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We present a framework for simulating cross-sectional or longitudinal biomarker data sets from neurode-

generative disease cohorts that reflect the temporal evolution of the disease and population diversity. The

simulation system provides a mechanism for evaluating the performance of data-driven models of disease

progression, which bring together biomarker measurements from large cross-sectional (or short term longi-

tudinal) cohorts to recover the average population-wide dynamics. We demonstrate the use of the simula-

tion framework in two different ways. First, to evaluate the performance of the Event Based Model (EBM) for

recovering biomarker abnormality orderings from cross-sectional datasets. Second, to evaluate the perfor-

mance of a differential equation model (DEM) for recovering biomarker abnormality trajectories from short-

term longitudinal datasets. Results highlight several important considerations when applying data-driven

models to sporadic disease datasets as well as key areas for future work. The system reveals several impor-

tant insights into the behaviour of each model. For example, the EBM is robust to noise on the underlying

biomarker trajectory parameters, under-sampling of the underlying disease time course and outliers who

follow alternative event sequences. However, the EBM is sensitive to accurate estimation of the distribution

of normal and abnormal biomarker measurements. In contrast, we find that the DEM is sensitive to noise on

the biomarker trajectory parameters, resulting in an over estimation of the time taken for biomarker trajecto-

ries to go from normal to abnormal. This over estimate is approximately twice as long as the actual transition

time of the trajectory for the expected noise level in neurodegenerative disease datasets. This simulation

framework is equally applicable to a range of other models and longitudinal analysis techniques.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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. Introduction

Neurodegenerative diseases, such as Alzheimer’s disease (AD),

untington’s disease (HD), Parkinson’s disease (PD), and amy-

trophic lateral sclerosis (ALS), present increasing social and

conomic costs. Determining the sequence and evolution of the

ymptoms and pathologies of neurodegenerative diseases will enable

re-symptomatic and differential diagnosis, and treatment monitor-

ng for drug trials. Biomarkers have been developed that allow the
∗ Corresponding author. Tel.: +44 20 7679 0221.
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resence and progression of these pathologies to be measured in vivo.

uch biomarkers include cerebrospinal fluid (CSF) measures of pro-

eins implicated in disease pathogenesis, structural magnetic reso-

ance imaging (MRI) measures of regional volume changes, positron

mission tomography (PET) measures of hypometabolism or abnor-

al protein deposition, and cognitive test scores. Recent multi-centre

ollaborations, such as the Alzheimer’s Disease Neuroimaging Ini-

iative (ADNI) for AD, the Parkinson Progression Marker Initiative

PPMI) for PD, and the Track-HD study for HD, collect a diverse set of

iomarker data from large cohorts. However, analysing longitudinal

iomarker trends in such datasets is difficult due to inherent disease

eterogeneity and the long disease time course (thought to be over

decade in some cases), which means that even so-called longitu-

inal data is almost cross-sectional with respect to the full disease

uration. As a result, understanding of the longitudinal evolution of

iomarkers in neurodegenerative diseases remains largely hypothet-

cal (Aisen et al., 2010; Frisoni et al., 2010; Jack et al., 2010).
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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In AD for example, the most well validated biomarkers are amy-

loid PET imaging (Clark et al., 2011; Klunk et al., 2004) and CSF Aβ1-42

(Blennow and Hampel, 2003) to measure brain amyloid pathology;

CSF total tau (t-tau) and phosphorylated tau (p-tau) (Blennow and

Hampel, 2003) to measure neurofibrillary tangle (NFT) deposition

and neuroaxonal damage; FDG-PET imaging (Herholz, 2012) to mea-

sure brain hypometabolism; volumetric measures from MRI (Fox and

Schott, 2004) to measure neurodegeneration; and a range of cog-

nitive tests to measure memory loss and other cognitive deficits.

Hypothetical models of AD describe a distinct sequence in which

these biomarkers become abnormal (Jack et al., 2010). Jack et al. (Jack

et al., 2010) propose a model in which biomarkers evolve sigmoidally

over time with amyloid plaque biomarkers such as CSF Aβ1-42 and

amyloid PET preceding NFT deposition and neuroaxonal damage

markers such as CSF p-tau, CSF t-tau. These in turn become abnor-

mal prior to FDG-PET hypometabolism and grey-matter atrophy mea-

sured on MRI, before finally memory and cognition are affected, as

measured using cognitive test scores. More recently, Jack et al. (Jack

and Holtzman, 2013; Jack et al., 2013a) have revised this model to

account for the possibilities that (1) NFT build up and neurodegen-

eration precede amyloid plaque development in some cases, and (2)

subjects have mixed pathology. However, these models await empir-

ical validation from measured datasets.

Data-driven models of disease progression allow longitudinal

trends to be reconstructed from cross-sectional or short-term lon-

gitudinal datasets. Basic techniques to analyse biomarker trajectories

involve staging subjects and then comparing biomarker levels across

different disease stages (Bateman et al., 2012; Caroli and Frisoni,

2010; Förster et al., 2012; Jack et al., 2011, 2012; Landau et al., 2012;

Lo et al., 2011; Sabuncu et al., 2011; Schuff et al., 2012). This limits the

temporal resolution of the model to the accuracy of the patient stag-

ing. Patient staging techniques include clinical diagnoses (Förster et

al., 2012; Jack et al., 2011; Landau et al., 2012; Lo et al., 2011), which

typically comprise just three stages: cognitively normal (CN), mild

cognitive impairment (MCI) and clinical AD; cognitive test scores

(Caroli and Frisoni, 2010; Jack et al., 2012; Sabuncu et al., 2011), which

suffer from floor and ceiling effects; age (Schuff et al., 2012), for which

disease stage varies widely amongst subjects; and predicted age of

onset based on parents age of onset (Bateman et al., 2012), which can

only be established for genetic disease subtypes and is a crude esti-

mate of actual onset. Data-driven models do not require prior knowl-

edge of the stage of a patient along the disease, allowing the recon-

struction of a much more fine-grained picture of disease progression.

Differential equation models (DEM) (Jack et al., 2013b; Oxtoby et al.,

2014; Sabuncu et al., 2011; Villemagne et al., 2013) model short-term

longitudinal patient data as a differential cross-section of a common

longitudinal biomarker trajectory; the overall biomarker trajectory is

obtained by integrating all of the subject’s differential cross-sections.

Jedynak et al. (Jedynak et al., 2012) and Donohue et al. (Donohue

et al., 2014) make a similar set of assumptions to formulate their dis-

ease progression models, again modelling each subject’s biomarker

data as a snapshot of a common progression curve, but further allow-

ing for variation in individual progression rates. Another data-driven

model, the Event Based Model (EBM) (Fonteijn et al., 2012; Young

et al., 2014) considers disease progression as a sequence of events at

which biomarkers become abnormal, thereby allowing direct deter-

mination of biomarker ordering from entirely cross-sectional data.

However, such data-driven models typically depend on idealised

assumptions about the data that they are modelling. First, that all

subjects follow the same progression pattern. This is not true in

general as large cross-sectional datasets will contain subjects who

have different disease subtypes, mixed pathology, have been misdi-

agnosed, are yet to develop other diseases, or who are aging healthily.

Such outliers are particularly prevalent in pre-symptomatic popula-

tions where the diagnostic outcome is unknown. Second, a set of pa-

rameters that define normal and abnormal biomarker levels. This is
 a
ifficult to determine due to the high proportions of pre-symptomatic

ubjects in typical control populations (for example, a significant pro-

ortion of cognitively normal elderly subjects have been found to

ave biomarker changes consistent with AD (Rowe et al., 2010; Schott

t al., 2010)), and misdiagnosis in diseased populations. Third, that

he underlying disease time course is well sampled. In reality, pre-

ymptomatic subjects may not go on to develop the neurodegenera-

ive disease being investigated and therefore the early disease stages

ight be under sampled or misrepresented, and diseased subjects

ay not be representative of the very late disease stages where the

opulation thins and severe illness can make data hard to collect.

Here we present a simulation system to generate synthetic

iomarker datasets that represent the heterogeneity of sporadic neu-

odegenerative diseases. Although still based on a model of disease

rogression, it encapsulates many more variables than the simpler

odels that are parsimonious enough to fit to current data sets. Thus

t provides a platform to evaluate the effect of more brutal simplifi-

ations necessary to obtain robust fitting results from working mod-

ls. Here, we demonstrate this simulation system by evaluating the

erformance of the EBM and a DEM in determining the sequence of

iomarker abnormality from simulated data.

. Methods

.1. Generative model of data

We assume the following generative model of sporadic disease

atasets. A set of subjects with: follow-up time points, f, from a

ollow-up distribution P(f); disease subtypes, s, from a subtype distri-

ution P(s); each set of follow-up time points correspond to a set of

ime points along the disease, t, from a time point distribution P(t|f).

t each time point a subset, e, of the biomarkers included in the study

re measured for a particular subject according to a biomarker collec-

ion distribution P(e|f), i.e. a subset of the biomarkers included in the

tudy are measured in the subset of subjects that have a particular

ollow-up visit. Each subject has a set of biomarker measurements, xe,

t each time point t ∈ t. The collected biomarker measurements are

imulated from a trajectory evolution function z(t, θ) with parameters

from a trajectory parameter distribution P(θ|s, t), and measurement

oise ε perturbation from a measurement noise distribution P(ɛ). The

ata for each collected biomarker for each patient for each time point

s then x = z(t, θ) + ε; biomarkers that are not collected are recorded

s missing data. Each subject is given a particular diagnosis d from a

iagnosis distribution P(d|xe).

.2. Simulating sporadic AD

.2.1. ADNI dataset

We used data from the Alzheimer’s Disease Neuroimaging Ini-

iative (ADNI) to guide some of the settings for the simulations.

he ADNI was launched in 2003 by the National Institute on Aging

NIA), the National Institute of Biomedical Imaging and Bioengineer-

ng (NBIB), the Food and Drug Administration (FDA), private phar-

aceutical companies and non-profit organisations, as a $60 mil-

ion, 5-year public–private partnership. For up-to-date information

ee http://www.adni-info.org.

We downloaded baseline and follow-up data from all subjects

n ADNI-1 giving a set of 819 subjects (229 cognitively normal, 398

ild cognitive impairment, 192 Alzheimer’s disease). We included

he following set of biomarker data: CSF Aβ1-42, CSF t-tau, CSF p-tau;

he Mini Mental State Examination (MMSE) (McKhann et al., 1984);

aseline MRI volumes of whole brain, hippocampus and ventricles;

DG-PET. MRI volumes were corrected for differences in head size by

egressing against total intracranial volume (TIV). FDG-PET uptake

alues were averaged over the angular gyrus, inferior temporal gyrus,

nd posterior cingulate gyrus. For simplicity we only model baseline

http://www.adni-info.org
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SF, as modelling longitudinal CSF requires a new set of measure-

ents for each time point to be modelled, as all the CSF measure-

ents are re-processed once a new follow up is completed.

.2.2. Generic AD simulation model

We start from a generic model of AD, adapting the settings to per-

orm a stability analysis of the EBM and DEM.

Our generic model of AD is based on the following assumptions:

• At baseline a set of time points t0 are sampled from a uniform

baseline time point distribution P(t0) = Uni f (0, tr), where tr is

the range of the initial subject time points.
• The follow-up time points are sampled sequentially from a set of

possible follow-up times under the assumption that a proportion,

rf, of subjects drop out per year.
• The time points are assumed to follow a normal distribu-

tion centred around the time after follow-up, i.e. P(t| f ) =
Norm( f + t0, σt).

• The subtype distribution is P(s) = Cat(ps,m), where ps is the prob-

ability that a subject is assigned subtype s. By default there is only

one disease subtype and so all subjects follow the typical AD set of

biomarker trajectories. Alternative subtypes are used to simulate

subjects that do not follow the typical AD sequence of biomarker

abnormality, e.g. subjects with other neurodegenerative diseases

or who are aging normally.
• The collected subset of biomarkers, e, is sampled sequentially for

the available time points by modelling an initial proportion of

subjects, pe, in which the biomarker is collected and a drop out

rate per year, re, i.e. of the subjects that remain in the study,

only a proportion of these have a measurement for a particular

biomarker.
• The trajectory evolution function is sigmoidal, as has been hy-

pothesised by Jack et al. (Jack et al., 2010), with parameters θ =
(a, r, c, g), where a is the trajectory minimum, r the range (dif-

ference between trajectory maximum and minimum value), c the

centre point and g the gradient. To make the magnitude of the

gradient a more intuitive quantity, we re-parameterise g so that

it is the biomarker ‘transition time’. We define this as τ = 4/g, i.e.

it is the time taken for the tangent to the sigmoid at the centre

point, c, to transition from the minimum biomarker value, a, to

the maximum biomarker value, a + r. Hence, we have

z(t, θ) = a + r

1 + exp
(
− 4

τ (t − c)
) ,

with parameters θ = (a, r, c, τ ).
• The trajectory parameters are normally distributed according to

the trajectory parameter distributions:

◦ P(a) = Norm(μa,�a)
◦ P(r) = Norm(μr,�r)
◦ P(c|s) = Norm(μc,s,�c)
◦ P(τ) = Norm(μτ ,�τ )

The parameters μa, μr, μc, s, μτ are the trajectory parameter

eans; �a, �r, �c, �τ are the inter-subject covariances of the tra-

ectory parameters.

• The measurement noise distribution follows a normal distribution

with mean 0 and standard deviation υ , i.e. P(ε) = Norm(0, υ)
• There are three diagnoses, d = {CN, MCI, AD}, as there are

in ADNI, that follow a categorical distribution: P(d|x) =
Cat(pCN, pMCI, pAD), where pCN is the probability that a subject

is assigned a CN diagnosis, pMCI is the probability that a sub-

ject is assigned a MCI diagnosis, and pAD is the probability that

a subject is assigned an AD diagnosis. The probability of each

diagnosis pd is evaluated using each subjects biomarker data, x,

as pd ∝ ∏I
i=1 Norm(xi,μd,i, σd,i).
We tested the agreement between data sets generated using the

efault parameter values and ADNI by calculating the Bhattacharyya

oefficient (Bhattacharyya, 1943), BC, between simulated data sets

nd data from ADNI. The Bhattacharyya coefficient measures the sim-

larity between two probability distributions, ranging from 0 to 1,

here a Bhattacharyya coefficient of 0 corresponds to no overlap.

B = 1

8
(μADNI − μsimulated)

T �−1(μADNI − μsimulated)

+ 1

2
ln

(
det(�)√

det (�ADNI)det(�simulated)

)

here

= �ADNI + �simulated

2

The Bhattacharyya coefficient, BC, is BC = exp(−DB).

We find that data sets generated using the default parameters val-

es show good agreement with the ADNI data set, giving an average

hattacharyya coefficient across 25 sample data sets of 0.99 when

onsidering the biomarkers to be independent, and 0.83 when con-

idering the dependence between biomarkers.

.2.3. Datasets for EBM stability analysis

We use our generic AD model to perform a set of simulations

o assess how robust the EBM and DEM are to different choices of

arameters.

For these experiments we assume the following set of default pa-

ameters (Table 1, Fig. 1). These default parameters are intended as

n idealised basis for the stability analysis, from which each param-

ter can be varied individually so as to explore the robustness of the

odels to variations in a particular parameter, independently of other

ffects. For each experiment we generate synthetic datasets that have

00 subjects and the biomarker set: CSF Aβ1-42, CSF t-tau, CSF p-tau,

DG, MMSE, hippocampal volume, brain volume, ventricular volume.

• Baseline time points: tr = 20, i.e. there is a range of 20 years in

which a subject’s baseline visit might lie.
• Follow-ups: There are 11 possible follow-up times, as there are in

ADNI, at 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, and 9 years from baseline. The

drop out rate per year, rf, is estimated from ADNI as 10%.
• Time points: the standard deviation, σ t, of the actual time at

which each follow-up is taken is approximated from ADNI as

σt = 0.05 for t = 0.5, 1, 1.5, and σt = 0.1 for t ≥ 2 (at baseline

σt = 0).
• Subtype: ps=1 = 1, i.e. all subjects have the same disease subtype

by default.
• Biomarker collection: The proportion of subjects in which each

biomarker is collected at baseline, pe, and the drop out rate per

year, re, are estimated from ADNI as pe = 100%, 85%, 55%, 50%,

and re = 0%, 10%, 5%, 100% for cognitive test scores, MRI volumes,

FDG-PET hypometabolism, and CSF levels respectively (i.e. only

baseline CSF modelled).
• Trajectory parameters: μa is estimated from the mean biomarker

value in cognitively normal subjects from ADNI (Table 1). μr is

estimated as the difference between the mean biomarker value

in Alzheimer’s disease and cognitively normal subjects from ADNI

(Table 1). For CSF Aβ1-42 we use only amyloid negative cognitively

normal subjects, and amyloid positive Alzheimer’s disease sub-

jects (amyloid positive is defined as CSF Aβ1-42 < 192 pg/ml). We

chose settings for μc so that the biomarkers become abnormal

in the order: Abeta, p-tau, t-tau, FDG-PET, hippocampal volume,

MMSE, ventricles, whole brain volume (Table 1). We set μτ to

5 years for all biomarkers (Table 1).
• Trajectory inter-subject covariance: �a is estimated from the set

of 28 amyloid negative cognitively normal ADNI subjects at base-

line that have measurements for all biomarkers (Table 1), we re-

move the contribution of measurement noise by subtracting the
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Table 1

Default parameter values for the EBM. μa = mean trajectory minimum, μr = mean trajectory range, μc = mean trajectory centre

point (years), μτ = mean trajectory transition time (years). υ2μ2
r = biomarker measurement variance, normalised by the range of

the trajectory. �a/μrμr
T = covariance of the trajectory minimum, normalised by the range of the trajectory. All other covariance

matrices are set to 0 by default.

Abeta p-tau t-tau FDG Hippo MMSE Vents Brain

μa 243 20 63 6.39 903 29.1 −7400 34300

μr −110 23 63 −1.01 −1630 −5.78 13600 −64000

μc 5 6 7 8 10 12 14 15

μτ 5 5 5 5 5 5 5 5

υ2/μ2
r 0 0 0 0.030 0.006 0.013 0.004 0.022

�a/μrμT
r Abeta 0.058 0.001 −0.004 0.014 −0.001 0.002 0.013 0.007

p-tau 0.150 0.126 0.041 −0.069 −0.015 0.048 −0.106

t-tau 0.178 0.031 −0.084 −0.003 −0.013 −0.068

FDG 0.308 0.064 0.008 −0.191 0.109

Hippo 0.198 −0.007 −0.320 0.326

MMSE 0.055 0.009 −0.031

Vents 1.519 −0.896

Brain 0.960
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estimated measurement variance level (see next bullet point). By

default we set �r = 0, �c = 0, �τ = 0.
• Measurement noise: We estimate the measurement noise level υ

for each biomarker using baseline and 6 month follow-up mea-

surements in cognitively normal subjects from ADNI (Table 1) un-

der the assumption that fluctuations in controls over a 6 month

period are representative of measurement noise. For CSF we only

have baseline measurements and so we set the measurement

noise to 0, i.e. we model the variance as being purely inter-subject

covariance rather than removing the contribution of measure-

ment noise as we do for the other biomarkers.
• Diagnosis: We estimate μd and σ d for each diagnostic group using

the available data for each biomarker from ADNI.

In the experiments we vary each of the following parameters of

the simulations in turn, and set the rest of the parameters to their de-

fault value, generating 25 synthetic datasets for each new parameter

value, and fitting the EBM to each sample dataset.

2.2.3. Datasets for DEM stability analysis

For the DEM experiments we initially fitted a DEM to each

biomarker using the default simulation settings for the EBM. How-

ever, these experiments show that the DEM does not perform well

for the levels of noise estimated from ADNI. We therefore simplify

the default settings for the DEM to allow us to characterise the types

of noise the DEM is most sensitive to. By default we instead generate a

single idealised (zero noise) biomarker trajectory with the following

settings.

• Biomarker collection: pe = 100%, re = 0%.

• Trajectory parameters: μa = 0, μr = 1, μc = 10, μτ = 5.
• Trajectory inter-subject covariance: �a = 0, �r = 0, �c = 0,

�τ = 0.
• Measurement noise: υ = 0.

In the experiments we again vary each of the following param-

eters of the simulations in turn, and set the rest of the parameters

to their default value, generating 25 synthetic datasets for each new

parameter value, and fitting the DEM to each sample dataset.

2.3. The Event Based Model

The Event Based Model (EBM) (Fonteijn et al., 2012) considers dis-

ease progression as a sequence of events at which biomarkers transi-

tion from a normal level, i.e. as seen in healthy controls, to an abnor-

mal level, i.e. as seen in AD subjects. The maximum likelihood (ML)
rdering of these events can be determined by finding the sequence

that maximises the data likelihood

(X|S) =
J∏

j=1

[
I∑

k=0

(
P(k)

k∏
i=1

P(xi j|Ei)
I∏

i=k+1

P(xi j|¬Ei)

)]

Here, Ei, i = 1 . . . I, are events, whose occurrence is informed by

he corresponding measurements xij of biomarker i in subject j, j =
. . . J via the biomarker distributions: the likelihood that an event

as occurred and thus the corresponding biomarker measurement xij

s abnormal, P(xij|Ei), or has yet to occur and so the corresponding

iomarker measurement is normal, P(xij|Ei). P(k) is the prior likeli-

ood of being at stage k, where events E1, . . . , Ek have occurred, and

vents Ek+1, . . . , EK have yet to occur. We assume no prior knowledge

f disease stage by choosing the prior P(k) to be uniform. We fit a mix-

ure of normal distributions to determine the mean, μE and μ¬E , and

tandard deviation, σ E and σ¬E , of the biomarker distributions P(x|E),

nd P(x|¬E). To guide the fitting in cases where the biomarker dis-

ributions overlap significantly, we constrain the parameters so that

he standard deviation of each distribution is less than or equal to the

tandard deviation of biomarker measurements in the AD and con-

rol (CN) population respectively. For missing biomarker values we

mpute the value of x such that P(x|E) = P(x|¬E).

.4. Differential equation model

We fit the DEM to each biomarker separately using a similar tech-

ique to Villemagne et al. (Villemagne et al., 2013). We first calculate

he rate of change in each subject by fitting a least-square linear re-

ression to the first three available time points for each participant.

or each simulation we compared fitting a linear model to the first

hree available time points (baseline, 0.5 years and 1 year) with fit-

ing a linear model to the three or more available time points (up to

maximum of 9 years). We found that fitting the linear model to the

rst three available time points produced trajectories with the least

rror for all experiments, and so we only present results for fitting

o the first three available time points. We fit a quadratic differential

quation model (representative of the sigmoidal biomarker dynam-

cs modelled in the simulations) to the mean biomarker value of each

ubject (xi), and rate of change of each subject (
δxi
δt

) estimated from

he linear model, i.e. we optimise for A, B and C over all subjects i such

hat:

∂xi

∂t
= Axi

2 + Bxi + C
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Fig. 1. Example simulated FDG-PET, subject diagnosis, and time point data generated using default parameter values for the EBM (Table 1). (A) Simulated baseline FDG-PET data

(curve shows mean trajectory); (B) simulated FDG-PET follow-up data for cognitively normal subjects (green), mild cognitive impairment subjects (blue), and Alzheimer’s disease

subjects (red); (C) same as (B) but plotted against follow up time rather than time point along the disease. (D)–(F) Histogram of the number of (D) cognitively normal, (E) mild

cognitive impairment and (F) Alzheimer’s disease subjects, at each time point at baseline. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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We then integrate this quadratic differential equation model to get

he average trajectory across the population:

(t) =
√

4AC − B2 tan
(

1
2 (k + t)

√
4AC − B2

)
− B

2A

here k is an unknown constant to be specified by choosing an initial

ondition.

.5. Evaluation metrics

.5.1. EBM biomarker distribution parameters

Defining a ground truth for the biomarker distribution parame-

ers when the biomarker trajectories are not binary is not straight-
orward, requiring the portion of the biomarker trajectory belong-

ng to the ‘normal’ and ‘abnormal’ biomarker distribution to be

efined. However, to explore the effect of the accuracy of the

iomarker distribution on the estimation of the event sequence we

an each of the experiments for two settings: one where we esti-

ated the biomarker distributions and another where these were

xed. We fix the biomarker distributions so that μ¬E = μa, μE =
a + μr , σ¬E = σE =

√
diag(�a) + υ2, where diag(�) is the di-

gonal of the covariance matrix �. μa, m and μb, m are calculated

rom the average subject demographics. Whilst these may not be

he ‘true’ biomarker distribution parameters, they give us an idea

f how the EBM behaves for a reasonable setting of the biomarker

istribution parameters.
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Fig. 2. Results of applying the EBM to synthetic data with missing values (A)–(B) and without missing values (C)–(D) generated using the default parameters. In (A) and (C) the

event distributions are estimated, and in (B) and (D) the event distributions are fixed.
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2.5.2. EBM Kendall’s tau distance

A key outcome measure we are interested in is the model’s abil-

ity to recover the ML sequence from the simulated data. This can be

evaluated by measuring the Kendall’s tau distance (a measure of the

similarity of two sequences) between the recovered sequence and a

ground truth event sequence. The Kendall’s tau distance is the total

number of pairwise disagreements between two sequences, π and

π0:

dK(π, π0) =
∑
l≺

π j

1[ j≺π0
l]

where π and π0 are permutations and l≺π j means that l precedes

j in the permutation π . Here we use the normalised Kendall’s tau

distance, i.e. we divide by the maximum distance, which is the total

number of possible pairs: n!
2!(n−2)!

, where n is the number of events

in the sequence.

2.5.3. EBM positional variance diagrams

We use positional variance diagrams (PVDs) to look at the loca-

tion of variations in the ML sequence (rather than just the extent,

which we measure using the Kendall’s tau distance) for each simula-

tion. Each entry of the positional variance diagram is the proportion

of samples in which a particular event appears at that position in the

ML sequence.

2.5.4. DEM transition time

We compare the transition time of the simulated trajectories

across the population with the ground truth simulation setting of the

transition time, μτ .
. Results

.1. EBM stability analysis

We performed a stability analysis of the EBM to test how robust

he model is to different types of heterogeneity that are likely to exist

n sporadic AD datasets.

.1.1. Default parameter values

Fitting the EBM to datasets generated using the default parameter

alues (Fig. 2) gives a Kendall’s tau distance of 0.11 ± 0.05 when esti-

ating the event distributions from the data, and 0.01 ± 0.01 for fixed

vent distributions. Repeating this experiment without any missing

iomarker values only slightly improves the Kendall’s tau distance

espite the increase in the number of data points; 0.10 ± 0.09 for es-

imated event distributions, and 0.00 ± 0.01 for fixed event distribu-

ions, showing that imputing the data such that P(x|E) = P(x|¬E) (see

ection 2.3) is a valid technique for fitting the EBM to data with miss-

ng biomarker values. It is worth noting that in all the simulations the

nter-subject variation setting, which is estimated from ADNI, may be

arger than the actual level of inter-subject variation. This is because

ognitively normal subjects in ADNI may originate from a range of

nderlying time points along the biomarker trajectories.

.1.2. Experiment 1: Noise levels

We ran five simulations to look at the effect of different levels

f: (A) measurement noise υ , (B) inter-subject covariance of the tra-

ectory minimum �a, (C) inter-subject covariance of the trajectory

ange �r, (D) inter-subject covariance of the trajectory centre �c, s,

E) inter-subject covariance of the trajectory transition time �τ . For
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Table 2

Mean (standard deviation of the mean in brackets) Kendall’s tau distance between ground truth event se-

quence and event sequence returned by the EBM for synthetic data with varying: (A) noise levels, (B) tra-

jectory parameters, (C) time sampling, (D) subtypes. In all tables each column is a new parameter value,

and ‘estimated’ and ‘fixed’ refer to whether the event distributions are estimated by the EBM or fixed to

known values. Bold values represent the default parameters of the EBM. In part (A), experiments A–E rep-

resent varying: A. measurement noise; B. inter-subject covariance of trajectory minimum; C. inter-subject

covariance of trajectory range; D. inter-subject covariance of trajectory centre; E. inter-subject covariance

of trajectory transition time. In part (B), experiments A–B represent varying: A. trajectory centre points, B.

trajectory transition times.

A. Noise levels

0.01 0.1 0.5 1 2

Estimated A 0.10 (0.06) 0.09 (0.05) 0.11 (0.06) 0.10 (0.05) 0.12 (0.05)

B 0.12 (0.06) 0.00 (0.01) 0.02 (0.02) 0.09 (0.05) 0.36 (0.16)

C 0.11 (0.05) 0.11 (0.06) 0.13 (0.06) 0.20 (0.17) 0.18 (0.17)

D 0.09 (0.05) 0.13 (0.04) 0.24 (0.17) 0.32 (0.12) 0.47 (0.18)

E 0.10 (0.05) 0.09 (0.04) 0.15 (0.10) 0.26 (0.12) 0.40 (0.11)

Fixed A 0.00 (0.01) 0.00 (0.01) 0.01 (0.02) 0.01 (0.01) 0.01 (0.02)

B 0.17 (0.04) 0 (0) 0.00 (0.01) 0.00 (0.01) 0.07 (0.04)

C 0.00 (0.01) 0.01 (0.01) 0.03 (0.04) 0.11 (0.04) 0.17 (0.10)

D 0.00 (0.01) 0.01 (0.01) 0.05 (0.04) 0.09 (0.05) 0.17 (0.05)

E 0.01 (0.02) 0.01 (0.01) 0.01 (0.02) 0.10 (0.06) 0.19 (0.06)

B. Trajectory parameters

1 5 10 15 20

Estimated A 0.44(0.21) 0.19 (0.04) 0.09 (0.04) 0.08 (0.15) 0.20 (0.22)

B 0.03 (0.02) 0.11 (0.05) 0.19 (0.04) 0.24 (0.05) 0.30 (0.12)

Fixed A 0.38 (0.22) 0.09 (0.04) 0.01 (0.01) 0 (0) 0.01 (0.01)

B 0.00 (0.01) 0.00 (0.01) 0.01 (0.03) 0.04 (0.04) 0.05 (0.03)

C. Time sampling

0 1 2.5 5

Estimated 0.12 (0.06) 0.10 (0.06) 0.11 (0.07) 0.10 (0.04)

Fixed 0 (0) 0.00 (0.01) 0 (0) 0.00 (0.01)

D. Subtypes

0 0.25 0.5 0.75 1

Estimated 0.10 (0.04) 0.17 (0.20) 0.50 (0.36) 0.91 (0.06) 0.96 (0.05)

Fixed 0.01 (0.01) 0.04 (0.04) 0.45 (0.39) 0.95 (0.04) 1.00 (0.01)
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ach of the respective simulations we vary the noise level as a pro-

ortion p of (A) the estimated measurement noise from ADNI (see

ection 2.2.3 and Table 1), and as a proportion p2 of the covariance

atrices: (B) the estimated inter-subject covariance of the trajectory

inimum from ADNI (see Section 2.2.3 and Table 1), (C) the square

f the mean of the trajectory range μr
2 estimated from ADNI (see

ection 2.2.3 and Table 1), (D) the range of the trajectory centre points

quared, 102 years, (E) the range of the baseline time points squared,

02 years. For simulations (C), (D), and (E) we assume a diagonal co-

ariance matrix. Varying the measurement noise υ (Table 2A: Exper-

ment A) has little effect on the Kendall’s tau distance between the

ample event sequences and the ground truth as the estimated mea-

urement noise level is small compared to the inter-subject covari-

nce of the trajectory minimum (Table 1). Varying the inter-subject

ovariance of the trajectory minimum �a (Table 2A: Experiment B)

as a large effect on the Kendall’s tau distance for the estimated event

istributions, but little effect for fixed event distributions. This shows

hat it is difficult to estimate the parameters of the event distributions

or high biomarker inter-subject variance levels. For very low vari-

nce levels on �a the Kendall’s tau distance increases again for both

xed and estimated event distributions. This is probably because at

ery low variance the event distributions do not model the biomarker

alues over the central portion of the biomarker trajectory, where the

rajectory transitions from the minimum to the maximum value. This

akes it ambiguous as to whether the biomarker is normal or abnor-

al during the trajectory transition, making it difficult for the EBM

o order the biomarkers. The EBM is robust to inter-subject variation
n the trajectory range �r (Table 2A: Experiment C), giving a similar

endall’s tau distance to the default settings for noise levels up to 50%

f the range μr. The EBM is quite robust to variation in the trajectory

entre points �c, s (Table 2A: Experiment D) and transition time �τ

Table 2A: Experiment E).

.1.3. Experiment 2: Trajectory parameters

We performed two experiments to test the robustness of the EBM

o different values of the trajectory parameters: (A) varying the cen-

re points of the trajectories, μc, and (B) varying the transition time

f the trajectories μτ . In (A) we assume an evenly spaced set of tra-

ectory centre points over a segment of the disease time course. We

ary the duration of this segment as a fraction of 10 years. The tra-

ectory centre points are centred about the middle point along the

isease time course (10 years). In (B) we vary the transition time as a

raction of the overall range of the disease time course (20 years),

eeping the transition time the same for all biomarkers. The EBM

as difficulty estimating the event sequence for both fixed and es-

imated event distributions when the trajectory centres are close

ogether (Table 2B: Experiment A), and for longer transition times

Table 2B: Experiment B), which violate the assumption of the EBM

hat an event has either occurred or not occurred. For estimated event

istributions the EBM also has difficulty ordering the events when

he trajectory centres are spread over the full disease time course

Table 2B: Experiment A). This is because the portion of the trajectory

here the biomarker is normal (for early biomarkers) or abnormal

for late biomarkers) is not observed. As in the previous experiments,
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Time (years)
0 5 10 15 20

F
D

G

5.4

5.6

5.8

6

6.2

6.4

Fig. 3. Integrated DEM trajectories for FDG-PET uptake generated using synthetic data

with the default settings for the EBM (Table 1). The ground truth trajectory is in red,

and the median estimated trajectory is in black with the inter-quartile range shaded in

grey. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Table 3

Mean (standard deviation of the mean in brackets) estimated transition time

(years) for DEM fitted to synthetic data with varying: A. measurement noise;

B. inter-subject variance of trajectory minimum; C. inter-subject variance of

trajectory range; D. inter-subject variance of trajectory centre; E. inter-subject

variance of trajectory transition time. For all simulations the ground truth tran-

sition time is 5 years. Each column is a new parameter value.

0.1 0.25 0.5 1

A 5.9 (0.4) 9.8 (3.1) 12.7 (4.7) 15.0 (5.2)

B 7.5 (0.2) 11.4 (0.5) 13.3 (0.5) 14.4 (0.7)

C 6.6 (0.2) 9.8 (0.5) 11.6 (0.7) 12.3 (1.0)

D 5.1 (0.0) 5.1 (0.0) 5.1 (0.0) 5.1 (0.0)

E 5.1 (0.0) 5.1 (0.1) 5.4 (0.3) 8.7 (0.9)
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fixing the event distributions improves the estimation of the event

sequence.

3.1.4. Experiment 3: Time sampling

In this experiment we look at how under-sampling of the disease

time course affects the ability of the EBM to recover the sequence

of biomarker abnormality. We assume that the time points are sam-

pled from a mixture of three Gaussian distributions, with means at

5 years, 10 years and 15 years respectively. We vary the standard de-

viation of these distributions, assuming that all of the Gaussians have

the same standard deviation. This allows us to simulate the case that

cognitively normal, mild cognitive impairment and Alzheimer’s dis-

ease subjects are at entirely different points along the disease time

course. The EBM is robust to under-sampling of the disease time

course (Table 2C), giving a similar Kendall’s tau distance to the de-

fault settings for all simulations.

3.1.5. Experiment 4: Subtypes

To explore the effect of including a set of subjects that follow a dif-

ferent event sequence we modelled two disease subtypes, varying the

fraction of subjects that belong to each subtype. For both subtypes the

trajectory centre points are evenly spaced from a minimum of 5 years

to a maximum of 15 years. In subtype 1 the biomarkers become ab-

normal in the same order as the default settings: Abeta, p-tau, t-tau,

FDG-PET, hippocampal volume, MMSE, ventricles, whole brain vol-

ume. In subtype 2 the biomarkers become abnormal in the reverse

sequence. This sequence has a Kendall’s tau distance of 1 from the se-

quence of subtype 1. The EBM is robust up to a proportion of 25% of

subjects that follow an alternative event sequence (Table 2D): at 25%

outliers the Kendall’s tau distance is similar to the result for 0% out-

liers for estimated event distributions, and only slightly increased for

fixed event distributions. Likewise, at 75% outliers, when the major-

ity of subjects are subtype 2 the Kendall’s tau distance is only slightly

worse than for 100% outliers. At 50% outliers the EBM alternates be-

tween estimating a sequence similar to subtype 1 and subtype 2.

3.2. DEM stability analysis

We performed a stability analysis of the DEM to test how robust

the model is to varying the noise levels on the trajectory parameters.

3.2.1. Default parameter values

Fitting a DEM to each biomarker in turn (see Fig. 3 for estimated

synthetic trajectories for FDG-PET) using the default parameter val-

ues for the EBM gives an average across biomarkers (excluding CSF

for which we only modelled baseline collection) of a mean sample

transition time 12.8 ± 1.1 years and standard deviation of this sample

transition time of 2.2 ± 1.2 years. This is more than double the simu-

lated trajectory transition time of 5 years. For biomarkers with more

data points available (higher biomarker collection rate, e.g. MMSE)

the standard deviation of the transition time reduces but the mean

transition time remains similar, i.e. the DEM becomes more confident

in the biased estimate of the trajectory transition time. In subsequent

experiments we simplify the default parameter settings for the DEM

to a zero noise case (see Section 2.2.3) to allow us to characterise the

types of parameter noise that the DEM is most sensitive to.

3.2.2. Stability of the DEM to noise

For the DEM default parameter values (zero noise case) the DEM

is able to recover the trajectory transition time much more accurately

(sample transition time is 5.1 ± 0.0 years for a simulated trajectory

with a transition time of 5 years). As with the EBM, we ran five simu-

lations to look at the effect of different levels of: (A) measurement

noise υ , (B) inter-subject variance of the trajectory minimum �a,

(C) inter-subject variance of the trajectory range �r, (D) inter-subject

variance of the trajectory centre �c, s, (E) inter-subject variance of the
rajectory transition time �τ . We vary the noise level as a proportion

of (A) μr, and a proportion p2 of the variance: (B) μr
2, (C) μr

2, (D)

τ
2, (E) μτ

2. The DEM is sensitive to measurement noise (Table 3A:

xperiment A), and variance of the trajectory minimum (Table 3A:

xperiment B) and range (Table 3A: Experiment C), with 25% mea-

urement noise giving a transition time of around twice as long as

he actual transition time. The DEM is less sensitive to variance of the

rajectory transition time (Table 3A: Experiment E). The DEM is unaf-

ected by noise in the trajectory centre point (Table 3A: Experiment

), as this is removed by differentiating.

. Discussion

We have presented a framework for the simulation of sporadic

eurodegenerative disease datasets. We applied the framework to

enerate synthetic Alzheimer’s disease data, and thereby provide in-

ight into the robustness of the EBM and a DEM to the likely variation

n sporadic disease datasets.

.1. Simulation framework

The simulation framework we have presented is simple and flex-

ble. For example, it is easily extendible to include subjects with a

ange of demographics, for example age, gender, and education, or

enetic risk factors. Such effects can be modelled as a transforma-

ion of the trajectory parameters. Here we simplify the diagnosis as

relationship with the biomarker values, however, a more realistic
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iagnosis procedure could be simulated that is based on, for example,

ognitive test results. It is also possible to add in a screening proce-

ure that post-selects subjects with a similar set of demographics to

he dataset being simulated, for example age matching across diag-

ostic categories. Here we only consider inter-subject variance, how-

ver, intra-subject variance for longitudinal datasets could also be

odelled.

.2. Stability analysis

.2.1. EBM stability analysis

The EBM stability analysis shows that the EBM is sensitive to the

stimation of the event distribution parameters. However, when the

vent distribution parameters are estimated accurately, the EBM is

ery robust to the likely heterogeneity in sporadic disease datasets.

e find that the EBM is robust to noise in the trajectory parameters,

ifferent choices of trajectory parameters, under-sampling of the un-

erlying disease time course, and outliers who follow different event

equences.

.2.3. DEM stability analysis

For all simulations the DEM underestimates the trajectory gradi-

nt leading to an over estimation of the trajectory transition time. For

he level of noise estimated from the ADNI data this over estimate

s more than twice as long as the ground truth trajectory transition

ime. Whilst this result may be in part due to an over estimation of

he amount of inter-subject variation from ADNI, the stability analysis

f the DEM shows the DEM will severely over-estimate the trajectory

ransition time even when the inter-subject variation is much lower.

he DEM is very sensitive to measurement noise and inter-subject

ariation of the trajectory minimum (normal biomarker level) and

ange (difference between a normal and abnormal level). We further

nd that using three time points to fit the DEM rather than all avail-

ble time points, for which the approximation to the derivative is less

alid, gives a better estimate of the trajectory transition time, even

nder high noise levels.

.2.4. Limitations

In the set of experiments presented we vary each parameter in

urn. However, there will likely be multiplicative effects of vary-

ng these parameters in combination. We further make a set of as-

umptions that are specific to hypothetical models of AD, such as

igmoidal trajectories, and to the design of the ADNI dataset, such as

he proportion of subjects that drop out per year, and the proportion

f subjects in which each biomarker is collected. Other models for the

ynamics of the biomarker trajectories, such as statistical time-series

odels, are easy to incorporate into the simulation framework and

ould be interesting to consider in future work. We also assume that

easurement errors are Gaussian, which may not be the best choice

f noise distribution for all of the biomarkers. Therefore, although

hese simulations do provide an insight into the types of effects that

an be expected from different datasets, the simulations should be

e-run with dataset specific parameters to assess the performance of

he EBM and DEM on alternative datasets. We chose the DEM to be

imilar to (Villemagne et al., 2013), however other DEM approaches

e.g. Oxtoby et al., 2014) may recover a more accurate estimate of the

rajectory transition time for heterogeneous data sets, and should be

ested in future work.

.3. Implications for the application and development of

ata-driven models

.3.1. The Event Based Model

The results of the EBM stability analysis show that the EBM is sen-

itive to the accuracy of the estimated biomarker distribution mod-
ls, P(x|E), and P(x|¬E). Therefore the application of the EBM is most

ffective when the biomarkers have distinct control and case dis-

ributions. The results further show that the EBM is robust to 25%

utlier corruption, which is higher than the proportion of misdiag-

oses we expect in typical sporadic neurodegenerative disease co-

orts. The simulations highlight several key areas for improvement of

he EBM. First, better estimation techniques for the biomarker distri-

ution parameters should aid recovery of the event sequence when

he control and case distributions are not well defined. Adaptation

f the EBM to take into account the uncertainty in the biomarker

istribution parameters, e.g. by sampling the distribution parame-

ers simultaneously with the ordering, may also help to ameliorate

his problem. Second, although the EBM can estimate the ML event

equence for a modest proportion of outliers, it is unable to distin-

uish other likely event sequences in the data. Future work will look

t fitting mixture models with multiple event sequence modes to

he data (Young et al., 2015).

.3.2. Differential equation models

The simulations show that the DEM is sensitive to noise, leading

o over estimation of the trajectory transition time, meaning that the

EM should only be applied to biomarkers with low measurement

oise and inter-subject variance. Alternatively, robust fitting tech-

iques need to be developed that can correct for the bias encoun-

ered when fitting a DEM to noisy biomarker trajectories. The sim-

lations further show that it is important that the duration of follow

p for each individual is a good approximation to the derivative (short

ith respect to the full disease time course). This is shown to be more

mportant than the inclusion of lots of follow up time points, which

mproves the accuracy of the estimated derivative, suggesting that

ollow up data over a longer time period should be discarded when

tting a DEM.

. Conclusion

We have presented a framework for generating synthetic neu-

odegenerative disease datasets, which can be used to evaluate the

obustness of data-driven models to likely variations in sporadic dis-

ase datasets, and to directly compare them. We have demonstrated

he use of this framework to evaluate the stability of the EBM and

DEM of disease progression to heterogeneity in the ADNI dataset.

uture work will use the simulation framework to evaluate the sta-

ility of other data-driven models, such as self-modelling regression

pproaches (Donohue et al., 2014). The simulation framework can fur-

her be used as a technique for validating extensions to data-driven

odels, to determine model weaknesses, and to highlight areas for

mprovement and future work.
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