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How can disparate neural and behavioral measures be integrated? Turner and 
colleagues propose joint modeling as a solution. Joint modeling mutually constrains the 
interpretation of brain and behavioral measures by exploiting their covariation structure. 
Simultaneous estimation allows for more accurate prediction than would be possible by 
considering these measures in isolation. 
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Perhaps the key theoretical challenge in cognitive neuroscience is to bridge levels of 
analysis, linking brain and behavior in a mutually explanatory manner. This integration 
would help answer fundamental questions like how neural activity gives rise to behavior 
and what basic processes underlie unique human abilities. Unfortunately, the chasm 
between behavior and neural activity is wide. Moreover, the “languages” of these two 
types of data are different. Behavior is measured in terms of choice and response time, 
whereas neural activity is measured by spiking activity, BOLD signal in fMRI, etc. 
 
One possible bridge between behavior and brain are cognitive models. Cognitive models 
are simple mathematical formalisms that embody psychological principles and are often 
evaluated by their ability to account for behavioral data. The mechanisms in these 
models can both be related to behavior and to neural measures (see [1] for a recent 
review), thus providing a possible bridge.  
 
One straightforward bridging method is to fit a cognitive model to a participant's 
behavioral data, such as the responses made during a learning task. Then, internal 
measures from the cognitive model, such as the degree the model updates internal 
representations on a learning trial, can be related to brain activity using standard 
statistical techniques (e.g., [2]). Brain areas that show a rise and fall in activity along with 
the model measure are possible candidates for implementing that mental process.  
 
Related techniques, such as Representational Similarity Analysis [3], can evaluate the 
agreement between a model and a brain region in a multivariate manner. Other 
approaches ground aspects of cognitive models in specific brain regions and use 
measurements from these regions to adjust parameter values in the model, which in turn 
drives the behavioral predictions of the model (e.g., [4]). Finally, model decoding 
approaches decipher  patterns of brain activation to select which model out of a set of 
competing cognitive models is most consistent with brain activity [5]. 
 
All of these approaches are useful in bridging the chasm between brain and behavior 
and have their place. However, none of these approaches allow for simultaneous 
inferences to be made about brain and behavior. For example, fitting a cognitive model 
to behavioral data and then using a model measure to help analyze brain activity is a 
staged analysis in which information flows in one direction, namely from behavior to 
model parameter values to brain analysis. In some situations, it would be advantageous 
to make simultaneous inferences about both behavior and brain measures. 
 
Recent work by Turner and colleagues addresses this challenge with a powerful new 
method, joint modeling, that allows for simultaneous integration of behavioral and 
multiple neural measures [6]. The hope of joint modeling is that simultaneous integration 
will enable multiple imperfect measures to mutually constrain one another. For example, 
EEG and fMRI have complementary strengths and weaknesses in terms of temporal and 
spatial resolution. Integrating these two brain measures, along with behavior, may 
provide a more accurate assessment than would be possible by considering each 
measure in isolation. 
 
Joint modeling is sophisticated in that it is formulated within a hierarchical Bayesian 
framework, but its basic premise is straightforward -- Simple correlations across different 
measures drive prediction. To make an analogy, knowing someone's weight can be 



useful in inferring the person's height. Likewise, given noisy measurements of both 
height and weight, one could use prior information about what people's heights and 
weights tend to be and how they correlate in order to adjust estimates of both measures 
to improve accuracy. Joint modeling is not limited to two measures, such that other 
measures (e.g., gender) could also be included in the covariation structure. Joint 
modeling's linkage of disparate measures via covariation structure allows for the 
simultaneous interpretation of multiple measures and for assessment of how different 
measures relate (e.g., how a cognitive model's parameter correlates with brain activity in 
some region). 
 
In Turner and colleagues' contribution, joint modeling is applied to an intertemporal 
choice task in which participants choose between an immediate reward and a larger 
delayed reward. Three “submodels” are considered, one for behavior, EEG, and fMRI 
data. The behavioral data (choice and response time) is fit by a cognitive model, the 
Linear Ballistic Accumulator (LBA; [7]), that links a parameter value to predicted behavior. 
Typically, LBA is fitted to behavior without consideration of brain measures. The other 
two submodels for the EEG and fMRI data involve standard statistical analyses. 
 
These multiple measures are linked through their covariation structure. As experimental 
conditions are altered (e.g., the payoff for a delayed reward increases), the parameters 
in the cognitive model will change along with brain activity in dorsal medial frontal cortex 
(dmFC) as measured by EEG and fMRI. Using the correlations across these three 
measures, one can gleam a more accurate estimate of each measure than by 
considering the measures in isolation. For example, higher dmFC activity on a trial may 
imply that the cognitive model parameter should be adjusted upward, which will improve 
the quality of model's prediction for that trial. Indeed, Turner and colleagues demonstrate 
that behavior is better predicted through joint modeling than fitting the cognitive model to 
behavior alone. Furthermore, using the covariation structure, missing neural measures 
can be predicted using the remaining information (e.g., the EEG signal can be inferred 
using observed behavioral and fMRI information). 
 
In summary, joint modeling offers an exciting method for simultaneously integrating 
multiple disparate measures to improve prediction. Rather than information flowing in 
one direction (e.g., from cognitive model to brain analysis or vice versa), joint modeling 
involves simultaneous estimation. When this mixing and linkage of data sources (e.g., 
fMRI and behavior) is desirable, joint modeling provides leverage for measures that 
correlate. In other cases, depending on one's goal, staging analyses using other 
methods may be preferable. What is clear is that joint modeling is an exciting 
development in the innovative and burgeoning area of model-based cognitive 
neuroscience. The overarching goal of this area of work is to bridge brain and behavior 
by utilizing both theoretical and data constraints across levels of analysis. 
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