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Abstract

We propose a simple upwind finite element method that is monotonicity preserving and weakly consistent
of order O(h

3
2 ). The scheme is nonlinear, but since an explicit time integration method is used the added

cost due to the nonlinearity is not prohibitive. We prove the monotonicity preserving property for the
forward Euler method and for a second order Runge-Kutta method. The convergence properties of the
Runge-Kutta finite element method is verified on a numerical example.
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1. Introduction

The design of robust and accurate finite element methods for first order hyperbolic equations or con-
vection dominated convection-diffusion problems remains an active field of research. Indeed the task of
designing a numerical scheme that is of higher order than one, in the zone where the exact solution is
smooth, but preserves the monotonicity properties of the exact solution on the discrete level, is nontrivial.
Since it is known that such a scheme necessarily must be nonlinear even for linear equations the typical
strategy adopted when working with stabilized finite element methods is to add an additional nonlinear
shock-capturing term, designed to make the method satisfy a discrete maximum principle [1, 2, 3]. These
methods however often result in very ill-conditioned nonlinear equations and include parameters that may
be difficult to tune and depend on the mesh geometry. Another approach is the so-called flux corrected
finite element method [4, 5]. In this scheme the system matrix is manipulated so that it becomes a so called
M-matrix, the inverse of which has positive coefficients which yields a maximum principle. This scheme
is monotonicity preserving, but of first order. In order to improve the accuracy anti-diffusive mechanisms,
or flux-limiter techniques, have been proposed that reduce the amount of dissipation in the smooth region
by blending a low and a high order approximation [6, 5, 7].

In this paper we will discuss a method that is related to both the above mentioned classes in the
sense that the method consists of the addition of a nonlinear dissipative term to the standard Galerkin
formulation as for a shock capturing term, but similarly as in a flux corrected transport methods the
nonlinear term uses the coefficients of the system matrix for its definition. The method is entirely derived
from the finite element variational formulation and the guiding principle of the analysis has been to add
the smallest perturbation to the centered standard Galerkin formulation that ensures that the method is
monotonicity preserving. The salient features of the resulting method is that the optimal value of the
the stabilization parameter can be traced in the analysis, the monotonicity does not require any acute
condition of the mesh and the artificial dissipation term depends on the residual of the exact solution in
the form of a linear combination of the jumps of directional derivatives over each node (c.f. the edge based
limiters that were proposed in the eighties, see [6] and references therein, but also [8, 3]). Formally this

leads to a method with O(h
3
2 ) artificial viscosity where the solution is smooth and we show in a numerical

example that the expected O(h
3
2 ) convergence of the error in the L2-norm, indeed holds on structured

meshes.
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Figure 1: Illustration of the macro patch Ωi and the points xi, xj and x∗
j with associated function values ui, uj and u∗

j .

2. Model problem and finite element discretization

We will conside the pure transport equation in R2

∂tu+ β · ∇u = 0 (1)

with u(x, 0) = u0(x) where u0(x) is some function with compact support in R2 and β ∈ [W 1,∞(R2)]2. Let
Th := {K} denote a conforming, shape regular, triangulation of R2. The finite element space of piecewise
affine continuous functions is defined on Th as

Vh := {vh ∈ H1(R2) : vh|K ∈ P1(K), ∀K ∈ Th}

where P1(K) denotes the polynomials of degree less than or equal to 1 over K. The nodal basis functions
of Vh will be denoted ϕi, i.e. ϕi(xj) = δij, with δij the Kronecker delta function. Any function vh ∈ Vh
is then defined by

∑
i viϕi, where the vi denotes the nodal values of the function. We denote by NK the

set of indices of the vertices xi, of K. We also introduce the length of the edge eij between the nodes xi
and xj, hij := |xi − xj| and the unit vector pointing from xj to xi, τij := (xi − xj)/hij. To each node
xi of the mesh we associate the macro element Ωi := {K ∈ Th : xi ∈ K}, with associated set of indices
NΩi

of the vertices xj ∈ Ωi. For every node xj in the boundary of Ωi we associate a distance h∗ij > 0
such that x∗j := xi + h∗ijτij ∈ ∂Ωi (see Fig. 1.) The value of the finite element solution at x∗j will be
denoted u∗j := uh(x

∗
j). If u′j and u′′j denotes the values of uh in the nodes of the endpoints of the edge

with x∗j in its interior we see that there exists some α∗j ∈ (0, 1) such that u∗j = α∗ju
′
j + (1 − α∗j )u

′′
j . By

the shape regularity assumption we know that the number of points x∗j in the interior of any edge in Ωi

is upper bounded by some n∗i ∈ N. Let hK denote the radius of the largest circle inscribed in K ∈ Ωi,
similarly let hK denote the radius of the smallest circle circumscribing K ∈ Ωi the maximum ratio of the
two within one macroelement is denoted ρi := maxK∈Ωi

hK/minK∈Ωi
hK . We also denote an extended

patch, of two layers of elements around the node xi by Ω̃i := ∪j∈NΩi
Ωj. We define (uh, vh) :=

∫
R2 uhvh dx

and the discrete variant obtained by approximating the integral using nodal quadrature (“lumped mass”)
by (uh, vh)h :=

∑
K∈Th

∑
i∈NK

uh(xi)vh(xi)mK/3 where mK denotes the area of the triangle K. Observe in

particular that (uh, ϕi)h := 1
3

∑
K∈Ωi

mK uh(xi) = m̃iuh(xi), with m̃i := 1
3

∑
K∈Ωi

mK .
Now consider the forward Euler finite element discretization of (1), find unh ∈ Vh such that

k−1(unh − un−1
h , vh)h + a(un−1

h , vh) + s(un−1
h ;un−1

h , vh) = 0 (2)

and (u0
h, zh)h = (u0, zh)h for all vh, zh ∈ Vh. Here k ∈ R+ is the timestep and a(un−1

h , vh) := (β ·∇un−1
h , vh).

In order to define the stabilization operator s(·; ·, ·) we introduce the upwind and downwind sets of nodes
with respect to a node i. Let N+

Ωi
be the subsets of vertex indices j in NΩi

such that a(ϕj, ϕi) > 0. Then
define N−Ωi

:= NΩi
\ N+

Ωi
.
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s(un−1
h ;un−1

h , vh) := (ξ(un−1
h )un−1

h , vh)h − (ξ(un−1
h )un−1

h , vh), (3)

with the nonlinear upwind factor given by

ξ(uh)|K :=
6

mK

max
i∈NK

(
(n∗i ρi + 1) max

j∈NΩi

|a(ϕj, ϕi)|
ai
ai

)
(4)

where ai := |∑j∈N+
Ωi

hijJ∇uh · τijKxia(ϕj, ϕi)| and ai :=
∑

j∈N+
Ωi

hij{|∇uh · τij|}xi |a(ϕj, ϕi)|. Here the jump

and the average across the node xi are defined by J∇uh ·τijKxi := limε→0+(∇uh(xi−ετij)−∇uh(xi+ετij))·τij
and {|∇uh · τij|}xi := 1

2
limε→0+(∇uh(xi− ετij) +∇uh(xi+ ετij)) · τij. Observe that the sum in the definition

of ai may also be taken over NΩi
to improve the continuity of s(uh;uh, ·). For the numerical examples

presented below, this modification of ai had no influence on the solution quality. If ai = 0 the (undefined)
factor

ai
ai

is replaced by zero (in practice the quotient is perturbed by adding a small positive coefficient to
the denominator).

Below we will use the following abstract notation for the Euler step (2): unh = Eun−1
h .

We end this section with a technical lemma, showing some properties of the stabilization operator
s(·; ·, ·). First we show that the stabilization operator is mass conserving, linearity preserving and dissipa-
tive, then we give an expression for s(·; ·, ·) in terms of the local unknowns.

Lemma 2.1. The stabilization operator defined by (3) satisfies

s(uh;uh, 1) = 0, s(vh, uh, ϕi) = 0, ∀vh ∈ P1(Ω̃i), i ∈ [1, dim(Vh)], (5)

s(uh;uh, uh) =
1

12

∑
K∈Th

ξ(uh)|K
∑

i,j∈NK

(hij(∇uh · τij)|eij)2 mK , (6)

s(uh;uh, ϕi) = − 1

12

∑
K∈Ωi

ξ(uh)|K
∑
j∈NK

(uj − ui) mK , i ∈ [1, dim(Vh)]. (7)

Proof. For the inequalities of equation (5) first note that the mass conservation property is immediate by
the fact that mass lumping integrates piecewise affine functions exactly. The right inequality follows by
observing that if vh ∈ P1(Ω̃i) then ξ(vh)K = 0 for all K ∈ Ωi, since J∇uh · τKxi = 0 for all i ∈ NΩi

and for
all τ ∈ R2. The results (6), (7) follow by straightforward integration. For a given node xi ∈ K we denote
the two other nodes in K by x′i and x′′i and the associated coefficients u′i = uh(x

′
i) and u′′i = uh(x

′′
i )

s(uh;uh, uh) =
∑
K∈Th

mK

3
ξ(uh)|K

∑
i∈NK

u2
i −

∑
K∈Th

(mK

3
ξ(uh)|K

∑
i∈NK

1

2
(u2

i +
1

2
uiu
′
i +

1

2
uiu
′′
i )
)

=
∑
K∈Th

(mK

3
ξ(uh)|K

∑
i∈NK

1

4

(
(ui − u′i)2 + (ui − u′′i )2

))
.

The first equality (6) follows after recalling that (ui − uj)2 = (hij(∇uh · τij)|eij)2. For the second relation
(7) first integrate using midpoint quadrature for the consistent mass

(ξ(uh)uh, ϕi) =
∑
K∈Ωi

(mK

3
ξ(uh)|K

1

2

∑
j∈NK
j 6=i

(ui + uj)/2
)

and then the nodal quadrature approximation, (ξ(uh)uh, ϕi)h =
∑

K∈Ωi

mK

3
ξ(uh)|K ui. Finally take the

difference of the two expressions.

Remark 2.1. The consistency of the scheme is expected to be of first order close to local extrema and of
order O(h

3
2 ) where the solution is smooth. This is reflected in equation (6) by observing that for a triangle
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where none of the nodes in the associated macroelements have a local extremum we expect ξ(uh)|K = O(h−
1
2 )

leading to a dissipation of order O(h
3
2 ) whereas if there is a local extremum, then ξ(uh)|K = O(h−1), leading

to first order dissipation. Typically for linear stabilized methods O(h3/2) diffusion is compatible with O(h3/2)
error estimates in the L2-norm.

3. Discrete maximum principle (DMP) for the forward Euler scheme

The nonlinear factor ξ(uh) has been designed so that s(uh;uh, vh) should make the scheme monotonicity
preserving, while adding in some sense the smallest perturbation possible. We prove this property in the
following main result of this note. Observe that this result holds for any bilinear form a(·, ·) such that
a(c, vh) = 0 for c ∈ R and for all vh ∈ Vh, not only the transport operator.

Theorem 3.1. Let unh be the solution of (2), computed under the CFL-condition

k <
1

10

(
max
i

[
card(NΩi

)

m̃i

(1 + n∗i ρi) max
j∈NΩi

|a(ϕj, ϕi)|
])−1

then there holds for all nodes xi and all n > 0,

min
x∈Ωi

un−1
h ≤ unh(xi) ≤ max

x∈Ωi

un−1
h .

Proof. By the linearity of a(·, ·) and the property a(ui, ϕi) = 0 since ui ∈ R, it follows that

a(uh, ϕi) =
∑
j∈NΩi

(uj − ui)a(ϕj, ϕi) =
∑
j∈N−Ωi

(uj − ui)a(ϕj, ϕi) +
∑
j∈N+

Ωi

(uj − ui)a(ϕj, ϕi)

=
∑
j∈N−Ωi

(uj − ui)a(ϕj, ϕi)− hij/h∗ij
∑
j∈N+

Ωi

(u∗j − ui)a(ϕj, ϕi)−
∑
j∈N+

Ωi

hijJ∇uh · τijKxia(ϕj, ϕi).

Consider now the scheme (2) tested with ϕi and apply the previous inequality and (7) to obtain

m̃iu
n
h(xi) = m̃iui − k

∑
j∈N−Ωi

(uj − ui)a(ϕj, ϕi) + k
∑
j∈N+

Ωi

hij/h
∗
ij(u

∗
j − ui)a(ϕj, ϕi)

+ k
∑
j∈N+

Ωi

hijJ∇uh · τijKxia(ϕj, ϕi) + k
1

12

∑
K∈Ωi

ξ(uh)|K
∑
j∈NK

(uj − ui) mK .

Here we have dropped the superscript n− 1 in the right hand side. Observe that to bound the first term
of the second line we may use the equality k|∑j∈N+

Ωi

hijJ∇uh · τijKxia(ϕj, ϕi)| = k
ai
ai
ai. Also observe that

the ai factor may be bounded by ai ≤ 1
2

maxj∈NΩi
|a(ϕj, ϕi)|

∑
j∈NΩi

2(1 + n∗i ρi)|uj − ui|, where we used

that hij/h
∗
ij ≤ ρi. Expressing the last two terms of the first line using positive coefficients αij, satisfying

the bound 0 ≤ αij ≤ 2(1 + n∗i ρi) maxj∈NΩi
|a(ϕj, ϕi)|, we have

m̃iu
n
h(xi) ≤ m̃iui + k

∑
j∈NΩi

αij(uj − ui) + k(n∗i ρi + 1) max
j∈NΩi

|a(ϕj, ϕi)|
ai
ai

∑
j∈NΩi

|uj − ui|

+ k
1

12

∑
K∈Ωi

ξ(uh)|K
∑
j∈NK

(uj − ui) mK .

To exemplify the construction of the αij assume that there is only one l ∈ N+
Ωi

such that x∗l is in one of
the two edges adjacent to a node xj, with j ∈ N−Ωi

then αij = −a(ϕj, ϕi) + α∗l hil/h
∗
ila(ϕl, ϕi), with α∗l the
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weight introduced in Section 2, such that x′l = xj. Using the definition of ξ(uh) the last two terms in the
right hand side may be bounded as

m̃iu
n
h(xi) ≤ m̃iui + k

∑
j∈NΩi

αij(uj − ui) + k
1

3

∑
K∈Ωi

ξ(uh)|K
∑
j∈NK

(uj − ui)+ mK

where (x)+ := max(0, x). Introducing positive weights α̃ij = 1
3
(ξ(uh)|K′mK′ + ξ(uh)|K′′mK′′) with eij =

K ′ ∩ K ′′ and satisfying the bounds 0 ≤ α̃ij ≤ 2
3

maxK∈Ωi
(mKξ(uh)|K) ≤ 8(1 + n∗i ρi) maxj∈NΩi

|a(ϕj, ϕi)|
(recall that ai/ai ≤ 2) this may be written as

unh(xi) ≤ ui +
k

m̃i

∑
j∈NΩi

αij(uj − ui) +
k

m̃i

∑
j∈NΩi

α̃ij(uj − ui)+.

Recalling the CFL-condition on k and the bounds on αij and α̃ij we see that

k

m̃i

∑
j∈NΩi

(αij + α̃ij) ≤ 10
k

m̃i

card(NΩi
)(1 + n∗i ρi) max

j∈NΩi

|a(ϕj, ϕi)| < 1.

We conclude that there exists weights αj ∈ [0, 1], j ∈ NΩi
such that

∑
j∈NΩi

αj < 1 and unh(xi) ≤∑
j∈NΩi

αjuj. From this the upper bound follows. The proof of the lower bound is similar.

4. Extension to second order in time

We consider Heun’s method, which is an explicit second order in time Runge-Kutta method (RK2)
defined by the following linear combination of two explicit Euler step: wnh = Eun−1

h , w̃nh = Ewnh and
unh = 1

2
(un−1

h + w̃nh). We now prove that the Runge-Kutta finite element method inherits the stability of the
forward Euler finite element method. In this case the domain of dependence becomes one layer of elements
wider.

Proposition 4.1. Let unh be the solution of RK2 then for all nodes xi ∈ Th and all n > 0,

min
x∈Ω̃i

un−1
h (x) ≤ unh(xi) ≤ max

x∈Ω̃i

un−1
h (x). (8)

Proof. Observe that by Theorem 3.1 there holds minx∈Ω̃i
un−1
h (x) ≤ minx∈Ωi

wnh ≤ w̃nh(xi) ≤ maxx∈Ωi
wnh ≤

maxx∈Ω̃i
un−1
h (x). From this (8) follows since unh(xi) = 1

2

(
un−1
h (xi) + w̃nh(xi)

)
.

5. Numerical examples

The computations were carried out using FreeFEM++ [9]. We first consider an example in the bounded
domain Ω = (0, 3) × (0, 1) and solve the equation (1), on the time interval [0, 1] for β = (1, 0)T , with
u0 = (7r < π)(cos(7r)+1)/2 where r2 = (x−1.0)2 +(y−0.5)2 using the RK2 scheme, with E defined by (2)
on a series of structured meshes consisting of right triangles with side h = 0.025, 0.0125, 0.00625, 0.003125
respectively. On the structured mesh with constant β we get ξ(uh)|K = 4/hmaxi∈NK

(ai/(ai + εh)) and
chose ε = 10−15. The timestep was set to k = h/4. We then considered the case of discontinuous
initial data u0 = (7r < π). The errors in the L2-norms with experimental convergence orders for both
cases are reported in the columns marked (*) of Table 1. For the smooth solution convergence of order

O(h
3
2 ) was observed. The maximum principle was respected to machine precision on all meshes. We

then considered a computation in Ω = (0, 1) × (0, 1), and solved the equation (1) on [0, 1.5] with β =
(sin(πx)2 sin(2πy),− sin(πy)2 sin(2πx))T cos(πt/T ), u0 = (12r < π)(cos(12r) + 1)/2 or u0 = (12r < π),
where r2 = (x − 0.35)2 + (y − 0.5)2 using the same discretization parameters as above on structured
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h (*) smooth L2 (*) rough L2 (**S) smooth L2 (**S) rough L2 〈DMP〉 (**U) smooth L2 (**U) rough L2 〈DMP〉
0.025 0.11 (–) 0.27 (–) 0.25 (–) 0.34 (–) 〈0.51〉 0.28 (–) 0.35 (–) 〈1.6〉

0.0125 0.037 (1.8) 0.21 (0.36) 0.081 (1.6) 0.26 (0.38) 〈0.78〉 0.092 (1.6) 0.26 (0.34) 〈2.3〉
0.00625 0.011 (1.8) 0.17 (0.30) 0.017 (2.2) 0.20 (0.38) 〈1.1〉 0.038 (1.3) 0.22 (0.24) 〈2.1〉

0.003125 0.0038 (1.5) 0.13 (0.39) 0.0032 (2.4) 0.16 (0.32) 〈1.6〉 0.010 (1.9) 0.18 (0.34) 〈2.9〉

Table 1: Relative errors in the L2-norm at the final time for the smooth and the rough solutions, experimental convergence
orders in parenthesis. Violation of the DMP in % of ‖u‖L∞(Ω) for rough solutions

Figure 2: Contourplots at T/2 and T , for h = 0.00625. Left two plots (**S), smooth; right two plots (**S) rough.

and unstructured meshes. In this case only first order convergence was observed for smooth solutions.
Increasing the regularization to ε = 0.05 on structured meshes and ε = 0.1 on unstructured improved
the convergence orders. The results are reported in Table 1, in the columns marked (**S) for structured
meshes and (**U) for unstructured. When this stronger regularization was used the maximum principle
was violated by up to 2.9%. For comparison the standard Galerkin method violates the maximum principle
by up to 70% for the rough cases. Example of contour plots of the solutions for maximum deformation at
T/2 and at final time are presented in Fig. 2.
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