
A computational method for

the construction of Siegel sets in

complex hyperbolic space

A thesis submitted to University College London
for the degree of Doctor of Philosophy

Brian Michael Tyler

March 2010

Department of Mathematics
University College London

I, Brian Michael Tyler, confirm that the work presented in this thesis is my own. Where information has

been derived from other sources, I confirm that this has been indicated in the thesis.

Abstract

This thesis presents a computational method for constructing Siegel sets for the action of Γ = SU(n,1;O)

on Hn
C, where O is the ring of integers of an imaginary quadratic field with trivial class group. The

thesis first presents a basic algorithm for computing Siegel sets and then considers practical improve-
ments which can be made to this algorithm in order to decrease computation time. This improved algo-
rithm is implemented in a C++ program called siegel, the source code for which is freely available at
http://code.google.com/p/siegel/, and this program is used to compute explicit Siegel sets for the
action of all applicable groups Γ on H2

C and H3
C.

3

Acknowledgements

Principally I would like to extend my most sincere thanks to Dr. Andrei Yafaev, not just for his continued
academic support over the four and something years that I’ve taken to complete this PhD., but also for his
friendship and for not giving up on me during the tough times that are an almost inevitable part of such a
program of study and research.

In a world of such stark and growing disparity between those with opportunity and those without as
that which we inhabit, a man who has been as fortunate as I would do well to remember that his life is one
filled with opportunity by virtue of the people who have given him those opportunities and supported him
throughout his entire life. For me those people have been and continue to be my parents. As I grow older I
realise the sacrifices that they have made for me and for them I shall be eternally grateful.

UCL has given me a first rate education; perhaps not necessarily the education I would have asked for,
but nonetheless I couldn’t fault it. Being given the chance to live amongst the intellectual elite in the heart
of what is perhaps the greatest and freest city in the world for three years entirely at the taxpayer’s expense
is a privilege afforded to very few and I am deeply thankful to those people who deemed me worthy of such
a privilege.

I would like to add a special mention for Dr. Vassili Corbas of Reading University as he was the person
who really got me interested in mathematics beyond the box-ticking exam-centric mindset of the modern
university student. It was his passion for the subject that inspired me and I’m sure that without his help
I would probably now be working as a middle ranking accountant at the Carphone Warehouse (a fate to
which I once came perilously close).

4

Contents

1 Results 6
1.1 Siegel Sets in 2 and 3 Dimensions . 6

2 Introduction 9
2.1 The current state of knowledge . 11
2.2 Results obtained . 11
2.3 Outline of the Thesis . 13

3 Preliminaries 16
3.1 Complex Hyperbolic Space . 16
3.2 A Change of Basis . 19
3.3 The Stabiliser of Infinity . 22
3.4 The Involution and Brûhat Decomposition . 25

4 Siegel Set Construction 27
4.1 Cusps . 28
4.2 Siegel Containers . 30
4.3 Siegel Sets . 34
4.4 Discretisation . 36
4.5 Cusp Construction . 40
4.6 Siegel Set Construction . 44

5 Computational Improvements 46
5.1 An Improved Siegel Container . 47
5.2 Non-Primitive Cusps . 49
5.3 Equivalent Cusps . 50
5.4 Improved Bounds on ζ and r . 51
5.5 Non-Effective Cusps . 58
5.6 Improved Cusp Construction . 58
5.7 Computing the Resolution . 60
5.8 Computing Phi on V . 62
5.9 Choosing Cusps from Q . 64
5.10 Improved Siegel Set Construction . 66

5

Chapter 1

Results

The following results were obtained from a C++ application called siegel which implements an algorithm
based on Algorithm 5.10.1. The source code is released under the GPL v3.0 license and can be found here:
http://code.google.com/p/siegel/. The application consists of approximately 10,000 lines of code
and its design and implementation comprised the majority of the work involved in this PhD. thesis.

1.1 Siegel Sets in 2 and 3 Dimensions

Theorem 1.1.1 Let K = Q
(√

d
)

be an imaginary quadratic field with ring of integers O, suppose that

Cl(K) = 1 and let S∞ be a Siegel container for Γ = SU(2,1;O). Then S∞ (L) is a Siegel set for Γ, where:

d =−1 L = 0.999978433493 |CK | ≤ 23

d =−2 L = 0.499996205477 |CK | ≤ 181

d =−3 L = 0.999992068197 |CK | ≤ 17

d =−7 L = 0.791053494930 |CK | ≤ 27

d =−11 L = 0.331422584272 |CK | ≤ 451

d =−19 L = 0.249830466184 |CK | ≤ 827

d =−43 L = 0.113480677567 |CK | ≤ 9253

d =−67 L = 0.074467903908 |CK | ≤ 33466

d =−163 L = 0.009440545740 |CK | ≤ 36096934

Theorem 1.1.2 Let K = Q
(√

d
)

be an imaginary quadratic field with ring of integers O, suppose that

Cl(K) = 1 and let S∞ be a Siegel container for Γ = SU(3,1;O). Then S∞ (L) is a Siegel set for Γ, where:

d =−1 h = 0.987391129157 |CK | ≤ 108

d =−2 h = 0.577540291822 |CK | ≤ 2258

d =−3 h = 0.999085879138 |CK | ≤ 47

d =−7 h = 0.493756821420 |CK | ≤ 1601

6

d =−11 h = 0.536411563086 |CK | ≤ 773

d =−19 h = 0.196138009090 |CK | ≤ 104813

d =−43 h = 0.059149067053 |CK | ≤ 46224490

d =−67 h = 0.010418787475

d =−163 h = 0.000040212980

When computing a lower height bound for n = 3,d = −43 and n = 3,d = −67 the computer was told
to accept a sub-optimal height bound in order to speed up computation; this means that the results are not
as good as they could be. When computing the lower height bound for n = 3,d =−163 the computer was
told to accept a highly sub-optimal height bound, this means that this result is most likely very far from the
actual height bound, however computation time was still around two and a half months; due to modifications
made to the algorithm since this computation was performed, it would probably now be somewhat faster
than this to compute this value.

An upper bound on the number of cusps for n = 3,d = −67 is definitely computable in practise with
the current library and technology, however it is likely to take a few months of computation time based
on the computation time for n = 3,d = −43 which was approximately two days. An upper bound for
n = 3,d =−163 is not realistically computable without either greatly improving the height bound, or using
a very powerful supercomputer.

Lemma 1.1.3 Let v ∈ Hn
C, let q ∈ CK be a cusp of dilation factor δ and suppose that h(v) > 2δ−1. Then

eq (v)≥ 1.

PROOF Expanding out the effect function eq (v) = | 〈v,q〉 |2 ≥
∣∣∣ δh(v)

2

∣∣∣2 ≥ ∣∣∣ δ2δ−1

2

∣∣∣2 = 1. �

Corollary 1.1.4 Let K = Q
(√

d
)

be an imaginary quadratic field with ring of integers O, suppose that

Cl(K) = 1, let S∞ be a Siegel container for Γ = SU(2,1;O), let L be as in Theorem 1.1.1, take ∆ as

d =−1 ∆ = 4

d =−2 ∆ = 16

d =−3 ∆ = 4

d =−7 ∆ = 6

d =−11 ∆ = 36

d =−19 ∆ = 64

d =−43 ∆ = 310

d =−67 ∆ = 721

d =−163 ∆ = 44881

Then whenever δ >
√

∆, CKδ(S∞ (L)) = /0.

Corollary 1.1.5 Let K = Q
(√

d
)

be an imaginary quadratic field with ring of integers O, suppose that

7

Cl(K) = 1, let S∞ be a Siegel container for Γ = SU(3,1;O), let L be as in Theorem 1.1.2, take ∆ as

d =−1 ∆ = 4

d =−2 ∆ = 11

d =−3 ∆ = 4

d =−7 ∆ = 16

d =−11 ∆ = 13

d =−19 ∆ = 103

d =−43 ∆ = 1143

d =−67 ∆ = 36848

d =−163 ∆ = 2473588627

Then whenever δ >
√

∆, CKδ(S∞ (L)) = /0.

8

Chapter 2

Introduction

This thesis presents an algorithmic approach to the problem of constructing Siegel sets for the action of
SU(n,1;O) on Hn

C where O is the ring of integers of some imaginary quadratic field. The problem is
solved for the case of fields with trivial class group in Algorithm 4.6.2. This first algorithm is quite naı̈ve;
this makes it easy to analyse from a theoretical perspective, but contains too many inefficiencies to be a
practical candidate for implementation, as such computational improvements to Algorithm 4.6.2 are con-
sidered and an improved algorithm is given in Algorithm 5.10.1. The improved algorithm is implemented
as a C++ application and this application is used to compute explicit Siegel sets for all fields with trivial
class group in dimensions 2 and 3, these results are presented in Chapter 1.

Both the basic and computationally improved algorithms implement the same control flow; this is de-
scribed in Figure 2. The algorithm takes three inputs; n the complex hyperbolic dimension of the space to
work in, d a Heegner number (an integer d such Q(

√
−d) has trivial class group) and α ∈ (0,1) an error

tolerance, the closer α is to 1 the more accurate the result. The algorithm then proceeds as follows:

1. A Siegel set for the stabilizer of the point at infinity is computed analytically using a formula, see
Lemma 4.2.6 and Lemma 5.1.2. Call this set X .

2. Cusps are generated which are candidates for raising the height of points in X .

3. The set X is iterated through to see if every point in it can be raised above a certain threshold level by
the current set of cusps.

4. If the threshold height is reached the algorithm terminates and outputs a height which determines a
Siegel set. Otherwise more cusps are generated and the process is repeated until the threshold height
is attained.

9

Figure 2.1: Control Flow of the Siegel Set Generating Algorithm

10

2.1 The current state of knowledge

At the point of commencing this work analytic solutions to the problem were known in the cases of
SU(2,1;Z[ı]) and SU

(
2,1;Z

[
1+
√
−3

2

])
; in the first case two proofs were known and in the second one;

see [FL03] and [Yas05] (Z[ı]) and [FP06] (Z
[

1+
√
−3

2

]
). To the best of the author’s knowledge no compu-

tational work had been carried out in the field. In all of these works fundamental domains are computed for
their respective groups and not just Siegel sets. The paper [FP06] is a very elegant piece of mathematics
that makes explicit use of the special geometry inherited from the sixth roots of unity in the ring of integers,
the authors compute a fundamental domain without going via a Siegel set, however due to this the proof it is
not clear that their proof can be generalised to other groups or dimensions. In contrast [FL03] and [Yas05]
adopt a more traditional approach, first computing a Siegel set and then using this to compute a fundamen-
tal domain; in fact under a change of basis the computation of a Siegel set in [FL03] for SU(2,1;Z[ı])
generalises immediately to the computation of a Siegel set for SU

(
2,1;Z

[
1+
√
−3

2

])
.

This thesis builds primarily on [FL05] which considers the construction of a Siegel set for SU(2,1;Z[ı])
and was the precursor to [FL03] (the date order is explained by the fact that [FL03] is a pre-print, whereas
[FL05] is a published paper). There are two key modifications that need to be made to this paper in order
to generalise the method to all fields with trivial class group in all dimensions:

1. The basis needs to be changed so that all groups can be represented.

2. The method needs to be adapted to deal with the action of more than one automorphism. This is
achieved in this thesis by the introduction of the effect function.

The paper [FL05] does not use cusps to proxy the height changing properties of automorphisms, but
instead uses the actual automorphisms themselves; whilst this creates no problems in the case that they
work in, in the general case computing automorphisms is an expensive task which is considerably more
complicated than constructing cusps alone. And in general it is not necessary to work with automorphisms
as is shown in [Yas05] where the author develops a method for computing fundamental domains and cal-
culating cohomology by using only cusps and never considering the actual automorphisms themselves; this
method starts from the position of knowing a Siegel set for the group action along with a set of cusps which
generates this Siegel set; although no theory of Siegel set or cusp construction is discussed in [Yas05].

As such this thesis sits somewhere in between [FL05] and [Yas05]. Firstly [FL05] lay the building
blocks for Siegel set construction with one explicit example and [Yas05] describes how to construct a
fundamental domain given a Siegel set and a set of candidate cusps which generate it. This thesis bridges
the gap by developing a computational method for constructing Siegel sets along with a set of candidate
cusps which generate this set.

2.2 Results obtained

The following results were obtained from a C++ application called siegel which implements an algorithm
based on Algorithm 5.10.1. Let Q

(√
d
)

be an imaginary quadratic number field and write O for the ring of
integers of Q

(√
d
)
, denote the set of cusps that generate a Siegel set as Q, then the following sets are Seigel

11

sets for Γ:

S∞ =

{
v ∈Hn

C

∣∣∣∣ ∣∣ℜzi

∣∣≤ 1
2
, 0≤ ℑzi ≤

√
−d
4

, |x | ≤
√
−d
2

, h(v)≥ h
}

when d ≡ 1 mod 4;

S∞ =

{
v ∈H2

C

∣∣∣∣ |ℜz | ≤ 1, 0≤ ℑz≤
√
−d
2

, |x | ≤
√
−d
2

, h(v)≥ h
}

when d 6≡ 1 mod 4 and n = 2;

S∞ =

{
v ∈H3

C

∣∣∣∣ ∣∣ℜz1

∣∣≤ 1,
∣∣ℜz2

∣∣≤ 1
2
(i 6= 1),

∣∣ℑzi

∣∣≤ √−d
2

, |x | ≤
√
−d
2

, h(v)≥ h
}

when d 6≡ 1 mod 4 and n = 3
Dimension n = 2:

d =−1 h = 0.999978433493 |Q | ≤ 23

d =−2 h = 0.499996205477 |Q | ≤ 181

d =−3 h = 0.999992068197 |Q | ≤ 17

d =−7 h = 0.791053494930 |Q | ≤ 27

d =−11 h = 0.331422584272 |Q | ≤ 451

d =−19 h = 0.249830466184 |Q | ≤ 827

d =−43 h = 0.113480677567 |Q | ≤ 9253

d =−67 h = 0.074467903908 |Q | ≤ 33466

d =−163 h = 0.009440545740 |Q | ≤ 36096934

Dimension n = 3:

d =−1 h = 0.987391129157 |Q | ≤ 108

d =−2 h = 0.577540291822 |Q | ≤ 2258

d =−3 h = 0.999085879138 |Q | ≤ 47

d =−7 h = 0.493756821420 |Q | ≤ 1601

d =−11 h = 0.536411563086 |Q | ≤ 773

d =−19 h = 0.196138009090 |Q | ≤ 104813

d =−43 h = 0.059149067053 |Q | ≤ 46224490

d =−67 h = 0.010418787475

d =−163 h = 0.000040212980

12

2.3 Outline of the Thesis

Chapter 3 follows [Gol99], Section 3.1 introduces complex hyperbolic n-space as the space of negative lines
in Pn

C with respect to an Hermitian form of signature (n,1) and the group of automorphisms of this space
is PU(n,1) although the group SU(n,1;C) can be considered in its place; the ball model is then shown
to be equivalent to this definition and is also shown to be a valid model for the symmetric space and; the
paraboloid model is shown to be isomorphic to the ball model and thus also a valid model via the Cayley
transform. In Section 3.2 a change is made from the standard basis in order to ease computation later on
and notation for describing points in the space is set up. Section 3.3 decomposes the stabilizer of infinity
in SU(n,1;C) into the semidirect product of a translation group and a rotation-dilation group, it describes
what this decomposition looks like under restriction to certain subrings of C; amongst these subrings are
imaginary quadratic fields and the rings of integers of such fields. The chapter concludes in Section 3.4
with another structural result, giving the Brûhat decomposition of SU(n,1;C) under restriction to certain
subfields of C including imaginary quadratic fields.

Chapter 4 develops the theoretical tools required to algorithmically construct Siegel sets for the action
of Γ = SU(n,1;O) on Hn

C where O is the ring of integers of an imaginary quadratic field K with trivial class
group. Section 4.1 introduces objects called cusps Definition 4.1.1; through a deep result of Zink [Zin79] it
is shown that when the class group of K is trivial then the cusps define a family of functions which perfectly
proxy the height changing properties of the automorphisms in Γ; the effect function of a cusp at a point in
Hn

C is introduced Definition 4.1.8, it determines whether or not a point is raised by the action of a particular
cusp and is one of the main tools used throughout the rest of this thesis. One of the key properties of the
effect function is that it is convex under the standard Euclidean metric, this is proved in Proposition 4.1.9.
Section 4.2 introduces the Siegel container as a Siegel set for Γ∞; the importance of Siegel containers in
Siegel set construction is given by Proposition 4.2.2 which states “Let S∞ ⊂ Hn

C be a Siegel container for

Γ, let L > 0, and suppose that for all v ∈ Hn
C there exists an automorphism γ ∈ Γ such that γ ◦ v ∈ S∞ (L).

Then S∞∩
{

v ∈Hn
C | height of v≥ L

}
is a Siegel set for Γ.” In Lemma 4.2.6 an analytic formula for writing

down a Siegel container depending only on the imaginary quadratic field and the dimension of the space
is given. With an explicit formula for Siegel containers, in Section 4.3 attention is turned to the part of
Proposition 4.2.2 which describes how to turn Siegel containers into Siegel sets, the first key result is
Lemma 4.3.2 which describes how to verify that a set of cusps generates a Siegel set. A new function
called the Phi function is introduced Definition 4.3.3 and this function is used in Lemma 4.3.5 to reinterpret
Lemma 4.3.2 in a form which asks not just if a set of cusps generates a Siegel set, but determines the
lower height bound of the Siegel set generated given a set of cusps. Up until this stage questions have been
asked from the point of view of being able to operate without restriction on a continuous space, however of
course computation is only possible in a discrete approximation of a continuous space and as such Section
4.4 investigates how to extend these continuous results to a discretised approximation; Corollary 4.4.4
extends Lemma 4.3.5 from a continuous space, to a space discretised into the union of convex polytopes
and this now provides a practical method of algorithmically computing a Siegel set; in addition a strategy
for bounding the error in discretisation is presented in Lemma 4.4.7. Having worked out in theory how to
construct a Siegel set from a Siegel container in a discrete model given the existence of a set of cusps, it
remains to consider how to construct the set of cusps. A cusp has an important invariant associated to it
called its dilation factor; the dilation factor of a cusp is a strictly positive real number and the square of

13

a dilation factor is an integer; furthermore the smaller the dilation factor of a cusp the larger the region
of effect is around that cusp in which the cusp can raise points in Hn

C. In Section 4.5 it is shown that the
number of cusps of a fixed dilation factor which can raise the height of points in a compact region in Hn

C is
finite and two algorithms (Algorithm 4.5.5 and Algorithm 4.5.6) for constructing all cusps in such a region
are described, in fact these algorithms construct many cusps which cannot raise any points in the region
of interest into the bargain, but this is theoretically unimportant; the choice of algorithm depends solely on
the congruence class of the generator of the field. The final section in the chapter pulls all of these ideas
together into a single algorithm, Algorithm 4.6.2, which takes as input; a dimension, a Heegner number
and an error tolerance and returns a Siegel set for the group determined by these parameters, the Siegel set
lies within an error bound based on the error tolerance; this algorithm is shown in Proposition 4.6.3 to be
guaranteed to terminate.

Chapter 5 considers improvements that can be made to Algorithm 4.6.2 to make it practical for imple-
mentation. In Section 5.1 Lemma 5.1.2 and Lemma 5.1.3 improve on the Siegel container computed in
Lemma 4.2.6 by considering the action of rotational automorphisms in the integral stabilizer subgroups; in
all but two cases the measure of the Siegel container is considerably decreased; a smaller Siegel container
means a smaller space to discretise and as such either greater speed or higher accuracy. In Section 5.2 it is
shown that there are two types of cusp; primitive and non-primitive and; for any non-primitive cusp, there
is a primitive cusp which is at least as good at raising the height of all points in Hn

C than the non-primitive
one, Corollary 5.2.3. As such non-primitive cusps play no part in the construction of Siegel sets and as such
they do not need to be output by a cusp generating algorithm; checking for primitivity is a simple operation
which involves computing the K-norm of the coordinates of a cusp.

Due to the projective nature of Hn
C cusps corresponding to the same line in Pn

C have equivalent actions,
Section 5.3 determines how to identify and remove all but one cusp from each equivalence class early on in
the process of cusp construction.

The number of cusps generated by the original cusp algorithms is heavily influenced by bounds on the
coordinates derived in Corollary 4.4.6, however these bounds are rather loose and lead to a large number of
superfluous cusps being generated. Section 5.4 improves on these bounds by considering the coordinates
on an individual basis; the difficulty in achieving these improvements is not mathematical but practical and
comes primarily in the form of an algorithm for iterating through a lattice which changes during the process
of iteration, Algorithm 5.4.8.

Removing non-primitive and equivalent cusps and improving the bounds on the cusp coordinates sig-
nificantly reduces the number of superfluous cusps which are generated, however some percentage of the
generated cusps will still not be able to raise any points in the Siegel container, Section 5.5 provides a
method for removing all such cusps from the set of generated cusps, however this method involves per-
forming a multidimensional minimisation which is an expensive computational operation, whereas all other
cusp pruning operations are either inexpensive, or actually speed up construction time, and as such this
should be considered as a final stage in the process of cusp generation.

Section 5.6 combines the ideas in Sections 5.2 - 5.5 to create an improved cusp generation algorithm.
Section 5.7 considers an alternative way of discretising the search space compared to that described in
Section 4.4; the first method of discretising is derived in order to provide definitive bounds on the error
introduced due to discretisation, the second method is heuristic based and is designed to provide a compro-
mise between speed and accuracy more appropriate to a practical implementation, however the definitive

14

error bounds are given up to achieve this compromise.
The computation time not spent constructing cusps is used almost exclusively to compute the Phi func-

tion on the discretised search space; Section 5.8 provides an algorithm for performing these calculations
in an efficient way, 5.8.1. And since the Phi functions are determined at cusps then the order in which the
cusps are chosen to compute Phi at is important; Section 5.9 discusses a strategy for ordering cusps so that
they can be chosen in a way which is better than random. The final section in this chapter, Section 5.10
pulls all of these ideas together into a single algorithm, Algorithm 5.10.1, and it is shown that this algorithm
is guaranteed to terminate and output a Siegel set.

15

Chapter 3

Preliminaries

3.1 Complex Hyperbolic Space

The definition of n-dimensional complex hyperbolic space, Hn
C, in this thesis follows [Gol99]: in [Gol99,

3.1] the space Hn
C is defined to be the negative lines in Pn

C, the set of 1-dimensional complex linear subspaces
through the origin in Cn+1, with respect to an Hermitian form of signature (n,1); also in [Gol99, 3.1] the
ball model of complex hyperbolic space is shown to be equivalent to this projective definition and then;
in [Gol99, 4.1] the paraboloid model, which is the most appropriate model from the point of view of
computation and is the model used throughout this thesis, is shown to be equivalent to the ball model and
as such the to original projective definition; this section reviews this theory.

The Projective Definition

This section follows [Gol99, 3.1]. Let
V =

[
V ′

Vn+1

]
∈ Cn+1

where V ′ ∈ Cn and Vn+1 ∈ C and define the Hermitian pairing

〈V,W 〉= 〈〈V ′,W ′〉〉−Vn+1W n+1 (3.1)

=V1W 1 + · · ·+VnW n−Vn+1W n+1

A vector V is said to be negative (respectively null, positive) if and only if the Hermitian inner product
〈V,W 〉 is negative (respectively null, positive). Complex hyperbolic n-space Hn

C is defined to be the subset
of Pn

C consisting of negative lines in Cn+1. The boundary of Hn
C is the subset ∂Hn

C of Pn
C consisting of null

lines in Cn+1.

16

Automorphisms

The image PU(n,1) of U(n,1) in PGL(Cn+1) is the full group of biholomorphisms of Hn
C, [Gol99, 3.1].

Recall that the projectivisation of a group is the quotient of a group by its centre:

PU(n,1) = U(n,1)/Z(U(n,1))

' U(n,1)/U(1)

The centre of SU(n,1) is isomorphic to Z/(n+ 1), the group of (n+ 1)th roots of unity. This gives a
commutative diagram

0

��

0

��

0

��
0 //Z/(n+1)� _

��

� � //U(1)� _

��

ωn+1
// //U(1)

o
��

//0

0 //SU(n,1)

����

� � //U(n,1)

����

// //U(1)

��

//0

0 //PSU(n,1)

��

f //PU(n,1)

��

//0

0 0

where ω is some primitive nth root of unity. Thus by the 9-lemma, the map f is a bijection;

PSU(n,1) ∼ //PU(n,1)

and in particular
PU(n,1)' SU(n,1)/Z/(n+1)

So up to a finite group of rotations the groups PU(n,1) and SU(n,1) are isomorphic, and as such when
studying the automorphisms of complex hyperbolic n-space, the group SU(n,1) may be studied instead.

The Ball Model

This section follows [Gol99, 3.1]. Let Cn be complex n-space with the standard positive definite Hermitian
inner product

〈〈v,w〉〉= v1w1 + · · ·+ vnwn

and let U(n) denote its group of unitary automorphisms. Complex hyperbolic space shall be identified with
the unit ball

Bn = {z ∈ Cn | 〈〈v,w〉〉< 1}

17

as follows. Let
A : Cn −→ Pn

C
z′ 7→

[
z′
1

]
be the biholomorphic embedding of Cn onto the affine patch of Pn

C defined by Zn+1 6= 0 in homogeneous
coordinates. Since any vector in Cn+1 with homogeneous coordinate Zn+1 = 0 is positive, Hn

C ⊂A(Cn) and
A identifies Bn with Hn

C and ∂Bn = S2n−1 ⊂ Cn with ∂Hn
C. The hyperplane at infinity Pn

C−A(Cn) is the
orthogonal complement O⊥ where the vector

O =
[

0′
1

]
∈ Cn+1

corresponds to the origin in Cn.

Lemma 3.1.1 The stabilizer of O in SU(n,1;C) is isomorphic to the unitary group U(n) of Cn.

PROOF This can be seen easily by direct calculation. Let g ∈ SU(n,1;C) and suppose that gO = O. Write

g =
(

U v1
v2

t u

)
where U ∈Mn(C), vi ∈Cn and u∈C. The stability condition implies that v1 = 0′ and the Hermitian stability
condition g∗

(In
−1

)
g =

(In
−1

)
implies that v2 = 0′ whence

g = (U
u)

Since g ∈ SU(n,1;C) then 1 = udetU so u = detU−1 and hence u is completely determined by U . Again
by the Hermitian stability condition it is necessary that U ∈ U(n) as U must stabilise the identity matrix,
and since this implies that u is on the unit circle, then this condition is also sufficient. Therefore

U(n) ←→ SU(n,1;C)O

U
(U

detU−1

)
is an isomorphism. �

Lemma 3.1.2 SU(n,1;C) acts transitively on the set Hn
C of negative lines in Cn+1.

PROOF See [Gol99, Lemma 3.1.3] �

The Paraboloid Model

This section follows [Gol99, 4.1]. The paraboloid model arises from viewing Hn
C from a point q∞ on the

boundary, it generalises the upper half-plane model of H1
C. The unit ball is symmetric under the stabilizer

U(n) of the origin, the paraboloid model is invariant under the stabilizer of q∞.
Choose a point q ∈ ∂Hn

C; such a point corresponds to a null line spanned by a null vector Q ∈ Cn+1.
A unique C-hyperplane H(q) is tangent to ∂Hn

C at q; it corresponds to the linear hyperplane Q⊥ ⊂ Cn+1

which is orthogonal to Q with respect to the Hermitian form defined in (3.1). The affine patch on Pn
C

complementary to H(q) contains Hn
C as an unbounded domain and this embedding is denoted B : Hn

C →

18

Pn
C−H(q). Specifically let Q be the vector q∞ =

[−1
0′
1

]
∈Cn+1 whence H(q∞) consists of all points having

homogeneous coordinates
[zn

z′
−zn

]
. The map

B : Hn
C → Pn

C−H(q)(
v′
vn

)
7→

[
1/2−vn

v′
1/2+vn

]
is the desired affine embedding; Hn

C corresponds to the Siegel domain Hn, referred to here as the paraboloid
model, consisting of points v ∈ Cn satisfying

2ℜ(vn)−〈〈v′,v′〉〉> 0

The two sets of inhomogeneous (affine) coordinates in the paraboloid and ball models respectively are
related by the Cayley transform:

z ∈ Bn ←→ v ∈ Hn

z j =
2v j

1+2wn

zn = 1−2vn
1+2wn

v j =
z j

1+zn
(1≤ j < n)

vn = 1
2

1−zn
1+zn

Under the Cayley transform the boundary ∂Hn corresponds to the real hypersurface

∂Hn =
{

v ∈ Cn | 2ℜ(vn)−〈〈v′,v′〉〉= 0
}

together with the ideal point q∞.

3.2 A Change of Basis

Goldman defines Hn
C with respect to the Hermitian form 〈V,W 〉 = 〈〈V ′,W ′〉〉−Vn+1W n+1, which is repre-

sented by the standard Hermitian matrix of signature (n,1); this being H ′ =
(In
−1

)
. However for compu-

tational reasons it is preferable to make a change of basis. The unitary matrix

U =

(
1/
√

2 1/
√

2
In−1

1/
√

2 −1/
√

2

)
acts on H ′ by Hermitian conjugation and induces a basis change:

U∗H ′U =
(1

In−1
1

)
= H

with respect to this new basis matrix the ideal point q∞ becomes

q∞ =U
[−1

0′
1

]
=
[

0′
1

2
√

2

]

19

and the non-ideal points in Hn
C become

v =U
[

1/2−vn
v′

1/2+vn

]
=

[1
2
√

2
v′
−vn
2
√

2

]

Furthermore, since these points are representatives of lines in Cn+1, it makes sense to normalise to remove
the factor of 1

2
√

2
in the constant coordinates; whence these points may be written equivalently as

q∞ =
[

0′
1

]
v =

[
1

2
√

2v′
−vn

]
=

[
1
ṽ′
ṽn

]
where ṽ′ = 2

√
2v′ and ṽn = −vn. Therefore the isomorphism between points under the original basis and

the new basis is

w =

[
1/2−wn

w′
1/2+wn

]
∈ Hn(H ′) ←→ v =

[1
v′
vn

]
∈ Hn(H)

w =

 1−vn
2
v′√

2
1+vn

2

 v =

[
1

2
√

2w′
−wn

]

The new basis matrix H induces Hermitian and quadratic forms on Cn+1×Cn+1 and Cn+1 by:

〈−,−〉 : Cn+1×Cn+1 −→ C Q : Cn+1 −→ C
(v,w) 7−→ w∗Hv v 7−→ v∗Hv

and the identity matrix In−1 defines an Hermitian form on Cn−1×Cn−1 and a positive definite quadratic
form on Cn−1:

〈−,−〉+ : Cn+1×Cn+1 −→ C Q+ : Cn+1 −→ C
(v,w) 7−→ w∗Hv v 7−→ v∗Hv

It is necessary and sufficient that a point v∈Hn
C satisfies Q(v)< 0 and v∈ ∂Hn

C satisfies Q(v) = 0 and thus
this leads to the following definition.

Definition 3.2.1 (The Paraboloid Model) Let n ∈ N such that n ≥ 2. Then the paraboloid model of n-

dimensional complex hyperbolic space is

Hn
C =

{(1
z

−Q+(z)−h
2 +ıx

) ∣∣∣∣ z ∈ Cn−1, x ∈ R and h ∈ R>0
}

∂Hn
C =

{(1
z

−Q+(z)
2 +ıx

) ∣∣∣∣ z ∈ Cn−1 and x ∈ R
}
∪
{(0

0
1

)}

where the point
(0

0
1

)
is the point at infinity and is denoted q∞. The following notation shall be used:

Hn
C =Hn

C∪∂Hn
C, ∂Hn

C
× = ∂Hn

C−{q∞} and Hn
C
×
=Hn

C−{q∞}. 2

20

Let v ∈Hn
C
×

, write v = (1 v1 ··· vn)
t put z = (v1 ··· vn−1)t and define the function;

f : Hn
C
× −→ Cn−1×R×R≥0

v 7−→ (z,ℑvn,−Q(v))

Since Q(v) = 2ℜ(vn)+Q+ (z), it follows that f is an isomorphism and this leads to the definition of the
horospherical model of complex hyperbolic space.

Definition 3.2.2 (Horospherical Model) Let n ∈ N such that n ≥ 2. Then the horospherical model of n-

dimensional complex hyperbolic space is

Hn
C =

{
(z,x,h) | z ∈ Cn−1, x ∈ R and h ∈ R>0}

∂Hn
C =

{
(z,x,0) | z ∈ Cn−1 and x ∈ R

}
∪{∞} 2

Horospherical coordinates are notationally more compact than paraboloid coordinates, however explicit
calculations must, in general, be carried out in paraboloid coordinates.

Definition 3.2.3 (Hyperbolic Notation) Unless explicitly stated, all points in Hn
C
×

shall be denoted v and

if further points are required they shall be denoted v′,v′′, . . . etceteras. Given points v,v′, . . . ∈ Hn
C
×

the

paraboloid vector forms of v,v′, . . . will always be written as

v =

(1
z

−Q+(z)−h
2 +ıx

)
v′ =

(
1
z′

−Q+(z′)−h′
2 +ıx′

)
. . .

and the horospherical tuple forms of v,v′, . . . will always be written as v = (z,x,h), v′ = (z′,x′,h′),

Under these equivalent coordinate systems the complex vector z∈Cn−1 is called the complex component of

v, the x∈R coordinate is called the real component of v, the pair (z,x)∈Cn−1×R is called the Heisenberg

component of v and the h ∈ R≥0 coordinate is called the height component of v. The complex component

can be thought of as being an element in a n−1 dimensional complex space, or a 2n−2 dimensional real

space. The Heisenberg component can be thought of as being an element in the space Cn−1×R, or an

element in a 2n−1 dimensional real space. 2

This section concludes with a proof that with respect to the Hermitian pairing, complex hyperbolic
n-space has no orthogonal subspaces.

Lemma 3.2.4 Let v∈Hn
C and let X =

{
v′ ∈Hn

C |〈v,v′〉= 0
}

. Then either X = /0, or v∈ ∂Hn
C and X = {v}.

PROOF Let v,v′ ∈Hn
C
×

, then

2
〈
v,v′

〉
= 2

(
1 z′

−Q+(z′)−h′
2 −ıx′

)
H
(1

z
−Q+(z)−h

2 +ıx

)
= 2

〈
z,z′
〉
+
−Q+ (z)−Q+

(
z′
)
−h−h′+2ı

(
x− x′

)
= 2ℜ

〈
z,z′
〉
+
−〈z,z〉

+
−
〈
z′,z′

〉
+
−h−h′+2ı

(
ℑ
〈
z,z′
〉
+
+ x− x′

)
=
〈
z,z′
〉
+
+ 〈z,z′〉

+
−〈z,z〉

+
−
〈
z′,z′

〉
+
−h−h′+2ı

(
ℑ
〈
z,z′
〉
+
+ x− x′

)
=−

〈
z− z′,z− z′

〉
+
−h−h′+2ı

(
ℑ
〈
z,z′
〉
+
+ x− x′

)
21

=−Q+

(
z− z′

)
−h−h′+2ı

(
ℑ
〈
z,z′
〉
+
+ x− x′

)
Suppose that 〈v,v′〉= 0, so both ℜ〈v,v′〉= 0 and ℑ〈v,v′〉= 0. Considering the real part; 0 = 2ℜ〈v,v′〉=
−Q+ (z− z′)−h−h′, the quadratic form Q+ (−) is positive definite and h,h′≥ 0, so Q+ (z− z′) ,h,h′= 0 and
z = z′, thus both v and v′ are on the boundary. Considering the imaginary part; 0 = ℑ〈v,v′〉 = ℑ〈z,z′〉

+
+

x− x′, now z = z′, so 〈z,z′〉
+
∈ R whence ℑ〈z,z′〉

+
= 0 and so x = x′. But then v = v′ and v ∈ ∂Hn

C. If
v = q∞ then it can be seen by inspection that 〈q∞,v′〉= 1. �

3.3 The Stabiliser of Infinity

This section recalls the structure of the parabolic subgroup SU(n,1;C)∞; elements which stabilise infinity
are called parabolic. There are four important subgroups inside SU(n,1;C)∞; the translation, rotation,
dilation and AM-subgroups, the AM-subgroup being a direct product of the rotation and dilation subgroups;
of these the translation and AM-subgroups have natural restrictions to coordinates which lie in subrings of
C and these restrictions determine the Langlands decomposition of SU(n,1;C)∞ under the same restriction.

Let R be a subring of C, then

SU(n,1;R)∞ = {g ∈ SU(n,1;R) | g◦q∞ = q∞}

Contained within SU(n,1;C)∞ are the following subgroups:

Definition 3.3.1 (Heisenberg Translation Group)

N(R) =
{(1

ζ In−1

−Q(ζ)
2 +ır −ζ∗ 1

)
∈ SLn+1 (R)

∣∣∣∣ ζ ∈ Rn−1, r ∈ R
}

Elements of N(R) are denoted ν(ζ,r). 2

Definition 3.3.2 (Heisenberg Rotation Group)

M =

{(
β

u
β

)
∈ SLn+1 (C)

∣∣∣∣ u ∈ U(n−1;C) , β ∈ C
}

Elements of M are denoted m(u,β). 2

Definition 3.3.3 (Heisenberg Dilation Group)

A =

{(
δ

In+1
δ−1

)
∈ SLn+1 (R)

∣∣∣∣ δ ∈ R>0
}

Elements of A are denoted a(δ). 2

Definition 3.3.4 (Heisenberg AM-Group)

AM(R) = {a(δ)m(u,β) ∈ SLn+1 (R) | a(δ) ∈ A, m(u,β) ∈M}

Elements of AM are denoted am(δ,u,β). 2

22

Let v ∈ Hn
C
×

, let ν(ζ,r) ∈ N(C), let m(u,β) ∈M and let a(δ) ∈ A. Then it is seen by direct computation
that

ν(ζ,r)◦v =

(
1

z+ζ
−Q+(z+ζ)

2 +ı(x+r−ℑ〈z,ζ〉+)

)

m(u,β)◦v =

(1
β−1uζ

−Q+(β−1uζ)
2 +ıx

)

a(δ)◦v =

(1
δ−1ζ

−Q+(δ−1ζ)
2 +ıδ−2x

)

Lemma 3.3.5 Let R ⊆ C be a ring which is stable by complex conjugation, let h ≥ 0. Then N(R) acts

transitively on the set

X =

{(1
z

−Q+(z)−h
2 +ıx

)
∈ Cn+1

∣∣∣∣ z ∈ Rn−1 and x ∈ R s.t.
−Q+ (z)

2
+ ıx ∈ R

}

PROOF Let v,v′ ∈ X . Since R is stable by complex conjugation then ν = ν(−z,−x) ∈ N(R) and ν ◦ v =

(1 0 0)t. Again, as R is stable by complex conjugation, ν′ = ν(z′,x′) ∈ N(R) and ν′ ◦ (1 0 0)t = v′. Putting
ν′′ = νν′, ν′′ ◦v = v′, and hence N(R) acts transitively on X . �

Lemma 3.3.6 Let R⊆C be an integral domain which is stable by complex conjugation; typically R will be

C, Q
(√

d
)

where d is a negative squarefree integer or O the ring of integers of Q
(√

d
)
. Then the Langlands

decomposition of the group SU(n,1;R)∞ is

SU(n,1;R)∞ = AM(R)nN(R)

Where

AM(R) =
{

a(δ,u,β) | δ ∈ R>0, u ∈ U(n−1;R) , β ∈ C s.t. β2 = detu−1, δβ,
β
δ
∈ R
}

N(R) =
{

ν(ζ,r) | ζ ∈ Rn−1, r ∈ R s.t. − Q+ (ζ)
2

+ ır ∈ R
}

PROOF Let g ∈ AM(R)∪N(R); in the (n+ 1)th column of g only the g(n+1,n+1) coordinate is non-zero,
therefore gq∞ = (0 0 g(n+1,n+1))t and AM(R)N(R) is a subgroup of SU(n,1;R)∞. To show that SU(n,1;R)∞

is a subgroup of AM(R)N(R) let g ∈ SU(n,1;R)∞ and write:

g =

(
z1 ζ3

t z3
ζ1 u ζ4
z4 ζ2

t z2

)

where u ∈ GLn−1 (R), ζi ∈ Rn−1 and zi ∈ R. The stability condition requires that

gq∞ =
(z3

ζ4
z2

)
∼
(0

0
1

)
thus z3 = 0, ζ4 = 0 and z2 6= 0. Substituting these values back into g and using the Hermitian conjugacy

23

condition gives

H = g∗Hg

=

(z1 ζ∗1 z4

ζ3 u∗ ζ2
z2

)(1
In−1

1

)(z1 ζ3
t

ζ1 u
z4 ζ2

t z2

)

=

(z4 ζ∗1 z1

ζ2 u∗ ζ3
z2

)(
z1 ζ3

t

ζ1 u
z4 ζ2

t z2

)
(3.2)

Considering only multiplication by the bottom row of the lefthand matrix in (3.2)

(1 0 0) = (z2 0 0)

(
z1 ζ3

t

ζ1 u
γ ζ2

t z2

)
= (z2 z1 z2 ζ3

t 0)

so z2 z1 = 1 and ζ3 = 0. Therefore z2 = z−1
1 and (3.2) becomes

H =

(
z4 ζ∗1 z1

ζ2 u∗

z−1
1

)(z1
ζ1 u

z4 ζ2
t z−1

1

)
=

(
z1 z4+Q+(ζ1)+z1 z4 ζ∗1u+z1 ζ2

t 1
z1 ζ2+u∗ζ1 u∗u

1

)
And so,

u∗u = In−1 =⇒ u ∈ U(n−1,R)

z1 z4 +Q+ (ζ1)+ z1 z4 = 0 =⇒ℜz1 z4 =−
Q+ (ζ1)

2
(3.3)

z1 ζ2 +u∗ζ1 = 0 =⇒ z1 ζ2 =−u∗ζ1 (3.4)

ζ∗1u+ z1 ζ2
t = 0 =⇒ z1 ζ2

t =−ζ∗1u (3.5)

Taking the adjoint of (3.4)
(z1 ζ2

t)∗ = (−ζ∗1u)∗ =⇒ z1 ζ2 =−u∗ζ1

shows that (3.5) and (3.4) are equivalent statements, so satisfying one automatically satisfies the other and
ζ2

t =−z−1
1 ζ∗1u.

Let δ ∈ R>0 and let β ∈ {z ∈ C | |z |= 1} be the the polar coordinates of z1, so z1 = δβ, then (3.3)
can be rewritten as δℜ z4

β = −Q+(ζ1)
2 which implies that ℜ z4

β = −Q+(ζ1)
2δ and; let r ∈ R be the unique real

number such that ℑ z4
β = r

δ , then

z4 =
β
δ

(
−Q+ (ζ1)

2
+ ır

)

24

Calculating the determinant of g shows that

1 = detg = det
(

δβ
∗ u
∗ ∗ δ−1β

)
= β2 detu

so β2 = detu−1, therefore;

g =

(δβ
ζ u

β
δ

(
−Q+(ζ)

2 +ır
)
− β

δ (ζ
∗u) β

δ

)
(3.6)

where u ∈ U(n−1;R), β ∈ C, δ ∈ R>0 such that β2 = detu−1, δβ and β
δ ∈ R. Furthermore ζ ∈ Rn−1 and

r ∈ R and since δβ ∈ R then β2
(
−Q+(ζ)

2 + ır
)
∈ R, but since β2 = detu−1, β2 is a unit in R, therefore this

is equivalent to requiring that −Q+(ζ)
2 + ır ∈ R. Therefore g ∈ SU(1,n;R)∞ if and only if; u ∈ U(n−1;R),

β ∈ C, δ ∈ R>0 such that β2 = detu−1, δβ and β
δ ∈ R, ζ ∈ Rn−1 and r ∈ R such that −Q+(ζ)

2 + ır ∈ R.
Take am(δ,u,β) ∈ AM(R) and ν(u−1ζ,r) ∈ N(R), then

am(δ,u,β)ν(u−1ζ,r) =

(δβ
ζ u

β
δ

(
−Q+(ζ)

2 +ır
)
− β

δ (ζ
∗u) β

δ

)

and comparing with (3.6) shows that SU(n,1;R)∞ ≤ AM(R)N(R).
Finally, it remains to prove that N(R) is normal in SU(n,1;R)∞ so; let am ∈ AM(R) and ν1,ν2 ∈ N(R),

if m−1a−1ν1am ∈ N(R) then ν−1
2 m−1a−1ν1amν2 ∈ N(R), and after multiplying out

am−1ν1am =

 1
β
δ uζ In−1

1
δ2

(
−Q+(ζ)

2 +ır
)
− β

δ (ζ
∗u) 1


= ν

(
(βδ)−1uζ, rδ−2) ∈ N(R)

showing that N(R) is indeed normal in SU(n,1;R)∞. �

3.4 The Involution and Brûhat Decomposition

The non-parabolic automorphisms are more complicated to write down than those which are parabolic, how-
ever the non-parabolic automorphisms can be expressed in terms of a product of parabolic automorphisms
and a single non-parabolic automorphism called the involution. This section introduces the involution and
describes how to write non-parabolic elements via the Brûhat decomposition of the special unitary group
under restriction to a field of characteristic zero which is stable by complex conjugation.

The involution is denoted ω and ω ∈ SU(n,1;Z), its explicit matrix form depends on the congruence
class of n modulo 4;

ω =



(
1

. .
.

1

)
if n≡ 0,3 mod 4(−1

. .
.

−1

)
if n≡ 2 mod 4(

1
−1

In−2
1

)
if n≡ 1 mod 4

25

The involution ω has two important properties: firstly it interchanges the origin with the point at infinity
ω◦q∞ = (1 0 0)t and secondly it is self-inverse ω2 = 1.

Proposition 3.4.1 Let K ⊆C be a field of characteristic zero which is stable by complex conjugation. Then

Brûhat decomposition of SU(n,1;K) is

SU(n,1;K) = SU(n,1;K)∞
⊔

SU(n,1;K)∞ ωN(K)

PROOF Let g ∈ SU(n,1;K), if g ∈ SU(n,1;K)∞ then there is nothing to do, so assume g ∈ SU(n,1;K)−
SU(n,1;K)∞. Since g◦q∞ 6= q∞, then g−1 ◦q∞ 6= q∞ and as K is a field of characteristic zero

g−1 ◦q∞ =

(1
z

−Q+(z)−h
2 +ıx

)
∈ Kn+1

Furthermore, since K is closed under complex conjugation Lemma 3.3.5 applies and there exists a ν∈N(K)

such that νg−1 ◦q∞ = (1 0 0). For all fields K, ω ∈ SU(n,1;K), so ωνg−1 ∈ SU(n,1;K) and ωνg−1 ◦q∞ =

q∞, thus ωνg−1 ∈ SU(n,1;K)∞. Therefore putting ωνg−1 = g∞ ∈ SU(n,1;K)∞ one concludes that g =

g−1
∞ ων. �

26

Chapter 4

Siegel Set Construction

Let (X , | · |) be a metric space and let G be a discrete subgroup of the isometry group of X , then a Siegel set
for the action of G on X is a closed subset S ⊂ X with the following two properties:

1. for all x ∈ X there is a g ∈ G such that g◦ x ∈ S and;

2. the set {g ∈ G | S ∩g◦S 6= /0} is finite.

From now on assume that K =Q
(√

d
)

is an imaginary quadratic field with ring of integers O and adopt the
notation Γ = SU(n,1;O), then the aim of this thesis is to compute Siegel sets for X =Hn

C and G = Γ when
the class group of K is trivial.

This chapter describes a method for constructing such Siegel sets and presents this method in the form
of an algorithm. The algorithm is quite naı̈ve and not practical from a computational point of view, however
it comprehensively describes the important steps in Siegel set construction, it is guaranteed to terminate
and it is mathematically easy to verify its validity along with certain important bounds on the output. An
improved version of this algorithm, which deals with computational concerns, is described in Chapter 5. In
the most simple terms the flow of the algorithm is as follows:

1. Analytically compute a Siegel set for the action of Γ∞, call this set S∞. This set S∞ is compact in
every dimension but the height dimension, where it extends from the boundary at zero height, to the
boundary at infinite height.

2. Construct integral vectors called cusps which satisfy certain bounds. These cusps proxy the height
changing properties of elements of Γ and are much less computationally expensive to construct than
integral automorphisms.

3. Use the cusps which have been constructed to attempt to raise all points in S∞ above some fixed
height L. If this cannot be done then go back and make some more cusps. If this can be done then
letting ε > 0, the set S∞∩

{
v ∈Hn

C | h(v)≥ L− ε
}

is a Siegel set.

27

4.1 Cusps

Cusps are integral vectors which proxy the height altering properties of integral automorphisms and are
much more simple to construct than elements of Γ. This section describes how to explicitly write cusps
down and introduces the effect function at a cusp which determines whether a cusp increases the height of
a point it acts on; it is shown that this function is convex under the standard Euclidean metric, this proves
to be a very useful property from a computational point of view.

Definition 4.1.1 (Cusp) A cusp for K is a vector q ∈On+1 such that Q(q) = 0. The set of all cusps for K

is denoted by CK . 2

Theorem 4.1.2 (Zink) The number of orbits for the action of Γ on the points in ∂Hn
C with coordinates in

K is equal to the class number of K.

PROOF See [Zin79]. �

Corollary 4.1.3 When the class number of K is 1, then for each cusp q ∈ CK there exists a γ ∈ Γ such that

q = γ−1q∞.

Lemma 4.1.4 Suppose that Cl(K) = 1 and let q ∈ CK . Then

q =

(δβ
ζ

β
δ

(
−Q+(ζ)

2 +ır
)
)

where δ ∈ R>0 such that δ2 ∈ N; β ∈ C such that |β | = 1 and δβ ∈ O; ζ ∈ On−1 and r ∈ R such that
β
δ

(
−Q+(ζ)

2 + ır
)
∈O.

PROOF By Corollary 4.1.3, for all cusps q ∈ CK there exists a γ ∈ Γ such that q = γ−1q∞. By Proposi-
tion 3.4.1, since γ 6∈ Γ∞ and Γ ⊂ SU(n,1;K), it follows that there exist elements δ,β,u,ζ and r such that
γ−1 = am(δ,u,β)ν(u−1ζ,r)ων(ζ′,r′) where a(δ,u,β) ∈ AM(K) and ν(u−1ζ,r),ν(ζ′,r′) ∈ N(K), thus

q = a(δ,u,β)ν(u−1ζ,r)ων(ζ′,r′)q∞ = a(δ,u,β)ν(u−1ζ,r)
(1

0
0

)
=

(δβ
ζ

β
δ

(
−Q+(ζ)

2 +ır
)
)

and necessarily q∈On+1. Considering the first coordinate, if δβ∈O, then δβ∈O, thus δβδβ = |δβ |2 = δ2

and therefore δ2 ∈ Z. �

Definition 4.1.5 (Cusp Notation) Suppose that Cl(K) = 1. Unless explicitly stated, all cusps shall be

denoted q and if further cusps are required they shall be denoted q′,q′′, . . . etceteras. Given a cusp q ∈ CK

the vector form of q will always be written as

q =

(δβ
ζ

β
δ

(
−Q+(ζ)

2 +ır
)
)

where the variables are as in Lemma 4.1.4. The element δ is called the dilation factor of q, β is called the

rotation factor of q, ζ is called the zeta factor of q and r is called the r factor of q. And for cusps q′,q′′, . . .
the dilation factors will be denoted δ′,δ′′, . . ., the rotation factors will be denoted β′,β′′, . . ., the zeta factors

will be denoted ζ′,ζ′′, . . . and the r factors will be denoted r′,r′′, 2

28

Let v ∈ Hn
C
×

, then −Q(v) = h. The height function encodes how this height is altered by elements of
SU(n,1;C).

Definition 4.1.6 (The Height Function) Suppose that Cl(K) = 1, let g ∈ SU(n,1;C) and let v ∈Hn
C such

that g◦v 6= q∞. Then the height function is defined to be

h(g◦v) =
−Q(v)

| 〈v,g−1q∞〉 |2
2

Lemma 4.1.7 Let v ∈Hn
C, let g ∈ SU(n,1;C) and suppose that γ◦v = v′ ∈Hn

C
×

. Then h(g◦v) = h′.

PROOF See [Gol99, 5.4]. �

By Corollary 4.1.3, whenever the class number of K is 1, for all γ ∈ Γ there exists a cusp q ∈ CK such that

h(γ◦v) =
−Q(v)
| 〈v,q〉 |2

(4.1)

and conversely, for all cusps q ∈ CK there exists a γ ∈ Γ which satisfies (4.1). Therefore the cusps in CK

perfectly proxy the effect on the change of height of points in Hn
C under the action of automorphisms in Γ.

This leads to the following definition.

Definition 4.1.8 (The Effect Function) Let q ∈ CK and let v ∈ Hn
C. Then the effect function of v at q is

defined to be

eq (v) = | 〈v,q〉 |2

Let X ⊂Hn
C, then q is said to be effective on X whenever there exists a v ∈ X such that eq (v)< 1. 2

Proposition 4.1.9 Let q ∈ CK and suppose that Cl(K) = 1. Then under horospherical coordinates and

under the standard Euclidean metric, the effect function is convex in the set

Cn−1×R×R≥0 ≡Hn
C
×

PROOF Let v ∈Hn
C
×

, then in horospherical coordinates v can be written

v≡ (z,x,h) ∈ Cn−1×R×R≥0

and by Corollary 4.1.3 q = γ−1q∞, where γ ∈ Γ. Since γ ∈ SU(n,1;C), then by Proposition 3.4.1 and
Lemma 3.3.6 γ may be written

q = ν(ζ,r)m(β,u)a(δ)ωq∞

where ζ ∈ Cn−1, r ∈ R, u ∈ U(n−1), β2 = detu−1 and δ ∈ R>0, thus eq (v) becomes:

eq (v) = | 〈(z,x,h),ν(ζ,r)m(u)a(δ)ωq∞〉 |2

= δ2 | 〈(z,x,h),ν(ζ,r)(0,0,0)〉 |2

29

= δ2 | 〈ν(−ζ,−r)(z,x,h),(0,0,0)〉 |2

Multiplication by a strictly positive real constant preserves convexity, thus it is sufficient to show that
| 〈ν(−ζ,−r)(z,x,h),(0,0,0)〉 |2 is convex with respect to the Euclidean metric. Moreover, Heisenberg
translation is a linear function and as such preserves convexity, so in fact it is only necessary to show

that | 〈(z,x,h),(0,0,0)〉 |2 is convex. Multiplying out; | 〈(z,x,h),(0,0,0)〉 |2 =
(

Q+(z)+h
2

)2
+ x2. Since the

sum of two convex functions is convex, and x2 is convex, the convexity of the effect function follows from

the convexity of
(

Q+(z)+h
2

)2
.

By definition, a function f is convex if and only if f ((1− t)X + tY) ≤ (1− t) f (X) + t f (Y) where
t ∈ [0,1], and if f is a positive function then this implies that f (X)2 is convex if f ((1− t)X + tY)2 ≤
(1− t) f (X)2 + t f (Y)2 holds. Using the Cauchy-Schwartz inequality

(1− t) f (X)2 + t f (Y)2 =

((√
1− t f (X)

)2
+
(√

t f (Y)
)2
)((√

1− t
)2

+
(√

t
)2
)

≥ ((1− t) f (X)+ t f (Y))2

this is indeed seen to be the case. The function Q+(z)+h
2 is convex as Q+ (−) is the square of a norm and

h≥ 0, therefore
(

Q+(z)+h
2

)2
is convex and as such so is eq (−). �

Lemma 4.1.10 Let h > 0, let v ∈Hn
C be a point of height h and let q ∈ CK . Then eq (v)≥ h2

4 .

PROOF Let q0 ∈ O be the first coordinate in q and let q̃ ∈ ∂Hn
C
× such that q̃ = q−1

0 q. By definition
eq (v) = | 〈v,q〉 |2 = |q0 |2 | 〈v,q′〉 |2, and given that q0 is a non-zero algebraic integer, |q0 |2 ≥ 1. Thus
eq (v) ≥ |〈v, q̃〉 |2. By Proposition 4.1.9 and Lemma 3.2.4, the effect function is convex and there are no
orthogonal subspaces in Hn

C with respect to 〈−,−〉, implying that | 〈v, q̃〉 |2 is minimal when the Heisenberg
components of v and q̃ are equal and in this case | 〈v, q̃〉 |2 = h2

4 , therefore eq (v)≥ h2

4 . �

4.2 Siegel Containers

The first stage in the computation of a Siegel set for Γ is to compute a Siegel set for Γ∞, such a set is called
a Siegel container. In this section a formula which gives a Siegel container for all groups Γ is derived.

Definition 4.2.1 (Siegel Container) A Siegel container S∞ ⊂ Hn
C is a set such that S∞ is a Siegel set for

Γ∞. For L≥ 0, define

S∞ (L) = S∞∩
{

v ∈Hn
C | h(v)≥ L

}
2

Proposition 4.2.2 Let S∞ ⊂Hn
C be a Siegel container for Γ, let L > 0, and suppose that for all v∈Hn

C there

exists an automorphism γ ∈ Γ such that γ◦v ∈ S∞ (L). Then S∞ (L) is a Siegel set for Γ.

PROOF The proof follows [FL03, Proposition 2]. By definition S∞ (L) is contained within a Siegel set for
Γ∞, so if there are an infinite number of automorphisms γ such that γ◦S∞ (L)∩S∞ (L), then all but a finite
number must be non-parabolic. Thus it suffices to show that the non-parabolic automorphisms with such a

30

property are finite. So suppose that γ is non-parabolic and that both v ∈ S∞ (L) and γ◦v ∈ S∞ (L) hold and
let q ∈ CK such that γ−1q = q∞, then by Lemma 4.1.10;

h(γ◦v)≤ 4
h(v)

(4.2)

so L≤ h(γ◦v)≤ 4
L . Furthermore, (4.2) also implies that if h(v)> 4

L , then h(γ◦v)< L, which by assump-
tion is not true. Therefore v,γ◦v ∈ X = S∞ (L)−S∞

(4
L

)
and so

{γ ∈ Γ | γ◦S∞ (L)∩S∞ (L) 6= /0} ⊂ {γ ∈ Γ | γ◦X ∩X 6= /0}

The set {γ ∈ Γ | γ◦X ∩X 6= /0} is compact, therefore since Γ is discrete and hence discontinuous it is finite
and S∞ (L) is a Siegel set. �

In order to compute a Siegel container S∞ for Γ it is necessary to understand the structure of Γ∞; by
Lemma 3.3.6 the integral stabilizer of infinity decomposes as Γ∞ = AM(O)nN(O), the following lemma
describes these groups.

Lemma 4.2.3 For all fields K =Q
(√

d
)

N(O) =

{ {
ν(ζ,r) | ζ ∈On−1, r ∈

√
−d
2 Z, Q+ (ζ)≡ 2r√

−d
mod 2

}
if d ≡ 1 mod 4{

ν(ζ,r) | ζ ∈On−1, r ∈
√
−dZ, Q+ (ζ)≡ 0 mod 2

}
if d 6≡ 1 mod 4

(4.3)

AM(O) =
{

m(u,β) | u ∈ U(n−1;O) , β ∈O∗ s.t. β2 = detu−1} (4.4)

PROOF First consider the integral Heisenberg translation group N(O); by Lemma 3.3.6

N(O) =

{
ν(ζ,r)

∣∣∣∣ ζ ∈On−1, r ∈ R s.t. − Q+ (ζ)
2

+ ır ∈O

}
The integrality condition on Q+(ζ)

2 + ır depends on the congruence class of d modulo 4: when d ≡ 1 mod 4,
then the elements in O are those of the form a+b

√
d

2 where a,b ∈ Z such that a ≡ b mod 2; when d 6≡ 1
mod 4, then the elements in O are those of the form a+ b

√
d where a,b ∈ Z. Thus Q+(ζ)

2 + ır ∈O if and
only if

r ∈
√
−d
2 Z and Q+ (ζ)≡ 2r√

−d
mod 2 if d ≡ 1 mod 4

r ∈
√
−dZ and Q+ (ζ)≡ 0 mod 2 if d 6≡ 1 mod 4

showing that N(O) is as given in (4.3). Second consider the integral AM-group AM(O); by Lemma 3.3.6

AM(O) =

{
a(δ,u,β) | δ ∈ R>0, u ∈ U(n−1;O) , β ∈ C s.t. β2 = detu−1, δβ,

β
δ
∈O

}
Since β2 = detu−1 and u is a unitary matrix, then |β |2 = 1, therefore taking norms; |δβ |2 = δ2 ∈ Z and∣∣δ−1β

∣∣2 = δ−2 ∈ Z, whence δ = 1 so that

AM(O) =
{

m(u,β) | u ∈ U(n−1;O) , β ∈O s.t. β2 = detu−1}
but since |β |2 = 1, then β ∈O∗ showing that AM(O) is as given in (4.4). �

31

Corollary 4.2.4 Let v ∈Hn
C and let γ ∈ Γ∞. Then h(γ◦v) = h(v).

PROOF Write γ = m(β,u)ν(ζ,r) and apply the height function to γ◦v;

h(γ◦v) =
−Q(v)

| 〈v,γ−1q∞〉 |2
=

−Q(v)
| 〈v,ν(ζ,r)−1m(β,u)−1q∞〉 |2

=
−Q(v)

|β |2 | 〈v,q∞〉 |2
=
−Q(v)
| 〈v,q∞〉 |2

= h(v) (4.5)
�

Corollary 4.2.5 Let S⊂Hn
C and suppose that S a Siegel set for N(O), then S is a Siegel container for Γ.

PROOF Let u ∈ U(n−1;O). By definition u satisfies the relation u∗u = In−1, therefore for i = 1 . . .n− 1
the equality ∑n−1

j=1

∣∣ui j
∣∣2 = 1 holds. The coordinates ui j ∈ O and as such if ui j 6= 0 then

∣∣ui j
∣∣2 ≥ 1 with

equality if and only if ui j ∈ O∗. Since the group of units of O is finite, U(n−1;O) is a finite group.
Each element u ∈ U(n−1;O) generates either zero or two elements m(u,β) ∈ AM(O) depending upon
whether detu−1 = β2 is soluble, thus |AM(O) | ≤ 2 |U(n−1;O) |, hence AM(O) is also a finite group.
Lemma 4.2.3 states that Γ∞ = AM(O)nN(O), therefore since the number of automorphisms in AM(O) is
finite, if S is a Siegel set for N(O), S is a Siegel set for Γ∞. �

Lemma 4.2.6 The set

S∞ =


{

v ∈Hn
C

∣∣∣∣∣ℜzi

∣∣≤ 1
2 ,
∣∣ℑzi

∣∣≤ √−d
4 , |x | ≤

√
−d
2

}
if d ≡ 1 mod 4{

v ∈Hn
C

∣∣∣∣∣ℜz1

∣∣≤ 1,
∣∣ℜzi

∣∣≤ 1
2 (i 6= 1),

∣∣ℑzi

∣∣≤ √−d
2 , |x | ≤

√
−d
2

}
if d 6≡ 1 mod 4

is a Siegel container for Γ.

PROOF By Corollary 4.2.5 it is sufficient to construct a Siegel set for N(O), so let v ∈Hn
C and let ν(ζ,r) ∈

N; ν(ζ,r) acts on v by
ν(ζ,r)◦v = (z+ζ,x+ r−ℑ〈z,ζ〉 ,h)

Write zi = wi + ıyi where wi,yi ∈ R. There are two cases to consider dependent on the congruence class of
d modulo 4:

Suppose that d ≡ 1 mod 4, in this case ζi =
si+ti

√
d

2 where si, ti ∈ Z such that si ≡ ti mod 2 and r ∈√
−d
2 Z such that Q+ (ζ)≡ 2r√

−d
mod 2. Choose

• ti ∈ Z such that
∣∣∣ ti
√
−d

2 + yi

∣∣∣≤ √−d
4 ;

• si ∈ Z such that si ≡ ti mod 2 and
∣∣ si

2 +wi
∣∣≤ 1

2 and having chosen all ti and si;

• r ∈
√
−d
2 Z such that Q+ (ζ)≡ 2r√

−d
mod 2 and |r+ x−ℑ〈z,ζ〉 | ≤

√
−d
2 .

so that ν(ζ,r) ◦ v ∈ S∞, thus for all v ∈ Hn
C there exists a ν(ζ,r) ∈ N(O) such that ν(ζ,r) ◦ v ∈ S∞. Now

suppose that ν(ζ,x)∈N(O) is a Heisenberg translation with the property that X = S∞∩ν(ζ,x)◦S∞ 6= /0 and
let v ∈ X . By assumption ν(ζ,x)◦v ∈ X , therefore for i = 1 . . .n−1

zi, ζi + zi ∈
{

z ∈ C
∣∣∣∣ |ℜz | ≤ 1

2
, |ℑz | ≤

√
−d
4

}

32

Considering the real part,
∣∣ si

2 +wi
∣∣≤ 1

2 implies
∣∣ si

2

∣∣≤ 1
2 + |wi | ≤ 1, thus |si | ≤ 2; considering the imaginary

part,
∣∣∣ ti
√
−d

2 + yi

∣∣∣ ≤ √−d
4 implies

∣∣∣ ti
√
−d

2

∣∣∣ ≤ √−d
4 + |yi | ≤

√
−d
2 , thus | ti | ≤ 1. Hence ζ lies in a compact

set and as ζ also lies in a discrete set then there is only a finite number of ζ for which ν(ζ,r)◦v ∈ X holds.
Considering the r variable, the assertion is that

x, r+ x−ℑ〈z,ζ〉 ∈
{

x ∈ R
∣∣∣∣ |x | ≤ √−d

2

}
thus |r+ x−ℑ〈z,ζ〉 | ≤

√
−d
2 and so |r | ≤

√
−d
2 + |x |+ |ℑ〈z,ζ〉 | ≤

√
−d + |ℑ〈z,ζ〉 |. It remains to bound

|ℑ〈z,ζ〉 |:

|ℑ〈z,ζ〉 |=

∣∣∣∣∣ n−1

∑
i=1

yisi− xiti
√
−d

2

∣∣∣∣∣≤ 1
2

n−1

∑
i=1
|yisi |+

∣∣∣xiti
√
−d
∣∣∣≤ 1

2

n−1

∑
i=1

1− d
4
=

n−1
2

(
1− d

4

)
Thus |r | ≤

√
−d+ n−1

2

(
1− d

4

)
, so r lies in a compact set and since it also lies in a discrete set then there are

a finite number of choices for r. Therefore there exists a finite number of ν∈N(O) such that S∞∩ν◦S∞ 6= /0
and as such S∞ is a Siegel set for N(O).

Suppose now d 6≡ 1 mod 4, in this case ζi = si + ti
√

d where si, ti ∈ Z such that Q+ (ζ) = ∑n−1
i=1 |si |2−

d | ti |2 ≡ 0 mod 2 and r ∈
√
−dZ. Choose

• ti ∈ Z such that
∣∣ ti√−d + yi

∣∣≤ √−d
2 ;

• si ∈ Z, for i 6= 1 such that |si +wi | ≤ 1
2 and having chosen these ti and si;

• s1 ∈ Z, such that ∑n−1
i=1 |si |2−d | ti |2 ≡ 0 mod 2 and |si +wi | ≤ 1;

• r ∈
√
−dZ such that |r+ x−ℑ〈z,ζ〉 | ≤

√
−d
2 .

so that ν(ζ,r) ◦ v ∈ S∞, thus for all v ∈ Hn
C there exists a ν(ζ,r) ∈ N(O) such that ν(ζ,r) ◦ v ∈ S∞. Now

suppose that ν(ζ,x)∈N(O) is a Heisenberg translation with the property that X = S∞∩ν(ζ,x)◦S∞ 6= /0 and
let v ∈ X . By assumption ν(ζ,x)◦v ∈ X , therefore for i = 2 . . .n−1

z1, ζ1 + z1 ∈
{

z ∈ C
∣∣∣∣ |ℜz | ≤ 1, |ℑz | ≤

√
−d
4

}
if i = 1

zi, ζi + zi ∈
{

z ∈ C
∣∣∣∣ |ℜz | ≤ 1

2
, |ℑz | ≤

√
−d
4

}
if i = 2 . . .n−1

Considering the real part, if i = 1 then |si +wi | ≤ 1 implies |si | ≤ 1+ |wi | ≤ 2, thus |si | ≤ 2; and if i 6= 1
then |si +wi | ≤ 1

2 implies |si | ≤ 1
2 + |wi | ≤ 1, thus |si | ≤ 1. Considering the imaginary part,

∣∣ ti√−d + yi
∣∣≤√

−d
2 implies

∣∣ ti√−d
∣∣≤ √−d

2 + |yi | ≤
√
−d, thus | ti | ≤ 1. Hence ζ lies in a compact set, as ζ also lies in a

discrete set then there is only a finite number of ζ for which ν(ζ,r)◦v ∈ X holds. As for the previous case
of d ≡ 1 mod 4, |r | ≤

√
−d + |ℑ〈z,ζ〉 |. Bounding |ℑ〈z,ζ〉 |:

|ℑ〈z,ζ〉 |=

∣∣∣∣∣n−1

∑
i=1

yisi− xiti
√
−d

∣∣∣∣∣≤ n−1

∑
i=1
|yisi |+

∣∣∣xiti
√
−d
∣∣∣≤ n−1

∑
i=1

2− d
2
= (n−1)

(
2− d

2

)
Thus |r | ≤

√
−d +(n− 1)

(
2− d

2

)
, so r lies in a compact set and since it also lies in a discrete set then

there are a finite number of choices for r. Therefore there exists a finite number of ν ∈ N(O) such that

33

S∞∩ν◦S∞ 6= /0 and as such S∞ is a Siegel set for N(O). �

4.3 Siegel Sets

This section describes how to construct a Siegel set for Γ from a Siegel container and a set of cusps. It
achieves this by introducing the Phi function at a cusp which computes the maximum height a point can be
raised to by the action of a cusp; this function is very closely related to the effect function at a cusp. The
key result is Lemma 4.3.2 which describes the property a set of cusps Q needs to have in order to prove the
existence of a Siegel set.

Lemma 4.3.1 Suppose that Cl(K) = 1, let ε > 0, let S∞ be a Siegel container for Γ, let v ∈ S∞ and suppose

that there exists a cusp q ∈ CK such that eq (v) ≤ 1− ε. Then there exists a γ ∈ Γ such that h(γ◦v) ≥
(1− ε)−1h(v) and γ◦v ∈ S∞.

PROOF By Corollary 4.1.3, there exists a γ ∈ Γ such that q = γ−1q∞, thus

h(γ◦v) =
−Q(v)
| 〈γv,q∞〉 |2

=
−Q(v)

| 〈v,γ−1q∞〉 |2
=
−Q(v)
| 〈v,q〉 |2

=
−Q(v)
eq (v)

≥ (1− ε)−1h(v)

If γ ◦ v ∈ S∞ then there is nothing to do. If not then by Corollary 4.2.4 there exists an integral parabolic
automorphism γ∞ ∈ Γ∞ such that γ∞γ ◦ v ∈ S∞ and h(γ∞γ◦v) = h(γ◦v). Thus taking γ′ = γ∞γ completes
the proof. �

Lemma 4.3.2 Suppose that Cl(K) = 1, let ε > 0, let L > 0, let S∞ be a Siegel container for Γ and suppose

that there exists a set of cusps Q⊂ CK such that for all v ∈ S∞−S∞ (L), there exists a cusps q ∈Q such that

eq (v)≤ 1− ε. Then S∞ (L) is a Siegel set for Γ.

PROOF Define the following sequence: let v0 ∈ S∞−S∞ (L) and put;

vi+1 =

{
vi if h(vi)≥ L

γi ◦vi if h(vi)< L

where γi ∈ Γ is chosen so that h(γi ◦vi) ≥ (1− ε)−1h(vi) and γi ◦ vi ∈ S∞; by Lemma 4.3.1, under the
assumptions of this lemma such a γi exists. The height of vi is thus bounded below by the inequality

h(vi)≥min
{

L,(1− ε)−ih(v0)
}

and if i≥ ln(h(v0))−ln(L)
ln(1−ε) = α, then it follows that (1−ε)−ih(v0)≥ L. Hence whenever i≥ α, then h(vi)≥ L.

Let N = dαe and let γ = ∏N
i=0 γi, then γ ∈ Γ such that γ◦v0 ∈ S∞ (L). Therefore by Proposition 4.2.2 S∞ (L)

is a Siegel set for Γ. �

Definition 4.3.3 (Phi Function) Let q ∈ CK , let v ∈ ∂Hn
C
×, let

ϕ′q(v) = 2
√

δ−2−
(
x− rδ−2 +ℑ〈z,(δβ)−1ζ〉

+

)2
+2ℜ

〈
z,(δβ)−1ζ

〉
+
−Q+

(
(δβ)−1ζ

)
−Q+ (z)

34

and define the phi function to be

ϕq (v) =

{
ϕ′q(v) if ϕ′q(v)≥ 0
−1 if ϕ′q(v)< 0 or ϕ′q(v) 6∈ R

2

The following lemma describes the relationship between the effect and phi functions.

Lemma 4.3.4 Let v ∈ ∂Hn
C
×, let q ∈ CK and let L = ϕq (v). Then eq ((z,x,h)) < 1 for all h ∈ [0,L]. Con-

versely whenever eq ((z,x,h))< 1, then h≤ L.

PROOF Suppose that L > 0, then

2
√

δ−2−
(
x− rδ−2 +ℑ〈z,(δβ)−1ζ〉+

)2
+2ℜ

〈
z,(δβ)−1ζ

〉
+
−Q+

(
(δβ)−1ζ

)
−Q+ (z)>L≥ h

so that on rearranging this becomes

δ−2 >

(
h+Q+

(
(δβ)−1ζ

)
+Q+ (z)−2ℜ

〈
z,(δβ)−1ζ

〉
+

2

)2

+
(

x− rδ−2 +ℑ
〈
z,(δβ)−1ζ

〉
+

)2

= δ−2eq ((z, x, h))

and eq ((z,x,h))< 1. Conversely, if eq ((z,x,h))< 1 then arguing in reverse shows that h≤ L. �

Lemma 4.3.5 Suppose that Cl(K) = 1, let L > 0, let ε ∈
(

0, L2

4

)
, let v ∈ ∂Hn

C
×, suppose that there exists a

cusp q ∈ CK such that

ϕq (v)≥
L2

L−2
√

ε

and let v′ ∈
{

v′ ∈Hn
C
×
∣∣∣ z′ = z, x′ = x, h′ ≤ L

}
. Then eq (v′)< 1− ε.

PROOF Let X ,Y ∈ [0,1], let Z ∈ [0,2] and assume that X −Y > εX and 2
√

X−Y − Z ≥ L2

L−2
√

ε . Since
ε > 0, then 2

√
X−Y −Z ≥ L, so that

(
2
√

X−Y −Z
)

2
√

ε ≥ L2
√

εX , thus L
(
2
√

X−Y −Z
)
−L2
√

εX ≥
L
(
2
√

X−Y −Z
)
−
(
2
√

X−Y −Z
)

2
√

ε and therefore

L
L−2

√
ε
≥ 2

√
X−Y −Z

2
√

X−Y −Z−2
√

εX

By assumption X−Y > εX , so that
√

X−Y − εX >
√

X−Y −
√

εX , hence

L
L−2

√
ε
≥ 2

√
X−Y −Z

2
√

X−Y − εX−Z

and therefore 2
√

X(1− ε)−Y −Z > L. Take

X = δ−2

Y =
(

x− rδ−2 +ℑ
〈
z,(δβ)−1ζ

〉
+

)2

35

Z =−2ℜ
〈
z,(δβ)−1ζ

〉
+
+Q+

(
(δβ)−1ζ

)
+Q+ (z)

so that ϕq (v) = 2
√

X−Y −Z, hence by supposition

2
√

δ−2(1− ε)−
(
x− rδ−2 +ℑ〈z,(δβ)−1ζ〉+

)2
+2ℜ

〈
z,(δβ)−1ζ

〉
+
−Q+

(
(δβ)−1ζ

)
−Q+ (z)> L

on rearranging this becomes

(1− ε)δ−2 >

(
L+Q+

(
(δβ)−1ζ

)
+Q+ (z)−2ℜ

〈
z,(δβ)−1ζ

〉
+

2

)2

+
(

x− rδ−2 +ℑ
〈
z,(δβ)−1ζ

〉
+

)2

= δ−2eq ((z, x, L))

implying that eq ((z, x, L))< 1− ε. The result now follows from Lemma 4.3.4. �

This lemma can be interpreted as saying that “if for every point v ∈ S∞∩∂Hn
C
× it can be shown that a

cusp q can be chosen from CK such that ϕq (v) ≥ L2

L−2
√

ε then this proves that S∞ (L) is a Siegel set for Γ.”
This provides the skeleton of a verifiable test for a set of cusps to show that this set of cusps generates a
Siegel set.

4.4 Discretisation

Computationally it is of course not possible to calculate the Phi function at each cusp on every point on
the boundary of S∞ since it consists of an uncountably infinite number of points, it is therefore necessary
to introduce a strategy which allows only a finite number of points to be considered. This section uses the
convexity of the effect function to derive such a strategy; it shows that the infimum of the Phi function
on a convex polytope is equal to the infimum over the vertices of the polytope, as such by discretising the
space into a finite number of convex polytopes the existence of a Siegel set can be proved by computing
the Phi function on the vertices of these polytopes and hence by making a finite number of computations.
Additionally an error bound on discretisation is derived which allows the bounding of overall error in the
Siegel set generation algorithm found at the end of this chapter.

Definition 4.4.1 (Phi Function on a Set) Let q ∈ CK and let V ⊂ ∂Hn
C
×, then the value of the Phi function

on V at q is defined to be

Φq (V) = inf{ϕq (v) | v ∈V} 2

Lemma 4.4.2 Let V ⊂ ∂Hn
C
× be a convex polytope, let V ′ = {v ∈V | v is a vertex of V } and let q ∈ CK .

Then Φq (V) = Φq (V ′).

PROOF Let ϕq (V ′) = L so that for all vertices v of V , ϕq (v)≥ L. Taking ε = 0 in the proof of Lemma 4.3.5
shows that for all v ∈

{
v ∈Hn

C
× | (z,x,0) ∈V, h = L

}
, eq (v) ≤ 1, but then, again by using the proof of

Lemma 4.3.5, ϕq (v)≥ L for all v ∈V . �

36

Lemma 4.4.3 Let Q ⊂ CK , let V ⊂ ∂Hn
C
× be a convex polytope with respect to the Euclidean metric, let

V ′ = {v | v is a vertex of V }, let L > 0, let ε ∈
(

0, L2

4

)
, suppose that

sup
{

Φq(V ′)
∣∣ q ∈ Q

}
≥ L2

L−2
√

ε

and let V (0,L) =
{
(z,x,h) ∈Hn

C
× | (z,x,0) ∈V and h≤ L

}
. Then for all v ∈V (0,L), eq (v)< 1− ε.

PROOF Let h ∈ [0,L] and put V ′(h) =
{
(z,x,h) ∈Hn

C
×
∣∣∣ (z,x,0) ∈V ′

}
, then by Lemma 4.3.5, eq (v) <

1−ε for all v∈V ′(L). Let V (h) =
{
(z,x,h) ∈Hn

C
×
∣∣∣ (z,x,0) ∈V

}
; by Proposition 4.1.9 the effect function

is a convex function and since a convex function cannot have a local maximum on any positive dimensional
face of a compact convex set, sup{eq (v) | v ∈V (h)}= sup{eq (v) | v ∈V ′(h)}, hence the result. �

Corollary 4.4.4 Let S∞ be a Siegel container for Γ, let N ∈N, let V1, . . . ,VN ⊂ S∞ be convex polytopes such

that S∞ =
∪N

i=0 Vi, let V ′i = {v ∈Vi | v is a vertex of Vi }, let L > 0, let ε ∈
(

0, L2

4

)
and suppose that there

exists a set of cusps Q⊂ CK such that

inf
{

sup
{

Φq(V ′i)
∣∣ q ∈ Q

} ∣∣ i = 1, . . . ,N
}
≥ L2

L−2
√

ε

Then S∞ (L) is a Siegel set for Γ.

PROOF By Lemma 4.4.3, for all v ∈ S∞ (L) there exists a cusp q ∈Q such that eq (v)< 1−ε. Therefore by
Lemma 4.3.2, S∞ (L) is a Siegel set for Γ. �

And thus this Corollary says explicitly how to show that a set of cusps generates a Siegel set in a finite
number of computations. This chapter concludes with an investigation into the bounds on the coordinates
of cusps such that these cusps may be effective on a given region and uses these results to develop a strategy
for discretising the search space.

Lemma 4.4.5 Let q ∈ CK , let v ∈ Hn
C
×

, let ε ∈ Cn−1 and ρ ∈ R satisfy z+ ε = ζ
δβ and x+ ρ = r

δ2 and

suppose that either |εi | ≥
√

2
δ for any i = 1, . . . , n−1, or |ρ | ≥ 1

δ +
√

2
δ ∑
∣∣zi

∣∣ hold. Then eq (v)≥ 1.

PROOF By definition

δ−2eq (v) =
(

Q+ (z+ ε)+Q+ (z)+h−2ℜ〈z,z+ ε〉
+

2

)2

+
(
x− x−ρ+ℑ〈z,z+ ε〉

+

)2

=

(
Q+ (ε)+h

2

)2

+
(
ρ−ℑ〈z,ε〉

+

)2

from which it follows that if either Q+ (ε)≥ 2
δ , or

∣∣ρ−ℑ〈z,ε〉
+

∣∣≥ 1
δ , then eq (v)≥ 1. Whenever |εi | ≥

√
2
δ

for any i, then Q+ (ε) = ∑ |εi |
2 ≥ 2

δ , so without loss of generality suppose that |εi | <
√

2
δ for all i, then

|ρ | ≥ 1
δ +
√

2
δ ∑
∣∣zi

∣∣, whence

|ρ | ≥ 1
δ
+

√
2
δ ∑

∣∣zi

∣∣> 1
δ
+∑ |εi |

∣∣zi

∣∣≥ 1
δ
+
∣∣∑εizi

∣∣= 1
δ
+
∣∣〈z,ε〉

+

∣∣≥ 1
δ
+
∣∣ℑ〈z,ε〉

+

∣∣
37

therefore |ρ |−
∣∣ℑ〈z,ε〉

+

∣∣> 1
δ and as such

∣∣ρ−ℑ〈z,ε〉
+

∣∣> 1
δ . �

Corollary 4.4.6 Let q ∈ CK , let v ∈ Hn
C
×

and suppose that either |ζi | ≥
√

2δ + δ
∣∣zi

∣∣, or |r | ≥ δ +√
2δ3 ∑

∣∣zi

∣∣+δ2 |x | hold. Then eq (v)≥ 1.

PROOF Let ε ∈ Cn−1 satisfying z+ ε = ζ
δβ so that δβ(z+ ε) = ζ, thus |ζi | =

∣∣δβ(zi + εi)
∣∣ = δ

∣∣zi + εi
∣∣ ≤

δ
∣∣zi

∣∣+δ
∣∣εi
∣∣. Therefore if |ζi | ≥

√
2δ+δ

∣∣zi

∣∣, then |εi | ≥
√

2
δ and by Lemma 4.4.5 eq (v)≥ 1. Let ρ ∈R

satisfying x+ρ = r
δ2 so that δ2(x+ρ) = r, thus |r | ≤ δ2 |x |+δ2 |ρ |. Therefore if |r | ≥ δ+

√
2δ3 ∑

∣∣zi

∣∣+
δ2 |x |, then |ρ | ≥ 1

δ +
√

2
δ ∑
∣∣zi

∣∣ and by Lemma 4.4.5 eq (v)≥ 1. �

Lemma 4.4.7 Let q ∈ CK , let v ∈ ∂Hn
C
×, suppose that ϕq (v) = L > 0, let ε ∈

(
0, L2

4

)
, define

A = 2+∑
(

6
∣∣zi

∣∣+4
√

2
)

B = 2
√

2
(

1+2∑
(∣∣zi

∣∣+√2
))

C =
A+B
n−1

√
λ =

√
C2 + 4ε

n−1 −C

2

put

V =
{

v′ ∈ ∂Hn
C
× ∣∣ ∣∣ℜz′i−ℜzi

∣∣ , ∣∣ℑz′i−ℑz′i
∣∣ , ∣∣x′− x

∣∣≤ λ
}

Then Φq (V)≥ L− ε.

PROOF Let ζ̃ = ζ
δβ , let r̃ = r

δ2 , let λ = (±λ±ıλ ··· ±λ±ıλ) ∈ Cn−1 and let

V ′ =
{

v′ ∈ ∂Hn
C
× ∣∣ ℜz′i = ℜzi±λ, ℑz′i = ℑz′i±λ, x′ = x±λ

}
so that V ′ is the set of vertices of V . By Lemma 4.4.2 it is sufficient to compute a lower bound on

Φq
(
V ′
)
= inf

{
2

√
δ−2−

(
x±λ− r̃+ℑ

〈
z+λ, ζ̃

〉
+

)2
+2ℜ

〈
z+λ, ζ̃

〉
+
−Q+

(
ζ̃
)
−Q+ (z+λ)

}

Consider the second term in Φq (V ′)

2ℜ
〈

z+λ, ζ̃
〉

+
−Q+

(
ζ̃
)
−Q+ (z+λ)

≥2ℜ
〈

z, ζ̃
〉

+
+2ℜ

〈
λ, ζ̃
〉

+
−Q+

(
ζ̃
)
−Q+ (z)−2ℜ〈z,λ〉

+
−Q+ (λ)

=2ℜ
〈

z, ζ̃
〉

+
−Q+

(
ζ̃
)
−Q+ (z)︸ ︷︷ ︸

X

+2ℜ
〈

λ, ζ̃
〉

+
−2ℜ〈z,λ〉

+
−Q+ (λ)

≥X−2
∣∣∣〈λ, ζ̃

〉
+

∣∣∣−2
∣∣〈z,λ〉

+

∣∣−Q+ (λ)

≥X−2∑ |λ |
∣∣∣ ζ̃i

∣∣∣−2∑
∣∣zi

∣∣ |λ |−∑ |λ |2

≥X−2λ∑
∣∣∣ ζ̃i

∣∣∣−2λ∑
∣∣zi

∣∣− (n−1)λ2 (4.6)

38

By assumption ϕq (v)> 0 so that eq (v)< 1, thus Lemma 4.4.5 applies, so
∣∣∣ ζ̃i

∣∣∣≤ ∣∣zi

∣∣+√ 2
δ and therefore

≥X−2λ∑
(∣∣zi

∣∣+√2
δ

)
−2λ∑

∣∣zi

∣∣− (n−1)λ2

≥X−λ∑
(

4
∣∣zi

∣∣+2
√

2
)
− (n−1)λ2

Now consider the first term in Φq(V ′)

2

√
δ−2−

(
x±λ− r̃+ℑ

〈
z+λ, ζ̃

〉
+

)2

≥2

√
δ−2−

(
x− r̃+ℑ

〈
z, ζ̃
〉

+

)2

︸ ︷︷ ︸
Y

−2
√

2
(

x− r̃+ℑ
〈

z, ζ̃
〉

+

)∣∣∣±λ+ℑ
〈

λ, ζ̃
〉

+

∣∣∣−2
∣∣∣±λ+ℑ

〈
λ, ζ̃
〉

+

∣∣∣
≥Y −2

√
2δ−2

∣∣∣±λ+ℑ
〈

λ, ζ̃
〉

+

∣∣∣−2
∣∣∣±λ+ℑ

〈
λ, ζ̃
〉

+

∣∣∣
≥Y −2

√
2
(
±λ+

∣∣∣〈λ, ζ̃
〉

+

∣∣∣)−2λ−2
∣∣∣〈λ, ζ̃

〉
+

∣∣∣
≥Y −2

√
2
(
±λ+∑ |λi |

∣∣∣ ζ̃i

∣∣∣)−2λ−2∑ |λi |
∣∣∣ ζ̃i

∣∣∣
≥Y −2

√√√√2

(
λ+λ∑

(∣∣zi

∣∣+√2
δ

))
−2λ−2λ∑

(∣∣zi

∣∣+√2
δ

)

≥Y −2
√

2
(

λ+λ∑
(∣∣zi

∣∣+√2
))
−2λ−2λ∑

(∣∣zi

∣∣+√2
)

(4.7)

Combining the two inequalities (4.6) and (4.7) and noting that L = ϕq (v) = X +Y

Φq(V)≥L−λ∑
(

4
∣∣zi

∣∣+2
√

2
)
− (n−1)λ2−2

√
2
(

λ+λ∑
(∣∣zi

∣∣+√2
))
−2λ−2λ∑

(∣∣zi

∣∣+√2
)

=L− (n−1)λ2−λ
(

2+∑
(

6
∣∣zi

∣∣+4
√

2
))
−
√

λ2
√

2
(

1+∑
(∣∣zi

∣∣+√2
))

Since δ≥ 1, then 2≥ ϕq (v) so that 1≥ λ, implying
√

λ≥ λ and so

Φq(V)≥ L− (n−1)λ−
√

λ
(

2+∑
(

6
∣∣zi

∣∣+4
√

2
))
−
√

λ2
√

2
(

1+∑
(∣∣zi

∣∣+√2
))

= L− (n−1)λ−
√

λ

(
2+∑

(
6
∣∣zi

∣∣+4
√

2
)
+2
√

2
(

1+∑
(∣∣zi

∣∣+√2
)))

= L− (n−1)λ− (A+B)
√

λ

= L− (n−1)


√

C2 + 4ε
n−1 −C

2

2

− (n−1)C


√

C2 + 4ε
n−1 −C

2



39

= L− (n−1)

C2−2C
√

C2 + 4ε
n−1 +C2 + 4ε

n−1 −2C2 +2C
√

C2 + 4ε
n−1

4


= L− ε �

So by discretising into multidimensional rectangles where the length of each side is no greater than λ as
computed in the Lemma above, then it is guaranteed that an error of no greater than ε is introduced through
discretisation.

4.5 Cusp Construction

Corollary 4.4.4 explains how to compute Siegel sets under discretisation and Lemma 4.4.7 describes a
strategy for discretisation and so it remains to consider how to construct a set of cusps; this section presents
an algorithm for doing just this. To ease notation a few definitions are necessary;

Definition 4.5.1 Let X ⊂Hn
C, let δ ∈ R>0 and define

CK,δ = {q ∈ CK | q has dilation factor δ}

CK(X) = {q ∈ CK | ∃v ∈ X s.t. eq (v)< 1}

CK,δ(X) = CK,δ∩CK(X) 2

Let µ ≥ 0, let X ⊆
{

v ∈ ∂Hn
C
× | |ℜzi | , |ℑzi | , |x | ≤ µ

}
, fix a dilation factor δ ∈ R>0 and put ∆ = δ2

so that ∆ ∈ N. Then specifically, this section derives a deterministic algorithm for generating a finite set
Qδ ⊂ CK such that Qδ ⊆ CK,δ and CK,δ(X)⊆Qδ. Although it is not proved here, it is intuitively obvious that
in general

∣∣CK,δ(X)
∣∣� |Qδ | and this inefficiency seriously impedes Siegel set generation from a practical

point of view; Section 5.6 describes an improved algorithm which generates the set CK,δ(X) exactly.

Lemma 4.5.2 Let q ∈ CK be a cusp of dilation factor δ. Then

β =


a+b

√
d

2δ
d ≡ 1 mod 4

a+b
√

d
δ

d 6≡ 1 mod 4
(4.8)

where a,b ∈ Z and

a2−db2 = 4∆ d ≡ 1 mod 4

a2−db2 = ∆ d 6≡ 1 mod 4

PROOF By Lemma 4.1.4, since q is a cusp, then δβ ∈ O, whence β is of the form given in (4.8). By the
same result |β |2 = 1, thus

1 =


a2−db2

4∆
d ≡ 1 mod 4

a2−db2

∆
d 6≡ 1 mod 4

40

If d 6≡ 1 mod 4 then the result is immediate. If d ≡ 1 mod 4 then there is the integrality condition to
satisfy; it is necessary and sufficient that a ≡ b mod 2 to satisfy a+b

√
d

2 ∈O, however a2− db2 = 4∆ and
d ≡ 1 mod 4 imply that a2 +b2 ≡ 0 mod 2, and this is true if and only if a≡ b mod 2, so the integrality
condition is automatically satisfied. �

Corollary 4.5.3 Let q∈ CK be a cusp of dilation factor δ. Then there is only a finite number of βs such that

q has rotation factor β.

PROOF The generator of the number field d < 0, therefore, independent of the congruence class of d,
|a | , |b | ≤ 2

√
∆. Since a,b,∈ Z then the number of choices for a and b is finite. �

Lemma 4.5.4 Let q ∈ CK be a cusp of dilation factor δ, rotation factor β and zeta factor ζ. Then r is a

valid r factor for q if and only if

r = r′
√
−d (4.9)

2bd r′ ≡ Q+ (ζ)a mod 2∆ (4.10)

2ar′ ≡ Q+ (ζ)b mod 2∆ (4.11)

when d 6≡ 1 mod 4 and

r =
r′
√
−d

2
(4.12)

bd r′ ≡ Q+ (ζ)a mod 2∆ (4.13)

ar′ ≡ Q+ (ζ)b mod 2∆ (4.14)

(a+bd)r′ ≡ Q+ (ζ)(b+a) mod 4∆ (4.15)

when d ≡ 1 mod 4, where r′ ∈ Z, a and b are as in Lemma 4.5.2.

PROOF The real number r is a valid r factor for q if and only if β
δ

(
−Q+(ζ)

2 + ır
)
∈O. Given that δβ ∈O

and O is closed under complex conjugation then it follows that δβ β
δ

(
−Q+(ζ)

2 + ır
)
= −Q+(ζ)

2 + ır ∈ O,

therefore r = r′
√
−d if d 6≡ 1 mod 4 and r = r′

√
−d

2 and Q+ (ζ)≡ r′ mod 2 if d ≡ 1 mod 4, where r′ ∈ Z.
Firstly taking the d 6≡ 1 mod 4 case;

β
δ

(
−Q+ (ζ)

2
+ ır

)
=

a+b
√

d
∆

(
−Q+ (ζ)+2r′

√
d

2

)

=
(2bdr′−Q+ (ζ)a)+(2ar′−Q+ (ζ)b)

√
d

2∆
(4.16)

Then (4.16) is integral if and only if 2bdr′−aQ+(ζ)
2∆ ∈ Z and 2ar′−Q+(ζ)b

2∆ ∈ Z and this is the case if and only if
both (4.10) and (4.11) are satisfied.

Secondly taking the d ≡ 1 mod 4 case;

β
δ

(
−Q+ (ζ)

2
+ ır

)
=

a+b
√

d
2∆

(
−Q+ (ζ)+ r′

√
d

2

)

41

=
(bdr′−Q+ (ζ)a)+(ar′−Q+ (ζ)b)

√
d

4∆
(4.17)

Then (4.17) is integral if and only if bdr′−Q+(ζ)a
2∆ ∈ Z, ar′−Q+(ζ)b

2∆ and bdr′ −Q+ (ζ)a ≡ ar′ −Q+ (ζ)b

mod 4∆ and this is the case if and only if (4.13), (4.14) and (4.15) are satisfied. Note that when these
conditions are satisfied, a2−db2 = 4∆ immediately implies that r′ ≡ Q+ (ζ) mod 2. �

This leads to the following algorithms for generating Qδ. There are two cases depending on the congru-
ence class of d modulo 4:

Algorithm 4.5.5 (Cusp Generation d 6≡ 1 mod 4)

Inputs: n∈ [2,3 . . .), d ∈ {−1,−2}, ∆∈N and X ⊂ ∂Hn
C
× where X ⊆

{
v ∈ ∂Hn

C
× | |ℜzi | , |ℑzi | , |x | ≤ µ

}
for some µ > 0.

1. Assign δ←
√

∆

2. Compute Bδ←
{

a+b
√

d
δ ∈ C

∣∣∣ a,b ∈ Z s.t. a2−db2 = ∆
}

3. For each β ∈ Bδ

4. Compute Zδ,β←
{

ζ ∈On−1
∣∣∣ |ζi |<

√
2δ+δµ

}
5. For each ζ ∈ Zδ,β

6. Compute

Rδ,β,ζ←

{
r ∈ R

∣∣∣∣∣ |r |< δ+
√

2δ3(n−1)µ+δ2µ, r = r′
√
−d where r′ ∈ Z s.t.

2bd r′ ≡ Q+ (ζ)a mod 2∆ and 2ar′ ≡ Q+ (ζ)b mod 2∆

}

7. For each r ∈ Rδ,β,ζ

8. Assign q←
(

δβ ζ β
δ

(
−Q+(ζ)

2 +ır
))t

9. Assign Qδ← Qδ∪{q}
10. Next

11. Next

12. Next

13. Return Qδ

Algorithm 4.5.6 (Cusp Generation d≡ 1 mod 4)

Inputs: n ∈ [2,3 . . .), d ∈ {−3,−7,−11,−19,−43,−67,−163}, ∆ ∈ N and X ⊂ ∂Hn
C
× where

X ⊆
{

v ∈ ∂Hn
C
× | |ℜzi | , |ℑzi | , |x | ≤ µ

}
for some µ > 0.

1. Assign δ←
√

∆

2. Compute Bδ =
{

a+b
√

d
2δ ∈ C

∣∣∣ a,b ∈ Z s.t. a2−db2 = 4∆
}

42

3. For each β ∈ Bδ

4. Compute Zδ,β←
{

ζ ∈On−1
∣∣∣ |ζi |<

√
2δ+δµ

}
5. For each ζ ∈ Zδ,β

6. Compute

Rδ,β,ζ←

r ∈ R

∣∣∣∣∣∣∣
|r |< δ+

√
2δ3(n−1)µ+δ2µ, r = r′

√
−d

2 where r′ ∈ Z s.t.
bd r′ ≡ Q+ (ζ)a mod 2∆, ar′ ≡ Q+ (ζ)b mod 2∆ and
(a+bd)r′ ≡ Q+ (ζ)(b+a) mod 4∆


7. Assign q←

(
δβ ζ β

δ

(
−Q+(ζ)

2 +ır
))t

8. Assign Qδ← Qδ∪{q}

9. Next

10. Next

11. Return Qδ

Lemma 4.5.7 The set Qδ ⊂ CK generated by Algorithm 4.5.5 and Algorithm 4.5.6 is finite, Qδ ⊂ CK,δ and

Qδ ⊇ CK,δ(X).

PROOF For both algorithms, the assertion Qδ ⊂ CK,δ is immediate from line 1. The assertion that Qδ is
finite can be seen in the following way for both algorithms; by Corollary 4.5.3, once δ has been fixed there
is only a finite number of valid β values that are available to complete a cusp and this number is |Bδ |,
where Bδ the set computed in line 2. In the algorithm the number of ζ values for each β is determined by∣∣Zδ,β

∣∣, where Zδ,β is the set computed in line 4 and since Zδ,β is both compact and discrete, then Zδ,β is
finite for each β. The number of r values for each (β,ζ) pair is determined by the size of Rδ,β,ζ, where
Rδ,β,ζ is the set computed in line 6 and since for each pairing the set Rδ,β,ζ is compact and discrete it is also
finite. Examination of the algorithm shows that |Qδ |= ∑β∈Bδ ∑ζ∈Zδ,β

∣∣Rδ,β,ζ
∣∣ and since this is a finite sum

of integers by the preceding argument, Qδ is a finite set.
To prove the assertion that Qδ ⊇ CK,δ(X), the two algorithms must be treated separately. Considering

Algorithm 4.5.5; let q ∈ CK,δ(X) and suppose that q 6∈ Qδ. By Lemma 4.5.2, the set Bδ consists of all
possible rotation factors β allowable for a cusp of dilation factor δ, so β ∈ Bδ and as such if q 6∈ Qδ, then
either ζ 6∈ Zδ,β or ζ ∈ Zδ,β and r 6∈ Rδ,β,ζ. By Corollary 4.4.6, if ζ 6∈ Zδ,β and q is a cusp of dilation factor
δ, rotation factor β and zeta factor ζ, then irrespective of the r factor of q, eq (v) ≥ 1 for all v ∈ X , thus
q 6∈ CK,δ(X), hence it must be concluded that ζ ∈ Zδ,β and r 6∈ Rδ,β,ζ. However, again by Corollary 4.4.6,
if r 6∈ Rδ,β,ζ and q is a cusp of dilation factor δ, rotation factor β, zeta factor ζ, and r factor r, eq (v) ≥ 1
for all v ∈ X , implying that the statement: r = r′

√
−d where r′ ∈ Z such that 2bd r′ ≡ Q+ (ζ)a mod 2∆

and 2ar′ ≡ Q+ (ζ)b mod 2∆, is false. But by Lemma 4.5.4, given δ,β and ζ, q is a cusp with r factor
r if and only if r = r′

√
−d where r′ ∈ Z s.t. 2bd r′ ≡ Q+ (ζ)a mod 2∆ and 2ar′ ≡ Q+ (ζ)b mod 2∆.

Therefore q∈Qδ and this contradiction proves the result. The argument for Algorithm 4.5.6 is very similar;
simply substitute in the corresponding results for d ≡ 1 mod 4 from Lemma 4.5.2, Corollary 4.4.6 and
Lemma 4.5.4. �

43

4.6 Siegel Set Construction

The final section in this chapter presents a general algorithm for computing Siegel sets for the action of
Γ on Hn

C when the imaginary quadratic field K has trivial class group. It is shown that this algorithm is
guaranteed to terminate and error bounds on the output of the algorithm are derived. This algorithm is
accurate and verifiable, but very slow; a much faster but less accurate and less verifiable algorithm which is
more appropriate for a practical implementation is described in Section 5.10.

The following notation is defined in order to describe how to discretise the search space.

Definition 4.6.1 Let h≥ 0, let λ > 0, let X ⊂ ∂Hn
C
×, let v ∈ X and define

V (v,λ,X) =
{

v′ ∈ X
∣∣ ∣∣ℜz′i−ℜzi

∣∣ , ∣∣ℑz′i−ℑzi
∣∣ , ∣∣x′− x

∣∣≤ λ
}

Λ(λ,X) = {v ∈ X | ℜzi,ℑzi,x ∈ λZ}

Ω(λ,X) = {V (v,λ,X)⊂ X | v ∈ Λ(λ,X)} 2

Algorithm 4.6.2 (Siegel Set Construction)

Inputs: n ∈ N≥2 the dimension, d a Heegner number, α ∈ (0,1) an error tolerance, a set
X ⊆

{
v ∈ ∂Hn

C
× | |ℜzi | , |ℑzi | , |x | ≤ µ

}
for some µ > 0.

1. Initialise: L← 2, ∆← 1, Q← /0

2. Assign δ←
√

∆, ε← α
2
δ

, A← 2+∑
(

6µ+4
√

2
)

, B← 2
√

2
(

1+2∑
(

µ+
√

2
))

, C← A+B
n−1

3. Assign λ←


√

C2 + 4ε
n−1 −C

2

2

, Ω←Ω(λ,X)

4. Compute Qδ via either Algorithm 4.5.5 or Algorithm 4.5.6, depending on the congruence class of d,
to X

5. Assign Q← Q∪Qδ

6. For each V ∈Ω

7. Assign V ′←{v ∈V | v is a vertex of V}

8. Assign L′← sup{Φq(V ′) | q ∈ Q}

9. If L′ <
2
δ
− ε then assign ∆← ∆+1 and goto line 2

10. L←min{L,L′}

11. Next

12. Return L

44

Proposition 4.6.3 Let d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}, let n ∈ [2,3, . . .), let α ∈ (0,1),
S∞ be the Siegel container computed in Lemma 4.2.6, let X = S∞ ∩ ∂Hn

C
× and let L be the output of

Algorithm 4.6.2(d,n,α,X). Then for all ε ∈
(

0, L2

4

)
, the set S∞ (L− ε) is a Siegel set for Γ. Moreover

the algorithm is guaranteed to terminate and return a value L > 0 and if S∞ (L′− ε) is a Siegel set for some

L′ ∈ (0,2], then L
1−α ≥ L′.

PROOF The set Ω consists of subsets Vi ⊂ X = S∞ ∩{v ∈ S∞ | h(v) = 0} such that X = ∪Vi and each Vi

is a polytope. Putting V ′i = {v ∈V | v is a vertex of Vi}, the loop between lines 6 and 11 computes an L

such that L = inf{ sup{Φq(V ′i) |q ∈ Q} | i = 1, . . . ,N} for some set of cusps Q where N is the number of
iterations in the loop. Whenever ε ∈

(
0, L2

4

)
, L2

L−
√

ε > 0 and therefore by Corollary 4.4.4 S∞ (L− ε) is a
Siegel set for Γ.

By [PR92][Theorem 4.4] Siegel sets are known to exists for all groups Γ so there exists some L ∈ (0,2]
such that L = inf{sup{ϕq (v) | q ∈ CK} | v ∈ X} and as the real numbers are well ordered the set of all
such L has a supremum, so let Lmax ∈ (0,2] and suppose that S∞(Lmax) is a Siegel set and whenever S∞(L)

is a Siegel set, then Lmax ≥ L. Let ∆ =

⌈(
2

Lmax

)2
⌉

, put δ =
√

∆ and for each convex polytope Vi let vi be

the midpoint of Vi under the standard Euclidean metric. By assumption ϕq (vi) ≥ Lmax ≥ 2
δ , whence the

dilation factor of q is less than or equal to δ, so on the ∆th loop of the algorithm between lines 2 and 11,
q ∈ Q, ε = α 2

δ ,

λ =


√

C2 + 4ε
n−1 −C

2

2

and Vi =
{

v′ ∈ X
∣∣∣ ∣∣∣ℜz′j−ℜz j

∣∣∣ , ∣∣∣ℑz′j−ℑz j

∣∣∣ , |x′− x | ≤ λ
}

. Therefore by Lemma 4.4.7, Φq (Vi)≥ Lmax−
α 2

δ ≥
2
δ (1−α) and as such the algorithm terminates on, or before this loop. Call the output of the algorithm

L; if the algorithm terminates on the ∆th loop then by the preceding argument the output L ≥ Lmax−α 2
δ ≥

Lmax−αLmax = Lmax(1−α) and so L
1−α ≥ Lmax or; if the algorithm terminates on the (∆′)th loop where

∆′ < ∆, then ∆′ ≤
⌊(

2
Lmax

)2
⌋

, put δ′ =
√

∆′ so that Lmax ≤ 2
δ′ then on the (∆′)th loop the output L ≥

2
δ′ (1−α)≥ Lmax(1−α). Therefore in either case L

1−α ≥ Lmax. �

45

Chapter 5

Computational Improvements

The algorithms described in Chapter 4 for computing Siegel sets are written from the point of view of
mathematical clarity, not computational efficiency. This chapter considers modifications to these algorithms
that decrease computation time and as such make them practical for implementation.

There is an issue which is not directly connected to the algorithms that introduces a significant inefficiency
in the computation;

I. The Siegel container described in Lemma 4.2.6 makes no use of automorphisms in the AM-group
AM(O). By considering the action of this group, which consists of integral rotations, the volume of
the Siegel container can be reduced.

Reducing the size of the Siegel container inputted to Algorithm 4.6.2 will result in a smaller number of
convex polytopes to iterate through and smaller bounds on the coordinates of cusps which are effective on
the Siegel container.

There are three major inefficiencies in Algorithm 4.5.5 and Algorithm 4.5.6

II. As shall be seen in Section 5.2 there are certain cusps which either a priori do not contribute to the
construction of Siegel sets, or have actions which are equivalent to those of other cusps; the cusp
generation algorithms do not attempt to detect or remove such cusps.

III. The cusp generation algorithms do not attempt to detect and remove cusps which are not effective on
the input set.

IV. The bounds on ζ and r such that a cusp of dilation factor δ could be effective on the input set which
are given in Corollary 4.4.6 are very loose.

Reducing the size of the set of cusps Q generated by Algorithm 4.5.5 or Algorithm 4.5.6 will decrease
the amount of work required to compute sup{Φq(V ′) | q ∈ Q} in line 8 of Algorithm 4.6.2. Since this
value must be computed for every polytope V , then it is clear that the size of Q is highly correlated to total

46

computation time.

In Algorithm 4.6.2 the majority of the computation time is spent in the loop

6. For each V ∈Ω

8. Assign L′← sup{Φq(V ′) | q ∈ Q} (where V ′ is the set of vertices of V)

11. Next

and specifically this time is spent on line 8. So far no mention has been made of how sup{Φq(V ′) | q ∈ Q}
should be computed in practise, although it is clear that the naı̈ve brute force method of computing Phi on
each vertex and then taking the infimum over all vertices would be the default option. Given a set cusps Q

there are two factors to consider when computing L′:

V. The method by which Φq(V ′) is computed where q is a cusp and V ′ is the set of vertices of a convex
polytope V .

VI. The sequence in which the cusps q ∈ Q are chosen.

There is a major implementation impracticality in Algorithm 4.6.2;

VII. The resolution which is computed analytically based on Lemma 4.4.7, so that the error in the mini-
mum height bound can be quantified, is in general far too large to practically perform computations
on.

Decreasing the resolution will decrease the number of convex polytopes to iterate through; however it will
reduce the accuracy of the output and make the error bound uncertain since Lemma 4.4.7 will no longer
apply. Having said this, from the point of view of computation it is better to have a less accurate output than
it is to not get an accurate output; whilst regrettable, it is true that in general computation requires some
amount of compromise between the ideal and the feasible.

5.1 An Improved Siegel Container

The Siegel container calculated in Lemma 4.2.6 is a Siegel set for the Heisenberg group N(O), it takes no
account of the action of rotational automorphisms in AM(O), this section improves on the Siegel container
by considering the action of certain integral rotations.

Definition 5.1.1 Let n ∈ N. Then define

Dn = {diag(σ1, . . . ,σn) ∈ GLn (Z) | σi ∈ {±1}} 2

If g = diag(σ1, . . . ,σn) ∈ Dn, then g∗g = diag(|σ1 |2 , . . . , |σn |2) = In. Therefore Dn is a subgroup of
U(n;O).

47

Lemma 5.1.2 Let d ≡ 1 mod 4. Then

S∞ =

{
v ∈Hn

C

∣∣∣∣ ∣∣ℜzi

∣∣≤ 1
2
, 0≤ ℑzi ≤

√
−d
4

, |x | ≤
√
−d
2

}
is a Siegel container for Γ.

PROOF Let S′∞ =
{

v ∈Hn
C

∣∣∣ ∣∣ℜzi

∣∣≤ 1
2 ,
∣∣ℑzi

∣∣≤ √−d
4 , |x | ≤

√
−d
2

}
, by Lemma 4.2.6, S′∞ is a Siegel con-

tainer for Γ, therefore to prove that S∞ is a Siegel container for Γ it is sufficient to show that for all
v ∈ S′∞ there exists a γ ∈ Γ such that γ ◦ v ∈ S∞. With this aim, let v ∈ S′∞, if v ∈ S∞ then there is noth-
ing to do, so assume otherwise. Let Z =

{
z ∈ C

∣∣∣ |ℜz | ≤ 1
2 , 0≤ ℑz≤

√
−d
4

}
, let σi = sign

(
ℑzi

)
and

put u = diag(σ1, . . . ,σn−1) ∈ Dn−1 so that uz ∈ Zn−1. If detu = 1 then m(u,1) ∈ AM(O) and m(u,1)v =

(uz,x,h) ∈ S∞, so take γ = m(u,1).
Suppose conversely that detu =−1. If n≡ 0 mod 2, then dimu≡ 1 mod 2, hence det−u = 1 so that

m(−u,−1) ∈ AM(O) and m(−u,−1)v = (−(−u)z,x,h) = (uz,x,h) ∈ S∞, so take γ = m(−u,−1) and; if

n ≡ 1 mod 2, then n ≥ 3 so u′ =
(1

1
In−3

)
∈ U(n−1,O) and detu′ = −1. The set Zn−1 is stable by the

matrix u′, i.e. u′Zn−1 = Zn−1 since u′ simply transposes the first two copies of Zn−1, hence u′uz ∈ Zn−1 and
detuu′ = 1 therefore m(u′u,1) ∈ AM(O) and m(u′u,1)v = (u′uz,x,h) ∈ S∞ so take γ = m(u′u,1). �

Lemma 5.1.3 Let d 6≡ 1 mod 4 and let n ∈ N−{3}. Then

S∞ =

{
v ∈Hn

C

∣∣∣∣ ∣∣ℜz1

∣∣≤ 1,
∣∣ℜzi

∣∣≤ 1
2
(i 6= 1), 0≤ ℑzi ≤

√
−d
2

, |x | ≤
√
−d
2

}
is a Siegel container for Γ.

PROOF Let S′∞ =
{

v ∈Hn
C

∣∣∣ ∣∣ℜz1

∣∣≤ 1,
∣∣ℜzi

∣∣≤ 1
2 (i 6= 1),

∣∣ℑzi

∣∣≤ √−d
2 , |x | ≤

√
−d
2

}
, by Lemma 4.2.6

S′∞ is a Siegel container for Γ, therefore to prove that S∞ is a Siegel container for Γ it is sufficient to
show that for all v ∈ S′∞ there exists a γ ∈ Γ such that γ ◦ v ∈ S∞. With this aim, let v ∈ S′∞, if v ∈ S∞

then there is nothing to do, so assume otherwise. Let Z1 =
{

z ∈ C
∣∣∣ |ℜz | ≤ 1

2 , 0≤ ℑz≤
√
−d
2

}
, let Z ={

z ∈ C
∣∣∣ |ℜz | ≤ 1

2 , 0≤ ℑz≤
√
−d
2

}
, let σi = sign

(
ℑzi

)
and put u = diag(σ1, . . . ,σn−1) ∈ Dn−1 so that

uz ∈ Z1×Zn−2. If detu = 1 then m(u,1) ∈ AM(O) and m(u,1)v = (uz,x,h) ∈ S∞, so take γ = m(u,1).
Suppose conversely that detu = −1. If n ≡ 0 mod 2, then dimu ≡ 1 mod 2 hence det−u = 1 so that

m(−u,−1) ∈ AM(O) and m(−u,−1)v = (−(−u)z,x,h) = (uz,x,h) ∈ S∞, so take γ = m(−u,−1). If n≡ 1
mod 2, then n≥ 5 so

u′ =
(1

1
1

In−4

)
∈ U(n−1,O)

and detu′ =−1. The set Z1×Zn−2 is stable by the matrix u′, i.e. u′(Z1×Zn−2) = Z1×Zn−2 since u′ simply
transposes the second and third copies of Z, hence u′uz ∈ Z1×Zn−2 and detuu′ = 1 therefore m(u′u,1) ∈
AM(O) and m(u′u,1)v = (u′uz,x,h) ∈ S∞ so take γ = m(u′u,1). �

For d =−1 or d =−2 and n = 3, the Siegel container computed in Lemma 4.2.6 must be used as input to
Algorithm 4.6.2; the reason a significantly better set does not exists is the lack of symmetry between the sets
which in z1 and z2 lie in these cases. However, when d =−1 or d =−2 and n = 3 the Siegel containers are
already computationally manageable, so this is unimportant. In every other case the number of iterations in

48

the loop between lines 6 and 11 will be reduced by a factor of approximately 2n−1 since the measure of the
new Siegel container is 1

2n−1
th

the size of the original Siegel container.

5.2 Non-Primitive Cusps

This section identifies a property exhibited by some cusps called primitivity; testing a cusp for primi-
tivity is computationally fast. Let X ⊂ ∂Hn

C
× and suppose Q is a set of cusps with the property that

Q ⊃ ∏∆′
∆=1 C√∆,K(X) for some ∆′ ∈ N and suppose that q ∈ Q is a cusp with dilation factor δ and q is

not primitive. Then either ϕq (v) ≤ 0 for all v ∈ ∂Hn
C
× or there exists another cusp q′ ∈ Q with dilation

factor δ′ with the three properties; q′ is primitive, δ′ < δ and ϕq (v) ≤ ϕq′ (v) for all v ∈ ∂Hn
C
×. There-

fore any non-primitive cusp can a priori be removed from Q without affecting the combined height raising
properties of the cusps in Q.

Definition 5.2.1 (Primitive Cusps) Suppose that Cl(K) = 1, let q ∈ CK and let N (q) be the K-norm of

the ideal generated by the coordinates of q. Then q is said to be a primitive cusp whenever N (q) = 1. 2

Lemma 5.2.2 Let q∈ CK,δ and suppose that q is not primitive. Then there exists a primitive cusp q′ ∈ CK,δ′

such that δ > δ′ and ϕq′ (v)≥ ϕq (v) for all v ∈ ∂Hn
C
×.

PROOF Since the class number of K is 1, O is a principal ideal domain, thus if N (q) 6= 1, then there
exists an element q ∈O and a vector q′ ∈On+1 such that N (q′) = 1 and qq′ = q where |q |2 = N (q)> 1.
Let β and β′ be the rotation factors of q and q′ respectively. Since q = qq′ then δβ = qδ′β′, whence
δ′ = |δ′β′ | = |q |−1 ∣∣q−1δβ

∣∣ = |q |−1 δ and therefore δ′ < δ. Put ζ̃ = (δβ)−1ζ, put r̃ = rδ−2 and suppose
that ϕq (v)≥ 0, then

ϕq (v) = 2

√
δ−2−

(
x− r̃+ℑ

〈
z, ζ̃
〉

+

)2
+2ℜ

〈
z, ζ̃
〉

+
−Q+

(
ζ̃
)
−Q+ (z)

ϕq′ (v) = 2

√
|q |2 δ−2−

(
x− r̃+ℑ

〈
z, ζ̃
〉

+

)2
+2ℜ

〈
z, ζ̃
〉

+
−Q+

(
ζ̃
)
−Q+ (z)

and as such ϕq′ (v)≥ ϕq (v). �

Corollary 5.2.3 Let X ⊂ ∂Hn
C
× and suppose Q is a set of cusps with the property that Q⊃∏∆′

∆=1 C√∆,K(X)

for some ∆′ ∈ N and suppose that q ∈ Q is a cusp with dilation factor δ and q is not primitive. Then either

ϕq (v)≤ 0 for all v ∈ X or there exists another cusp q′ ∈Q with dilation factor δ′ with the three properties;

q′ is primitive, δ′ < δ and ϕq (v)≤ ϕq′ (v) for all v ∈ ∂Hn
C
×.

PROOF Suppose that ϕq (v′) > 0 for some v′ ∈ X , then by Lemma 5.2.2 there exists a primitive cusps
q′ ∈ CK,δ′ such that δ′ < δ and ϕq (v)≤ ϕq′ (v) for all v ∈ ∂Hn

C
× and therefore ϕq′ (v′)> 0 whence q′ ∈Q�

In order to detect non-primitive cusps it is necessary to compute the norm of the ideal generated by the
coordinates of q; this is accomplished in practise by using the theory in [Coh00, 5.2] to represent ideals and
perform computations on them.

49

5.3 Equivalent Cusps

Another class of cusps which are a priori unnecessary in Siegel set construction are equivalent cusps. The
notion of equivalence arises from the original projective definition of complex hyperbolic space; when
constructing the ball and hyperquadric models of Hn

C a unique representative of each projective point is
chosen. However, there is no such uniqueness property in the definition of a cusp, thus cusps which differ
only by a unit are in fact the same cusp and as such act identically on Hn

C. This section considers how
to detect equivalent cusps and how to safely eliminate them during cusp construction; it is shown that
equivalent cusps can be removed at the point at which the rotation factor of the cusps is computed.

Definition 5.3.1 (Equivalent Cusps) Let q,q′ ∈ CK and suppose that there exists an integral unit u ∈O∗

such that q = uq′. Then q and q′ are said to be equivalent. 2

Lemma 5.3.2 Let q,q′ ∈ CK be equivalent cusps. Then q and q′ have the same dilation factor and ϕq (v) =
ϕq′ (v) for all v ∈ ∂Hn

C
×.

PROOF Let δ,β and δ′,β′ be the dilation and rotation factors of q and q′ respectively, then by definition
δβ = uδ′β′; taking the absolute value of this equality gives δ = |δβ | = |uδ′β′ | = δ′ Since q and q′ are
equivalent cusps so that there exists an integral unit u ∈ O∗ such that q = uq′. Put ζ̃ = (δβ)−1ζ, put
r̃ = rδ−2 and suppose that ϕq (v)≥ 0, then

ϕq (v) = 2

√
δ−2−

(
x− r̃+ℑ

〈
z, ζ̃
〉

+

)2
+2ℜ

〈
z, ζ̃
〉

+
−Q+

(
ζ̃
)
−Q+ (z)

ϕq′ (v) = 2

√
|u |2 δ−2−

(
x− r̃+ℑ

〈
z, ζ̃
〉

+

)2
+2ℜ

〈
z, ζ̃
〉

+
−Q+

(
ζ̃
)
−Q+ (z)

and since |u |2 = 1, then ϕq′ (v) = ϕq (v). �

Lemma 5.3.3 Let X ⊂ ∂Hn
C
×, let Q = CK,δ(X)∩ {q | q is primitive}, let β ∈ C be a rotation factor, let

Qβ = {q ∈ Q | q has rotation factor β} and put

Q⊥β =
∪

u∈O∗−{1}
Quβ

Then for all q ∈ Q⊥β , there exists an equivalent cusp q′ ∈ Qβ.

PROOF Let q∈Q⊥β , then the rotation factor of q is uβ for some u∈O∗. Let q′= u−1q so that q′ is equivalent
to q. Since q is primitive then N (q′) = N

(
u−1q

)
= 1, so q′ is also primitive, thus by Lemma 5.3.2 q′ ∈Q.

As the rotation factor of q′ is β then q′ ∈ Qβ. �

The preceding lemma implies equivalence is a property which can be detected at the rotation factor of
cusps when certain effectiveness properties of the cusps in a set are assumed. The following algorithm
applies this logic to remove equivalent cusps at the point at which the rotation factor of a cusp is calculated
during cusp generation.

Algorithm 5.3.4 (Improved β values)

Inputs: d a Heegner number, B⊂ {β ∈ C | |β |= 1}.

50

1. Assign O∗←{1,−1}, B′← /0.

2. If d =−1 then O∗←O∗∪{ı,−ı}

3. If d =−3 then O∗←O∗∪
{

1+
√
−3

2 , 1−
√
−3

2 , −1+
√
−3

2 , −1−
√
−3

2

}
4. For each β ∈ B

5. For each u ∈O∗

6. If uβ ∈ B′ goto 4

7. Next

8. Assign B′← B′∪{β}

9. Next

10. Return B′

Lemma 5.3.5 Let δ ∈ R>0 such that ∆ = δ2 ∈ N and let Bδ = Algorithm 5.4.8(d,B) where

B =


{

a+b
√

d
δ ∈ C

∣∣∣ a,b ∈ Z s.t. a2−db2 = ∆
}

if d 6≡ 1 mod 4{
a+b
√

d
2δ ∈ C

∣∣∣ a,b ∈ Z s.t. a2−db2 = 4∆
}

if d ≡ 1 mod 4

Then uβ ∈ Bδ, for some u ∈O∗.

PROOF Let β′ be the rotation factor of q, if β′ ∈ Bδ there is nothing to do, so assume that β′ 6∈ Bδ. On line
of 4 Algorithm 5.3.4 every element of B is iterated over, so at some stage line 5 is reached with β = β′. All
elements u ∈O∗ are now iterated over. On line 6 if there exists a u such that uβq ∈ B′ then β is incremented
to the next value in B and β′ is not added to B′, if not then line 8 is reached and β′ is added to B′. By
assumption β′ 6∈ B so there is a unit u ∈O∗ such that uβ ∈ B′ and Bδ = B′. �

5.4 Improved Bounds on ζ and r

Let v ∈ ∂Hn
C
×, let δ ∈ R, let q ∈ CK,δ and fix the rotation factor of q, then Corollary 4.4.6 gives bounds on

the zeta and r factors of q such that whenever they are satisfied eq (v)≥ 1, or equivalently ϕq (v)≤ 0. Given
a set X ⊂ ∂Hn

C
×, a dilation factor, a dimension and a ring of integers Algorithm 4.5.5 and Algorithm 4.5.6

use these bounds to construct a set of cusps Qδ ⊇ CK,δ(X). However, these bounds are very loose, so Qδ

will in general contain a high percentage of cusps which are not effective on X ; the non-effective cusps in
Qδ cause significant inefficiencies in terms of both storage and computation time. This section presents a
method of improving on these bounds.

Lemma 5.4.1 Let q ∈ CK(X), let v ∈ ∂Hn
C
× and suppose that

1
4
|Q+ (ζ−δβz) |2 +

∣∣δ2x− r+ℑ〈δβz,ζ〉
+

∣∣2 ≥ δ2 (5.1)

Then q 6∈ CK,δ(X).

51

PROOF By definition it is necessary to show that if eq (v)≥ 1 then (5.1) is satisfied, so consider the effect
function of v at q

eq (v) = | 〈v,q〉 |2

=

∣∣∣∣(δβ ζ∗ β
δ

(
−Q+(ζ)

2 − ır
))

Hn

(1
z

−Q+(z)
2 +ıx

)∣∣∣∣2
=

∣∣∣∣∣−β
δ

(
Q+ (ζ)

2
+ ır

)
+ 〈z,ζ〉

+
+δβ

(
−Q+ (z)

2
+ ıx

)∣∣∣∣∣
2

= δ−2

∣∣∣∣∣−Q+ (ζ)+2δβ〈z,ζ〉
+
−δ2(Q+ (z))

2
+ ı(δ2x− r)

∣∣∣∣∣
2

=
1

4δ2

∣∣−Q+ (ζ)+2ℜ〈δβz,ζ〉
+
−Q+ (δβz)

∣∣2 + 1
δ2

∣∣δ2x− r+ℑ〈δβz,ζ〉
+

∣∣2
=

1
4δ2 |Q+ (ζ−δβz) |2 + 1

δ2

∣∣δ2x− r+ℑ〈δβz,ζ〉
+

∣∣2
Hence if eq (v)≥ 1 then (5.1) holds. �

Improved Bounds on ζ

Firstly the bounds on ζ are considered; the modification made to this section of the algorithm is probably the
most complicated change which is made to the algorithm. The idea is that a lattice is constructed in On−1

which contains all valid zeta values and then this lattice is iterated through; the complication arises because
the lattice changes during the iteration. The outer coordinates are assumed to be fixed and then the bounds
on the inner coordinates are based on the values of the outer coordinates; each time the outer coordinates
change the bounds on the inner coordinates need to be recomputed and as such the lattice changes.

Lemma 5.4.2 Let q ∈ CK , let v ∈ ∂Hn
C
× and suppose that

∑
∣∣(δβ)−1ζi− zi

∣∣2 ≥ 2δ−1

Then q 6∈ CK(X).

PROOF By Lemma 5.4.1, if |Q+ (ζ−δβz) |2 ≥ 4δ2 then ϕq (v)≤ 0. The quadratic form Q+ (−) is positive
definite and δ > 0, so squareroots can be taken, thus this is equivalent to the inequality 2δ≤Q+ (ζ−δβz) =

∑
∣∣ζi−δβzi

∣∣2, dividing out by |δβ |2 completes the result. �

This Lemma implies the following Corollary which shows that the coordinates can be bounded incremen-
tally, starting with the (n−1)th and ending with the first.

Corollary 5.4.3 Let q ∈ CK , let v ∈ ∂Hn
C
×, let i ∈ {1, . . .n−1} and suppose that

∣∣(δβ)−1ζi− zi

∣∣≥
√√√√max

{
0,2δ−1−

n−1

∑
j=i+1

∣∣∣(δβ)−1ζ j− z j

∣∣∣2}

Then q 6∈ CK(X).

52

PROOF By Lemma 5.4.2, if
∣∣(δβ)−1ζi− zi

∣∣2 ≥ 2δ−1−∑n−1
j 6=i

∣∣∣(δβ)−1ζ j− z j

∣∣∣2 then ϕq (v) ≤ 0 and since

2δ−1−∑n−1
j 6=i

∣∣∣(δβ)−1ζ j− z j

∣∣∣2 ≥ 2δ−1−∑n−1
j=i+1

∣∣∣(δβ)−1ζ j− z j

∣∣∣2 the result follows. �

For the remainder of this chapter assume the following situation: for each i∈ {1, . . .n−1} let Yi,Wi ⊂R
be closed intervals, write Zi =Wi× ıYi ⊂ C and put Z = ∏Zi, let R ∈ R be a closed interval, put

X = Z×R⊂ ∂Hn
C
×

and suppose that the dilation factor δ and the rotation factor β of the cusp q are fixed.

Lemma 5.4.4 Let i ∈ {1, . . .n−1}, assume that the final n− i−1 coordinates of ζ, the zeta factor of q, are

fixed, let

C(ζi+1,...,ζn−1) =

√√√√max

{
0,2δ−1−

n−1

∑
j=i+1

inf
{∣∣(δβ)−1ζ j− z

∣∣2 ∣∣∣ z ∈ Z j

}}

Λ(ζi+1,...,ζn−1) =
{

δβz ∈O
∣∣∣ z ∈ C,z′ ∈ Zi and

∣∣z− z′
∣∣<C(ζ j+1,...,ζn−1)

}
and suppose that ζi 6∈ Λ(ζi+1,...,ζn−1). Then q 6∈ CK,δ(X).

PROOF Suppose ζi 6∈ Λ(ζi+1,...,ζn−1), so that by definition
∣∣(δβ)−1ζi− z

∣∣ ≥C(ζi+1,...,ζn−1) for all z ∈ Zi, thus
by Corollary 5.4.3, q 6∈ CK,δ(X). �

Corollary 5.4.5 With the same set up as Lemma 5.4.4, suppose that q∈ CK,δ(X). Then for i∈ {1, . . .n−1},
ζi ∈ Λ(ζi+1,...,ζn−1).

Corollary 5.4.6 The Λ(∗) lattices in Corollary 5.4.5 are finite.

PROOF The sets Zi are compact and O is discrete. �

There are two distinct phases involved in iterating through the zeta lattices; the construction / reconstruction
of the lattices and the actual iteration itself; Algorithm 5.4.7 deals with the construction / reconstruction
phase and Algorithm 5.4.8 deals with the iteration phase. The outer most lattice, the n− 1 lattice, never
changes, every other lattice is recomputed every time the iterand reaches the end of that lattice, the next
outer lattice is incremented and that lattice returns to the beginning.

Algorithm 5.4.7 (Zeta Lattices)

Inputs: δ ∈ R, β ∈ C, n ∈ N, an imaginary quadratic ring of integers O, i ∈ {1, . . .n−2}, sets Z j ⊂ C for
j = 1, . . . ,n−2, zeta values ζk ∈O for k = i+1, . . . ,n−1.

1. While i≥ 1

2. Assign C(ζi+1,...,ζn−1)←
√

max
{

0,2δ−1−∑n−1
k=i+1 inf

{
|(δβ)−1ζk− z |2

∣∣∣ z ∈ Zk

}}
3. Assign Λ(ζi+1,...,ζn−1)←

{
δβz ∈O

∣∣ z ∈ C,z′ ∈ Zi and |z− z′ |<C(ζi+1,...,ζn−1)

}
4. If Λ(ζi+1,...,ζn−1) = /0 then assign Λ(ζi+1,...,ζn−1)←{0}

53

5. Assign ζi to the first element in Λ(ζi+1,...,ζn−1)

6. Assign i← i−1

7. End While

8. Return
{

Λ(ζ1,...,ζn−1), . . . ,Λ(ζn−1),ζ1, . . . ,ζn−1
}

In line 4 the degenerate case where Λ(ζi+1,...,ζn−1) is empty is dealt with; in this case there are a priori

no valid cusps that will be generated until ζi+1 is incremented and in practise something more intelligent
than adding a redundant point to Λ(ζi+1,...,ζn−1) should be done. However, doing something more intelligent
obfuscates the core idea behind the algorithm, which is to create a set of lattices which will generate all
useful cusps. As such a naı̈ve approach is adopted here.

Algorithm 5.4.8 (Improved ζ Values)

Inputs: d a Heegner number, n ∈ N−{1}, δ ∈ R, β ∈ C, sets Z ⊂ Cn−1.

1. Initialise Z′δ,β← /0, C←
√

2δ−1, Λ()← {δβz ∈O | z ∈ C,z′ ∈ Zi and |z− z′ |<C}, ζn−1← the first
element in Λ(), i← n−2

2. If Λ() = /0 then return Z′δ,β

3. Compute Λ(ζ2,...,ζn−1), . . . ,Λ(ζi+1,...,ζn−1) and ζ1, . . . ,ζi using Algorithm 5.4.7 with inputs δ, β, Z j for
j = 1, . . . , i, L, the current value of i and ζi+1, . . . ,ζn−1.

4. Assign Cr← 2δ−1−∑n−1
k=1 inf

{∣∣(δβ)−1ζk− z
∣∣2 ∣∣∣ z ∈ Zk

}
5. If Cr ≥ 0 then assign ζ← (ζ1, . . . ,ζn−1) and assign Z′δ,β← Z′δ,β∪{ζ}

6. Assign i← 1

7. Next ζi ∈ Λ(ζi+1,...,ζn−1)

8. If i = 1 then

9. Assign Cr← 2δ−1−∑n−1
k=1 inf

{∣∣(δβ)−1ζk− z
∣∣2 ∣∣∣ z ∈ Zk

}
10. If Cr ≥ 0 then assign ζ← (ζ1, . . . ,ζn−1) and assign Z′δ,β← Z′δ,β∪{ζ}

11. Else

12. Assign i← i−1

13. Goto 3

14. End Next

15. If i = n−1 then

16. Return Z′δ,β

17. Else

54

18. Assign i← i+1

19. Goto 7

There are two points to make about these algorithms.

1. Computing inf
{∣∣(δβ)−1ζi− z

∣∣2 ∣∣∣ z ∈ Zi

}
is straightforward. The sets Zi are of the form Zi =Wi× ıYi

where Wi,Yi ∈ R are intervals. Let wi ∈Wi be the element such that
∣∣(δβ)−1ζi−wi

∣∣ is minimal and
let yi ∈ Yi be the element such that

∣∣(δβ)−1ζi− yi
∣∣ is minimal. Then

inf
{∣∣(δβ)−1ζi− z

∣∣2 ∣∣∣ z ∈ Zi

}
=
∣∣ℜ(δβ)−1ζi−wi

∣∣2 + ∣∣ℑ(δβ)−1ζi− yi
∣∣2

If ℜ(δβ)−1ζi ∈Wi, then wi = ℜ(δβ)−1ζi, if ℜ(δβ)−1ζi < inf Wi then wi = inf Wi and if ℜ(δβ)−1ζi >

sup Wi then wi = sup Wi. The same goes for ℑ(δβ)−1ζi and yi.

2. The Λ(∗) lattices which are constructed on line 4 of Algorithm 5.4.7 and line 1 of Algorithm 5.4.8 are
not complicated from a theoretical point of view however, from the point of view of implementation
they are not trivial. In the C++ implementation of the algorithm first the set

Z′i =
{

z ∈ C
∣∣ z′ ∈ Zi and

∣∣z− z′
∣∣<C(∗)

}
is constructed; these sets are all rectangular. Then the smallest rectangular set Z′′i which contains
δβZ′i is computed; since multiplication by a constant preserves convexity this is achieved simply by
considering the action δβ on the vertices of Z′i . Finally the lattice Λ(∗) is constructed on the fly by
iterating through all of the elements of O which lie inside Z′′i ; this lattice Λ(∗) contains the Λ(∗) in the
algorithms above, but is in general bigger.

Lemma 5.4.9 Let q ∈ CK,δ and let Zδ,β = Algorithm 5.4.8(d,n,δ,β,Z). Then ζ ∈ Zδ,β

PROOF Let q ∈ CK,δ(X) and suppose that the rotation factor of q is β and the zeta factor of q is ζ′. By
Corollary 5.4.5, ζ′n−1 ∈ Λ() as generated on line 1 of the algorithm and by assumption Λ() 6= /0, thus line 3
is executed. Starting with i = n− 1 the lattice Λ(ζi+1,...,ζn−1) is computed and ζi is set to the first element
in this lattice, whence i is decremented and this process is repeated until i = 0. On lines 4 and 5 the
very first element in this lattice is checked for inclusion in Z′δ,β using Lemma 5.4.2; on line 6 i is set to
1 and then between lines 7 and 14 ζ1 is iterated through the lattice Λ(ζ2,...,ζn−1); on each loop the element
ζ = (ζ1, . . . ,ζn−1) is checked for inclusion in Z′δ,β using Lemma 5.4.2. When the end of this lattice is
reached; if n = 2 then the algorithm terminates; in this case since Λ() = Λ(ζ2,...,ζn−1) and ζ′n−1 ∈ Λ() then
ζ′n−1 is one of the ζ1s and by Lemma 5.4.2 the element ζ′n−1 passes the tests on lines 9 and 10, thus ζ′ ∈ Z′δ,β.
So assume that n > 2.

In this case on reaching line 17, i is set to 2 and the algorithm jumps to line 7 where ζ2 is incremented
to the next element in Λ(ζ3,...,ζn−1). On line 11 the index i is set back to 1 and the algorithm returns to line
3 where the lattice Λ(ζ2,...,ζn−1) is recomputed based on the new value of ζ2 and ζ1 is set to the first element
in the new lattice Λ(ζ2,...,ζn−1). Again on lines 4 and 5 the very first element in this lattice is checked for
inclusion in Z′δ,β using Lemma 5.4.2; on line 6 i is set to 1 and then between lines 7 and 14 ζ1 is iterated
through the new lattice Λ(ζ2,...,ζn−1). This process is repeated until the ζ2 reaches the end of Λ(ζ3,...,ζn−1)

55

whence at line 15 the algorithm either terminates or on line 18 i is set to 3, the algorithm jumps to line 7 and
ζ3 is incremented to the next value in Λ(ζ4,...,ζn−1). Then on line 12 i is decremented to 2 and the algorithm
jumps to line 3. On line 3 Λ(ζ3,...,ζn−1) is recomputed to take account of the new value of ζ3, ζ2 is set to the
first element in Λ(ζ3,...,ζn−1), whence Λ(ζ2,...,ζn−1) is recomputed to take account of the new values of ζ3 and
ζ2; ζ1 is now set to the first element in Λ(ζ2,...,ζn−1) and the process begins anew on line 4.

The algorithm continues in this manner: Λ(ζi+1,...,ζn−1) lattice is reached, on line 15 the algorithm either
terminates or, on line 18 the index i is incremented to i+ 1, the algorithm jumps to line 7 where ζi+1 is
incremented to the next value in Λ(ζi+2,...,ζn−1), then on line 12 the index i is decremented to i− 1 and the
algorithm jumps to line 3. On line 3 the lattice Λ(ζi+1,...,ζn−1) is recomputed to take account of the new value
of ζi+1 and ζi is set to the first element in this new lattice, whence i is decremented to i−1 and this process
is repeated until i = 0. On lines 4 and 5 the very first element in this lattice is checked for inclusion in Z′δ,β
and then the process once again begins anew on line 4.

Thus at some stage in the algorithm ζn−1 is set to ζ′n−1 and Λ(ζn−1) = Λ(ζ′n−1)
, but then by Corollary 5.4.5

ζ′n−2 ∈ Λ(ζn−1) and as such at some stage, when ζn−1 = ζ′n−1, then also ζn−2 = ζ′n−2 and Λ(ζn−2,ζn−1) =

Λ(ζ′n−2,ζ
′
n−1)

. Thus inductively, at some stage in the algorithm for i = 1, . . .n− 1, the variables ζi = ζ′i
simultaneously and as such ζ = ζ′. Necessarily, since q ∈ CK,δ(X) then the ζ′i pass the checks on lines 9
and 10 and as such ζ′ ∈ Z′δ,β. �

Improved Bounds on r

The procedure for computing r changes little from before, however now the bounds are tighter; this section
presents an updated algorithm for computing r more efficiently.

Lemma 5.4.10 Let q ∈ CK and suppose that either

inf
{

1
4
|Q+ (ζ−δβz) |2

∣∣∣∣ z ∈ Z
}
> δ2

or

inf
{∣∣r−δ2x−ℑ〈δβz,ζ〉

+

∣∣ ∣∣ z ∈ Z, x ∈ R
}
≥ sup

{√
δ2− 1

4
|Q+ (ζ−δβz) |2

∣∣∣∣∣ z ∈ Z

}

Then q 6∈ CK,δ(X).

PROOF Immediate from Lemma 5.4.1. �

Algorithm 5.4.11 (Improved R Values)

Inputs: n ∈ N, δ ∈ R, β ∈ C, an imaginary quadratic ring of integers O, ζ ∈On−1, a set Z ⊂ Cn−1, a set
R ∈ R. Note that a = ℜδβ, b = ℑδβ if d 6≡ 1 mod 4 and a = 2ℜδβ, b = 2ℑδβ if d ≡ 1 mod 4.

1. Initialise Cr← inf
{

1
4 |Q+ (ζ−δβz) |2

∣∣∣ z ∈ Z
}

2. Initialise rmin = inf
{

δ2x+ℑ〈δβz,ζ〉
+

∣∣ x ∈ R and z ∈ Z
}

3. Initialise rmax = sup
{

δ2x+ℑ〈δβz,ζ〉
+

∣∣ x ∈ R and z ∈ Z
}

56

4. If d 6≡ 1 mod 4 then

5. Assign

R′δ,β,ζ←

{
r ∈ R

∣∣∣∣∣
√

δ2−Cr− rmax < r <
√

δ2−Cr− rmin, r = r′
√
−d where r′ ∈ Z s.t.

2bd r′ ≡ Q+ (ζ)a mod 2∆ and 2ar′ ≡ Q+ (ζ)b mod 2∆

}

6. Else

7. Assign

R′δ,β,ζ←

r ∈ R

∣∣∣∣∣∣∣
√

δ2−Cr− rmax < r <
√

δ2−Cr− rmin, r = r′
√
−d

2 where r′ ∈ Z s.t.
bd r′ ≡ Q+ (ζ)a mod 2∆, ar′ ≡ Q+ (ζ)b mod 2∆ and
(a+bd)r′ ≡ Q+ (ζ)(b+a) mod 4∆


8. Return Rδ,β,ζ

There are two points to make about this algorithms.

1. The constant Cr = inf
{

1
4 |Q+ (ζ−δβz) |2

∣∣∣ z ∈ Z
}

can be computed in the same way that the con-
stants C(∗) are computed in Algorithm 5.4.8.

2. The constant rmin = inf
{

δ2x+ℑ〈δβz,ζ〉
+

∣∣ x ∈ R and z ∈ Z
}

inf
{

δ2x+ℑ〈δβz,ζ〉
+

∣∣ x ∈ R and z ∈ Z
}
= inf

{
δ2x+ℑ

〈
z,δβζ

〉
+

∣∣∣ x ∈ R and z ∈ Z
}

= inf
{

δ2x
∣∣ x ∈ R

}
+ inf

{
ℑ
〈

z,δβζ
〉

+

∣∣∣ z ∈ Z
}

Since R is an interval on the real line then inf
{

δ2x
∣∣ x ∈ R

}
= δ2 infR. Considering the second term

inf
{

ℑ
〈

z,δβζ
〉

+

∣∣∣ ζ ∈ Z
}
= δ∑ inf

{
ℑβζizi

∣∣∣ zi ∈ Zi

}
= δ∑ inf

{
ℜ(βζi)ℑ(zi)+ℑ(βζi)ℜ(zi)

∣∣∣ zi ∈ Zi

}
= δ∑ℜ(βζi) inf

{
ℑzi

∣∣ zi ∈ Zi
}
+ℑ(βζi) inf

{
ℜzi

∣∣ zi ∈ Zi
}

Each Zi is the Cartesian product of two real intervals, hence Zi =Wi× ıYi. Therefore

inf
{

ℑ
〈

z,δβζ
〉

+

∣∣∣ ζ ∈ Z
}
= δ∑ℜ(βζi) infWi +ℑ(βζi) infYi

The other constant rmax is computed almost identically, simply replace every occurrence of inf with
sup.

Lemma 5.4.12 Let q ∈ CK,δ and let Rδ,β,ζ = Algorithm 5.4.11(n,δ,β,ζ,X). Then r ∈ Rδ,β,ζ

PROOF Put rmax = sup
{

δ2x−ℑ〈δβz,ζ〉
+
| z ∈ Z,r ∈ R

}
and rmin = inf

{
δ2x−ℑ〈δβz,ζ〉

+
| z ∈ Z,r ∈ R

}
.

By Lemma 5.4.10,
√

δ2−Cr− rmax < r <
√

δ2−Cr− rmin. Therefore, by Lemma 4.5.4, r ∈ Rδ,β,ζ. �

57

5.5 Non-Effective Cusps

Although removing non-primitive and equivalent cusps and improving the bounds on the zeta and r com-
ponents significantly reduces the number of superfluous cusps which are generated, some percentage of the
generated cusps will not be effective on the input set X . It turns out that due to the convexity of the effect
function and the convexity of the input set, it is possible to say exactly which cusp are and are not effective
on X , since a local minimum of a convex function on a convex set is automatically a global minimum on the
set. Therefore a multidimensional minimisation algorithm can be applied to find the minimum of the effect
function on the input set and thus to decide whether a cusp is effective on the input set. This operation is
accurate, but also time consuming. Therefore the effectiveness of a cusp should only be explicitly computed
after exhausting all other options for cusp pruning.

Lemma 5.5.1 Let q ∈ CK and let emin be a local minimum for eq (−) on X. Then emin is a global minimum

for eq (−) on X,

PROOF By Proposition 4.1.9, the effect function is a convex function on Hn
C
×

under the standard Euclidean
metric and a local minimum of a convex function on a convex set is always a global minimum. Since the
set X is convex this completes the proof. �

Corollary 5.5.2 Let q ∈ CK , let emin be a local minimum for eq (−) on X and suppose that emin ≥ 1. Then

q 6∈ CK(X).

To compute a global minimum for eq (−) on X , by Lemma 5.5.1, it is sufficient to compute a local minimum
for eq (−) on X . Since the effect function is convex this minimum can be computed using the conjugate
gradient multidimensional minimisation method described in [PTVF92, 10.6].

5.6 Improved Cusp Construction

The tools have now been developed to efficiently compute a tight set of effective cusps. In this section these
tools are combined into a single algorithm which outputs a set of cusps Qδ such that if q ∈ CK,δ(X), then
either q ∈ Qδ, q is not primitive or there is an equivalent cusp to q in Qδ.

Algorithm 5.6.1 (Improved Cusp Construction)

Inputs: n ∈ N≥2 the dimension, d a Heegner number, ∆ ∈ N, X = Z×R a search space.

1. Assign δ←
√

∆

2. Compute Bδ←
{

a+b
√

d
δ ∈ C

∣∣∣ a,b ∈ Z s.t. a2−db2 = ∆
}

3. Assign B′δ← Algorithm 5.3.4(Bδ,d)

4. For each β ∈ B′δ

5. Assign Z′δ,β← Algorithm 5.4.8(n,δ,β,O,Z)

6. For each ζ ∈ Zδ,β
′

58

7. Assign R′δ,β,ζ← Algorithm 5.4.11(n,δ,β,O,X)

8. For each r ∈ R′δ,β,ζ

9. Assign q←
(

δβ ζ β
δ

(
−Q+(ζ)

2 +ır
))t

10. If q is not primitive then Continue

11. Compute emin← inf{eq (v) |v ∈ X }
12. If emin ≥ 1 then Continue

13. Assign Qδ← Qδ∪{q}
14. Next

15. Next

16. Next

17. Return Qδ

Proposition 5.6.2 Let ∆ ∈ N, put δ =
√

∆, let Qδ = Algorithm 5.6.1(n,d,∆,X). Then Qδ ⊂ CK,δ(X) and if

q ∈ CK,δ(X), then either q ∈ Qδ, q is not primitive or there is an equivalent cusp to q in Qδ.

PROOF All non-primitive cusps are removed on Line 10 and all non-effective cusps are removed on Line
12, so Qδ ⊆ CK,δ(X)∩{q | q is primitive}. Let q ∈ CK,δ(X)∩{q | q is primitive}, suppose that Line 3 is
removed from Algorithm 5.6.1 so that

Bδ =


{

a+b
√

d
δ ∈ C

∣∣∣ a,b ∈ Z s.t. a2−db2 = ∆
}

if d 6≡ 1 mod 4{
a+b
√

d
2δ ∈ C

∣∣∣ a,b ∈ Z s.t. a2−db2 = 4∆
}

if d ≡ 1 mod 4

and call the output of this modified algorithm Q′δ. In this case, by Lemma 4.5.2, β ∈ Bδ, by Lemma 5.4.9,
ζ∈ Zδ,β and by Lemma 5.4.12, r ∈Rδ,β,ζ. As q is primitive, then it is not removed from Q′δ on Line 10 and as
q is effective on X it is not removed on line 12. Therefore q ∈Q′δ, thus Q′δ = CK,δ(X)∩{q | q is primitive}.

Suppose now that Line 3 is no longer removed and call the output of the original unmodified algorithm
Qδ. Let q∈ CK,δ(X)∩{q | q is primitive}. If β∈ Bδ, then by the argument for the modified algorithm above
q∈Qδ, so assume β 6∈ Bδ. By Lemma 5.3.5, there exists a unit u∈O∗ such that uβ∈ Bδ. Put β′ = uβ and let
Qδ,β′ = {q ∈ Qδ | q has rotation factor β′}; since Qδ ⊂Q′δ, then Qδ,β′ ⊂Q′δ. In the notation of Lemma 5.3.3
q ∈ Q⊥δ,β′ and by this Lemma, since Q′δ = CK,δ(X)∩{q | q is primitive}, there is an equivalent cusp to q
in Qδ,β′ . Again by the proceeding argument Qδ,β′ ⊂ Qδ, so either q ∈ Qδ, q is not primitive or there is an
equivalent cusp to q in Qδ. �

The minimisation routine used on Line 11 of Algorithm 5.6.1 to compute inf{eq (v) | v ∈ X } is an ex-
pensive computational procedure, as can be seen by examining the implementation described in [PTVF92,
10.6]; it involves performing a large number of linear minimisations which are in themselves are time
expensive. By comparison, removing non-primitive cusps, removing equivalent cusps and tightening the
bounds on the zeta and r factors of cusps are all computationally cheap. Therefore practically, since these
cheap operation reduces the size of Qδ quite substantially and since removing equivalent cusps and tight-
ening the bounds on the zeta and r factors all speed up construction time, it is much faster to remove all

59

non-effective cusps after implementing these optimisations than it is to remove the non-effective cusps from
the much larger unoptimised set generated by Algorithm 4.5.5 or Algorithm 4.5.6. However, the cusp sets
output from both procedures will perform identically with respect to Siegel set construction.

5.7 Computing the Resolution

The current situation is that X ∈ ∂Hn
C
× is subdivided into N multidimensional rectangles; let ε > 0 and let

v ∈ {v ∈ X | ℜzi,ℑzi,x ∈ εZ} then each rectangle V is of the form

V =
{

v′ ∈ X
∣∣ ∣∣ℜz′i−ℜzi

∣∣≤ ε,
∣∣ℑz′i−ℑzi

∣∣≤ ε,
∣∣x′− x

∣∣≤ ε
}

(5.2)

and all of these rectangles V are identical, except for those rectangles where one of the coordinates of v is
closer than ε to the boundary of X , in this case V shall be smaller than the standard rectangle. Theoretically
this is fine, however practically it is neither easy to implement, nor is it particularly efficient from the point
of view of computation due to the overlap between adjacent rectangles. This section considers a more
practical approach to the problem of discretisation.

Suppose instead that we begin with a resolution N. The real dimension of Z×R is 2n−1; the complex
part Z decomposes as ∏n−1

i=1 Zi where Zi = Wi× ıYi and both Wi and Yi are intervals on the real line. For
i∈{1, . . . ,n−1} define I2i−1 =Wi, I2i =Yi and define I2n−1 =R, then as a real vector space Z×R=∏2n−1

i=1 Ii.

Let li = | Ii | and put m = ∏2n−1
i=1 li so that m is the Euclidean measure of Z×R. Let Ni =

⌈(N
m

) 1
2n−1 li

⌉
, let

εi =
li

2Ni
and define

V (v,{εi} ,X) =
{

v′ ∈ X
∣∣ ∣∣ℜz′i−ℜzi

∣∣≤ ε2i−1,
∣∣ℑz′i−ℑzi

∣∣≤ ε2i,
∣∣x′− x

∣∣≤ ε2n−1
}

Λ({εi} ,X) =

{
v ∈ X

∣∣∣∣∣ ℜzi− inf I2i−1 ∈ ε2i−1Zodd,ℑzi− inf I2i ∈ ε2iZodd,

x− inf I2n−1 ∈ ε2n−1Zodd

}
Ω({εi} ,X) = {V (v,{εi} ,X)⊂ X | v ∈ Λ({εi} ,X)}

so that X =
∪

V∈Ω({εi},X)

V and the new resolution of the discretisation is N′ = |Ω({εi} ,X) |= ∏2n−1
i=1 Ni.

Lemma 5.7.1 With the set up as described above: N′ ≥ N and

li(N
m

) 1
2n−1 li +1

≤ 2εi ≤
(m

N

) 1
2n−1

PROOF The formula for the new resolution is N′ = ∏2n−1
i=1 Ni so

N′ =
2n−1

∏
i=1

Ni =
2n−1

∏
i=1

⌈(
N
m

) 1
2n−1

li

⌉
≥

2n−1

∏
i=1

(
N
m

) 1
2n−1

li =
N
m

2n−1

∏
i=1

li =
N
m

m = N

To bound εi observe that
(N

m

) 1
2n−1 li ≤ Ni ≤

(N
m

) 1
2n−1 li +1. �

60

From a computational point of view the smaller the resolution, the better in terms of speed of compu-
tation. However conversely, the smaller the resolution, the greater the amount of error introduced through
discretisation. Given this the resolution is chosen based on the following heuristic: Let δ be the current max-
imum dilation factor in the Siegel set computation algorithm, let v′ ∈ Λ({εi} ,X), let V =V (v′,{εi} ,X), let
q ∈ CK and put q̃ = (δβ)−1q ∈ ∂Hn

C so that

sup{eq (v) | v ∈V}= sup
{
| 〈v,q〉 |2 | v ∈V

}
= sup

{
| 〈v,δβq̃〉 |2 | v ∈V

}
= δsup

{
| 〈v, q̃〉 |2 | v ∈V

}
Thus by Lemma 4.3.4, Φq (V)> 0 if and only if sup

{
| 〈v, q̃〉 |2 | v ∈V

}
< δ−2. The point v′ is the midpoint

of V under the standard Euclidean metric and in general there will not exist a β such that q′ = δβv′ ∈ CK ,
however if such a β existed and Φq′ (V)≤ 0 then, given the convexity of the effect function, the chance of
their existing another cusp q′′ ∈ CK,δ with the property that Φq′′ (V)> 0 are low. So computing

e = sup
{

sup
{∣∣〈v,v′〉∣∣2 ∣∣∣ v ∈V (v′,{εi} ,X)

} ∣∣∣ v′ ∈ Λ({εi} ,X)
}

provides a good indication of how well cusps of maximal dilation factor can be expected to perform under
the current discretisation over the whole of X ; the smaller the value of e the better the discretisation can be
expected to perform.

Lemma 5.7.2 Let e = sup
{

sup
{
| 〈v,v′〉 |2

∣∣∣ v ∈V (v′,{εi} ,X)
} ∣∣∣ v′ ∈ Λ({εi} ,X)

}
. Then

e =

(
∑n−1

i=1 ε2
2i−1 + ε2

2i
)2

4
+

((
n−1

∑
i=1

ε2i max{inf |Wi |,sup |Wi |}+ ε2i−1 max{inf |Yi |,sup |Yi |}
)
+ ε2n−1

)2

PROOF Let v be a vertex of V and let v′ be the midpoint of V , then

∣∣〈v,v′〉∣∣2 = Q+ (z− z′)2

4
+
(

ℑ
〈
z,z′
〉
+
+ x− x′

)2

=

(
∑n−1

i=1 ε2
2i−1 + ε2

2i
)2

4
+
(

ℑ
〈
z,z′
〉
+
± ε2n−1

)2

=

(
∑n−1

i=1 ε2
2i−1 + ε2

2i
)2

4
+

((
n−1

∑
i=1
±ε2iℜzi± ε2i−1ℑzi

)
± ε2n−1

)2

From the proof of Lemma 4.4.3, sup
{
| 〈v,v′〉 |2 | v ∈V

}
= sup

{
| 〈v,v′〉 |2 | v is a vertex of V

}
since the

effect function is convex and V is a convex set, from which the result follows. �

Note that since both max{inf |Wi |,sup |Wi |} and max{inf |Yi |,sup |Yi |} are known, then computing e in
Lemma 5.7.2 is a simple operation.

Lemma 5.7.3 Let α ∈ (0,1), let z = ∑n−1
i=1 max{inf |Wi |,sup |Wi |}+max{inf |Yi |,sup |Yi |}, put

c0 =
2(α−1)

δ
c1 = m

2
2n−1 (z+1)2 c2 =

m
4

2n−1 (n−1)2

4
N =

c1−
√

c2
1−4c0c2

2c2


2

1−2n

61

and discretise X with resolution N. Then e≤ 2(1−α)
δ .

PROOF By Lemma 5.7.1, εi ≤ 1
2

(m
N

) 1
2n−1 so by Lemma 5.7.2, e is bounded above by

e≤ (n−1)2

4

(m
N

) 4
2n−1

+(z+1)2
(m

N

) 2
2n−1

Therefore under this discretisation, the inequality e≤ 2(1−α)
δ is satisfied. �

So setting the resolution using Lemma 5.7.3 ensures that e≤ 2(1−α)
δ and provides user control over how well

the cusps of maximum dilation factor will perform with respect to the discretisation; all cusps of smaller
dilation factor will perform better.

5.8 Computing Phi on V

The process of computing a Siegel set has two phases; constructing cusps and computing Phi. The construc-
tion of cusps has been discussed above, but as yet nothing has been said about computing Phi on the vertices
of a convex polytope; specifically on the vertices of a multidimensional rectangle. The naı̈ve approach is
simply to compute Phi over every vertex and then take the minimum over all vertices; this is fine in theory,
but in practise, because the value of Phi of adjacent vertices is related, this is quite inefficient. This section
presents a better method of computing Phi which makes use of the geometric properties of the polytopes V

which are iterated over.
Let q ∈ CK , let v′ ∈ ∂Hn

C, let V = V (v′,{εi} ,X) and let v be the vertex of V where each coordinate,
when considered as an element of a real vector space, is minimal coordinate-wise over all vertices. Write
ζ̃ = (δβ)−1ζ and r̃ = rδ−2, then

ϕq (v) = 2

√
δ−2−

(
x− r̃+ℑ

〈
z, ζ̃
〉

+

)2
+2ℜ

〈
z, ζ̃
〉

+
−Q+

(
ζ̃
)
−Q+ (z)

Identify the set ∂Hn
C
× with R2n−1, let µi ∈ {0,1} for i = {1, . . . ,2n−1} and define v(µ1,...,µ2n−1)

= v +

(µ12ε1, . . . ,µ2n−12ε2n−1), so the set of all v(µ1,...,µ2n−1)
comprises the set of vertices of V . Whence

ϕq

(
v(µ1,...,µ2n−1)

)
=2

√√√√δ−2−

(
x+2µ2n−1ε2n−1− r̃+ℑ

〈
z, ζ̃
〉

+
+2

n−1

∑
i=1

(µ2i−1ε2i−1ℑζi−µ2iε2iℜζi)

)2

+2ℜ
〈

z, ζ̃
〉

+
+4

n−1

∑
i=1

(µ2i−1ε2i−1ℜζi +µ2iε2iℑζi)−Q+

(
ζ̃
)

−Q+ (z)−4
2n−1

∑
i=1

(µi |εi |2)−4
n−1

∑
i=1

(µ2i−1ε2i−1ℜzi +µ2iε2iℑzi)

Assume that for some (µ1, . . . ,µ2n−1) the formula ϕq

(
v(µ1,...,µ2n−1)

)
has been computed and the values

c1 =x+2µ2n−1ε2n−1− r̃+ℑ
〈

z, ζ̃
〉

+
+2

n−1

∑
i=1

(µ2i−1ε2i−1ℑζi−µ2iε2iℜζi)

62

c2 =2ℜ
〈

z, ζ̃
〉

+
+4

n−1

∑
i=1

(µ2i−1ε2i−1ℜζi +µ2iε2iℑζi)−Q+

(
ζ̃
)

−Q+ (z)−4
2n−1

∑
i=1

(µi |εi |2)−4
n−1

∑
i=1

(µ2i−1ε2i−1ℜzi +µ2iε2iℑzi)

have been stored and suppose j ∈ {1, . . . ,2n−1} such that µ j = 0. Then setting µ j = 1

ϕq

(
v(µ1,...,µ2n−1)

)
=2
√

δ−2− (c1 +2ε2n−1)
2 + c2 if j = 2n−1

ϕq

(
v(µ1,...,µ2n−1)

)
=2

√
δ−2−

(
c1 +2ε jℑζ⌈ j+1

2

⌉)2

+ c2 +4ε jℜζ⌈ j+1
2

⌉ if j ≡ 1 mod 2

−4ε jℜz⌈ j+1
2

⌉−4ε2
j

ϕq

(
v(µ1,...,µ2n−1)

)
=2

√
δ−2−

(
c1−2ε jℜζ⌈ j+1

2

⌉)2

+ c2 +4ε jℑζ⌈ j+1
2

⌉ if j ≡ 0 mod 2

−4ε jℑz⌈ j+1
2

⌉−4ε2
j

Therefore having computed c1, c2 and ϕq (v) for some vertex v of V , then each adjacent vertex may be
computed with at most 5 floating point multiplications, 5 additions and 1 square root operation irrespective
of the dimension of the space; this is under the assumption that 4εi, 4εi, −4εi and −4ε2

i have been pre-
computed for all i ∈ {1, . . . ,2n−1}; since the values of εi are fixed for all sets V then this is a perfectly
reasonable assumption.

So to compute the value of Φq(V ′) on line 8 of Algorithm 4.6.2, it is not necessary to construct all of the
vertices of V , only one vertex v needs to be constructed and then the value of Φq(V ′) can be interpolated
from ϕq (v); this is beneficial not only because it makes the computation of ϕq (−) for all but one of the
vertices a constant time operation, but it also means that only one, rather than all, of the vertices of V needs
to be iterated through X ; this creates a significant time efficiency.

Algorithm 5.8.1 (Computing Phi on a Set)

Inputs: a dimension n ∈ N, an index i ∈ {0, . . . ,2n−1}, a set of positive real numbers {εi, . . . ,ε2n−1}, a
cusp q ∈ CK , constants c1 and c2

1. If i = 0 do nothing

2. Else if i = 2n−1 then c1← c1 +2ε2n−1

3. Else if i = 1 mod 2 then c1← c1 +2ε jℑζ⌈ j+1
2

⌉, c2← c2 +4ε jℜζ⌈ j+1
2

⌉−4ε jℜz⌈ j+1
2

⌉−4ε2
j

4. Else c1← c1 +2ε jℜζ⌈ j+1
2

⌉, c2← c2 +4ε jℑζ⌈ j+1
2

⌉−4ε jℑz⌈ j+1
2

⌉−4ε2
j

5. Assign L← 2
√

δ−2− c2
1 + c2

6. If L 6∈ [0,∞) then assign L←−1 and return L

7. For each j ∈ {i+1, . . . ,2n−1}

63

8. Recursively Assign L←min
{

L,Algorithm 5.8.1
(
n, j,

{
ε j, . . . ,ε2n−1

}
,q,c1,c2

)}
9. Next

10. Return L

Lemma 5.8.2 Let q ∈ CK , let v be the minimal vertex of a rectangular set V , let V ′ be the set of vertices of

V , let c1 = x− rδ−2+ℑ
〈
z,(δβ)−1ζ

〉
+

and c2 = 2ℜ
〈
z,(δβ)−1ζ

〉
+
−Q+

(
(δβ)−1ζ

)
−Q+ (z). Then Φq(V) =

Algorithm 5.8.1(n,0,{ε1, . . . ,ε2n−1} ,q,c1,c2).

PROOF On the first recursive loop with i = 0 the variable L is set to L = ϕq (v) on lines 5 and 6 and
the values of c1 and c2 have been precomputed at the time of input. On the second recursive loop, for each
i1 ∈ {1, . . . ,2n−1}, the variable L is set to L = ϕq

(
v(0,...,µi1 ,...,0)

)
where µi1 = 1 and the corresponding con-

stants c1 and c2 are computed according to the value of i1 as described above. On the third recursive loop, for
each pair (i1, i2) where i1, i2 ∈ {1, . . . ,2n−1} and i1 6= i2, the variable L is set to L = ϕq

(
v(0,...,µi1 ,...,µi2 ,...,0)

)
where µi1 = µi2 = 1 and the corresponding constants c1 and c2 are computed according to the values of i1
and i2. In general on the mth recursive loop for each m-tuple (i1, . . . , im) where i1, . . . , im ∈ {1, . . . ,2n−1}
and pairwise i j 6= ik for all j 6= k, the variable L is set to L = ϕq

(
v(0,...,µi1 ,...,µim ,...,0)

)
where µi1 = . . . =

µim = 1 and the corresponding constants c1 and c2 are computed according to the values of i1, . . . , im.
Thus over all recursive loops, the value of L = ϕq

(
v(µ1,...,µ2n−1)

)
is computed for all tuples (µ1, . . . ,µ2n−1)

and the output value of the algorithm is the minimum over all of these values of L, therefore Φq(V) =

Algorithm 5.8.1(n,0,{ε1, . . . ,ε2n−1} ,q,c1,c2). �

5.9 Choosing Cusps from Q

Just as it is not very efficient to naı̈vely compute Phi over all vertices by computing Phi at each vertex, it is
also not very efficient to naı̈vely iterate through every cusp in Q to find the most effective cusp for a given
polytope V . Starting with the observation that it is not necessary to find the best possible cusp for V , but it is
just necessary to find a cusp which is sufficiently good (i.e. one which raises V above the current minimum
height), this section considers how the set Q can be sorted in order to improve the chances that a sufficiently
effective cusp is chosen from Q quickly.

Let S⊂Hn
C and with respect to S define the binary relation≤S on CK in the following way; let q,q′ ∈ CK ,

let e(q,S) = inf{eq (v) | v ∈ S} and let e(q′,S) = inf
{

eq′ (v) | v ∈ S
}

, then q ≤S q′ if e(q,S) ≤ e(q′,S). The
relation≤S is a total preorder (reflexive and transitive) since R is totally ordered, but≤S is not antisymmetric
as is clear from taking S =Hn

C in which case for any two cusps e(q,S) = e(q′,S) = 0.
Let V ⊂ S, let q,q′ ∈ CK and suppose that q ≤S q′; this does not imply that Φq′(V) ≤ Φq(V), but

given the convexity of the effect function and the fact that the phi function varies inversely to the effect
function, if no further information about q and q′ in relation to V is known then assuming Φq′(V)≤Φq(V)

is a logical heuristic. Observe that on line 8 of Algorithm 4.6.2 it is not in general necessary to compute
L′ = sup{Φq(V ′) | q ∈ Q}, since on line 10, the new lower height bound is taken as L = min{L,L′},
therefore it is sufficient to find some q ∈ Q such that L ≤ Φq(V ′); although of course if no such q exists
then it is necessary to compute L′ = sup{Φq(V ′) | q ∈ Q}. Therefore, ordering the cusps in Q by ≤X is a
justifiable heuristic which should (and in practise does) improve the speed of computation; in C++ using

64

a std::set as the model for Q, inserting cusps into Q and simultaneously ordering Q on the fly is a
logarithmic time operation in the size of Q, as such it is computationally negligible in comparison to the
cost of iterating through the elements q ∈ Q and computing Φq(V), which is at least linear in the size of Q.

Rather than ordering the cusps in Q based solely on the relation ≤X , the set X can be partitioned and Q

can be ordered on each partition as is done in the following algorithm;

Algorithm 5.9.1 (Cusp Partitioning and Ordering)

Inputs: Sets Xi ⊆ X for i = 1, . . . ,s such that X =
∪s

i=1 Xi and a preordered set of cusps Qi ⊂ CK(Xi) for
i = 1, . . . ,s, a cusp q ∈ CK

1. For each i ∈ {1, . . . ,s}

2. Compute e(q,i) = inf{eq (v) | v ∈ Xi} (using the minimisation algorithm described in [PTVF92,
10.6] from Section 5.5)

3. If e(q,i) < 1 then insert q into Qi with respect to the preorder ≤Xi

4. Next

5. Return {Qi, . . . ,Qs}

Lemma 5.9.2 Construct the sets Qi for i ∈ {1, . . . ,m} by passing all cusps in Q through Algorithm 5.9.1,

let V ⊂ X, let j ∈ {1, . . . ,m} such that V ∩X j and suppose that q ∈ Q∩CK(V). Then q ∈ Q j.

PROOF By Lemma 4.3.4, eq (v) < 1 if and only if ϕq (v) > 0, so from lines 2 and 3 of Algorithm 5.9.1
it follows that Q j =

{
q ∈ Q

∣∣ 0 < sup
{

ϕq (v) | v ∈ X j
}}

. By assumption, Φq(V) > 0 so there exists a
v ∈V ∩X j such that ϕq (v)> 0 and since v ∈ Xi, then ϕq (v)≤ sup

{
ϕq (v) | v ∈ X j

}
, hence q ∈ Qi. �

In the C++ implementation of the algorithm the sets Xi are constructed by choosing s′ ∈ N∪{0} and
putting s = 2s′ , then the 2n−1 real intervals of X are bisected s′ times in total via a binary tree structure to
create a partition of X into s sets. Recall that X = ∏2n−1

i=1 Ii where the Ii ⊂ R are intervals. At the root of the
tree, zeroth level, there is 1 = 20 space and this space is X0

1 = X . At the first level there are 2 = 21 spaces,
these spaces are formed by bisecting the first interval of X0

1 into two, call the first one X1
1 , call the second

X1
2 , then X1

1 =
[
inf I1, inf I1 +

| I1 |
2

]
×∏i=2 Ii and X1

2 =
[
sup I1− | I1 |2 ,sup I1

]
×∏i=2 Ii. On the second level

there 4 = 22 spaces; X2
1 , . . . ,X

2
4 . The spaces X2

1 and X2
2 are formed by bisecting the second interval I2 of

X1
1 , the subspace X2

1 taking the first half of the interval and X2
2 taking the second half and copying all other

intervals of X1
1 identically, the spaces X2

3 and X2
4 are formed identically from X1

2 . In general on level l ≤ s′

there are 2l spaces and the (l mod 2n− 1)th interval is bisected; space X l
2i takes the lower half of the (l

mod 2n−1)th interval of X l−1
i and copies all of the other intervals identically, space X l

2i+1 takes the upper
half of the (l mod 2n−1)th interval of X l−1

i and copies all of the other intervals identically.
This tree structure allows cusps to be sorted and cusp sets to be retrieved efficiently. To sort a cusp

q ∈ CK compute e0
1 = inf

{
eq (v) | v ∈ X0

1
}

, if e0
1 ≥ 1 then the cusp can be rejected because it plays no part

in Siegel set construction, otherwise compute e1
1 = inf

{
eq (v) | v ∈ X1

1
}

and e1
2 = inf

{
eq (v) | v ∈ X1

2
}

.
Since e0

1 < 1, then either e1
1 < 1, or e1

2 < 1 or both; if e1
i < 1 then compute e2

2i = inf
{

eq (v) | v ∈ X2
2i
}

and

65

e2
2i+1 = inf

{
eq (v) | v ∈ X2

2i+1
}

. In general on level l if el
i < 1 then compute el+1

2i = inf
{

eq (v) | v ∈ X l+1
2i

}
and el+1

2i+1 = inf
{

eq (v) | v ∈ X l+1
2i+1

}
; hence on level l = s′ a list of at most 2s′ indices i are computed such

that es′
i < 1, if this is the case then add q to Qi.

Given a rectangle V , to retrieve a set of cusps Qi such that if q ∈ CK and Φq(V) > 0 then q ∈ Qi, by
Lemma 5.9.2 it is sufficient to pick any point in v ∈ V and then find a set Xi such that v ∈ Xi. Therefore a
vertex v of V can be chosen and then this can be passed through the tree in the following way; since V ⊂ X

then v ∈ X0
1 , so begin by checking v for inclusion in X1

1 . If v ∈ X1
1 then pass down to the second level and

consider inclusion in X2
1 . If not then v ∈ X1

2 so pass down to the second level and consider inclusion in X2
3 .

In general on level l there will be exactly two candidate sets that v could lie in, these being X l
i and X l

i+1; if
v ∈ X l

i then passing down to level l+1, either v ∈ X l+1
2i or v ∈ X l+1

2i+1; otherwise passing down to level l+1,
either v ∈ X l+1

2i+2 or v ∈ X l+1
2i+3. As such only one inclusion check needs to be performed on each level, thus

finding a valid set Qi given a rectangle V is a linear time operation based on the number of levels in the tree
and logarithmic in the number of partitions of X .

5.10 Improved Siegel Set Construction

The final section in this chapter describes an improved algorithm for Siegel set construction based on the
tools developed in this chapter. Compared with Algorithm 4.6.2 it is much faster and it is still guaranteed
to terminate. However, the error bound on the maximum attainable height is sacrificed for speed; this could
be easily rectified by using the resolution computation technique from the old algorithm.

Algorithm 5.10.1 (Improved Siegel Set Construction)

Inputs: n ∈N≥2 the dimension, d a Heegner number, α ∈ (0,1) an error tolerance, X = ∏2n−1
i=1 Ii where the

Ii are closed intervals on the real line, Xi ⊆ X for i ∈ {1, . . . ,s} such that X = ∪s
i=1Xi.

1. Initialise: L← 2, ∆← 1, li ← | Ii | for i ∈ {1, . . . ,2n−1}, m← ∏2n−1
i=1 li, c2 ← m

4
2n−1 (n−1)2

4 , z←
∑max{inf |Wi |,sup |Wi |}+max{inf |Yi |,sup |Yi |}, c1← m

2
2n−1 (z+1)2, Qi← /0 for i ∈ {1, . . . ,s}

2. Assign δ ←
√

∆, c0 ← 2(α−1)
δ , N ←

(
c1−
√

c2
1−4c0c2

2c2

) 2
1−2n

, Ni ←
⌈(N

m

) 1
2n−1 li

⌉
, εi ← li

2Ni
, for i ∈

{1, . . . ,2n−1}, Ω←Ω({ε1, . . . ,ε2n−1} ,X)

3. Compute Qδ← Algorithm 5.6.1(n,d,∆,X)

4. For each q ∈ Qδ assign {Q1, . . . ,Qs}← Algorithm 5.9.1({X1, . . . ,Xs} ,{Q1, . . . ,Qs} ,q).

5. For each V ∈Ω

6. Assign v← the minimal vertex of V , i← the index such that v ∈ Xi, LV ←−1.

7. For each q ∈ Qi

8. Assign p1← x− rδ−2 +ℑ
〈
z,(δβ)−1ζ

〉
+

, p2← 2ℜ
〈
z,(δβ)−1ζ

〉
+
−Q+

(
(δβ)−1ζ

)
−Q+ (z)

9. Compute L′V ← Algorithm 5.8.1(n,0,{ε1, . . . ,ε2n−1} ,q, p1, p2)

10. LV ←max{LV ,L′V}

66

11. If LV ≥ L then Break

12. Next

13. If LV < 2(1−α)
δ then assign ∆← ∆+1 and goto line 2

14. L←min{L,LV}

15. Next

16. Return L

Proposition 5.10.2 Let d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}, let n ∈ N≥2, let α ∈ (0,1), let

S∞ be the Siegel container computed in Lemma 5.1.2 or Lemma 5.1.3 depending upon the congruence class

of d, let X = S∞ ∩ ∂Hn
C
×, choose a partition of sets Xi ⊆ X for i ∈ {1, . . . ,s} such that X = ∪s

i=1Xi and let

L = Algorithm 4.6.2(d,n,α,X ,{X1, . . . ,Xs}). Then for all ε ∈
(

0, L2

4

)
, the set S∞ (L− ε) is a Siegel set for

Γ. Moreover the algorithm is guaranteed to terminate.

PROOF Since S∞ is a Siegel container for Γ, then to show that S∞ (L− ε) is a Siegel set for Γ, it is sufficient
to show that the algorithm proves that for all v ∈ X , there exists a q ∈ CK such that ϕq (q)≥ L. So let v ∈ X ,
then by the definition of Ω, v ∈ V for some V ∈ Ω and by Lemma 5.8.2, if q ∈ Qi is the current cusp in
the loop between lines 7 and 12, then Φq (V) = Algorithm 5.8.1(n,0,{ε1, . . . ,ε2n−1} ,q, p1, p2). Now as the
algorithm has terminated with output L then every V ∈ Ω must have been iterated through between lines 5
and 15 and for each of these rectangles V line 14 must have been reached; if this were not the case then
for some particular V the condition on line 13 would not have been satisfied and the flow of the algorithm
would have jumped back to line 2. Therefore for every V ∈ Ω there exists a cusp q in some Qi such that
Φq (V)≥ L, thus for the same cusp ϕq (v)≥ L and so S∞ (L− ε) is a Siegel set for Γ.

By [PR92][Proposition 4.11], for all Γ there exists an L such that S∞ (L) is a Siegel set for Γ. So there is
a set of cusps Q⊂ CK(S∞ (L)) such that if q 6∈Q, then eq (v)≤ 0 for all v ∈ S∞ (L) and necessarily, q ∈ CKδ

where δ ≤ 2
L . Let q ∈ Q, then by Proposition 5.6.2 and Lemma 5.9.2 either q ∈ Qi for some Qi, or there

exists a cusp q′ ∈Qi such that ϕq′ (v)≥ ϕq (v) for all v ∈ X , thus if Ω were continuous, i.e. Ω≡ X , then the
algorithm would terminate on or before the ∆th loop where ∆≥ 4

L2 . In practise the set Ω is not continuous,
but on the ∆th loop the resolution is set to

N =

c1−
√

c2
1−4 2(α−1)

δ c2

2c2


2

1−2n

so by Lemma 5.7.1, εi ≤ 1
2

(m
N

) 2
1−2n and therefore lim

δ→∞
εi = 0. Thus by the continuity of the effect function

and given that εi is monotone decreasing function of δ, then for all V ∈Ω, lim
δ→∞

Φq (V) = ϕq
(
v′
)
≥ L since

V → v′ where v′ is the midpoint of V . As such there must exist some finite δ for which Φq (V)> 0 for all
V ∈Ω and therefore the algorithm terminates. �

67

Bibliography

[Coh00] Henri Cohen. Advanced topics in computational number theory, volume 193 of Graduate Texts

in Mathematics. Springer-Verlag, New York, 2000.

[FL03] Gábor Francsics and Peter D. Lax. A fundamental domain for the Picard modular group. ESI

preprint, 2003.

[FL05] Gábor Francsics and Peter D. Lax. A semi-explicit fundamental domain for a Picard modu-
lar group in complex hyperbolic space. In Geometric analysis of PDE and several complex

variables, volume 368 of Contemp. Math., pages 211–226. Amer. Math. Soc., Providence, RI,
2005.

[FP06] Elisha Falbel and John Parker. The geometry of the Eisenstein-Picard modular group. Duke

Math. J., 131(2):249–289, 2006.

[Gol99] William M. Goldman. Complex hyperbolic geometry. Oxford Mathematical Monographs. The
Clarendon Press Oxford University Press, New York, 1999. Oxford Science Publications.

[PR92] Vladimir Platonov and Andreĭ Rapinchuk. Algebraic groups and number theory. Boston Aca-
demic Press, 1992.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical

recipes in C. Cambridge University Press, Cambridge, second edition, 1992. The art of scientific
computing.

[Yas05] Dan Yasaki. On the existence of spines for Q-rank 1 groups. PhD thesis, Duke University, 2005.

[Zin79] Thomas Zink. Über die Anzahl der Spitzen einiger arithmetischer Untergruppen unitärer Grup-
pen. Math. Nachr., 89:315–320, 1979.

68

