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On Multiple Symmetric Fixed Points in GOST

NICOLAS COURTOIS

Abstract In this article the author revisits the oldest attack on GOST known, the
Kara Reflection attack, and another totally unrelated truncated differential attack
by Courtois and Misztal. It is hard to imagine that there could be any relationship
between two so remote attacks which have nothing in common. However, there is
one: Very surprisingly, both properties can be combined and lead the fastest attack
on GOST ever found, which is nearly feasible to execute in practice.

Keywords black-box reductions, block ciphers, differential cryptanalysis, Feistel
schemes, fixed points, GOST, ISO 18033, key scheduling, low-data complexity,
multiple-key attacks, reflection attacks, self-similarity

1. Background

The Russian encryption standard GOST 28147–89 is a former top secret encryption
algorithm. In 1989, it became an official standard for confidential information, but
the specification of the cipher remained confidential [23]. In 1994, shortly after the dis-
solution of the Soviet Union, the standard was declassified, published, and also trans-
lated to English [23]. GOST is a block cipher with a simple Feistel structure, 64-bit
block size, 256-bit keys, and 32 rounds. Each round contains a key addition modulo
232, a set of eight bijective S-boxes on four bits, and a simple rotation by 11 positions.
It is widely known that the structure of GOST is in itself quite weak, and in particular
the diffusion is quite poor; however, this is expected to be compensated by a large num-
ber of rounds. Thus, until 2011, there was no significant attack on this algorithm from
the point of view of communications confidentiality: an attack which would allow
decryption or key recovery in a realistic scenario where GOST is used for encryption
with various random keys. This is in the sense of pure mathematical attacks. In real life,
GOST would be broken routinely by a side channel attack (see for example [18]).

The turning point in the security of GOST was the discovery of the so-called
‘‘reflection’’ property [14]. Initially, at Indocrypt 2008, only a weak-key attack with
time complexity of 2192 was proposed, with large proportion of 2�32 of weak keys. In
2011, several attacks on regular GOST keys were discovered, and more than half of
these new attacks use this reflection property [12], sometimes two, three, or four
times [5]. Most of these attacks can be described as attacks with a ‘‘complexity
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reduction’’ [5, 6], where from some data for the full 32 rounds GOST, we obtain
a certain number of pairs for eight or less rounds of GOST. The quantity of data
available after reduction is very small, for example, two, three, or four pairs for
a reduced cipher. In this aritcle, we will look at some of the simplest of these attacks
and avoid the highly complex ones.

A basic assessment of the security of GOST against linear and differential cryp-
tanalysis was conducted in 2000 by Shorin, Jelezniakov, and Gabidulin see [25]. The
results were quite impressive: At the prescribed security of level of 2256, five rounds
are sufficient to protect GOST against linear cryptanalysis. Differential cryptanalysis
[1] of GOST seems comparatively easier and has attracted more attention. In [25] the
authors also estimated that seven rounds should be sufficient to protect GOST
against differential cryptanalysis. The authors also claimed that ‘‘breaking the GOST
with five or more rounds is very hard’’ [p. 5]. In addition, two Japanese researchers
[24], explained that the straightforward classical differential attack with one single
differential characteristic is unlikely to work at all for a large number of rounds. In
the same article [24], more advanced differential attacks on GOST were described.
They are advanced truncated differential attacks, cf. [16]. The first advanced multiple
differential attack proposed in [24] allows to break about 13 rounds of GOST.
Numerous recent works have tried to understand, evaluate, and improve the
resistance of GOST against differential cryptanalysis, in view of the standardization
of GOST [1, 17, 22]. At the same time, in 2011–2012, many improved differential
attacks on GOST were found, allowing finally to break full 32-round GOST faster
than by brute force, see [7, 9–11]. We also exploit these properties in this article.

In this article we do not study GOST in much depth. We just revisit the oldest
attack on GOST known, the Kara Reflection attack, and ask ourselves a simple
question: Do multiple symmetric fixed points exist? We can safely consider that eight
rounds of GOST are a black box and that it has a simple truncated differential
property, which has been discovered recently. These two properties seem totally
unrelated. However, their combination leads to an extremely simple and powerful
attack on GOST.

2. The Reflection Property of GOST

We write GOST as the following functional decomposition (to be read from right to
left), which has been proposed at Indocrypt 2008 [14]:

Enck ¼ D �S � E � E � E ð1Þ

where E is exactly the first eight rounds which exploits the whole 256-bit key, S is
a swap function which exchanges the left and right hand sides and does not depend
on the key, and D is the corresponding decryption function with E �D ¼ D � E ¼ Id.

Fact 1 (Internal Reflection Property). Consider the last 16 rounds of GOST
D�S�E for one fixed GOST key. This function has an exceptionally large number
of fixed points: applied to X gives the same value X with probability 2�32 over the
choice of X, instead of 2�64 for a random permutation.

Justification: Our permutation D �S �E has a well-known ‘‘conjugated’’ struc-
ture of type Q�1 �P �Q. Consequently, it has the same cycle structure as the swap
function S and 232 fixed points. The state of the cipher after the first eight rounds
E is symmetric with probability 2�32, and D �E¼ Id.
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Note: This theorem about Q�1�P �Q and P has played a very important role
in the cryptanalysis of important government and military ciphers, in particular
many rotor machines. It was first used by Marian Rejewski in the cryptanalysis of
Enigma in the early 1930s, and it is sometimes called ‘‘the theorem which won World
War 2,’’ see [13, 20, 21].

3. Attacks with Symmetric Fixed Points

At Indocrypt 2008, Kara described a weak-key attack on full 32-round GOST. It has
time complexity of 2192 and works for a large proportion of 2�32 of weak keys.
It uses a very interesting new ‘‘reflection’’ property [14]. At first sight, this attack
has only limited interest. However, a large number of very good attacks have been
discovered, and more than half of them use this reflection property [12], sometimes
two, three, or four times [7].

In late 2012, another weak key attack was proposd by Kara and Karakoç, cf. [15].
The paper was presented at CANS 2012, in Darmstadt, Germany, on 12–14
December 2012. This attack is quite interesting because it uses pairs of symmetric
fixed points. This article is about showing that such pairs exist with a probability
which is larger than expected and that triple and quadruple symmetric fixed points
also exist with surprisingly high probabilities. In one sense, we revisit this attack
from [15], and propose very important variants which are based on highly non-trivial
facts that are somewhat impossible to expect from [15]. We are going to deduce them
from other major results on GOST [7, 9–11, 24], even though it is safe to say
that nobody would expect that these attacks could be related in any way.

3.1. Recent Weak Key Attacks from CANS 2012

The new weak key attack on GOST [15] is based on the assumption that there are two
symmetric fixed points in the first 16 rounds of GOST. Such symmetric fixed points
happen only for weak keys and can happen for two distinct reasons. It is possible to
see that the attack from [15] can be split into two independent weak key attacks, which
the authors describe as one single attack with a distinction of two distinct events
(Event1 and Event2, see [15]). We recall briefly the attack from [15]. Let E be the first
eight rounds of GOST. In Event1, the assumption is that there exists two symmetric
A 6¼ B such that E(A)¼B and E(B)¼A, which is a swap. In Event2, we assume that
there exists two symmetric fixed points A 6¼ B (i.e., E(A)¼A and E(B)¼B). Both
events lead to two symmetric fixed points for the full 32-round GOST. Each of these
events occurs only for a proportion of d¼ 2�65 of keys, or at least it seemed so to
the authors. In fact, the main point in this article is that such a probability can be much
higher than expected, especially for multiple symmetric fixed points.

In this article, we only look at Event2; however, similar observations could also
be made about Event1, and this can also lead to some non-trivial attacks and their
generalizations and special cases, see [5]. We can observe that Event2 is particularly
simple: It is just twice the event which is used in the oldest reflection attack on GOST
[16]. This gives the following very simple attack from [15]:

Fact 2 (Event2 Attack From [15]). For every key such that Event2 happens (i.e.,
there are at least two symmetric fixed points for the first eight rounds of GOST),
given 232 CP (chosen plaintexts), we can obtain two P=C pairs for eight rounds
of GOST correct with probability close to 1. Then, in time of about 2127 GOST
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encryptions, one can enumerate and check 2128 candidates for the GOST key and
identify the correct key.

Remark. The original paper [15] used the final step presented by Dinur, Dunkelman,
and Shamir at FSE 2012 with time complexity of 2128 GOST encryptions [12].
However, this can be reduced to an expected average of 2127 GOST encryptions
and still 2128 in the worst case, at the price of more memory, see [5].

3.2. Technical Analysis of CANS 2012 Attack

In this attack, the attacker observes that IF we have two symmetric fixed points,
THEN we have the whole situation depicted in Figure 1, then the two symmetric
fixed points also work for the whole GOST, and therefore they are visible to the
attacker. However, symmetric fixed points of Enck() are not very likely to ever occur
by accident, and in this attack we already study a property which occurs for
a proportion of 2�65 of all GOST keys. With the same probability, two symmetric
fixed could have occurred also for the whole GOST, purely by accident, as they
would occur for a random permutation. For this reason, the authors of [15] analyse
the success probability of their attack in a very detailed way, though they are
assuming that eight rounds of GOST behave as a random permutation, even though
the present article will show that it does not behave as a random permutation.
With this assumption, they arrive at a conclusion that if the whole 32-round GOST
has two symmetric points, the Event 2 would occur with probability about 1=5 (and
the other event which we ignore in this article with another 1=5).

Figure 1. Two symmetric fixed points, a.k.a. Event2 in [15].
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In this article, we will show that most likely, and at least for the default sets of
GOST S-boxes [23], the basic event occurs with higher probability than expected for
both eight and 32 rounds of GOST. Therefore, the analysis of [15] is not at all what
happens when their attack is implemented. Moreover, the nature of many events
such as Event2 is to occur with two points A, B which are closely correlated in the
sense that they have many shared bits. This is a very serious problem: Actually, it
is trivial to see that if we have 2KP for eight rounds of GOST, neither the FSE
2012 attack [12] will work, nor any of numerous weaker and stronger variants known
from [6] can work at all. Each key bit is only used once in the first eight rounds of
GOST, and the diffusion is very poor. If the two data points share many bits, then
in the first few rounds, states of many S-boxes will be identical, and we just do not
have enough information about these key bits from the information theoretical point
of view. Substantially larger number of solutions means that the overall time
complexity is going to be substantially larger.

It may seem that our observations totally ‘‘ruin’’ the attack from [15], and it
should be possible to show that the attack from [15] does not work at all with
probability close to 1 (i.e., it almost never works as described). However, our obser-
vations do not ruin the attack; it is still expected to work as predicted for roughly the
same number of weak GOST keys. There will be many additional cases for which
the attack fails or is much slower than expected which have not been anticipated
by the authors.

More importantly, we are going to present a way to turn to our advantage these
internal correlations inside GOST and high frequency of pairs and larger sets of
points, as well as the fact that data in these points are strongly correlated.

It remains to study the frequency of double symmetric fixed points in GOST and
then analyse all the consequences of these quite unexpected facts. Before that, we
recall a seemingly unrelated differential property of GOST.

4. Truncated Differential Cryptanalysis of GOST

We consider the following standard situation that has been introduced [11]
and further studied in [7, 9–11]. Let D¼ 0x80700700 which mask has seven active
bits out of 32. We denote by (D, D) a set of 214� 1 non-zero differences on 64 bits
with up to 14 active bits. Then, following [9, 10], we have the following fact (Fact
3). We should note that in this article, it does matter a lot that this event is
symmetric.

Fact 3. For a random permutation, there are 277 pairs with the input difference
(D, D), and for a proportion of 2�50 or an average of 277�50¼ 227 pairs, the
output difference is also in the set (D, D). For eight rounds of GOST, we have
about 252 pairs which satisfy these differences (D, D) at both ends, cf. Figure 2.

Figure 2. Standard symmetric event with 14 active bits for eight rounds.
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5. On Frequency of Symmetric Fixed Points in GOST

Fact 4 (Symmetric Fixed Points in GOST). For eight rounds of GOST and a
random key, the probability that there is a symmetric fixed point is about 2�33

and is expected to be the same for a random permutation. However, for the
default set of GOST S-boxes, the probability that there are two symmetric fixed
points sharing as many as 50 bits which will be the inactive bits in mask (D, D) (such
events are depicted in Figure 3) is at least 2�60 instead of about 2�2�64�50 for a
random permutation. Consequently, at least for the default set of GOST S-boxes,
Event2 of Figure 1 occurs with key density of at least approximately d� 2�60 over
GOST keys.

Justification: We provide a method to estimate this probability. Let A0 ¼E(A)
and B0 ¼E(B). Following [10], eight rounds of GOST, there are 277 pairs with the
input difference of type (D, D), and for a proportion of 2�25 of them, which is 252

pairs A, B on average, the output difference is also in (D, D). This for the default
set of GOST S-boxes.

Our computer simulations show that when the propagation occurs, the entropy
of A�B is low, and the probability that A�B¼A0 �B0 is only about 2�9. Further-
more, A¼A0 with probability 2�64, which also implies B¼B0. Furthermore, A is
symmetric with probability 2�32. Since their difference lies within (D, D), which is
symmetric, B is symmetric with probability at most 2�7. Overall, for a proportion
of d¼ 252�9�64�32�7¼ 2�60 of GOST keys, we have two symmetric fixed points A,
B sharing the same 50 bits.

Remark 1. This is higher than what we would get for having just two symmetric
fixed points without any extra condition, which is roughly about 2�2�64 for
a random permutation. This is because two fixed points would occur with
probability of (1� 2=e)� 0.26, and each would be symmetric with probability
2�32. We refer to [2, 19] for related research and fundamental facts on fixed points
in random permutations.

Remark 2. So far, this reduction in probability was only demonstrated for the
default set of GOST S-boxes. However, this is a conservative estimate with just
one mask (D, D). These probabilities must be added for different masks, and in real
life, this probability should be even higher (!). We also expect very similar results for
other sets of S-boxes.

Figure 3. Two related fixed points for eight rounds (each pair has the same 50 bits).
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6. CANS 2012 Attack in the Multiple Key Scenario

In order to grasp all the implications of Fact 4, we must consider not only the attack
from [15], but also a particular adaptation of this attack which we have personally
suggested to the authors, and which is already described very briefly inside the paper
[15]. However, it is safe to say that nobody has realized all the implications of this
variant and its extensions.

Fact 5 (Event2 Attack in the Multiple Key Scenario). If we have a diverse
population of at least 265 different 256-bit GOST keys generated at random, with
access to 232 CP per key, one can recover one of these 256-bit keys in total overall
time of at least 2131 GOST encryptions for the default set of GOST S-boxes. For
other S-boxes, the complexity is expected to be lower, about 2129 GOST encryptions.

Justification: This attack requires that some 265 devices with random keys exist.
It is possible to see that for a proportion of about 2�65 keys, the first eight rounds are
expected to have two symmetric fixed points in the same way a random permutation
would have one. This is strictly following the calculations of [15], and because
this event occurs at random, A, B are not expected to share many bits. Therefore,
the final step on 2 KP is likely to work as predicted with the running time of 2128

or maybe even 2127 GOST computations [5, 12].
However, a truly remarkable thing happens with keys which are not weak. Such

cases are basically ‘‘visible’’ to the attacker. He can reject them at a very low cost.
There is no need to run the whole attack in 2127 for a majority of the keys. This is
true because for a random permutation, the probability that Enck() has two sym-
metric fixed points A, B is low, even though it is not as low as we initially thought.
There is no need to run the attack 264 times. We only must to run the attack about
264�60 times, only for the 2�60 of cases predicted by Fact 5.

For all except a proportion of about 264�60 GOST keys, we can reject them right
away. We have 264 different keys, and we check them for two symmetric fixed points
in time of about 232 each, which will be very small compared to the dominant term in
the attack. With 264 different keys, two symmetric fixed points will occur only a few
times (264�60 is expected). Therefore, the complexity of the whole attack is at least
2127þ64�60¼ 2131 GOST computations to recover one key, and possibly more (this
is if the probability in Fact 4 is even higher). Later in this article, we will show
how to benefit from the fact that GOST has more symmetric fixed points than
expected, which is a problem in this attack.

For other sets than the default set of GOST S-boxes, we are not aware of
a similar reduction in probability of having two symmetric fixed points; it is expected
to be the same as for a random permutation. Then, the analysis of [15] applies. We
expect that Enck() has two symmetric fixed points with frequency about five times
bigger than the frequency that Event2 occurs, and we expect to run our attack maybe
five times and get the complexity of at least 2127þ2¼ 2129 GOST computations.

7. Approximate Fixed Point Bicliques

In this section, we introduce a new concept which is essentially an invariant affine space
common for many encryptions at both sides and also an approximate invariant property:

Definition 7.0.1. (An approximate fixed point biclique). An approximate fixed point
biclique with k points and dimension D and for r¼ 8 rounds of GOST is defined
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as a set of kþ k values A, B,. . . and A0, B0, . . . , such that A0 is the encryption of A
after eight rounds and so on (Figure 4), and such that all these kþ k values lie in
the same affine space of dimension D.

This is different from bicliques studied in cryptanalysis of AES [4], as our
bicliques occur for one single key, and multiple connections on the graph mean that
each pair is similar in the sense it shares a common substring of 50 bits.

We have discovered a new form of approximate self-similarity of GOST which
happens to occur in the real life. For example, for one set, we can have four input
points (k¼ 4) and four output points which share some fixed set of 50 bits, so that
D¼ 14, and that for every arrow in Figure 4, the 50 bits in question are the same.
This can be seen as a higher order truncated differential property. Surprisingly,
this occurs for GOST and 256-bit keys generated at random with a non-negligible
probability. The key observation is that (as we will see later) the number of such
events with three or four points is not much lower than the number of events
with two points.

7.1. Approximate Fixed Point Bicliques for Eight Rounds

We can remark that we are looking at a relatively strong property, and sets of points
which satisfy it are unlikely to exist for many more rounds of GOST or for a random
permutation. However, the internal structure and poor diffusion inside GOST allows
many sets which satisfy the Definition 7.0.1 for some k.

Fact 6 (A 2=3=4-point approximate fixed point biclique for eight rounds of GOST

and D= 14). For a typical GOST key, we have on average 22 possibilities for the set
of four points A, B, A0, B0, such that A0, B0 are the encryption of A, B after eight
rounds, AND which have differences with up to 14 bits and all the points A, B,
A0, B0 share the same set of 50 bits, following the pattern using the mask (D, D).
For the default set of GOST S-boxes [23], for a proportion of at least 2�8 of GOST
keys, there exists a set of 50 bits and a set of six points A, B, C and A0, B0, C 0,
such that A0 is the encryption of A after eight rounds and so on, and which have
differences with up to 14 bits and share the same set of 50 bits. For another
proportion of at least about 2�9 of GOST keys, there exists a set of 50 bits and a
suitable set of eight points A, B, C, D and A0, B0, C0, D0, which again pairwise cor-
respond to each other and after 8 rounds all share 50 bits as depicted in Figure 4.

Justification: We consider the affine space of D¼ 14 defined by the popular
mask (D, D), cf. [7, 9–11]. It is possible to observe that for one encryption A, A0

Figure 4. An approximate fixed point biclique with k¼ 4.
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for eight rounds of GOST, if A�B2 (D, D), then if A0 �B0 2 (D, D) with probability
2�25.0, cf [7, 9, 10]. There is about 264þ14=2!� 277 couples A, B with suitable input
differences, then with probability 2�25 for one pair we have the correct output differ-
ence A0 �B0. Furthermore, then common 50 bits are the same for the input and for
the output with probability 2�50. Thus, we expect that there are on average about
277�25�50� 22 pairs which share a fixed 50 common bits.

For k> 2, the existence of such configurations can be seen as a simultaneous
higher-order truncated differential attack with three or four points, respectively.
As above, if A�B2 (D, D), then if A0 �B0 2 (D, D) with probability 2�25.0, cf. [7, 9,
10]. Then if A, A0 and B, B0 are the suitable pairs for eight rounds, it is easier to find
more such pairs C, C0. Our computer simulation shows that now if C�A2 (D, D),
then C0 �A0 2 (D, D) with probability of only about 2�22 instead of 2�25.0. In the
same way, there will be a fourth pair D, D0 with even better probability of about
2�13.

There are about 264þ14þ14=3!� 289.4 triples A, B, C with suitable input differ-
ences, then with probability 2�25 for one pair we have the correct output difference
A0 �B0, and then the third point also has the same 50 bits with probability of only
about 2�22. Thus, we expect that there are on average about 289�25�22�50� 2�8 triple
points which share a fixed 50 common bits.

In the same way, there are about 264þ14þ14þ14=4!� 2101.4 quadruples A, B, C, D
with suitable input differences, with probability 2�25 for one pair we have the correct
output difference A0 �B0, and then the third point is correct with probability of only
about 2�22, this multiplied by 2�13 for the fourth point and finally by 2�50 for the 50
bits on both sides being equal. Thus, we expect on average about 2101�25�22�13�50

� 2�9 quadruple points which share a fixed 50 common bits and have differences
with up to 14 bits as depicted in Figure 4.

7.2. Real Life Events

It is difficult to guarantee that the events which we study really happen as predicted.
For example, it is very surprising to see that events with four points will occur more
or less as frequently as events with three points. To validate this, we have tried 239

encryptions for eight rounds with random keys an initial random difference with
14 active key bits within (D, D), and if after the eight rounds the final difference
was also within (D, D), then we count how many other plaintexts with the same
50 bits also produce the same 50 bits as the two cases. In our simulation, we have
seen exactly 21 events with four points and also exactly 21 events with four points
with random keys and random 50 bits.

Example: We exhibit one event with four points from our simulation. This event
was generated strictly at random and has no special properties other than those
which might occur naturally at random for such events. The data are
self-explanatory.

8 rounds 4 points 50 inactive bits 8070070080700700key¼C4EEEC4D
9FC4A3C55DB81B7BEE470567396682007AE8D9B59E3FD9A3225BC
7B4 P¼ 6492F05231436EBF E4D2F152317368BF 64D2F452B14368BF
E492F552B1736EBF C¼ 89C3449606C28E22 09C3409606C28F22 89C
3409686A28822 09C3449686A28922
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8. On Triple and Quadruple Symmetric Fixed Points in GOST

We have established that multiple approximate fixed points occur with probabilities
higher than expected. In this section, we look at a special case: triple and quadruple
symmetric fixed points.

Fact 7 (Frequency of Triple and Quadruple Symmetric Fixed Points). For the
default set of GOST S-boxes [26] the probability that for eight rounds there are
two symmetric fixed points sharing as many as 50 bits, as shown in Figure 5, is at
least 2�60 instead of about 2�2�64�50 for a random permutation.

The probability that there are three symmetric fixed points sharing the same set
of 50 bits is at least 2�70 instead of roughly about 2�4�96�50 for a random permu-
tation. For four symmetric fixed points sharing the same set of 50 bits, it is at least
2�79 instead of roughly about 2�6�128�50 for a random permutation.

Justification: Let A0 ¼E(A) and B0 ¼E(B) and C0 ¼E(C) for eight rounds of
GOST. Following Fact 6 for a proportion of at least 2�8 of GOST keys, there exists
A, B, C such that all the six points share the same set of 50 bits following the mask
0x8070070080700700. The probability that A is symmetric is 2�32. Then, the prob-
ability that A¼A0 is 2�14. Then, the probability that A�B¼A0 �B0

and simultaneously A�C¼A0 �C0 is maybe about 2�16 due to low entropy of these
differences, which we have experimentally tested. Overall, for a proportion of at least
d¼ 2�8�32�14�16¼ 2�70 of GOST keys, we have three symmetric fixed points A, B, C
sharing the same 50 bits.

In the same way, for a proportion of maybe d¼ 2�9�32�14�24¼ 2�79 of GOST
keys, we have four symmetric fixed points A, B, C, D sharing the same 50 bits. These
are rough estimations, and they require further research.

Remark 1. This is much higher than what would get for having just 3=4 symmetric
fixed points without any extra condition, which is roughly about 2�4�96 or respectively
2�6�128 for a random permutation.

Remark 2. Again, this reduction in probability was only demonstrated for the default
set of GOST S-boxes. However, this is a conservative estimate with just one mask
0x8070070080700700, and these probabilities get higher if we take into account other
masks. We expect similar results for other sets of S-boxes.

Figure 5. Triple fixed point (each pair is related and shares the same 50 bits).
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Remark 3. Again, symmetric fixed points for eight rounds also symmetric fixed
points for the full 32-round GOST [14, 15], and in what follows, we will use them
to propose a remarkably efficient attack on full GOST. We skip a triple symmetric
fixed point attack and go directly for the quadruple point attack.

8.1. Quadruple Symmetric Fixed Point Attack

We call this attack Family 8.4 attack in order to honor the numbering of various
weak key classes from [5].

Fact 8 (Weak Keys Family 8.4 Attack). We define the Weak Keys Family 8.4 by
keys such that there exists four symmetric fixed points A, B, C, D for the eight
rounds E(). With the default GOST S-boxes, this occurs with probability of at least
d¼ 2�79 over the GOST keys. For every such key given 232 CP, we can obtain four
P=C pairs for eight rounds of GOST, correct with probability close to 1, and we can
recover the key given 232 CP, with running time of 299 GOST encryptions and with
negligible memory.

Justification: We get d¼ 2�79 by applying Fact 7. The four pairs are then
E(A)¼A, E(B)¼B, E(C)¼C, and E(D)¼D. We cannot just apply one of the
attacks from the recent Cryptologia 2013 article [8] in 294 GOST computations.
This is due to the fact that our four points are closely related, and the attacks from
[9] are not expected to work. However, it is possible to show that a variant of this
attack in 299 GOST computations will work and that the system does NOT have
too many solutions which would prevent the attack from working as in
Section 3.2. The detailed description of the dedicated attack in 299 can be found in
the Appendix of [5].

Again, we have a conversion step with early rejection of non-weak keys:
Fact 9 (Family 8.4 Attack for a Population of 279 Random Keys). If we have

a diverse population of at least 279 different 256-bit GOST keys generated at
random, with access to 232 CP per key, one can recover one of these 256-bit keys
in total overall time of about 2101 GOST encryptions.

Justification: We have an attack where given 232 CP per device, namely the
encryption of all symmetric plaintexts, the weak key becomes immediately ‘‘visible’’
for the attacker. The probability that a random 64-bit permutation has four
symmetric fixed points is about 2�134. Thus, for all except the correct device out
of 279, we can reject this device right away after checking 232 plaintexts in time of
279þ32 CPU clocks, which is about 2101 GOST encryptions.

For the remaining one case, which we expect to be really our weak key with
correct additional differences, we apply Fact 8 above, which gives about 299 GOST
encryptions and negligible memory. Overall, we expect to recover one key in time of
about 2101 GOST encryptions.

9. Conclusion

Symmetric fixed points for GOST and advanced differential attacks on GOST
have been invented independently for very different purposes. One recent attack pre-
sented at CANS 2012 does not work as exactly predicted. This is due to the fact that
pairs of fixed points in GOST exist with a probability lower than anybody would have
imagined, and this is a problem in this attack.
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In this article, We show that something even more remarkable happens
with multiple symmetric fixed points: They exist for eight rounds of GOST with
probability not slightly but very substantially bigger than for a random permutation.
We get a very strong property and very robust internal correlations between these
points, which are ‘‘visible’’ to the attacker. This leads to a remarkable new attack
on GOST, which requires a totally unrealistic quantity of encrypted data. However,
it would be feasible for an intelligence agency to execute such an attack in the near
future if not today. Further analysis of this attack should show that the complexity
can be even lower.
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