F, defined as F = Eb × H∗

a + E∗
a × Hb, in the

integral identity
∫

S

∇ · FdS = ∂

∂z

∫
S

F · ẑdS +
∮

∂S

F · ndl, (12)

where S is the transverse section at position, z, and ∂S is the
boundary of S, and use the Maxwell equations, we arrive at
the following relation:

∂

∂z

∫
S

F · ẑdS = iμ0(ωb − ωa)
∫

S

H∗
a · HbdS

+ i

∫
S

(ωbεb − ωaεa)E∗
a · EbdS −

∮
∂S

F · ndl.

(13)

Let us consider now a nondegenerate FWM process in
which two pulses at carrier frequencies ω̄1 and ω̄2 interact
and generate two optical pulses at carrier frequencies ω̄3 and
ω̄4, with the energy conservation expressed as ω̄1 + ω̄2 =
ω̄3 + ω̄4. Then, in the Lorentz reciprocity theorem given by
Eq. (13), we choose as the first set of fields a mode of the
unperturbed waveguide (Ppert = 0), which corresponds to the
frequency ωa = ω̄i , where ω̄i is one of the carrier frequencies

ω̄1, ω̄2, ω̄3, or ω̄4:

Ea(r,ω̄i) = eniρi
(r,ω̄i)√
P̄ni

eiρi β̄ni
z, (14a)

Ha(r,ω̄i) = hniρi
(r,ω̄i)√
P̄ni

eiρi β̄ni
z, (14b)

where ρi = ±1 and ni is an integer, 1 � ni � Ni , i = 1, . . . ,4,
with Ni being the number of guiding modes at the frequency
ω̄i . In Eqs. (14), and in what follows, a bar over a symbol
means that the corresponding quantity is evaluated at one of
the carrier frequencies.

As the second set of fields we take those that propagate
in the perturbed waveguide, at the frequency ωb = ω. These
fields are written as a series expansion of the guiding modes
at frequencies ω̄i , i = 1, . . . ,4, thus neglecting the frequency
dispersion of the guiding modes and the radiative modes that
might exist at the frequency ω. This approximation is valid
as long as all interacting optical pulses have narrow spectra
centered at the corresponding carrier frequencies, that is the
physical situation considered in this work. In particular, this
modal expansion becomes less accurate when one or more
pulses propagate in the slow-light regime, as generally the
smaller the GV of a mode is the larger its frequency dispersion
is. Thus, the second set of fields are expanded as

Eb(r,ω) =
4∑

j=1

∑
mj σj

a(j )
mj σj

(z,ω)
emj σj

(r,ω̄j )√
P̄mj

e
iσj β̄mj

z
, (15a)

Hb(r,ω) =
4∑

j=1

∑
mj σj

a(j )
mj σj

(z,ω)
hmj σj

(r,ω̄j )√
P̄mj

e
iσj β̄mj

z
. (15b)

With the fields normalization used in Eqs. (15), the mode
amplitudes a(i)

miσi
(z,ω), i = 1, . . . ,4, are measured in units

of
√

W. Note that since the optical pulses are assumed to
be spectrally narrow, the mode amplitudes a(i)

miσi
(z,ω) have

negligible values except when the frequency ω lies in a narrow
spectral domain centered at the carrier frequency ω̄i .

The dielectric constant in the two cases is εa = ε̄c(r,ω̄i)
and εb = εc(r,ω) + δε(r,ω), where εc(r,ω) is the dielectric
constant of the unperturbed PhC. If the material dispersion
is neglected, εc(r,ω) = εc(r,ω̄i) = ε̄c(r). Inserting the fields
given by Eqs. (14) and (15) in Eq. (13), and neglecting the
line integral in Eq. (13), which cancels for exponentially
decaying guiding modes, one obtains the following set of
coupled equations:

ρi

∂a(i)
niρi

(z)

∂z
+

4∑
j = 1
j �= i

∑
mj σj

Cij
niρi ,mj σj

(z)

×
[
∂a

(j )
mj σj

(z)

∂z
+ i(σj β̄mj

− ρiβ̄ni
)a(j )

mj σj
(z)

]

= Bi
niρi

a(i)
niρi

(z) +
∑

jmj σj

′
Dij

niρi ,mj σj
a(j )

mj σj
(z) + iωe−iρi β̄ni

z

4
√

P̄ni

×
∫

S

ē∗
niρi

· Ppert(r,ω)dS, i = 1, . . . ,4, (16)
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where

Cij
niρi ,mj σj

(z) = e
i(σj β̄mj

−ρi β̄ni
)z

4
√

P̄ni
P̄mj

∫
S

(
ēmj σj

× h̄∗
niρi

+ ē∗
niρi

× h̄mj σj

) · ẑdS, (17a)

Bi
niρi

(z) = i

4P̄ni

∫
S

[μ0(ω − ω̄i)|h̄niρi
|2

+ (ωεc − ε̄cω̄i)|ēniρi
|2]dS, (17b)

Dij
niρi ,mj σj

(z) = ie
i(σj β̄mj

−ρi β̄ni
)z

4
√

P̄ni
P̄mj

∫
S

[
μ0(ω − ω̄i)h̄mj σj

· h̄∗
niρi

+ (ωεc − ε̄cω̄i)ēmj σj
· ē∗

niρi

]
dS. (17c)

In Eq. (16) and what follows a prime symbol to a sum
means that the summation is taken over all modes, except that
with j = i, mj = ni , and σj = ρi . Moreover, in deriving the
left-hand side of Eq. (16) we used the orthogonality relation
given by Eq. (4). As it will become more apparent later on, the
coefficient C

ij
niρi ,mj σj

describes the linear coupling between
the modes characterized by parameters {niρi} and {mjσj },
the coefficient Bi

niρi
is related to the frequency dispersion

the mode {niρi}, whereas the coefficient D
ij
niρi ,mj σj

describes
the frequency dispersion of the optical coupling between the
modes characterized by parameters {niρi} and {mjσj }.

The time-dependent fields are obtained by integrating over
all frequency components contained in the spectra of the
system of interacting optical pulses:

E(r,t) = 1

2

∫ ∞

0

4∑
j=1

∑
mj σj

a(j )
mj σj

(z,ω)
emj σj

(r,ω̄j )√
P̄mj

×e
i(σj β̄mj

z−ωt)
dω + c.c.

≡ 1

2
[E(+)(r,t) + E(−)(r,t)], (18a)

H(r,t) = 1

2

∫ ∞

0

4∑
j=1

∑
mj σj

a(j )
mj σj

(z,ω)
hmj σj

(r,ω̄j )√
P̄mj

× e
i(σj β̄mj

z−ωt)
dω + c.c.

≡ 1

2
[H(+)(r,t) + H(−)(r,t)], (18b)

where E(+)(r,t), H(+)(r,t) and E(−)(r,t), H(−)(r,t) are
the positive and negative frequency parts of the spectrum,
respectively.

Let us now introduce the envelopes of the interacting pulses
in the time domain A(i)

niρi
(z,t), defined as the integral of the

mode amplitudes taken over the part of the spectrum that
contains only positive frequencies,

A(i)
niρi

(z,t) =
∫ ∞

0
a(i)

niρi
(z,ω)e−i(ω−ω̄i )t dω. (19)

With this definition, the time-dependent fields given in
Eqs. (18) become

E(r,t) = 1

2

4∑
j=1

∑
mj σj

A(j )
mj σj

(z,t)

× ēmj σj
(r,ω̄j )√
P̄mj

e
i(σj β̄mj

z−ω̄j t) + c.c., (20a)

H(r,t) = 1

2

4∑
j=1

∑
mj σj

A(j )
mj σj

(z,t)

× h̄mj σj
(r,ω̄j )√
P̄mj

e
i(σj β̄mj

z−ω̄j t) + c.c. (20b)

Following the same approach, the time-dependent polariza-
tion, too, can be decomposed into two components, which
contain positive and negative frequencies, that is, it can be
written as

Ppert(r,t) = 1

2

∫ ∞

0
Ppert(r,ω)e−iωtdω + c.c.

≡ 1

2

[
P(+)

pert(r,t) + P(−)
pert(r,t)

]
. (21)

The next step of our derivation is to Fourier transform
Eq. (16) in the time domain. To this end, we first expand
the coefficients Bi

niρi
and D

ij
niρi ,mj σj

in Taylor series, around
the carrier frequency ω̄i [note that according to Eq. (17a),
C

ij
niρi ,mj σj

is frequency independent]:

Bi
niρi

=
∑
q�1

(�ωi)q

q!

∂qBi
niρi

∂ωq

∣∣∣∣
ω=ω̄i

≡
∑
q�1

iβ
(q)i
niρi

q!
(�ωi)

q,

(22a)

Dij
niρi ,mj σj

=
∑
q�1

(�ωi)q

q!

∂qD
ij
niρi ,mj σj

∂ωq

∣∣∣∣
ω=ω̄i

≡
∑
q�1

iβ
(q)ij
niρi ,mj σj

q!
(�ωi)

q, (22b)

where �ωi = ω − ω̄i , i = 1, . . . ,4. Combining
Eqs. (22a), (17b), (5), and (6) leads to the following
expression for the dispersion coefficients β

(q)i
niρi

:

β(1)i
niρi

(z) = δi
ni

(z)

vi
g,ni

, (23a)

β(n)i
niρi

(z) = δi
ni

(z)
∂n−1

∂ωn−1

(
1

vi
g,ni

)
, n � 2, (23b)

where

δi
ni

(z) = a

4Wmi

∫
S

[
μ0|hniρi

(r,ω̄i)|2

+ ∂

∂ω
(ωεc)|eniρi

(r,ω̄i)|2
]
dS. (24)
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It can be easily seen from this equation that the average of δi
ni

(z) over one lattice cell of the PhC waveguide is equal to 1, i.e.,

δ̃i
ni

≡ 1

a

∫ z+a

z

δi
ni

(z′)dz′ = 1. (25)

Here and in what follows the tilde symbol indicates that the corresponding physical quantity has been averaged over a lattice cell
of the PhC waveguide. With this notation, Eqs. (23) become

β̃(1)i
niρi

≡ βi
1,ni

= 1

vi
g,ni

, (26a)

β̃(n)i
niρi

≡ βi
n,ni

= ∂n−1βi
1,ni

∂ωn−1
, n � 2. (26b)

These relations show that β̃(n)i
niρi

= βi
n,ni

is the nth order dispersion coefficient of the waveguide mode characterized by the
parameters {ni,ρi}, evaluated at the carrier frequency ω = ω̄i .

We now multiply Eq. (16) by the factor e−i(ω−ω̄i )t and then integrate over the positive-frequency domain. These simple
calculations lead to the following time-domain coupled-mode equations for the envelopes of the optical pulses A(i)

niρi
(z,t):

ρi

∂A(i)
niρi

∂z
+

4∑
j = 1
j �= i

∑
mj σj

Cij
niρi ,mj σj

e−i(ω̄j −ω̄i )t

[
∂A

(j )
mj σj

∂z
+ i(σj β̄mj

− ρiβ̄ni
)A(j )

mj σj

]

= i
∑
q�1

β
(q)i
niρi

q!

(
i

∂

∂t

)q

A(i)
niρi

+ i
∑
q�1

∑
jmj σj

′ β(q)ij
niρi ,mj σj

q!
e−i(ω̄j −ω̄i )t

(
i

∂

∂t

)q

A(j )
nj ρj

+ iω̄ie
−i(ρi β̄ni

z−ω̄i t)

4
√

P̄ni

∫
S

ē∗
niρi

· P(+)
pert(r,t)dS,

i = 1, . . . ,4. (27)

The temporal width of the optical pulses considered in this analysis is much larger than the response time of the electronic
nonlinearity of silicon and therefore the latter can be approximated to be instantaneous. In addition, we assume that the spectra
of the co-propagating optical pulses are narrow and the frequency separation between pulses is large enough that they do not
overlap in the frequency domain. Under these circumstances, the optical pulses can be viewed as quasimonochromatic waves
and their nonlinear optical interactions can be treated in the adiabatic limit. Separating the nonlinear optical effects contributing
to the nonlinear polarization, one can express in the time domain this polarization as [74]

δPnl,ω̄i
(r,t) = 3

4

∑
miσi

ε0χ̂
(3)(ω̄i , − ω̄i ,ω̄i)

...ēmiσi
(r,ω̄j )ē∗

miσi
(r,ω̄j )ēmiσi

(r,ω̄j )
∣∣A(i)

miσi

∣∣2A(i)
miσi

eiσi β̄mi
z

P̄mi

√
P̄mi

+ 3

2

∑
miσi

∑
(pi�i ) �= (miσi )

pi > mi

ε0χ̂
(3)(ω̄i , − ω̄i ,ω̄i)

...ēpi�i
(r,ω̄i)ē∗

pi�i
(r,ω̄i)ēmiσi

(r,ω̄i)
∣∣A(i)

pi�i

∣∣2A(i)
miσi

eiσi β̄mi
z

P̄pi

√
P̄mi

+ 3

2

4∑
j = 1
j �= i

∑
miσi

pj �j

ε0χ̂
(3)(ω̄j , − ω̄j ,ω̄i)

...ēpj �j
(r,ω̄j )ē∗

pj �j
(r,ω̄j )ēmiσi

(r,ω̄i)
∣∣A(j )

pj �j

∣∣2A(i)
miσi

eiσi β̄mi
z

P̄pj

√
P̄mi

+ 3

2

∑
pj qkml

�j τkσl

ε0χ̂
(3)(ω̄j , − ω̄k,ω̄l)

...ēpj �j
(r,ω̄j )ē∗

qkτk
(r,ω̄k)ēmlσl

(r,ω̄l)A
(j )
pj �j

A(k)∗
qkτk

A(l)
mlσl

× e
i[(�j β̄pj

−τk β̄qk
+σl β̄ml

)z−(ω̄j −ω̄k+ω̄l )t]√
P̄pj

P̄qk
P̄ml

∣∣∣∣∣∣
j �= k �= l �= i

ω̄j − ω̄k + ω̄l = ω̄i

. (28)

This expression for the nonlinear polarization accounts for the fact that the nonlinear susceptibility is invariant to frequency
permutations. The first term in Eq. (28) represents SPM effects of the pulse envelopes, the second and third terms describe
the XPM between modes with the same frequency and XPM between pulses propagating at different frequencies, respectively,
whereas the last term describes FWM processes.

We now insert in Eq. (27) the linear and nonlinear polarizations given by Eqs. (7) and (28), respectively. Then we discard the
fast time-varying terms, namely the terms for which the frequencies do not add up to zero, a procedure similar to the rotating-wave
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approximation used in quantum optics. As a result of these calculations, one obtains the following system of coupled equations
that governs the dynamics of the mode envelopes:

ρi

∂A(i)
niρi

∂z
= i
∑
q�1

β
(q)i
niρi

q!

(
i

∂

∂t

)q

A(i)
niρi

+ i
∑
q�1

∑
(miσi )�=(niρi )

β
(q)ii
niρi ,miσi

q!

(
i

∂

∂t

)q

A(i)
miσi

+ i
ϑi

niρi
(z)

vi
g,ni

A(i)
niρi

+ i
∑

(miσi )�=(niρi )

ϑi
niρi ,miσi

(z)√
vi

g,ni
vi

g,mi

A(i)
miσi

+ 3iω̄i

16ε0a2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑
miσi

⎡
⎢⎢⎢⎣

�i
niρi ,miσi

(z)

vi
g,mi

√
vi

g,mi
vi

g,ni

∣∣A(i)
miσi

∣∣2A(i)
miσi

+
∑

(pi�i ) �= (miσi )
pi > mi

2�i
niρi ,miσipi�i

(z)

vi
g,pi

√
vi

g,mi
vi

g,ni

∣∣A(i)
pi�i

∣∣2A(i)
miσi

+
4∑

j = 1
j �= i

∑
pj �j

2�
ij
niρi ,miσipj �j

(z)

v
j
g,pj

√
vi

g,mi
vi

g,ni

∣∣A(j )
pj �j

∣∣2A(i)
miσi

⎤
⎥⎥⎥⎦+

∑
pj qkml

�j τkσl

e
i�β̄ni pj qkml

z 2�
jkl
niρi ,pj �j qkτkmlσl

(z)√
v

j
g,pj

vk
g,qk

vl
g,ml

vi
g,ni

A(j )
pj �j

A(k)∗
qkτk

A(l)
mlσl

∣∣
j �=k �=l �=i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

i = 1, . . . ,4, (29)

where �β̄nipj qkml
= �j β̄pj

− τkβ̄qk
+ σlβ̄ml

− ρiβ̄ni
is the wave vector mismatch.

The coefficients ϑi
niρi

and ϑi
niρi ,miσi

represent the wave vector shift of the optical mode (ni,ρi) and the linear coupling
constant between modes (ni,ρi) and (mi,σi), induced by the linear perturbations of the waveguide, respectively, �i

niρi ,miσi

and �i
niρi ,miσipi�i

describe SPM and XPM-induced coupling between modes with the same carrier frequency ω̄i , respectively,

�
ij
niρi ,miσipj �j

represents the XPM-induced coupling between modes with carrier frequencies ω̄i and ω̄j , and �
jkl
niρi ,pj �j qkτkmlσl

is
related to the FWM interaction among the optical pulses. All these nonlinear waveguide coefficients have the physical meaning
of z-dependent effective cubic susceptibilities. These linear and nonlinear waveguide coefficients in Eqs. (29) are given by the
following formulas:

ϑi
niρi

(z) = ω̄ia

4W̄ i
ni

∫
S

[δεfc(r) + δεloss(r)]|eniρi
(ω̄i)|2dS, (30a)

ϑi
niρi ,miσi

(z) = ω̄ie
i(σi β̄mi

−ρi β̄ni
)z

4
√

W̄ i
ni
W̄ i

mi

∫
S

[δεfc(r) + δεloss(r)]e∗
niρi

(ω̄i) · emiσi
(ω̄i)dS, (30b)

�i
niρi ,miσi

(z) = ε2
0a

4ei(σi β̄mi
−ρi β̄ni

)z

W̄ i
mi

√
W̄ i

mi
W̄ i

ni

∫
S

e∗
niρi

(ω̄i) · χ̂ (3)(ω̄i , − ω̄i ,ω̄i)
...emiσi

(ω̄i)e∗
miσi

(ω̄i)emiσi
(ω̄i)dS, (30c)

�i
niρi ,miσipi�i

(z) = ε2
0a

4ei(σi β̄mi
−ρi β̄ni

)z

W̄ i
pi

√
W̄ i

mi
W̄ i

ni

∫
S

e∗
niρi

(ω̄i) · χ̂ (3)(ω̄i , − ω̄i ,ω̄i)
...epi�i

(ω̄i)e∗
pi�i

(ω̄i)emiσi
(ω̄i)dS, (30d)

�ij
niρi ,miσipj �j

(z) = ε2
0a

4ei(σi β̄mi
−ρi β̄ni

)z

W̄
j
pj

√
W̄ i

mi
W̄ i

ni

∫
S

e∗
niρi

(ω̄i) · χ̂ (3)(ω̄j , − ω̄j ,ω̄i)
...epj �j

(ω̄j )e∗
pj �j

(ω̄j )emiσi
(ω̄i)dS, (30e)

�jkl
niρi ,pj �j qkτkmlσl

(z) = ε2
0a

4√
W̄

j
pj

W̄ k
qk

W̄ l
ml

W̄ i
ni

∫
S

e∗
niρi

(ω̄i) · χ̂ (3)(ω̄j , − ω̄k,ω̄l)
...epj �j

(ω̄j )e∗
qkτk

(ω̄k)emlσl
(ω̄l)dS. (30f)

While Eqs. (29) seem complicated, in cases of practical interest they can be considerably simplified. To be more specific,
these equations describe a multitude of optical effects pertaining to both linear and nonlinear gratings, including linear coupling
between modes with the same frequency, nonlinear coupling between modes with the same frequency, due to SPM and XPM
effects, XPM-induced coupling between modes with different frequency, and FWM interactions. In most experimental setups,
however, not all these linear and nonlinear effects occur simultaneously as in a generic case not all of them lead to efficient pulse
interactions.

These ideas become clear if one inspects the exponential factors in Eqs. (30b)–(30e). Thus, they vary over a characteristic
length comparable to the lattice constant of the PhC, namely much more rapidly as compared to the spatial variation rate of the
pulse envelopes. As a result, except for the mode (ni,ρi), these linear and nonlinear coefficients have negligible values. There
are, however, particular cases when some of these interactions are phase matched and consequently are resonantly enhanced. To
be more specific, the integrals in Eqs. (30b)–(30e) are periodic functions of z, with period a, so that it is possible that a Fourier
component of these integrals phase matches a specific linear or nonlinear interaction between modes (e.g., the linear coupling
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between two modes with the same frequency and SPM- or XPM-induced nonlinear coupling between modes). In this study we
do not consider such accidental phase matching of mode interactions. With this in mind, we discard all terms in Eqs. (29) that
average to zero to obtain the final form of the coupled-mode equations for the pulse envelopes:

i

[
ρi

∂A(i)
niρi

∂z
+ δi

ni
(z)

vi
g,ni

∂A(i)
niρi

∂t

]
− δi

ni
(z)β̄2,ni

2

∂2A(i)
niρi

∂t2
+ ω̄iδnfcκ̄

i
ni

(z)

nvi
g,ni

A(i)
niρi

+ icκ̄ i
ni

(z)

2nvi
g,ni

(αfc + αin)A(i)
niρi

+ γ i
niρi

(z)
∣∣A(i)

niρi

∣∣2A(i)
niρi

+
∑

(pi�i ) �= (niρi )
pi > ni

2γ i
niρi ,pi�i

(z)
∣∣A(i)

pi�i

∣∣2A(i)
niρi

+
4∑

j = 1
j �= i

∑
pj �j

2γ ij
niρi ,pj �j

(z)
∣∣A(j )

pj �j

∣∣2A(i)
niρi

+
∑

pj qkml

�j τkσl

2e
i�β̄ni pj qkml

z
γ jkl

niρi ,pj �j qkτkmlσl
(z)A(j )

pj �j
A(k)∗

qkτk
A(l)

mlσl

∣∣∣
j �=k �=l �=i

= 0, i = 1, . . . ,4, (31)

where the new parameters introduced in this equation are defined as

κ̄ i
ni

(z) = ε0an2

2W̄ i
ni

∫
Snl

|eniρi
(ω̄i)|2dS, (32a)

γ i
niρi

(z) = 3ω̄iε0a
2

16vi2
g,ni

1

W̄ i2
ni

∫
Snl

e∗
niρi

(ω̄i) · χ̂ (3)(ω̄i , − ω̄i ,ω̄i)
...eniρi

(ω̄i)e∗
niρi

(ω̄i)eniρi
(ω̄i)dS, (32b)

γ i
niρi ,pi�i

(z) = 3ω̄iε0a
2

16vi
g,ni

vi
g,pi

1

W̄ i
ni
W̄ i

pi

∫
Snl

e∗
niρi

(ω̄i) · χ̂ (3)(ω̄i , − ω̄i ,ω̄i)
...epi�i

(ω̄i)e∗
pi�i

(ω̄i)eniρi
(ω̄i)dS, (32c)

γ ij
niρi ,pj �j

(z) = 3ω̄iε0a
2

16vi
g,ni

v
j
g,pj

1

W̄ i
ni
W̄

j
pj

∫
Snl

e∗
niρi

(ω̄i) · χ̂ (3)(ω̄j , − ω̄j ,ω̄i)
...epj �j

(ω̄j )e∗
pj �j

(ω̄j )eniρi
(ω̄i)dS, (32d)

γ jkl
niρi ,pj �j qkτkmlσl

(z) = 3ω̄iε0a
2

16
(
v

j
g,pj

vk
g,qk

vl
g,ml

vi
g,ni

)1/2

1(
W̄

j
pj

W̄ k
qk

W̄ l
ml

W̄ i
ni

)1/2

∫
Snl

e∗
niρi

(ω̄i) · χ̂ (3)(ω̄j , − ω̄k,ω̄l)

...epj �j
(ω̄j )e∗

qkτk
(ω̄k)emlσl

(ω̄l)dS. (32e)

In these equations, Snl(z) is the transverse area of the region filled with nonlinear material. Note that the exponential factor in
the term describing the FWM interaction does not average to zero because the FWM interaction is assumed to be nearly phase
matched and therefore the exponential factor varies over a characteristic length that is much larger than the lattice constant a.
Importantly, the linear and nonlinear optical effects in Eq. (31) appear to be inversely proportional to the vg and v2

g , respectively. In
other words, one does not need to rely on any phenomenological considerations to describe slow-light effects in PhC waveguides,
as they are naturally captured by our model.

D. Carriers dynamics

The last step in our derivation of the theoretical model describing FWM in Si-PhCWGs is to determine the influence of
photogenerated FCs on pulse dynamics. To this end, we first find the rate at which electron-hole pairs are generated optically, via
degenerate and nondegenerate TPA, and as a result of FWM. More specifically, we first multiply Eqs. (29), after all linear terms
have been discarded, by A(i)∗

niρi
, then multiply the complex conjugate of Eqs. (29) by A(i)

niρi
, and sum the results over all carrier

frequencies and modes. The outcome of these simple manipulations can be cast as

∂

∂z

4∑
i=1

∑
niρi

ρi

∣∣A(i)
niρi

∣∣2 = − 3

8ε0a2

4∑
i=1

∑
niρi

ω̄iIm

⎧⎨
⎩
∑
miσi

⎡
⎣ �i

niρi ,miσi
(z)

vi
g,mi

√
vi

g,mi
vi

g,ni

∣∣A(i)
miσi

∣∣2A(i)
miσi

A(i)∗
niρi

+
∑

(pi�i ) �= (miσi )
pi > mi

2�i
niρi ,miσipi�i

(z)

vi
g,pi

√
vi

g,mi
vi

g,ni

∣∣A(i)
pi�i

∣∣2A(i)
miσi

A(i)∗
niρi

+
4∑

j = 1
j �= i

∑
pj �j

2�
ij
niρi ,miσipj �j

(z)

v
j
g,pj

√
vi

g,mi
vi

g,ni

∣∣A(j )
pj �j

∣∣2A(i)
miσi

A(i)∗
niρi

]

+
∑

pj qkml

�j τkσl

e
i�β̄ni pj qkml

z 2�
jkl
niρi ,pj �j qkτkmlσl

(z)√
v

j
g,pj

vk
g,qk

vl
g,ml

vi
g,ni

A(j )
pj �j

A(k)∗
qkτk

A(l)
mlσl

A(i)∗
niρi

∣∣∣
j �=k �=l �=i

}
. (33)
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The sum in the left-hand side of this equation represents
the rate at which optical power is transferred to FCs. This
power is absorbed by carriers generated in the silicon slab, in
the infinitesimal volume dV (z) = Anl(z)dz, where Anl(z) is
an effective area. This area is defined in terms of the Poynting
vector of the field propagating inside the silicon slab,

Anl(z) =
[ ∫

Snl
|〈E(r,t) × H(r,t)〉t |dS

]2
∫
Snl

|〈E(r,t) × H(r,t)〉t |2dS
. (34)

In this equation, 〈f 〉t means the time average of f . Using
Eq. (20), and taking into account the fact that A(i)

niρi
varies in

time much slower than e−iω̄i t , one can express Eq. (34) in the
following form:

Anl(z) =
[ ∫

Snl

∣∣∣∑4
i=1

∑
niρi

|A(i)
ni ρi

|2
P̄ni

Re(eniρi
× h∗

niρi
)
∣∣∣dS
]2

∫
Snl

∣∣∣∑4
i=1

∑
niρi

|A(i)
ni ρi

|2
P̄ni

Re(eniρi
× h∗

niρi
)
∣∣∣2dS

.

(35)

In spite of the fact that it might seem difficult to use this
formula to calculate the effective area, we will show in the next
section that in cases of practical interest it can be simplified
considerably. We also stress that Eq. (35) gives the effective
transverse area of the region in which FCs are generated, so
that it should not be confused with the modal effective area. In
fact, since in the FWM process there are several co-propagating
beams, a single effective modal area is not well defined.

The energy transferred to FCs when an electron-hole pair is
generated via absorption of two photons with frequencies ω̄i

and ω̄j is equal to �(ω̄i + ω̄j ). Using this result and neglecting
again all terms in Eq. (33) that average to zero, it can be easily
shown that the carriers dynamics are governed by the following
rate equation:

∂N

∂t
= −N

τc

+ 1

�Anl(z)

4∑
i=1

∑
niρi

{
γ ′′i

niρi
(z)

ω̄i

∣∣A(i)
niρi

∣∣4

+
∑

(pi�i ) �= (niρi )
pi > ni

2γ ′′i
niρi ,pi�i

(z)

ω̄i

∣∣A(i)
pi�i

∣∣2∣∣A(i)
niρi

∣∣2

+
4∑

j = 1
j �= i

∑
pj �j

4γ
′′ij
niρi ,pj �j

(z)

ω̄i + ω̄j

∣∣A(j )
pj �j

∣∣2∣∣A(i)
niρi

∣∣2

+
∑

pj qkml

�j τkσl

Im

[
e
i�β̄nipj qkml

z 4γ
jkl
niρi ,pj �j qkτkmlσl

(z)

ω̄i + ω̄k

×A(j )
pj �j

A(k)∗
qkτk

A(l)
mlσl

A(i)∗
niρi

∣∣
j �=k �=l �=i

]}
, (36)

where τc ≈ 500 ps [77] is the FC recombination time in Si-
PhCWGs and ζ ′ (ζ ′′) means the real (imaginary) part of the
complex number ζ .

IV. DEGENERATE FOUR-WAVE MIXING

The system of coupled nonlinear partial differential equa-
tions, Eqs. (31) and (36), fully describes the FWM of optical
pulses and FCs dynamics and represents the main result
derived in this study. In practical experimental setups, however,
the most used pulse configuration is that of degenerate FWM.
In this particular case, the optical frequencies of the two pump
pulses are the same, ω̄1 = ω̄2 ≡ ωp, whereas the two generated
pulses, the signal and the idler, have frequencies ω̄3 ≡ ωs and
ω̄4 ≡ ωi , respectively. Moreover, we assume that all modes are
forward-propagating modes and that at each carrier frequency
there is only one guided mode in which the optical pulses that
enter in the FWM process can propagate—others, should they
exist, would not be phase matched—so that we set Ni = 1,
i = 1, . . . ,4. Under these circumstances, Eqs. (31) and (36)
can be simplified to

i

[
∂Ap

∂z
+ δp(z)

vg,p

∂Ap

∂t

]
− δp(z)β̄2,p

2

∂2Ap

∂t2

+ ωpδnfcκ̄p(z)

nvg,p

Ap + icκ̄p(z)

2nvg,p

(αfc + αin)Ap

+ [γp(z)|Ap|2 + 2γps(z)|As |2 + 2γpi(z)|Ai |2
]
Ap

+ 2ei�β̄zγpsi(z)AsAiA
∗
p = 0, (37a)

i

[
∂As

∂z
+ δs(z)

vg,s

∂As

∂t

]
− δs(z)β̄2,s

2

∂2As

∂t2

+ ωsδnfcκ̄s(z)

nvg,s

As + icκ̄s(z)

2nvg,s

(αfc + αin)As

+ [γs(z)|As |2 + 2γsp(z)|Ap|2 + 2γsi(z)|Ai |2
]
As

+ e−i�β̄zγspi(z)A2
pA∗

i = 0, (37b)

i

[
∂Ai

∂z
+ δi(z)

vg,i

∂Ai

∂t

]
− δi(z)β̄2,i

2

∂2Ai

∂t2

+ ωiδnfcκ̄i(z)

nvg,i

Ai + icκ̄i(z)

2nvg,i

(αfc + αin)Ai

+ [γi(z)|Ai |2 + 2γip(z)|Ap|2 + 2γis(z)|As |2
]
Ai

+ e−i�β̄zγips(z)A2
pA∗

s = 0, (37c)

∂N

∂t
= −N

τc

+ 1

�Anl(z)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑

μ=p,s,i

⎡
⎢⎢⎢⎣

γ ′′
μ (z)

ωμ

|Aμ|4

+
∑

ν = p,s,i

ν �= μ

4γ ′′
μν(z)

ωμ + ων

|Aμ|2|Aν |2

⎤
⎥⎥⎥⎦+ 1

ωp

Im
[
2γpsi(z)

×A∗
p

2
AsAie

i�β̄z + [γspi(z) + γips(z)]

×A2
pA∗

s A
∗
i e

−i�β̄z]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (38)
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where �β̄ = βs + βi − 2βp. The coefficients of the linear and nonlinear terms in Eqs. (37) and (38) are

κ̄μ(z) = ε0an2

2W̄μ

∫
Snl

|eμ(ωμ)|2dS, (39a)

γμ(z) = 3ωμε0a
2

16v2
g,μ

1

W̄ 2
μ

∫
Snl

e∗
μ(ωμ) · χ̂ (3)(ωμ, − ωμ,ωμ)

...eμ(ωμ)e∗
μ(ωμ)eμ(ωμ)dS, (39b)

γμν(z) = 3ωμε0a
2

16vg,μvg,ν

1

W̄μW̄ν

∫
Snl

e∗
μ(ωμ) · χ̂ (3)(ων, − ων,ωμ)

...eν(ων)e∗
ν(ων)eμ(ωμ)dS, (39c)

γpsi(z) = 3ωpε0a
2

16vg,p(vg,svg,i)1/2

1

W̄p(W̄sW̄i)
1/2

∫
Snl

e∗
p(ωp) · χ̂ (3)(ωs, − ωp,ωi)

...es(ωs)e∗
p(ωp)ei(ωi)dS, (39d)

γspi(z) = 3ωsε0a
2

16vg,p(vg,svg,i)1/2

1

W̄p(W̄sW̄i)
1/2

∫
Snl

e∗
s (ωs) · χ̂ (3)(ωp, − ωi,ωp)

...ep(ωp)e∗
i (ωi)ep(ωp)dS, (39e)

γips(z) = 3ωiε0a
2

16vg,p(vg,svg,i)1/2

1

W̄p(W̄sW̄i)
1/2

∫
Snl

e∗
i (ωi) · χ̂ (3)(ωp, − ωs,ωp)

...ep(ωp)e∗
s (ωs)ep(ωp)dS, (39f)

where μ and ν �= μ take one of the values p, s, and i and the
frequency degeneracy at the pump frequency has been taken
into account.

Note that, as expected, when one can assume that the
nonlinear coefficients γ ’s are real quantities, namely when
nonlinear optical absorption effects can be neglected, the
optical pumping term in Eq. (38) vanishes. Moreover, if the
frequencies of the interacting waves are far from the transition
frequencies of the medium, a condition that is satisfied in
our case, the time-reversal and overall permutation symmetry
properties of the nonlinear susceptibility hold [74], so that one
can easily demonstrate that

γ ∗
psi(z) = γspi(z) = γips(z). (40)

This relation, which can be proven to be equivalent to the
Manley-Rowe relations associated with the FWM process,
shows that in these circumstances the FWM interaction does
not contribute to generation of FCs and consequently the last
term in Eq. (38) can be dropped.

Moreover, since in experiments usually Pp � Ps,Pi , the
effective area given by Eq. (35) can be reduced to the following
simplified form:

Anl(z) =
(∫

Snl

∣∣Re
[
ep(ωp) × h∗

p(ωp)
]∣∣dS
)2

∫
Snl

∣∣Re
[
ep(ωp) × h∗

p(ωp)
]∣∣2dS

. (41)

The types of nonlinear interactions incorporated in our
theoretical model described by Eqs. (37) are summarized in
Fig. 4 via the energy diagrams defined by the frequencies of the
specific pairs of interacting photons. Thus, as per Fig. 4(a), the
terms proportional to the γ ′

μ and γ ′′
μ coefficients describe SPM

and degenerate TPA effects, respectively, whereas Fig. 4(b)
illustrates XPM and XAM (also called nondegenerate TPA)
interactions whose strength is proportional to γ ′

μν and γ ′′
μν ,

respectively. Finally, there are two distinct types of FWM
processes, represented in Figs. 4(c) and 4(d). In the first case
two pump photons combine and generate a pair of photons, one
at the signal frequency and the other one at the idler, a process
described by the term proportional to γpsi . The reverse process,

represented by the γips and γspi terms, corresponds to the case
in which a signal and an idler photon combine to generate a
pair of photons at the pump frequency.

As Eqs. (39) show, the linear and nonlinear optical
coefficients of the waveguide depend on the index of refraction
of silicon, both explicitly and implicitly via the optical
modes of the waveguide. In our calculations the implicit
dependence of the modal frequency dispersion on the material
frequency dispersion of silicon is not taken into account

(a) (b)

(c) (d)

ωμ

ωμ

ωμ

ωμ

ωμ

ων

ωp

ωp

ωi ωp

ωp

γμ γμν

γpsi γips, γspi

ων

ωμ

ωs

ωi

ωs

FIG. 4. Energy diagrams representing the nonlinear optical
processes included in Eqs. (37). (a) SPM and degenerate TPA
corresponding to γ ′

μ and γ ′′
μ , respectively. (b) XPM and XAM

corresponding to γ ′
μν and γ ′′

μν , respectively. Two possible ways of
energy transfer that can occur during a degenerate FWM process:
(c) Two pump photons generate a signal and an idler photon, a process
described by γpsi ; and (d) the reverse process, described by γips and
γspi , in which a signal and an idler photon generate two pump photons.
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because it cannot be incorporated in the PWE method used
to compute the modes. In other words, when the optical
modes are calculated one assumes that the dielectric constant
of the photonic structure is frequency independent. On the
other hand, the explicit material dispersion is accounted for
via the following Sellmeier equation describing the frequency
dependence of the index of refraction of silicon [78]:

n2(λ) = ε + A

λ2
+ Bλ2

1

λ2
1 − λ2

, (42)

where λ1 = 1.1071 μm, ε = 11.6858, A = 0.939816 μm2,
and B = 8.10461 × 10−3.

The system of coupled equations, Eqs. (37) and (38), form
the basis for our analysis of degenerate FWM in silicon PhC
waveguides. In our simulations, based on numerical integration
of this system of equations using a standard split-step Fourier
method combined with a fifth-order Runge-Kuta method for
the integration of the linear, carriers dependent terms, the z

dependence of the coefficients in these equations is rigorously
taken into account. However, one can significantly decrease the
simulation time by averaging these fast-varying coefficients
over a lattice constant, as this way the integration step for the
resulting, averaged system can be increased considerably. The
derivation of this averaged model is presented in the Appendix.

One of the key differences between our theoretical descrip-
tion of FWM processes in Si-PhCWGs and the widely used
models for FWM in waveguides with uniform cross section,
such as optical fibers or silicon photonic wires, is that the linear
and nonlinear waveguide coefficients are periodic functions of
the distance along the waveguide. In what follows, we discuss
this feature of the FWM in more detail, starting with the
effective area Anl defined by Eq. (41). The dependence of this
area on the longitudinal distance z is presented in Fig. 5(a),
where z spans the length of a unit cell. As we have discussed,
a physical characteristic of slow-light modes is their increased
spatial extent. This property is clearly illustrated in Fig. 5(a),
which shows that in the case of the even and odd modes the
effective area increases by almost a factor of 2 when the group
index varies from 14 to 120 and from 8.6 to 65, respectively.
This property is also illustrated by the frequency dispersion of
the effective area, averaged over a unit cell, as per Fig. 5(b).
Thus, it can be seen in this figure that the effective area has a
maximum at kz ≈ 0.3(2π/a) for the even mode and at the edge
of the Brillouin zone for both modes, namely in the regions of
slow light indeed.

The z dependence of the spatial mode overlap κ and the
frequency dispersion of its spatial average over a unit cell κ̃

are plotted in Figs. 6(a) and 6(b), respectively. These figures
show that the mode overlap varies more strongly with z in
the case of the even mode, whereas in both cases the mode
overlap variation increases as the group-index ng increases.
Interestingly enough, the averaged overlap coefficient of the
even mode has a maximum at kz ≈ 0.3(2π/a), i.e., λ ≈
1.52 μm, which coincides with a minimum of its vg . Note
also that whereas κ(z) can be larger than unity within the
unit cell, its average κ̃ < 1. This result is expected because κ̃

quantifies the mode overlap with the slab waveguide.
In Fig. 7 we present the dependence on z of another physical

quantity that characterizes the linear optical properties of
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FIG. 5. (a) Dependence of Anl on z, determined for the odd (solid
line) and even (dashed line) modes for several values of the group-
index ng . (b) Frequency dispersion of Ãnl calculated for the two
modes, in the spectral domain where they are guiding modes.
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FIG. 6. (a) Dependence of κ on z, determined for the odd (solid
line) and even (dashed line) modes for several values of the group-
index ng . (b) Frequency dispersion of κ̃ calculated for the two modes,
in the spectral domain where they are guiding modes.
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FIG. 7. Dependence of δ on z, determined for several values of
ng . Solid and dashed lines correspond to the odd and even mode,
respectively.

the PhC waveguide, namely its dispersive properties. This
parameter δ quantifies the extent to which the z-dependent
dispersion coefficients differ from their averaged values.
Similarly to the mode overlap coefficient κ , δ(z) shows a more
substantial variation with z in the case of the even mode as
compared to the odd one and an increase of the amplitude of
these oscillations with the increase of ng . Moreover, as it has
been demonstrated in the preceding section, the average of
δ(z) over a unit cell is equal to unity.

The z dependence of the nonlinear waveguide coefficient
that characterizes the strength of SPM and TPA effects and
the wavelength dependence of its average over a unit cell are
plotted in the top and bottom panels of Fig. 8, respectively. One
relevant result illustrated by these plots is that the nonlinear
waveguide coefficient increases considerably as the GV of the
optical mode is tuned to the slow-light regime. Indeed, for
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FIG. 8. (a) and (b) Dependence of γ ′ and γ ′′ on z, respectively,
determined for kz = 0.35(2π/a). (c) and (d) Frequency dispersion of
spatially averaged values of γ ′(z) and γ ′′(z), respectively, determined
both for the even and odd modes.

the case presented in Figs. 8(a) and 8(b) the group index
of the odd and even modes are ng = 6.4 and ng = 11.5,
respectively. This phenomenon is better illustrated by the
wavelength dependence of the spatially averaged values of
γ ′(z) and γ ′′(z), which are shown in Figs. 8(c) and 8(d),
respectively. Thus, these plots indicate that the nonlinear
waveguide coefficient increases by more than an order of
magnitude as the wavelength is tuned from the fast-light to the
slow-light regime, the nonlinear interactions being enhanced
correspondingly.

V. PHASE-MATCHING CONDITION

Before we use the theoretical model we developed to
investigate the properties of FWM in Si-PhCWGs, we derive
and discuss the conditions in which optimum nonlinear pulse
interaction can be achieved. In particular, efficient FWM
is achieved when the interacting pulses are phase matched,
namely when the total (linear plus nonlinear) wave vector
mismatch is equal to zero. In the most general case this
phase-matching condition depends in an intricate way on the
peak power of the pump Pp, signal Ps , and idler Pi , as well as
on the linear and nonlinear coefficients of the waveguide [79].
This complicated relation takes a very simple form when one
considers an experimental setup most used in practice, namely
when the pump is much stronger than the signal and idler,
Pp � Ps,Pi . Under these circumstances, the phase-matching
condition can be expressed as

2γ ′
pPp − 2βp + βs + βi = 0. (43)

In order to determine the corresponding wavelengths of the
optical pulses, this relation must be used in conjunction with
the energy conservation relation, that is 2ωp = ωs + ωi .

An alternative phase-matching condition, less accurate but
easier to use in practice, can be derived by expanding the
propagation constants βs,i(ω) in Taylor series around the pump
frequency ωp:

βs,i(ω) =
∑
n�0

(ω − ωp)n

n!

dnβs,i

dωn

∣∣∣∣
ω=ωp

. (44)

Inserting these expressions in Eq. (43) and neglecting all terms
beyond the fourth order, one arrives at the following relation:

2γ ′
pPp + β2p(�ω)2 + 1

12β4p(�ω)4 = 0, (45)

where �ω ≡ |ωp − ωs | = |ωp − ωi |.
The wavelength diagrams presented in Figs. 9(a) and 9(b)

display the triplets of wavelengths for which the phase-
matching conditions expressed by Eqs. (43) and (45), re-
spectively, are satisfied. These wavelength diagrams were
calculated only for the even mode because only this mode
possesses spectral regions with anomalous dispersion [cf.
Fig. 3(b)], which is a prerequisite condition for phase matching
the FWM. More specifically, efficient FWM can be achieved
if the pump wavelength ranges from λp = 1.52 to 1.56 μm.
Moreover, the diagrams in Fig. 9 show that the predictions
based on Eqs. (43) and (45) are in good agreement, especially
when �ω is small. They start to agree less as �ω increases
because the contribution of the terms discarded when the series
expansion of βs,i(ω) is truncated increases as �ω increases.
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FIG. 9. (a) and (b) Wavelength diagrams defined by Eqs. (43)
and (45), respectively. In both panels dashed lines correspond to
ωp = ωs = ωi .

Figure 9 also suggests that the spectral domain in which
efficient FWM is achieved depends on the pump power Pp.
To be more specific, it can be seen that for Pp � 0.7 W,
a spectral gap opens where the phase-matching condition
cannot be satisfied. The spectral width of this gap increases
when Pp decreases as the the waveguide was not designed to
possess phase-matched modes in the linear regime. Moreover,
the diagrams presented in Fig. 9 show that in the fast-
light regime the wavelengths defined by the phase-matching
condition depend only slightly on Pp, whereas a much stronger
dependence is observed when the wavelengths of the signal and
idler lie in slow-light spectral domains.

VI. RESULTS AND DISCUSSION

In this section we illustrate how our theoretical model
can be used to investigate various phenomena related to
FWM in Si-PhCWGs. In particular, we will compare the
pulse interaction in slow- and fast-light regimes, calculate the
FWM gain, and investigate the influence of various waveguide
parameters on the FWM process. The choice of the values
of physical parameters of the co-propagating pulses and that
of the input pump power has been guided by the exact phase-
matching condition given by Eq. (43). In all our calculations we
assumed that the pulses propagate in the even mode and, unless
otherwise specified, the following values for the pulse and
waveguide parameters have been used in all our simulations:
the input peak pump power, Pp = 102Ps = 5 W, the input
pulse width, Tp = Ts = 7 ps, and the intrinsic waveguide loss
coefficient, αin = 50 dB cm−1 [58].
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FIG. 10. Pulse evolution in the time domain. Left (right) panels
correspond to fast-light (slow-light) regimes, the group index of the
pulses being: ng,i = 9.48 (ng,i = 20.3), ng,p = 8.64 (ng,p = 8.69),
ng,s = 10.37 (ng,s = 23.3).

Let us consider first the evolution of the envelopes of the
pulses in the time domain, both in the slow- and fast-light
regimes, as illustrated in Fig. 10. The triplet of wavelengths
for which the phase-matching condition is satisfied is λp =
1554 nm, λs = 1536 nm, and λi = 1571 nm in the fast-light
regime, whereas in the slow-light regime the wavelengths are
λp = 1559 nm, λs = 1524 nm, and λi = 1597 nm. We stress
that in both cases the pump pulse propagates in the fast-light
regime, whereas the signal and idler are both generated either
in the fast- or slow-light regime.

Under these circumstances, one expects that the pump
evolution in the time domain is similar in the two cases,
a conclusion validated by the plots shown in Figs. 10(c)
and 10(d). However, the dynamics of the signal and idler are
strikingly different when they propagate in the slow-light or
fast-light regimes. There are several reasons that account for
these differences. First, whereas the FCA coefficient αfc has
similar values in the two cases, the FCA and intrinsic losses are
much larger in the slow-light regime because the strength of
both these effects is inverse proportional to vg . This is reflected
in Fig. 10 as a much more rapid decay in the slow-light regime
of the signal and idler pulses. Second, it can be seen that in the
slow-light regime the idler pulse grows at a faster rate. This
is again a manifestation of slow-light effects. In particular, the
nonlinear coefficient γips , which determines the FWM gain,
is inverse proportional to (vg,ivg,s)1/2 [see Eq. (39f)]. As a
consequence, the FWM gain is strongly enhanced when both
the signal and idler propagate in the slow-light regime.

The slow-light effects are reflected not only in the char-
acteristics of the time-domain propagation of the pulses but
they also affect the evolution of the pulse spectra. In order to
illustrate this idea, we plot in Fig. 11 the z dependence of the
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FIG. 11. From top to bottom, the left (right) panels show the
evolution of the spectra of the idler, pump, and signal in the case of
fast-light (slow-light) regimes. The waveguide and pulse parameters
are the same as in Fig. 10.

spectra of the pulses. Similarly to the time-domain dynamics,
the spectra of the pump are almost the same in the slow- and
fast-light regimes as its GV does not differ much between
the two cases. The most noteworthy differences between the
slow- and fast-light scenarios can again be observed in the
case of the idler and signal. Thus, in the slow-light regime
the idler decays faster due to increased losses and grows and
broadens more significantly because of enhanced FWM gain
and FCD effects, respectively. The influence of FCD on the
spectral features of the pulses can also be seen in the case of
the signal and, to a smaller extent, the pump. More specifically,
Eq. (9a) shows that the index of refraction of the waveguide
decreases due to the generation of FCs. This in turn leads to
a phase shift and, consequently, a blue shift of the pulse [14].
Interestingly enough, one can also see in Fig. 11 that as the
frequency of the pulses shifts during their propagation new
spectral peaks are forming at the initial wavelengths for which
the phase-matching condition was satisfied.

In order to gain a deeper insight into the influence of
slow-light effects on the FWM process, we computed the z

dependence of the pulse energies when the frequencies of the
signal and idler were tuned in the slow-light regions of the
even mode of the waveguide. We considered two scenarios,
namely these energies were calculated by including FWM
terms in Eqs. (37) and (38) and, in the other case, by setting
them to zero, that is γpsi = γspi = γips = 0. In the former case,
the FWM terms are responsible for transferring energy from
the pump pulse to the signal and idler. Therefore, a suitable
quantity to characterize the efficiency of this energy transfer is
what we call the FWM enhancement factor η, which in the case
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FIG. 12. (a) FWM enhancement factor vs propagation distance,
determined for different values of the walk-off parameter � =
1/vg,s − 1/vg,p . (b) Signal energy vs propagation distance, calculated
by including FWM terms in Eqs. (37) and (38) and by setting
them to zero. The blue (green) curve corresponds to the fast-light
(slow-light) regime considered in Fig. 10(a) [Fig. 10(b)], whereas the
remaining triplet of phase-matched wavelengths is λp = 1556 nm,
λs = 1530 nm, and λi = 1582 nm (red).

of the signal is defined as ηs = 10 log[(ESXF − ESX)/Es,in].
Here ESXF and ESX are the signal energies calculated by taking
into account, in one case, SPM, XPM, and FWM effects, and
only SPM and XPM terms in the other case (i.e., FWM terms
are neglected in the latter case), and Es,in is the input energy
of the signal.

The results of these calculations are summarized in Fig. 12.
In particular, it can be clearly seen in Fig. 12(a) that the
FWM enhancement factor is strongly dependent on pulse
propagation regime. To be more specific, as the signal and
idler are shifting in the slow-light regime a smaller amount
of energy is transferred from the pump pulse to the signal.
There are two effects whose combined influence leads to this
behavior. First, as we discussed, the pulses experience larger
optical losses in the slow-light regime and therefore the signal
losses energy at higher rate. Equally important, as the pulses
are tuned in the slow-light regime the walk-off parameter �,
defined as � = 1/vg,s − 1/vg,p, increases, meaning that the
pulses interact for a shorter time and consequently less energy
is transferred to the signal. These conclusions are clearly
validated by the results summarized in Fig. 12(b), where we
plot the energy of the signal vs the propagation distance,
determined for several values of the walk-off parameter. In
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addition, this figure somewhat surprisingly suggests that the
FWM process is more efficient in the fast-light regime, which
is again due to the fact that the pump and signal overlap over
longer time.

It is well known that in the slow-light regime linear optical
effects are enhanced by a factor of c/vg , whereas cubic
nonlinear interactions increase by a factor of (c/vg)2. For
example, FCA and TPA are proportional to v−1

g and v−2
g ,

respectively. Our theoretical model predicts, however, that
when the mutual interaction between FCs and the optical
field is taken into account these scaling laws can significantly
change. This can be understood as follows: the amount of FCs
generated via TPA, N , is proportional to v−2

g and since FCA
is proportional to the product v−1

g N , it scales with the GV
as v−3

g .
In order to validate this argument we have determined the

optical total loss experienced by a pulse when it propagates in
the presence of TPA and FCA or, in a different scenario, when
only TPA is present [the latter case is realized by simply setting
αfc = 0 in Eqs. (37)]. Moreover, to simplify our analysis, we
consider the propagation of only one pulse by setting all
parameters describing XPM and FWM interactions to zero.
Finally, we also reduced the input power to 100 mW in order
to avoid strong SPM-induced pulse reshaping. Under these
conditions, the effect of the FCA on the pulse dynamics can
be conveniently characterized by introducing a loss factor �

defined as � = 10 log[(ET − ET F )/Ein], where ET F and ET

are the pulse energies in the case when both TPA and FCA
terms are included in the model and when only TPA is present,
respectively, and Ein is the input energy of the pulse. The
results of these calculations are presented in Fig. 13.

The variation of the loss factor � with the propagation
distance, determined for several values of the GV, is presented
in Fig. 13(a). As one would have expected, the loss factor
increases with the group-index ng , which is a reflection of the
fact that the FC-induced losses increase with the decrease of
the GV. One can observe, however, that when the propagation
distance is larger than about 139a the loss factor begins to
decrease when the GV decreases. This behavior is a direct
manifestation of slow-light effects, namely as the frequency
is tuned to the slow-light regime the optical losses increase
significantly irrespective of the fact that only TPA is considered
or both TPA and FCA effects are incorporated in the numerical
simulations.

This subtle dependence of FC-induced losses on vg is
perhaps better reflected by the plots presented in Fig. 13(b).
Thus, for several values of the propagation distance, we have
determined the variation of � with the group-index ng . Then,
by calculating the slope of the function �(ng) represented on
a logarithmic scale one can determine how FC-induced losses
scale with vg [cf. the inset in Fig. 13(b)]. The results of this
analysis clearly demonstrate that FC losses are proportional
to v−3

g , which agrees with the predictions of our qualitative
evaluation of this dependence. We stress that for large ng

(i.e., small vg) the v−3
g dependence no longer holds at large

propagation distance, chiefly because the pulse is strongly
reshaped in the slow-light regime due to enhanced nonlinear
optical effects, and thus its peak power is no longer exclusively
determined by optical losses.
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FIG. 13. (a) Dependence of loss factor � on the propagation
distance z determined for different values of the group-index ng .
(b) Dependence of � on ng , determined for different values of z. The
slopes of the curves corresponding to z = 10 μm and z = 70 μm are
shown in the inset.

VII. CONCLUSION

In conclusion, we have derived a rigorous theoretical
model, which describes pulsed four-wave mixing in one-
dimensional photonic crystal slab waveguides made of silicon.
Our theoretical model rigorously incorporate all key linear
and nonlinear optical effects affecting the optical pulse
dynamics, including modal dispersion, free-carrier dispersion,
free-carrier absorption, self- and cross-phase modulation, two-
photon absorption, cross-absorption modulation, and four-
wave mixing. In addition, the mutual interaction between
photogenerated free-carriers and optical field is incorporated
in our theoretical analysis in a natural way by imposing
the conservation the total energy of the optical field and
free-carriers. Importantly, our theoretical formalism allows
one to derive rigorous formulas for the optical coefficients
characterizing the linear and nonlinear optical properties of
the photonic crystal waveguides, avoiding thus any of the
approximations that are commonly used in the investigation of
nonlinear pulse dynamics in semiconductor waveguides based
on photonic crystals.

As a practical application of the theoretical results de-
veloped in this study, we have used our theoretical model
to investigate the properties of degenerate four-wave mixing
of optical pulses propagating in photonic crystal waveguides
made of silicon, placing a special focus on highlighting the
differences between the pulse dynamics in the slow- and
fast-light regimes. This analysis has revealed not only that
linear and nonlinear effects are enhanced in the slow-light
regime by a factor of ng and n2

g , respectively, but also that
these scaling laws are markedly affected by the generation of

115435-16



THEORY OF PULSED FOUR-WAVE MIXING IN ONE- . . . PHYSICAL REVIEW B 93, 115435 (2016)

free-carriers. Moreover, since our study has been performed in
a very general framework, i.e., generic optical properties of the
waveguides (multimode waveguides) and pulse configuration
(multifrequency optical field), our findings can also be used
to describe many phenomena not considered in this work. For
example, important nonlinear effects, including stimulated and
spontaneous Raman scattering, coherent anti-Stokes Raman
scattering, and third-harmonic generation, can be included in
our model by simply adding the proper nonlinear polarizations.
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APPENDIX: AVERAGED MODEL DESCRIBING
DEGENERATE FOUR-WAVE MIXING

The spatial scale over which the envelope of picosecond
pulses varies is much larger than the lattice constant of the
PhC and therefore for such optical pulses one can simplify
the system of equations governing the pulse interaction, i.e.,
Eqs. (37) and (38), by taking the average over one lattice
constant. Under these conditions, the corresponding system of
coupled equations can be cast in the following form (see also
[80]):

i

(
∂Ap

∂z
+ 1

vg,p

∂Ap

∂t

)
− β̄2,p

2

∂2Ap

∂t2
+ ωpδnfcκ̃p

nvg,p

Ap + icκ̃p

2nvg,p

(αfc + αin)Ap + 2ei�β̄zγ̃psiAsAiA
∗
p

+(γ̃p|Ap|2 + 2γ̃ps |As |2 + 2γ̃pi |Ai |2
)
Ap = 0, (A1a)

i

(
∂As

∂z
+ 1

vg,s

∂As

∂t

)
− β̄2,s

2

∂2As

∂t2
+ ωsδnfcκ̃s

nvg,s

As + icκ̃s

2nvg,s

(αfc + αin)As + e−i�β̄zγ̃spiA
2
pA∗

i

+(γ̃s |As |2 + 2γ̃sp|Ap|2 + 2γ̃si |Ai |2
)
As = 0, (A1b)

i

(
∂Ai

∂z
+ 1

vg,i

∂Ai

∂t

)
− β̄2,i

2

∂2Ai

∂t2
+ ωiδnfcκ̃i

nvg,i

Ai + icκ̃i

2nvg,i

(αfc + αin)Ai + e−i�β̄zγ̃ipsA
2
pA∗

s

+(γ̃i |Ai |2 + 2γ̃ip|Ap|2 + 2γ̃is |As |2
)
Ai = 0, (A1c)

∂N

∂t
= −N

τc

+ 1

�

⎧⎪⎪⎪⎨
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∑

μ=p,s,i

⎡
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ϒ ′′
μ

ωμ

|Aμ|4 +
∑
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ν �= μ

4ϒ ′′
μν

ωμ + ων

|Aμ|2|Aν |2

⎤
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+ 1

ωp

Im
[
2ϒpsiA

∗
p

2
AsAie

i�β̄z + (ϒspi + ϒips)A
2
pA∗

s A
∗
i e

−i�β̄z
]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (A2)

The coefficients of the linear and nonlinear terms in these
equations are given by the following formulas:

κ̃μ = ε0n
2

2W̄μ

∫
Vnl

|eμ(ωμ)|2dV, (A3a)

γ̃μ = 3ωμε0a

16v2
g,μ

1

W̄ 2
μ

∫
Vnl

e∗
μ(ωμ) · χ̂ (3)(ωμ, − ωμ,ωμ)

...eμ(ωμ)e∗
μ(ωμ)eμ(ωμ)dV, (A3b)

γ̃μν = 3ωμε0a
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1

W̄μW̄ν
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e∗
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ν(ων)eμ(ωμ)dV, (A3c)
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16vg,p(vg,svg,i)
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2

1
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1/2
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·χ̂ (3)(ωp, − ωi,ωp)
...ep(ωp)e∗

i (ωi)ep(ωp)dV, (A3e)

γ̃ips = 3ωiε0a
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e∗
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ϒ� = 1

a

∫ z0+a

z0

γ� (z)

Anl(z)
dz. (A3g)
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where Vnl is the volume occupied by silicon in a unit cell of the
PhC waveguide and z0 an arbitrary distance. Finally, Anl(z) in
Eq. (A3g) is given by Eq. (41), whereas the index � takes any
of the following values: p, s, i, ps, si, ip, psi, spi, or ips.
Note that in deriving the averaged equations governing the
pulse and FC dynamics, Eqs. (A1) and (A2), we have assumed
that the FWM process is nearly phase matched, namely
�β̄ 
 1/a. In other words, the phase of the exponential factors
in these equations vary much slower with the distance z as
compared to the variation of the dielectric constant of the PhC
waveguide.

A comparison between the predictions of the full and
averaged models is illustrated in Fig. 14. Thus, we have
considered the slow-light pulse dynamics presented in Fig. 10
and determined the pulse evolution using both the full and
averaged models. As it can be seen, both models predict a
similar pulse dynamics for the entire propagation length z =
1000a. This result is expected as the envelope of picosecond
pulses, as are those chosen in our simulations, spans a large
number of unit cells and therefore the pulse amplitude is only
slightly affected by the local inhomogeneity of the index of
refraction.

The fast variation with z of the pulse envelope is shown
in Fig. 14(g), where we plot the z dependence of the normal-
ized pulse amplitude �μ(z) = Aμ(z0 + z)/Aμ(z0), μ = p,s,i,
calculated for the unit cell starting at z0 = 200a. It can
be seen in this figure that the pulse envelope varies at a
spatial scale commensurable with the lattice constant yet the
amplitude of these variations is much smaller than the pulse
peak amplitude. The magnitude of these variations, how-
ever, would comparatively become more significant should
the pulse duration would be brought to the femtosecond
range.
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FIG. 14. Comparison between pulse evolution as described by
the full and averaged model is presented in the left and right
panels, respectively. The group-index of the pulses are ng,i = 20.3,
ng,p = 8.69, and ng,s = 23.3 and correspond to the slow-light
propagation scenario presented in Fig. 10. The bottom panel shows
the z dependence of the normalized pulse amplitude �μ(z) =
Aμ(z0 + z)/Aμ(z0), μ = p,s,i, calculated for the unit cell starting
at z0 = 200a.
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