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The abatement potential of wind technologies on ships is estimated to be around 10-60% by various
sources. To date there has been minimal uptake of this promising technology, despite a number of
commercially available solutions that have been developed to harness this free and abundant energy
source. Several barriers have been referred to in the literature that inhibit uptake of energy efficiency
measures in shipping. This paper provides a systematic analysis of the viability of wind technology on
ships and the barriers to their implementation, both from the perspective of the technology providers
and technology users (ship owner-operators), using the survey and the deliberative workshop method.
The data generated from these methods is analysed using the qualitative content analysis method. The
results show that whilst there is renewed interest in wind power, there are several common economic
barriers that are hindering the mass uptake of wind technologies. Our analysis shows that third party
capital is a plausible solution to overcoming the cost of capital, split incentives and information barriers

that have contributed to inhibiting the uptake of wind technology in the shipping industry.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The shipping industry is commonly cited as the most energy
efficient mode of transport, but this will be a challenge in the
future as its current contribution (around 3% of global CO, emis-
sions) is expected to increase to around 20-25% of global an-
thropogenic CO, emissions by 2050 due to growth in international
trade and other industry sector decarbonisation [1]. Several tech-
nical and operational energy efficiency measures have been
identified that can be applied to new and existing ships to reduce
fuel costs and meet this climate change challenge. Solutions could
come from a combination of step-change technologies that pro-
vide significant energy and emissions reductions, alternative fuels
and operational improvements that provide nominal energy
reductions.

Under the Kyoto Protocol of the United Nations Framework
Convention on Climate Change (UNFCCC), greenhouse gas emis-
sions from shipping have been left to the United Nation's Inter-
national Maritime Organisation (IMO). The IMO introduced the
Energy Efficiency Design Index (EEDI), which sets mandatory CO,
reduction targets for all newly built ships built from 2013 onwards.
The reduction targets are tightened every five years up until 2030
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to ensure that ship owners order more efficient ships. The
amendment also introduced the Ship Energy Efficiency Manage-
ment Plan (SEEMP) requiring ship owners to have a plan on-board
each vessel to improve operational efficiency.

The impact of these policies is estimated to reduce CO, emis-
sions by 25% reduction in a business-as-usual scenario by 2050 [2],
whereas the reductions required if the industry is to be sustainable
are in the region of 80% compared to current levels [3]. Recent
reports submitted to the IMO Marine Environment Protection
Committee (MEPC) [4,5] showed that the EEDI is only spurring
‘mainstream’ innovation (e.g. hydrodynamics, hull and propeller
appendages) and there has been no uptake at all of innovative
measures that yield significant savings, which are necessary to
keep shipping's CO, emissions in line with either the 1.5 or 2 °C
targets (Internationally agreed limits on average global warming
above pre-industrial levels) [6].

Wind technologies offer significant savings on existing ships
that can allow ship owners to operate competitively with new
ships. There are three different technologies through which wind
energy can be harnessed for propulsion purposes: Flettner rotors,
kites and sails. The fuel savings that can be achieved from these
wind-assistance technologies depend on the design of the ship
(particularly the rig and hull), the operating speed, and the wind
speeds and directions experienced.

Wind speeds vary depending on the route and season. Higher
wind speeds allow a ship to harness more wind as power to propel
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Fig. 1. Estimated average annual wind speed in different sea areas. Data from NASA Surface meteorology and Solar Energy for the period 1983-1993 (http://eosweb.larc.nasa.

gov).

the ship and less power from the diesel engine. For many ships,
the operating profile and routes taken are variable and can change
from one voyage charter to the next, such that there is hetero-
geneity in the fuel savings for different ship types and some un-
certainty in predicting fuel savings. An initial assessment of the
viability can be obtained by understanding the average wind
speeds for the areas of operation of a particular ship type. (Fig. 1)
classifies the average annual wind speeds into different sea re-
gions, ranked from least windy sea region (the Mid-East, North
Atlantic Emission Control Area and South Atlantic) to the most
windy sea regions (North Pacific, North Sea, and Southern Ocean).

To understand whether wind technology is likely to be viable
for a certain ship type, the information about relative wind speeds
needs to be matched to activity data that describes ships' move-
ments. (Fig. 2) displays this information for dry bulk carriers in
two size ranges, 0-10,000 and 10-35,000 DWT capacities, using
data from Smith et al. [7]. The graph shows that in many instances
there is a good alignment between the windier sea areas and the
areas where there is significant shipping activity (for example,
North Pacific, North Atlantic and the Indian Ocean). This implies
that at least for these two example ship types and sizes, if a ship
operated a sequence of voyages over a year that mirrored the
aggregate average activity in different sea regions shown in Fig. 2,
there is a good probability of experiencing higher than average
wind speeds and a good level of utilisation (fuel cost savings) from
wind assistance technology.

Whilst this information shows that there is sufficient wind
strength for the areas where ships operate, the commercial via-
bility of wind technology requires quantifying the amount of fuel
savings that can be achieved. This requires further data on the
specifics of ship operation for a given voyage - the typical oper-
ating speeds, routes taken, fuel consumption of ships on certain

1000

representative voyages and specifics on the savings achieved by
the technology. Fuel savings modelled as a simulation show that
for that range of speeds, season, and ship designs, the average
voyage fuel savings were approximately 10-60% [8]. These results
provide encouragement that there is good potential for fuel saving,
but further verification needs to be obtained from actual sea trials.

There are a number of technical issues, related to operation and
safety, which constrain the types of ships suitable for wind tech-
nology. Examples of these considerations include visibility ob-
struction, cargo handling, air draught constraints, crew safety,
crew training, structural integrity, and stability and heel. For ex-
ample, cargo-handling considerations have prevented container-
ships from being a market target of wind technology. Careful
consideration has been given to all of these issues by the various
technology providers with wind-assistance technology offerings
and a majority of these issues do not appear to be insurmountable
for a large percentage of the shipping market. The clearest proof of
this is the class approval that has been achieved by a number of
the technology providers.

Despite the viability of wind technology to deliver significant
fuel savings in the shipping industry, there are a number of bar-
riers that have prevented its uptake in the sector. In a study of
perceptions of Norwegian ship owners on CO, abatement tech-
nologies, Acciaro, Hoffmann and Eide [9] show that wind tech-
nologies score the worst in most barriers categories compared to
other technical energy efficiency measures such as cold ironing,
waste heat recovery and propeller efficiency devices. The re-
spondents were not familiar with the wind technologies, per-
cieved them as less safe or reliable, and felt they were less effec-
tive compared to other technologies [9]. Using technological in-
novation systems theory, semi-structured interviews and content
analysis, Rojon and Dieperink [10] suggest that the key barriers to
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Fig. 2. Average annual fuel consumption in different sea areas. Data from Smith et al. [7].
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the implementation of wind technologies relate to the lack of
primary practical knowledge, which stems from a lack of sea trials
to test the technology. This was attributed to the risk-averse nat-
ure of the industry where “no one wants to be the first to try out
the technology, yet everybody wants to be second” [10, p. 398],
and lack of financial resources. The existence of barriers that in-
hibit sufficient levels of investment in energy efficiency measures
is the primary reason for considering public policy interventions
[11]. Policy makers and regulators at the UK, EU and global levels
have yet to improve existing policy or design new policies to in-
centivise wind propulsion, such as information campaigns, as well
as providing public funding to help aid research and development,
testing and pilot programs in energy efficiency measures [10].

The two aforementioned studies analysing the barriers to im-
plementation of wind technologies in the shipping industry lack a
clear taxonomy of barriers. Barriers to energy efficiency can be
classified into three types: regional, sectoral and technology spe-
cific [12] and the taxonomy of barriers has varied and has not al-
ways been rooted in specific disciplines [13]. This paper evaluates
the barriers to the uptake of wind technology in shipping from an
economic perspective, and provides a solution to overcome some
of these barriers, given the lack of existing policies to address
them.

2. Data and methods

The research developed for this paper is part of a joint colla-
boration project called Shipping Innovation Fast Tracker (ShiFT)
between the UCL Energy Institute and Carbon War Room (CWR),
which aims to accelerate the mass uptake of ‘clean’ technology
solutions in the shipping industry that deliver ‘double-digit’ effi-
ciency gains, carbon and other emissions savings. A self-comple-
tion questionnaire was designed to collect data using the cross-
sectional research design [14]. The survey was supplemented with
data generated from a deliberative workshop [15] hosted by CWR
and the UCL Energy Institute during the Danish Maritime Days
conference in October 2014. The methodology followed in the
paper is similar to the research on barriers to innovation in other
fields [16,17] and uses the mixed methods research strategy to
provide ‘complementarity’ to the data generated [18,19].

The survey consisted of eight open-ended questions, seeking to
gauge the applicability of the technology to shipping, the com-
mercial aspects of the technology and the barriers the providers
face. This information was used to identify where the firms are
situated in the “valley of death”, a situation in which a technology
fails to reach the market due to the inability to advance from

Phase 1

Phase 2

demonstration to commercialisation [20]. Fig. 3 shows the various
phases the wind technology firm has to pass through to reach the
market and achieve a positive cash flow. The “valley of death”
corresponds to phase two, where the cash flow is significantly
negative as the firm obtains classification, patents, and invests
more to perform sea trials to prove the fuel savings in real oper-
ating conditions.

Rojon and Dieperink [10] suggest that technology providers
acting in isolation create ‘confusion rather than conviction’ in the
technology, there is a lack of knowledge exchange platforms and
weak interaction between stakeholders within and outside the
system. Hence, an active stakeholder network was established as
part of the Shipping Innovation Fast Tracker to accelerate the
dissemination of information about wind technology. The work-
shop aimed to bring together the key stakeholders that would
create conditions for collaboration and enable the implementation
of the wind technologies. The workshop invited key members of
the shipping community and was attended by four wind tech-
nology providers, nine ship owners, two third-party financing
organisations, a classification society, a ship owner association and
a national ship registry. An initial assessment of the viability of
wind technology was presented by UCL in terms of its technical
and commercial potential. This was followed by specific pre-
sentations from the technology providers where the ship owners
and classification societies engaged, voicing their concerns about
each of the technology. This discussion provided information for
which to assess the barriers to uptake in the sector.

The qualitative data generated from the open-ended questions
and the deliberative workshop was analysed using the qualitative
content analysis method [21]. Category construction and a coding
frame are key stages in the use of content analysis [22,23] and can
be derived from previous research, data or theories [24]. To classify
energy efficiency barriers in wind technology for shipping, a fra-
mework of energy efficiency barriers in the shipping industry
developed in Rehmatulla [13] was used, as well as drawing from
other sources such as Sorrell et al. [25] and Thollander and Ot-
tosson [26]. Emphasis is given to the examine each unit of analysis
using the main economic barrier categories (see Fig. 4). The unit of
analysis for the qualitative content analysis of the survey and de-
liberative workshop data are ‘themes’, which is the most useful
unit in qualitative analysis because it provides context [27].

2.1. C(lassification of the wind technology firms
Six firms were selected based on their overall score derived

from the responses in the questionnaire. The technologies pro-
vided by the selected firms included variations of the Flettner
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Fig. 3. Valley of death for technology providers in shipping.
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Fig. 4. Classification of barriers to energy efficiency.
Table 1
Survey responses of wind technology firms.
Saving potential ~ Class Independent Patent Techno-economic analysis, Pitched to Trials in VOD phase
10% or more approved testing approved business plan and investment shipowners shipping (refer to Fig. 3)
package
Company 1 Yes Yes Yes Yes Yes Yes Yes 3
Company 2 Yes Yes Yes Yes Yes Yes No 2
Company 3 Yes Pending Yes Pending Yes Yes Yes 2
Company 4 Yes Yes Yes No Yes Yes Yes 2
Company 5 Yes Pending Yes Yes Yes Yes No 2
Company 6 Yes Pending Yes Pending Yes Yes No 2
rotor and sails." Table 1 shows that the selected companies have Table 2

gained class approval and their technologies are patented, placing
them in the second phase of the ‘valley of death’. Crucially, the
table suggests most have conducted techno-economic analysis of
their technology and have engaged with ship owners or operators
but only half have secured commitments for trials.

Following the selection based on the survey, the selected wind
technology providers and ship owners were invited to the delib-
erative workshop to further discuss the implementation, concerns
of ship owners and hurdles faced by the technology firms. Some of
the providers also presented the business case for their wind
technology. Table 2 shows an example of the parameters that one
technology provider presented for demonstrating that their wind
technology is commercially viable with a payback of just over two
years. The survey asked the technology firms if they had pitched
their technology to ship owners and operators and inquired about
the practical aspects and concerns raised by ship owners about
installing the technology which is discussed in the following
section.

3. Barriers to implementation of wind technologies

This section of the paper provides an overview of the generic
barriers to implementation of energy efficient technology and
contextualises these for wind technologies using the findings from
the survey, commentary from the deliberative workshop and
secondary data sources.

3.1. Categorizing energy efficiency barriers

Despite the substantial abatement potential at negative costs,
several studies across different sectors have empirically shown
that cost-effective energy efficiency measures are not always im-
plemented [28-32]. The implementation gap, also known as the

! More details of the technology companies selected and their technologies can
be found in www.lowcarbonshipping.co.uk.

An example of a business case presented by one wind technology provider.

Ship type Oil tanker Units
Deadweight 75,000 Tonnes
Main engine power 13,000 kW
Propulsion efficiency 0.6

Service propulsion power 10,500 (81% MCR) kW
Service speed 16 Knots
Time at sea per year 7008 Hours
Main engine fuel consumption 190 Grams per kWh
Bunker fuel cost (HFO) 600 USD/ton
Total delivery price 2,050,000 usD
Maintenance p.a. 150,000 usD
Average net power 1411 kW

Fuel saving % 134 %

Fuel consumption p.a. 13,981 Tonnes
Fuel cost p.a. 8,389,000 usD
Potential savings 1,128,000 usD
Payback 2.1 Years

‘energy efficiency gap’ [33] refers to the difference between the
actual lower levels of implementation of energy efficiency mea-
sures and the higher level that would appear to be cost-effective
from the investing entity's point of view based on techno-eco-
nomic analysis [11]. A plausible explanation for the gap can be
explained by energy efficiency barriers, which may be defined as
postulated mechanisms that inhibit investment in technologies
that are both energy efficient and economically efficient [25].
Barriers to energy efficiency may be divided into three main
categories: economic, organizational, and behavioural [34]. Fig. 4
shows the taxonomy of energy efficiency barriers. The aim is to
determine which perspective would provide the most plausible
account of lack of action, whilst keeping in mind that these per-
spectives are often linked and overlap [35,36]. This paper uses the
economic perspective to understand the lack of implementation,
as this perspective is the most developed and well defined [25].
The use of this perspective is grounded on well-established eco-
nomic theory such as agency theory [37-39], which is needed to
explain the complex stakeholder relationships and the “complex
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and poorly characterised” barriers in shipping [40, p. 286]. For a
discussion of behavioural and organizational barriers see Rojon
[41].

Economic barriers can be divided into non-market and market
failures [11]. A market failure occurs when the market is not al-
locating resources efficiently. Allocative efficiency is the state of
the economy in which goods are produced up to the point where
the last unit of production provides a marginal valuation to con-
sumers which equals the marginal cost of production. This occurs
when markets are perfectly competitive, a strong assumption for
many markets, though the tramp shipping market has been
characterized as close to this ideal [42]. When a market fails to
allocate resources efficiently, there is said to be a market failure.
Market failures particularly relevant to preventing the uptake of
energy efficient technology occur because of split incentives, im-
perfect information, and asymmetric information. Split incentives
arise because of contractual or organizational arrangements, while
the latter two barriers are associated with informational problems.

Non-market failures can be defined as obstacles that are not
due to a failure in the market but are economic costs faced by a
firm such as limited access to capital, capital costs, hidden costs,
risk, and heterogeneity [11]. Some barriers may be easier to ad-
dress with public policies than others [43]. For example, if firms
lack access to capital, then a policy that provides funding for a
technology would help to foster the diffusion of the technology.

Analysis from leading industry experts and recognized bodies
[44-48], has so far shown substantial unrealised abatement po-
tential in shipping using options that often appear to be cost-ne-
gative at current fuel prices. Various empirical studies Acciaro,
Hoffmann and Eide [9] Rehmatulla [13] Johnson, Johansson and
Andersson [49] Jafarzadeh and Utne [50] and other industry lit-
erature Faber, Behrends and Nelissen [48] and Maddox Consulting
[51] have also suggested the existence of the aforementioned
barriers in shipping.

3.2. Market failures

As discussed in Section 3.1, a market failure occurs when the
market is not allocating resources efficiently. Market failures par-
ticularly relevant to preventing the uptake of energy efficient
technology occur because of split incentives, imperfect informa-
tion, and asymmetric information. All of these market failure
barriers pertain to wind technology.

3.2.1. Imperfect Information

There is a shortage of publicly available information on an
average ship's fuel consumption in real operating conditions that
is detailed, transparent and audited [52]. There are several reasons
that can be attributed to this informational deficiency. First,
measuring a ship's performance in real operating conditions is
difficult due to the large amount of factors explaining the fuel
consumption and the difficulty of isolating their marginal effect.
These factors include draught, weather conditions, hull and ma-
chinery condition and the crew, some of which are highly variable
over time, making the analysis of performance trends difficult
even for the same ship.

Second, there is an array of bespoke measurement and analysis
techniques used across the industry, some of which are varying in
quality. Historically, fuel consumption measurement has been in
the form of low frequency data collected every twenty four hours
in a noon report. There is large uncertainty in this data [53]. Due to
poor economic conditions, increased environmental regulation
and increased environmental awareness, the industry has shifted
towards better data collection methods such as continuous mon-
itoring systems. Still, this process will be gradual as the uptake is
generally limited by installation costs [53].

In addition to the challenges in measuring a ship's perfor-
mance, it has also been difficult to measure the performance of
new fuel-efficient technologies. This is because the tests have been
constrained to hypothetical conditions only (e.g. sea trials for a
newly built vessel or in a tank test), and therefore has not given
investors much confidence in a technology's actual abilities on the
less-predictable ocean. The advent of sophisticated monitoring
systems has provided a data source that, with rigorous deploy-
ment and processing, allows for the calculation of fuel savings
with a manageable level of uncertainty. The cost of the advanced
monitoring systems varies on average between $20,000 to
$200,000 depending on the number of parameters being mon-
itored and how information is presented [54,55]. This can there-
fore represent between 1% and 10% of the typical cost of installa-
tion of the wind technology. One of the wind technology compa-
nies who attended the workshop discussed their intention to in-
stall such equipment on a ship for a limited period in the sea trials
at their own cost.

3.2.2. Asymmetric information

In some cases, ship owners may have the incentive to mis-
represent the fuel efficiency of their fleet to a potential customer.
This could occur in the time charter market, where a charterer
hires a ship from a ship owner. The ship owner must provide a fuel
consumption and speed curve, providing the charterer with in-
formation about the daily fuel consumption at different operating
speeds under some assumptions about weather conditions. If the
charterer does not measure the fuel consumption, then it has
limited power to claim damages for a misstated fuel consumption
curve [56]. This asymmetric information leads charterers to have
mistrust in the efficiency claims by the ship owner, including those
of a ship fitted with wind technology. The advent of continuous
monitoring equipment may act as a deterrent for this behaviour
[57].

3.2.3. Split incentives

Another possible barrier to the implementation of wind tech-
nology are the split incentives that have been suggested to be
prevalent in shipping due to the contractual arrangements be-
tween the charterer and ship owner [58,47,48,13]. Whilst there are
many forms of split incentives [59], the split incentive arising in
the time charter is the most common form, where fuel costs are
borne by charterers (in addition to the daily charter rate) and ca-
pital and maintenance costs are borne by the ship owner or op-
erator. This represents a type of principal-agent problem which
also arises in the building sector between a tenant and landlord
[35,60-62].

The degree of the split incentive in each market segment de-
pends on the size of the time charter market, the length of the
contracts and whether charterers are willing to reward owners for
their investments in energy efficiency or clean technologies. Esti-
mates from an analysis of fixtures in 2011 [13] shows the size of
the time charter market varies in each sector. In the tanker sector,
the majority (around 90%) of ships are traded on the voyage
charter (spot) market, while in the dry bulk sector time charter
contracts could account for as much as 60% of the ships, suggesting
that this type of barrier is a larger problem in the dry bulk sector.

Also important is the typical length of a single time-charter
contract, which provides information about whether the energy
efficiency or wind technology investment can be paid back in the
duration of the contract from the fuel savings, if the charterer were
to invest. Long-term charters enable a charterer to have a longer
investment in the ship. Cargill (a dry bulk charterer) installed
Skysail (wind technology) and Shell (a tanker charterer) installed
air lubrication, both being long-term time chartered vessels and
requiring structural changes to the owners' vessels. Whilst the
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technology is less attractive to the container sector, charterers in
this sector have also been driving changes that require structural
changes to the ships. An example is Maersk’s funding of bulbous
bow retrofits to the ships that it has time chartered [63].

Fig. 5 shows that time charter contracts in the dry bulk sector
are typically too short to cover the payback period of wind tech-
nologies because about 60% are less than six months in length,
whereas the average payback of wind technology is much longer.
Contracts in the time charter market for wet bulk are slightly
longer, with only about 30% less than six months. Overall, 90% of
time charters are for a duration of less than two years, therefore it
does not permit the majority of charterers to payback an invest-
ment in wind technologies.

The third factor leading to a split incentive is whether owners
who invest in more energy efficient ships are being rewarded in
terms of higher rates. The extent to which the fuel cost savings are
passed back to the owner-operator through higher charter rates
will create direct incentives for ship owners and operators to
implement wind technology. Agnolucci, Smith and Rehmatulla
[64] show that on average only 40% of the financial savings de-
livered by energy efficiency accrue to the ship owner for the per-
iod 2008-2012 in the dry bulk Panamax sector. The incomplete
pass-through of savings through higher rates has also been sug-
gested by Smith et al. [65], Riise and Redde [66] and Parker and
Prakash [67] and has been referred anecdotally by Faber, Behrends
and Nelissen [48], Maddox Consulting [51] and Lloyds List [68].

Whilst charterers may not be directly rewarding energy effi-
cient ships with higher charter rates, a ship's higher fuel efficiency
may improve the likelihood of winning a charter, leading to better
utilisation rates. This is a key factor in an oversupplied market,
where ships have to ballast further in search of employment. In-
creasingly, leading demand-side stakeholders (e.g. retailers, char-
terers, ports and banks) are using public information about a ship’s
design efficiency (a proxy for a ship's fuel efficiency in real oper-
ating conditions). As part of the Clean Cargo Working Group,’
retailers such as IKEA and Wal-Mart are collaborating with leading
container shippers to reduce their carbon footprints and taking
fuel efficiency into consideration in their tendering process.

In the wet bulk and dry bulk charter market, charterers are
beginning to factor energy efficiency into their commercial deci-
sion-making. This was evidenced in the workshop by one parti-
cipant who mentioned, “it is the charterer that is positioned to
drive change. Perhaps instead of a ship owner, it will be the
charterer who is most likely to win the race to be first, not sec-
ond”. Exemplifying this trend, Cargill, Huntsman and UNIPEC UK
publicly announced in October 2012 that they would no longer
charter the least efficient ships in the fleet using RightShip and the

2 A global carrier-shipper initiative dedicated to environmental performance
improvement in marine container transport through measurement, evaluation, and
reporting.

Carbon War Room's A to G GHG Emissions Rating. Currently,
nearly 25% of the dry bulk and wet bulk market uses the A to G
GHG Emissions rating [69] as policy when choosing which vessels
to charter. As a result, many of these companies are actively not
sending their cargoes on F or G rated vessels (the most inefficient
in the fleet), for example, Cargill has a no F or G policy [70].

Other industry stakeholders, including ports and banks, have
begun to embed energy efficiency information into their com-
mercial operations. Ports, such as Prince Rupert and Metro Van-
couver, are now offering discounts to more efficient vessels.
Leading shipping banks such as the KfW IPEX Bank and HSH
Nordbank are using energy-efficiency data in making investment
and financing decisions. This data is an important part of their risk
assessment and return analysis, with inefficient vessels viewed as
riskier investments, which is factored into their credit-approval
processes for vessel purchases, loan assessments for retrofit pro-
jects, and resale or scrapping decisions.

Finally, the voyage and time charter parties that have tradi-
tionally existed in shipping, may need to be reviewed to enable the
implementation of wind technologies. In the voyage charter, the
ship owner has an obligation to proceed with reasonable despatch
and without unjustifiable deviation under the ‘utmost despatch’
and ‘deviation’ clauses [71]. Content analysis of charter parties by
Rehmatulla [13] suggests that most often used standard voyage
charter parties in the wet bulk and dry bulk sectors, do not allow
any deviation ‘except for saving life or property’ and contain
clauses that restrict slower speeds. Both of these clauses could
have an adverse impact on the ability to fully utilise the potential
of wind technologies. “To take full advantage of the opportunity of
wind systems, the vessel should be allowed to change course to
chase the wind (using high-quality software systems to do so),
which may need to be reflected in the charter party,” stated one
ship owner in the oil tanker sector at the workshop.

3.3. Non-market failures

The survey of technology companies and the discussion in the
workshop suggested that most of the non-market failures dis-
cussed in Section 3.1 are plausible explanations for the lack of
uptake from ship owners and operators. This section identifies
how non-market failures may also be contributing to the low
uptake of wind technologies.

3.3.1. Risk

Risk in context of energy efficiency can be classified as external
risk (overall economic trends, fuel price, policy and regulation) and
technical risk (technical performance and unreliability of the
technology) [25]. Both of these risks were cited as the largest risk
factors in both the survey and the deliberative workshop.

One of the technical challenges cited in the introduction is
maintaining the stability of the ship in rough weather. This was
the most cited technical risk by the wind technology providers.
According to one wind technology provider, “heavy winds mean
large forces at the base of the wind system and the danger of
ripping apart the mast during a storm. In case of extreme weather
conditions, such as above 200 knots winds, the system will be
turned off.” The role of classification societies in ensuring this
concern is addressed is pivotal, and, according to another tech-
nology provider, “We are in conversation with class societies to
confirm that stability is not an issue and that no countermeasures
are required.”

The primary concerns of ship owners during the workshop
were issues related to structural integrity, cargo handling and
stability of the ship in adverse weather conditions, which aligned
with those stated by the technology providers in the survey. The
following technical concerns are briefly discussed below by level
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of importance:

e Structural integrity - the forces exerted by the technologies on
the ship's hull, particularly at the interface between the rig and
the hull, need to be taken into consideration.

® Cargo handling - wind assistance technologies can obstruct
cargo loading and unloading, depending on the mechanisms
used for these operations and the structure associated with the
technology. Port crane operations can also cause damage to the
wind structure),

e Stability and heel - the large forces created by the rigs can
produce heeling forces which may need to be catered for both
at the Service Limit State (standard operation) and the Ultimate
Limit State (extreme weather conditions).

e Visibility obstruction - many of the technologies produce ob-
structions to lines of sight both in operation and when stored.
These issues need to be checked against rules for safety in
operation.

® Air draught constraints — bridges and equivalent structures can
impose air draught limits that need to be considered and either
impose limits to the height of the installation, added complexity
to allow for a folding/collapsible rig, or constraints on area of
operation.

e (Crew safety — moving parts associated with wind assistance
technologies could present hazards to crew.

e (Crew training — operation of wind assistance technologies could
impose additional training requirements and work load for the
crew.

To address the primary concerns relating to structural integrity,
cargo handling and stability, some wind technology companies
have developed a retractable version of their technology. For non-
retractable versions, it is possible that the non-retractable version
“requires additional precautions to avoid structural damages by
port cranes.” One wind technology provider offers an insurance
package to accommodate for possible damages during port
operations.

One of the major external risk barriers is the uncertainty about
the fuel price. A higher fuel price provides more of an incentive for
shipping companies to invest in energy efficient technology. This
was apparent from the number of eco-ships being ordered in 2011
due to the escalation in the fuel price [72]. The drop in bunker fuel
prices in 2014 has had an impact on ship owners’ interest in wind
technology, as the lower price means that the payback is longer.

3.3.2. Access and costs of capital

Restricted access to capital markets is often considered to be an
important barrier to investing in energy efficiency. Investments
may not be profitable because companies face a high price for
capital. As a result, only investments yielding an expected return
that exceeds this (high) hurdle rate will be realised [73]. Wang
et al. [47] in their modelling suggest a range between $0.7 m and
$1.2 m for Flettner rotors and between $0.5 m and $3.6 m for
towing kites of different sizes but this may not reflect the actual
cost. (Table 2) shows the cost of one Flettner rotor unit as docu-
mented in the survey by a technology provider is just over $2 m,
twice of that assumed in the modelling.

The shipping industry's culture has been historically con-
servative and risk averse [10,74], which means that shipping
companies are reticent to be the first mover of adoption of un-
proven technologies. According to one wind technology provider,
“everyone would install the system today if it were already proven
on a commercial scale. This is the typical chicken-and-egg issue.”
Another technology provider also cited being the first mover as a
primary concern of ship owners. Because of this, clean tech com-
panies developing wind technologies have to rely on alternative

methods to finance investment in trials. One provider stated “we
are developing a package for the first commercial installation
where we plan to subsidize part of the expenses to make it more
attractive for the first client.” The economic downturn of 2009 put
a constraint on liquidity given poor economic conditions, which
led traditional shipping banks to decrease their loan books on
shipping finance and as a result are less willing to participate in
loans to retrofit ships.

Currently, third party financing is gaining traction in shipping,
however investors are only willing to finance technologies that are
proven and mature [75]. As a result, wind tech companies have to
rely on their own equity or public funding.

3.3.3. Hidden costs

Hidden costs are costs that are not included in the purchase
price or payback model provided by the technology firm, but that
are envisaged by the investing firm. These include overhead costs
related to the investment, the cost of collecting and analysing in-
formation, and production disruptions. For wind technology, these
include hidden installation costs, the potential to reduce the cargo
space, and production disruptions. Production disruptions could
occur during installation and operation. To install wind technology
on a ship, the operations have to be temporarily suspended. This
disruption could potentially be a high opportunity cost, especially
when the market is experiencing a boom.

Another concern that a wind technology provider mentioned
was “whether installing our wind system would in any way
compromise the typical sailing and routing patterns of (the cus-
tomer's) vessels.” The route sailed using a diesel powered ship
may not be the most optimal route sailed using a ship with wind
technology, because the wind might be more favourable if the ship
took an alternative route. If most of the voyages take longer in
order to take full advantage of the wind, then the alternative value
of making fewer paid trips per year will likely outweigh the sav-
ings in fuel. This opportunity cost is one explanation for the lack of
take-up in the industry.

Another hidden cost is the installation cost. According to one
wind technology provider, “the installation of our system requires
some deck reinforcement to overcome the moment (force) at the
base generated by the wind. This reinforcement does not require
superstructures and is not something that we foresee as an en-
gineering challenge. Structure-wise our system's installation can
be accommodated on a ship deck in a similar fashion as a deck
crane and without additional investments.” Other responses that
suggested not all costs have been factored into the payback ana-
lysis were, “it is possible that the current version (non-retractable)
of our wind system requires additional precautions to avoid
structural damages by port cranes.”

The workshop revealed that ship owners were concerned that
the wind technology might take up additional space, reducing the
amount of cargo space. The revenue lost from forgone cargo must
be offset by additional fuel savings; thus a payback model which
does not account for this opportunity cost would be overstating
the payback period.

In their techno-economic or investment appraisal analysis, all
of the wind technology providers suggested that the investment
cost of their technology would be paid back within five years (with
some even indicating shorter payback periods). However, the
aforementioned hidden costs such as opportunity costs are not
included in these models and would likely lengthen the payback
period.

3.3.4. Heterogeneity

Although a technology may be cost-effective on average for a
class of users taken in aggregate, the class (e.g. size of ship, com-
pany size, specific routes), itself, consists of a distribution of
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heterogeneous owners and operators: some could economically
purchase additional efficiency, while others will find the new level
of efficiency not cost-effective [76]. The dry bulk and wet bulk
shipping sectors are heterogeneous due to the differences in ship
sizes, commodities or cargoes, ownership and contracting prac-
tices [77]. These sectors have been among the key sectors targeted
by wind technology companies based on responses from the sur-
vey and workshop.

Barriers due to heterogeneity in the shipping industry include
company size and ship type. The wide scale adoption of wind
technology requires not only installing wind technology on thou-
sands of ships, but also reaching out to thousands of shipping
companies. Analysis of ship ownership in 2012 shows that com-
panies in the dry bulk and oil tanker sectors, which are being
targeted as early wind tech adopters, own on average just over
four ships, while ownership in the oil tanker sector is just under
three on average. This low average ownership places an adminis-
trative burden on wind technology companies and banks to fi-
nance their cost because of the low economies of scale.

The market segments in shipping are also heterogeneous. The
survey responses reflected the heterogeneity in the market by
stating the way cargo is handled differently. For example, “most
typical concerns on the customer side are related to availability of
deck space for the wind system and cargo handling restrictions
related to them,” but these “concerns only apply to dry bulk ships,
while tankers typically do not involve the use of port cranes.”
Other technical considerations apply only to certain ship types.
“When designing a wind system, height limitations are taken into
consideration. A natural limit will be the height of the ship’s tallest
point, which in case of a mid-size dry bulk is typically above 20 m,
so in line with the size of wind system we are considering in our
calculations.”

Another dimension of heterogeneity are the routes of opera-
tion. One wind technology provider who has been in a discussion
with a tanker company said they found the routes of operation to
be in the less windy regions, making the payback longer than for
other market segments like the dry bulk sector.

4. Third-party financing solutions to overcome barriers to
implementation

Third-party-financing models have been used in the buildings
and renewable energy sectors to overcome the capital cost barrier
discussed in Section 3.1. These sectors have also overcome split-
incentives issues, and incorporated measurement and verification
technology into the package that is financed. Currently, these fi-
nance models, such as Property Assessed Clean Energy Financing
(PACE), on-bill financing [62] offer new sources of capital for
proven retrofits, but in theory could also be used to finance wind
technologies.

The “Self-Financing Fuel-Saving Mechanism” (SFFSM) for
shipping was inspired by the Energy Service Company (ESCO)
model that has been successful at accelerating energy efficiency
retrofits in the buildings sector. The financing model facilitates the
adoption of fuel-efficiency technologies for either long-term time-
chartered ships or owner-operated ships. The financing model
secures the upfront capital investment cost of fuel-efficient retrofit
technologies from a third party financier. Financiers recoup their
return from the fuel-cost savings generated by the gains in fuel
efficiency afforded by the technologies.

The mechanism requires a baseline fuel consumption to be
established for the ship. (Fig. 6) shows the method, developed by
one of the authors to quantify fuel savings from the installed
technology. Before the technology is installed on the ship, data is
collected using noon report and/or continuous monitoring
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Fig. 6. Monitoring and measurement to calculate fuel savings.
Source: Stulgis et al. [75].

equipment. Over time, the ship’s hull deteriorates due to fouling as
can be seen from the increase in fuel consumption before the ship
goes into dry-dock. When the ship is dry-docked, the technology is
installed and a downward step change in fuel consumption occurs.
To estimate the counterfactual fuel consumption, multivariate re-
gression analysis is used, which also accounts for the trend in
deterioration of the ship’s fuel efficiency after the first dry-dock
and before the second dry-docking.

4.1. Impact on economic barriers

The financing model offers the shipping industry a method for
overcoming some of the market and non-market failures barriers
discussed in Section 3; namely, access to and cost of capital, split-
incentives and imperfect information.

4.1.1. Access to and cost of capital

Lack of access to capital is addressed by collaborating with
third-party financiers, based on findings that most traditional
banks are currently hesitant to fund fuel-efficiency retrofit pro-
jects on a large scale. Third-party financing firms are mainly at-
tracted by the short paybacks of these retrofits, especially in light
of the performance guarantees provided by the technology ven-
dors under the financing model. A practical example of this is
Carbon War Room's partnership with EfficientShip Finance (ESF),
a specialist advisory and investment firm focused on fuel efficiency
retrofits for shipping. ESF invests in a bundle of technologies de-
livering 10-15% fuel savings, and is repaid by sharing the bunker
fuel savings or increased charter hire achieved by the solutions
implemented. Independent performance monitoring is used to
track the achieved results and trends over time and to ensure
continuous results. In addition to taking on the capital investment,
ESF takes on the risk of the technologies that may not meet the
estimated fuel savings, as well as the uncertainty in fuel prices. At
present, ESF only invests in technologies that have proven fuel
saving gains on a minimum number of ships, but will consider
financing wind technologies once they have been sea trialled. The
company has found that bundling technologies to achieve savings
greater than 10% provides ship owners with greater negotiation
power than a ship that is only 5% more fuel efficient than the
benchmark ship of the same type and size because of the margin
of error in measuring fuel consumption on ships.

This example illustrates that once there is high-quality data and
proven returns for wind technologies, the companies may see
their options for third-party finance expand. Public funding (for
example a grant, which might not require a high certainty of
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financial return on investment) for trialling wind technologies on
commercial vessels, could provide the type of capital that would
enable wind technology companies to test their technologies, and
collect valuable data [10]. If the data demonstrates rigorously and
robustly that a profitable and attractive business case can be made,
and this information can be placed into the public domain, tech-
nology companies should be much more successful in securing
interested ship owners and investors.

An alternative to the use of public funding to trial the tech-
nology is to explore whether computational models could be used
to provide the quality and reliability of performance analysis re-
quired for investors to have confidence to invest. Such computa-
tional modelling could build on existing work [8], and would need
further validation of any performance analysis (which could be
done through simulation of existing ship’s performance on specific
voyages), as well as the development of costing analysis, but could
be a lower cost route to market than a full-scale trial.

4.1.2. Split incentives

The SFFSM tackles the split incentive issue created in the time
charter market and discussed in Section 3.3 by its ability to serve
vessels on long-term charters. In this case, the mechanism could
be set up with the charterer who would invest in the technology
and pay back the cost through the fuel savings.

4.1.3. Informational problems

To overcome a lack of data regarding the performance of fuel-
efficiency technologies, technology providers working with the
SFFSM must be able to guarantee that their respective technolo-
gies will deliver a certain percentage of fuel savings when installed
as part of a bundle of retrofits. Accurately verifying those fuel
savings once the technologies are installed is fundamental to the
financing model, and, as explained in the previous subsection, this
requires that advanced new ‘continuous monitoring equipment’ be
installed onto each retrofitted vessel. Imperfect information about
a ship's performance in real operating conditions can also be
overcome with continuous monitoring equipment and the estab-
lishment of a credible baseline. This information can be used to
improve the negotiation power of ship owners and also diminish
the mistrust by charterers’ about fuel efficiency claims as a result
of asymmetric information.

5. Concluding remarks

This paper contains a review of the economic barriers, namely
the market and non-market failures, in order to understand the
implementation barriers to wind technologies in the shipping
sector. Ship owners and operators are most concerned with the
technical risks involved, the hidden costs of the technology, and
the cost of an unproven technology. This points towards the ex-
istence of non-market failures suggesting that ship owners and
operators are being rational in their decision making to withhold
investment in wind technologies. Informational problems about
ships' fuel efficiency in real operating conditions have contributed
to the lack of trust in the fuel efficiency claims made by technology
providers. Further exacerbating the implementation is the het-
erogeneity of the shipping sector and split incentives, which re-
quires careful consideration of the sectors, size of the firms oper-
ating in the sectors and their exposure to different types of charter
arrangements. The paper suggests that innovative financing solu-
tions could be used to overcome the two key market failures
(imperfect information and split incentives) and some non-market
failures (access to capital).

Given that the innovative financing solution only tackles some
of the economic barriers, further work would be beneficial in a

number of areas. For example, understanding the ship and wind
technology interface through physics, naval architecture and
marine engineering is necessary in order to further de-risk the
technology. Further work to solve additional barriers not ad-
dressed by the financing solution could be to better understand
the heterogeneity of the market including exposure of other ship
types to split incentives, improving our understanding of opera-
tional efficiencies in the sectors and the different type of charters.

On the issue of informational barriers, direct funding from
national, supra national (e.g. EU) or international sources (e.g.
IMO), specifically for trialling wind technologies on commercial
vessels, could be an important enabler of wind technology take-
up, by producing rigorous and robust measurements of perfor-
mance from full-scale trials which are then placed into the public
domain. If the data demonstrates a profitable and attractive
business case, technology companies will be much more success-
ful in securing interested ship owners and investors. As an alter-
native or in parallel to full-scale trials, further effort could be
placed in computational modelling of performance, and validation
of these computational models to assist with investment
decisions.
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