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We present new families of gravity-capillary solitary waves propagating on the surface of
a two-dimensional deep fluid. These spatially-localised travelling-wave solutions are non-
symmetric in the wave propagation direction. Our computation reveals that these waves
appear from a spontaneous symmetry-breaking bifurcation, and connect two branches of
multi-packet symmetric solitary waves. The speed-energy bifurcation curve of asymmetric
solitary waves features a zig-zag behaviour with one or more turning points.

1. Introduction

There has been a long-standing scientific interest in gravity-capillary waves (commonly
referred to as wind ripples, see Zhang (1995)), owing to their importance in the exchange
of momentum, thermal energy and gases between the ocean and the atmosphere. Fur-
thermore, wind ripples are of theoretical interest, as they occur at the scale set when
the restoring forces due to gravitation and surface tension are equally important, and
therefore give rise to a new type of solitary wave. In contrast to the pure gravity solitary
waves in shallow water, the gravity-capillary solitary waves can exist on the surface of
both two- and three-dimensional fluids and in arbitrary depth. When the Bond number
B = o/pgh? (o is the surface tension coefficient, p is the fluid density, g is the gravita-
tional acceleration and h is the depth of a fluid) is less than 1/3, these waves resemble
wave packets featuring oscillatory decaying tails, therefore are usually called wavepacket
solitary waves (Longuet-Higgins (1989)). The existence of wavepacket solitary waves re-
quires that the phase speed has a global extremum at finite wavenumber, where the group
velocity and the phase velocity are equal. Traditionally, at this non-dispersive point, one
approximates such wave packets with a cubic focussing nonlinear Schrédinger equation
(NLS) in the modulational regime, where the sech-type soliton solution of the stationary
NLS approximates the envelope of the solitary waves in the primitive equation.

The numerical computation of gravity-capillary solitary waves for the irrotational Eu-
ler equation has received considerable attention in the past few decades, beginning when
Longuet-Higgins (1989) first found a new type of solitary waves in deep water. These
“depression” symmetric wavepacket solitary waves have a negative free surface elevation
at their centre. Later, Vanden-Broeck & Dias (1992) found another branch of solitary
waves with a positive free-surface elevation at the centre, which were thereafter called
elevation solitary waves. These two branches are both symmetric solitary waves, bifur-
cating from infinitesimal periodic waves at the minimum of the phase speed and exist at
subcritical speeds.

Unlike the classic gravity solitary waves which can only exist in symmetric form (see
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Craig & Sternberg (1988) for the rigorous proof), there is some evidence that asymmetric
solitary waves may exist in the presence of both gravity and surface tension. Based on
the theoretical study, asymptotic analysis and numerical computation of the fifth-order
Korteweg-de Vries (KdV) equation, a reduced model for small amplitude gravity-capillary
waves of finite depth when the Bond number is close to 1/3, a rich structure of symmetric
and asymmetric fully localised travelling waves may exist in the water wave problem (see
Zufiria (1987), Buffoni et al. (1996a), Yang & Akylas (1997), Champneys & Groves
(1997) and the references therein). In particular, Yang & Akylas (1997) showed that the
two symmetric elevation and depression branches are the only ones that can bifurcate
from infinitesimal periodic waves at the minimum speed of linear waves, and that close
to the bifurcation point their envelopes are governed by single-hump solutions of the
nonlinear Schrodinger equation (NLS). They also showed that, at finite amplitude, there
are an infinite number of symmetric and asymmetric solitary-wave branches formed by
two or more adjacent packets. Buffoni et al. (1996b) used a rigorous centre manifold
reduction to show that the plethora of multiple solutions to the fifth-order KdV model
equation must persist in the full water wave problem at small amplitude and B = 1/3.
The fifth-order KdV equation remains a restricted model for gravity-capillary waves, only
valid when the mean depth of water is close to 0.5cm and for small amplitudes (Zufiria
(1987)). One can therefore ask the question whether asymmetric solitary waves can be
obtained in the full irrotational Euler equations in more realistic situations.

In this paper we focus on the deep water case which, given the typical wavelength
of gravity-capillary waves for an air water interface, is applicable for when the water
is deeper than a few centimetres. We shall present numerical evidence of asymmetric
gravity-capillary solitary waves on deep water. This is, to our knowledge, the first time
that non-symmetric solitary waves have been computed using the irrotational Euler equa-
tions. The numerical procedure is outlined in §2. The main results are presented in §3,
including the typical wave profiles and the bifurcation behaviour. In the conclusions, we
discuss possible extensions to the work.

2. Numerical Procedure

Consider a two-dimensional, irrotational flow of an inviscid, incompressible fluid of
infinite depth. The flow is bounded above by a free surface. The effects of gravity and
surface tension are taken into account. We introduce Cartesian coordinates with y = 0
at the constant level of the free surface at infinity. We denote the equation of the free
surface by y = n(z,t). We define the velocity potential by ¢(x,y,t), which satisfies
Laplace equation within the fluid domain, namely, ¢y, + ¢y, = 0 for y < n(z,t). Solutions
travelling at a constant velocity ¢ can be found by assuming that the unknowns 7 and ¢
depend on x — ct. Therefore the kinematic and dynamic boundary conditions on the free
surface y = n(x,t) can be written as

—Cly = _nm¢m + ¢y7 (21)

1 rx

These two equations were made dimensionless by choosing (o/ pg)l/ ? and (0/ pg3) 14 as
the units of length and time.

To handle the unknown free surface, we use a conformal transformation, mapping the
physical fluid domain to the lower-half plane. The map is defined by 2(&, () = z(£,¢) +
iy (&, ¢) with the horizontal and vertical coordinates in the new plane denoted by £ and ¢
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respectively. The free surface is mapped to the é-axis, and can therefore be parameterized
by Y (&) £ n(x(£,0)). In the transformed plane, (2.1)-(2.2) can be recast to a single
integro-differential equation for Y and ¢ as unknowns

c? 1 YeXee — XeVee
¢ (i ) o 23
together with X¢ =1 — H [Y¢], where # is the Hilbert transform defined as
!
= [ &) e (2.4)
r & —¢

The detailed derivation of these equations can be found, for example, in Milewski et al.
(2010) and it is noted that (2.3) is equivalent to the equation obtained in Vanden-Broeck
& Dias (1992) by using the hodograph transformation for a steady solution in a frame
moving with the wave.

The energy of solitary waves will be used as a parameter in bifurcation curves, and is
the sum of kinetic and potential energies

E:%/}Rd:ﬁ/—n%(¢§+¢§)dy+%4n2dw+4(m—1)d:c. (2.5)

This can be rewritten in the transformed plane as follows

E= %/}R YR +2 (/X2 + 72— Xe) + V2Xe| de. (2.6)

Equation (2.3) is solved numerically by approximating Y by the truncated Fourier series

N
Y=Y (an+iby) e?™/E (2.7)
n=—N
with bg = 0, and for n # 0, a_, = ay, b_, = —b,. We remark that, for waves sym-
metric about £ = 0, b, = 0. Fixing L and N and ¢, there are 2N + 1 unknowns:
ag,a1,-..,aN,b1,ba,...,by. These unknowns are required to satisfy the 2IV 4+ 1 equa-

tions obtained by projecting (2.3) onto each element of the basis e2m¢/L for p = 0,... N.
Nonlinear terms in (2.3) are computed at uniform grid points in { € [-L/2, L/2) whereas
the Hilbert transform and derivatives are computed in Fourier space using Fourier mul-

tipliers. For example, 7-/[[?] = isgn(k)f/ where the hat denotes the Fourier transform,
and k the wavenumber. The equations are solved by Newton iterations and the branches
are found by straightforward continuation in a chosen parameter (usually the Energy,
unless a turning point is reached). This method of solution was successfully implemented
in Milewski et al. (2010) for finding symmetric waves that were then used in the time-
dependent computations. The computation of asymmetric solitary waves is far more
expensive than that of symmetric solutions. Not only do these solutions require double
the number of unknown Fourier coefficients, their multi-packet nature results in a much
larger computational domain being needed. The solution was considered to have con-
verged when the L>—norm of the residual error was less than 107!, Various versions
of the algorithm were implemented, calculating both the equations and error in either
Fourier or physical space with the same results.

Since a long periodic domain is used to approximate solitary waves, the underlying
period L and the number of the mesh points N are both chosen sufficiently large so
that, to the numerical accuracy we use, the solution does not change when L and N are
increased. This is tested by checking that the residual is less than 107'* when L and
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FIGURE 1. Speed-amplitude and speed-energy curves for symmetric elevation and depression
solitary waves emerging from the bifurcation point ¢* = v/2. (a) The complex behaviour of the
speed-amplitude curve for the elevation branch, with the sharp nature of the second turning
point is shown in more detail. The labelled points correspond to the waves that will be used to
construct initial guesses in the remaining figures; (b) speed-amplitude curve of the depression
branch; (c) energy of the depression branch (dashed line) and of the elevation branch (solid line)
showing a zig-zag behaviour.

N are changed. Further details on these parameters are provided in the result section.
Overall, the above accuracy was achieved for all the numerical computations when the
grid spacing A¢ was chosen to be in the range 0.025-0.05 .

Two types of symmetric gravity-capillary solitary waves, elevation and depression de-
pending on the height of the free surface at the centre, are known to exist on deep water.
The speed-amplitude (where “amplitude” is defined as the centre elevation) and speed-
energy bifurcation diagrams of the two branches are presented in Fig. 1, with typical
profiles being shown in Fig. 2(b)(c), 4(b)(c) and 5(b)(c). The solution branch of depres-
sion waves is monotonic in both amplitude and energy (see Fig. 1(b) and the dashed
line in Fig. 1(c)) and, as the amplitude increases along the branch, the waves become
less oscillatory with a large central depression (contrast Fig. 2(b) and Fig. 5(b)). The
elevation branch exhibits zig-zag behaviour (see Fig. 1(a)) first observed in Dias et al.
(1996)). This behaviour is clear in the speed-energy graph in Fig. 1(c)) (see also 3(b)):
the elevation branch traces back-and-forth, close to lines of slope approximately 2s, 3s, . ..
where s is the slope of the depression branch. The reason for these slopes is that waves at
large amplitude look like several copies of the basic depression wave placed side-by-side.

In order to compute asymmetric solitary waves, it is essential to choose a good initial
guess for the Newton’s iterations. Motived by the analysis of Yang & Akylas (1997), we
prepare the initial data by superposing two offset symmetric solitary waves with distinct
profiles but travelling at the same speed. The zig-zag behaviour of the elevation branch
gives us more freedom than in Yang & Akylas (1997) in preparing the initial data for the
Newton’s iterations because of the many possible choices of elevation waves travelling at
the same speed. For example, points 2b, 2c, 4b, 4c in Fig. 1 are all waves travelling at
the same speed.
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3. Results

The numerical procedure outlined in the previous section was used to compute branches
of asymmetric gravity-capillary solitary waves resulting from different initial guesses. The
first numerical experiment presented is shown in Fig. 2. The initial guess for the Newton
iteration was obtained by the simplest combination: a one-hump elevation (Fig. 2(b)
corresponding to the point 2b in Fig. 1(a)) superposed with a depression solitary waves
(Fig. 2(c) corresponding to the point 2¢ in Fig. 1(b)), both of which translate at ¢ = 1.4.
The vertical dashed line shown in Fig. 2(b)-(c) indicates the points at which these two
symmetric solitary waves were glued together. In preparing initial data, we attempted two
methods: glueing, whereby the profile of both waves are cut and connected at the gluing
point, and, superposition, whereby the waves are linearly superposed after a relative shift.
Both methods appear to work equally well.

With the initial guess described above, the algorithm converged to the solution as
shown in Fig. 2(e). This numerical experiment was carried out with L = 300 and N =
6000. Once this solution was obtained, a global investigation of asymmetric solutions
along this branch can be carried out through continuation methods. We found that this
new branch begins and ends on branches of symmetric waves. Increasing the speed from
point (e), the curve was found to finish on a symmetry-breaking bifurcation point at ¢ =
1.4089 labeled (i) in Fig. 2(a). Decreasing the speed from point (e), the speed-energy curve
experiences a turning point at ¢ = 1.3788 where the wave speed attained its minimum
value. The speed along the branch then increases until it reaches a symmetry-breaking
bifurcation point at ¢ = 1.4077, labelled (h) in Fig. 2(a). Wave profiles were considered
to be symmetric in the non-symmetric formulation if, after choosing a symmetry point
that minimises the difference of the solution and its mirror image about that point, the
absolute difference between the two is less than 1073. The candidate symmetrical solution
was then also checked on a code enforcing the symmetry.

The comparison between two different asymmetric solitary waves propagating at the
same speed is made in Fig. 2(d)-(e) at ¢ = 1.4 and Fig. 2(f)-(g) at ¢ = 1.385. In each
of these pairs of figures, to the left of the vertical dashed line, the profiles are almost
identical. The vertical dotted line is drawn to indicate the relative horizontal shift between
the elevation packet and the depression packet. For example, from (d) to (e) the distance
between the two packets has increased by approximately one wavelength of the carrier
wave. We can also conclude from these figures that the amplitude is not a suitable
parameter to plot the bifurcation curve since the maximum (or the minimum) values
of waves propagating at the same speed are almost identical. The profiles according to
the two symmetry-breaking bifurcation points are shown in Fig. 2(h)-(i) respectively.
Note that (i) has an additional wavelength with 5 troughs between the two minima
instead of four in (h). The appearance of these multi-packet symmetric solitary waves
had been observed by Buffoni et al. (1996a) for the fifth-order KdV equation. We have
continued the multi-packet symmetric branches (see the dashed lines in (a)): the branch
corresponding to Fig. 2(h) is in fact connected to the fundamental elevation branch
(shown in Fig. 1), whereas the branch corresponding to Fig. 2(i) appears to be a new
branch of “depression” solitary waves. This branch is shown in Fig. 3.

We now consider a different branch of asymmetric solitary waves, obtained by piecing
together two symmetric multi-hump elevation solitary waves with the same speed, labeled
4b and 4c in Fig. 1(a). The gluing points are shown in Fig. 4(b) and (c¢) via the vertical
dashed line. The Newton algorithm converged to the solution shown in Fig. 4(d). Using
this as the starting point, the complete bifurcation curve can then be followed. This
computation was carried out in a domain with L = 300 and N = 10000 equally-spaced
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FIGURE 2. A branch arising from an asymmetric wave with the initial guess being composed by a
one-hump elevation wave and a depression wave propagating at ¢ = 1.4. (a) Speed-energy curves
for asymmetric waves (solid line) and symmetric waves (dashed line). The sharp turning point
and the symmetry-breaking bifurcations are shown in details. (b)-(c): Profiles of the elevation
wave labeled 2b in Fig. 1(a) and the depression wave labeled 2c in Fig. 1(b). (d)-(i): Typical
profiles marked in (a) with same labels. (d)-(e): Typical profiles of asymmetric solitary waves
close to the bifurcation points. (f)-(g): Typical profiles of asymmetric solitary waves close to the
turning point. (h)-(i): Waves at the symmetry-breaking bifurcation points.
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FIGURE 3. Speed-amplitude and speed-energy curves for a new branch of symmetric depression
solitary waves (solid curve), together with the known depression branch (dashed). This branch
was found by following asymmetric waves to their original symmetry-breaking bifurcation. (a)
The complex behaviour of the speed-amplitude curve for the branch, reminiscent of elevation
branches. (b) Energy of the branch showing the discrete nature of the slope due to the waves’
similarity to a discrete set of single waves placed side-by-side.

points. The speed-energy curve of asymmetric solitary waves, the solid line shown in
Fig. 4(a), manifests similar zig-zag behaviour as found in other cases. In contrast to the
Fig. 2(a), there are multiple turning points occurring both at large amplitude and close
to the critical speed c¢*. The fate of this bifurcation curve is the same as that of Fig. 2,
namely that the non-symmetric branch connects the two symmetry-breaking bifurcations
(dashed curves in Fig. 4(a)) on branches of symmetric waves.

Typical wave profiles are presented in Fig. 4(d)-(i). First, waves on both sides of a
turning point close to ¢* are shown in (d)-(e). Note that the waves are very similar on
the left side of the dashed line but differ significantly to the right-hand side of the same
line. The profile to the right gained an oscillation passing through the turning point close
to ¢*. On the other hand, for the turning point where the minimum of ¢ is attained, the
turning point changes the profile from a “dimple” to a “crest” in the vicinity of a point.
Profiles of the waves moving at ¢ = 1.29 placed on both sides of this turning point are
plotted in (f) and (g). Note the dimple at point U, contrasted with the crest at point V.
The profiles for the neighbouring turning points (h) and (i) shown in (a) are presented in
the lower right panel, and again the vertical dash line separates the similar and different
portions of the two figures. It is clear that the (i) branch has one more large trough.
The profiles corresponding to the symmetry-breaking bifurcation points @ and @) (not
shown), are out of phase at the centre, similar to those of the first experiment (see Fig.
2(h)-(3))-

We should emphasise that it is considerably more difficult to follow the bifurcation
branches of asymmetric solitary waves than symmetric ones. In symmetric computations,
the value or the second derivative (curvature) of the centre point is usually used as a
bifurcation parameter to traverse the very sharp turning points of the bifurcation (see
for example Dias et al. (1996)). For non-symmetric branches another ‘proper’ condition
must be chosen for the sharp turning points. The intuition for selecting ‘proper’ points
can be illustrated in Fig. 4(d)-(g): when the turning point is far from ¢*, a point in the
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FIGURE 4. A branch arising from an asymmetric wave with the initial guess being composed by
two distinct multi-hump elevation solitary waves propagating at ¢ = 1.4. (a) Speed-energy curves
for asymmetric waves (solid line) and symmetric waves (dashed line). The sharp turning points
and the symmetry-breaking bifurcations are shown in details. (d)-(i): Typical profiles marked in
(a) with same labels. (b)-(c): Wave profiles labeled 4b and 4c in Fig. 1(a) respectively. (d)-(e):
Typical profiles of asymmetric solitary waves close to a turning point near c¢*. (f)-(g): Typical
profiles of asymmetric solitary waves close to the turning point at a minimum of c. (h)-(i) Wave
profiles at turning points.
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middle is chosen (e.g. U in Fig. 4(f)); for the turning points close to ¢*, one chooses a
point in the tail (see Fig. 4(d)).

A summative description of our observations of the asymmetric branches is as follows.
First, a symmetry-breaking bifurcation occurs near a turning point of a branch of multi-
packet symmetric solitary waves. This branch of non-symmetric solitary waves begins to
snake back and forth. Along this new branch there is significant change on one-side of
the wave when passing through the turning point close to the minimum speed of linear
waves (¢ &~ ¢*), and at the turning point near local minima of the solitary wave speed
c. The change comes in the form of a new oscillation or a dimple being added to the
profile. In this way the asymmetric wave gradually adjusts its shape and finally merges
into another symmetry-breaking bifurcation.

The last experiment is used to provide evidence that one can construct a plethora of
branches of asymmetric solitary waves. The computations were performed with L=240
and 9600 mesh points. The starting guess for the solutions was taken by gluing two
elevation solitary waves at ¢ = 1.35, similar to the second experiment. The profiles of
these two elevation waves together with the gluing points are shown in Fig. 5(b)-(c).
Using the method stated in last paragraph, the full bifurcation curve was found to be
more complicated than that in the second experiment, even though the initial guesses
came from the same elevation branch. The curve has six turning points near ¢* and five
turning points far away. The wave profiles near some turning points are presented in Fig.
5(d)-(g). The values of the points labeled Pi, @1, S1, T1 in Fig. 5(f) and P, Q2, Sa,
T in Fig. 5(g), while very close, show that these two profiles differ from each other and
are both non-symmetric. Similar to the previous two experiments, this non-symmetric
branch connects the two symmetry-breaking bifurcations, with the two bifurcation points
being shown in Fig. 5(h) and (i). In this experiment the bifurcation points appear to be
exactly at the turning points of the symmetric branches (this also happens to one of the
bifurcation points in the second experiment, see @ in Fig. 4(a)).

4. Discussion

In the present work, we implemented a numerical procedure to compute multi-packet,
non-symmetric, gravity-capillary solitary waves in the primitive irrotational Euler equa-
tions. It turns out that these waves, seen previously in models - the fifth-order KdV
equation - do exist in potential flow on deep water, and the speed-energy bifurcation
curves show a zig-zag behaviour with multiple turning points. The non-symmetric waves
were further found to bifurcate from multi-packet symmetric branches and end on another
symmetry-breaking bifurcation. Indeed, we have also found new symmetric branches by
following the branches at these endpoints. The symmetry breaking bifurcation points
found are all close to the small amplitude turning points of the branches of multi-packet
symmetric solitary waves.

There are other possible free surface fluid systems with possible asymmetric solitary
waves worth investigating, most notably hydroelastic (or flexural-gravity) waves, a model
used to describe the propagation of waves on floating ice sheets, and interfacial waves
between two immiscible fluids, under the action of both gravity and surface tension forces.
In these two cases, the full equations support both elevation and depression solitary waves
at finite amplitude and we expect, similarly, to have multi-packet non-symmetric solitary
waves.

Our numerical results also raise other questions. A natural question is whether all so-
lutions arise via a spontaneous symmetry-breaking bifurcations as we found, or whether
there are isolated non-symmetric branches which do not branch off from symmetric ones.
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FIGURE 5. A branch arising from an asymmetric wave with the initial guess being composed by
a one-hump and a multi-hump elevation solitary waves propagating at ¢ = 1.35. (a) Speed-en-
ergy curves for asymmetric waves (solid line) and symmetric waves (dashed line). The symme-
try-breaking bifurcation is shown in details. (b)-(c) Wave profiles corresponding to the points la-
beled 5b and 5c respectively in Fig. 1(a). (d)-(i): Typical profiles marked in (a) with same labels.
(d)-(e): Typical profiles of asymmetric solitary waves at the turning points. (f)-(g): Typical pro-
files of asymmetric solitary waves at turning point near a minimum of ¢. For (f) n(P1) = 0.1104,
n(Q1) = 0.1342, n(S1) = 0.1463, n(T1) = 0.1727 and for (g) n(P2) = 0.1109, n(Q2) = 0.1618,
n(S2) = 0.1471, n(72) = 0.1743. (h)-(i) The wave profiles at the symmetry-breaking bifurcation
points.
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A second question is how these results can be generalised to the three-dimensional case,
in which the basic elevation and depression lumps have been found in the Euler equa-
tions (Parau et al. (2005); Wang & Milewski (2012)). Namely, are there Euler lump
solutions which are non-symmetric in either propagation or transverse directions? Since
overhanging waves are common at large amplitude Vanden-Broeck & Dias (1992), one
can ask whether there are asymmetric solitary waves with overhanging structures.
Lastly, there is the question of stability of these asymmetric solutions. Some symmetric
multi-hump solutions have been shown to be stable in the fifth-order KdV model (Levan-
dosky (1999); Buryak & Champneys (1997)) and in the full water wave problem (Calvo
& Akylas (2002); Milewski et al. (2010)). Along these lines, one might ask whether any
of the asymmetric solitary waves that we have found in full Euler equations are stable.
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