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a b s t r a c t

We have previously documented two patients (FOL and CLA) with posterior cortical atrophy who
achieved accurate and rapid reading despite deficits in ten measures of visual processing, with two
notable exceptions: (1) a measure of visual acuity, (2) a measure of visual crowding. Subsequent long-
itudinal investigation of these patients was carried out, involving annual tests of early visual, visuo-
perceptual and visuospatial processing and assessment of reading ability. Follow-up assessments iden-
tified the evolution of a particular early visual processing deficit, excessive visual crowding; this deficit
has been previously implicated in forms of dyslexia. Consistent with the link between crowding and
reading dysfunction, follow-up assessments also revealed deterioration in both patients' reading ability.
The current findings demonstrate a neurodegenerative approach towards understanding the relationship
between visual crowding and the reading system, and suggest possible mechanisms for how excessive
crowding may disrupt word recognition.

& 2016 Published by Elsevier Ltd.
1. Introduction

Visual crowding describes the inhibition of the identification of
a target stimulus by the presence of flanking stimuli. This effect is
primarily determined by the spacing between target and flanker
stimuli, with reduced spacing leading to greater suppression of
target identification; greater visual similarity between target and
flankers also increases this suppression. In healthy individuals,
crowding effects tend to be largely restricted to peripheral vision
(with the critical spacing being proportional to the eccentricity;
Bouma, 1970). However, in individuals with posterior cortical
atrophy (PCA), a neurodegenerative condition characterised by
progressive visual impairment, prominent effects have been ob-
served in central vision (Crutch and Warrington, 2007, 2009, Yong
et al., 2014a).

The occurrence of crowding when target stimuli and flankers
are separately presented to different eyes indicates a cortical locus
(Flom et al., 1963; Tripathy and Levi, 1994). Previous studies have
placed this locus within the occipital cortex (Levi, 2008; Bi et al.,
2009; Fang and He, 2008; Anderson et al., 2012), with functional
localisation varying among V1 (Blake et al., 2006), V2 (Freeman
22
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and Simoncelli, 2011) and V4 (Liu et al., 2009). Functional imaging
studies have identified an increase in crowding-modulated acti-
vation in the lateral occipital cortex (Chicherov et al., 2014) or from
early to late visual areas (Anderson et al., 2012). Such findings have
interpreted later visual areas being particularly involved in in-
tegrating or grouping features (Gori and Spillmann, 2010), and
support crowding as a process that cannot be fully attributed to
early visual areas such as V1. Correspondingly, there have been
proposals of crowding as a multistage process, involving a lower-
level feature detection stage, possibly in V1, and a higher-level
integration of features downstream from V1 (Levi, 2008). In PCA,
patterns of performance indicative of crowding when naming
centrally-presented flanked stimuli have been associated with
lower grey matter volume in the collateral sulcus (Yong et al.,
2014a). While crowding tends to be considered a preattentive
process, spatial attention may modulate crowding-related activa-
tion in early visual areas (Chen et al., 2014) and there have been
suggestions that crowding itself arises from poor resolution of
attention (Intriligator and Cavanagh, 2001).

Crowding is a promising candidate for a visual deficit that may
fundamentally limit reading ability. Our uncrowded vision
corresponds to the visual span (Pelli et al., 2007): the visual span is
the extent to which we can read without moving our eyes, and has
been proposed as a particularly significant factor in limiting our
reading rate (Chung, 2004; Legge et al., 2001). Crowding might
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inhibit word recognition, parallel or serial letter processing
through the interaction between the low-level features of words
(Yu et al., 2012) such as letters (Martelli et al., 2005) or features of
letters themselves (Fiset et al., 2008; Zhang et al., 2009). Excessive
visual crowding has been proposed as a possible cause of devel-
opmental dyslexia, along with deficits in temporal and visuospa-
tial attention (Franceschini et al., 2012) and diminished integrity of
the magnocellular pathway (Gori et al., 2014); for a review of how
these deficits relate to dyslexia including their neural and genetic
bases, see Gori and Facoetti (2015). Developmental dyslexics have
been found to exhibit particularly prominent crowding effects
(Martelli et al., 2009; Pelli and Tillman, 2008) and increased in-
terletter spacing has resulted in improved text reading perfor-
mance of children with dyslexia (Zorzi et al., 2012).

Excessive crowding has previously been suggested to underlie a
form of acquired dyslexia (Crutch and Warrington, 2009) and
likely contributes to characteristic deficits in word recognition and
text reading in PCA (Yong et al., 2014b; 2015). Two factors in the
expression of crowding, spacing between target and flanker sti-
muli and visual similarity, may relate to specific reading deficits in
peripheral dyslexia. One previously reported alexic PCA patient
has been found to achieve optimal reading with words of mod-
erate interletter spacing and lower letter confusability, a measure
of the visual similarity of letters (Crutch and Warrington, 2009),
while there have been suggestions of length effects in letter-by-
letter (LBL) readers being artefacts of high letter confusability
(Arguin et al., 2002; Fiset et al., 2005a, 2005b).

We previously identified two patients (FOL and CLA) who
maintained rapid and accurate reading despite impairments on
ten measures of early visual, visuoperceptual and visuospatial
processing (figure-ground discrimination, shape discrimination,
hue discrimination, number location, dot counting, object deci-
sion, fragmented letters, canonical and non-canonical view per-
ception, chequerboard experiment), establishing that such deficits
were not sufficient to impair to reading dysfunction (Yong et al.,
2013). These findings present a compelling challenge to general
visual accounts of letter-by-letter (LBL) reading, which propose
that reading is crucially undermined by even the most subtle vi-
sual deficits (Friedman and Alexander, 1984; Farah and Wallace,
1991; Price and Devlin, 2003; Behrmann et al., 1998). Exactly
where such deficits might arise remains underspecified, with
general visual accounts citing impaired peripheral, prelexical, early
or general visual processing underlying LBL reading.

We proposed that FOL and CLA's efficient reading was main-
tained due to three factors: (i) their intact visual acuity; (ii) the
relative preservation of the left fusiform gyrus, a region instru-
mental for orthographic processing (Roberts et al., 2012) and cri-
tically, (iii) an absence of crowding deficits when identifying
centrally-presented flanked letter stimuli. Regarding condition
(iii), neither patient made any errors on tests of centrally-pre-
sented flanked letter identification; furthermore, while both pa-
tients were slower than their respective control groups, neither
showed the hallmark spacing effects, consistent across different
flankers, that are characteristic of crowding.

The current study presents longitudinal data showing dete-
riorating reading speed and accuracy in both FOL and CLA. The
main aim of this study was to investigate the evolving relationship
between word recognition and crowding. It was hypothesised that
any emergence of crowding effects with centrally-presented
flanked stimuli would be associated with a deterioration in read-
ing ability. Both patients began to exhibit flanked letter identifi-
cation deficits consistent with excessive crowding at follow-up;
the relationship between these deficits and reading is described
below.
2. Methods

2.1. Participants

The study participants were the same two individuals with PCA
as in Yong et al. (2013); FOL, a right-handed retired NHS admin-
istrator, and CLA, a right-handed retired classics teacher. At first
assessment, FOL and CLA were 58 and 86 years old respectively.
Nine control participants were administered the same tasks as FOL
and CLA. The controls were split into two groups for each patient,
matched for age, gender and years of education (FOL controls
[N¼4]: mean age 58.4 yrs [range 56–60], all female, mean edu-
cation: 16 yrs; CLA controls [N¼5]: mean 83.5 yrs [range 81–84],
all female, mean education: 14.8 yrs).

2.1.1. Imaging
Fluid-based non-rigid image registration (Freeborough and Fox,

1998) was used to identify local volumetric changes in grey matter,
white matter and cerebrospinal fluid between paired images from
different time points (Baseline scans from FOL/CLA and follow-up
scans at 25 and 24 months respectively). A viscous fluid model was
used to calculate the warping or deformation needed to achieve
correspondence of both images at the voxel level (Scahill et al.,
2002). The Jacobian determinants of the deformation fields re-
present the location and extent of warping, and can be displayed
as voxel-compression maps which show longitudinal expansion
and contraction of local brain regions. The Medical Information
Display and Analysis System (MIDAS) was used to overlay voxel-
compression maps on rigidly aligned MRI scans for visualisation.
Non-linear registrations of follow-up scans to baseline scans were
performed for both patients; the resultant voxel-compression
maps (Freeborough and Fox, 1998) are shown in Fig. 1. The white
arrow indicates the mean activation peak of the visual word form
area (x¼�44, y¼�58, z¼�15) constituted from 17 functional
imaging studies (Jobard et al., 2003).

FOL: Maps indicate relative sparing of left posterior fusiform
(iii) and more extensive involvement of the right than the left
occipital lobe.

CLA: While maps indicate diffuse atrophy, with extensive in-
volvement of the occipital lobe, they also indicate the relative
preservation of the left relative to the right inferior temporal lobe
(iii).

2.1.2. Background neuropsychology
FOL and CLA completed a battery of tests including a back-

ground neuropsychological assessment of memory, language,
spelling and arithmetic and an assessment of early visual, visuo-
perceptual and visuospatial processing (see Sections 2.2.1 and 3.1:
Visual assessment). Scores on each test are shown in Table 1. FOL
was assessed 13 and 25 months after her initial visit, while CLA
was assessed 17 months after her initial visit. CLA was due for a
follow-up assessment at 31 months after her initial visit but was
no longer suitable for testing due to a sharp deterioration in her
condition, she did, however, complete the reading and crowding
assessments at 27 months after her initial visit (see Section 2.2:
Experimental procedures).

Across visits, FOL consistently demonstrated good performance
on the concrete synonyms and spelling tasks. CLA also performed
well on concrete synonym and spelling tasks for visits where
background neuropsychological tests were administered (see
Table 1).

2.2. Experimental procedures

Subsequent to the initial baseline assessment reported in Yong
et al. (2013), the patients each completed two follow-up



Fig. 1. MRI sections and voxel-compression maps for FOL and CLA. (i) Coronal (ii) axial and (iii) left and (iv) right sagittal MRI sections for FOL and CLA at baseline and colour
coded voxel-compression maps produced from subsequent scans (FOL: 25 months; CLA: 24 months), fluid-registered to baseline scans. A region within the boundaries of the
VWFA as constituted by a functional imaging meta-analysis (Jobard et al., 2003) is indicated by the white arrows.
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assessments (first follow-up [FU1] and second follow-up [FU2]),
yielding a total of three assessments each. FOL was assessed 16
and 25 months after her initial visit, while CLA was assessed 18
and 27 months after her initial visit. Control participants only
completed the baseline assessment.

2.2.1. Visual assessment
Tests of early visual, visuoperceptual and visuospatial proces-

sing that were administered at the baseline assessment were re-
peated at follow-up assessments (see Table 1). Tests were ad-
ministered at a distance of 30 cm.

2.2.1.1. Early visual processing. (i) Visual acuity test from the Cor-
tical Visual Screening Test (CORVIST; James et al., 2001): task re-
quired discrimination of squares, circles and triangles at decreas-
ing stimulus sizes corresponding to Snellen form acuity levels.

(ii) Shape detection test from the Visual Object and Shape
Perception battery (VOSP; Warrington and James, 1991): Figure-
ground discrimination task involving random black pattern stimuli
(N¼20), half with a degraded ‘X’ superimposed. Patients were
requested to state whether an “X” was present.
(iii) Shape discrimination: The stimuli (N¼60) for this bound-
ary detection task, adapted from Efron (1969), were a square
(50�50 mm) or an oblong matched for total flux. There were
3 levels of difficulty: oblong edge ratio 1:1.63 (Level I), 1:1.37
(Level II), and 1:1.20 (Level III). The task was to discriminate
whether each shape presented was a square or an oblong.

(iv) Hue discrimination (from the CORVIST): The stimuli (N¼4)
comprised 9 colour patches, 8 of the same hue but varying lumi-
nance and one target colour patch of a different hue. The task was
to identify which patch was of a different hue.

2.2.1.2. Visuoperceptual processing. (i) Object Decision (from the
VOSP): Stimuli (N¼20) comprise 4 silhouette images, one of a real
object (target) plus 3 non-object distractors.

(ii) Fragmented Letters (from the VOSP): Participants were
asked to identify visually degraded letters (N¼20).

(iii) Unusual and usual views (Warrington and James, 1988):
Participants were asked to identify with photographs of real ob-
jects (N¼20) pictured from an ‘unusual’, non-canonical perspec-
tive. Items not identified from the non-canonical perspective are
subsequently re-presented photographed from a more ‘usual’,



Table 1
FOL and CLA's performance on background neuropsychological measures and tests
of visual processing (not tested: NT). Shaded numbers indicate task performance is
within normal limits (Z5th %ile).

Test Max
score

FOL CLA

Baseline FU1 FU2 Baseline FU1 FU2

Background neuropsychology
MMSEa 30 24 23 15 27 13 NT
Short RMT wordsb 25 21 14 16 24 21 NT
Concrete synonymsc 25 20 21 20 20 20 NT
Spelling (oral)d 20 18 6 6 19 11 NT
Digit span (forwards):
max

8 7 7 6 8 3 NT

Digit span (back-
wards): max

7 3 2 0 4 4 NT

Visual assessment

Early visual processing

Visual acuity
(CORVISTe): snellen

6/9 6/9 6/9 6/12 6/18 6/18 NT

[Visual Angle equiva-
lent at 30 cm view-
ing distance]

0.095° 0.095° 0.095° 0.134° 0.191° 0.191° –

Figure-ground (VOSPf) 20 17 16 17 14 11 NT
Shape discriminationg 20 10 17 7 10 13 NT
Visuospatial processing

Number location
(VOSP)

10 5 0 NT 5 NT NT

Dot counting (VOSP) 10 7 3 0 10 1 NT
A Cancellationh: com-
pletion time

90 s 60 s 90 s 90 s 50 s 90 s NT

A cancellation: letters
missed

19 1 6 16 0 6 NT

Visuoperceptual
processing

Object decision
(VOSP)

20 15 14 13 7 NT NT

Fragmented letters
(VOSP)

20 8 5 1 0 NT NT

Usual viewsi 20 18 20 NT 5 NT NT
Unusual views 20 10 6 NT 0 NT NT

a Mini-mental state examination (MMSE: Folstein et al., 1975).
b Warrington (1996).
c Warrington et al. (1998).
d Graded difficulty spelling test (GDST; Baxter and Warrington, 1994).
e Cortical visual screening test (CORVIST; James et al., 2001).
f Visual object and space perception battery (VOSP; Warrington and James,

1991).
g Efron (1969): Oblong edge ratio 1:1.20.
h Willison and Warrington (1992).
i Warrington and James (1988).
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canonical perspective.

2.2.1.3. Visuospatial processing. (i) Number location (from the
VOSP): Stimuli (N¼10) consist of two squares, the upper square
filled with Arabic numerals in different positions, and the lower
square with a single black dot. Participants were requested to
identify the Arabic numeral whose spatial position corresponds to
that of the target dot.

(ii) Dot counting (from the VOSP): Stimuli (N¼10) are arrays of
5–9 black dots on white background. Participants were asked to
identify the number of dots without pointing.

(iii) A Cancellation (Willison and Warrington, 1992): Partici-
pants were requested to mark as quickly as possible with a pencil
the location of 19 targets (letter As) presented among distractors
(letters B–E) in a grid on an A4 sheet.
2.2.2. Crowding assessment
FOL and CLA were requested to name aloud the same upper-

case letters (excluding I, J, O, Q, W and X) as administered at the
baseline assessment at follow-up assessments under the following
conditions:

a. Unflanked letter identification (N¼20): target stimuli were
alphabetic items presented in isolation. Letters were presented in
random order.

b. Letter flankers (N¼24; e.g. ZNH): Target letters were flanked
on each side by a letter, forming a 3-letter non-word combination.

c. Shape flankers (N¼24; e.g. ◁N△): Target letters were flanked
on each side by a triangle presented at different orientations.
Triangles were of equal height and line thickness to target letters.

d. Number flankers (N¼24; e.g. 6N5): Target letters were
flanked on each side by an Arabic numeral, chosen from a range
between 2 and 9.

In each flanking condition, target letter identification was
probed under two spatial conditions, condensed and spaced. The
edge-to-edge distance between the target letter and flankers was
0.1° in the condensed condition and 1.0° in the spaced condition,
with the height of all stimuli corresponding to a visual angle of 1.0°
at a viewing distance of 50 cm. The same combination of flankers
was used for each target letter under both spatial conditions. The
stimuli were presented in blocks of 6 items with the same spacing
between the target letter and flankers, with blocks being ad-
ministered in an ABBA design. All flanked and unflanked stimuli
were presented in the centre of the screen within a fixation box
(unflanked: 3.2° in width, 2.9° in height; flanked: 6.4° in width,
2.9° in height), ).

2.2.3. Reading assessment
As previously, FOL and CLA were administered the Brown and

Ure (1969) (N¼72) words, the Schonell reading list (N¼100;
Schonell and Goodacre, 1971) and the Coltheart et al. (1979) reg-
ular/irregular words (N¼78) yielding a total of 250 words ranging
from 3 to 14 letters in length. Letter confusability ratings were
averaged from the confusability matrices of van der Heijden et al.,
(1984), Gilmore et al., (1979), Townsend et al., (1971), and Fisher
et al., (1969), with lower case ratings averaged from the con-
fusability matrices of Geyer, (1977), and Boles and Clifford, (1989).
Letter height corresponded to a visual angle of 1.2° from a viewing
distance of 50 cm.

2.3. Data analysis

FOL and CLA's performance at follow-up assessments was
compared with control group data collected at baseline. Compar-
isons between both patients and their matched control groups
were conducted using a modified t-test developed by Crawford
and Garthwaite (2002) to identify abnormality of test scores in
single case studies. For crowding and reading assessments, latency
data for erroneous responses and responses where participants
had become overtly distracted from the task were removed from
the analysis. Latency data greater than 2 standard deviations from
the mean of each participant were removed.

2.3.1. Analysis of crowding assessment
Differences in accuracy of letter naming were compared be-

tween spacing conditions using a McNemar test. A separate lo-
gistic regression model for FOL and CLA was used to examine
overall flanked letter identification accuracy, including spacing,
flanker category and assessment as covariates, with robust stan-
dard errors to account for repeated presentation of stimuli across
visits. As latency analysis was restricted to correct responses, high
error rates at follow-up assessments meant crowding latency data
were not analysed.
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2.3.2. Analysis of reading assessment
While neither FOL nor CLA made enough errors at baseline to

allow for meaningful analysis of accuracy data, overall reading
accuracy and latency analyses were conducted using logistic re-
gression and linear mixed models respectively. The linear mixed
model included as covariates assessment (baseline, FU1, FU2),
word length, mean letter confusability, word frequency, and case
(upper or lower), with random effects to allow for repeated pre-
sentation of stimuli across visits. The logistic model included as
covariates the fixed effect variables from the linear mixed model,
with robust standard errors to account for repeated presentation
of stimuli across visits. Since CLA's performance was at ceiling at
baseline, a small constant was deducted from her score at the
initial visit, enabling us to provide a conservative estimate of the
odds ratio between visits. As latency data for the reading assess-
ment showed substantial right skew, statistical inferences were
made using bootstrapped confidence intervals (95%, bias-cor-
rected, accelerated with 2000 replications).
3. Results

3.1. Visual assessment

Consistent with baseline performance, both FOL and CLA con-
tinued to demonstrate impairments on all visual tasks except vi-
sual acuity which remained selectively spared (Table 1). The only
other visual tasks on which FOL and CLA performed in the normal
range at baseline (FOL: Object decision; CLA: Dot counting) both
elicited impaired performance in both patients by FU1.

3.2. Crowding assessment

The number and percentage correct responses and mean and
SD latency data for letter naming performance in unflanked and
flanked conditions by FOL, CLA and their relevant control samples
at each assessment are shown in Table 2.
Table 2
(A) crowding assessment and (B) reading assessment accuracy and latency for FOL/CLA
performance was poorer than their respective control groups (*¼po0.05;**¼po0.005,
performance in control groups).

A: Cro

FOL/control
raw scores

Control group FOL
Max Baseline Baseline FU1 FU2

Single letter
naming

Total 20 20 (100%) 20 (100%) 20 (100%) 20 (1
RT (s) 0.4870.06 0.59 Not recorded 1.08*

Flanked letter
identification

Total 72/48 72 (100%) 72 (100%) 37/48 (77%)̂ 58 (8

Condensed Total 36/24 36 (100%) 36 (100%) 16/24 (67%)̂ 25 (6
Spaced Total 36/24 36 (100%) 36 (100%) 21/24 (88%)̂ 33 (9

B: Re

1. Brown and
Ure Words

Total 72 71.870.4 (99.7%) 72 (100%) 71 (99%) 71 (9

RT (s) 0.51, SD70.04 0.60 1.05** 1.66*
2. Schonell Total 100 9971.0 (99%) 97 (97%) 97 (97%) 92 (9

RT (s) 0.5470.07 0.72 1.04** 1.58*
3. Coltheart
Words

Total 78 78 (100%) 77 (99%)̂ 75 (96%)̂ 69 (8

Regular Total 39 39 (100%) 39 (100%) 37 (95%)̂ 35 (9
RT (s) 0.4870.04 0.56 0.97** 1.37*

Irregular Total 39 39 (100%) 38 (97%)̂ 38 (97%)̂ 34 (8
RT (s) 0.5170.05 0.59 1.15** 1.51*
3.2.1. Single letter naming
FOL/CLA: Neither FOL nor CLA made any error responses at

baseline, FU1 or FU2.

3.2.2. Flanked letter identification
For mean percentage error rates across baseline and follow-up

assessments, see Fig. 2.
FOL: FOL did not complete letter identification tasks in the

number flanker condition at FU1. Overall analysis of FOL's accuracy
data found that flanked letter identification was less accurate at
subsequent assessments (z¼�3.28, p¼0.001). There was an
overall effect of spacing, with letters being identified less accu-
rately in the condensed condition (z¼2.98, p¼0.003). There was
no significant interaction between spacing and assessment
(p¼0.31). There was no significant effect of flanker category on
letter naming accuracy (letter vs shape flankers: p¼0.11; letter vs
number flankers: p¼0.10; shape vs number flankers: p¼0.79).

At FU1, while overall letter naming accuracy was poorer in the
condensed relative to the spaced condition across letter and shape
flanker conditions, this difference did not reach formal levels of
significance using McNemar's test (66.7% vs 87.5%; p¼0.18); in the
shape flanker condition, there was a trend towards poorer letter
naming accuracy in the condensed relative to spaced condition
(58.3% vs 100.0%; p¼0.063). At FU2, overall letter naming accuracy
was poorer in the condensed relative to the spaced condition
across all flanker conditions (69.4% vs 91.7%; p¼0.033).

CLA: Similar to FOL, overall analysis of CLA's accuracy data
found that flanked letter identification was less accurate at sub-
sequent assessments (z¼�3.53, po0.001). There was also an
overall effect of spacing, with letters being identified less accu-
rately in the condensed condition (z¼2.29, p¼0.022). There was
no significant interaction between spacing and assessment
(p¼0.94). There was no significant effect of flanker category on
letter naming accuracy (letter vs shape flankers: p¼0.43; letter vs
number flankers: p¼0.14; shape vs number flankers: p¼0.53).

At FU1, overall letter naming accuracy was poorer in the con-
densed relative to the spaced condition across all flanker
and their matched control groups; highlighted figures indicate where FOL/CLA's
^¼p value unavailable using Crawford and Garthwaite (2002) modified t-test ceiling

wding assessment

CLA/control
raw scores

Control group CLA
Baseline Baseline FU1 FU2

00%) Single letter
reading

20 (100%) 20 (100%) 20 (100%) 20 (100%)
* 0.5670.04 0.82** 0.87** 3.81**
1%)̂ Flanked letter

identification
72 (100%) 72 (100%) 64 (89%)̂ 57 (79%)̂

9%)̂ Condensed 36 (100%) 36 (100%) 29 (81%)̂ 25 (69%)̂
2%)̂ Spaced 36 (100%) 36 (100%) 35 (97%)̂ 32 (89%)̂

ading assessment

9%) 1. Brown and
Ure Words

72 (100%) 72 (100%) 70 (97%)̂ 69 (96%)̂

* 0.57,70.06 0.64 0.91** Data missing
2%)** 2. Schonell 9971.2 (99%) 100 (100%) 94 (94%)* 88 (88%)**
* 0.60,70.06 0.78* 0.92** 6.52**
9%)̂ 3. Coltheart

Words
78 (100%) 78 (100%) 72 (92%)̂ 69 (89%)̂

0%)̂ Regular 39(100%) 39 (100%) 36 (92%)̂ 35 (90%)̂
* 0.5370.05 0.91** 0.88** 6.62**
7%)̂ Irregular 39 (100%) 39 (100%) 36 (92%)̂ 34 (87%)̂
* 0.5570.05 1.1** 1.1** 7.87**



Fig. 2. Flanked letter identification accuracy in condensed and spaced conditions across three longitudinal assessments (overall letter/shape/number flankers:*¼po0.05).

K. Yong et al. / Neuropsychologia 85 (2016) 127–136132
conditions using McNemar's test (80.6% vs 97.2%; p¼0.031). At
FU2, while overall letter naming accuracy was poorer in the con-
densed relative to the spaced condition, this difference did not
reach formal levels of significance (72.2% vs 86.1%; p¼0.27).

3.2.3. Flanked letter identification error analysis
The number of types of error responses made across both fol-

low-up assessments is shown in Fig. 3. Error responses fell into
three categories:

� Target remained unidentified, suggesting an inability to either
detect or identify the target

� Response was a letter which was neither the target nor a flanker
(e.g. YMT-V; 6F2-T)

� Flanker was identified rather than the target (e.g. ZNH-Z)
Fig. 3. Flanked letter identification errors. Overall number of types of error made
on flanked letter identification tasks.
A greater proportion of FOL's errors were due to the target
being unidentified, whereas a greater proportion of CLA's errors
were due to responses which identified neither target nor flanker
stimuli.

3.3. Reading assessment

Mean percentage error rates and reading latencies for overall
performance (summing across reading corpora) at baseline and
follow-up assessments are shown in Fig. 4. Reading performance
by FOL, CLA and their relevant control samples on the individual
reading corpora is shown in Table 2.

3.3.1. Overall reading accuracy
FOL: Overall analysis of FOL's accuracy data across the three

assessments found accuracy decreased in subsequent assessments
(z¼�3.22, p¼0.001). While there was a slight decline in FOL's
overall accuracy between baseline (98.4%) and FU1 (97.2%), this did
not reach formal levels of significance (p¼0.18). However, there
was a significant decline between baseline and FU2 (92.8%;
z¼�3.38, p¼0.001) and between FU1 and FU2 (z¼�2.26,
p¼0.024). Across the three assessments, longer words were read
less accurately (z¼�2.60, p¼0.009). There were no significant
effects of mean letter confusability (p¼0.46), frequency (p¼0.31)
or case (p¼0.18) on reading accuracy.

There was no significant difference in length effects on accu-
racy at follow-up assessments relative to baseline (FU1: p¼0.42;
FU2: p¼0.55), however there was a trend towards longer words
being read less accurately at FU2 relative to FU1 (z¼1.72,
p¼0.085).

CLA: Overall analysis of CLA's accuracy data across the three
assessments also found a decrease in accuracy in subsequent as-
sessments (z¼�5.38, po0.001). There was a decline in CLA's
overall accuracy between baseline (100%) and FU1 (94.4%;
z¼�2.79, p¼0.005) and FU2 (90.4%; z¼�3.39, p¼0.001), with



Fig. 4. Overall reading accuracy and latency data across three longitudinal as-
sessments. Error bars show standard deviation for control groups.

Fig. 5. Latencies for words of different length. Overall reading latencies for words
of different length are shown for FOL and CLA at different longitudinal assessments
and baseline latencies are shown for their respective matched controls, with esti-
mated upper and lower control confidence intervals.
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decline also evident between FU1 and FU2 (z¼�1.97, p¼0.049).
Across the three assessments, longer words were read less accu-
rately (z¼�2.15, p¼0.031) and there was a trend towards words
in upper case being read less accurately (z¼�1.84, p¼0.066).
There were no significant effects of mean letter confusability
(p¼0.49) or frequency (p¼0.29) on reading accuracy. There were
no significant differences in length effects on accuracy between
follow-up assessments (all p40.1).

3.3.2. Reading error analysis
Errors were classified using criteria outlined in Crutch and

Warrington (2009). Visual errors, defined as real-word errors in
whichZ50% of letters are maintained, made up 50% of FOL’s error
responses at baseline, 57% of error responses at FU1 and 80% at
FU2. CLA did not make any errors at baseline, whilst visual errors
made up 60% of her error responses at FU1 and 65% of her error
responses at FU2.

Of FOL's visual errors, 42.1% were deletion errors, 53.8% were
substitution errors and 4.2% were addition errors. Of CLA’s visual
errors, 23.1% were deletion errors, 44.3% were substitution errors
and 32.6% were addition errors. Neither patient's visual errors
showed an overall tendency toward being neglect errors; errors
either showed no evidence of a spatial bias (FOL: N¼10; CLA:
N¼11), were confined to the left (FOL: N¼4; CLA: N¼12) or right
side of words (FOL: N¼1; CLA: N¼4; Ellis et al., 1987).

3.3.3. Overall reading latency
Overall reading latencies for words of up to 12 letters read at

baseline, FU1 and FU2 are shown in Fig. 5.
FOL: Analysis of FOL's latency data across the three assessments

found that reading speed was slower in subsequent assessments.
Reading speed was 0.63 s/word at baseline, 1.04 s/word at FU1
(95% CI [0.33,0.57]) and 1.49 s/word at FU2 (95% CI [0.67, 1.15]),
with further decline in reading speed between FU1 and FU2 (95%
CI [0.23,0.75]). Across the three assessments, increased word
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length led to slower reading speed (0.044 s word per additional
letter; 95% CI [0.022,0.70]).

There was an interaction between word length and assessment.
The effect per additional letter was 0.04 s/word at baseline and at
FU1. At FU2, reading speed was 0.16 s slower per additional letter,
a significantly greater effect than was observed at baseline (in-
teraction 0.11 s/word 95% CI [0.004,0.29]). There were no sig-
nificant effects of letter confusability (95% CI [�0.26, 3.45]), case
(95% CI [�0.044,0.32]) or frequency (95% CI [�0.00023,0.00048]).

CLA: Analysis of CLA's latency data also found that reading
speed was slower in subsequent assessments. Reading speed was
0.75 s/word at baseline, 0.94 s/word at FU1 (0.19 s/word slower
than baseline 95% CI [0.12,0.24]) and 6.85 s/word at FU2 (5.96 s/
word slower than FU1; 95% CI [5.09, 7.10)). There were no sig-
nificant effects of word length (95% CI [�0.0063,0.11]), letter
confusability (95% CI [�10.26, 4.37]), case (95% CI [�0.62,0.76]) or
frequency (95% CI [�0.00095,0.0032]). There was no evidence of a
significant interaction between length and visit.
4. Discussion

The current paper reports a two year follow-up evaluation of
the relationship between visual processing and reading ability in
two PCA patients, FOL and CLA. At the baseline assessment, despite
showing comprehensive visual impairment, both patients de-
monstrated remarkably preserved reading ability, with CLA
achieving 100% reading accuracy. The acuity of both patients was
normal to near-normal, and neither patient showed evidence of
excessive crowding when naming centrally-presented flanked
stimuli. On follow-up assessments, while visual acuity remained
relatively well-preserved, both patients showed a deterioration in
their performance on centrally-presented flanked letter identifi-
cation tasks, consistent with the evolution of prominent crowding
effects. Concurrently, both patients’ reading speed declined re-
lative to both their respective baseline performance and their age-
and gender-matched control groups. At first follow-up, CLA was
not only slower but also less accurate, making errors on high-
frequency words (e.g., FREE-TREE, GLOVE-CLOVE). By second
follow-up, reading accuracy for both patients was well below that
of controls.

We hypothesised that a deterioration in reading ability would
be accompanied by the emergence of excessive crowding, mani-
fested through errors identifying centrally-presented letters
flanked by letter, shape and number stimuli. The acuity of both
patients was the same at baseline and first follow-up; assuming
pupil size did not change, errors naming flanked letters at first
follow-up would not arise as a consequence of overlap masking
due to poor acuity. Consistent effects of spacing were observed in
different flanker conditions, with elevated error rates resulting
from targets with condensed flankers. This pattern of deficit is
characteristic of visual crowding, and mirrors flanked letter iden-
tification deficits observed in other PCA patients (Crutch and
Warrington, 2007, 2009; Mendez, 2001; Yong et al., 2014a). A
previous eyetracking investigation of other PCA patients identify-
ing the same centrally-presented flanked stimuli has suggested
that this pattern of deficit arises even when patients are using
central vision (Yong et al., 2014a, Fig. 4).

Having observed this co-occurrence of progressively dimin-
ished reading and heightened crowding, what is the nature of the
reading impairment in FOL and CLA? Poor performance identifying
flanked letter stimuli was not more pronounced with letter (i.e.
same category) flankers as outlined under Shallice and Warring-
ton's definition of attentional dyslexia (Shallice and Warrington,
1977; Humphreys and Mayall, 2001; Warrington et al., 1993).
However, it is likely that deficits in spatial attention impact
reading at and above the single word level, given the relationship
between impaired visuospatial attention and reading acquisition
(Franceschini et al., 2012) and how interventions which improve
spatial cueing performance also result in improved text and
pseudoword reading in dyslexic children (Franceschini et al., 2013;
Gori et al., 2015). Visual errors comprised the majority of both
patients' reading error responses, consistent with previous studies
attributing acquired dyslexia to excessive crowding (Crutch and
Warrington, 2009). Neither patient showed an effect of letter
confusability on their reading ability; such an effect might be ex-
pected given how visual similarity modulates the expression of
crowding. Both FOL and CLA showed poorer reading accuracy for
longer words; this effect may be a result of increased numbers of
letters exhibiting greater inhibitory flanker effects on parallel let-
ter identification (Chanceaux and Grainger, 2013). In terms of
reading speed, FOL showed not only poorer accuracy, but also
slower reading speed for longer words; this length effect was more
prominent at second follow-up. The “shrinking visual span hy-
pothesis” (Legge et al., 1997) proposes length effects on reading
latency might arise with words whose lengths exceed the size of
the visual span, due to increased demands in the number of
fixations. Excessive crowding would likely exacerbate such de-
mands by reducing the visual span (see Pelli et al., 2007); however,
such a reduction could also arise from a restriction in the effective
field of vision which has been found to contribute to PCA patients'
diminished ability to recognise large rather than small pictures,
words and letters (Saffran and Coslett, 1996; Kartsounis et al.,
1991; Coslett et al., 1995; Stark et al., 1997; Crutch et al., 2011;
Yong et al., 2014b).

Variations in patterns of reading performance between the two
patients may relate to differences in the quality of crowding effects
between FOL and CLA. Assessment of reading ability identified
how a greater proportion of FOL's error responses featured letter
deletions; in contrast, a greater proportion of CLA's error re-
sponses featured letter additions. Assessment of crowding identi-
fied how a greater proportion of FOL’s errors arose from her being
unable to provide a response to target stimuli, while CLA showed a
greater tendency towards making error responses that named
neither the target nor flanker. If flanked letter identification errors
arise from competition between feature detectors, as proposed in
lateral masking accounts (Townsend et al., 1971; Wolford and
Chambers, 1984), crowding may limit letter detection as well as
identification (Parkes et al., 2001; Pelli et al., 2004). By contrast,
feature integration accounts suggest pooling of information over
multiple features of flanker and target stimuli, inhibiting identifi-
cation but not detection (Pelli et al., 2004; Greenwood et al., 2010).
In the context of a two-stage model of crowding (Levi, 2008), FOL's
lack of responses may reflect a low-level deficit in feature detec-
tion, whereas CLA's error responses may stem from a higher-level
deficit of excessive integration between features of target and
flanker stimuli. Whilst we cannot know the current distribution of
pathology in our patients in sufficient detail, crowding as a failure
of feature detection in FOL would predict greater pathological in-
volvement of the striate cortex, while crowding as a consequence
of excessive feature integration in CLA would predict dispropor-
tionate involvement of the extrastriate cortex.

In our previous investigation, we proposed that efficient read-
ing in both patients was a consequence of preserved word form/
parallel letter processing, maintained by the integrity of early as-
pects of the visual system (as suggested by strong performance on
tests of visual acuity), the VWFA and interconnecting projections.
In the current investigation, while both patients showed diffuse
brain atrophy, we continue to argue for the relative preservation of
the region corresponding to the VWFA at subsequent assessment.
Given the dissociation between crowding and acuity (Song et al.,
2014), even the sustained efficacy of both the early visual system
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and the VWFA might be undermined by enhanced crowding and
any accompanying occipital atrophy. However, we cannot con-
clusively rule out the possibility that disease progression may have
also compromised the structural integrity of the early visual sys-
tem, projections to the VWFA or the VWFA itself based on imaging
data from these two patients. Such interpretations would predict
that constraints on basic visual input or disruption to orthographic
processing would contribute to FOL and CLA's reading impairment.
However, such interpretations might also predict effects of word
length on reading latency consistent with previous reports of LBL
readers (Mycroft et al., 2009); this notion receives little to no
support from FOL and CLA's reading ability.

There were several methodological limitations to the current
investigation. Each assessment used fixation boxes to support ef-
fective localisation of crowding stimuli, given both patients' defi-
cits in visuospatial function. However, the fixation box may have
exhibited crowding effects on flanked and unflanked stimuli, and
the varying width of the fixation box between flanked and un-
flanked conditions may have created a potential confound. How-
ever, neither FOL nor CLA made errors naming unflanked letters.
We advise that future investigations consider potential crowding
effects exhibited by this presentation method; such effects may be
mitigated using fixation cues positioned at greater eccentricities
and/or of opposite polarity contrast to stimuli (Yong et al., 2015;
Kooi et al., 1994). Reading corpora featured words in a font which
varied in letter width and interletter spacing; we suggest future
investigations of the relationship between crowding and dyslexia
consider approaches to better control interletter spacing, for ex-
ample, using fixed-width font. Future studies will also benefit from
the development of nonletter stimuli to assess crowding in PCA.
Crucially, such stimuli must exclude the need to make judgements
based on identifying orientation or position, given PCA patients'
frequent deficits in spatial cognition.

This longitudinal investigation follows the concurrent devel-
opment of crowding deficits and declining reading ability in two
patients with a neurodegenerative condition. These results further
underline the relationship between crowding, a specific early vi-
sual processing deficit, and reading. The specificity of this deficit
contrasts with the underspecified 'general visual impairment'
which proponents of general visual accounts of reading regard as
the causal component underlying acquired dyslexia. The current
findings provide additional insight into different ways in which
crowding may limit reading ability, and demonstrate a neurode-
generative approach towards understanding the relationship be-
tween one specific form of basic visual deficit and the reading
system.
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