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“Illusions commend themselves to us because they save us pain and allow us to enjoy

pleasure instead. We must therefore accept it without complaint when they sometimes

collide with a bit of reality against which they are dashed to pieces.”

Sigmund Freud



Abstract

During the end of the 1950’s Alexander Grothendieck observed the importance of the

coefficient groups in cohomology. Three decades later, he presented his “Esquisse d’un

Programme” to the main french funding body. This program also included the use

of different coefficient groups in the definition of various (co)homologies. His proposal

was rejected. Another three decades later, in the 21st century, his research proposal is

considered one of the most inspiring and important collection of ideas in pure math-

ematics. His ideas brought together algebraic topology, geometry, Galois theory, etc.

becoming the origin for several new branches of mathematics. Today, less than one year

after his death, Grothendieck is considered one of the most influential mathematicians

worldwide. His ideas were important for the proofs of some of the most remarkable

mathematical problems like the Weil Conjectures, Mordell Conjectures and the solution

of Fermat’s last theorem. Grothendieck’s dessins d’enfant have been used in mathe-

matical physics in various domains. Seiberg-Witten curves, N = 1 and N = 2 gauge

theories and matrix models are a few examples where his insights are relevant. In this

thesis I try to connect the idea of cohomology with coefficients in various sheaves to

some areas of modern research in physics. The applications are manifold: the universal

coefficient theorem presents connections to the topological genus expansion invented by

’t Hooft and applied to quantum chromodynamics (QCD) and string theory, but also

to strongly coupled electronic systems or condensed matter physics. It also appears to

give a more intuitive explanation for topological recursion formulas and the holomorphic

anomaly equations. The counting of BPS states may also profit from this new perspec-

tive. Indeed, the merging of cohomology classes when a change in coefficient groups

is implemented may be related to the wall-crossing formulas and the phenomenon of

decay or coupling of BPS states while crossing stability walls. The Ext groups appear-

ing in universal coefficient theorems may be regarded as obstructions characterizing the

phenomena occurring when BPS stability walls are being crossed. Another important

aspect is the existence of dualities. These are the non-perturbative analogue of symme-

try transformations. Until now, they were discovered more by accident or by educated

guesswork. I show in this thesis that there exists an underlying structure to the dualities,

a structure that connects them the number fields used as coefficients in (co)homologies.

This observation makes a nontrivial connection between number theory and physics.
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Chapter 1

Introduction

“ ‘Begin at the beginning’, the King said, very gravely, ‘and go on till you come to the

end: then stop.’ ”

Lewis Carroll, Alice in Wonderland

The current understanding of high energy physics represents a vast development even

with respect to what was known in the same field 50 years ago. However, its fundaments

still lie mostly in perturbation theory, an idea that appeared much earlier in the context

of astronomy and astrophysics [1-5]. Most of the present predictions of quantum elec-

trodynamics rely on the fact that the coupling constant of this theory can be considered

to be small and can be used as a perturbative expansion parameter. For other theories

however, like quantum chromodynamics, the coupling constant is sufficiently small only

in the high energy domain. In order to predict results for the low energy region one can-

not directly rely on perturbation theory in the coupling constant anymore. Therefore

non-perturbative techniques become relevant. These can be divided into two sections:

numerical, lattice based methods on one side and analytic methods on the other side.

While it cannot be argued with the fact that perturbation theory led to a far better

understanding of the universe at the fundamental level [6-9] one has to understand the

effects of global properties as well. Fascinating new results originate from this area of

research. In order to take a glimpse on the importance of this concept one should think

about how science (or natural philosophy, in order to use the historical term) looked

before the developments of Newton and Galilei. Indeed, at that time, the way of thinking

was mainly global. By global, here I mean the construction of theorems concerned with

the shapes and forms, lengths and angles of objects without considering the notion of

differentiability, infinitesimal variation of a quantity or local variations, all invented only

1
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later by Newton and Leibniz [10-14]. Most of the results in Euclid’s elements were global

in their scope and rather universal in their applications. A volume of a pyramid depends

on the area of the base and its height and this value remains unchanged regardless of

the orientation, the angles between the sides and the base, etc. The same is valid for the

length of the hypothenuse in a rectangular triangle as related to the lengths of the other

sides, etc. All these observations, while accurate and certainly universal in the domain

of the accepted axioms were far too abstract in order to solve more subtle practical

problems. They were also too specific. It was undoubtedly difficult to imagine that the

rectangular triangle that appeared in the construction of a pyramid could be used in

approximating any geometrical shape. Hence, the road towards differential geometry

appeared as vague at best. The cause for the occurrence of various phenomena was

not understood so the ancients had to rely only on rough empirical observations. In

this sense, the early philosophers tried to conceptualize the questions that made sense

in their view [15-20]. The first to think about this was probably Aristotle with his

construction of the four causes [21], as the four ways to answer questions about why

phenomena occurred. In Aristotle’s view the main four “why questions” are:

• material

• formal

• efficient

• final

The first explains the occurrence of phenomena in terms of the internal structure of

the object that changes. Heaviness was, according to Aristotle caused by the heavy

substance from which the object was made of. The cause for various phenomena occur-

ring in nature was searched in the constituents of the objects under scrutiny. This way

of thinking is still very popular in physics, mainly condensed matter and high energy

physics. However, it was necessary for Grothendieck to come on the stage of science and

to observe that many problems (the Weil conjectures, Fermat’s last theorem, etc.) can

be solved more easily if they are reformulated in a more general context [22]. Indeed,

it was Grothendieck who observed that some problems that may appear as extremely

complex in one context transform in simple, almost trivial questions when introduced

in their suitable environment.

The second, formal cause, explains the occurrence of phenomena as a result of the

way objects appear to be. The shape and the relation between various geometrical

proportions was seen as a cause for some phenomena. This way of thinking, in an
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extended form, was rediscovered in the context of the various anomalies that arise due

to topological obstructions [23-29].

The third cause is used in modern physics up to a certain point. It gives as a cause for

a phenomenon an external agent that acts upon the object. The painter is the efficient

cause of the painting, the force is the effective cause of the acceleration of a body, etc. To

notice this however is not sufficient because the actions of the environment, described

in such a direct way may soon become too complicated to analyze in any practical

way. We call exactly solvable problems, those problems to which we can arrive at an

exact solution by applying directly some mathematical tools without ever employing

approximations. These problems are very few and generally not of practical interest.

The phenomenologically important problems usually involve so many different external

effective causes acting simultaneously and deforming the exact model that we must make

use of some approximations.

Finally, the last cause, in Aristotle’s terms, it is the final purpose for which the phe-

nomenon occurs. For example, the final cause of a ball sitting at the top of a hill is

its final velocity at the bottom of the hill, to be determined by the equation of motion,

given an initial condition.

These types of questions had an important role in the construction of the medieval

way of thinking, based on harmony, on ideal shapes and geometries and on large scale

constructions. The more mundane phenomena were considered somehow impure and

disregarded, while the natural philosophers were mostly concerned with the “celestial

sphere” assumed to be perfect and unchanging [30]. While it appears strange to us

today, it took almost 2 millennia for someone to actually look at the heavens carefully

and patiently enough to observe that the highly regarded perfect world associated with

the sky had various imperfections. The first to do this was Galileo Galilei who, between

November 30 and December 18 of the year 1609 observed various irregularities on the

moon [31]. These led him to the understanding that the apparent perfection of the moon

is only the result of us ignoring the smaller, more detailed asperities in its structure.

Following the accurate observations of the moons of Jupiter and of the phases of Venus,

Galilei used simple logical arguments against the geocentric model in his work “Dialogo

sopra i due massimi sistemi del mondo” [32]. While writing this, he put the basis of what

we call today the Galilean group. He noticed the relativity of movement in his famous

experiment concerning objects in uniform motion. Seventy years later, Isaac Newton

started building on the observations of Galilei. His work had as motivation the desire to

describe the continuous changes that occurs in nature, leaving aside the several millennia

old way of thinking inspired by Aristotle and his followers. He described the change

in terms of fluxions (in modern language differential calculus) and fluents (in modern
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language integral calculus). With the advent of differential calculus, the description

of the “small irregularities” became possible and with this, natural philosophers were

able to ask more detailed questions about how and why phenomena occur in nature

and what are the causes for them. Moreover the understanding that physical, material

effects represent the real cause for phenomena in general led to solutions of problems

that were inaccessible before. More complex devices could be designed and studied

and a completely new way of dealing with problems in physics became common: the

ideal model used in the time of Aristotle and his followers was now “perturbed” by the

interference of various “external” causes. The general laws by which objects interact

were from that moment on, derived in ideal experiments and tested first under ideal

conditions. At that stage the researcher was supposed to focus on a single, ideal aspect

of the phenomenon. Then, by adding in a controlled fashion more complexity, models

were developed that came closer and closer to the complexity of the natural world. In

this way the inverse distance square law for the gravitational interaction was derived.

The same has been observed for the electrostatic interaction. The magnetic interaction

and its relation to electricity puzzled the scientists of the period for some time but

Maxwell finally came to a simple solution [33], [34]. All these ideal phenomena, after

they were accurately described in ideal situations, were thereafter perturbed by extra

“complications” due to other objects around them. The motion of a planet around a star

was now understood to be either an ellipse, a hyperbola or a parabola. Changes between

the exact behaviors were now attributed to small perturbations appearing from the fact

that various other objects existed in the system. While this way of thinking helped in

dealing with the extremely large, cosmic objects, in the small distance region, an old

doctrine re-emerged: atomism. It was assumed that material objects are built up from

basic, elementary objects having certain properties and affecting in certain ways other

“atoms” around them. If many such objects come together and the interactions between

them allowed it, they would coagulate and form larger objects, visible at the human

scale. The complicated interactions between them were to be associated (not always

in the most direct way) with the macroscopic properties we can observe: temperature,

pressure and later electric conductivity, etc.

History shows how the material and efficient cause were brought together by the new-

tonian way of thinking. The complexity and irregularity observed by Galilei was to be

associated to the fact that fundamental objects obeying simple laws came together and

combined in a complicated way, some perturbing the motion of others in various ways.

In modern language this was the advent of perturbation theory. There, a hamiltonian

H can be written as being constructed out of two model hamiltonians, one describing

a perfect and exactly computable model HE and the other describing the perturbation
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given by some “imperfections” HP , in total

H = HE + gHP (1.1)

where g is a small parameter. This way of looking at a problem generates physical

quantities constructed as series of the form

Q = Q0 + gQ1 + g2Q2 + ... (1.2)

If we can express the physical reality in such a way that the “perturbation” can be seen

as small with respect to the ideal model, we can obtain a very good accuracy of our

predictions. The main problem here is to be able to correctly separate the “ideal” world

from the ”irregular” world such that the effects of the irregularities are in some sense

small. Usually when the physical reality is correctly described in this approximation,

the calculations converge in reasonable times. This way of thinking was certainly very

successful. The discovery of new truths about nature, like special and general relativity

or quantum mechanics were soon incorporated in this perturbative way of thinking.

In this way the many-electron atoms were simply perturbations of the ideal hydrogen

like atoms [35], quantum amplitudes were series expansions in small couplings [36],

special relativistic corrections were perturbations of the galilean solutions [37], general

relativistic effects were corrections of special relativistic effects [38], etc. The sheer

success of this approach during the last 400 years made us forget about the other two

Aristotelian causes: formal and final. While certainly, the “final causes” are dealt with

in any field of research at a certain level via the boundary conditions, the formal aspects,

related to the global “form” of the problem considered, have been ignored for a long

time. What started during the days of Plato with the ideal polygonal shapes [39] and

the euclidean theorems regarding the invariance to small transformations, [40] has been

almost forgotten. The idea of a topological space has been constructed only in the early

decades of the 20th century [41]. While some observations have been already known to

Euler in the 18th century [42], it was not until 1895 when Henry Poincare introduced

notions like homotopy and homology and constructed the fundaments of what is today

known as topology [43].

The main question asked by topology is also, in the tradition of Aristotle, a “why-

question”: why do some phenomena occur only in some ways when objects have certain

shapes or are connected in a certain way and do not occur or occur differently in other

situations? The main subject of topology is to describe properties that emerge out of

a choice related to the way objects connect to each other [44]. Certainly, in order to

define the connectivity of a space one has to show what objects are connected and in

what way. In this sense, over a given space of points one defines a set of subsets, each
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subset containing points connected to each other. In this way two trivial situations

occur: the case in which all points in the space belong to the same subset and the void

set belongs to another subset. This trivial topology is called the indiscrete topology.

On the other side, the discrete topology is the one in which every point in the space

forms a subset on its own. The subsets that obey certain rules are called open sets

and they define a topology. In order to understand what is the goal of topology one

has to trace its origins in history. In fact, the topological way of thinking is far older

than the perturbative way of thinking. In some sense, I like to argue that its origins

can be found in the original mythical thinking of the primitive societies [45]. There,

seemingly unrelated phenomena were connected by mythical links [46]. As the language

was not developed enough to explain, say, lightening, one defined a “mythical link”

between the observed phenomenon and a never observed character (say a god) whose

changes of mood explained the phenomenon. This way of thinking is in some sense

related to what we call today categorification and decategorification. How that? The

standard mathematical tools we all learn in primary school are natural numbers and some

operations associated to them: addition, multiplication, subtraction and division. In

general, the habit in most schools is to postulate these objects. However, in some sense,

they are a particularization of more general and at the same time more fundamental

mathematical tools called categories. The basic idea related to categories is that we

never reach the required level of generality specific to some problems if we discuss only

about objects (algebraic groups, elements, sets, etc.). What we need is to discuss also

the ways objects transform one into the other. Hence we need to add morphisms and

form what is known as a category. In order to understand the process of categorification

and decategorification I quote here a very suggestive explanation offered by J. Baez [47]:

“To understand this, the following parable may be useful. Long ago, when shep-

herds wanted to see if two herds of sheep were isomorphic, they would look for

an explicit isomorphism. In other words, they would line up both herds and try

to match each sheep in one herd with a sheep in the other. But one day, along

came a shepherd who invented decategorification. She realized one could take each

herd and count it setting up an isomorphism between it and some set of ‘num-

bers’, which were nonsense words like ‘one, two, three, . . . ’ specially designed

for this purpose. By comparing the resulting numbers, she could show that two

herds were isomorphic without explicitly establishing an isomorphism! In short,

by decategorifying the category of finite sets, the set of natural numbers was in-

vented. According to this parable, decategorification started out as a stroke of

mathematical genius. Only later did it become a matter of dumb habit, which we

are now struggling to overcome by means of categorification. While the histori-

cal reality is far more complicated, categorification really has led to tremendous
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progress in mathematics during the 20th century. For example, Noether revolu-

tionized algebraic topology by emphasizing the importance of homology groups.

Previous work had focused on Betti numbers, which are just the dimensions of the

rational homology groups. As with taking the cardinality of a set, taking the di-

mension of a vector space is a process of decategorification, since two vector spaces

are isomorphic if and only if they have the same dimension. Noether noted that

if we work with homology groups rather than Betti numbers, we can solve more

problems, because we obtain invariants not only of spaces, but also of maps. In

modern parlance, the n-th rational homology is a functor defined on the category

of topological spaces, while the n-th Betti number is a mere function defined on

the set of isomorphism classes of topological spaces. Of course, this way of stating

Noether insight is anachronistic, since it came before category theory. Indeed, it

was in Eilenberg and Mac Lane subsequent work on homology that category theory

was born! Decategorification is a straightforward process which typically destroys

information about the situation at hand. Categorification, being an attempt to

recover this lost information, is inevitably fraught with difficulties. One reason is

that when categorifying, one does not merely replace equations by isomorphisms.

One also demands that these isomorphisms satisfy some new equations of their

own, called ‘coherence laws’. Finding the right coherence laws for a given situa-

tion is perhaps the trickiest aspect of categorification.”

I underline that there is no derogatory aspect related to “mythical thinking” implied

here. We must understand this way of thinking in its historical context and this demands

a certain level of mental availability to different ideas. In this mythical way of thinking,

an unobserved object (the god) allowed the people of that age to formulate a theory

that explained a certain phenomenon. The invisibility condition for the “link-object”

was explained away by the fact that the respective god was placed in an inaccessible

place, say Mount Olympus. In modern language let us consider Maxwell’s equations for

a magnetic monopole [48-50]. The equation ∇B 6= 0 cannot coexist with the equation

A = ∇B if A is to be nonsingular. However, we can introduce a semi-infinite very thin

solenoid at the origin such that the magnetic potential becomes A = Amon + Asol, the

sum of the potential associated to the monopole and the potential associated to the

infinitesimal solenoid. This will change the divergence equation for B into

∇B = g ∗ δ(r)− g ∗ δ(r) = 0 (1.3)

one being the contribution of the monopole and the other, the one of the solenoid. The

position of the solenoid gives a singularity in the description of A that can be adjusted in

order to exactly cancel the singularity that appears due to the magnetic monopole. The
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thin solenoid can always be gauged away via a simple gauge transformation. Hence the

object is classically not real. It is however necessary as a concept in order to make our

language capable of describing magnetic monopoles. We have to be sure, however, that

all aspects related to the thin solenoid are invisible. If this were not so, the fact that we

do not see thin solenoids would mean there are no independent magnetic monopoles in

nature. While classically all observable effects have been annihilated when we allowed for

gauge redundancies in the description, there are observable topological effects that a thin

solenoid would have. These can be seen via the quantum Bohm-Aharonov experiment.

In order to eliminate them as well one has to impose the fact that there will be no

observable effects when we move around the thin solenoid an integer number of times.

This condition is what produces the discreteness of the electrical charge.

In old mythological terms, our language was not sufficient to describe the magnetic

monopole. The language we have chosen gave ambiguities in the form of singularities.

We had to either decide to give up, as nobody ever observed a natural magnetic monopole

or to see if a change of our language, while describing the rest of reality more accurately

can allow a meaningful discussion about magnetic monopoles. This appeared to be the

case: in order to speak about monopoles we need some extra words like “Dirac string”

and we need to have them in such a way that they do not affect reality and do not

refer to real objects. This way of thinking, as old as it might be, was always very

useful in understanding nature. This example makes it clear, again, that the discovery

of many laws of nature arose from our ability to change our way of describing reality

in order to accommodate natural facts. In this sense we are not that far away from

the ancient societies who tried to earn the benevolence of the invisible gods associated

to lightening, thunder, rivers, etc. While their language lacked the subtlety required to

describe the electrical phenomena of lightening, the sound-waves that appeared during

thunder, the turbulent flow equations describing the water in the rivers and seas, they

were able to derive certain primitive properties of these objects by associating to them

words describing invisible objects that made sense to them at a basic level (in some

sense, morphisms). These were the mythical figures of the ancient times.

The condition of invisibility of the objects related to some auxiliary words became more

and more sophisticated with time. The presence of a god on the top of a very high

mountain was certainly not enough as one could go there and verify whether there is a

god or not. Fortunately, the theories we constructed in order to describe electrical and

magnetic phenomena allow for basic redundancies. This means essentially that the same

physical reality can be described using different mathematical tools, of different degrees

of complexity. In general, with the construction of electromagnetism it was realized

that the observable electric and magnetic fields were only an emergent part of reality

while the electromagnetic potential function Aµ appeared to have a more fundamental
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nature. However, after writing the theory in a complete form, one realizes that the same

physically observable configurations can be obtained by different potential functions.

In principle, there were changes of the potential function not visible at the level of

observable quantities. In the case of classical electrostatics one can use the electric field

E or its potential V . However, potentials differing by a constant correspond to the

same observable electric field. In general, in classical electromagnetism the situation is

similar. Let the electric and magnetic field be defined in terms of the e.m. potential as

E = −∇V − dA
dt

B = ∇×A
(1.4)

then the general gauge transformation is

A→ A+∇f
V → V − ∂f

∂t

(1.5)

The fields remain the same after this transformation is performed and hence the Maxwell’s

equations are still obeyed. The main observation here is that the same reality as encoded

by the measurable fields can be described using sets of equivalent functions. Again, any

transformations are allowed as long as the observed effects remain compatible with re-

ality. This way of thinking involves a certain level of subtlety. First, one has to be very

clear about what is “reality” and to have a set of empirically proved situations that

completely describe it. In some cases whatever we identify as “reality” is in contradic-

tion with our previous understanding of it. This contradiction can manifest itself in

various ways. One can obtain artificial singularities as the ones obtained in the naive

introduction of magnetic monopoles. In other situations one observes phenomena that

should not occur when looked at them in the context of the model we cherish. However

it may be, a change in the language is needed in order to explain the new phenomena.

In general a quantum field theory is represented in the form of a Lagrangian with a

certain set of fields. However, the actual fields are not a part of the measurable real-

ity. Moreover, there are sets of transformations involving reparametrizations of fields,

masses, charges, etc. in short, of various parameters of the theory that leave the measur-

able quantities unchanged. This would be of little relevance if the first theory invented

were to be perfectly well defined. Unfortunately this was historically not the case. Due

to our lack of imagination or due to the fact that our language and customs were far too

remote from Nature, all of the early quantum field theories were ill-defined [51]. Indeed,

before Feynman, the mere construction of a quantum theory of electromagnetism gave

divergencies from the very beginning. While it was clear that the associated phenomena

occur in nature and there are no physical problems with electrons interacting with pho-

tons, all quantum theories constructed in the form of perturbative corrections to some
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basic model were ill defined. It took over 20 years to observe that the “bare” param-

eters of the theory were not unique and that the divergencies arising there were easily

removable if one allowed reparametrizations that would replace the bare quantities with

modified ones. In principle, we were able to add so called “counter-terms” corresponding

to terms existing already in the theory in order to eliminate the divergencies and to give

a well defined meaning to the discussion. The “well-defined meaning” was essentially

such that the parameters corresponded to the observed values at certain points in the

parameter-space. The main result of this construction was that the parameters of the

theory could not be fixed globally. Instead, they followed so called renormalization group

equations derived from the fact that reality (defined in terms of the measurable S-matrix

in this context) should not depend on the scale we chose to perform the measurements.

After this became clear, calculations were again possible, and they have also been done

with astonishing success. Researchers obtained precisions of tens of decimal places [51]

in perturbative expansions with more and more terms. The perturbative approach was

strong again. However, the perturbative approach is limited to the domain where the

expansion parameters are small. Outside of this domain there are still many mysteries.

One is the existence of global anomalies i.e. deviations from the assumptions valid in

a perturbation theory due to the global structure of the phenomena involved. It is the

desire of this work to shed some light on the possibility of eliminating such anomalies by

employing a homological algebraic way of thinking. In particular (co)homology depends

on a choice of coefficients. A suitable choice of such coefficients makes some topological

features become manifest while others may hide them. These coefficients may form

various algebraic structures. One area where this becomes important is the topological

genus expansion of QCD. This can be systematically improved by using homological

algebra and by employing special coefficient groups in homology and cohomology. Also

in topological string theory the use of the holomorphic anomaly equations can be used

to derive a recursive equation relating all the higher topological genera with the two

lowest ones. These are the subjects of chapters 8 - 11 of this work.

What strikes us when we speak about Grothendieck is his monumental contribution to

understanding geometry at a completely new level. He introduced schemes and toposes

in the study of shapes and he proved a large part of Weil’s conjectures. His distinctive

way of thinking, involving generalizations at a level never reached before, helped to the

identification of solutions to some of the greatest problems in mathematics like Fermat’s

last theorem, to mention only one [22], [23], [166].

Understanding Grothendieck’s thoughts is not a trivial endeavor and its application to

physics is even more complicated because it is necessary to find a common language to

start with. We, physicists, take for granted too many concepts far too easily. One of these
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concepts is the geometric point. For a concept that by definition has no further internal

structure it is extremely important in the construction of all geometric objects. This is

why, general topology also introduces notions like generic points, namely points that have

closures that represent the whole of the topological space. This type of notion is defined

by means of general topology [59]. We speak in physics about “point-like particles” and

try to quantize them. We observe that in order to make justice to reality, we need to

expand the notion of point-like particles and introduce fields and finally quantum fields.

By introducing gravity we observe that the concept of holonomy becomes essential. If we

try to quantize gravity we finally realize that truly point-like objects are insufficient. We

therefore introduce string-like objects. In one way or another we need to ask ourselves

what is a point. In order to describe the properties of such objects we need to be able

to identify various global properties and to relate them in a well defined way. This is

being done via homological algebra and general topology [55-58].
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Part 1
The construction of this thesis is as follows. In the first part I give an introduction to the

basic notions of topology as well as some results of homological algebra used in this work.

What this first part lacks in originality, it gains in completeness. This being said, I wish

to give a complete, albeit superficial review of some of the tools of topology together

with historical references. In this way I follow the development of this discipline from

its early stages to the most recent progresses. In general I repeat textbook definitions,

theorems and proofs [57-59] adding original comments and explanations when necessary.

I start with general topology or point-set topology. This is the earliest branch of topology

which deals with the precise definition of the most fundamental concepts like open sets,

continuity, connectedness and compactness. At this level one strives to obtain definitions

for the intuitive notions of “proximity” or, the opposite term i.e. “far apart”, in terms

that do not necessarily involve metric related constructions. In fact, all these notions

can be derived using only open sets. An extra structure like the metric, when added,

simplifies these definitions. However, the real beauty of general topology is to deal with

these notions in the absence of anything that can be defined as a “distance” from a

metric point of view. This may become useful in situations where the metric notion of

“distance” is meaningless, for example in some cases of relevance for statistics where

distance may have a different meaning or in the construction of quantum mechanical

entanglement. After the chapter discussing general topology, I shall deal with algebraic

topology. This is a step forward in the direction of practical calculations. At that point,

algebraic structure will be associated to the constructs resulting from the definition

of open sets and will allow us to do practical calculations. We will use algebraic and

categorial structures like groups, rings, sheaves, schemes etc. in order to characterize

various spaces and to identify the situations where two spaces are identical up to a

specified transformation (usually homeomorphisms). For this we must define so called

topological invariants. The accuracy of these invariants in probing spaces will be of

utmost importance in this work. The next mathematical field I will touch in this work

is homological algebra. Historically it is a rather young field of research. While some

of the ideas in mathematics, mostly those related to differential calculus date back to

Newton and Leibniz, homological algebra appeared in its rigorous form at the end of

the 19th century [56]. Only then, notions like Betti numbers [57] for a topological space

or Hilbert’s syzygy theorem [58] (1890) started to become popular in the mathematical

circles. The main goal of homological algebra is to construct and solve what is considered

to be the equivalent of equations for homological groups. The unknowns will be various

groups and the operations and equalities will be the various arrow. Finding that some

groups are isomorphic with others will be the equivalent of finding the solution of a

specified equation.



Chapter 2

Elements of General Topology

“ ‘Would you tell me, please, which way I ought to go from here?’

‘That depends a good deal on where you want to get to.’

‘I don’t much care where -’

‘Then it doesn’t matter which way you go.’ ”

Lewis Carroll, Alice in Wonderland

Let me start this chapter with a simple why-question: Why general topology? What

is the main problem it wishes to solve? The answer is deceivingly simple: general

topology aims at analyzing and describing topological spaces. I will start this chapter

by introducing the basic concepts of this field of research. I define notions like the

axiomatic topology of a space, finite topological spaces, discrete spaces, indiscrete spaces,

open, closed and clopen sets as well as some basic notions about limits and how various

objects easily defined in calculus have to generalize in order to make sense in a general

topological context. I mainly follow here reference [59] for a basic but very enlightening

introduction. Topology, like most of the other branches of mathematics, can be described

axiomatically [60]. In this sense, a topology can be defined as follows:

2.1 Definition Let X be a non-empty set. A collection τ of subsets of X is said to be

a topology on X if

• X and the empty set belong to τ

• the union of any (finite or infinite) number of sets in τ belongs to τ and

• the intersection of any two sets in τ belongs to τ

13
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The pair (X, τ) is called a topological space.

If X is a non-empty set and τ is the collection of all subsets of X then τ is called the

discrete topology on the set X. The topological space (X, τ) is called a discrete space.

The indiscrete topology on the other side is given by τ = {X, ∅} and then (X, τ) is called

the indiscrete space. In both these cases each type of topology satisfies the condition in

the general definition of the topology.

At this point I can remind the reader why an axiomatic definition of a notion is useful

[61]. Axioms are a method of restraining the means used to define an object such that

the validity of the object defined using them is as general as possible. By being able to

axiomatize a definition we become capable of observing the appearance of the defining

axioms even in some unexpected situations [62]. For example, in this case we can already

see that a discrete space connects all the elements of a space to each other by defining

an open set for each and every subset of the original space. The set of single elements-

subsets will also be part of this discrete topology, hence the name “discrete”. On the

other side, we may think in terms of a coarse topology having only the empty set and

the original set itself in it. This is an “indiscrete topology”.

Instead of referring to “members of τ” we may give to these sets more appropriate

names. Let us call them open sets. The complements of the open sets with respect to

the space X are called “closed sets”. This way of speaking leads to what is known as

“open intervals” and “closed intervals” on the real number line. One observes that while

any finite or infinite union of open sets is open, only finite intersections of open sets are

open. Infinite intersections of open sets are not always open. I will show this in the next

example:

2.2 Example Let N be the set of all positive integers and let τ consist of ∅ and each

subset S of N such that the complement of S in N, N−S, is a finite set. It can be verified

that τ is a topology on N. It is called the finite-closed topology. For each natural number

n, define the set Sn as

Sn = {1} ∪ {n+ 1} ∪ {n+ 2} ∪ {n+ 3} ∪ ... = {1} ∪
∞⋃

m=n+1

{m} (2.1)

Clearly each Sn is an open set in the topology τ , since its complement is a finite set.

However,
∞⋂
n=1

Sn = {1} (2.2)

As the complement of {1} is neither N nor a finite set, {1} is not open. So this shows

that the intersection of the open sets Sn is not open.
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It is important to observe that both inclusion and intersection must be verified in order

to prove that a subset is open. Now that the open and closed sets are defined, one needs

to notice that some open sets can also be closed at the same time. For example in a

discrete space every set is both open and closed while in an indiscrete space (X, τ) all

subsets of X except X and ∅ are neither open nor closed. Hence there is the

2.3 Definition A subset S of a topological space (X, τ) is said to be clopen if it is both

open and closed in (X, τ).

In general in every topological space (X, τ) both X and ∅ are clopen, in a discrete space

all subsets of X are clopen and in an indiscrete space the only clopen subsets are X and

∅.

In what follows I will discuss the notions that can be defined generally on a topological

space. The analogy with the real line has its limits. First, on the real line we have a

notion of “closeness”. For example, if we have a sequence of the form

0.1, 0.01, 0.001, ..., (2.3)

every element of this sequence is closer to zero than the previous. This means one can

say that 0 is the limit point of this sequence. However, the interval (0, 1] is not closed

as it does not contain the limit of any sequence in it, in particular it does not contain

the element 0.

A topological space is in some sense a general notion. For example we do not need to have

notions like a metric over a topological space and the distance is therefore not always well

defined. If we do not have a distance we must define the limit point differently, without

considering the distance between two points as has been done in standard calculus.

Also, the topological spaces are defined by employing the concept of connectedness. This

will also be defined in what follows. Let me start with a topological space (X, τ). The

elements of this space are referred to as points. Let A be a subset of a topological space

(X, τ). A point x ∈ X is said to be a limit point (or accumulation point or cluster point)

of A if every open set, U , containing x contains a point of A different from x.

In general a test whether a set is closed or not is the following

2.4 Proposition Let A be a subset of a topological space (X, τ). Then A is closed in

(X, τ) if and only if A contains all of its limit points.

2.5 Proposition Let A be a subset of a topological space (X, τ) and A′ the set of all

limit points of A. Then A ∪A′ is a closed set.



Chapter 2. Elements of General Topology 16

2.6 Definition Let A be a subset of a topological space (X, τ). Then the set A ∪ A′

consisting of A and all its limit points is called the closure of A and is denoted Ā.

2.7 Definition Let A be a subset of a topological space (X, τ). Then A is said to be

dense in X or everywhere dense in X if Ā = X. As an example Q is a dense subset of

R.

As an example consider again the discrete topological space (X, τ). Then, every subset

of X is closed (since its complement is open). Therefore the only dense subset of X is

X itself, since each subset of X is its own closure.

2.8 Proposition Let A be a subset of a topological space (X, τ). Then A is dense in

X if and only if every non-empty open subset of X intersects A non-trivially (that is, if

U ∈ τ and U 6= ∅ then A ∩ U 6= ∅).

In what follows we need the concept of neighborhood. Again, for topological spaces

where a metric is not defined and there is no notion of distance, this concept will prove

to be not only important for what follows, but also interesting from a logical point of

view.

2.9 Definition Let (X, τ) be a topological space, N a subset of X and p a point in N .

Then N is said to be a neighborhood of the point p if there exists an open set U such

that p ∈ U ⊆ N .

As an example, the closed interval [0, 1] ∈ R is a neighborhood of the point 1
2 since

1
2 ∈ (1

4 ,
3
4) ⊆ [0, 1].

2.10 Proposition Let A be a subset of a topological space (X, τ). A point x ∈ X is a

limit point of A if and only if every neighborhood of x contains a point of A different

from x.

As a set is closed if and only if it contains all its limit points we deduce the following.

2.11 Corollary Let A be a subset of a topological space (X, τ). Then the set A is closed

if and only if for each x ∈ X−A there is a neighborhood N of x such that N ⊆ X−A.

2.12 Corollary Let U be a subset of a topological space (X, τ). Then U ∈ τ if and

only if for each x ∈ U there exists a neighborhood N of x such that N ⊆ U .

2.13 Corollary Let U be a subset of a topological space (X, τ). Then U ∈ τ if and

only if for each x ∈ U there exists a V ∈ τ such that x ∈ V ⊆ U .

The last corollary provides a practical test of whether a set is open or not. A set is open

if and only if it contains an open set about each of its points. In what follows, a brief
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discussion about connectedness [63] will be given. Some simple definitions and facts are

given in an informal way, mainly following reference [59] which is a source of inspiration

for the major part of this section. Let therefore S be a set of real numbers. If there is

an element b ∈ S such that x ≤ b, for all x ∈ S then b is said to be the greatest element

of S. Similarly if S contains an element a such that a ≤ x for all x ∈ S then a is called

the least element of S. A set S of real numbers is said to be bounded above if there

exists a real number c such that x ≤ c for all x ∈ S, and c is called an upper bound for

S. Similarly, the terms “bounded below” and “lower bound” are defined. A set which

is bounded above and bounded below is said to be bounded [64].

2.14 Least Upper Bound Axiom Let S be a non-empty set of real numbers. If S is

bounded above, then it has a least upper bound.

The upper bound also called the supremum of S, denoted sup(S), may or may not

belong to the set S. Indeed the supremum of S is an element of S if and only if S has

a greatest element. Any set S of real numbers which is bounded below has a greatest

lower bound which is also called the infimum and is denoted by inf(S).

2.15 Lemma Let S be a subset of R which is bounded above and let p be the supremum

of S. If S is a closed subset of R, then p ∈ S.

Proof See appendix.

2.16 Proposition Let T be a clopen subset of R. Then either T = R or T = ∅.

Proof See appendix.

2.17 Definition Let (X, τ) be a topological space. Then it is said to be connected if

the only clopen subsets of X are X and ∅. As an example, the topological space R is

connected.

From the definition follows that a topological space (X, τ) is not connected (i.e. dis-

connected) if and only if there are non-empty open sets A and B such that A ∩ B = ∅
and A ∪ B = X. This fact is important because it constitutes the basis for the future

generalizations to connected manifolds, groups, etc.

In what follows I will briefly discuss what means when we say that two structures

are equivalent [65]. The distinction between objects implies two items: the objects

themselves and the criteria by which the notion of “distinctiveness” is defined. In set

theory, two sets are said to be equivalent from the perspective of set theory if there exists

a bijective function which maps one set onto another. Two groups are equivalent, also

said to be isomorphic, if there exists a homomorphism of one to the other which is one-

to-one and onto. Two topological spaces are equivalent, also said to be homeomorphic
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if there exists a homeomorphism of one onto the other. Hence, first we need a definition

for the objects we want to compare. Then we need to explain what means “equivalent”

in our theory. I will start by defining the objects that are important in this context, and

these objects are the topological spaces. Hence, we will want to compare subspaces of a

given space.

2.18 Definition Let Y be a non-empty subset of a topological space (X, τ). The

collection τY = {O ∪ Y : O ∈ τ} of subsets of Y is a topology on Y called the subspace

topology (or relative topology, or induced topology on Y by τ). The topological space

(Y, τY ) is said to be a subspace of (X, τ).

One can check that τY is indeed a topology on Y . Now we turn to the notion of

equivalence defined for the topological spaces. We may start with an example

X = {a, b, c, d, e}, Y = {g, h, i, j, k} (2.4)

τ = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}} (2.5)

and

τ1 = {Y, ∅, {g}, {i, j}, {g, i, j}, {h, i, j, k}} (2.6)

It is intuitively clear that (X, τ) is equivalent to (Y, τ1). The function f : X → Y defined

by f(a) = g, f(b) = h, f(c) = i, f(d) = j and f(e) = k, provides the equivalence.

2.19 Definition Let (X, τ) and (Y, τ1) be topological spaces. Then we say they are

homeomorphic if there exists a function f : X → Y which has the following properties:

• f is one-to-one (that is f(x1) = f(x2) implies x1 = x2).

• f is onto (that is, for any y ∈ Y there exists an x ∈ X such that f(x) = y)

• for each U ∈ τ1, f
−1(U) ∈ τ and

• for each V ∈ τ , f(V ) ∈ τ1

Further, the map f is said to be a homeomorphism between (X, τ) and (Y, τ1). We write

(X, τ) ∼= (Y, τ1).

It can be shown that ∼= is an equivalence relation and that all open intervals (a, b) are

homeomorphic to each other. Length is not a topological property [66]. In particular, an

open interval of finite length such as (0, 1) is homeomorphic to one of infinite length such

as (−∞, 1). In fact, all open intervals are homeomorphic with R. There is an important

aspect related to the methods of proof. In order to prove that two topological spaces

are homeomorphic we have to find a homeomorphism between them. However, to prove



Chapter 2. Elements of General Topology 19

that two topological spaces are not homeomorphic is often much harder as we have to

show that no homeomorphism exists. In order to show this difficulty the next example

is important.

2.20 Example We want to prove that the interval [0, 2] is not homeomorphic to the

subspace [0, 1] ∪ [2, 3] or R. Let for this (X, τ) = [0, 2] and (Y, τ1) = [0, 1] ∪ [2, 3]. Then

[0, 1] = [0, 1] ∩ Y ⇒ [0, 1] is closed in (Y, τ1) and [0, 1] = (−1, 11
2) ∩ Y ⇒ [0, 1] is open in

(Y, τ1). Thus Y is not connected as it has [0, 1] as a proper non-empty clopen subset.

Suppose that (X, τ) ∼= (Y, τ1). Then there exists a homeomorphism f : (X, τ)→ (Y, τ1).

So, f−1([0, 1]) is a clopen subset of X, and hence X is not connected. This is false as

[0, 2] = X is connected. So we have a contradiction and thus the two topological spaces

are not homeomorphic. Hence, we can observe the following

2.21 Proposition Any topological space homeomorphic to a connected space is con-

nected.

This observation is extremely important in simplifying the proofs that objects (hence

also topological spaces) are not homeomorphic with each other [67]. Instead of actually

searching every possible homeomorphism and eliminating each of them, it is far easier

to find one single property preserved by homeomorphisms which can be proven that one

space has and the other does not. In this way, the “checking” of all possible homeomor-

phisms is avoided leading to a major simplification. There are several such properties

preserved by homeomorphisms that can be used. However, when faced with a specific

problem we may not be able to find the best property we would like to use. The art is

to decide when it is easier to check all homeomorphisms and when it is easier to check

all preserved properties [68]. One can however make statements about the real line for

which we have the following

2.22 Definition A subset S of R is said to be an interval if it has the following property:

if x ∈ S, z ∈ S and y ∈ R are such that x < y < z then y ∈ S.

Connectedness for the real line is easily prescribed by the following

2.23 Proposition A subspace S of R is connected if and only if it is an interval.

Up to now we discussed the objects and the equivalence relations. The next structure,

specific to category theory is called the set of arrows [69]. They represent different

things when analyzed in different branches of mathematics. In linear algebra we have

as objects the vector spaces and as arrows the linear transformations. In group theory

the objects are the groups while the arrows are the homomorphisms, while in set theory

the objects are sets and the arrows are functions. In topology the objects are the

topological spaces and the arrows are the continuous mappings. However, how can
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we define a notion such as “continuity” in a general topological space? Of course for

functions from R to R this is simple: a function f : R → R is said to be continuous

if for each a ∈ R and each positive real number ε, there exists a positive real number

δ such that |x − a| < δ implies |f(x) − f(a)| < ε. This construction however is very

dependent on the definition of absolute value, subtraction and in general distance [70].

All these notions do not need to exist (although can certainly be defined for some cases)

in general topological spaces [71]. Hence we need a different definition of continuity,

more suitable for generalizations. We can see that f : R → R is continuous iff for each

a ∈ R and each interval (f(a) − ε, f(a) + ε), for ε > 0 there exists a δ > 0 such that

f(x) ∈ (f(a) − ε, f(a) + ε) for all x ∈ (a − δ, a + δ). This definition does not involve

the notion of distance or of absolute value but it still involves the notion of subtraction

which may not make sense in general i.e. the inversion of addition may not be defined

[72]. In order to avoid subtraction completely we can introduce the following

2.24 Lemma Let f be a function mapping R into itself. Then f is continuous if and

only if for each a ∈ R and each open set U containing f(a), there exists an open set V

containing a such that f(V ) ⊆ U .

Proof See apendix.

One could use the property described in the above lemma to define continuity but the

following lemma makes the definition more elegant.

2.25 Lemma Let f be a mapping of a topological space (X, τ) into a topological space

(Y, τ ′). Then the following two conditions are equivalent:

• for each U ∈ τ ′, f−1(U) ∈ τ

• for each a ∈ X and each U ∈ τ ′ with f(a) ∈ U , there exists a V ∈ τ such that

a ∈ V and f(V ) ⊆ U .

Proof See appendix.

Hence the notion of continuity for a function between two topological spaces becomes

2.26 Definition Let (X, τ) and (Y, τ1) be topological spaces and f a function from X

into Y . Then f : (X, τ)→ (Y, τ1) is said to be a continuous mapping if for each U ∈ τ1,

f−1(U) ∈ τ .

Now we can write the following
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2.27 Proposition Let f be a mapping of a topological space (X, τ) into a space (Y, τ ′).

Then f is continuous if and only if for each x ∈ X and each U ∈ τ ′ with f(x) ∈ U , there

exists a V ∈ τ such that x ∈ V and f(V ) ⊆ U .

2.28 Proposition Let (X, τ), (Y, τ1) and (Z, τ2) be topological spaces. If f : (X, τ)→
(Y, τ1) and g : (Y, τ1) → (Z, τ2) are continuous mappings, then the composite function

g ◦ f : (X, τ)→ (Z, τ2) is continuous.

Of course, the next result shows that we can interchange closed sets with open sets in

the definition of continuity

2.29 Proposition Let (X, τ) and (Y, τ1) be topological spaces. Then f : (X, τ) →
(Y, τ1) is continuous if and only if for every closed subset S of Y , f−1(S) is a closed

subset of X.

Proof See appendix.

There is a connection between continuous maps and homeomorphisms. If f : (X, τ) →
(Y, τ1) is a homeomorphism then it is a continuous map. Obviously not every continuous

map is a homeomorphism.

2.30 Proposition Let (X, τ) and (Y, τ ′) be topological spaces and f a function from

X to Y then f is a homeomorphism iff

• f is continuous

• f has an inverse

• f−1 is continuous

2.31 Proposition Let (X, τ) and (Y, τ1) be topological spaces, f : (X, τ) → (Y, τ1) a

continuous mapping, A a subset of X and τ2 the induced topology on A. Further, let

g : (A, τ2)→ (Y, τ1) be the restriction of f to A, that is g(x) = f(x) for all x ∈ A. Then

g is continuous.

An important result is given by the following

2.32 Proposition Let (X, τ) and (Y, τ1) be topological spaces and f : (X, τ)→ (Y, τ1)

surjective and continuous. If (X, τ) is connected then (Y, τ1) is connected.

Proof See appendix.

Otherwise stated this proposition says that any continuous image of a connected set is

connected. It also says that if (X, τ) is a connected space and (Y, τ ′) is not connected
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then there exists no mapping of (X, τ) onto (Y, τ ′) which is continuous. There exists a

stronger definition of connectedness [73]:

2.33 Definition A topological space (X, τ) is said to be path-connected if for each pair

of distinct points a and b of X there exists a continuous mapping f : [0, 1]→ (X, τ) such

that f(0) = a and f(1) = b. The mapping f is said to be a path joining a to b.

Every path connected space is connected. At this point, I can introduce Weierstrass’

Intermediate value Theorem [74], an application of topology to the theory of functions

of a real variable. The topological concept important for this is that of connectedness.

2.34 Theorem Let f : [a, b] → R be continuous and let f(a) 6= f(b). Then for every

number p between f(a) and f(b) there is a point c ∈ [a, b] such that f(c) = p.

Proof See appendix.

2.35 Corollary If f : [a, b] → R is continuous and such that f(a) > 0 and f(b) < 0

then there exists an x ∈ [a, b] such that f(x) = 0.

2.36 Corollary (The fixed point theorem) Let f be a continuous mapping of [0, 1] into

[0, 1]. Then there exists a z ∈ [0, 1] such that f(z) = z. The point is called a fixed

point.

Proof See appendix.

This corollary is a special case for another theorem called the Brouwer fixed point

theorem [75] which says that every continuous function from a convex compact subset K
of a Euclidean space to K itself has a fixed point. Most proofs are of algebraic topological

nature [76]. However, this theorem has many applications, from theoretical economics

[77] to applied mathematics [78].

As I mentioned several times until now, the discussion in this first part was intentionally

as general as possible. This implied the definition of notions like continuity such that

they do not depend on notions related to metric spaces like distances, absolute values,

etc. In what follows I will particularize the discussion a bit, making however as clear as

possible that most of the interesting applications appear when the notions of metric and

distance are not readily available. One may ask if there are situations when we do not

wish to measure distances or distances are not well defined. Indeed, the basic question

in topology is to describe structures that do not depend on continuous deformations,

and obviously, distance is one concept that changes in continuous deformations. There-

fore, topological notions are in the most general sense not dependent on structures like

distance. Additional structure must be added to the topological structure so that we



Chapter 2. Elements of General Topology 23

are capable of discussing about distances. However, there do exist situations where dis-

tance is not necessary, for example quantum entanglement is a correlation which does

not, a-priori, depend on distance. Once topology itself becomes uncertain, the notion

of distance will become even more ambiguous. Most of the applications of topology to

analysis are via metric spaces [79]. Because of this I will start with a definition

2.37 Definition Let X be a non-empty set and d a real valued function defined on

X ×X such that for a, b ∈ X:

• d(a, b) ≥ 0 and d(a, b) = 0 if and only if a = b

• d(a, b) = d(b, a)

• d(a, c) ≤ d(a, b) + d(b, c) for all a, b, c ∈ X

Then d is said to be a metric on X, (X, d) is a metric space and d(a, b) is the distance

between a and b.

Having a metric space (X, d) and r a positive real number we can define the open ball

about a ∈ X of radius r as the set

Br = {x : x ∈ X; d(a, x) < r} (2.7)

In what follows I wish to connect the metric spaces to the topological spaces. For this I

will need the following

2.38 Lemma Let (X, d) be a metric space and a and b points of X. Further, let δ1 and

δ2 be positive real numbers. If c ∈ Bδ1(a) ∩ Bδ2(b) then there exists a δ > 0 such that

Bδ(c) ⊆ Bδ1(a) ∩Bδ2(b).

2.39 Corollary Let (X, d) be a metric space and B1 and B2 open balls in (X, d). Then

B1 ∩B2 is a union of open balls in (X, d).

2.40 Proposition Let (X, d) be a metric space. Then the collection of open balls in

(X, d) is a basis for a topology τ on X. This is the topology induced by the metric d

and (X, τ) is called the induced topological space[80] or the corresponding topological

space.

As an example consider d the euclidean metric on R. Then a basis for the topology τ

induced by the metric d is the set of all open balls. But Bδ(a) = (a − δ, a + δ). From

this it is easy to see that τ is the euclidean topology on R. Hence the euclidean metric

on R induces the euclidean topology on R.
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From the perspective of how a set of numbers can be completed, there exist other types of

metrics. Among non-euclidean metrics one can cite the non-Archimedean metric which

gives rise to the so called p-adic numbers. This is one of the three possible completions

of the rationals, the other two being the real numbers and the complex numbers. The

p-adic numbers do not obey the Archimedean axiom, one of the axioms introduced by

Hilbert in his general approach to geometry. The basic formulation of Archimedes’ axiom

is that given two magnitudes having a ratio, one can find a multiple of either which will

exceed the other. This multiple must be finite. By this one excludes the existence of

differential objects. Just as the real numbers are a completion of the rationals with

respect to the usual norm, the p-adic numbers are the completion of the rationals with

respect to the p-adic norm.

Let me now consider d the discrete metric on a setX. Then for each x ∈ X, B 1
2
(x) = {x}.

So, all the singleton sets are open in the topology τ induced on X by d. As a consequence,

τ is the discrete topology.

2.41 Definition Metrics on a set X are equivalent if they induce the same topology on

X.

2.42 Proposition Let (X, d) be a metric space and τ the topology induced on X by

the metric d. Then a subset U of X is open in (X, τ) if and only if for each a ∈ U there

exists an ε > 0 such that the open ball Bε(a) ⊆ U .

Proof See appendix.

It was noticed that every metric on a set X induces a topology on the set X. However,

the reverse is not always true i.e. not every topology on a set is induced by a metric.

2.43 Definition A topological space (X, τ) is said to be a Hausdorff space (or a T2-

space) if for each pair of distinct points a and b in X, there exist open sets U and V

such that a ∈ U , b ∈ V and U ∩ V = ∅.

It can be seen that R, R2 and all discrete spaces are Hausdorff [81]. However, any set

with at least 2 elements which has the indiscrete topology is not a Hausdorff space. It

may be relevant to note that Z with finite-closed topology is also not a Hausdorff space.

2.44 Proposition Let (X, d) be any metric space and τ the topology induced on the

X by d. Then (X, τ) is Hausdorff.

Proof See appendix.

We can see out of this proposition that an indiscrete space with at least two points has

a topology which is not induces by any metric. Also, Z with the finite-closed topology

τ is such that τ is not induced by any metric on Z.
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2.45 Proposition A space (τ,X) is said to be metrizable if there exists a metric d on

the set X with the property that τ is the topology induced by d.

For example the set Z with the finite-closed topology is not a metrizable space. One

should not believe that any Hausdorff space is metrizable. In fact there exist Hausdorff

spaces which are not metrizable [82].

In what follows, I will review briefly the notions surrounding the convergence of se-

quences. It is clear what a convergent sequence of real numbers is. In order to remind

the reader, the definition is as follows. The sequence x1, x2, ..., xn, ... of the real numbers

is said to converge to the real number x if given any ε > 0, there exists an integer n0

such that for all n ≥ n0, |xn − x| < ε. The generalization of this definition from R to

any metric space is obvious

2.46 Definition Let (X, d) be a metric space and x1, ..., xn, ... a sequence of points in

X. Then the sequence is said to converge to x ∈ X if given any ε > 0 there exists an

integer n0 such that for all n ≥ n0, d(x, xn) < ε. This is denoted by xn → x. The

sequence y1, y2, ..., yn... of points in (X, d) is said to be convergent if there exist a point

y ∈ X such that yn → y.

2.47 Proposition Let x1, x2, ..., xn, ... be a sequence of points in a metric space (X, d).

Further, let x and y be points in (X, d) such that xn → x and xn → y. Then x = y.

We say that a subset A of a metric space (X, d) is closed (resp. open) in the metric

space (X, d) if it is closed (resp. open) in the topology τ induced on X by the metric

d.

In fact, the topology of a metric space can be described entirely in terms of its convergent

sequences.

2.48 Proposition Let (X, d) be a metric space. A subset A of X is closed in (X, d)

if and only if every convergent sequence of points in A converges to a point in A. This

means that A is closed in (X, d) if and only if an → x where x ∈ X and an ∈ A for all

n, implies x ∈ A.

Proof See appendix.

This finishes the introduction in general topology required for this work. Further in-

formation on the subject can be found in [83-89]. While the results seem trivial, they

by themselves are only marginally the reason for this chapter. I introduced this chap-

ter mainly because the method of thinking derived from it reflects back to algebraic

topology and more advanced mathematical subjects. In fact, during my independent

research I started precisely with these constructions the formal study of topology. This
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proved very useful mainly because I understood the distinction between mathematical

proofs and physical proofs. In general physicists tend to perform robust and numerically

intensive calculations and to regard those as proofs in a very specific sense. The math-

ematical proofs, no matter how rigorous are often regarded with skepticism. On the

other side, mathematically oriented researchers tend to see physical proves as inelegant,

dull and sometimes plain inefficient. However, in what follows I show that the two ways

of thinking may fruitfully coexist.



Chapter 3

Algebraic Topology

“ Why, sometimes I’ve believed as many as six impossible things before breakfast.”

Lewis Carroll, Alice in Wonderland

In the previous chapter I described basic topology and some of its most fundamental

theorems and constructions. However, while the description above is rigorous it remains

in a certain sense abstract. It is difficult if not impossible to perform actual operations

and to characterize spaces using only the results of general (point-set) topology. In or-

der to bring the concept closer to real calculations we need to introduce the analogue

of “numbers” and “operations” such that we can perform calculations on the spaces we

introduce. This is, in a symbolic sense, the reason for algebraic topology. The lecture

notes of [252] give a very brief but comprehensive introduction to the necessary concepts.

I will follow it along this chapter. For the missing proofs of some theorems or lemmas the

reader should consult [252] as well as [113], [114]. Loosely speaking, algebraic topology

is a systematic way of searching for holes in manifolds and of measuring the properties of

various shapes. If we have to make an even more reducing analogy, the general topology

is the analogue of set theory covered in primary school. Algebraic topology is the ana-

logue of the understanding that the concepts of numbers and operations with numbers

must be added to the sets in order to do practical calculations. Homological algebra then

will be the analogue of solving equations and finding the unknowns satisfying certain

relations. A polynomial equation for example becomes a certain type of commutative

diagram in homological algebra, a diagram that determines some of the (co)homologies

in it up to some kind of morphisms (either isomorphisms, epimorphisms, etc.)

At this point we can understand what topology wishes to obtain. The result of a

topological measurement is available if we can answer to three types of questions:

27
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• Is the space connected?

• Does the space contain holes?

• How are the holes in the space characterized?

The answer to these and more questions is given in terms of various topological invari-

ants. These are defined such that they do not change when calculated over a space of

a given topology. There are however some prerequisites for extracting information from

a space by means of topological invariants. First we have to make a choice of a trian-

gulation, call it T which means the original space X is represented in terms of oriented

simplexes (points, intervals, triangles, etc.). This is a prescription that can be done even

numerically. It allows us to introduce an algebraic structure in order to describe the

space. This is done by the introduction of an object C∗(X, T ,K) called the simplicial

complex. This object is the complex of modules over a ring K. The ring can be any of

Z, Z/nZ, Q, R, C etc.

In this case the modules Ci count the simplexes of dimension i in the triangulation and

the boundary maps between them encode the way these simplexes are connected to each

other in order to form X. The modules Ci are not the most interesting objects if we want

to accurately describe the space X. They involve not only the precise space X but also

an auxiliary choice of the triangulation T of X. The important information is encoded

in the homology H∗(X, T ,K) of the complex C. Following from its construction, as

will be seen later on, the homology is an invariant of the topological space X. It also

in some sense gives a more tractable, more linear source of information regarding the

space X. In general an abstract space described via its complex is a construction with

little connection to linear algebra. By introducing the homology groups it is possible to

arrive at an algebraic structure (based on numbers or on matrices) where the properties

of linear algebra may be exploited. Indeed, this is often the case. This is true even if

we calculate it with the extra information given by the triangulation of X. In fact the

homology does not depend on the triangulation and hence we can re-write it as H∗(X,K)

i.e. the homology of the space X with coefficients in K.

It is important to notice as a brief intermezzo, that a triangulation is certain to exist

and to be unique for spaces of dimension up to 3. For higher dimensions including the

4-dimensional spacetime, a triangulation does not necessarily exist and if it exists it is

not guaranteed to be unique or to correspond to a single space [90-93].

Consider two topological spaces X and Y . The associated invariants I(X) and I(Y )

give us some information on how the spaces are related. They might be isomorphic or

might be related via other morphisms. In general it is more of an art to chose the right
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invariants that can tell if two spaces are indeed related in a certain way. The applications

of invariants are however, much broader. In order to introduce all required concepts I

will start with explaining how to describe topological spaces in terms of simplexes and

then how to use such descriptions in order to calculate the (co)homology of simplexes.

One branch of topology that deals with this problem is called combinatorial topology

[94]. In fact this is the earlier term used for algebraic topology. It describes how a

given topological space can be described using objects called simplexes. The way in

which these simplexes connect together is given by a set of rules. But what are these

simplexes? Depending on the dimension, the 0-simplex is usually understood to be a

point, the 1-simplex is a closed interval, the 2-simplex is a triangle, the 3-simplex is

a pyramid, etc. This is however only the case when we are discussing shapes. The

beauty of algebraic topology is that this notion can be extended in rather unexpected

ways. “Points” can become logical statements and simplexes can then be associated to

theorems. Logics itself can be seen as a topology in some sense. Also, if the “points” are

algebraic properties, new algebraic structures may appear depending on the possibility

of defining the open sets in which they reside. I will show this in another chapter,

discussing the notion of schemes and some of the ideas of Grothendieck. In order to

systematize this approach one states the following

3.1 Definition (Standard and linear simplexes) The standard n-simplex is σn ⊆ Rn+1.

It is defined as the convex closure σn = conv{e0, ..., en} of the standard basis of Rn+1.

So, σn is the first “quadrant” xi ≥ 0 and there it is given by the hyperplane
∑

i xi = 1.

More generally we say that a linear i-simplex in a real vector space is the convex closure

conv(v0, ..., vi) of a set V = {v0, ..., vi} of i + 1 vectors which lie in an i-dimensional

affine subspace but do not lie in any (i− 1)-dimensional affine subspace. One says that

V is the set of vertices of the simplex conv(V ) and we often denote by σV = conv(V )

the simplex with vertices V . So, an i-simplex has (i+ 1) vertices.

3.2 Lemma Any point x in the simplex can be written as x =
∑

i xivi with xi ≥ 0 and∑
i xi = 1. The xi are called barycentric coordinates and they are unique.

Proof See appendix.

3.3 Lemma We can recover vertices from a linear simplex σV as the points with all

but one coordinate zero. A bijection between vertices of two linear simplexes extends

canonically to a homeomorphism e.g. an ordering of V gives a canonical identification

σV ∼= σ|V |−1.

The facets of the simplex conv(V ) are the simplexes associated to subsets of the set of

vertices. Any subset W ⊆ V defines a facet of conv(V ) which is the simplex conv(W ).

The facets are closed under intersections: conv(W ′)∩ conv(W ′′) = conv(W ′∩W ′′). The
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facets of codimension 1 are called faces. The interior σ0
V of a linear simplex conv(V )

consists of the points with all xi > 0. An ordering of the set of vertices V of a simplex

σV gives an orientation of the simplex. Two orderings give the same orientation if they

differ by an even permutation of vertices. It results that an orientation of a simplex

is an orbit of the group of even permutations of vertices in the set of all orderings of

vertices. The set of orientations of an i-simplex σ is denoted orσ. Notice that it has two

elements for i > 0 and one for i = 0. We denote by α→ ᾱ the operation of changing the

triangulation of oriented simplexes. Notice the parallel between the notion of orientation

in a vector space given by a basis ordered up to even permutations and the top form

dx1 ∧ ... ∧ dxn given by an ordering of coordinates up to even permutation.

3.4 Definition(Topological simplexes) A topological i-simplex is a pair (S, φ) of a topo-

logical space S and a homeomorphism φ : σV → S with a linear i-simplex. For simplicity

we usually omit φ from notation. Notice that the above notions of vertices, facets, co-

ordinates, interior, orientation are defined for topological simplexes via φ. Facets of

topological simplexes are again topological simplexes. One may denote the faces of a

topological n-simplex S by Si, i ∈ V where Si is obtained by throwing out the vertex

i.

In what follows, the idea of triangulation needs a more precise definition. Formally, a

triangulation is a method of presenting a given topological space as a combination of

simple spaces, the simplexes [95]. After introducing it we can extract the information

on X from the way the simplexes are patched together [96]. There are several ways of

defining it.

There exists for example simplicial triangulation [97]. This is a notion of a triangulation

with certain properties :

• The facet of simplexes in T are again simplexes in T .

• If α, β ∈ T and α ⊆ β then α is a facet of β

• For any α, β ∈ T the intersection α ∩ β is ∅ or a simplex in T

These properties are making very easy to describe how simplexes fit together to form the

space X. Everything is stated in terms of vertices. The information about the simplexes

and how they glue is encoded in a combinatorial object called the simplicial complex.

However, the price for these properties is that in practice one needs a large number of

simplexes [98].

A more loose notion of a complex allows us to use fewer simplexes but makes the de-

scription of how they are glued together much more subtle. The formulation is now in
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terms of i-cells in X, i.e. maps σi
φ−→ X such that the restriction to the interior is a

homeomorphism onto the image

σoi
∼=−→ φ(σoi ) ⊆ X (3.1)

Now observe that

3.5 Lemma

• A non-empty intersection of simplexes α, β is a facet of both α, β.

• A simplex in T is determined by its vertices.

This means that the way the simplexes are attached will be completely described in

terms of the combinatorics of the set of vertices T 0 [99]. For that reason one can encode

a simplicial triangulation as a combinatorial structure [100]: a set V (the set of all

vertices in T ) endowed by a family K of subsets of V , the family of sets of vertices of all

simplexes in T . We saw that for each simplex Y ∈ T the set of its vertices is a subset

of V and the mutual positions of two simplexes in T is recorded in the intersection of

the sets of their vertices.

In this way it appears to be possible to describe some topological spaces in combinatorial

terms. This will lead us to calculate their invariants purely algebraically using the

combinatorics of the space rather than the space itself.

A simplicial complex is a set V together with a family K of finite non-empty subsets of

V such that with any element A ∈ K, family K also contains all subsets of A.

3.6 Lemma

• Any simplicial triangulation T defines a simplicial complex K(T ).

• To any simplicial complex K we can associate a topological space [K] called its

realization. It comes with a triangulation T such that K(T ) is naturally identified

with K.

3.7 Theorem If we start with a triangulated topological space (X, T ) then the realiza-

tion |K(T )| of the corresponding simplicial complex K(T ) is canonically homeomorphic

to X.
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Our first goal is to encode a triangulation T algebraically. In order to pass from topo-

logical spaces to linear algebra we make a choice of a coefficient ring K so that we

calculate in the linear algebra of K-modules [101]. The set of simplexes will be en-

coded as a basis of a K-module C∗(X, T ,K) of chains in X. The boundary operator

∂ : C∗(X, T ,K)→ C∗(X, T ,K) will encode the way the simplexes in T are glued in X.

The choice of K, which may at this point appear trivial will have fundamental effects

later on. Basically it is the structure that allows us to make use of linear algebras

of certain kinds. The freedom which we gain by doing this has an effect upon what

properties of the space we can detect. It is important to observe again that by passing

from the space to the simplicial complex one obtains the triangulation as a supplemental

structure. However, this structure is only auxiliary and directly related to the original

space only in dimensions smaller than or equal to 3. By calculating the (co)homology we

eliminate the dependence on the triangulation itself but we remain with the dependence

on the coefficient group (or ring). This extra structure is defined by the methods we use

in order to extract information about the space and the same space will look differently

when analyzed with different coefficients. This fact is well known also in algebraic

geometry where algebraic varieties appear very different depending on the coefficients of

the polynomials used to describe them. Moreover, for the case where the dimension is 4

or larger, this freedom allows us to introduce compatibility statements about spaces as

seen via different coefficient groups in (co)homology. This has important consequences

on any attempts for a quantum description of gravity. If we return to the coefficient

groups for a general simplicial complex, at this moment there is no problem in choosing

this group as K = Z.

An oriented triangulation Σ on a topological space X is a pair (T , o) of a triangulation

T of X and a choice oα of an orientation of each simplex α ∈ T . The space of i-chains

Ci(X, T ,K) is defined for any triangulation T of a space X. A choice of orientation o

for the triangulation will then give a simpler way of thinking of groups Ci. The space

of i-chains for an oriented triangulation (X,Σ) is the free K-module

Ci = Ci(X,Σ,K) =
⊕
α∈Σi

kα (3.2)

with the basis given by the set of i-simplexes Σi in the oriented triangulation Σ. To

define the space of i-chains for a triangulation (X, T ) we start with the free K-module

C̃i(X, T ;K) =
⊕

α∈T i, oα∈orα

kα (3.3)

with the basis given by all i-simplexes α with all possible choices of orientations oα.

Then Ci(X, T ;K) is the quotient of C̃i(X, T ,K) obtained by imposing σ̄ = (−1)σ for
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oriented i-simplexes σ = (α, oα) with i > 0.

A choice of an orientation for a triangulation identifies the group Ci(X, T ,K) with the

same construction Ci(X, T , o,K) for the oriented triangulation (T , o) since the compo-

sition

Ci(X, T , o,K) ⊆ C̃i(X, T ,K)→ Ci(X, T ;K) (3.4)

is an isomorphism.

The boundary operator ∂ : Ci → Ci−1 for oriented simplexes in lower dimensions should

also be defined. First, a point has no boundary hence ∂σa = 0. For an oriented segment

σab the boundary is given by

∂σab = σb − σa (3.5)

For a triangle σabc with vertices a, b, c and the orientation given by ordering abc, the

boundary is a triangle with the induced orientation hence

∂σabc = σab + σbc + σac (3.6)

However we can write is also as

∂σabc = σab − σcb + σac (3.7)

hence the boundary operator for an oriented simplex will be an algebraic sum of the

form

∂iσv0,...,vi =
∑

0≤p≤i
(−1)pσv0...v̂p...vi (3.8)

where v̂p means we omit vp. This is a sum of all faces with orientations given by the

ordering v0...v̂p...vi and the sign (−1)p.

3.8 Lemma The above formula for ∂i gives a well defined K-map ∂i : Ci(X, T ;K) →
Ci−1(X, T ;K).

Proof See appendix.

Another relatively simple observation is that a boundary has no boundary. This can be

translated as ∂2 = 0. In slightly more details, for a chain complex one has ∂i∂i−1 = 0.

This observation is the origin of homological algebra. It brought us to the possibility of

defining an algebraic notion of a complex. One speaks now about a complex of cochains

as a sequence of K modules and maps of the form

...
∂−2

−−→ C−1 ∂−1

−−→ C0 → ...
∂0−→ C1 → ... (3.9)
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such that ∂i+1∂i = 0, i ∈ Z. From a complex of cochains we get three sequences of

K-modules.

• i-cocycles Zi = Ker(∂i) ⊆ Ci

• i-coboundaries Bi = Im(∂i−1) ⊆ Ci

• i-cohomologies H i = Zi/Bi

Here we used Bi ⊆ Zi which follows from ∂2 = 0. A complex of chains is the same thing

but with maps going in the other direction

...
∂−2

←−− C−1 ∂−1

←−− C0 ← ...
∂0←− C1 ← ... (3.10)

In this case we lower the indices and we talk about i-cycles Zi ⊆ Ci, i-boundaries Bi ⊆ Ci
and i-homologies Hi = Zi/Bi.

We have seen that any triangulation T of X associates to a topological space X the

homology groups

Hi(X, T ,K) = Hi[(C∗(X, T ;K), ∂)] (3.11)

It is possible to prove that these groups really are invariants of X itself and hence can

be called the homology groups of X, denoted as Hi(X,K).

It is important to observe that the definition of homology and cohomology depends

on the coefficients used. Integers are considered the universal coefficient ring. This

means that integral (co)homology (with integer coefficients) has a certain amount of

information [102]. When passing to Q or Z/nZ some information becomes easier to

obtain while some other information is being erased. It is the main subject of this thesis

to connect this fact with the idea of coarse graining, renormalization group and effective

field theories in physics. This will be the main subject of another chapter.



Chapter 4

Homological Algebra

“ Mad Hatter: ‘Why is a raven like a writing-desk?’,

‘Have you guessed the riddle yet?’ the Hatter said, turning to Alice again.

‘No, I give it up’, Alice replied: ‘What’s the answer?’

‘I haven’t the slightest idea’, said the Hatter. ”

Lewis Carroll, Alice in Wonderland

The relevance of this chapter comes from the fact that it encompasses several very inter-

esting mathematical concepts. Its main goal is to explain the ideas behind homological

algebra. In some sense homological algebra represents the analogue of writing algebraic

equations for homology groups. Finding the unknowns means finding a morphism be-

tween the unknown group and some other known group. The difference is that there is

not only one single type of “equality”. The rules for solving equations transform into

diagram chasing and the use of various lemmas (the five-lemma, the snake lemma, etc.).

I will first introduce these explaining their practical utility in several situations and then

will go on to a description of homological algebra per se, using a standard example. First,

let me start with a brief introduction to the concept of category [103]. This notion rep-

resents one of the most elegant tools for mathematical thinking and allows the creation

of concepts that would not arise otherwise. The notion itself appears to be surprisingly

simple. It formalizes the idea that we can study certain objects endowed with specified

structures and that it makes sense to go from one such object to another via morphisms

i.e. transformations that preserve certain relevant structures. It is relatively easy to

see that many well known constructions “categorify”, this means they have analogues

in the language of categories i.e. by adding a new layer of morphisms new information

can be derived and applied in different frameworks. The categories obtained in this way

35
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became important in the description of various phenomena and lead to the study of

various “special categories”, a term somehow analogous to the study of special classes

of functions in analysis. In order to give a more systematic characterization I give the

following

4.1 Definition A category C consists of

• a class Ob(C) of elements called objects of C

• for any a, b ∈ Ob(C) there exists a set HomC(a, b) whose elements are called

morphisms from a to b in C

• for any a, b, c ∈ Ob(C) a function HomC(b, c)×HomC(a, b)→ HomC(a, c) exists

and is called a composition

• for any a ∈ Ob(C) an element 1a ∈ HomC(a, a)

such that the composition is associative and 1a is a neutral element for composition.

Instead of a ∈ Ob(C) we will usually just say that a ∈ C. As examples one can think of

the following situations

• Categories of sets with additional structures: Sets, Ab, m(K) for a ring K

• If K is a field then we have V ect(K), Groups, Rings, Top, OrdSet (i.e. the

category of ordered sets), etc.

• To a category C one attaches the opposite category CO so that objects are the

same but the direction of the arrow reverses

HomCO(a, b) = HomC(b, a) (4.1)

• Any partially ordered set (I,≤) defines a category with Ob = I and Hom(a, b) is

a point if a ≤ b.

• Sheaves of sets on a topological space X, sheaves of abelian groups on X, etc

The universality brought upon us by the categorial thinking allows us to unify phenom-

ena from different parts of mathematics. In a sense, adding a layer of morphisms in a

given theory represents categorification. Of course, there is no single categorification

given a certain theory and therefore, the process must be considered only when certain

advantages are envisaged.
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It could be interesting to ask if it is possible to express the quantum “compatibility”

condition for observables at the level of topology. A method for doing this would be

to design a compatibility relation for (co)homology groups via their coefficient groups.

I made an attempt to an initial step in this direction in [104]. The main idea was to

extend the notion of “compatibility” relevant to the observables of quantum mechanics

to groups and algebraic structures. This project is at a very incipient stage but it may

end up being relevant for quantum gravity.

At this point it is advisable to start from the most basic concepts, for example, it is

interesting to observe how the notion of equality can be generalized [105]. In a set, two

elements can be equal or not equal. However, a set is a decategorification of a category

that includes also morphisms. So, when the idea of equality extends to objects in a

category the situation becomes somehow different. Two objects in a category can be

• the same

• isomorphic

• isomorphic by a canonical (given) isomorphism

It turns out that only the third possibility is the correct generalization and constitutes

the analogue of the equality of elements in a set. In this sense, when we say “a=b” what

we actually mean, in the language of categories, is that there exists a specific isomorphism

φ : a → b. We therefore observe that objects in general do not stand alone. There are

always somewhere, some morphisms implied when we speak in terms of categories. It

is extremely important to notice this mainly because the most natural conclusion then,

is that the information related to certain objects (even physical objects) is not always

encoded exclusively in their internal structure but also in the way in which they can

be mapped into other objects or in the way they relate with the framework where they

are being analyzed. This idea became part of my work on the missing information in

black holes thermodynamics [53]. In order to continue this discussion let me define the

products of objects from a categorial perspective. We call a product of two objects a

and b in a category C a triple (Π, p, q) where Π ∈ C is an object and p ∈ HomC(Π, a),

q ∈ HomC(Π, b) are maps such that for any x ∈ C the function

HomC(x,Π) 3 φ→ (p ◦ φ, q ◦ φ) ∈ HomC(x, a)×HomC(x, b) (4.2)

As can be seen from the above construction, it is important to observe that the object

given as the product of two other objects is not sufficient to determine the actual exis-

tence of a product of two objects in a categorial sense. Maps from the product object
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to the objects that combine in order to generate the object must also exist. Moreover,

these maps must be categorial morphisms and must obey certain rules.

As an example take C = Sets, the category of sets, and the product of sets Π = a × b
together with the projections p, q which satisfy the required property. We can see that

the categorial notion of a product is just the abstract formulation of properties of a

product of sets. One could naively expect that a product of a and b should be a specific

object built from a and b. However, this is not the categorial meaning of the notion. For

two given a and b there can exist many triples (Π, p, q) satisfying the product property.

However, any two such triples (Πi, pi, qi) , with i = 1, 2 are related by a canonical

isomorphism φ : Π1 → Φ2 provided by the defining property of the product.

When we say “Π is a product of a and b” we abuse the language. We must always

remember that there exists the additional data p and q. What we did above can be

generalized into a standard construction of an object defined by a universal property.

In this case the universal property is that a map into a product is the same as a pair

of maps into a and b. We also can think of the property as an object co-representing a

functor.

A functor is another important concept in category theory. Essentially it maps one

category into another in the same way in which a morphism maps one object into

another. However, because of the fact that categories also contain morphisms, a functor

is in some sense a more general construction that also maps morphisms into morphisms.

A more formal definition is as follows:

4.2 Definition

Let C and D be categories. A functor F from C to D is a mapping that connects

each object from the first category to an object from the second category. Due to the

structure of categories (they also contain morphisms) a functor must associate to each

morphism in the first category another morphism in the second category such that the

identity in the first category is mapped into the identity in the second category and the

composition of morphisms becomes the composition of the morphisms transformed by

the functor.

Some functors turn morphisms around and reverse compositions. These are called con-

travariant functors and they satisfy the following properties

• to each object X ∈ C a contravariant functor associates an object F (X) ∈ D

• to each morphism f : X → Y ∈ C a contravariant functor associates a morphism

F (f) : F (Y )→ F (X) ∈ D such that
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– F (idX) = idF (X) for every object X ∈ C

– F (g ◦ f) = F (f) ◦ F (g) for all morphisms f : X → Y and g : Y → Z

In other words a contravariant functor is a covariant (normal) functor on the opposite

category CO.

In our case, Π corepresents a contravariant functor C 3 x → F (x) = HomC(x, a) ×
HomC(x, b) ∈ Sets in the sense that the functor F is identified with the functor

Hom(∗,Π) that one gets from Π.

In general an object defined by some universal property P is

• not really a single object but a system of various objects related by compatible

isomorphisms

• each of these objects does not come alone but is supplied with some additional

data consisting of some morphisms such as p and q above

• a product of two objects a and b in a given category C need not exist

The next structure I wish to introduce is the sum. We can define the sum of the objects

a and b in C as the triple (Σ, i, j) where Σ ∈ C is an object while i ∈ HomC(a,Σ),

j ∈ HomC(b,Σ) are maps such that for any x ∈ C the function

HomC(Σ, x) 3 φ→ (φ ◦ i, φ ◦ j) ∈ HomC(a, x)×HomC(b, x) (4.3)

is a bijection.

In Sets the sums exist and the sum of two objects a and b is the disjoint union a t b.
We can also discuss about sums and products of families of objects. Like for the case

of two objects, a product in C of a family of objects ai ∈ C, i ∈ I is a pair (P, (pi)i∈I)

where P ∈ C and pi : P → ai are such that the map

HomC(x, P ) 3 φ→ (pi ◦ φ)i∈I ∈ Πi∈IHomC(x, ai) (4.4)

is a bijection. A sum of ai ∈ C, i ∈ I is a pair (S, (ji)i∈I) where jiai → S gives a

bijection

HomC(S, x) 3 φ→ (φ ◦ ji)i∈I ∈ Πi∈IHomC(ai, x) (4.5)

The notation becomes ti∈Iai or ⊕i∈Iai.

4.3 Lemma For a ring K the category m(K) has sums and products.
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• The product Πi∈IMi is (as a set) just the product of sets, so it consists of all

families m = (mi)i∈I with mi ∈Mi, i ∈ I.

• The sum ⊕i∈Iai happens to be the submodule of Πi∈IMi consists of all finite

families m = (mi), i ∈ I, i.e. families such that mi = 0 for all but finitely many

i ∈ I.

Categorial thinking allows to extend the notion of limit from analysis to many other

regions [106]. This generalization is often indispensable. In some instances it is clear

what a limit of a family of objects means. Consider for example a sequence of increasing

subsets

A0 ⊆ A1 ⊆ ... (4.6)

of a set A. We can say that its limit limAi is the subset
⋃
i≥0Ai of A. Similarly, the

limit of a decreasing sequence of subsets

B0 ⊇ B1 ⊇ ... (4.7)

of A will be the subset limBi =
⋂
i≥0Bi of A. Now we give a precise meaning to the

constructions corresponding to these two examples

4.4 Definition (Inductive limits) An inductive system of objects of C over a partially

ordered set (I,≤) consists of

• a family of objects ai ∈ C, i ∈ I and

• a system of maps φji : ai → aj for all i ≤ j in I

such that

• φii = 1ai , i ∈ I and

• φkj ◦ φji = φki when i ≤ j ≤ k.

Its inductive limit is a pair (a, (ρi)i∈I) of an object a ∈ C and a system of maps ρi :

ai → a, i ∈ I such that

• ρj ◦ φji = ρi for i ≤ j and moreover

• (a, (ρi)i∈I) is universal with respect to this property in the sense that for any

(a′, (ρ′i)i∈I) that satisfies ρ′j ◦ φji = ρ′i for i ≤ j, there is a unique map ρ : a → a′

such that ρ′i = ρ ◦ ρi, i ∈ I.
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Informally we write lim→I ,≤ai = a.

4.5 Definition (Projective limits) A projective system of objects of C over a partially

ordered set (I,≤) consists of

• a family of objects ai ∈ C, i ∈ I and

• a system of maps φij : aj → ai for all i ≤ j in I

such that

• φii = 1ai , i ∈ I and

• φij ◦ φjk = φik when i ≤ j ≤ k.

Its limit is a pair (a, (σi)i∈I) of an object a ∈ C and a system of maps σi : a→ ai, i ∈ I
such that

• φji ◦ σj = σi for i ≤ j and moreover

• (a, (σi)i∈I) is universal with respect to this property in the sense that for any

(a′, (σ′i)i∈I) that satisfies φij ◦ σ′j = σ′i for i ≤ j, there is a unique map σ : a′ → a

such that σ′i = σi ◦ σ, i ∈ I.

Informally we write lim←I ,≤ai = a. It is obvious now that limits are functorial.

In order to understand the next concepts, a definition of what a natural transformation

of functor is, appears to be necessary. Given a functor F : A → B which transforms

under a natural transformation η into another functor G : A → B, we can say that the

natural transformation η consists of maps ηa ∈ HomB(Fa,Ga), a ∈ A such that for any

map α : a′ → a′′ ∈ A the following diagram commutes

F (a′) F (a′′)

G(a′) G(a′′)

ηα′

F (α)

η(α′′)

G(α)

(4.8)

meaning ηα′′ ◦ F (α) = G(α) ◦ ηα′ . This means the map η relates values of functors on

objects in a way compatible with the values of functors on maps. Any such natural

choice of maps ηa will also be compatible in this sense [107].
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Another very important concept is the one of adjoint functors [107]. In general an adjoint

pair of functors is a pair of functors of the form (A
F−→ B,B

G−→ A) together with the

natural identifications

ζa,b : HomB(Fa, b)
∼=−→ HomA(a,Gb), a ∈ A, b ∈ B (4.9)

Here “natural” means that ζ is a natural transformation of functors ζ : HomB(F−,−)→
HomA(−, G−) from Ao × B to Sets. Identification means here that each function ζa,b

is a bijection. We say that F is the left adjoint of G and that G is the left adjoint of F

i.e. in the identity of homomorphisms F appears on the left in Hom and G on the right

[107]. If one considers the functors φ∗M = l ⊗K M and φ∗N = N we have canonical

morphisms of functors

α : φ∗φ
∗ → 1m(l) φ∗ ◦ φ∗(N) = l ⊗K N

αN−−→ N = 1m(l)(N)

β : 1m(K) → φ∗ ◦ φ∗, φ∗ ◦ φ∗(M) = l ⊗KM
βM←−−= 1m(M)(M)

For any functor F : A → B there exists a unity 1F : F → F with (1F )a = 1Fa : Fa→ Fa.

For three functors F,G,H from A to B one can compose morphisms µ : F → G and

ν : G → H such that they become ν ◦ µ : F → H. Given two categories A and B the

functors from A to B form a category Funct(A,B).

4.6 Lemma

Functors (φ∗, φ
∗) form an adjoint pair i.e. there is a canonical identification

Homm(l)(φ∗M,N)
ηM,N−−−→ Homm(K)(M,φ∗N),M ∈ m(K), N ∈ m(l) (4.10)

If l ⊗K M
σ−→ N , M

τ−→ N , then Homm(l)(l ⊗K M,N)
ηM,N−−−→ Homm(K)(M,N) by

η(σ)(m) = σ(1⊗m) and η−1(τ)(c⊗m) = cτ(m),m ∈M, c ∈ l.

The morphisms of functors φ∗ ◦ φ∗
α−→ 1m(l) and φ∗ ◦ φ∗

β←− 1m(K are the same with

the isomorphisms Homm(l)(φ∗∗, ∗)
η−→ Homm(K)(∗,φ∗∗) i.e. two alternative but equivalent

ways of describing adjointness.

It is often the case that an adjoint pair appears as consisting of an obvious functor A

with an adjoint B which is an interesting construction. This last interesting construction

B is related to the original simple functor A hence the properties of B can be derived

from the properties of the original simpler construction A.

In general we call forgetful functors, those functors that drop a part of the structure

of an object. Standard constructions that add to the structure of an object are often

adjoints of forgetful functors. At this moment we have the basics of categorial theory
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and we defined what is generally understood by “categorial language”. In what follows

I will focus more on the actual subject of this subsection.

Homological algebra is, as its name already says, the algebra of homologies. The goal

of this relatively new mathematical subdomain is to capture the information about a

class of objects in terms of smaller or better behaved subclasses [108]. One problem of

homological algebra is the construction of a dual for a module over a ring [109]. I will

use this problem in order to construct a basic introduction to the goals of homological

algebra.

It is known that the construction of a dual vector space over a field equally makes sense

for modules over any ring [110]. This is so because we do not need all the operations

defined for a field in order to define the dual of modules. However, the simple notion of

duality is not very useful since it does not have the standard properties of the duality for

vector spaces. In order to generalize the concept of duality we make the easy observation

that the basic notion of duality still works well for some modules: the free modules. A

free module is a module with a basis. In the same way, a free group is a group on

which we can define a basis. The important and non-trivial observation is that any

module can be represented (described) in terms of finitely generated free modules. This

is achieved by the notion of a resolution. The correct notion of duality is then obtained

by applying the naive duality not directly to the module but instead to its resolution,

i.e. to a description in terms of free modules. The effect is that all computations are

done with free modules and hence the new duality has the same properties as those of

the old naive one.

Replacing modules by resolutions is done by passing from modules to complexes of

modules [111]. These complexes represent a “larger world” [112] where we can find all

the hidden parts of the naive constructions. There are two steps:

• abelian groups are thought as complexes in degree 0.

• some complexes are identified i.e. a module should be identified with its resolution

These steps mean that we change twice the categories in which we calculate:

m(K)
(1)−−→ C∗(m(K))

(2)−−→ D(m(K)) (4.11)

We start in the category of K-modules m(K) and expand to the category of complexes

of K-modules C∗(m(K)) and then we pass to a more subtle derived category D(m(K))

of K-modules.
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The first step allows to think of any K-module in terms of particularly nice modules (say

free modules). The second step introduces the optimal setting D(m(K)) which makes

the identification of the right complexes exact.

Some of the more interesting classes of rings K are

• fields such as Q, R, C or the finite fields Fq with q elements

• Z related to number theory

• smooth functions C∞(M) on a manifold M related to differential geometry

• polynomial functions O(An) = C[x1, ..., xn] related to algebraic geometry

• Differential operators DM on M related to linear differential operators

Let d be the naive notion of duality. One can define it as follows

4.7 Definition

The dual of a left K-module M is the space d(M) = M∗ of linear functionals

M∗ = HomK(M,K) =

{f : M → K; f(cm) = cf(m); f(m′ +m′′) = f(m′) + f(m′′), c ∈ K,m,m′,m′′ ∈M}
(4.12)

The duality construction is a functor i.e. it is defined not only on K-modules but also on

maps of K-modules; the dual of f : M1 →M2 is the adjoint map d(f) = f∗ : M∗2 →M∗1 ,

f∗(ν)m =< ν, fm >, m ∈M1, ν ∈M∗2 .

4.8 Lemma(biduality)

For M ∈ ml((K)) the canonical map iM : M → (M∗)∗ is well defined by iM (m)(λ) =<

λ,m >, m ∈M , λ ∈M∗.

4.9 Lemma If K is a field and M ∈ mfd(K) (i.e. M is a finite dimensional vector space

over K) the biduality map iM is an isomorphism.

This last lemma is what we know generally about duality. However this is valid only

for fields. We ask here how can this be true for modules over any ring K. In general

biduality is not always an isomorphism and now we distinguish a class of modules for

which the isomorphism condition is preserved. We start with M = K.

4.10 Lemma

For the module KK ∈ ml(K) (KK is the left module via the left multiplication):
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• The map that assigns to a ∈ KK the operator of right multiplication

Ra :K K→K K,

where by definition x = xa, gives an isomorphism of rightK-modulesKK
R−→ (KK)∗.

• iKK is an isomorphism.

If we try to further extend these notions we get a nice class of modules for which

M
∼=−→ (M∗)∗.

4.11 Proposition

iM is an isomorphism for any finitely generated free K-module.

4.12 Lemma For two K-modules P and Q

• (P ⊕Q)∗ ∼= P ∗ ⊕Q∗

• the map iP⊕Q is an isomorphism iff both iP and iQ are isomorphisms

We observe that the duality operation M →M∗ is not very good for arbitrary modules

M of any ring K. Even when K is a field, biduality is an isomorphism only for the

finite dimensional vector spaces. Therefore for a general K the duality can have best

properties only on the subcategory mfg(K) of finitely generated K-modules. A more

important problem appears when for example K = Z, the ring of integers and M = Zn
is a torsion module. For K = Z, the category of Z-modules is just the category of

abelian groups: m(Z) = (Ab). So, we have the notion of a dual of an abelian group

M∗ = HomAb(M,Z). However for M = Zn = Z/nZ one has M∗ = 0 so the duality

loses all the information. On this example it is possible to develop the strategy of

describing modules in terms of a subclass of free modules behaving well under duality.

Now we will see how to go from Zn to its resolution P ∗. We know that biduality works

for the abelian group M = Z and Zn is clearly related to Z. The quotient map Z q−→ Zn
relates Zn to Z however it does not tell the whole story. The difference between Zn and

Z is the kernel Ker(q) = nZ. However the inclusion nZ ⊆ Z captures the definition of

Zn as Z/nZ and since the abelian group nZ is isomorphic to Z by Z 3 x→ nx ∈ nZ we

will replace nZ by Z in this map. Then it becomes the multiplication map Z n−→ Z. Now

we can think of Zn as encoded in the map Z n−→ Z. For a more complicated K-module

such encoding will be more complicated, the proper setting will turn out to require to

think of Z n−→ Z as a complex P ∗ = (... → 0 → Z n−→ Z → 0 → ...) with Z in degrees
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−1 and 0. I showed that we can pass from Zn to a complex P ∗. Now we need to know

how to dualize it. In what follows I will present the duality operation on complexes.

Let C∗ = (... → C−1 → C0 → C1 → ...) be a complex of K-modules. Its dual is dC∗

obtained by applying d to the constitutive modules and maps. Since d is contravariant

(i.e. it changes directions) the indexing will also change. As a result (dC∗)n = d(C−n)

and dndC∗ is the adjoint of d−n−1
C∗ . In order to calculate dP ∗ we need

4.13 Lemma

• K-linear maps between left modules Kr and Ks can be described in terms of right

multiplication by matrices. Precisely if we denote for A ∈ Mr,s(k) by RA the

right multiplication operator Kr 3 x → xA ∈ Ks on row-vectors, then Mrs
R−→

HomK(Kr,Ks) is an isomorphism.

• The adjoint of RA is the left multiplication LAtr with the transpose of A (acting

on column vectors).

Biduality is an isomorphism on complexes over the subcategory of complexes over

mfg,free(K) ⊆ m(K). Let P = mfg,free(K) be the category of all free finitely gener-

ated K-modules.

The biduality map iC∗ is an isomorphism for any complex C∗.

On K-modules we define the left derived duality operation Ld by Ld(M) = dP ∗ for any

resolution P ∗ of M by free modules.

Lets see what this means for K = Z and M = Zn. When we identify dZ with Z then the

adjoint of the map Z n−→ Z is again Z n−→ Z. From the point of view of complexes this

says that dP ∗ is the complex ... → Z n−→ Z → 0 → ... but this time Z are in degrees 0

and 1. So dP ∗ ∼= P ∗[−1] where one denotes by C∗[n] the shift of the complex C∗ by n

places to the left. It is natural to identify any module N with a complex denoted also

by N which has N in degree 0 and all other terms zero. So, since we have also identified

Zn with P ∗ we should identify the derived dual Ld(Z) = dP ∗ ∼= P ∗[−1] with Z[−1].

So Ld(Zn) = Zn[−1] = the shift of Zn by one to the right. This is the complex which

has Zn in degree 1 and all other terms zero. The derived dual of Zn is not a module

but a complex in degrees ≥ 0. The fact that H0[Ld(Zn)] = 0 corresponds to the fact

that the naive definition of the dual gives d(Z) = 0. So the simple definition does not

see the hidden part of the dual which is H1[Ld(Zn)] = Zn. Since the computation of

the derived dual is in the setting of complexes of free finitely generated modules, the

biduality works, hence the canonical map Zn → (Ld)(Ld)(Zn) is an isomorphism.
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We can repeat for any module M what we have been able to do for Zn. We wish to

describe a module M in terms of maps between some nicer modules Pn.

A complex of K-modules C∗ = (...→ C−1 → C0 → C1 → ...) is said to be exact if all of

its cohomologies vanish i.e. if the inclusion Bn ⊆ Zn becomes equality.

We call a left resolution of a module M the exact complex

...→ P−2
−2 → P−1

−1 → P 0
0

q−→M1 → 0→ ... (4.13)

The lower indices are the positions in the complex.

The complexes form a category. The morphisms are of the form f : A∗ → B∗. There

exist a system of maps fn of the corresponding terms in complexes which preserve the

differential in the sense that in the diagram

... A−2 A−1 A0 A1 ...

... B−2 B−1 B0 B1 ...
(4.14)

all squares commute. This means that any two possible ways of following arrows gives

the same result. Now we have a category of complexes of K-modules C∗[m(K)]: objects

are complexes and morphisms are maps of complexes.

4.14 Lemma This construction forms a category and the constructions Zn, Bn and Hn

are functors from C∗(m(K)) to m(K).

To each module M we can associate a very simple complex M# which is M in degree 0

and zero in other degrees (so all maps are zero).

4.15 Lemma This gives a functor

m(K)→ C∗(m(K)),M →M# (4.15)

which is fully faithful i.e. m(K) is a full subcategory of C∗(m(K)).

We can see resolutions as maps of complexes. We can also use the terminology “resolu-

tion” for the equivalent data of a complex P ∗ = (... → P−2 → P−1 → P 0 → 0 → ...)

together with the map q : P0 → M . We can now think of resolutions in terms of com-

plexes by looking at the map q as a morphism of complexes
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... P−2 P−1 P 0 0 ...

... 0 0 M 0 ...
(4.16)

It remains to encode the exactness of ... → P−1 → P 0 → M → 0 → ... in terms of

complexes. For this we introduce the following

4.16 Definition(Quasi-isomorphisms) We say that a map of complexes f : A∗ → B∗

is a quasi-isomorphism if the induced maps of cohomology groups Hn(f) : Hn(A∗) →
Hn(B∗), n ∈ Z are all isomorphisms.

4.17 Lemma A left resolution of M is the same as a quasi-isomorphism of complexes

P ∗ →M# such that P i = 0 for i > 0.

Proof See appendix.

Now it is clear how to define a right resolution: as a quasi-isomorphism of complexes

M# → I∗ such that Ii = 0 for i < 0. A free resolution of M is a resolution P ∗ such that

all P i are free K-modules.

4.18 Lemma Any module M has a free resolution.

There is a free module F and a surjective map F → M (a free cover of M). For this

we choose any set G ⊆ M of generators of M (for instance G = M) and let F be a free

K−module with the basis G. Let P 0 q−→M be the map F →M . If q has no kernel we are

ready. We can choose P k = 0, k < 0. Otherwise we use again the previous observation

to choose a free cover P−1 → Ker(q), then ∂−1 is the composition P−1 → Ker(q) ⊆ P 0.

If we now want to make the definition of the derived version of duality

Ld(M) = d(P ∗) P ∗ ∈M (4.17)

completely correct we have to deal with two problems

• show the existence of a free resolution P ∗ of M

• show the independence of the choice of a free resolution P ∗

The first part is relatively simple. For the second one, remember that a resolution is a

quasi-isomorphism P ∗ → M#. Our problem would disappear if the quasi-isomorphism

were an isomorphism since we would be replacing M# with an isomorphic object. So,
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our problem will be resolved if we can find a setting in which all quasi-isomorphisms

in C∗(m(K)) become isomorphisms. Such settings exist and are the so called derived

category of K-modules D(m(K)).

The passage from C∗(m(K)) to D(m(K)) requires inverting all quasi-isomorphisms in

C∗(m(K)). This can be done either by an universal abstract construction of inverting

morphisms in a category or by using some convenient subcategory of m(K). Both are

useful in applications.

Finally I will introduce another basic result in homological algebra. Essentially its

prove is by diagram chasing and it represented a good exercise for practicing the above

concepts. It also will be used in the discussion about the universal coefficient theorem.

4.19 Lemma(Snake Lemma) In an abelian category (such as the category of abelian

groups or the category of vector spaces over a field), if we consider the following com-

muting diagram

A B C 0

0 A′ B′ C ′

f

a

g

b c

f ′ g′
(4.18)

with the rows exact, then there is an exact sequence relating the kernels and cokernels

of a, b and c

Ker(a)→ Ker(b)→ ker(c)
d−→ CoKer(a)→ CoKer(b)→ Coker(c) (4.19)

If the morphism f is a monomorphism then so is the morphism Ker(a) → Ker(b) and

if g′ is an epimorphism then so is CoKer(b)→ CoKer(c).

The idea of derived category is extremely relevant in various regions of mathematics

and physics. The derived category D(A) may have more important properties that the

category A we started with. One case is when we have pairs of very different categories

A and B such that their derived categories D(A) and D(B) are canonically equivalent.

For example A and B could be the categories of graded modules for the symmetric

algebra S(V ) and the exterior algebra ∧∗V ∗ for dual vector spaces V and V ∗. There are

other examples like the relation between linear differential equations and their solutions,

mirror symmetry, etc.
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Connections: Topology and

Analysis

“ ‘But I don’t want to go among mad people’, Alice remarked.

‘Oh, you can’t help that’, said the Cat: ‘we’re all mad here. I’m mad. You’re mad.’

‘How do you know I’m mad?’ said Alice.

‘You must be,’ said the Cat, ‘or you wouldn’t have come here’. ”

Lewis Carroll, Alice in Wonderland

It is important to note that topology does not stand alone [113]. It strongly interferes

with geometry and through it with analysis [114]. In order to explain this connection I

will discuss a set of results, starting with the standard Riemann-Roch Theorems [115]

and going to the results of Grothendieck [116] and Atiyah-Singer [117]. The Riemann-

Roch theorem is historically the first in a set of results relating complex geometry and

topology [118]. It deals with the computation of the dimension of the space of mero-

morphic functions which have a set of predefined zeroes and several poles of given order.

I remind the reader that a meromorphic function [119] is a function that can be writ-

ten as the fraction of two holomorphic functions. A holomorphic function is a complex

function that is differentiable in a neighborhood of any point in its domain. This means

that a holomorphic function is infinitely differentiable and equal to its own Taylor series.

Hence, a meromorphic function has all the properties of a holomorphic function except

for a set of isolated points which are the zeroes of the denominator function. This is

the set of its poles. The meromorphic function itself must be describable by a Laurent

series in each of the poles.

The Riemann-Roch theorem links the complex analysis of compact Riemann surfaces

with some of the associated topological properties like the topological genus [120]. The

50
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initial form for this theorem was proved by Riemann [121] back in the year 1857. At

that moment it was given in the form of an inequality as

5.1 Theorem Let X be a Riemann surface of genus g, then

dim(L(D)) ≥ deg(D) + 1− g (5.1)

where here L(D) is the space of meromorphic functions with poles bounded by a divisor

D.

Gustav Roch, one of Riemann’s students gave to this theorem its final form [122], elim-

inating the inequality and showing what the so called “error term” was:

5.2 Theorem Let S be a Riemann surface of genus g. Then for any divisor D and any

canonical divisor K we have

dim(L(D))− dim(L(K −D)) = deg(D) + 1− g (5.2)

For the beginning, a good definition of the notion of a divisor is required. In the case

of 1-dimensional complex manifolds (or Riemann surfaces), the divisors [123] are the

elements of the free abelian group over the points of the surface. One can otherwise

say that the divisor is a finite linear combination of points of the surface with integer

coefficients [124]. We call the sum of the coefficients of a divisor the degree of the divisor

and we note it deg(D). Given a meromorphic function f the divisor of it is defined as

(f) =
∑

zv∈R(f)

svzv (5.3)

Here R(f) is the set of all zeroes or poles of the meromorphic function f and sv is given

by sv =
{ a if zv is a zero of order a

−a if zv is a pole of order a

Hence one can see that the divisor of a meromorphic function is described on one side

in terms of the poles and zeroes of that function on the underlying Riemann surface

and on the other side in terms of the orders of these poles and zeroes. Because of

this, the divisors are important in characterizing the functions in terms of their poles

and zeroes and the respective degrees. It appears only natural to think that there is a

connection between divisors of a Riemann surface and its topology. This idea connects

finally the information encoded in the poles and zeroes of a meromorphic function with

the topology of the surface on which it is constructed.
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In order to clarify the scope of these results I will review here some notions about

algebraic curves [124]. These are an important type of Riemann surfaces. One reason

for their importance is the fact that we can construct a meromorphic function X from a

finite number of points in X together with the tails of Laurent series such that at each

of these points the Laurent series of the function starts with one of these tails. Also,

given an algebraic curve, one can always find a non-constant meromorphic function on

it. Let f be a non-constant meromorphic function on an algebraic curve X. Then one

can also consider the field C(f) of rational expressions of f with coefficients in C, which

is a subfield of the fieldM(X) of meromorphic functions on X. One can use the Laurent

series approximation theorem in order to compute the degree of the extensionM/C(f).

But let me first make the previous definitions more exact. I will follow for the rest of this

chapter mostly reference [125]. The presentation there can be completed with original

texts, like [126]-[129].

We call a function f : X → C meromorphic at p ∈ X if it is either holomorphic, has a

removable singularity or has a pole at p.

Given a function D : X → Z on a Riemann surface X, the set of all p such that D(p) 6= 0

is called the support of D. A divisor on X is a function D : X → Z whose support is a

discrete subset of X.

A divisor can be denoted as

D =
∑
p∈X

D(p)p (5.4)

In the case of a meromorphic function f : X → C, the divisor is defined by the order

function

(f) =
∑
p∈X

ordp(f).p (5.5)

The divisor of poles of f is

(f)∞ =
∑

p, ordp(f)<0

(−ordp(f)).p (5.6)

We call a divisor “effective”[125], [126] if all the coefficients in its formal sum are non-

negative. With this definition we can write D ≥ D′ if the formal difference D − D′ is

effective. The term ordp(f) is a valuation of the function f at the point p. A valuation

gives a measure of the multiplicity of elements in a field. Here, the notion is related

to the poles and zeroes of meromorphic functions. There the valuation is given by the

degree of a pole or the multiplicity of a zero. However, this concept can be generalized

considerably. For example the degree of divisibility of a number by a prime number in

number theory is also a valuation associated to that number. The geometric concept of



Chapter 5. Connections: Topology and Analysis 53

contact between two algebraic or analytic varieties is also an analogue in the context of

algebraic geometry. Let M(X) be the field of meromorphic functions on X. The space

of meromorphic functions with poles bounded by D is given by the following expression

representing the set of meromorphic functions

L(D) = {f ∈M/(f) ≥ −D} (5.7)

where (f) ≥ −D means in fact (f)(p) ≥ −D(p) for every p ∈ D.

5.3 Proposition Let X be a compact Riemann surface and let D be a divisor on

X. Then the space L(D) is a finite dimensional complex vector space. When we write

D = P−N , with P and N nonnegative divisors with disjoint supports then dim(L(D)) ≤
1 + deg(P ). In particular, if D is a nonnegative divisor then

dim(L(D)) ≤ 1 + deg(D) (5.8)

One defines a meromorphic differential [127] on an open set V ⊆ C as an expression

of the form ω = f(z)dz where f is a meromorphic function on V . Let ω1 = f(z)dz

and ω2 = g(w)dw two meromorphic differentials defined on V1 and V2. Let T be a

holomorphic function from V2 to V1. It is said that ω1 transforms to ω2 under T if

g(w) = f(T (w))T ′(w) (5.9)

If X is a Riemann surface, a meromorphic 1-form on X is a collection of meromorphic

differentials (ωφ), one for each chart φ : U → V defined on V such that if two charts

φ1 : U1 → V1 and φ2 : U2 → V2 have overlapping domains then ωφ1 transforms to ωφ1

under the transition function φ1 ◦ φ−1
2 . The notion of holomorphic 1-form is defined

analogously. Given a meromorphic 1-form ω on X for each p choose a local coordinate

zp centered at p. We may write ω = f(zp)dzp where f is a meromorphic function at

z = 0. The order of p denoted by ordp(ω) is the order of the function f at zp = 0. One

can express ω via the Laurent series of f in the coordinate zp

ω = f(zp)dzp = (

∞∑
n=−M

cnz
n
p )dzp (5.10)

where c−M 6= 0 so that ordp(ω) = −M . The residue of ω at p, denoted by Resp(ω) is

the coefficient c−1 in a Laurent series for ω at p. One can then state the following
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5.4 Theorem(The residue Theorem) Let ω be a meromorphic 1-form on a compact

Riemann surface X. Then ∑
p∈X

Resp(ω) = 0 (5.11)

The divisor of ω denoted by (ω) is the divisor defined by the order function

(ω) =
∑
p

ordp(ω).p (5.12)

Any divisor of this form is called a canonical divisor.

5.5 Proposition If X is a compact Riemann surface of genus g which has a non-constant

meromorphic function then there is a canonical divisor on X of degree 2g − 2.

If we consider that we have a divisor D on X the space of meromorphic 1-forms with

poles bounded by D, denoted L(1)(D) is the set of meromorphic 1-forms

L(1)(D) = {ω/(ω) ≥ −D} (5.13)

L(1)(D) is a complex vector space. The space of holomorphic 1-forms can be written

as L(1)(0) = Ω(X). The relation between the spaces L(−) and L(1)(−) is given by the

following

5.6 Proposition Let D be a divisor on X and let K be a canonical divisor on X. The

spaces L(1)(D) and L(D +K) are isomorphic.

In what follows I will prove the Laurent series approximation. We can always find a

meromorphic function g on X such that ordp(g) = 1. Then if we set f = gN we get the

following

5.7 Lemma Let X be an algebraic curve and let p ∈ X. Then for any integer N there

is a global meromorphic function f on X with ordp(f) = N .

A Laurent polynomial r(z) =
∑m

i=n ciz
i is called a Laurent tail of a Laurent series h(z)

if the Laurent series starts with r(z).

5.8 Lemma Let X be an algebraic curve. Fix a point p ∈ X and a local coordinate z

centered at p. Fix any Laurent polynomial r(z) in z. Then there exists a meromorphic

function f on X whose Laurent series at p has r(z) as a Laurent tail.

5.9 Lemma Let X be an algebraic curve. Then for any finite number of points

p, q1, ..., qn in X there is a meromorphic function f on X with a zero at p and a pole at

each qi.
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5.10 Lemma Let X be an algebraic curve. Then for any finite number of points

p, q1, ..., qn in X and any N ≥ 1 there is a global meromorphic function f on X with

ordp(f − 1) ≥ N and ordqi(f) ≥ N for each i.

5.11 Theorem (Laurent Series Approximation) Suppose X is an algebraic curve. Fix a

finite number of points p1, ..., pn in X, choose a local coordinate zi at each pi and finally

choose Laurent polynomials ri(zi) for each i. Then there is a meromorphic function f

on X such that for every i, f has ri as a Laurent tail at pi.

5.12 Corollary Let X be an algebraic curve. Fix a finite number of points pi, ..., pn in

X and a finite number of integers mi. Then there exists a meromorphic function f on

X such that ordp(f) = mi for each i.

In what follows I will prove the Riemann-Roch theorem for algebraic curves and present

two possible generalizations: the Hirzebruch Riemann Roch theorem and the Grothendieck

Riemann Roch [128] theorem. In order to do this I will start with the study of the so

called Laurent tail divisors. These are a set of sums that can be related to ordinary

divisors via an operation called “truncation”. In this way it is possible to define a

group T [D](X) where X is an algebraic curve formed by Laurent tail divisors that are

bounded by a divisor D. It is also possible to relate meromorphic functions to Laurent

tail divisors. Every meromorphic function has a corresponding element in T [D], the

correspondence being made via a group homomorphism αD :M(X) → T [D](X). This

map is important for the Riemann-Roch theorem. This theorem gives us a formula to

compute the dimension of the space L(D) which turns out to be the kernel of the homo-

morphism αD. It is possible to prove a very important result called the Serre Duality

in order to give a way to compute the dimension of the cokernel of αD. In this way I

can obtain a refined version of the Riemann-Roch theorem which allows the calculation

of the dimension of L(D) in terms of the degree of D and the genus of X only. In order

to start let X be a compact Riemann surface. For each point p ∈ X choose a local

coordinate zp centered at p. A Laurent tail divisor on X is a finite formal sum of the

form ∑
p

rp.p (5.14)

where rp(zp) is a Laurent polynomial in the coordinate zp. The set of Laurent tail divisors

forms a group under formal addition, denoted T . There are some special subgroups

of T (X): for any divisor D, we can define T [D](X) as the set of all finite formal

sums
∑

p rp.p such that for all p with rp 6= 0 the top term of rp has degree strictly

less than −D(p). Note that T [D](X) is a subgroup of T (X). I shall construct group

homomorphisms concerning the previous groups. Let there be a Laurent tail divisor
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∑
p rp.p and a divisor D. At every point p we have

rp(zp) =

mp∑
i=np

api z
i
p (5.15)

Let iD be the smallest integer between np and mp such that iD + 1 ≥ −D(p). We can

define a truncation of rp(zp) as

mp∑
i=np

api z
i
p →

iD∑
i=np

api z
i
p (5.16)

This mapping defines a group homomorphism

tD : T → T [D](X) (5.17)

that sends each
∑

p rp.p to
∑

p r̂p.p where r̂p denotes the truncation of rp whose top

term is the largest integer between np and mp strictly smaller than −D(p). In other

words, tD is defined by removing from each rp(zp) those terms of degree greater or

equal to −D(p). Now suppose we have two divisors D1 and D2 such that D1 ≤ D2 or,

equivalently, D1(p) ≤ D2(p) for every p ∈ X. Then −D2(p) ≤ −D1(p) for every p ∈ X.

Let
∑

p rp.p ∈ T [D1](X). For each p with rp 6= 0 consider the Laurent polynomial

rp(zp) =
∑mp

i=np
api z

i
p, where mp < −D1(p). Suppose there exists an integer between np

and mp greater or equal than −D2(p) and let iD2 + 1 be the smallest of such integers.

Then we can truncate rp(zp)

mp∑
i=np

api z
i
p →

iD2∑
i=np

api z
i
p (5.18)

If such an iD2 does not exist then just map
∑mp

i=np
api z

i
p to 0. This truncation defines a

group homomorphism

tD1
D2

: [D1](X)→ T [D2](X) (5.19)

defined by removing from each rp(zp) those terms of degree greater or equal than−D2(p).

We shall call the maps tD1
D2

truncation maps. Consider a meromorphic function f and

a divisor D. Let
∑

p rp.p be a Laurent tail in T [D](X). Let
∑∞

i=np
aiz

i
p be the Laurent

series of f in the coordinate zp and let rp(zp) =
∑k

j=mp
bjz

j
p. We take the product

(
∑∞

i=np
aiz

i
p)(
∑k

j=mp
bjz

j
p) =

∑∞
i=np,j=mp

aibjz
i+j
p and truncate it by removing those

terms of degree greater or equal to −D(p) + (f)(p). This gives rise to a group homo-

morphism

µDf : T [D](X)→ T [D − (f)](X) (5.20)
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mapping each
∑

p rp.p to
∑

p(frp).p where f.rp is the Laurent polynomial of the above

truncation of the series
∑

i=np,j=mp
aibjz

i+j
p . It is straightforward to check that µDf has

an inverse µ
D−(f)
1/f . Now consider again the Laurent series of f :

∑∞
i=np

aiz
i
p. Given a

divisor D there exists a smallest integer mp such that mp + 1 ≤ −D(p). Then we can

truncate the previous series and get a Laurent polynomial rp(zp) =
∑mp

i=np
aiz

i
p. This

way we get a map

αD :M(X)→ T [D](X) (5.21)

which turns out to be a group homomorphism.

5.13 Proposition (Properties of αD).

• αD commutes with the truncation maps: if D1 and D2 are divisors with D1 ≤ D2

then

M(X)
αD1−−→ T [D1](X)

t
D1
D2−−→ T [D2](X)

M(X)
αD2−−→ T [D2](X)

(5.22)

• αD is compatible with the multiplication operators: if f and g are meromorphic

functions on X then

µDf (αD(g)) = αD−(f)(f.g) (5.23)

for any divisor D.

• L(D) = Ker(αD)

The proof of this result can be found in [125]. At this moment we have a result relating

Ker(αD) = L(D). In what follows I need some results about the co-kernel coker(αD).

Now let us define

H1(D) := coker(αD) = T [D](X)/Im(αD) (5.24)

I shall prove that the space H1(D) is finite dimensional. Knowing that L(D) = ker(αD)

we have a short exact sequence

0→ L(D)→M(X)
αD−−→ T [D](X)→ H1(D)→ 0 (5.25)

Consider now the quotient space M/L(D). As αD vanishes on L(D) we can consider

the map

ᾱD :M(X)/L(D)→ T [D](X) (5.26)
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given by ᾱD(f + L(D)) = αD(f). Now it becomes clear that it is a well defined group

monomorphism. Also note that Im(ᾱD) = Im(αD) = ker(T [D](X) → H1(D)). Then

we obtain the following short exact sequence

0→M(X)/L(D)→ T [D](X)→ H1(D)→ 0 (5.27)

Now let D1 and D2 be two divisors satisfying D1 ≤ D2. Then we have a truncation map

tD1
D2

: T [D1](X) → T [D2](X). Also L(D1) ⊆ L(D2). For each Di there is a short exact

sequence as above. We shall connect these sequences constructing two homomorphisms.

• Let F :M(X)/L(D1)→M(X)/L(D2) be the map given by F (f +L(D1)) = f +

L(D2). This map is well defined. For if f−g ∈ L(D1) then (f)−(g) ≥ −D1 ≥ −D2

hence f − g ∈ L(D2). Also it is clear that F is a group homomorphism.

• Define now the map G : H1(D1) → H1(D2) by G(Z + Im(αD1)) = tD1
D2

(Z) +

Im(αD2). It is possible to check that G is well defined. Suppose Z−Z ′ ∈ Im(αD1).

Then Z − Z ′ = αD1(f) for some meromorphic function f . By the first part of the

previous proposition we have

tD1
D2

(Z)− tD1
D2

(Z ′) = tD1
D2

(Z) ◦ αD1(f) = αD2(f) ∈ Im(αD2) (5.28)

One can see that G is a group homomorphism.

5.14 Proposition The following diagram commutes

0 −−−−→ M(X)/L(D1)
ᾱd1−−−−→ T [D1](X)

γD1−−−−→ H1(D1) −−−−→ 0

F

y t
D1
D2

y G

y
0 −−−−→ M(X)/L(D2)

ᾱD2−−−−→ T [D2](X)
γD2−−−−→ H1(D2) −−−−→ 0

(5.29)

Here γD1 and γD2 are the projection maps.

Proof see ref. [125]

Let now H1(D1/D2) := ker(G). We use this diagram to show that H1(D1/D2) is finite

dimensional. This fact will be important in the proof of the finite dimensionality of

H1(D). By making use of the above diagram and the Snake Lemma we obtain the

following exact sequence

0→ ker(F )→ ker(tD1
D2

)→ ker(G)→ coker(F )→ coker(tD1
D2

)→ coker(G)→ 0 (5.30)

Observe that F is surjective. We shall see that so are tD1
D2

and G. Let Z =
∑

p rp.p ∈
T [D2](X) where rp(zp) =

∑mp
i=np

api z
i
p and mp ≥ np is the largest integer with mp <
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−D2(p) ≤ −D1(p). So Z ∈ T [D1](X) and Z = tD1
D2

(Z). Hence tD1
D2

is surjective and this

implies that so is G. On the other hand note that ker(F ) = L(D2)/L(D1). So we have

dim(ker(F )) = dim(L(D2))− dim(L(D1)) (5.31)

Now consider
∑

p rp.p ∈ ker(t
D1
D2

) where rp(zp) =
∑mp

i=np
api z

i
p. Since

∑
p a

p
i z
i
p is mapped

to 0 we have np ≥ −D2(p). Hence ker(tD1
D2

) is the space of all
∑

p rp.p such that the top

term of rp has order less than −D1(p) and the bottom term has order at least −D2(p).

At each p we have D2(p) − D1(p) possible monomials zip, −D2(p) ≤ i ≤ −D1(p) that

are linearly independent. Hence

dim(ker(tD1
D2

)) =
∑
p

(D2(p)−D1(p)) =
∑
p

(D2(p))−
∑
p

(D1(p)) = deg(D2)− deg(D1)

(5.32)

Remember that we have a short exact sequence

0→ L(D2)/L(D1)→ ker(tD1
D2

)→ H1(D1/D2)→ 0 (5.33)

Since H1(D1/D2) is a free C-module the previous sequence splits so

ker(tD1
D2

) ∼= (L(D2)/L(D1))
⊕

H1(D1/D2)→ 0 (5.34)

It follows that

dim(ker(tD1
D2

)) = dim(L(D2)/L(D1)) + dim(H1(D1/D2))

dim(H1(D1/D2)) = deg(D2)− deg(D1) + dim(L(D1))− dim(L(D2))
(5.35)

Hence it follows that H1(D1/D2) is finite dimensional. In conclusion we have

5.15 Lemma If D1 and D2 are divisors on a compact Riemann surface X with D1 ≤ D2

then

dim(H1(D1/D2)) = [deg(D2)− dim(L(D2))]− [deg(D1)− dim(L(D1))] (5.36)

5.16 Proposition For any divisor D on an algebraic curve X, H1(D) is a finite dimen-

sional vector space over C.
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5.17 Lemma Let f be a nonconstant meromorphic function on an algebraic curve X

and let D = (f)∞. Then for any large m the dimension of H1(0/mD) is constant

independent of m.

5.18 Lemma For any algebraic curve X and for any divisor A on X there is an integer

M such that

deg(A)− dim(L(A)) ≤M (5.37)

Note that the previous lemma implies that there exists a divisor A0 on X such that the

difference deg(A0)− dim(L(A0)) is maximal.

5.19 Lemma H1(A0) = 0

So far, these lemmas prove that for any two divisors D1 and D2 with D1 ≤ D2 there is

a short exact sequence

0→ H1(D1/D2)→ H1(D1)→ H1(D2)→ 0 (5.38)

of finite dimensional vector spaces where H1(D1) ∼= H1(D1/D2)
⊕
H1(D2) since this

sequence splits. It follows

dim(H1(D1/D2)) = [deg(D2)− dim(L(D2))]− [deg(D1)− dim(L(D1))] (5.39)

So we get

deg(D2)− dim(L(D2))− deg(D1) + dim(L(D1)) = dim(H1(D1))− dim(H1(D2))

dim(L(D1))− deg(D1)− dim(H1(D1)) = dim(L(D2))− deg(D2)− dim(H1(D2))

(5.40)

Now let D1 and D2 be any divisors on X and let D be a common maximum of D1 and

D2. Then

dim(L(D1))− deg(D1)− dim(H1(D1)) = dim(L(D))− deg(D)− dim(H1(D)) =

= dim(L(D2))− deg(D2)− dim(H1(D2))

(5.41)

It follows that the integer dim(L(D))−dim(D)−dim(H1(D)) is constant and it is equal

to

dim(L(0))− deg(0)− dim(H1(0)) = 1− dim(H1(0)) (5.42)
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and in consequence, putting all together we have

5.20 Theorem(The first form of the Riemann-Roch theorem) Let D be a divisor on an

algebraic curve X. Then

dim(L(D))− dim(H1(D)) = deg(D) + 1− dim(H1(0)) (5.43)

This first form of the Riemann-Roch theorem was not final. The associated formula

considered three spaces : L(D), H1(D) and H1(0). In what follows we wish to find

expressions for dim(H1(D)) and dim(H1(0)). Such expressions will be consequences of

a result called Serre Duality. This duality states that the space of meromorphic 1-forms

with poles bounded by −D, L(1)(−D) and the dual space to H1(D) are isomorphic. We

first construct a linear map L(1)(−D) → H1(D)∗ which we shall call the Residue map.

Suppose D is a divisor on X and ω a meromorphic 1-form on X in the space L(1)(−D)

such that ordp(ω) ≥ D(p) for all p ∈ X. It follows that we can write

ω = (
∞∑

n=D(p)

cnz
n
p )dzp (5.44)

in a local coordinate zp about p for each p. We define the following linear map:

Resω = T [D](X)→ C

∑
p rp.p→

∑
pResp(rp.ω)

(5.45)

Suppose f is a meromorphic function on X. Write f =
∑

k akz
k
p in the coordinate zp.

Near p we have

fω = (
∑
k

akz
k
p )(

∞∑
n=D(p)

cnz
n
p )dzp (5.46)

The coefficient of 1/zp is given by
∑∞

n=D(p) cna−n−1. So

Resp(fω) =
∞∑

n=D(p)

cna−n−1 (5.47)

The expression Resp(fω) depends only on the Laurent tail divisor αD(f) =
∑

p rp.p

since
∑∞

n=D(p) cna−n−1 depends on the coefficients ai for f with i < −D(p). Then we

have

Resω(αD(f)) =
∑
p

Resp(fω) (5.48)
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By the Residue Theorem we get Resω(αD(f)) = 0. This means that the previous map

Resω descends to a map

Resω : H1(D)→ C (5.49)

in H1(D)∗. Therefore we obtain a linear map

Res : L(1)(−D)→ H1(D)∗

ω → Resω
(5.50)

5.21 Theorem (Serre Duality) For any divisor D on an algebraic curve X the map

Res : L(1)(−D)→ H1(D)∗ (5.51)

is an isomorphism of complex vector spaces.

In what follows I will state a set of lemmas and propositions required for the under-

standing of the full Riemann-Roch theorem

5.22 Proposition

• If φ : T [D](X)→ C is a linear function that vanishes on αD(M(X)) and f is any

meromorphic function on X then φ ◦ µD+(f)
f : T [D + (f)](X)→ C is also a linear

map vanishing on αD+(f)(M(X)).

• Resω is compatible with the multiplication map µf : Suppose f is a meromorphic

function on X and ω ∈ L(−1)(−D). Then fω ∈ L(1)(−D − (f)) and

Resω ◦ µD+(f)
f = Resfω (5.52)

as functionals on T [D + (f)](X).

5.23 Lemma Suppose that φ1 and φ2 are two linear functionals on H1(A) for some

divisor A. Then there is a positive divisor C and nonzero meromorphic functionals f1

and f2 in L(C) such that

φ1 ◦ tA−C−(f1)
A ◦ µf1 = φ2 ◦ tA−C−(f2)

A ◦ µf2 (5.53)

as functionals on H1(A− C).
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5.24 Lemma Suppose that D1 is a divisor on X with ω ∈ L(1)(−D1) so that Resω :

T [D1](X) → C is well defined. Suppose that D2 ≥ D1 and that Resω vanishes on the

kernel of tD1
D2

= T [D1](X)→ T [D2](X). Then ω ∈ L1(−D2)

In order to continue now fix a canonical divisor K = (ω) for some meromorphic 1-form

ω on X. We know that L(1)(−D) and L(K−D) are isomorphic. Hence by Serre Duality

we get

dim(H1(D)) = dim(L1(−D)) = dim(L(K −D)) (5.54)

Finally we show that dim(H1(0)) = g. Let K ′ be a canonical divisor on X of degree

2g − 2 which we know to exist. By Serre Duality we have

dim(H1(0)) = dim(L(K ′ − 0)) = dim(L(K ′))

dim(H1(K ′)) = dim(L(K ′ −K ′)) = dim(L(0)) = 1
(5.55)

By the first form of the Riemann Roch theorem and the previous equality we have

dim(L(K ′))− dim(H1(K ′)) = deg(K ′) + 1− dim(H1(0))

dim(H1(0))− 1 = 2g − 2 + 1− dim(H1(0))

dim(H1(0)) = g

(5.56)

In this way we obtained a more refined form of the Riemann-Roch theorem

5.25 Theorem(Riemann-Roch) Let X be an algebraic curve of genus g. Then for any

divisor D and any canonical divisor K we have

dim(L(D))− dim(L(K −D)) = deg(D) + 1− g (5.57)

There are several generalizations of the Riemann-Roch theorem. The first is a refor-

mulation of the theorem for holomorphic line bundles. Let L be a holomorphic line

bundle on a compact Riemann surface X of genus g and let Γ(X,L) denote the space of

holomorphic sections of L. This space is finite dimensional. Let K denote the canonical

bundle on X i.e. K = Λn(T∧) where T∧ is the cotangent bundle and n = dim(X).

Now consider a general section σ : X → L. We can produce such a section by giving it

locally and then glueing it together using a partition of unity. Locally, the line bundle

L is trivial so it looks like C ×∆ → ∆ where ∆ is the open unit disk. In this picture,
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σ is just a map ∆ → C. Locally the inverse image of 0 ∈ C under the map σ : ∆ → C
has a finite number of points. Each point p ∈ X where σ intersects the zero section is

called a zero of σ. Around each such point p the section σ is a map σ : ∆ → C where

p = 0 ∈ ∆ and σ(0) = 0. The differential Tpσ : T0 → T0C is a nonsingular two-by-two

matrix. Let sgn(p) denote the sign of the determinant of this matrix. The degree of L

is defined by deg(L) =
∑

p∈X sgn(p) where the sum is over all points p where a section

σ is zero. The Riemann-Roch Theorem for holomorphic line bundles goes as follows

5.26 Theorem If L is a holomorphic line bundle on X and K is the canonical bundle

on X then

dim(Γ(X,L))− dim(Γ(X,L−1 ⊗K)) = deg(L) + 1− g (5.58)

The Hirzebruch-Riemann-Roch theorem is a result that contributes to the Riemann-

Roch problem for complex algebraic varieties of all dimensions. The theorem applies to

any holomorphic vector bundle E on a compact complex manifold X, to calculate the

holomorphic Euler characteristic of E in sheaf cohomology, namely the alternating sum

χ(X,E) = dim(H0(X,E))− dim(H1(X,E)) + dim(H2(X,E))− ... (5.59)

of the dimensions as complex vector spaces. Hirzebruch’s theorem states that χ(X,E)

is computable in terms of the Chern classes of E and the Todd classes of the tangent

bundle of X.

Let for example E be a vector bundle of rank r. We can associate to it the Chern

polynomial

c(E) = 1 + c1(E) + c2(E) + ...+ cr(E) (5.60)

and the Chern roots, which are the formal roots of c(E) i.e.

c(E) =
r∏
i=1

(1 + αi) (5.61)

The Chern character of E is then rapidly defined as

ch(E) =

r∑
i=1

eαi (5.62)
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The Chern character is symmetric in terms of the Chern roots and therefore it can be

expressed in terms of Chern classes. It is possible to show that

ch(E) = r + c1(E) +
c21(E)−2·c2(E)

2 +
c31(E)−3c1(E)·c2(E)+3c3(E)

6 +

+
c41(E)+4c1(E)·c3(E)−4c21(E)·c2(E)+2c22(E)−4c4(E)

24 + ...
(5.63)

The Chern character is a homomorphism from the Grothendieck K-group to cohomology.

In that case it satisfies

ch(E ⊗ F ) = ch(E) · ch(F ) (5.64)

This appears relatively straightforward. The Todd class is similarly defined as a formal

power series in the Chern roots

Td(E) =

r∏
i=1

αi
1− e−αi

(5.65)

It is also symmetric in the Chern roots, having an expression in terms of Chern classes

given by

Td(E) = 1 + c1(E)
2 +

c21(E)+c2(E)
12 + c1(E)·c2(E)

24

+
−c41(E)+4c21(E)c2(E)+c1(E)c3(E)+3c22(E)−c4(E)

720 + ...

(5.66)

The Todd class represents the information encoded in the tangent bundle. Otherwise

stated the Todd class of a variety is the Todd class of its tangent bundle

Td(X) = Td(TX) (5.67)

Given a short exact sequence

0→ E → F → G→ 0 (5.68)

then Td(F ) = Td(E)Td(G).

5.27 Theorem(Hirzebruch-Riemann-Roch) Let E be a holomorphic vector bundle on

a compact complex manifold X. Then using the Chern character ch(E) in cohomology

and the Todd class Td(X) one can prove that

χ(X,E) =

∫
X
ch(E)Td(X) (5.69)
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Finally there is another generalization of the Riemann-Roch theorem due to Grothendieck.

Let X be a smooth quasiprojective scheme over a field. The Grothendieck group K0(X)

of bounded complexes of coherent sheaves is canonically isomorphic to the Grothendieck

group of bounded complexes of finite-rank vector bundles. Using this isomrophism,

consider the Chern character as a functorial transformation

ch : K0(X)→ Ad(X,Q) (5.70)

where Ad(X,Q) is the Chow group of cycles on X of dimension d modulo rational

equivalence, tensored with the rational numbers. Now consider a proper morphism

f : X → Y between smooth quasi-projective schemes and a bounded complex of sheaves

F∗. Let td(X) be the Todd genus of the tangent bundle of X. We denote the i-

right derived functor of the pushforward f∗ by Rif∗. The Grothendieck-Riemann-Roch

Theorem goes as follows:

5.28 Theorem ch(f!F∗)td(Y ) = f∗(ch(F∗)td(X)), where

f! :
∑

(−1)iRif∗K0(X)→ K0(Y ) (5.71)

and f∗ : A(X)→ A(Y ).

This theorem has various applications, mainly in enumerative geometry where it offers

a tool for calculating the the number of lines on a general cubic. It also allows the

calculation of relations among classes on the moduli space of curves.



Chapter 6

The Atyiah Singer Index

Theorem

“If I had a world of my own, everything would be nonsense. Nothing would be what it

is, because everything would be what it isn’t. And contrary wise, what is, it wouldn’t be.

And what it wouldn’t be, it would. You see?”

Lewis Carroll, Alice in Wonderland

Another important theorem relating topology and algebra is the Atyiah-Singer index

theorem [129]. In order to be able to discuss about it several concepts need to be

introduced at this point.

Let X be a topological space and let E be a vector bundle over X of dimension n. The

“twisting” of the bundle E is measured by certain cohomology classes called “character-

istic classes” [130-133]. There are four basic types of characteristic classes

• Stiefel-Whitney classes w1, ..., wn, wi ∈ H i(X,Z2), E being real

• Chern classes c1, ..., cn, ci ∈ H2i(x), E being complex

• Pontryagin classes p1, ..., pn/2, pi ∈ H4i, E being complex

• Euler class, e ∈ Hn(X), E real and orientable

Let me show briefly what these mean and where they come from. It has been observed

that certain quantities constructed by employing the curvature Ω on a differentiable

principal bundle P (G,M) defined in terms of a Lie group G and a manifold M are

67
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determined by the bundle only and do not depend on the specific curvature Ω used for

their definition. They are therefore characteristic of the bundle, preserved by continuous

transformations with continuos inverses on the bundle i.e. bundle diffeomorphisms. Each

corresponds to a topological invariant associated with it [134]. Extending a local product

structure (U × G,U ⊂ M) to a global product (M × G) structure may present some

obstructions i.e. the extension doesn’t occur unless additional (global) information is

added [135]. The topological invariants may be used to measure such obstructions.

This means they detect in how far a local structure cannot be extended for the whole

bundle. The characteristic classes are given by various closed differential forms on M

i.e. differential forms for which the exterior derivative is zero. These can be defined

in terms of so called invariant polynomials in the curvature of a connection [136] or by

the de Rham cohomology generators defined by these forms on the base manifold M

[137]. The property of being closed differential forms implies they are locally exact.

This is valid on each chart Ui ⊂ M . By Stokes theorem their integrals over M depend

only on the transition functions which contain the topological information on the bundle

[138]. The characteristic class refers to the cohomology class of the de Rham equivalent

characteristic forms. By integrating a class over the base manifold we obtain a so called

characteristic number.

The Chern [139], Euler [140] and Pontrjagin [141] classes are all examples of char-

acteristic classes, each encoding the properties for manifolds of a certain type. The

Stiefel-Whitney classes wi [142] are not de-Rham cohomology classes. They are there-

fore, strictly speaking, not given in terms of the curvature Ω. These classes are however

important. Their annihilation represents a necessary and sufficient condition for the

respective manifold M to be orientable or, respectively, to admit a spin structure [143].

The characteristic classes can be obtained by the Chern-Weil procedure [144]. This pro-

cedure can be resumed as follows: We first need to introduce the set I l(G) of symmetric

polynomials invariant to the adjoint representation of the linear group G, noted AdG.

One shows that I(G) =
∑∞

l=0 I
l(G) has a graded ring structure. We secondly remark

that these invariant polynomials can be used to define closed forms P (Ω̄) on M . Their

cohomology classes do not depend on the connection. Thirdly and finally we construct

the algebra Weil homomorphism I(G) → Heven
DR (M) [145] which associates de Rham

cohomology classes with the closed forms on M previously obtained.

6.1 Theorem (AdG-invariant symmetric multilinear mappings)[132] Let AdG be the

adjoint representation of the Lie group G on the associated Lie algebra G. A symmetric

l-linear mapping (a polynomial on G)

P : Gl = G × ...× G → R (6.1)
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is AdG invariant if

P (Adg(X1), ..., Adg(Xl)) = P (X1, ..., Xl) X1, ..., Xl ∈ G (6.2)

The polynomial is then called a characteristic or invariant polynomial.

Now, let me consider the vector space of all these AdG-invariant polynomials and let

me call it I l(G). Then consider

I(G) =

∞∑
l

I l(G) (6.3)

To I(G) can be attached a graded ring structure by defining the product of two poly-

nomials P ∈ I l(G), P ′ ∈ Ik(G), PP ′ ∈ I l+k(G) by

(PP ′)(X1, ..., Xl+k) =
1

(k + l)!

∑
perm(σ)

P (Xσ(1), ..., Xσ(l))P
′(Xσ(l+1), ..., Xσ(l+k)) (6.4)

We now observe that there exists a connection between I(G) and the de Rham coho-

mology ring Heven
DR (M), here M being the base manifold of P (G,M). This requires the

proof of a

6.2 Lemma(Forms β on P projectable to forms β̄ on M)[132]

Let β be a q-form on the total space P of a principal bundle. Then it projects to (it is

the pull-back π∗(β̄) of) a unique form β on the base manifold M .

• R∗gβ = β, β is invariant under the right action of G

• β(Y1, ..., Yq) = 0 if any of the arguments is vertical

The proof of this lemma can be found in [146] or [132]. With this we can state now the

following

6.3 Theorem(Chern-Weil)

Let P (G,M) be a principal bundle endowed with a connection ω of curvature Ω. Give

an invariant polynomial P ∈ I l(G) construct the 2l-differential form P (Ω) on by

P (Ω)(Y1, ..., Y2l) =
1

2l!

∑
perm(σ)

sign(σ)P [Ω(Yσ(1), Yσ(2)), ...,Ω(Yσ(2l−1), Yσ(2l))], ∀Y1, ..., Y2l ∈ Tp(P )

(6.5)

where sign(σ) is the signature of the permutation σ. Then



Chapter 6. The Atyiah Singer Index Theorem 70

• for each P ∈ I l(G) the 2l-form P (Ω) on P projects to a unique closed 2l-form on

M denoted P (Ω̄) i.e. π∗(P (Ω̄)) = P (Ω)

• the element of the de Rham cohomology group characterized by the cohomology

class of the form P (Ω̄) on M is independent of the choice of the connection (and

thus P (Ω) has topologically invariant integrals)

• the mapping I(G)→ Heven
DR (M) defined by P → (cohomology class of P (Ω̄)) is an

algebra homomorphism, the Weil homomorphism.

For the proof, I refer again to [132], [146].

We also have the Chern-Simons forms given by the following

6.4 Definition(The Chern-Simons form of P (Ω)) [147] The Chern-Simons (2l+1)-form

associated with the symmetric polynomial P (Ω) is the projection on M of the form

Q(2l−1)(ω, ω0) given by

P (Ω, ...,Ω)− P (Ω0, ...,Ω0) =
∫ 1

0 dt
d
dtP (Ωt, ...,Ωt) =

= l
∫ 1

0 dtP (dΩt
dt ,Ωt, ...,Ωt) = l

∫ 1
0 dtP (Dtη,Ωt, ...,Ωt) =

= l
∫ 1

0 dtDtP (η,Ωt, ...,Ωt) = l
∫ 1

0 dt dP (η,Ωt, ...,Ωt) =

= d[l
∫ 1

0 dtP (η,Ωt, ...,Ωt)] = dQ(2l−1)(ω, ω0)

(6.6)

where here η is the difference between two connections on P (G,M) η = ω−ω0. We can

define an interpolating one-parameter family of connections ωt = ω0 + tη. Also, here Dt
is the exterior covariant differentiation and Ωt is the curvature associated with ωt. Its

definition form can be written as

Ωt = dωt +
1

2
[ωt, ωt] = Ω0 + tD0η +

t2

2
[η, η] (6.7)

The last term can be written as t2η ∧ η and

dΩt

dt
= D0η + t[η, η] = dη + [ωt, η] = Dtη (6.8)

therefore dΩt
dt is the covariant derivative Dt of the tensorial form η.
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The Chern-Simons form is then given by

Q2l−1(ω̄, ω̄0) = TP (ω̄, ω̄0) = l

∫ 1

0
dtP (ω̄ − ω̄0, Ω̄t, ..., Ω̄t) (6.9)

we shall refer to this as the transgression formula.

Let me interpret this from a physical point of view. For this let me start from a basic

example, namely the electromagnetic coupling. Consider I[A, z] =
∫
M jµAµd

4x as the

electromagnetic coupling term with jµ the current and Aµ the field. One important

property of this coupling term is that it is gauge invariant, namely under transformations

of the form Aµ(x)→ Aµ(x) + dΩ(x) the coupling term does not change. This of course

is possible only if the current jµ is conserved i.e. ∂µj
µ = 0. Therefore we remark the

fact that the condition of gauge invariance for the minimal coupling of a gauge potential

and a charged source requires that the source satisfies a conservation law. The coupling

term can further be written as
∫
M ∗j∧A where ∗j = e ·δ(Γ)dξ1∧dξ2∧dξ3 where here the

components ξi represent transverse directions to the path Γ. In an even more simplified

formulation the coupling term becomes I[A, z] = e
∫

ΓA, where A = Aµ(z)dzµ where dz

is the tangent vector to the path Γ and e is the coupling. Will this be gauge-invariant? It

is obvious that A is not. When A(x)→ A(x)+dΩ(x) we have I[A]→ I[A]+Ω∞−∞. Again

gauge invariance requires an additional condition, this time imposed on the boundary

conditions: Ω(∞) = Ω(−∞). Therefore it is possible that

δI = e

∫
Γ
δA = e

∫
Γ
dΩ = 0 (6.10)

We observe that it is possible to have a non-gauge invariant integrand but to obtain

a gauge invariant integral if the right boundary conditions are satisfied. However, in

general we don’t have only sources as the ones we encounter in electromagnetism. If

we want to generalize the problem for non-abelian groups or for higher dimensional

sources, this is where the Chern-Simons forms appear. The last century showed that

all fundamental interactions in nature share the same form: they are all gauge theories,

they all have a fiber bundle (F) which locally can be written as F = M ×G where M

is the manifold and G is the fiber’s group. We also have a connection i.e. a Lie algebra

valued 1-form Aµ = AaµJa where Aaµ is the interaction field and Ja is the Lie algebra

generator. In the case of simple electrodynamics the action functional is

I[A] =

∫
M

(
1

2
F ∧ ∗F − j ∧A) (6.11)

where the field strength is

F = dA =
1

2
(∂µAν − ∂νAµ)dxµ ∧ dxν (6.12)
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For Yang-Mills interactions (electro-weak and strong) we have the action

I[A] =

∫
M

(
1

2
F ∧ ∗F − j ∧A) (6.13)

where now A takes values in a non-abelian Lie algebra and

F = dA+A ∧A = [∂µA
a
ν + fabcA

b
µA

c
ν ]Jadx

µ ∧ dxν = F aJa (6.14)

It is useful at this moment to enumerate some actions and the ways they generalize.

I[A]YM/EM = 1
4K

∫
MD

√
ggµαgνβγabF

a
µνF

b
αβd

Dx

I[A]CS = K
∫
M3 < A ∧ dA+ 2

3A ∧A ∧A >

I[A]general = K
∫
M2n+1 < A ∧ (dA)n + α1A

3 ∧ (dA)n−1 + ...+ αnA
2n+1 >

(6.15)

where in the last row αi are fixed rational numbers. The Chern-Simons form is then

C2n+1 =< A ∧ (dA)n + α1A
3 ∧ (dA)n−1 + ...+ αnA

2n+1 >=< C̃2n+1 > (6.16)

Their exterior derivatives are then the invariant polynomials (characteristic classes)

dC2n−1(A) = P2n(F ) (6.17)

Given a connection A under a Lie algebra then, by means of gauge transformations we

have

A→ A′ = g−1Ag + g−1dg , F → F ′ = g−1Fg (6.18)

Then the polynomial P2n(F ) =< Fn > is invariant i.e. P2n(F ′) = P2n(F ) and closed

i.e. dP2n(F ) = 0. Under a gauge transformation the Chern-Simons forms change like

an abelian connection:

dC2n−1(A) = P2n(F )→ δC2n+1(A) = dΩ2n (6.19)

The Chern-Simons forms are also important because they provide us with a general-

ization of the coupling between a point charge and the electromagnetic field to higher

dimensional objects like branes and non-abelian gauge fields. In order to obtain a gen-

eralization of the coupling term lets start by replacing the 1-form by a p-form and we

obtain

I[A, z] =

∫
M
jµ1...µpA

µ1...µp → I[A, z] =

∫
Γp
A (6.20)
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For an abelian field A → A′ = A + dΩ we have Aµ → A′µ = g−1(Aµ + ∂µ)g for g ∈ G.

For a non-abelian field however once we have the gauge transformation in this form

A→ A′ = g−1Ag + g−1dg it is not trivial to find an analogue for a p-form

Aµ1...µp → A′µ1...µp = g−1(Aµ1...µp +Xµ1...µp)g (6.21)

In fact there is no natural expression for X. More precisely the p-form does not de-

fine a natural connection (covariant derivative). We also lack a non-abelian curvature,

analogue for F = dA+A∧A. There appears to be no clear relation between current con-

servation and nonabelian gauge transformations. Fortunately, a gauge invariant coupling

for any group G even for higher dimensional Γ exists and is given by a Chern-Simons

form C2n−1(A)

dC2n−1(A) = P2n(F ) (6.22)

Under a gauge transformation C2n−1(A) changes by a closed form

0 = δdC = dδC (6.23)

and hence δC = dΩ i.e. we have local exactness. Following this discussion, it ap-

pears that the minimal coupling between a particle and the electromagnetic field can be

generalized for arbitrary dimensions and non-abelian groups by the relation

I[A] =

∫
M
< ∗j2p+1C̃2p+1(A) > (6.24)

This formula helps to the description of the coupling between an extended object like a

2p-brane and a non-abelian connection. The coupling is invariant under gauge transfor-

mations if the current is conserved i.e. D ∗ j2p+1 = 0.

Let me now continue the theoretical introduction started before this physical digression.

6.5 Definition(Chern forms, Chern classes) [132],[148] Let Ω̄i
j be the components of

the curvature two form on the manifold M . Then the Chern forms cl(Ω̄) on M are the

closed 2l-forms given by

cl(Ω̄) =
1

l!
(
i

2π
)lεi1...ilj1...jl

Ω̄j1
i1
∧ ... ∧ Ω̄jl

i1
(6.25)

We call the total Chern form

c(Ω) = det(1 +
i

2π
Ω) (6.26)

The Chern classes cl(E) of a complex vector bundle E are the elements of H2l
DR(M,R)

determined by the cohomology classes of the closed Chern 2l-forms cl(Ω̄) on M that
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are the projections of the forms Pl(Ω) on P , π∗cl(Ω̄) = Pl(Ω). The sum of all Chern

classes is the total Chern class c(E). When E is the tangent bundle τ(M) of a complex

manifold, the Chern classes cl(τ(M)) are called Chern classes of the manifold M and

are written cl(M).

6.6 Definition(Chern numbers) [132], [150] The Chern numbers are those obtained by

integrating characteristic polynomials of degree dim(M) over the entire manifold M .

For instance if dim(M) = 4 there are only two independent Chern numbers given by

C1 =

∫
M
c1(Ω̄) ∧ c1(Ω̄) (6.27)

and

C2 =

∫
M
c2(Ω̄) (6.28)

6.7 Definition(Chern Characters) [132],[151] The Chern character forms are the closed

2l-forms on M given by

chl(Ω̄) =
1

l!
(
i

2π
)lTr(Ω̄ ∧ ... ∧ Ω̄) (6.29)

where again, chl(Ω̄) = 0 if 2l > dim(M).

It is not difficult to express the Chern character forms in terms of the Chern forms

[132],[152]. Let therefore X = ( i
2π ) be a n × n complex matrix from the lie algebra

Gl(n,C). Let me assume that X has been written in diagonal form with eigenvalues

λ1, ..., λn. Then the expansion that leads to the Chern form is

det(1 +X) = Πn
i=1(1 + λi) = 1 +

∑
i λi +

∑
i<j λiλj + ...+ λ1...λn

= c0(λi) + c1(λi) + ...+ cn(λi)

= 1 + Tr(X) + 1
2{(TrX)2 − TrX2}+ ...+ det(X)

(6.30)

obviously the last equality does not require X to be in diagonal form. Similarly the

invariant polynomial Tr(exp(X)) gives

Tr(exp(X)) =
∑n

i=1 exp(λi) =
∑n

i=1(
∑

l
1
l λ
l
i) =

= n+ c1(λi) + 1
2 [c1(λi)

2 − 2c2(λi)] + ...

(6.31)
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Since the polynomials are invariant we can use for them the expression in terms of X.

We get

ch0(Ω̄) = n

ch1(Ω̄) = c1(Ω̄)

...

ch2(Ω̄) = 1
2 [c1(Ω̄)2 − 2c2(Ω̄)]

(6.32)

In this way it is possible to see how the algebra of characteristic classes of a bundle

is in general generated by the corresponding Chern classes. This also means that any

characteristic class of P is a polynomial in the Chern classes [153].

Now we finally have everything we need in order to be able to state and to discuss index

theorems for manifolds without boundaries [132], [155]. Indeed, the use of the plural is

meaningful. There exists a whole class of index theorems, all connected by the same

basic way of thinking.

Essentially they relate an analytically calculated quantity known as index with another

quantity which is of a topological nature and which is given by a characteristic class.

The Atiyah-Singer index theorem essentially claims that the analytical index and the

topological index are equal. To see how this can be understood I will employ mostly the

methods of ref. [132]. Let me therefore first reformulate the Hodge-de-Rham theory as

an example for the index theorem.

To start, consider a compact manifold with no boundary M on which we define a Rie-

mannian metric. The exterior derivative d and the codifferential δ are adjoints. Consider

( , ) as positive definite. The differential forms
∧

(M) on M form a ring and the action

of d induces a sequence

0→
0∧

(M)
d0−→

1∧
(M)

d1−→ ...
di−1−−−→

i∧
(M)

di−→
i+1∧

(M)→ ...
dn−1−−−→

n∧
(M)

dn−→ 0 (6.33)

where di acts on i-forms.

In a similar way, if we act with the co-differential operator δ we obtain the sequence

with the arrows oriented in the opposite direction

...←
i−1∧

(M)
δi←−

i+1∧
(M)

δi+1←−− ... (6.34)
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where now the subscript i of δi refers to the order of the form resulting from its action.

With this notation now we have

(diα, β) = (α, δiβ), α ∈
∧i(M), β ∈

∧i+1(M) (6.35)

We may also write d+
i = δi and δ+

i = di where the dagger indicates adjoint with respect

to the product of forms ( , ).

We do not have exact sequences, i.e. ker(di) 6= Im(di−1) (the same for δ) although

clearly Im(di−1) ⊂ ker(di). This property, or, equivalently the fact that d2 = 0 de-

fines the sequence as a complex, in this case a de-Rham complex. In fact the de-

Rham cohomology group measures the lack of exactness of the first sequence since

H i
DR(M,R) = ker(di)/Im(di−1). Similarly α ∈

∧i(M) was defined as being co-closed

(co-exact) if α ∈ ker(δi−1) (resp α ∈ Im(δi)).

The operator ∆ is defined as the homogeneous Hodge-de-Rham operator. By using the

differential and the co-differential we have

∆i = δidi + di−1δi−1 (6.36)

Lets now assume that the (i + 1)-form β can be expressed as δi+1β
′, β′ ∈

∧i+2(M). If

this is so, the product (diα, δi+1β
′) is zero. Proceeding similarly we conclude that

Im(di−1)⊥Im(δi)⊥Ker(∆i) (6.37)

or, in other words that
∧i(M) has an unique splitting of the form

i∧
(M) = Im(di−1)⊕ Im(δi)⊕Ker(∆i) (6.38)

and consequently, since Ker(∆i) = Harmi(M) we have

αi = di−1αi−1 + δiαi+1 + hi, α ∈
i∧

(M) (6.39)

where hi is an harmonic i-form ∆ih = 0. Every i-th de Rham cohomology class is

represented by one and only one harmonic form

H i
DR(M,R) = Ker(∆i) = Ker(di)/Im(di−1) (6.40)
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If the analytic index of the de Rham complex is now the integer defined by the alternating

sum

index(
∧

(M), d) =
∑

(−)idim(Ker(∆i)) (6.41)

we find

index(
∧

(M), d) =

N∑
i=0

(−)ibi(M) = χ(M) =

∫
M
e(τ(M)) (6.42)

The right-hand side of this expression is topological, namely it is a topological index.

Remembering the form of the Gauss-Bonnet theorem [132] we now can understand that

it is the prototype of an index theorem: the index of the de Rham complex over the

manifold M is the Euler-Poincare characteristic of M .

The last equation has precisely the form of an index theorem. The left hand side is

expressed in terms of the number of zero-frequency solutions of the Laplace equation

i.e. the number of harmonic, linearly independent forms on the manifold. The right

hand side is the Euler-Poincare characteristic, which is formulated in terms of the Betti

numbers of the manifold M .

The Laplacian depends on the Riemannian metric and so depends the space of the

harmonic forms. The Euler characteristic and the Betti numbers however do not depend

on the metric being topological invariants.

If dim(M) = odd then, index(
∧

(Modd), d) = 0 since χ(Modd) = 0. This remains true

for index theorems associated to other differential operators.

We may note that ∆ and d + δ have the same Kernel (a harmonic form is closed and

co-closed).

Following [132] let me split
∧

(M) into the sum
∧

(M) =
∧even(M)⊕

∧odd(M) of even

and odd forms
∧even(M) =

∑
i⊕
∧2i(M),

∧odd(M) =
∑

i⊕
∧2i+1(M). Let D+ and D−

be the operators defined by

D+ = D =
∑

i(d2i + δ2i−1), D− = D+ =
∑

i(d2i−1 + δ2i) (6.43)

Then D is a mapping D :
∧even(M)→

∧odd(M), meaning

D(α(0), α(2), α(4), ...) = (d0α(0) + d1α(2), d2α(2) + d3α(4), ...) (6.44)

Its adjoint D+ is a mapping D+ :
∧odd(M) →

∧even(M). The associated Laplacians

are given by

∆+ = D+D =
∑

i ∆2i, ∆− = DD+ =
∑

i ∆2i−1 (6.45)
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Thus we can replace the definition of the analytical index of the de-Rham complex by

index(
∧

(M), D) = dim(Ker(∆+))− dim(Ker(∆−)) (6.46)

or equivalently by

index(
∧

(M), D) = dim(Ker(D))− dim(Ker(D+)) (6.47)

since Ker(∆+) = Ker(D+D) = Ker(D) and Ker(∆−) = Ker(DD+) = Ker(D+). In

fact, Im(D) (resp. Ker(D)) is the orthogonal complement of Ker(D+) (resp. Im(D+)).

We also have that coker(D) =
∧odd /Im(D) = ker(D+) and hence the analytic index

may be given as

index(
∧

(M), D) = dim(Ker(D))− dim(coker(D)) (6.48)

The de-Rham complex has an analytic index which is quite general. It has many aspects

in common with the index theorem for other complexes.

The de Rham sequence could have been written

0→ Γ(M,E0)→ Γ(M,E1)→ ...→ Γ(M,Ei)
Di−→ Γ(M,Ei+1)→ ...→ Γ(M,En)

Dn−−→ 0

(6.49)

where Γ(M,Ei) is the module of cross sections of the vector bundle Ei = ∧iτ∗(M). We

can write the above sequence only if there exists a differential operator of degree 1 acting

on a sequence of sections of vector bundles Ei such that Di+1 ◦Di = 0. Only when this

happens we can speak about a complex when referring to that sequence.

Now, the fact that the expression

index(
∧

(M), d) =
∑

(−)idim(ker(∆i)) (6.50)

was a well defined one was guaranteed by the nature of the Laplacian operator ∆ =

(d + δ)2, the kernel of which is finite dimensional. This is a consequence of the fact

that ∆ is an elliptic operator. To formalize this assertion consider a differential operator

D : Γ(M,E) → Γ(M,E′), D : s(x) → s′(x) acting on the cross sections of a vector

bundle E. Let xi, i = 1, ..., n be local coordinates on U ⊂M . Then a general differential

operator D of degree K over U may be expressed through its action on sections as

[Ds(x)]l
′

=
∑

α̃A
αl′
l (x)Dαs

l(x), Dα = ( ∂
∂x1

)α1 ...( ∂
∂xn )αn (6.51)
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where l′ = 1, ...,m′, l = 1, ...,m are the respective fibre indices, (Aα)l
′
l is an m′ × m

matrix on U , α is a multi-index α = (α1, ..., αn), αi ≤ 0, α̃ = α1 + α2 + ...+ αn and the

sum over α̃ is a sum over the multi-index α which includes all possibilities for α̃ ≤ K.

6.8 Definition(Leading or principal symbol of D) Let ξ = (ξ1, ..., ξn) be a real n-tuple.

The leading symbol σx(ξ,D) associated with the local representation of D at the point

x is the linear map from the fibre Fx to F ′x defined by the matrix

σx(ξ,D)l
′
l =

∑
α̃=K

Aαl
′

l (x)ξα (6.52)

(Dα → ξα) the entries of which are polynomials in ξ1, ..., ξn. Notice that only the highest

order K derivatives in D enter in the definition.

Let now E = E′. The ellipticity of a differential operator is given by

6.9 Definition(Elliptic operator) A differential operator D : Γ(M,E) → Γ(M,E) is

said to be elliptic on M if ∀x ∈ M the linear mapping given by the m × m matrix

σx(ξ,D) is an isomorphism for every ξ 6= 0 i.e. if the matrix is invertible.

An elliptic operator defined on a compact manifold has a finite-dimensional kernel and

cokernel and expressions of the type of

index(
∧

(M), D) = dim(ker(D))− dim(coker(D)) (6.53)

are well defined for them. For instance if the fibre is one-dimensional and D is given by

D = Aij
∂

∂xi
∂

∂xj
+Bi ∂

∂xi
+ C (6.54)

the leading symbol is given by the one-dimensional matrix Aijξiξj and D is elliptic if it is

non-zero for ξ 6= 0. This is the case if the quadratic form is positive or negative definite

i.e. if Aijξiξj = c is an ellipsoid (hence the name of elliptic operator; other possibilities

for the quadratic form lead to hyperbolic - maximal rank, mixed signature - or parabolic

operators). As a result the operator dδ+ δd is elliptic for a Riemannian metric (it is not

for the Minkowski signature). Indeed at a point x a Riemannian manifold can be made

Euclidean up to first order by using geodesic coordinates and then ∆ = −
∑n

i=1(∂/∂xi)2

gives σx(ξ,∆) = −(ξ2
1+...+ξ2

n). In contrast, for a pseudo-Riemannian metric of signature

(p, q), the quadratic form ξ2
1 + ... + ξ2

p − ξ2
p+1 − ... − ξ2

p+q is not invertible on the light

cone. An important property of elliptic operators is that since the leading symbol of

a composite operator is the composite of symbols, the composites of elliptic operators

(and hence powers and roots) will also be elliptic.
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Looking at the de Rham complex on the compact boundaryless manifold M we conclude

that it is an elliptic complex since its associated Laplacians are elliptic. This suggests a

more general

6.10 Definition(Elliptic complex)[132] Let E be a vector bundle. An elliptic complex

(E,D) is a finite sequence of differential operators Di : Γ(M,Ei) → Γ(M,Ei+1) acting

on smooth sections such that Di+1 ◦ Di = 0 and the Laplacians of the complex ∆i =

D+
i Di +Di−1D

+
i−1 where D+

i is the adjoint operator with respect to the scalar product

on the fibres with a smooth density on M , are elliptic on Γ(M,Ei).

Since (Di+1 ◦Di)
+ = D+

i ◦D
+
i+1, it follows that if the complex (Γ(M,Ei), Di) is elliptic,

so is the complex (Γ(M,Ei+1), D+
i ) where the arrows point in the opposite direction.

To relate this picture to the form of the index for a de Rham complex we have to reduce

the elliptic complex to a two-term elliptic complex (to roll up the complex) and see that

the new complex has the same index as the original one (Γ(M,E), D). This is where

the comparison with the previous equations for the index comes in. Defining the even

and odd bundles Eeven =
∑

i⊕E2i, E
odd =

∑
i⊕E2i+1

Γ(M,Eeven) =
∑

i⊕ Γ(M,E2i), Γ(M,Eodd) =
∑

i⊕ Γ(M,E2i+1)

D =
∑

i⊕(D2i +D+
2i−1), D+ =

∑
i⊕(D2i−1 +D+

2i)
(6.55)

and the associated Laplacian

∆i = D+
i Di +Di−1D

+
i−1, ∆+ =

∑
i ∆2i = D+D, ∆− =

∑
i ∆2i−1 = DD+ (6.56)

6.11 Definition(Analytical index of an elliptic complex) The analytical index of an

elliptic complex (Γ(M,E), D) is defined to be the integer

index(Γ(M,E), D) =
∑
i

(−)idim(ker(∆i)) = dim(Ker(∆+))− dim(Ker(∆−)) (6.57)

We note [132] that the differential operator defining a complex, the Riemannian scalar

product defining its adjoint and the ellipticity property which guarantees that the rhs

of the equation above is well defined (an integer) are the ingredients for the definition

of an index of a compact manifold. In order to have a non-trivial index the operator D

cannot be self-adjoint. The Atiyah-Singer index theorem states that the analytic index

is equal to the topological index of the complex, which is given by the rhs in the formula

of the Atiyah-Singer index theorem
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6.12 Theorem(Atiyah and Singer) [129] Let (Γ(M,E), D) be an elliptic complex over a

compact boundary-less manifold M of even dimension n. Then the index of the complex

is given by

index(Γ(M,E), D) = (−)n(n+1)/2

∫
M
ch(

n∑
i=0

⊕(−)iEi)
Td(τ(M)C)

e(τ(M))
(6.58)

where in the integrand only n-forms are retained. If the manifold is odd-dimensional,

the index of the differential operator D is zero.

Td(τ(M)C) is the Todd class of the complexified tangent bundle τ(M)C and e(τ(M))

is the Euler class.



Chapter 7

Universal Coefficient Theorems

“Who in the world am I? Ah, that’s the great puzzle.”

Lewis Carroll, Alice in Wonderland

As a continuation of the last chapter, I give here various facts relevant for the construc-

tion of universal coefficient theorems. I also show some results stemming from this type

of theorems, mainly referring to [96] but also to [156]. This way of thinking may solve

several problems found in quantum field theories [157].

It is important to remind the fact seen already in chapter 5 and 6 that the topological

invariants most widely used, namely homology and cohomology, do not depend only on

the topological space X which we wish to characterize but also on the “type of numbers”

we use i.e. the numerical fields used as coefficients in the simplicial complex expansion.

This dependence, as has been shown in [158], has an important effect on the definition of

characteristic classes and finally on the index theorem. Classes can merge or dissociate.

These processes depend on several factors, including on what number fields we use

as coefficients in the topological invariants. It may be of some interest to review some

situations where this dependence on the “numerical probing device” becomes important.

In physics this kind of merging and dissociation of equivalence classes has been known

for a long time [159]. However it has mainly been correlated to the spatial or temporal

resolution of a measuring device. Processes visible at a very fine grained scale become

averaged-over at coarser scales leading to changes in the values of certain parameters

with respect to those measured at previous scale. Because of this, the sensitivity of a

measuring device was usually related to a specific property that could be detected at

certain scales of length [160]. The appearance of effective theories was primarily due to

the fact that scales separated by large transformations could be analyzed independently

82
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up to some point, only after the results for one scale were properly considered and

their effects properly introduced in the effective model of the other scale. The effective

theories could therefore be used to connect very distant scales of a theory. When scales

were contiguous, the renormalization group equations and the renormalization group

flow were used to show how certain parameters depend on the renormalization point i.e.

the scale where a measurement is performed [161]. This may not be the only way in

which dissociation or merging of classes can occur. In fact, by thinking only in terms of

spatial or temporal scales we ignore other ways in which a theoretical measuring device

may fail to acknowledge the existence of separated structure. Of course, classes can

be related by other equivalence relations and the transition from one class to the other

can be triggered by other transformations than scale changes. Indeed, if we consider

so called “topological measurements” (see section 8 or ref. [54]) we need to think in

terms of coefficient groups in (co)homology. These constitute a part of a framework

where certain properties can be defined. If chosen in a specific way, some properties

may remain undefined in that specific framework. The universal coefficient theorem

is the result that makes the connection between the use of various coefficient groups

in (co)homology and hence plays the role of the “renormalization group equations” for

topology.

On the mathematical side there exists the so called “Grothendieck’s relative point of

view” [250]. The idea here was to shift the focus from the study of single objects in

a given category to the study of a family of objects depending on various parameters.

Basically the idea was implemented such that one did not focus on objects X in a given

category C but instead on morphisms

f : X → S (7.1)

where S is a fixed object. This makes use of the context or the framework where the

specific structure is inserted. At the same time, one wishes to describe the properties of

a structure by the way in which it can map into another structure of some well known

properties.

There appears to be a subtle connection between this idea of Grothendieck and the

renormalization group theory. This connection is the main subject of the current thesis.

It is important to observe that in a physical theory the parameters are not completely

determined. Indeed, by changing the scale where we chose to evaluate the theory, various

parameters (like mass, charge, etc.) can change [162].

This basic fact can be generalized in an unexpected way. First, the existence of an object

(a theory), depending on several parameters including the scale, is considered as given.
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The characterization of a theory is not done focusing only on itself, but also on the way

in which the theory can be mapped into another well known object. In the context of

topology we have topological invariants like (co)homology. However, the sensibility of

(co)homology depends on coefficient groups. Therefore, mutatis mutandis, we have a

theory depending on various group structures. We then have the groups as “parameters”

for the topological description. The question will be how to characterize the theory when

various coefficient groups are being considered. This would be equivalent to finding an

“effective” theory for a given scale. The physics itself should remain unchanged. How-

ever, the parameters characterizing charge, mass, etc. will vary accordingly. What we

need is an analogue of the renormalization group equations in the case of (co)homology

with coefficients i.e. a way of answering to the question of how the properties of the

theory change when we chose different coefficient groups. In the case of effective field

theories the analogue is the prediction of effective values like magnetization, electric

susceptibility, etc. and the variations thereof in various circumstances.

By making various choices for the numerical fields of coefficients and for the group

structures used, one can transform one algebraic variety in another. I will make use of

this in the last chapter of this thesis in order to give a possible way for solving problems

in QCD.

It is my goal to answer to the question: what is the analogue of the renormalization

group equations in the case of topology and how do we have to change our viewpoint

accordingly? It appears to me that the perfect analogue in this situation is what is

known in algebraic topology as “The Universal Coefficient Theorem” (UCT). This will

be the subject of this chapter. I follow closely ref. [25], [96], [108], [251]. The lecture

notes of ref. [96] were particularly useful for the understanding of the ideas behind the

derivation of the universal coefficient theorem. These are the source of many standard

definitions and theorems in this chapter.

Some of the simplest notions required in the construction of universal coefficient theo-

rems are the tensor products, the adjoint functors and the Hom group. For the sake of

the completeness of this chapter I will give some exact definitions here.

7.1 Definition(Tensor Products) Let A and B be modules over a commutative ring R.

The tensor product of A and B is the R-module A⊗R B defined as the quotient

F (A×B)

R(A×B)
(7.2)

where F (A × B) is the free R-module with basis A × B and R(A × B) the submodule

generated by
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• (a1 + a2, b)− (a1, b)− (a2, b)

• (a, b1 + b2)− (a, b1)− (a, b2)

• r(a, b)− (ra, b)

• r(a, b)− (a, rb)

The image of a basis element (a, b) can be written in A⊗R B as a⊗ b.

It is useful to observe that one has the relations

• (a1 + a2)⊗ b = a1 ⊗ b+ a2 ⊗ b

• a⊗ (b1 + b2) = a⊗ b1 + a⊗ b2

• (ra⊗ b) = r(a⊗ b) = (a⊗ rb)

Otherwise we can say that A ⊗R B is the largest R-module generated by the set of

symbols {a ⊗ b}a∈A,b∈B, satisfying the above product relations. Any element of A ⊗ B
can be expressed as a finite sum

∑n
i=1 ai ⊗ bi, but it may not be possible to take n = 1.

The representation in form of a sum is not necessarily unique.

In what follows I will briefly introduce the adjoint functors. Note that an R-bilinear

map β : A×B → C is the same as an element of HomR(A,HomR(B,C)).

7.2 Proposition(Adjoint property of Tensor Products)[107] There is an isomorphism

of R-modules

HomR(A⊗R B,C) ∼= HomR(A,HomR(B,C)) (7.3)

natural in A,B,C given by φ↔ (a→ (b→ φ(a⊗ b))).

In order to introduce Hom, for an R-module A, define A∗ = HomR(A,R). The module

A∗ is often called the dual of A. For an R-module map f : A → B the dual map

f∗ : B∗ → A∗ is defined by f∗(φ) = φ ◦ f . Hence taking duals defines a contravariant

functor from the category of R-modules to itself. More generally, for R-modules A and

M , HomR(A,M) is the R-module of homomorphisms from A to M . It is contravariant

in its first variable and covariant in its second variable. For an R-map f : A → B we

have

HomR(f,M) : HomR(B,M)→ HomR(A,M) (7.4)

defined by φ→ φ ◦ f . Usually, f∗ means the same as HomR(f,M).

It will prove useful to have an axiomatic conceptualization of the notion of (co)homology.

This has been given in terms of the so called Eilenberg-Steenrod axioms
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7.3 Definition (The Eilenberg-Steenrod axioms for homology)[283]

An (ordinary) homology theory is a covariant functor

H∗{(space, subspace), pairs, continuous maps of pairs} → {graded R-modules; homomorphisms}

In other words a collection of covariant functors Hq for each non-negative integer q which

assign an R-moduleHq(X,A) to a pair (X,A) of topological spaces and a homomorphism

f∗ = Hq(X,A) → Hq(Y,B) to every continuous function of pairs f : (X,A) → (Y,B).

These are required to satisfy the following axioms

• There exist natural connecting homomorphisms

∂ : Hq(X,A)→ Hq−1(A) (7.5)

for each pair (X,A) and each integer q so that the sequence

...→ Hq(A)→ Hq(X)→ Hq(X,A)
∂−→ Hq−1(A)→ ...

...→ H1(X,A)
∂−→ H0(A)→ H0(X)→ H0(X,A)→ 0

(7.6)

is exact (Long exact sequence of pairs).

• If f, g : (X,A)→ (Y,B) are homotopic maps, then the induced maps on homology

are equal, g∗ = f∗ : Hq(X,A)→ Hq(Y,B). (Homotopy invariance)

• If U ⊂ X and Ū ⊂ Int(A), then Hq(X−A,A−U)→ Hq(X,A) is an isomorphism

for all q. (Excision)

• If “pt” denotes the one-point space, then Hq(pt) = 0 when q 6= 0. (Dimension

Axiom)

7.4 Theorem (Existence)

For any R-module M there is a homology theory with H0(pt) = M

Similarly, for cohomology we have

7.5 Definition (The Eilenberg-Steenrod axioms for cohomology)[282]

An (ordinary) cohomology theory is a contravariant functor
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H∗{(space, subspace), pairs, continuous maps of pairs} → {graded, R-modules, homomorphisms}

In other words a collection of contravariant functors Hq for each non-negative integer

q which assign an R-module Hq(X,A) to a pair (X,A) of topological spaces and a

homomorphism f∗ = Hq(Y,B) → Hq(X,A) to every continuous function of pairs f :

(X,A)→ (Y,B). These are required to satisfy the following axioms

• There exist natural connecting homomorphisms

δ : Hq(A)→ Hq+1(X,A) (7.7)

for each pair (X,A) and each integer q so that the sequence

0→ H0(X,A;M)→ H0(X;M)→ H0(A;M)
δ−→ H1(X,A;M)→ ...

...→ Hq−1(A;M)
δ−→ Hq(X,A;M)→ Hq(X;M)→ ...

(7.8)

is exact (Long exact sequence of pairs).

• If f, g : (X,A) → (Y,B) are homotopic maps, then g∗ = f∗ : Hq(Y,B) →
Hq(X,A). (Homotopy invariance)

• If U ⊂ X and Ū ⊂ Int(A), then Hq(X,A)→ Hq(X−U,A−U) is an isomorphism

for all q. (Excision)

• If “pt” denotes the one-point space, then Hq(pt) = 0 when q 6= 0. (Dimension

Axiom)

7.6 Theorem (Existence)

For any R-module M there is a cohomology theory with H0(pt) = M

As the Ext and Tor constructions are relevant for the construction of the universal

coefficient theorem I will try to introduce them now more carefully in an axiomatic way.

I mainly follow for this introduction reference [108]. First, let me call R-Mod the R-

module and F : R −Mod → R −Mod a functor which takes short exact sequences to

short exact sequences. We can call a covariant functor F : R −Mod→ R −Mod right

exact if F (A)→ F (B)→ F (C)→ 0 is a short exact sequence. Similarly a contravariant

functor is called right exact if F (C)→ F (B)→ F (A)→ 0 is a short exact sequence.
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The functors ∗ ⊗R M , HomR(M, ∗) and HomR(∗,M) are not exact in general. For

example taking R = Z, M = Z/2 and the short exact sequence

0→ Z ×2−−→ Z→ Z/2→ 0 (7.9)

we obtain

Z⊗ Z/2 −−−−→ Z⊗ Z/2 −−−−→ Z/2⊗ Z/2 −−−−→ 0

∼=
y ∼=

y ∼=
y

Z/2 ×2−−−−→ Z/2 Id−−−−→ Z −−−−→ 0

(7.10)

0 −−−−→ Hom(Z/2,Z) −−−−→ Hom(Z/2,Z) −−−−→ Hom(Z/2,Z)

∼=
y ∼=

y ∼=
y

0 −−−−→ 0 −−−−→ 0 −−−−→ Z/2

(7.11)

and

0 −−−−→ Hom(Z/2,Z/2) −−−−→ Hom(Z,Z/2) −−−−→ Hom(Z,Z/2)

∼=
y ∼=

y ∼=
y

0 −−−−→ Z/2 −−−−→ Z/2 ×2−−−−→ Z/2

(7.12)

One of the goals of homological algebra is to find natural functors which measure the

failure of another functor to preserve short exact sequences. One may try to take for

∗ ⊗R M the kernel of A ⊗M → B ⊗M as the value of this functor. However, this

does not behave nicely with respect to morphisms. To construct these functors the

only things we will use are the left/right exactness properties and the observation that

for any module M there is a surjective map from a free module to M . I have shown

that exactness is a very important property. It essentially means that the objects and

morphisms in the sequence are arranged such that the image of one morphism is the

kernel of the next. When we speak about short exact sequences we also have the first

map being an injection and the second a surjection. I used this property for example in
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[54] and it is of major importance in [53] as well. Hence, preserving exactness when we

apply functors is crucial. There will be necessary to prove a

7.7 Theorem (Existence)

• There exist functors

TorRn : R−Mod×R−Mod→ R−Mod (7.13)

for all n = 0, 1, 2, ..., with (M1,M2) → TorRn (M1,M2) covariant in M1 and M2

satisfying the following axioms:

– TorR0 (M1,M2) = M1 ⊗RM2

– If 0→ A→ B → C → 0 is any short exact sequence of R−modules and M

is any R−module then there is a natural long exact sequence

...→ TorRn (A,M)→ TorRn (B,M)→ TorRn (C,M)→ TorRn−1(A,M)→ ...

...→ TorR1 (C,M)→ A⊗RM → B ⊗RM → C ⊗RM → 0

(7.14)

– TorRn (F,M) = 0 if F is a free module and n > 0.

The functor TorRn (∗,M) is called the nth derived functor of the functor ∗ ⊗RM .

• There exist functors ExtnR : R−Mod×R−Mod→ R−Mod for all n = 0, 1, 2, ...

with (M1,M2)→ ExtnR(M1,M2) contravariant in M1 and covariant in M2 satisfy-

ing the following axioms:

– Ext0R(M1,M2) = HomR(M1,M2)

– If 0→ A→ B → C → 0 is any short exact sequence of R−modules and M

is any R−module then there is a natural long exact sequence

...→ HomR(C,M)→ HomR(B,M)→ HomR(A,M)→ Ext1R(C,M)→ ...

...→ ExtqR(B,M)→ ExtqR(A,M)→ Extq+1
R (C,M)→ ...

(7.15)

– ExtnR(F,M) = 0 if F is a free module and n > 0.

The functor ExtnR(∗,M) is called the nth derived functor of the functorHomR(∗,M)

It is important to note that these axioms characterize the functors Tor and Ext.
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7.8 Theorem (Uniqueness) Any two functors satisfying the above first axioms are nat-

urally isomorphic. Any two functors satisfying the above last axioms are also naturally

isomorphic.

Proof We will show that values of TorRn (M1,M2) are determined by the axioms by

induction on n. This is true for n = 0 by the first axiom. Next we note that for any

module M1 there is a surjection F
φ−→M1 → 0 where F is a free module. For example let

S ⊂M1 be a set which generates M1 as an R−Module (e.g. S = M1) and let F = F (S)

the free module with basis S. There is an obvious surjection φ. Let K = ker(φ). Apply

the second axiom to the short exact sequence

0→ K → F →M1 → 0 (7.16)

Then by the second and the third axioms concerning Tor we have

TorR1 (M1,M2) ∼= ker(K ⊗RM2 → F ⊗RM2) (7.17)

and

TorRn (M1,M2) ∼= TorRn−1(K,M2) (7.18)

for n > 1. The values of TorRn−1 are known by induction. The proof for Ext is similar

using the other axioms.

The technique used in the proof above is called dimension shifting and is useful in various

homological computations. As an example, if F is a free module and

0→ K → F ′ →M → 0 (7.19)

is a short exact sequence with F ′ free then

TorR1 (M,F ) ∼= ker(K ⊗ F → F ′ ⊗ F ) (7.20)

but this is equal to zero. Thus TorR1 (∗, F ) is identically zero. But TorRn (M,F ) ∼=
TorRn−1(K,F ) for n > 1 so inductively we see TorRn (∗, F ) is zero for n > 0. To compute

Ext1Z(Z/2,Z) we apply the second axiom for Ext to the exact sequence

0→ Z ×2−−→ Z→ Z/2→ 0 (7.21)

to get the exact sequence
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Hom(Z,Z)
(×2)∗−−−−→ Hom(Z,Z) −−−−→ Ext1(Z/2,Z) −−−−→ Ext1(Z,Z)

∼=
y ∼=

y ∼=
y ∼=

y
Z ×2−−−−→ Z −−−−→ Ext1(Z/2,Z) −−−−→ 0

(7.22)

so Ext1Z(Z/2,Z) ∼= Z/2.

In what follows I will give some examples of some useful computations.

7.9 Proposition Let R be a commutative ring and a ∈ R a non-zero divisor (i.e. ab =

0⇒ b = 0). Let M be an R−module. Let M/a = M/aM and aM = {m ∈M |am = 0}.
Then

• R/a⊗M ∼= M/a

• Tor1(R/a,M) ∼= aM

• Hom(R/a,M) ∼= aM

• Ext1(R/a,M) ∼= M/a

Proof Since a is not a divisor of zero there is a short exact sequence

0→ R
×a−−→ R→ R/A→ 0 (7.23)

Apply the functors ∗ ⊗M and Hom(∗,M) to the above short exact sequence. By the

axioms we have exact sequences

0→ Tor1(R/a,M)→ Hom(R,M)→ Hom(R,M)→ Ext1(R/a,M)→ 0 (7.24)

The middle maps in the exact sequence above can be identified with

M
×a−−→M (7.25)

which has kernel aM and cokernel M/a.

In particular if n is a non-zero integer and R = Z the four functors Tor1, ⊗, Hom and

Ext1 applied to the pair (Z/n,Z/n) are all isomorphic to Z/n. If m and n are relatively

prime integers then applied to the pair (Z/m,Z/n) they are all zero.

In what follows, the concept of an Principal Ideal Domain (PID) will be useful. The PID

are the abstract objects that generalize in a sense the notion of “integers”, mainly with
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respect to divisibility. In essence they are the domains of a ring that are integral (i.e.

contain only the non-zero commutative parts which have the property that the products

of any two nonzero elements are also non-zero) and principal (i.e. can be generated by

acting via the associated operation on a single element). This means essentially that any

element of a PID has a unique decomposition in “prime elements” and any two elements

of a PID have a common greatest divisor.

Here are the results where this concept is necessary

7.10 Proposition

• If R is a field then TorRn (∗, ∗) and ExtnR(∗, ∗) are zero for n > 0.

• If R is a P.I.D. then TorRn (∗, ∗) and ExtnR(∗, ∗) are zero for n > 1.

Proof

• All modules over a field are free so this result follows from the third Tor axiom

and respectively the third Ext axiom.

• A submodule of a free module over a P.I.D. is free so for any module M there is

a short exact sequence

0→ F1 → F0 →M → 0 (7.26)

with F1 and F0 free. Then by the second and third Tor and Ext axioms for n > 1,

TorRn (M, ∗) and ExtRn (M, ∗) are in the long exact sequence flanked by zero and

hence must vanish.

One may ask what is the behavior of these functors with respect to exact sequences

in the second variables. Is it possible to write Torn(A,B) ∼= Torn(B,A)? It could

appear natural because A ⊗ B ∼= B ⊗ A. The same would not be valid for Ext since

Hom(A,B) � Hom(B,A). The following theorem gives the results related to these

questions

7.11 Theorem

• There exist functors

TorRn : R−Mod×R−Mod→ R−Mod (7.27)
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for all n = 0, 1, 2, ..., satisfying the following axioms:

– TorR0 (M1,M2) = M1 ⊗RM2

– If 0→ A→ B → C → 0 is any short exact sequence of R−modules and M

is any R−module then there is a natural long exact sequence

...→ TorRn (M,A)→ TorRn (M,B)→ TorRn (M,C)→ TorRn−1(M,A)→ ...

...→ TorR1 (M,C)→M ⊗R A→M ⊗R B →M ⊗R C → 0

(7.28)

– TorRn (M,F ) = 0 if F is a free module and n > 0.

• There exist functors ExtnR : R−Mod×R−Mod→ R−Mod for all n = 0, 1, 2, ...

satisfying the following axioms:

– Ext0R(M1,M2) = HomR(M1,M2)

– If 0→ A→ B → C → 0 is any short exact sequence of R−modules and M

is any R−module then there is a natural long exact sequence

0→ HomR(M,A)→ HomR(M,B)→ HomR(M,C)→ Ext1R(M,A)→ ...

...→ ExtqR(M,B)→ ExtqR(M,C)→ Extq+1
R (M,A)→ ...

(7.29)

– ExtnR(M, I) = 0 if I is an injective module and n > 0.

7.12 Corollary The functors TorRn (A,B) and TorRn (B,A) are naturally isomorphic.

Proof The functor (A,B) → TorRn (B,A) satisfies the Tor axioms 1, 2 and 3 above

and thus by the uniqueness theorem it must be naturally isomorphic to (A,B) →
TorRn (A,B).

These observations are related to what are called projective modules and projective

resolutions. The functors ExtnR can also be defined using injective resolutions.

Tor and Ext are higher derived versions of ⊗R and Hom so they have analogous prop-

erties. For example

• TorRn (⊕αAα, B) ∼= ⊕αTorRn (Aα, B)

• ExtnR(⊕αAα, B) ∼= ΠαExt
n
R(Aα, B) and

• ExtnR(A,ΠαBα) ∼= ΠαExt
n
R(A,Bα)
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With these notions we can finally introduce the universal coefficient theorems. This will

be the main task for the following part of this section.

Let (C∗, ∂) be a chain complex over a ring R. Then there is an evaluation map

HomR(Cq,M)× Cq →M

(f, z)→ f(z)
(7.30)

This pairing passes to the Kroneker pairing

<,>: Hq(C∗;M)×Hq(C∗)→M (7.31)

of cohomology with homology. This pairing is bilinear and its adjoint is a homomorphism

Hq(C∗,M)→ Hom(Hq(C∗);M) (7.32)

This adjoint need not be an isomorphism. The understanding of the kernel and cokernel

of this map is a subtle question. Universal coefficient theorems provide among other

things a measure of how this adjoint fails to be an isomorphism in terms of the derived

functors Extq and Torq. The answer is usually not simple. This type of questions can

be answered completely when R is a P.I.D. and C∗ is a free chain complex. In this case

Hq(C∗,M) → Hom(Hq(C∗);M) is surjective with kernel Ext(Hq−1(C∗),M). This will

cover the topological situation when the coefficients are integers or belong to a field since

the singular and cellular complexes of a space are free. I can therefore start with the

statement of the following

7.13 Theorem(The universal coefficient theorem for cohomology) [279,280] Let R be a

principal ideal domain. Suppose that M is a module over R and (C∗, ∂) is a free chain

complex over R (each Cq is a free R−module). Then the sequence

0→ ExtR(Hq−1(C∗),M)→ Hq(C∗;M)→ Hom(Hq(C∗),M)→ 0 (7.33)

is exact and natural with respect to chain maps of free chain complexes. Moreover, the

sequence splits albeit not naturally.

The proof will require the concept of an exact triangle.

7.14 Definition An exact triangle of R−modules is a diagram of R−modules

A B

C

α

βγ
(7.34)
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satisfying ker(β) = Im(α), ker(γ) = Im(β) and ker(α) = Im(γ). One can define

an exact triangle of graded R-modules A∗, B∗, C∗. In this case we require that the

homomorphisms α, β, γ, each to have a degree. For example if α has degree 2 then

α(Aq) ⊂ Aq+2. The basic example of an exact triangle of graded R-modules is the long

exact sequence in homology

H∗(A) H∗(X)

H∗(X,A)

i∗

j∗∂
(7.35)

For this exact triangle i∗ and j∗ have degree 0 and ∂ has degree −1.

If we consider the diagram

0 E A B F 0

C

j α

β

k

γ
(7.36)

as a diagram with the top row exact and the triangle exact it is possible to show that

there exists a short exact sequence

0→ F
β◦k−1

−−−−→ C
j−1◦γ−−−−→ E → 0 (7.37)

At this moment it is possible to prove the universal coefficient theorem

Proof There is a short exact sequence of graded free R-modules

0→ Z∗
i−→ C

∂−→ B∗ → 0 (7.38)

where Zq denotes the q-cycles and Bq denotes the q-boundaries. The homomorphism i

has degree 0 and ∂ has degree −1. This sequence is in fact a short exact sequence of

chain complexes where Z∗ and B∗ are given the zero differential. Since the sequence

above is an exact sequence of free chain complexes applying the functor Hom(∗,M)

gives again a short exact sequence of chain complexes.

0→ Hom(B∗,M)
∂∗−→ Hom(C∗,M)

i∗−→ Hom(Z∗,M)→ 0 (7.39)

Applying the zig-zag lemma we obtain a long exact sequence in homology which, since

the differentials for the complexes Hom(B∗,M) and Hom(Z∗,M) are zero reduces to
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the exact triangle

Hom(Z∗,M) Hom(B∗,M)

H∗(C∗;M)

δ

∂∗i∗
(7.40)

There is also a short exact sequence of graded R-modules

0→ B∗
j−→ Z∗

∂−→ H∗ → 0 (7.41)

coming from the definition of homology i.e.

Z∗ = ker∂ : C∗ → C∗

B∗ = Im∂ : C∗ → C∗

H∗ = H∗(C∗) = Z∗/B∗

(7.42)

Observe that in the sequence

0→ B∗
j−→ Z∗

∂−→ H∗ → 0 (7.43)

B∗ and Z∗ are free since R is a P.I.D. and these are submodules of the free module C∗.

Thus using the second Ext axiom and the fact that Ext(Z∗,M) = 0 we obtain an exact

sequence

0→ Hom(H∗,M)→ Hom(Z∗,M)
j∗−→ Hom(B∗,M)→ Ext(H∗,M)→ 0 (7.44)

7.15 Corollary If R is a field, M is a vector space over R and C∗ is a chain complex

over R then

Hq(C∗;M) ∼= Hom(Hq(C∗),M) (7.45)

and the Kronecker pairing is non-degenerate. Applying the universal coefficient theorem

to the singular or cellular complexes of a space or a pair of spaces one obtains the

following
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7.16 Corollary If (X,A) is a pair of spaces A ⊂ X; R a P.I.D., M a module over R

then for each q the sequence

0→ ExtR(Hq−1(X,A;R),M)→ Hq(X,A;M)→ Hom(Hq(X,A;R),M)→ 0 (7.46)

is a short, exact and natural and it splits although not naturally.

An important special case of the universal coefficient theorem for cohomology is the

use of it for the computation of Hq(X) i.e. cohomology with integer coefficients. For

an abelian group A we have denoted the torsion subgroup (i.e. the subgroup of finite

order elements) by torsion(A). Let free(A) = A/torsion(A). Then for a space X

whose homology is finitely generated in every dimension (e.g. a finite CW-complex), the

universal coefficient theorem shows that

Hq(X) ∼= free(Hq(X))⊕ torsion(Hq−1(X)) (7.47)

It is also possible to define the dual of an abelian group A by A∗ = Hom(A,Z) and the

torsion dual A∧ ∼= Hom(A,Q/Z) then the universal coefficient theorem says that

Hq(X) ∼= Hq(X)∗ ⊕ (torsion(Hq−1(X)))∧ (7.48)

The r.h.s. is a contravariant functor in X but the isomorphism is not natural.

There are other formulations of the universal coefficient theorem for various rings and

other algebraic structures. Their knowledge can accelerate the calculations significantly.

For example one may have the following

7.18 Theorem If R is a P.I.D., M is a finitely generated R-module and C∗ is a free

chain complex over R then there is a split short exact sequence

0→ Hq(C∗)⊗M → Hq(C∗,M)→ TorR1 (Hq+1(C∗,M))→ 0 (7.49)

There are universal coefficient theorems in homology as well. For example the following

universal coefficient theorem measures the difference between first tensoring a complex

with a module M and then passing to homology versus first passing to homology and

then tensoring with M .

7.19 Theorem(Universal coefficient theorem for homology)[279, 280, 281] Suppose that

R is a P.I.D., C∗ is a free chain complex over R and M is a module over R. Then there
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is a natural short exact sequence

0→ Hq(C∗)⊗M → Hq(C∗ ⊗M)→ TorR1 (Hq−1(C∗),M)→ 0 (7.50)

which splits although not naturally.

Proof The proof is very similar to the proof of the universal coefficient theorem in

cohmology. In the same way, there is a short exact sequence

0→ Z∗
i−→ C

∂−→ B∗ → 0 (7.51)

which remains exact when tensoring with M since B∗ is free. Applying again the zig-zag

lemma to the tensored sequence one obtains the exact triangle

B∗ ⊗M Z∗ ⊗M

H∗(C∗;M)

(7.52)

The short exact sequence of graded R-modules

0→ B∗ → Z∗ → H∗(C∗)→ 0 (7.53)

gives using the second axiom of Torsion an exact sequence

0→ Tor(H∗(C∗),M)→ B∗ ⊗M → Z∗ ⊗M → H∗(C∗)⊗M → 0 (7.54)

Assembling the triangle and the exact sequence one obtains the short exact sequence

0→ H∗(C∗)⊗M → H∗(C∗;M)→ Tor(H∗(C∗),M)→ 0 (7.55)

If one takes the grading into account one finishes the proof.

7.20 Corollary If (X,A) is a pair of spaces A ⊂ X, R a P.I.D., M a module over R

then for each q the sequence

0→ Hq(X,A;R)⊗M → Hq(X,A;M)→ TorR1 (Hq−1(X,A;R),M)→ 0 (7.56)

is short exact, natural and splits, again not naturally.

There is another universal coefficient theorem for homology. It addresses the question

of how a different version of the Kronecker pairing fails to pass to a perfect pairing on
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(co)homology. In this case the pairing

HomR(C∗, R)× (C∗ ⊗M)→M (7.57)

is defined by

(f, z ⊗m)→ f(z)m (7.58)

This pairing passes to a pairing on homology

Hq(C∗;R)×Hq(C∗ ⊗M)→M (7.59)

Taking the adjoint produces the homomorphism

α : Hq(C∗ ⊗M)→ HomR(Hq(C∗),M) (7.60)

The kernel of this homomorphism is calculated for R a P.I.D. and C∗ with a finitely

generated homology by the following

7.21 Theorem Let R be a P.I.D., C∗ a free chain complex over R such that Hq(C∗) is

finitely generated for each q and let M be an R-module. Then the sequence

0→ Ext1R(Hq+1(C∗),M)→ Hq(C∗,M)
α−→ Hom(Hq(C∗),M)→ 0 (7.61)

is a short exact sequence and splits.

As an application of the universal coefficient theorems we can identify the different

versions of the Betti numbers of a space. The q-th Betti number βq(X) of a space X

is the rank of Hq(X;Z). Since Q and R are flat abelian groups, Tor(∗,Q), Tor(∗,R),

Ext(∗,Q), Ext(∗,R) all vanish. This implies that

7.22 Corollary The following numbers are all equal: the Betti number βq(X), dimQHq(X;Q),

dimRHq(X;R), dimQH
q(X;Q) and dimRH

q(X;R).

In particular if X is a compact smooth manifold by the above corollary and DeRham

cohomology we see the q-th Betti number is the dimension of the real vector space of

closed q-forms modulo exact q-forms.



Chapter 8

BV and BRST quantization,

quantum observables and

symmetry

“I know who I WAS when I got up this morning, but I think I must have been changed

several times since then”

Lewis Carroll, Alice in Wonderland

8.1 BV-BRST quantization

Gauge redundancy has been a guiding principle for most of the theories about nature.

Starting with quantum electrodynamics, continuing with Yang-Mills theories and Quan-

tum Chromodynamics and reaching into the realms of supergravity, all theories appear

to obey this principle. The existence of a gauge redundancy therefore appears to be

ubiquitous. When performing path integral quantization, gauge fixing is a natural re-

quirement. The existence of unphysical degrees of freedom would otherwise make prac-

tical calculations impossible. If we describe a physical system by its action functional

S and the associated theory has gauge freedom, then the path integral would imply the

integration over spurious gauge trajectories resulting in a divergence

∫
DAµe

iS =∞ (8.1)

100
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The redundant gauge variables will have to be removed from the theory. However, once

gauge freedom is eliminated, it becomes harder to identify gauge independence. One

should not forget that the gauge independence is one of the most important features of

physical observables, and therefore must be obeyed in order to have physical meaning.

One solution to this problem is the BRST-antifield formalism which allows us to apply

path integral formalisms to any type of quantum gauge theory while preserving the

spacetime covariance. In the quantum domain we remain with a global invariance under

the so called BRST transformation. This operation plays the role of a differential and

can be used in the definition of a cohomology. This cohomology plays an important

role in identifying the connection to physics. In what follows I will introduce the reader

into the main aspects of BRST quantization. I will therefore follow references [262-264]

and present the basic facts related to gauge invariance and the nilpotency of the BRST

operator from a geometric perspective. According to how the algebra of the gauge

transformation behaves off-shell we can classify theories in the following way [265]: if

the algebra of the gauge transformation closes off-shell i.e. the commutator of the gauge

transformation is again a gauge transformation of the same type, without using the

equations of motion, we have a theory similar to the Yang-Mills theories. QCD is such

an example. If the theory closes only on-shell in a natural way i.e. it requires the

equations of motion for closure, we call it an on-shell closed theory. One particular

example for such a case is given by various theories of supergravity. Another class of

gauge transformation is given by the so called reducible gauge transformations. If one

considers a theory of an abelian 2−form Bµν = −Bνµ with the field strength given by

the form

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν (8.2)

and a lagrangean of the form

L = − 1

12
HµνρH

µνρ (8.3)

invariant under the gauge transformation

δΛBµν = ∂µΛν − ∂νΛµ (8.4)

where Λ is a gauge transformation parameter then these transformations vanish for a

class of parameters Λµ = ∂µε. This brings us to the conclusion that not all gauge
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parameters are independent. That means the associated gauge transformations are

reducible. Two-forms define a natural generalization of electromagnetism Aµ → Bµν .

The last class of transformations I mention here is formed by the so called on-shell re-

ducible gauge transformations. This essentially means that the reducibility of the gauge

transformation is possible only on-shell. If in the previous Lagrangean we introduce an

auxiliary field, we obtain

L =
1

12
Aµε

µνρσHνρσ −
1

8
AµA

µ (8.5)

By introducing an equation of motion for the field Aµ of the form

Aµ =
1

3
εµνρσHνρσ (8.6)

the second Lagrangean reduces to the first one. The gauge transformations associated

to the initial and the auxiliary fields are now defined as

δΛBµν = ∂µΛν − ∂νΛµ

δΛAµ = 0
(8.7)

What is important to notice at this moment is that BV-BRST are intrinsically cohomo-

logical theories. The nilpotent linear operator associated to the gauge transformation

becomes the differential operator of the cohomological theory. In order to apply path

integral quantization to a gauge theory, a gauge fixing procedure is needed. This leads

to a loss of the gauge invariance. The BRST construction allows us to recover this lost

gauge invariance in the form of a rigid symmetry called the BRST symmetry, present

even after the gauge is fixed. However, in order to do this, additional auxiliary fields

must be added into the theory: a ghost field and an additional conjugate antifield. The

BRST operator (let me call it s) acts on the enlarged field space of fields, ghosts and

antifields. The extended action involving all these fields is constructed such that it is

BRST invariant. The operator s is called the BRST differential and plays the role of

the differential in the cohomological construction. It is nilpotent (s2 = 0) and therefore

allows the construction of cohomological groups Hk(s). The gauge invariant observables

are given by the 0−order cohomology group H0(s) in ghost number zero

H0(s) ∼= O (8.8)
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where O is the set of gauge invariant observables. This means that if one identifies two

BRST invariant functions that differ by a BRST exact function one just finds at ghost

number zero the gauge invariant functions. The derivation of the gauge-fixed Lagrangean

is done in two steps. In the first step one replaces the original local gauge invariance

with an equivalent global symmetry called the BRST symmetry in such a way that the

BRST invariance replaces the gauge invariance. This does not require any gauge fixing.

Second, one chooses certain gauge fixing conditions and computes the gauge fixed action

in a way that incorporates the BRST invariance. The BRST symmetry operator s acts

as a graded odd derivative on the original fields (let me call them φi) but also on some

extra fields i.e. for any A and B where B has the Grassmann parity εB one finds

s(AB) = A(sB) + (−1)εB (sA)B

s2 = 0
(8.9)

The grading of s is the ghost number and we have

gh(sA) = gh(A) + 1

ε(sA) = εA + 1 (mod 2)
(8.10)

We can see the BRST symmetry as a canonical transformation in an appropriate bracket

structure (, ). We have

sA = (A,S) (8.11)

where we see S as the canonical generator of s. These requirements completely determine

S up to a canonical transformation and capture the BRST symmetry [266].

In order to construct a nilpotent symmetry for which the gauge invariant observables

form a set isomorphic to the zero-order cohomology group of the associated operation,

it is necessary to see how the gauge invariant functions (observables) are described. For

a manifestly relativistic covariant description, let us first assume that there is no gauge

invariance. The observables are then realized as the phase space functions F (q, p). But

a phase space point refers to the state of the system at a given instant of time. As (q, p)

at t = t0 completely determines (q(t), p(t)) through the Hamiltonian equations one can

alternatively view phase space as the space of all solutions of the equation of motion.

If we eliminate the momenta and consider only the solutions q(t) of the equations of

motion these q usually take a manifestly covariant form. The space of all solutions of the

equations of motion is known as the covariant phase space. In quantum field theory the

situation is very similar. Observables can be viewed as functions f(φi) of the solutions



Chapter 8. BV and BRST quantization, quantum observables and symmetry 104

φi of the equations of motion δS0

δφi
= 0. Let me call I the infinite dimensional functional

space of all possible field history. A point of I will be an arbitrary entire history that

may not solve δS0

δφi
= 0. In I, the equations of motion δS0

δφi
= 0 determine a submanifold Σ

called the stationary surface. This submanifold is called the covariant phase space in the

absence of a gauge invariance. The formalism and the basic reasoning follows reference

[267]. The observables are the functions defined on Σ namely the elements of C∞(Σ).

Any function f on Σ can be extended off of Σ to a function F (φi) defined on I namely

to an element of C∞(I). Two different extensions F and F ′ differ by a function that

vanishes on Σ. These functions form an ideal N as FF ′ vanishes on Σ whenever F or

F ′ does. The algebra C∞(Σ) of the smooth functions on Σ is thus the quotient algebra

C∞(I)/N of the smooth functions on I by the functions that vanish on Σ. The same

considerations are applicable in quantum mechanics as the observables can be identified

with the operator valued functions of q̂ and p̂ at a given moment of time. In order to

consider all the solutions of the equations of motion, not just the ones corresponding

to a set of initial data, the space of histories I should not be restricted by boundary

conditions at the initial and final times ti and tf . The stationary surface Σ contains then

all the possible dynamical states of the system. Therefore the space I is not the space

Ii→f over which one integrates in the path integral representation of a definite quantum

mechanical amplitude between given in and out states. The space I is actually the union

over all possible pairs of the in and out states of the spaces Ii→f . Moreover, we do not

vary the boundary data at t1 and t2 in the action principle. Now let me consider the

case when there is gauge freedom. In that case the observables should also be gauge

invariant. The gauge transformation δεφ
i = Riαε

α is integrable when the equations of

motion are hold. In that case they generate well defined orbits on Σ. This surface has

a dimension equal to the number of independent Riα. The gauge invariant functions

are constant along the gauge orbits and induce definite functions on the quotient space

Σ/G of the stationary surface by the gauge orbits. The space of observables therefore

is written as C∞(Σ/G) i.e. the space of smooth functions on Σ/G. The gauge invariant

observables are therefore reached in two steps. First one goes from I to Σ then one goes

from Σ to Σ/G. One must now find a nilpotent operator s that implements these two

steps through its cohomology H0(s) = C∞(Σ/G). This operator contains two nilpotent

components, each inducing one of the two steps above. The first differential δ induces

the so called Koszul-Tate resolution of C∞(Σ) such that H0(δ) = Ker(δ)
Im(δ) = C∞(Σ). It

implements the first step leading from I to Σ. The second component d is the vertical

exterior derivative along the gauge orbits and implements the second step, from Σ to

Σ/G giving H0(d) = C∞(Σ/G). The BRST derivative is in general the formal sum

between the two s = δ + d. In order to construct the BRST formalism we need to

implement the restriction from I to Σ. So, one needs to define a differential δ that acts

as a nilpotent graded derivative on polynomials in some generators with coefficients that
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are functions on I, in the same way in which d in the standard exterior calculus acts on

polynomials in dx, dy, dz, ... with coefficients that are functions on the manifold. Then

δ must compute C∞(Σ) through its homology. The grading of δ is called the antighost

number. As δ decreases the antighost number by one unit, it behaves like a boundary

operator. We need also that δ computes C∞(Σ) through its homology, therefore

H0(δ) =
Ker(δ)

Im(δ) 0

= C∞(Σ) = C∞(I)/N (8.12)

Moreover, this relation contains all the homology of δ. This means Hk(δ) = 0, for k 6= 0.

This is necessary in order for the BRST cohomology at ghost number zero to be given

by the gauge invariant functions and for being able to prove the BRST symmetry itself.

A differential complex with the properties above is said to provide a resolution of the

quotient algebra C∞(I)/N . In the present context the relevant resolution is given by

the Koszul-Borel-Tate resolution. In the absence of gauge invariance the construction

of δ is relatively simple. We simply define it so that

Ker(δ)0 = C∞(I)

Im(δ)0 = N
(8.13)

and we therefore put δφi = 0. This implies by Leibnitz rule that δF (φi) = 0 for any

functions on I and hence Ker(δ)0 = C∞(I). To implement Im(δ)0 = N we notice that

due to the regularity assumptions the elements of N are given by the combinations of

the field equations

G(φi) ∈ N ↔ G(φi) = λj(φi)
δS0

δφj
(8.14)

Therefore we introduce as many new generators φ∗i as there are field equations and set

δφ∗i = −δS0

δφi
(8.15)

These new generators are called the antifields associated to the original fields. To pre-

serve the grading properties of δ one must impose ε(φ∗i ) = 1 as we assume the fields

to be bosonic and antigh(φ∗i ) = 1. The action of δ on a general polynomial in φi and

φ∗i is obtained by using the Leibnitz rule and the nilpotency can easily be checked. To

see whether δ provided a resolution of C∞(I)
N it remains to compute Hk(δ). But in this

case we do not have a gauge invariance. The equations of motion are then independent

so that the number of new objects φ∗i in degree one is exactly equal to the number of

independent equations of motion. Using this property one proves Hk(δ) = 0, k 6= 0.
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When a gauge freedom exists one can still find H0(δ) = C∞(Σ). However Hk(δ) does

not look the same. Using the Noether identity

δS0

δφi
Riα = 0 (8.16)

one finds non-trivial δ-closed polynomials in degree one. These are given by Riαφ
∗
i . One

checks that the Riαφ
∗
i are δ-closed

δ(Riαφ
∗
i ) = −Riα

δS0

δφi
= 0 (8.17)

and exhaust all non-trivial δ-closed polynomials of degree one

δ(λiφ∗i ) = 0→ λiφ∗i = µαRiαφ
∗
i + δ(

1

2
εijφ∗iφ

∗
j ) (8.18)

Moreover, Riαφ
∗
i are not exact and hence H1(δ) 6= 0. This problem can be solved. Let

us first assume that the gauge transformations are independent, so that all the non-

trivial cycles are independent as well. We can recover H1(δ) = 0 and at the same time

Hk(δ) = 0 ∀k 6= 0 by simply adding one new generator φ∗α for each cycle and define

δφ∗α = Riαφ
∗
i (8.19)

Now, because δ(Riαφ
α
i ) = 0 one has δ2φ∗α = 0. Furthermore, taking antigh(φ∗α) = 2 and

ε(φ∗α) = 0 and extending δ as a graded derivation to any polynomial in φi, φ∗i and φ∗α one

maintains δ2 = 0. With the introduction of the antifields φ∗α the cycles Riαφ
∗
i that were

not exact become exact. Therefore now, H1(δ) = 0. Using the assumed irreducibility of

the gauge transformation one can now show that Hk(δ) = 0 ∀k > 0.

The interpretations of the various constructions of the BV formalism are summarized in

the following table

Table 8.1: Physical meaning of cohomological objects in gauge theory

Physics Mathematical concept degree of ghost degree of anti-ghost

field section of bundle 0 0
anti-field Koszul generator 0 1
ghost Chevalley Eilenberg generator 1 0
anti-ghost Tate generator 0 2

The paragraph above justified from a field theoretical perspective the BRST construction

and identified the gauge invariant observables with elements of the zero-degree BRST
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cohomology. In order to have a better idea of what means to discuss about coefficient

groups for such a cohomology we need first to make some algebraic aspects about Lie

algebra cohomology clearer.

Therefore I will introduce the Chevalley-Eilenberg cohomology of a Lie algebra which

will represent one half of the BRST cohomology. Using mainly reference [268], the

way this will be done will manifest the main characteristics of coefficient groups. As

we already saw, the natural algebraic structure associated to a smooth manifold M is

its algebra C∞(M) of smooth functions on it. It is a commutative, associative unital

algebra which encodes information about M . A symplectic structure on M gives to

C∞(M) additional structure. The Poisson bracket turns C∞(M) into a Lie algebra and

for any f ∈ C∞(M), {f, ∗} is a derivation over the commutative multiplication. This

turns C∞(M) into a Poisson algebra. If we define a closed embedded submanifold M0

of M we induce an ideal I ⊂ C∞(M) consisting of those functions which vanish on M0.

We call this the vanishing ideal of M0. If M0 = Φ−1(0) is the zero locus of a smooth

function Φ : M → Rk where 0 ∈ Rk is a regular value, then the ideal I is precisely the

ideal generated by the components φi of Φ relative to any basis for Rk. Every smooth

function on M restricts to a smooth function on M0 and two such functions restrict to

the same function if and only if their difference belongs to the ideal I. Conversely every

smooth function on M0 can be extended but possibly not uniquely to a smooth function

on M . That means there is an isomorphism

C∞(M0) ∼= C∞/I (8.20)

Note that vector fields are derivations of the algebra of functions X(M) = Der(C∞(M)).

The isomorphism above assures us that a derivation of C∞(M) gives rise to a derivation

of C∞(M0) provided it preserves the ideal I. One can see that

Der(C∞(M0)) = {ξ ∈ Der(C∞(M))|ξ(I) ⊂ I} (8.21)

Vector fields in TM⊥0 are the hamiltonian vector fields which arise from functions in I.

Therefore TM⊥0 ⊂ TM0 is the condition that the vanishing ideal is closed under the

Poisson bracket {I, I} ⊂ I. Such ideals are called coisotropic. The functions on M̃ are

those functions on M0 which are constant on the leaves of the foliation. Since the leaves

are connected and the tangent vectors to the leaves are the hamiltonian vector fields of

functions in I, we have an isomorphism C∞(M̃) = {f ∈ C∞(M0)|{f, I} = 0}, where

{f, I} = 0 on M0. Extending f to a function on M , the isomorphism becomes
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C∞(M̃) = {f ∈ C∞(M)|{f, I} ⊂ I}/I (8.22)

and it does not depend on the extension because I is closed under the Poisson bracket.

This means that

C∞(M̃) = N(I)/I (8.23)

where N(I) is the Poisson normalizer of I in C∞(M). The algebraic formalism continues

to make sense in situations where the geometry may become singular [269]. The aim

of the BRST construction is to construct a complex of Poisson superalgebras and a

differential which is a Poisson superderivative so that its cohomology (at least in degree

zero) is isomorphic as a Poisson algebra to N(I)/I. In this context it is important to

understand the basics of equivariant cohomology. The most important aspect of this

type of cohomology is that the spaces dealt with by it are subject to a group action.

Therefore the equivariant cohomology of a space X with action of a topological group G

is defined as the ordinary cohomology with coefficient W of E×GX namely H∗G(X,W ) =

H∗(EG×G X,W ). If G acts freely on X then the canonical map EG×G X → X/G is

a homotopy equivalence, and therefore H∗G(X,W ) = H∗(X/G,W ). The most common

situation appears when X is a manifold, G is a compact Lie group and W is either the

field of real numbers or that of complex numbers. Then the equivariant cohomology can

be computed by means of the Cartan model.

8.2 The Harmonic oscillator

Now that we have a cohomological interpretation for the BV-BRST quantization pre-

scription, we can apply it to two simple examples: the free particle and the the harmonic

oscillator. The Harmonic oscillator is a particularly simple example. In order to formu-

late such a problem in a cohomological sense, revealing the BRST quantization prescrip-

tion, one has to generate and to fix an artificial set of fictitious symmetries. Following

reference [267-269] this is being done with no additional difficulty. Indeed, the resulting

cohomology will describe the correct harmonic oscillator. Then I will apply a change

in coefficient structures for the BV-BRST cohomology and explore the consequences.

It should be noted that the harmonic oscillator as well as the free particle are trivial

problems from the perspective of the coefficient structure in (co)homology when there

is no ambiguity related to the topology of the associated space (or spacetime). To be

fully consistent, let me start with the conventional canonical quantization. Let the time
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coordinate be x and the oscillator degree of freedom be φ(x). The action will be of the

form

S =
1

2

∫
dx(φ

′
(x)2 − ω2φ(x)2) (8.24)

where φ
′

= dφ
dx . By using the Euler Lagrange operator we obtain the Euler Lagrange

equation

ε(x) = − δS

δφ(x)
= φ

′′
(x) + ω2φ(x) = 0 (8.25)

If we are interested in the Hamiltonian formalism we define the canonical momenta

as π(x) = φ
′
(x) and we construct the formalism such that it obeys the equal time

commutation relations

[φ(x), π(x)] = i [φ(x), φ(x)] = [π(x), π(x)] = 0 (8.26)

Having now the pairs of variables (φ, π), we can span a phase space P. Hamilton’s

equations will therefore govern the time evolution of any function F (φ, π) over P in the

sense that it will satisfy the equation

F
′
(x) = i[H,F (x)] (8.27)

with the Hamiltonian given by

H =
1

2
(π2 + ω2φ2) (8.28)

The Euler Lagrange equations then become simply

φ
′
(x) = π(x) π

′
(x) = −ω2φ(x) (8.29)

We can chose a basis in P given by the creation and annihilation operators

a† = 1√
2ω

(ωφ− iπ) a = 1√
2ω

(ωφ+ iπ) (8.30)

with the canonical commutation relations
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[a, a†] = 1 (8.31)

The Hamiltonian obviously becomes

H = ωa†a (8.32)

and time evolution is simply given by

a′(x) = −iωa(x) (a†)′(x) = iωa†(x) (8.33)

In order to have a quantum image about the phenomenon, let |0〉 be the vacuum state,

mapped into zero by the annihilation operators. In this context a basis for the Hilbert

space is therefore

|n〉 =
1√
n!

(a†)n |0〉 (8.34)

where

H |n〉 = nω |n〉 (8.35)

and in the dual space

〈n| = 1√
n!
〈0| an (8.36)

Obviously 〈m| |n〉 = δmn. This same approach can be achieved by treating the dynamics

as a constraint in the phase space. By introducing so called virtual histories φ(x) with

canonical momenta π(x) = − δ
δφ(x) . One will have to satisfy the Heisenberg algebra

[φ(x), π(x′)] = iδ(x− x′) [φ(x), φ(x′)] = [π(x), π(x′)] = 0 (8.37)

These vanish whenever x 6= x′. The Euler Lagrange equation has two solutions φω and

φ−ω which in the real space are

φ(x) = φωe
iωx + φ−ωe

−iωx

π(x) = iωφωe
iωx − iωφ−ωe−iωx

(8.38)
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To describe the harmonic oscillator in this history space we must eliminate the additional

variables. If we regard the dynamics as a constraint in this history space we must

transform the Euler Lagrange equation into a dynamical constraint

εk : (k2 − ω2)φk ∼= 0 (8.39)

The definition of momentum becomes the momentum constraint

Mk : πk − ikφk ∼= 0 (8.40)

where ∼= means equality provided constraints. Using a vectorial notation for εk andMk

we write

χk =

[
εk

Mk

]
=

[
(k2 − ω2)φk

πk − ikφk

]
(8.41)

Then for the Poisson bracket we have the matrix

∆kk′ = [χk, χk′ ] =

[
0 i(k2 − ω2)

−i(k2 − ω2) 2k

]
δk+k′ (8.42)

For k 6= ±ω the matrix is non-singular and the constraint χk ∼= 0 is second class. Define

the Dirac brackets as

[F,G]∗ = [F,G]−
∑
k

∑
k′

[F, χk]∆
kk′ [χk′ , G] (8.43)

here ∆kk′ is the inverse of ∆kk′ . Now we can eliminate the constraints. This leads to

φk ∼= πk ∼= 0. For k = ±ω, the dynamics constraint εω = ε−ω vanishes, ∆kk′ is singular

and we can only impose the momentum constraintsMω
∼=M−ω ∼= 0. The non-singular

part of the Poisson bracket is now

∆ω,−ω = [Mω,M−ω] = 2ω (8.44)

The associated Dirac brackets commute with the momentum constraints so we can

eliminate two of the four variables φω, φ−ω, πω, π−ω in terms of the two others. The

independent solutions are then
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aω = 1√
2ω

(πω + iωφω) ∼=
√

2
ωπω

∼= i
√

2ωφω

a−ω = 1√
2ω

(π−ω − iωφ−ω) ∼=
√

2
ωπ−ω

∼= −i
√

2ωφ−ω
(8.45)

Since [aω, a−ω] = −1 we can identify aω = a†, a−ω = a. The hamiltonian is simply the

generator of rigid time translations

H =

∫
dxφ

′
(x)π(x) =

∞∑
k=−∞

ikφkπ−k (8.46)

Once the constraints are in place we obtain again the harmonic oscillator hamiltonian,

as expected

H ∼= iω(φωπ−ω − φ−ωπω) = ωaωa−ω (8.47)

What is important to notice at this point is that one can look at the constraints in

various different ways. One can for example divide them into first class constraints and

gauge fixation constraints and this then suggests the possibility of applying the BRST-

cohomology. Unphysical variables are expected and in order to eliminate them one has

to introduce fermionic antifields φ∗k with canonical momenta π∗k, subject to the canonical

anticommutation relations

{φ∗k, π∗k′} = δk+k′ , {φ∗k, φ∗k′} = {π∗k, π∗k′} = 0 (8.48)

We then will have an extended history phase space HP∗ and the functions over such a

space will belong to the space called C(HP∗) = C(φ, φ∗, π, π∗). The dynamics constraint

is implemented by the BRST charge

QD =
∞∑

k=−∞
εkπ
∗
−k =

∞∑
k=−∞

(k2 − ω2)φkπ
∗
−k (8.49)

which acts like δDF = [QD, F ]

δDφk = 0, δDπk = i(k2 − ω2)π∗k

δDφ
∗
k = (k2 − ω2)φk, δDπ

∗
k = 0

(8.50)

The cohomology are as a result generated by all eight variables with k = ±ω. The

physical phase space is generated only by the two variables a and a†. To eliminate this



Chapter 8. BV and BRST quantization, quantum observables and symmetry 113

over-counting, additional terms must be added. Let us therefore add bosonic antifields

θω and θ−ω with canonical momenta χω and χ−ω satisfying the commutation relations

[θk, χk′ ] = iδk+k′ , [θk, θk′ ] = [χk, χk′ ] = 0 (8.51)

where k, k′ are either ±ω. The antifield constraint φ∗ω
∼= φ∗−ω

∼= π∗ω
∼= π∗−ω

∼= 0 can be

implemented by the BRST operator

QA = φ∗ωχ−ω + φ∗−ωχω (8.52)

acting in the extended phase space (φk, πk, φ
∗
k, π
∗
k, θ±ω, χ±ω). The two BRST generators

commute {QD, QA} = 0. The antifield constraints act similarly δAF = [QA, F ] where

δAφ
∗
ω = 0, δAφ

∗
−ω = 0

δAπ
∗
ω = χω, δAπ

∗
−ω = χ−ω

δAθω = −iφ∗ω, δAθ−ω = −iφ∗−ω
δAχω = 0, δAχω = 0

(8.53)

We notice that Ker(δA) = Im(δA) = C(φ∗ω, φ
∗
−ω, χω, χ−ω). This gives a trivial coho-

mology and therefore all supplemental variables vanish in cohomology as expected. We

remain with the four variables φ±, π±ω only. Two still have to be eliminated. We

therefore use the momentum constraints

Mω = πω − iωφω, M−ω = π−ω + iωφ−ω (8.54)

satisfying

[Mω,M−ω] = 2ω (8.55)

These constraints are second class. We introduce two canonically conjugate fermionic

antifields βω and β−ω

{βω, β−ω} = 1, {βω, βω} = {β−ω, β−ω} = 0 (8.56)

The associated BRST charge becomes
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QM =Mωβ−ω (8.57)

and again δMF = [QM , F ] with

δMφω = 0, δMφ−ω = −iβ−ω
δMπω = 0, δMπ−ω = ωβ−ω

δMβω =M, δMβ−ω = 0

δMMω = 0, δMM−ω = 2ωβ−ω

(8.58)

Ker(QM ) is generated by (φω, πω, β−ω, π−ω − iωφ−ω). Im(QM ) is generated by (Mω =

πω − iωφω, β−ω). The cohomology H(QM ) is thus generated by

aω = 1√
2ω

(πω + iωφω) + xMω

a−ω = 1√
2ω

(π−ω − iωφ−ω)
(8.59)

where x is an arbitrary constant. They have the non-zero brackets

[aω, a−ω] = −1 (8.60)

In particular a−ω commutes with Mω so the bracket is independent of the parameter

x, as is necessary because it must be well defined in cohomology. If we make the

particular choice x = 0, aω also commutes with M−ω and we can identify aω = a†,

a−ω = a. We therefore started with the space of functions over the extended phase

space C(φk, πk, φ
∗
k, θ−ω, χ−ω, χω, βω, β−ω). With the BRST charge Q = QD +QA +QM

which is nilpotent we can form a cohomology with the degree zero groups given by

H0
classic(Q) = C(aω, a−ω), Hn

classic(Q) = 0,∀n 6= 0 (8.61)

We have therefore obtained the resolution of the classical phase space C(aω, a−ω). In

the extended history phase space we can define a natural hamiltonian as the generator

of rigid time translations

H =

∞∑
k=−∞

k(iφkπ−k + φ∗kπ
∗
−k) + iωθχ−ω − iωθ−ωχω + ωβωβ−ω (8.62)
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The BRST charge commutes with the hamiltonian [H,Q] = 0. Hence the Hamiltonian

acts in a well defined manner on the cohomology groups. We verify that the hamiltonian

can be written as

H = ωaωa−ω + {Q,O} (8.63)

where

O =
∑
k2 6=ω2

ik

(k2 − ω2)
φ∗kπ−k + iω(θωπ

∗
−ω − θ−ωπ∗ω) +

1

2
βωM−ω (8.64)

In particular on the zero degree cohomology H0
classic(Q) = C(aω, a−ω) it is equivalent

with the operator H = ωaωa−ω.

The cohomology therefore encodes the physical states. We did not yet perform a quan-

tization. A consistent method of doing this is to quantize the theory in the extended

history phase space and then to restrict the theory by means of constraints while going

to cohomology. Let there be a vacuum state |0〉 annihilated by all negative frequency

operators. Therefore one has

φ−k |0〉 = π−k |0〉 = φ∗−k |0〉 = π∗−k |0〉 =

= θ−ω |0〉 = χ−ω |0〉 = β−ω |0〉 = 0
(8.65)

Since all negative frequency operators annihilate the vacuum, quantization leaves us

with the state space H0
quant(Q) = C(aω), Hn

quant(Q) = 0, ∀n 6= 0. A basis for the state

space H0
quant(Q) is thus given by

|n〉 =
1√
n!
anω |0〉 (8.66)

An operatorA is physical if [Q,A] = 0 and two physical operatorsA andA′ are equivalent

if A′ = A + [Q,B], for arbitrary B. The operator cohomology for an arbitrary state is

therefore given by H0
quant(Q) = C(aω, a−ω). The hamiltonian commutes with the BRST

charge [H,Q] = 0 and the energy of the n-quanta state is given by H |n〉 = nω |n〉. If

we look now at the hermitian conjugates of the BRST operator we note that Q†D = QD

and Q†A = QA but Q†M = M−ωβω 6= QM = Mωβ−ω we notice that the full BRST

operator is not yet self-adjoint. This appears because the M±ω constraints are second

class. Making them first class means to employ again a pair of canonically conjugate
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variables, this time bosonic α±ω with non-zero brackets [αω, α−ω] = −2ω. The new

momentum constraints become then

M′ω =Mω + αω = πω − iωφω + αω

M′−ω =M−ω + α−ω = π−ω + iωφ−ω + α−ω
(8.67)

which are first class [M′ω,M′−ω] = 0. Now, we let the antifields β±ω anticommute and

introduce their canonical momenta γ±ω. The brackets then become

{βω, γ−ω} = {β−ω, γω} = 1

{β±ω, β±ω} = {γ±ω, γ±ω} = 0
(8.68)

and then the BRST charge becomes

Q′M =M′ωγ−ω +M′−ωγω (8.69)

The Q = QA +Q′M part of the BRST charge acts on the modes with k = ω as

δφω = −iγω, δπω = −ωγω
δφ∗ω = 0, δπ∗ω = χω

δβω =M′ω, δγω = 0

δθω = −iφ∗ω, δχω = 0

δαω = 2ωγω

(8.70)

Observe that δφω, δπω and δαω are proportional to γω. Two linearly independent

combinations of these variables belong to the kernel, namely πω + iωφω and M′ω. Also

in the kernel are φ∗ω, γω and χω. Im(Q) is generated by (M′ω, φ∗ω, γω, χω). Therefore

dimH∗(Q) = 1. But the action on modes with k = −ω is completely analogous and QD

eliminates all modes with k2 6= ω2 the generators of H∗(Q) is

aω = 1√
2ω

(πω + iωφω) + xM′ω
a−ω = 1√

2ω
(π−ω − iωφ−ω) + yM′−ω

(8.71)

with x and y arbitrary constants. With these new terms the BRST charge Q = QD +

QA + Q′M is self-adjoint i.e. Q† = Q. The hamiltonian must still commute with the

BRST charge and therefore must include also the new modes. Its form will be
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H =
∞∑

k=−∞
k(iφkπ−k + φ∗kπ

∗
−k) + iωθωχ−ω − iωθ−ωχω

+ωβωγ−ω − ωβ−ωγω + 1
2αωα−ω

(8.72)

Then [H,Q] = 0 and H = ωaωa−ω + {Q,O} where

O =
∑

k2 6=ω2

ik
(k2−ω2)

φ∗kπ−k

+iω(θωπ
∗
−ω − θ−ωπ∗ω) + 1

2(βωα−ω + β−ωαω)

+x(βωM−ω − β−ωMω)

(8.73)

Therefore we have a Hamiltonian in the cohomology.

In this thesis the goal of the universal coefficient theorem is to re-express results in one

theory in terms of another theory. This is what physicists call a duality. Indeed, I will

show in subsection 8.4 how the results associated to the description of the harmonic

oscillator can be re-expressed in terms of a different theory, obtained via an extension.

Indeed, there I will show that the change in the coefficient structure of a theory defined

(co)homologically amounts to a change in the extension of the field/string theory. This

relates for example the algebra of the harmonic oscillator to that of a string theory. At

this point I will present a simpler use of the universal coefficient theorem. The change

in the coefficient structure will not be so dramatic as what will be done in section 8.4.

However, it will be sufficient to allow us to follow step by step the changes that will

occur when the coefficient groups in (co)homology are changed (at least in a very basic

way) and how will that affect the physical result. As showed previously in this section,

given the BRST charge Q = QD + QA + QM in the form of a nilpotent operator, the

associated cohomology will be given by

H0
classic(Q) = C(aω, a−ω), Hn

classic(Q) = 0, ∀n 6= 0 (8.74)

The classical phase space, C(aω, a−ω) is then well defined. The algebra of the harmonic

oscillator is

[aω, a−ω] = −1 (8.75)

As showed previously the BRST charge commutes with the hamiltonian [H,Q] = 0 and

therefore we can define the Hamiltonian up to a bracket

H = ωaωa−ω + {Q,O} (8.76)

where O has been defined above. For the zero degree cohomology one obtains here the

standard operator H = ωaωa−ω. Therefore, it appears that the physical states can be
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extracted from the cohomology groups. However, if we consider the coefficient groups

in cohomology it appears that the particular cohomology groups change: the coefficient

choices modify the zero order cohomology and we don’t get the same cohomologies as

before. More radical changes in the coefficient structures may alter the higher degree

cohomologies as well, leading to more drastic modifications. Therefore, for the same

BRST charge, the cohomology groups become

H0
classic(Q,K) = C∗(aω, a−ω), Hn

classic(Q,K) = ∆n, ∀n 6= 0 (8.77)

where ∆n denotes the modification of the higher degree (co)homology groups. K is the

new coefficient group. Consider for the moment that the associated extension in the

universal coefficient theorem is trivial for this choice. Indeed, this choice can be made

and is actually the standard choice. For non-standard choices which may lead to more

non-trivial connections between theories (for example harmonic oscillator - Virasoro

algebra) see section 8.4. The same quantization prescription of above can be employed

here as well. One quantizes the theory in the extended phase space. The physical states

will be given by the cohomology. However, at this moment the cohomology is different.

One must not forget that the change in coefficients in this example still implies a trivial

extension. Therefore the short exact sequence of the universal coefficient theorem

0→ ExtR(Hq−1(Q),K)→ Hq(Q;K)→ Hom(Hq(Q),K)→ 0 (8.78)

becomes

0→ 0→ Hq(Q;K)
f−→ Hom(Hq(Q),K)→ 0 (8.79)

where the map f will here be a bijection. The physical states will be encoded in the

right hand side of this sequence. This particular form of K allows us to practically

work with a modified algebraic structure, namely the structure of homomorphisms from

Hq(Q) to K. Therefore, in this particular case, the physical states defined by means

of the (co)homology in the new coefficient structure become the homomorphic maps

between the homology of the physical states in the original coefficient group and the new

coefficient group. One may ask how this affects the physically measurable results like the

ground state energy. Indeed, these will be the same as before. The only modifications will

appear in the unphysical fields. The change in the higher degree cohomology is encoded

here by ∆n. However, by changing the focus from states to maps between states and

elements of a group, we gain much more flexibility in dealing with global problems. The

choice I made here, namely to introduce a coefficient group for which the particular Ext

group is trivial is a particularization. As there is a bijection between the two groups in

this case, the physical states will remain unchanged. However, this is not a stringent

requirement. It is definitely more comfortable to work with the universal coefficient
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theorem with trivial extension. However, if we decide to use a coefficient group which

does not trivialize the extension, the full Universal Coefficient Theorem must be used

and the effects will be those shown in section 8.4. The general way of looking at this is to

notice that the original Hamiltonian is modified by means of a potential V resulting in

H = Hphys+V . The dynamics induced by the modified Hamiltonian leaves the physical

Fock space unaltered, in the same way in which adding additional ghost and ghost of

ghost fields (in the proper way) doesn’t affect the physical dynamics in the BRST or

BV quantization. As the dynamics of Hphys does not depend on the coupling with V we

have that 〈n|V |n′〉 = 0, ∀n, n′ ∈ Hphys. We do obtain a new set of coupled oscillators

which, however, are equivalent to the uncoupled physical oscillators obtained with a

trivial coefficient structure. The departure from the BV-BRST interpretation appears

due to the non-perturbative nature of the changes induced by the coefficient groups.

Indeed, while the BRST construction strongly relies on perturbative calculations, the

coefficient structure in (co)homology allows us to add global effects not visible in any

perturbative approach. I analyzed possible effects of such global modifications in [52].

There I showed that it is possible to modify a theory not only in order to introduce a

BRST-anti-BRST symmetry as done until now, but to also introduce a dual-BRST-anti-

BRST symmetry. The role of this new symmetry was to implement a (non-physical)

global structure whose role was to annihilate a global anomaly. In fact it is important

to notice that any theory can be reformulated in terms of a gauge theory of some sort.

Usually, if the theory is easily representable in a non-gauge form, its gauge extension

appears to be trivial. However, being trivial does not mean it is irrelevant, quite the

opposite. For completeness, the main idea is to add auxiliary fields to the theory by

means of a trivial procedure like

δAl = Bl

δBl = 0
(8.80)

The original theory defined by a Hamiltonian, Lagrangian or simply by an action, does

not depend on these fields, therefore one may shift Al with no physical effect. This

shift would therefore manifest itself as a local symmetry and the fields Bl will be the

associated ghost fields. This observation allows us to redefine the field structure of a

theory in many different ways. These new fields however allow us a new perspective

on the mathematical properties that can be added through them in the theory. For

example it becomes possible to move undesirable aspects of the theory to the auxiliary

field sector and to transfer desirable properties to the physical field structure while using

the unphysical sector in order to compensate the unphysical changes. In particular, if

there are more symmetries available due to the extra fields, the interplay between them

at the level of the BRST (-anti-BRST-dual-(anti)-BRST) transformations introduces

additional freedoms that I used in [52] to avoid certain global anomalies.
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Particularly, a global anomaly can be lifted if a suitable “measuring device” presenting

a similar (compatible) global “anti-anomaly” is employed in the process of gauge fixing.

This “measuring device” must be non-local in nature and is described either in terms

of fields associated to the BRST-dual-BRST quantization prescription or in terms of

(co)homology with torsion coefficient groups. The resulting theory is either equivalent

to the original theory or may contain aspects of the original theory encoded in it. It

is important to remember that both the auxiliary fields and the coefficient groups in

cohomology are arbitrary constructions that do not change the physical content of the

theory. In the case of the BRST-dual-BRST quantization the integration over the ar-

tificial fields reconstructs the original theory. In the case of the interpretation using

(co)homology with torsional coefficient groups, the universal coefficient theorem tells us

that the choice of coefficients is to a large extent arbitrary. One example of a situation

where the coefficient groups in (co)homology are modified in order to obtain a “diluted”

cohomology isomorphic with the Chech cohomology group with integer coefficients is

[310]. These two ways of thinking (BRST-dual-BRST extension of a theory and the use

of “exotic” coefficient groups in (co)homoloy) are to a large extent isomorphic.

We can start with a largely arbitrary gauge theoretic action S[A]. At this moment we can

even assume it is a set of basic harmonic oscillators. For example free electrodynamics

may be seen as described by means of a set of harmonic oscillators. Starting with the

field strength tensor

Fµν = ∂µAν − ∂νAµ (8.81)

we can write the Maxwell equations in empty space as

∂µFµν = �Aµ = 0 (8.82)

Equivalently

(∂2
t − ∂2

x)A = 0 (8.83)

with planar wave solutions

A(x) = ak(t)e
i~k·~x (8.84)

where

(∂2
t + ω2

k)ak(t) = 0, ωk = |~k| (8.85)

which is the equation of motion for the harmonic oscillator. A similar harmonic oscillator

representation can be imagined for the free scalar field theory. Indeed take the action

S[φ] =
1

2

∫
R4

∂µφ∂
µφ−m2φ2 (8.86)



Chapter 8. BV and BRST quantization, quantum observables and symmetry 121

with the Klein-Gordon equation of motion

(∂µ∂
µ +m2)φ = 0 (8.87)

which also looks like a harmonic oscillator wave equation. Once interactions and per-

turbations arise, the harmonic oscillator approximation is of course insufficient and we

need the full mechanism of Feynman diagrams to find solutions. However, at this point

it makes sense to think of these theories as describing collections of harmonic oscillators.

I denote from now on the connection for the gauge theory by A. It can be used to define

a covariant derivative as

D(A)
µ = ∂µ − [Aµ, ·] (8.88)

We insist on enforcing the Schwinger Dyson equations now. In general the Schwinger

Dyson equations are the quantum equations of motion. They are derived as a conse-

quence of the generalization to path integrals of the invariance of an integral under a

shift of the integration variable by a quantity a i.e. x → x + a. For fields this might

be expressed as φ(x) → φ(x) + a(x). While looking trivial, they were among the first

results capable of bringing us beyond perturbative calculations. This has been realized

by noticing that they specify non-perturbative relations between quantum correlation

functions. In order to enforce the Schwinger-Dyson equations as a result of the BRST

algebra we may introduce a collective field

Aµ(x)→ Aµ(x)− aµ(x) (8.89)

The transformed action S[Aµ − aµ] has two independent gauge symmetries. Due to

the redundancies introduced by the collective field we can write the two symmetries in

different ways. One way of doing it is

δAµ(x) = Θµ(x)

δaµ(x) = Θ(x)−D(A−a)
µ ε(x)

(8.90)

We may choose the original symmetry of the original field structure to be carried entirely

by the collective field. The transformation of the original gauge field is always just a

shift. Θ(x) includes arbitrary deformations. However, it only leaves the transformed field

invariant. The action is also invariant under the original gauge transformations of the

transformed field itself. This is why two independent gauge transformations are being

included. These two gauge symmetries have to be gauge fixed in the standard BRST

fashion. We therefore introduce a suitable multiplet of ghosts and auxiliary fields. The

shift symmetry of Aµ requires a vector ghost field ψµ(x). One original gauge ghost field

c(x) will also be necessary. Gauge fixing the shift symmetry of Aµ by removing the
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collective field aµ leads to the introduction of a corresponding antighost A∗µ(x) and of

an auxiliary field bµ(x).

The nilpotent BRST algebra now becomes

δAµ(x) = ψµ(x)

δaµ(x) = ψµ(x)−D(A−a)
µ c(x)

δc(x) = −1
2 [c(x), c(x)]

δψµ(x) = 0

δA∗µ(x) = bµ(x)

δbµ(x) = 0

(8.91)

By adding

− δ[A∗µ(x)aµ(x)] = −bµ(x)aµ(x)−A∗µ(x){ψµ −Dµ
(A−a)c(x)} (8.92)

to the Lagrangian we fix aµ(x) to zero. At this point we can make the choice of in-

tegrating over pairs of ghosts and anti-ghosts. Hence we can integrate over ψµ(x) and

A∗µ(x) while keeping c(x) unintegrated at this point. The extended but not yet fully

gauge fixed action is

Sext = S[Aµ − aµ]−
∫
dx{bµ(x)aµ(x) +A∗µ(x)[ψµ(x)−Dµ

(A−a)c(x)]} (8.93)

with the partition function

Z =

∫
dAµdaµdψµdA

∗
µdbµexp[

i

~
Sext] (8.94)

In order to continue, we first integrate out aµ and bµ and then, integration over A∗µ

leaves a trivial ψµ integral. In this way we obtain back the starting point, namely the

original gauge-theoretic action S[Aµ] integrated over the original measure.

We must insist that the Schwinger-Dyson equations involving the field c(x) i.e. equations

of the form

0 =

∫
dc

δl

δc(x)
[Fe

i
~ [S]] (8.95)

are satisfied automatically when employing the full, unbroken BRST algebra. In order

to achieve this we have to introduce yet another collective field, say c̃(x). We now shift

the original gauge ghost

c(x)→ c(x)− c̃(x) (8.96)
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From this shift results a new fermionic gauge symmetry which we have to fix via the

introduction of a new BRST ghost-antighost pair and an auxiliary field. We let the

transformation of the new collective field c̃(x) carry the BRST transformation of the

original ghost.

δc(x) = C(x)

δc̃(x) = C(x) + 1
2 [c(x)− c̃(x), c(x)− c̃(x)]

δC(x) = 0

δc∗(x) = B(x)

δB(x) = 0

(8.97)

Now, in order to gauge fix c̃(x) to zero we add the term

− δ[c∗(x)c̃(x)] = B(x)c̃(x)− c∗(x){C(x) +
1

2
[c(x)− c̃(x), c(x)− c̃(x)]} (8.98)

to the Lagrangian. This leads to the fully extended action

Sext = S[Aµ − aµ]−
∫
dx{bµ(x)aµ(x) +A∗µ(x)[ψµ(x)−Dµ

(A−a){c(x)− c̃(x)}]

−B(x)c̃(x) + c∗(x)(C(x) + 1
2 [c(x)− c̃(x), c(x)− c̃(x)])}

(8.99)

In the partition function all fields appearing above are being integrated except the field

c(x) for which another antighost c̄ must still be introduced when the original gauge

symmetry will be fixed eventually. The extended action and the functional measure is

invariant under the following transformations

δAµ(x) = ψµ(x), δψµ(x) = 0

δaµ(x) = ψµ(x)−D(A−a)
µ [c(x)− c̃(x)], δc(x) = C(x)

δA∗µ(x) = bµ(x), δbµ(x) = 0

δc̃(x) = C(x) + 1
2 [c(x)− c̃(x), c(x)− c̃(x)], δC(x) = 0

δc∗(x) = B(x), δB(x) = 0

(8.100)

The fields A∗µ(x) and c∗(x) are the antighosts of the collective fields which enforce the

Schwinger-Dyson equations through shift symmetries.

Therefore, this shows that additional shift symmetries can be used in order to encode

the Schwinger-Dyson equations directly via the BRST algebra. It can be seen that by

judiciously using artificial symmetries and gauge fixing, additional properties can be
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added to the original field structure. This is being done such that, by carefully integrat-

ing over the supplemental fields we obtain the same theory again. This extension of the

field space corresponds to the usual (co)homology and the associated exact sequence for

the universal coefficient theorem is again the one inducing a bijection in the place of the

last non-trivial arrow

0→ 0→ Hq(Q;K)
f−→ Hom(Hq(Q),K)→ 0 (8.101)

There is another possibility for the extension of the field space. Instead of introducing

a shift by means of one auxiliary field, one can use two such fields. This enlargement

of the field space is equivalent to a modified coefficient structure, namely a coefficient

structure that allows two irrelevant fields to start with. This will lead to a modified set

of non-physical fields that will have to be eliminated via (co)homology and therefore a

modified (co)homology theory. However, we still keep the case when the Ext group is

trivial.

Let me show how to introduce the Schwinger-Dyson equations as Ward identities in this

case. Following the procedure by Batalin and Vilkovisky I extend the previous example

and I insert now two auxiliary fields

Aµ → Aµ − φ1 − φ2 (8.102)

These encode a trivial gauge symmetry representing a shift. The Jacobian associated to

the above transformation is trivial. However, this symmetry involves additional freedoms

which can be employed for various purposes. The new symmetry has to be gauge-fixed.

In doing so via the BRST-anti-BRST formalism the Schwinger-Dyson equation emerges

again as a Ward identity. The field multiplets introduced are the ghosts (π1, A
∗
2) and

the antighosts (A∗1, π2). The BRST and anti-BRST transformations are as follow:

δ1A = π1 δ2A = π2

δ1φ1 = π1 −A∗2 δ2φ1 = −A∗1
δ1φ2 = A∗2 δ2φ2 = π2 +A∗1

δ1π1 = 0 δ2π2 = 0

δ1A
∗
2 = 0 δ2A

∗
1 = 0

(8.103)

Here δ1 and δ2 are respectively the BRST and anti-BRST transformations. The next

step is to impose gauge fixing. This is done in the standard way by adding more bosonic
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fields, call them B and λ. The BRST transformation rules extend according to

δ1π2 = B δ2π1 = −B
δ1B = 0 δ2B = 0

δ1A
∗
1 = λ− B

2 δ2A
∗
2 = −λ− B

2

δ1λ = 0 δ2λ = 0

(8.104)

These rules imply the nilpotency conditions:

(δ2δ1 + δ1δ2)A = 0 (8.105)

(δ2δ1 + δ1δ2)φ1 = 0 (8.106)

δ2
1 = δ2

2 = 0 (8.107)

One can chose the gauge fixing condition such that both auxiliary fields are fixed to zero

by adding the BRST-anti-BRST closed term

Scol =
1

2
δ1δ2[φ2

1 − φ2
2] (8.108)

By using the BRST-anti-BRST transformations above this becomes

Scol = −(φ1 + φ2)λ+
B

2
(φ1 − φ2) + (−1)aA∗aπa (8.109)

which makes the gauge fixed action

Sgf = S0[A− φ+]− φ+λ+
B

2
φ− + (−1)aA∗aπa (8.110)

where φ± = φ1 ± φ2. Here the index a = 1, 2 represents the field-antifield index and

summation over it is implied. Now the theory is well defined. At this moment the

Schwinger-Dyson equation is encoded via an emerging Ward identity 〈δ1[A∗1F [Aµ]]〉 = 0.

Alternatively this can be written as

0 =< δ1[A∗µF (Aµ)] >=

=
∫
dµ[A∗µ1

δlF
δAµ

π1 + (λ− B
2 )F (Aµ)]e

i
~Sgf

(8.111)

Here F is a general functional on the fields Aµ and δl

δAµ
is the left functional derivative.

It gains a sign with respect to the right derivative when acting on fermionic fields. The

introduction of the BRST-anti-BRST symmetry in this way is related to a new way

of looking at the cohomology. I will use as notation for the eventual field strengths,
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the matter fields and the anti-fields the symbol χ. In calculation of the cohomology of

particular importance are the invariant polynomials in χ denoted αJ(χ). They represent

the coefficient structure in the following construction. Indeed, one can define the form

ā =
∑
J

αJ(χ)ωJ where ωJ represents a basis of the Lie algebra cohomology of the

Lie algebra of the gauge group. The coefficients of this expansion are the invariant

polynomials in the field strengths, fields and anti-fields. If αJ(χ) is a closed form with

respect to the differential operator of the cohomology i.e. dα = 0 then one knows from

the fact that d is a differential operator associated to a cohomology that α = dβ for

some β. If α does contain anti-fields as well, then one may deduce that β is also an

invariant polynomial. However, if α does not contain anti-fields this is not the case. One

can therefore state that the cohomology of the differential operator d in form degree < n

is trivial in the space of coefficients defined by means of invariant polynomials in χ with

strictly positive anti-ghost number. This is reflected on the coefficient structure of the

cohomology as well. Therefore the invariant polynomials in field strengths, fields and

anti-fields defined as coefficients for the forms and the cohomology are associated to

the BRST-anti-BRST quantization prescription. Let now α be a representative of the

cohomology H∗(γ) given by

α =
∑

αJ(χ)ωJ (8.112)

where γ can be considered the longitudinal differential operator for a original gauge

sector. As dγ+γd = 0, we have that d induces a well defined differential on H∗(γ). One

may notice this in the following way. The derivative dαJ is an invariant polynomial in χ.

Thus dα = ±
∑

(dαJ)ωJ + γ(
∑
αJ ω̂J) defines an element of H∗(γ), namely the class of∑

(dαJ)ωJ . ω̂ is another choice of a basis. One may therefore have a cohomology of the

differential d on H∗(γ). This is indeed Hg,l
k (d,H∗(γ)) = 0 for k ≥ 1 and l < n. Here g is

the ghost number, l is the form degree and k is the anti-ghost number. The coefficients

are defined by the forms obtained in the cohomology of the other differential. The proof

of this statement can be found in ref. [329].

One can see that both the previous simple BRST method and the BRST-anti-BRST

method presented here can equally be integrated and lead to the original theory de-

fined by S[A]. There is not much to calculate at this point, as the prescription simply

amounts to un-doing everything that has been done in the constructions of BRST and

respectively BRST-anti-BRST quantizations. The advantage however is that additional

symmetries may be used in the extended systems. I called in [52] this method “sym-

metry out of cohomology”. The coefficients employed in the various cases therefore are

functions, defined over the functional space (as is typical for the BRST cohomology, see

section 8.1). They differ by the number and type of supplemental fields used as coeffi-

cients in the form polynomials. In the simple BRST case the whole system contained

only the fundamental number of fields, ghosts and anti-ghosts, while in the second case
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(BRST-anti-BRST) we had form polynomials with coefficients containing the associated

anti-fields for the anti-BRST sector. The differential operator associated to this coho-

mology is therefore extended accordingly, becoming d = δ1+δ2 satisfying the generalized

nilpotency conditions showed above with respect to the BRST and anti-BRST sectors.

Up to this point, I showed on one side that the extension of the BRST method to a

field-anti-field method is equivalent to the change of the coefficient structures of the

forms and of the cohomology associated to the theory.

An even more advanced structure becomes important when dual transformations are

being considered [328]. Indeed, the (co)homological analogue in this case is the non-

triviality of the bijection map on the right side of the universal coefficient theorem for

trivial Ext groups. As dual transformations may be used to encode global fictitious

field structures the map towards the homomorphisms between the homology with trivial

coefficients and the chosen coefficient group becomes more important. The total sym-

metry to be considered here is not merely BRST-anti-BRST but also the associated

dual symmetry. Additional global structures like the Hodge duality induced discrete

symmetry [52] may appear. These are easier to be analyzed from the “dual” perspective

i.e. Hq(Q;K)
f−→ Hom(Hq(Q),K).

The Hodge decomposition operators (d, δ,∆) can be represented as some symmetries of

a given BRST invariant Lagrangian of a gauge theory. In general, the Hodge decompo-

sition theorem states that on a compact manifold any n-form fn(n = 0, 1, 2, ...) can be

uniquely represented as the sum of a harmonic form hn(∆hn = 0, dhn = 0, δhn = 0), an

exact form den−1 and a co-exact form δcn+1 as

fn = hn + den+1 + δcn+1 (8.113)

where here d is the exterior derivative, δ is its dual and ∆ is the Laplacian operator

∆ = dδ+δd. In order to identify the dual BRST transformation, one has to observe that

while the direct BRST transformations leave the two form F = dA in the construction

of a gauge theory invariant (and therefore the basic harmonic oscillator was sufficient

to discuss it) and transforms eventual Dirac fields like a local gauge transformation, the

dual-BRST transformations leave the previous gauge fixing term invariant and transform

the Dirac fields like a chiral transformation. So, as a practical example, we can start

from a BRST invariant Lagrangian for QED.

LB = −1

4
FµνFµν + ψ̄(iγµ∂µ −m)ψ − eψ̄γµAµψ +B(∂A) +

1

2
B2 − i∂µC̄∂µC (8.114)

Fµν being the field strength tensor, B is the Nakanishi-Lautrup auxiliary field and C, C̄

are the anti-commuting ghosts. The BRST transformations that leave this Lagrangian
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invariant are
δBAµ = η∂µC δBψ = −iηeCψ
δBC = 0 δBC̄ = iηB

δBψ̄ = iηeCψ̄ δBFµν = 0

δB(∂A) = η�C δBB = 0

(8.115)

where η is an anti-commuting space-time independent transformation parameter. Par-

ticularizing for the 2 dimensional case the Lagrangian becomes

LB = −1

2
E2 + ψ̄(iγµ∂µ −m)ψ − eψ̄γµAµψ +B(∂A) +

1

2
B2 − i∂µC̄∂µC (8.116)

and this can be rewritten after introducing another auxiliary field B as

LB = BE − 1

2
B2 + ψ̄(iγµ∂µ −m)ψ − eψ̄γµAµψ +B(∂A) +

1

2
B2 − i∂µC̄∂µC (8.117)

The dual BRST symmetry operators to be associated to the theory above in the 2

dimensional case are

δDAµ = −ηεµν∂νC̄ δDψ = −iηeC̄γ5ψ

δDC = −iηB δDC̄ = 0

δDψ̄ = iηeC̄γ5ψ̄ δDFµν = η�C̄

δD(∂A) = 0 δDB = 0

δDB = 0

(8.118)

Moreover, as noted in reference [328] the interacting Lagrangian in 2 dimensions is

invariant under the following transformations

C → ±iγ5C̄ C̄ → ±iγ5C

B → ∓iγ5B A0 → ±iγ5A1

A1 → ±iγ5A0 B → ∓iγ5B
E → ±iγ5(∂A) (∂A)→ ±iγ5E

e→ ∓ie ψ → ψ

ψ̄ → ψ̄

(8.119)

Reference [328] shows that these are the analogues of the Hodge duality (∗) for this

particular example and that they induce a discrete symmetry. One can also verify that

∗ (∗Φ) = ±Φ (8.120)
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where for (+) the generic field Φ is ψ, ψ̄ and for (−) Φ represents the rest of the fields.

One can also observe that for the direct and dual BRST symmetries

δDΦ = ± ∗ δB ∗ Φ (8.121)

is valid. Therefore we have direct and dual differential operators, inducing a more

advanced cohomology structure.

Up to this point I employed as a basic tool for the current construction, auxiliary fields

of various types. Connections with the coefficients in cohomology were briefly presented

on the way. These concepts have a direct analogy in the domain of (co)homology with

torsion coefficient groups as has been shown before in this chapter. In categorial terms

the connection between the construction using auxiliary fields and the construction using

non-trivial coefficient groups can be written as the following diagram

F
n
S(M) F

n′
S (M ′)

Hp(C,Z) Hp(C,G)

h

i j

h∗

(8.122)

Here, FnS(M) is the space of physical solutions of the theory containing an initial number

n of fields while Fn
′
S (M ′) is the space of physical solutions for the theory obtained via the

introduction of new auxiliary fields such that the required global properties emerge. This

space contains the required topological particularity introduced via the employment of

the auxiliary fields. The diagram commutes when the Ext groups are trivial. It must be

specified that the morphism in the lower arrow requires the use of the universal coefficient

theorem where in this case the Ext group is trivial. The upper arrow morphism is valid

when we talk about the physical domain of the theory. G is the new coefficient group.

If Ext and/or Tor are trivial, the horizontal arrows become isomorphisms. If not, the

horizontal arrows must be adjusted and the diagram must be re-designed including the

appropriate universal coefficient theorem.

Of course, in the simple context of a harmonic oscillator presented here, there is no global

anomaly to alleviate via this method and therefore one can move back and forth between

the situations with additional auxiliary fields and therefore non-trivial coefficient groups

in cohomology. The reader may however consult ref. [52] and mainly pages 14 - 21

therein for nontrivial examples for this method.

Even with this relatively mild modification in the coefficient structure, some problems

considered hard may become tractable. By changing the viewpoint from the states
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themselves to the homomorphisms from the states to certain groups global aspects may

become visible.

This concludes the most basic example related to a change in coefficient groups. In

this case the coefficients simply lead to various ghost-anti-ghost-ghost-of-ghost repre-

sentations of the theory. For more advanced and more relevant connections see section

8.4.

8.3 The free particle

A similar prescription to that of the previous chapter, again taking [267] as a basic

model is the free particle. In order to employ the cohomological construction for the

description of the free particle moving in d dimensions, one may think at it as to d

harmonic oscillators with zero frequency. We denote the independent time parameter

by t and the histories of the particles in the phase space by qµ(t) and pµ(t). These are

subject to the commutation relations

[qµ(t), pν(t′)] = iδµν δ(t− t′) (8.123)

Considering the Minkowski space with a flat background metric ηµν , we can use it to

raise and lower indices in the standard manner qµ(t) = ηµνq
ν(t). The equations of

motion then become

εµ(t) = q̈µ(t) ∼= 0 (8.124)

In cohomology, for implementing these equations we introduce the fermionic antifields

qµ∗ (t) with momenta p∗µ(t), satisfying non-zero brackets

{qµ∗ (t), p∗ν(t′)} = δµν δ(t− t′) (8.125)

There still remain redundancies in the equations of motion, of the form

∫
dtεµ(t) =

∫
dttεµ(t) = 0 (8.126)

These require the introduction of two new bosonic antifields, call them θµ1 and θµ0 together

with the momenta χµ1 and χµ0 . If the integrand is a total derivative, the integrals above

vanish. We identify the momenta and velocities by means of the constraint
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Mµ(t) = pµ(t)− q̇µ(t) (8.127)

Most of the momentum constraints do not commute with the dynamics since

[Mµ(t), εν(t′)] = −iδνµδ(t− t′) (8.128)

Integrating by parts we obtain

M0
µ =

∫
dtMµ(t) =

∫
dtpµ(t)

M1
µ =

∫
dttMµ(t) ∼=

∫
dttpµ(t)

(8.129)

These expressions do commute with εν(t′). One may use here the fact that

∫
dttq̇µ(t) = δ(−1

2

∫
dtt2qµ∗ (t)) (8.130)

is BRST exact in view of the dynamics constraint and thus can be ignored. The mo-

mentum constraints become now first class

[M0
µ,M1

ν ] = 0 (8.131)

Now that we have implemented the dynamics and antifields constraints, we still have

four degrees of freedom: the two solutions of q̈µ(t) = 0 and their associated momenta.

Momentum constraints identify velocities and momenta and thus cut down the number

of degrees of freedom to two. This would then be realized by means of two second

class constraints. However, here M0
µ and M1

µ are first class and count twice. Hence

only one of them is implemented in cohomology. The total BRST operator is then

Qq = Qd +Qa +Qm where

Qd =
∫
dtq̈µ(t)p∗µ(t)

Qa = χ1
µ

∫
dtqµ∗ (t) + χ0

µ

∫
dttqµ∗ (t)

(8.132)

Qm =M0
µγ

µ
0 , Qm =M1

µγ
µ
1 (8.133)
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Let me now expand the fields in a Laurent series in t and define the modes qµm and pmµ

by

qµ(t) =
∞∑

m=−∞
qµmtm

pµ(t) =
∞∑

m=−∞
pmµ t

−m−1
(8.134)

The Laurent modes satisfy commutation relations

[qµm, p
n
ν ] = −iδµν δnm (8.135)

But at the same time we have

δ(t− t′) = − 1
t′ δ(1−

t
t′ )

δ(1− s) =
∞∑

m=−∞
sm

(8.136)

and by using them we confirm the previous results. The modes can be recovered from

the fields by taking moments e.g.

qµm =

∫
dtt−1−mqµ(t) (8.137)

We note that qµ−1 is the residue. The dynamics constraint then becomes

εµm = (m+ 2)(m+ 1)qµm+2 (8.138)

Hence we introduce an antifield q∗µm with momentum pm∗µ and nonzero brackets {q∗µm , pn∗ν} =

δµν δnm and then we define the dynamics constraints as

Qd =

∞∑
m=−∞

εµmp
m
∗µ =

∞∑
m=−∞

m(m− 1)qµmp
m−2
∗µ (8.139)

Qd is an operator which acts like
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δdq
µ
m = 0 δdp

m
µ = −im(m− 1)pm−2

∗µ

δdq
∗µ
m = (m+ 2)(m+ 1)qµm+2 δdp

m
∗µ = 0

(8.140)

Here, Ker(Qd) is generated by all qµm, q∗µ−2, q∗µ−1, p0
µ, p1

µ and pm∗µ. On the other side,

Im(Qd) is generated by all qµm except m = 0 and m = 1 and by all pm∗µ except m =

−2,−1. Therefore the cohomology H∗(Qd) is generated by qµ0 , qµ1 , q∗µ−2, q∗µ−1, q0
µ, q1

µ, q−2
∗µ ,

q−1
∗µ . The antifields constraints correspond to

q∗µ−1 =
∫
dtqµ∗ (t), q∗µ−2 =

∫
dttqµ∗ (t) (8.141)

We need to introduce new bosonic antifields θµ1 and θµ0 together with their momenta χ1
µ,

χ0
µ. The antifield BRST charge is then

Qa = qµ−1χ
1
µ + q∗µ−2χ

0
µ (8.142)

It will act on the relevant fields as

δaq
∗µ
−1 = δaq

∗µ
−2 = 0, δap

−1
∗µ = χ1

µ, δap
−2
∗µ = χ0

µ

δaθ
µ
1 = q∗µ−1, δaθ

∗µ
0 , δχ1

µ = δaχ
0
µ = 0

(8.143)

It is clear that the antifields cancel in quadruplets and the cohomology H∗(Qd +Qa) is

generated by qµm and pmµ , m = 0, 1. The modes of the momentum constraints are then

Mm
µ = pmµ +mηµνq

ν
m+1 (8.144)

for m = 0, 1. They commute with εµm as in

[Mm
µ , ε

ν
n] = im(m− 1)δνµδ

m
n+2 = 0 (8.145)

Since qµ−1 = δ(1/2q∗µ−3) ∼= 0 we can take the momentum constraints to be M0
µ = p0

µ or

M1
µ = p1

µ. They commute and therefore they are first class constraints. Hence only one

will be implemented in the cohomology. Let us consider therefore onlyM0
µ
∼= 0. Now we

introduce a pair of antifields β0
µ and γµ0 and the momentum part of the BRST operator

then becomes
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Qm = Q0
m = p0

µγ
µ
0 (8.146)

acting on the relevant fields like

δmq
µ
0 = iγµ0 , δmp

0
µ = δmq

µ
1 = δmp

1
µ = 0

δmβ
µ
0 = p0

µ, δmγ
0
µ = 0

(8.147)

The fields qµ0 , p0
µ, βµ0 and γ0

µ cancels and the cohomology becomes a group generated

only by

uµ = q1
µ + xp0

µ

sµ = p1
µ

(8.148)

for some constant x. Now [sµ, uν ] = iηµν is well defined in the cohomology.

8.4 Harmonic oscillator via cohomology with nontrivial co-

efficients

In the past section we saw that the BRST prescription can be employed for the de-

scription of two simple cases: the harmonic oscillator and the free particle. Indeed,

the solutions were trivial and all too well known. As BRST is finally a cohomological

construction, and as the oscillators have been represented via cohomology, one could

ask if there are some possible advantages one could get by modifying the associated

coefficient structure. The methods used previously made the roles of the BRST charges

and the BRST cohomology manifest. In what follows I will show how this description

depends on choices of coefficient groups in cohomology. This will validate the method

by showing that standard physical results are not changed by employing different coeffi-

cient structures. However, the theories may become widely different and the particular

situations above may map into very special, limit-situations of more general theories.

Indeed, it will appear that the coefficient structure in cohomology for Lie groups and

Leibniz groups control the center of the considered algebra and provide us with relations

between various possible central extensions. The harmonic oscillator algebra appears as

a particular case during this analysis. The main references for this section are [270-278].

First we need to understand the cohomology of Lie algebras. It is defined in order to

give information about the algebraic structure of the Lie algebra via the low degree

interpretations of the cohomology spaces. It also gives geometric information about
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the corresponding Lie group. It is well defined for finite and infinite dimensional Lie

algebras. Let g be a Lie algebra over a characteristic zero field k. One could consider

finite dimensional examples, like matrix Lie algebras g = gl(n, k), sl(n, k), so(n, k), or

sp(2n, k). Two g-modules will be of relevance now. First, the trivial module, which has

an action x · λ = 0 for all λ ∈ k and all x. Second, the adjoint module g acting on g by

the adjoint action. This means, it acts by the bracket of the algebra like x · y = [x, y]

for all x, y ∈ g. We call an universal enveloping algebra Ug of g an associative algebra

of the form

Ug = Tg/(x⊗ y − y ⊗ x− [x, y], ∀x, y ∈ g) (8.149)

This means that Ug is the quotient of the tensor algebra Tg on g by the ideal generated

by the elements

x⊗ y − y ⊗ x− [x, y] ∀x, y ∈ g (8.150)

The Lie algebra g may be regarded as included in Ug. Given an associative algebra A

and a Lie algebra morphism φ : g → A into the underlying Lie algebra of A, there is a

unique morphism of associative algebras Φ : Ug → A such that Φ|g = φ.

Let now g be a Lie algebra and M be a g-module. Define the space of p-cochains on g

with coefficients in M to be

Cp(g,M) = Homk(Λ
pg,M) (8.151)

the space of p-linear alternating maps from g to M where for p = 0 we set C0(g,M) = M

Let c ∈ Cp(g,M). Define dc ∈ Cp+1(g,M) by

dc(x1, ..., xp+1) =
∑

1≤i≤j≤p+1
(−1)i+jc([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xp+1)+

+
p+1∑
i=1

(−1)i+1xi · c(x1, ..., x̂i, ..., xp+1)

(8.152)

The cochain complex (C∗(g,M), d) is called the Chevalley-Eilenberg complex. It is used

to define the Lie algebra cohomology. In the standard way, define the space of p-cocycles

Zp(g,M) = {c ∈ Cp(g,M)|dc = 0} (8.153)

and the space of p-coboundaries

Bp(g,M) = {c ∈ Cp(g,M)|∃c′ ∈ Cp−1(g,M) : c = dc′} (8.154)
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Then the cohomology space of g with coefficients in M is the quotient vector space

Hp(g,M) = Zp(g,M)/Bp(g,M) (8.155)

For infinite dimensional Lie algebras the topological Lie algebra may be employed (i.e.

Lie algebras of vector fields). Let now G be a connected Lie group with Lie algebra g

and suppose M is trivial i.e. M = R with trivial action. Let ω ∈ Ωp(G) be a differential

p-form on G. Then the Cartan formula for the exterior differential reads

dω(X1, ..., Xp+1) =
∑

1≤i<j≤p+1
(−1)i+jω([Xi, Xj ], X1, ..., X̂i, ..., X̂j , ..., X

p+1)+

+
p+1∑
i=1

(−1)i+1Xi · ω(X1, ..., X̂i, ..., Xp+1)

(8.156)

We consider here Xi to be vector fields on G and the bracket is the bracket of vector

fields. The action Xi · ω(X1, ..., X̂i, ..., Xp+1) denotes the Lie derivative. This formula

for the exterior differential is essential for the Lie algebra cohomology. Define a p-form

ω ∈ Ωp(G,M) i.e. the space of differential forms with values in the vector space M .

Such a p-form is called equivariant if for all g ∈ G, λ∗gω = ρ(g) ◦ ω. Here λg is left

translation on the group G and ρ : G × M → M is the smooth group action of G

on M . The subspace of equivariant forms is denoted Ωp(G,M)eq. The evaluation at

1 ∈ G, ev1 : Ωp(G,M)eq → Cp(g,M) defines an isomorphism of the de Rham complex

of equivariant M -valued differential forms on G to the complex of M -valued Lie algebra

cochains.

ConsideringG a connected compact Lie group, we haveH∗dR(G) ∼= H∗(g,R) ∼= InvGΛp(g∗).

These have been introduced in order to continue on the path of the derived functor ap-

proach to cohomology. Indeed, one can see the Lie algebra cohomology as the derived

functor of the functor of invariants

M →Mg = {m ∈M |∀x ∈ g : x ·m = 0} (8.157)

Considering this, it can be described as an Ext functor

H∗(g,M) = Ext∗Ug(k,M) (8.158)

because Mg = HomUg(k,M) and the Koszul complex is a resolution of the trivial g-

module k. Otherwise stated the augmentation map Ug → k induces a quasi-isomorphism

Λ∗g ⊗ Ug → k. The Koszul complex arises then as a projective resolution of the trivial

g-module k. Applying the functor HomUg(∗,M) to the resolution Ug ⊗ Λ∗g → k one
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obtains that

HomUg(Ug ⊗ Λ∗g,M) ∼= Homk(Λ
∗g,M) (8.159)

and simplifying one obtains the Chevalley Eilenberg complex for the Lie algebra coho-

mology. Cohomology spaces are interesting invariants. Indeed, in the following part of

this section I will use them as invariants in order to detect the harmonic oscillator Fock

space [319]. The various degrees of the cohomology have various interpretations. In

degree zero,

H0(g,M) = Z0(g,M) = {m ∈M |dc = 0} = {m ∈M |∀x ∈ g : x·m = 0} = Mg (8.160)

In degree one, we have

H1(g,M) = Z1(g,M)/B1(g,M) = Der(g,M)/PDer(g,M) (8.161)

where we define the category of derivators as

Der(g,M) = {f ∈ Homk(g,M)|∀x, y ∈ g : f([x, y]) = x · f(y)− y · f(x)} (8.162)

and the category of prederivators as

PDer(g,M) = {f ∈ Homk(g,M)|∃m ∈M : ∀x ∈ g : f(x) = x ·m} (8.163)

In order to compute cohomology spaces it is important to know how these spaces de-

compose when g or the coefficients M decompose. In this work, the focus was on the

coefficients, therefore consider the decomposition of the coefficient structure

0→M ′ →M →M ′′ → 0 (8.164)

be a short exact sequence of g-modules. This leads to a long exact sequence in coho-

mology

...→ H i(g,M ′′)→ H i+1(g,M ′)→ H i+1(g,M)→ H i+1(g,M ′′)→ ... (8.165)

It is also possible to show that the short exact coefficient sequence induces a short exact

sequence of complexes

0→ C∗(g,M ′)→ C∗(g,M)→ C∗(g,M ′′)→ 0 (8.166)

and one then can apply the connecting homomorphism. The study of the effect of

various coefficients in the Lie algebra cohomology can be used for the description of
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the harmonic oscillator. We can express the massless harmonic oscillator algebra φ(n)

as a Lie subalgebra of the Schrodinger algebra sch(n) and finally calculate the Leibniz

homology using the Pirasvili spectral sequence [318, 319]. Such a homology theory

gives an infinite number of harmonic oscillator invariants and therefore allowing us to

obtain information about the harmonic oscillators [319]. These invariants allow us to

identify and count the irreducible representations of the harmonic oscillator algebra

and therefore to classify those irreducible representations with important results in the

analysis of the Fock spaces. This might become useful in quantum chemistry and the

study of condensed matter systems. Moreover, a cohomological description allows us to

access this information from various perspectives, given by the coefficients in cohomology

and by the universal coefficient theorem. Indeed, one may start with various central

extensions and generalizations of the algebra of oscillators and obtain information in

different ways, all related via universal coefficient theorems.

A Leibniz algebra is a module over a commutative ring with a bilinear product [∗, ∗]
satisfying the Leibniz identity

[[a, b], c] = [a, [b, c]] + [[a, c], b] (8.167)

Therefore, it is a generalization of the Lie algebra. Indeed, if [a, b] = −[b, a] the Leibniz

identity becomes a Jacobi identity i.e. [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0 and the Leibniz

algebra becomes a Lie algebra. The homology of the Leibniz algebra has been defined

in [320]. The Schrodinger algebra sch is generated by the following set

{Xij , an, bn, cn, xi
∂

∂xn+1
, xi

∂

∂xn+2
; 1 ≤ i ≤ n} (8.168)

where

Xij = −xi ∂
∂xj

+ xj
∂
∂xi

1 ≤ i < j ≤ n (Rotations)

an = −xn+1
∂

∂xn+1 + xn+2
∂

∂xn+2 (Dilation)

bn = xn+1
∂

∂xn+2 (Time translation)

cn = −xn+2
∂

∂xn+1 (Conformal transformation)

xi
∂

∂xn+1 1 ≤ i ≤ n (Galilean boosts)

xi
∂

∂xn+2 1 ≤ i ≤ n (Space translations)

(8.169)

The non-trivial brackets are

[Xij , Xik] = Xjk, [an, bn] = −2bn, [an, cn] = 2cn, [bn, cn] = an (8.170)
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[Xij , xi
∂

∂xn+1 ] = xj
∂

∂xn+1 , [Xij , xi
∂

∂xn+2 ] = xj
∂

∂xn+2 (8.171)

[an, xi
∂

∂xn+1 ] = xi
∂

∂xn+1 , [an, xi
∂

∂xn+2 ] = −xi ∂
∂xn+2 (8.172)

[bn, xi
∂

∂xn+1 ] = −xi ∂
∂xn+2 , [cn, xi

∂
∂xn+2 ] = xi

∂
∂xn+1 (8.173)

There will be an isomorphism of graded vector spaces

HL∗(φ(n);R) ∼= T ∗(U(n))⊗ < β̃n,∗ > (8.174)

where T ∗(U(n)) is the tensor algebra on a 1-degree generator and < β̃n,∗ > is a graded

vector space generated by tensor powers of even degree. When dealing with a Hilbert

space we obtain the description of Fock spaces for quantum mechanics. Generalizations

to quantum field theory and string theory are also known. Let U(n) and I be the Lie

subalgebras of sch(n) generated respectively by

{an}, {xi ∂
∂xn+1 , xi

∂
∂xn+2 ; 1 ≤ i ≤ n} (8.175)

The harmonic oscillator algebra will then consist of the dilation, the Galilean boosts

and the space translations and will be isomorphic to U(n)nIn. There is a short exact

sequence of Lie algebras

0→ In
i−→ φ(n)

π−→ U(n)→ 0 (8.176)

i being an inclusion and π a projection

φ(n)→ (φ(n)/In) ∼= U(n) (8.177)

U(n) acts on In via matrix multiplication on vectors. Such an action is extended to

φ(n)⊗ I∧kn by

[g ⊗ α1 ∧ α2 ∧ ... ∧ αk] = [g,X]⊗ α1 ∧ ... ∧ αk+

+
k∑
i=1

g ⊗ α1 ∧ α2 ∧ ... ∧ [αi, X] ∧ ... ∧ αk
(8.178)

for g ∈ φ(n) and X ∈ U(n). It can also be extended to I∧kn by

[α1 ∧ α2 ∧ ... ∧ αk, X] =
k∑
i=1

α1 ∧ α2 ∧ ... ∧ [αi, X] ∧ ... ∧ αk (8.179)

for αi ∈ In, X ∈ U(n). For any Lie algebra g over a ring k and any g-module M the Lie

algebra homology of g with coefficients in the module M , written as HLie
∗ (g;M) is the
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homology of the Chevalley-Eilenberg complex M ⊗ ∧∗(g), namely

M
d←−M ⊗ g∧1 d←−M ⊗ g∧2 d←− ... d←−M ⊗ g∧n (8.180)

where g∧
n

is the nth exterior power of g. The differential is

d(v ⊗ g1 ∧ ... ∧ gn) =
∑

1≤j≤n
(−1)j [v, gj ]⊗ g1 ∧ ...ĝj ... ∧ gn+

+
∑

1≤1<j≤n(−1)i+j−1v ⊗ [gi, gj ] ∧ g1 ∧ ...ĝi...ĝj ... ∧ gn
(8.181)

where ĝi represents the deleted variable and v ∈M . For any g-module M , the submodule

Mg of g-invariants is defined by

Mg = {m ∈M |[m, g] = 0, ∀g ∈ g} (8.182)

We have the natural vector space isomorphisms

HLie
∗ (φ(n);R) ∼= HLie

∗ (U(n);R)⊗ [∧∗(In)]U(n)

HLie
∗ (φ(n);φ(n)) ∼= HLie

∗ (U(n);R)⊗HLie
∗ ([φ(n)⊗ ∧∗(In)]U(n);R)

(8.183)

The Leibniz homology of g with coefficients in R is denoted HL∗(g,R) and is the ho-

mology of the Loday complex T ∗(g) namely,

R 0←− g [,]←− g⊗2 d←− ... d←− g⊗n ← ... (8.184)

where g⊗
n

is the n-th tensor power of g over R. The derivative is

d(g1 ⊗ g2 ⊗ ...⊗ gn)

=
∑

1≤i<j≤n
(−1)jg1 ⊗ g2 ⊗ ...⊗ gi−1 ⊗ [gi, gj ]⊗ gi+1 ⊗ ...ĝj ...⊗ gn

(8.185)

There exists a projection φ(n)⊗φ(n)∧s
π−→ φ(n)∧(s+1) for s ≥ 0 acting as a map of chain

complexes

π : φ(n)⊗ ∧∗(φ(n))→ ∧∗+1(φ(n)) (8.186)

which induces an R-linear map on the homology

π∗ : HLie
∗ (φ(n);φ(n))→ HLie

∗+1(φ(n);R) (8.187)

It has been shown in [319] that there exists HR∗(φ(n)) which is the homology of the

complex

CRs(φ(n)) = (Ker(π∗))s = Ker[φ(n)⊗ φ(n)∧(s+1) → φ(n)∧(s+2)], s ≥ 0 (8.188)
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Also, for s > 1 the maps

π2s−1 : HLie
2s−1(φ(n);φ(n))→ HLie

2s (φ(n);R)

π2s : HLie
2s (φ(n);φ(n))→ HLie

2s+1(φ(n);R)
(8.189)

are isomorphisms mapping the corresponding classes β̂n,2s to βn,2s and an ⊗ βn,2s to

an ∧ βn,2s respectively. The map

π1 : HLie
1 (φ(n);φ(n))→ HLie

2 (φ(n);R) (8.190)

maps β̂n,2 to βn,2 and an ⊗ an to 0. Therefore there is the natural isomorphism [319]

HRk−3(φ(n);R) ∼=

{
< an ⊗ an >, k = 3

0, k > 3
(8.191)

Considering

(Ker(π̃∗))n = Ker[φ(n)⊗(n+2) → φ(n)∧(n+2)], n ≥ 0 (8.192)

the relative homology Hrel(φ(n)) is defined as the homology of the complex

Creln (φ(n)) = (Ker(π̃∗))n (8.193)

There exist graded vector space isomorphisms

HLie
∗ (φ(n);R) ∼= HLie

∗ (U(n);R)⊗ < βn,∗ >

HL∗(φ(n);R) ∼= T ∗(U(n))⊗ < β̃n,∗ >
(8.194)

where T∗(U(n)) is the tensor algebra, the βn,2k and β̃n,2k are exterior and tensor power

of even degree. β̃n,2k is the antisymmetrization of βn,2k.

These relations calculate the Leibniz homology of the oscillator algebra with real coef-

ficients [319]. They determine the invariant structure for the foliations of the harmonic

oscillator. Indeed, one obtains a tensor structure similar to that defined for Fock spaces.

Other, maybe easier or more relevant invariants may be calculated by using other co-

efficients. For the classification of irreducible representations of the harmonic oscillator

(or analysis of Fock spaces for various systems) such invariants may be determined by

employing different coefficients in the Leibniz homology. Up to this point it is clear that

the Leibniz homology determines the tensor algebra structure associated to the Fock

space. I will now show how changing the coefficient structure in a consistent manner

modifies the theory leading in general to central extensions of the original algebra. How-

ever, the particular case obtained above, namely the harmonic oscillator algebra, will be

identified as a particular case in those more complicated descriptions. This is probably
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an archetypal example for the use of the universal coefficient theorems in the analysis of

physical problems. One obtains a relation between a simple theory and a more advanced

one. The simple theory can be recovered in the advanced, more complicated one, as a

particular case. It is important to understand the role of the universal coefficient theo-

rem here. For Leibniz (co)homology in dimension 2 such a universal coefficient theorem

has been derived [320] and the results are of particular interest. The concept of universal

envelopes of Leibniz algebras has also been established and the Leibniz (co)homology has

been interpreted in terms of Tor- respectively Ext- functors. From their very definitions

we know that Lie algebras are naturally Leibniz algebras.

HL∗(g,M) ∼= Ext∗UL(g)(U(gLie),M)

HL∗(g,A) ∼= Tor
UL(g)
∗ (U(gLie), A)

(8.195)

where A is a co-representation of g and M is a representation of g. The central extensions

of Leibniz algebras are also relevant. In [321] it has been proved that the Virasoro algebra

V ir is a universal central extension of Der(C[t, t−1]) both in the Lie and in the Leibniz

framework. Indeed, it has been shown in [322] that to every short exact sequence of

Leibniz algebras

(e) : n
χ−→ g

π−→ q (8.196)

there corresponds a natural exact sequence in trivial coefficient homology of Leibniz

algebras

HL2(g)
HL2(π)−−−−−→ HL2(q)

θ∗(e)−−−→ n/[n, g]
χ′−→ HL1(g)

πab−−→ HL1(q)
0−→ (8.197)

Also, given the short exact sequence of Leibniz algebras above, and having ψ : nab → A

a morphism of q-modules, we have that

θ∗(θ
∗(ψ)) = ψc ◦ θ∗(e) (8.198)

This is so because the map θ∗ is natural in the above sequence in homology. Then

ψ gives rise to an extension (ψab(e)) : A → p → q as well as to maps of extensions

(ψ ◦ ab, ·, 1) : (e)→ (ψab(e)) thus the naturality of θ∗ gives a commutative square

HL2(q)
θ∗(e)−−−−→ n/[n, g]

1

y ψ
y

HL2(q)
θ∗(ψab)(e)−−−−−−→ A/[A, p]

(8.199)
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By the definition of θ∗, we have θ∗(ψ) = ψ∗(ab(e)) = [ψab(e)] and therefore θ∗(θ
∗(ψ)) =

θ∗(
ψab(e)). For the Leibniz algebra one can now define a universal coefficient theorem.

Let q be a Leibniz algebra and let A be a vector space regarded as a trivial q-module.

The sequence

0→ Ext(HL1(q), A)
ψ−→ HL2(q, A)

θ∗−→ Hom(HL2(q), A)→ 0 (8.200)

represents the universal coefficient theorem for Leibniz cohomology. In this sequence

the action of ψ is given by ψ([e]) = [eab] and the action of θ is θ∗([e]) = θ∗(e). The

sequence is natural, split short exact. Looking at the action of ψ it appears that the

universal coefficient theorem gives us control over the center subalgebra of the central

extension. Therefore if I define the Lie algebra (according to [323]) L as the center-less,

twisted, Schrodinger-Virasoro-Lie algebra with C basis {Ln, Yn,Mn|n ∈ Z} and non-zero

Lie brackets

[Ln, Ln′ ] = (n′ − n)Ln+n′ , [Ln, Lp] = pMn+p (8.201)

[Ln, Ym] = (m− n
2 )Yn+m, [Ym, Ym] = (m′ −m)Mm+m′ (8.202)

The twisted Schrodinger-Virasoro Lie algebra has an infinite-dimensional subalgebra

S with C-basis {Yn,Mn|n ∈ Z} and a center-less Virasoro subalgebra V with C-basis

{Ln|n ∈ Z}. The universal coefficient theorem gives us access to the center of the

Schrodinger algebra. Moreover, it allows us to derive the Leibniz cohomology group of

the center-less twisted Schrodinger-Virasoro Lie algebra L defined above. The calcula-

tions have been done in [323]. The sets of generators given by the cohomology classes

of the cocycles for both the original and the twisted sectors are to be found in [324]. As

I mentioned earlier, the Virasoro algebra can be seen as a universal extension both in

the Lie and in the Leibniz framework. Finally, there exists an oscillator representation

of Virasoro algebras. This has been established in [325, 326]. By gathering together

the results above, it follows that the oscillator algebra can be obtained by means of

the Virasoro algebra starting with the homology of a Leibniz algebra with coefficients

modified such that the resulting Virasoro algebra becomes center-less. One starts with
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the Virasoro operators, written in the oscillator representation as

Ln(λ) = (a0 + λn)an +
∞∑
j=1

a−jan+j + 1
2

n−1∑
j=1

ajan−j

L−n(λ) = (a0 − λn)a−n +
∞∑
j=1

a−n−jaj + 1
2

n−1∑
j=1

a−ja−n+j

L0(λ) = 1
2(a2

0 − λ2) +R = 1
2(a2

0 − λ2) +
∞∑
j=1

a−jaj

(8.203)

where λ is a complex parameter, R is the level operator in the Fock space, and the

operators an, (n = 0,±1,±2, ...) satisfy the hermiticity relation a†n = a−n and the

commutation relations

[an, am] = nδn+m,0 (8.204)

The Ln(λ) operators themselves satisfy the commutation relations of the Virasoro al-

gebra. We may employ the standard quantum notation writing a0 = p0 and bring a

coordinate q0 as the conjugate of p0

[q0, an] = iδn,0 (8.205)

The vacuum is defined by

(an − λδn,0) |0;λ〉 = 0, n ≥ 0 (8.206)

It is also a conformally invariant vacuum, therefore

Ln(λ) |0;λ〉 = 0, n ≥ −1 (8.207)

For a general ground state differing from the vacuum by a momentum shift t, the ket-

vector becomes |0; t+ λ〉 and we have

L0(λ) |0; t+ λ〉 = ( t
2

2 + λt) |0; t+ λ〉

Ln(λ) |0, t+ λ〉 = 0, n ≥ 1
(8.208)

The state |0, t+ λ〉 is a primary state with the conformal weight

h = h0(t) =
t2

2
+ λt (8.209)
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For certain special values of t = t(r,s)

tr,s =
1 + r

2
t+ +

1 + s

2
t− (8.210)

t± = −λ±
√
λ2 + 2 (8.211)

we have a null state

|χ〉 = Ψ
∣∣0; t(r,s) + λ

〉
(8.212)

at the level N = rs with the conformal weight

h0(t(−r,s)) = h0(t(r,s)) + rs (8.213)

The operator Ψ consists of the oscillators a−n. The null state |χ〉 satisfies

Ln(λ) |χ〉 = 0, n ≥ 1 (8.214)

The central charge c and the conformal weight usually determines a representation of the

Virasoro algebra. When we go to the oscillator representation of the Virasoro algebra

the important numbers are λ and t. We should notice that the correspondence between

(c, h) and (λ, t) is degenerate with both λ and −λ producing the same c and with λ fixed

with t and −2λ− t giving the same weight h = h0(−2λ− t). We also have parity as an

operator PanP = −an and Pq0P = −q0. The Virasoro operators then are transformed

like

PLnP = Ln(−λ), n = 0,±1,±2, ... (8.215)

P |0; t+ λ〉 = |0;−t− λ〉 (8.216)

In what follows I will continue to repeat the arguments of [326] until I arrive at the

relation between the oscillator representation and the Virasoro operators. Consider the

states of level N . There are p(N) independent states at this level in the Fock space,

with the degeneracy being the number of ways in which one can rewrite N as a sum of

positive integers

a−J |0; t+ λ〉 , J = 1, 2, ..., p(N) (8.217)

having

aJ = const× an1
1 an2

2 ...anNN

a−J = const× anN−Na
nN−1

−N+1...a
n1
−1

(8.218)

N∑
k=1

knk = N,nk = 0, 1, 2, ... (8.219)
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The normalization implies

〈0; t+ λ| aIa−J |0; t+ λ〉 = δIJ (8.220)

For the Virasoro operators for the same level N we have

LJ(λ) = Ln1
1 (λ)Ln2

2 (λ)...LnNN (λ)

L−J(λ) = LnN−N (λ)L
nN−1

−N+1(λ)...Ln1
−1(λ)

(8.221)

N∑
k=1

knk = N, nk = 0, 1, 2, ... (8.222)

A relation between the two states a−J |0; t+ λ〉 and L−J(λ) |0; t+ λ〉 is expressed as

L−I(λ) |0; t+ λ〉 =
∑
J

CIJ(a0, λ)a−J |0; t+ λ〉 (8.223)

The determinant of the matrix CIJ decides if the equation above is invertible and hence if

the equation can be resolved in reverse expressing the oscillators in terms of the Virasoro

operators. It turns out that this is possible in certain situations, as has been shown in

reference [326]. The details are not important here. What is important is that there

exists a representation of the harmonic oscillator in the Virasoro algebra. The central

charge of the Virasoro algebra corresponds by Noether theorem to the center of the

central extension of the original group. Therefore we have the exact sequence

0
i−→ h

j−→ e
s−→ g

σ−→ 0 (8.224)

where e = h ⊕ g as a vector space direct sum. We also have Im(j) = Ker(s) ⊂ Z(e)

where Z(e) is the center of e. Then e is called the central extension of g by h or the

extension by a 2-cocycle. The classes of the second cohomology of the original algebra

g with coefficients in some group A are precisely the possible extensions of that original

algebra, therefore

[φ] ∈ H2(g,A) (8.225)

The extensions are therefore defined by the 2-cocycles and to each pair of non-cohomological

2-cocycles i.e. not related via a co-boundary, there is a pair of non-equivalent extensions.

The universal coefficient theorem in this context describes a change in the center of the
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extension. Take therefore two extensions

0
i−→ h

j−→ e
s−→ g

σ−→ 0

0
i−→ h′

j−→ e′
s−→ g′

σ−→ 0
(8.226)

then we have the commutative square diagram

HL2(g′)
θ∗(e)−−−−→ h′/[h′, e′]

1

y ψ
y

HL2(g)
θ∗(ψab)(e)−−−−−−→ h/[h, e]

(8.227)

As the cocycles controlling the extension correspond to classes in the second cohomology

of the original group g, it appears that a change in coefficients will lead to a change of

the central extension of the Lie algebra, as well as to a deformation of the equivalence

classes forming the cohomology. Therefore the universal coefficient theorem shows in

how far theories based on a certain central extension are to be represented in terms

of different coefficient modules. It has been shown in [321] that the Virasoro algebra

V ir is a universal central extension of Der(C[t, t−1]) both in the Lie and in the Leibniz

framework. Therefore the non-trivial Leibniz 2-cocycles on the infinite dimensional Lie

algebras of differential operators over C[t, t−1] (the algebra of Laurent polynomials over

the complex numbers), C((t)) (the algebra of the formal Laurent series over complex

numbers) and the quantum q-torus are related via universal coefficient theorems [327].

Consider now the cochain complex (C∗(L,M), d) defined by

Cn(L,M) = HomF (L⊗n,M), n ≥ 0

dn : Cn(L,M)→ Cn+1(L,M)
(8.228)

defined in the standard way and its cohomology as being the cohomology of the Leibniz

algebra L with coefficients in the representation M i.e. HL∗(L,M) = H∗(C∗(L,M), d).

A Leibniz 2-cocycle on this algebra L is a field F valued form ψ satisfying the condition

ψ(a, [b, c]) = ψ([a, b], c)− ψ([a, c], b), ∀a, b, c ∈ L (8.229)

As is the case for Lie algebras, the one-dimensional Leibniz central extensions of a Leibniz
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algebra L are uniquely determined by Leibniz 2-cocycles on L. If a Leibniz 2-cocycle ψ

is induced by a linear function f on L i.e. ψ = αf having

αf (x, y) = f([x, y]), ∀x, y ∈ L (8.230)

then ψ is trivial. The corresponding one-dimensional Leibniz extension is also trivial i.e.

isomorphic to L⊕FC i.e. a direct sum of Leibniz ideals. A canonical construction for a

Leibniz central extension of L implies

[x+ λc, y + µc]0 = [x, y] + α(x, y)c, ∀x, y ∈ L, λ, µ ∈ F (8.231)

where [, ] is the Leibniz bracket on the original algebra and [, ]0 is the Leibniz bracket

on L⊕ FC . Every 1-dimensional Leibniz central extension of L can be obtained in this

way. In particular, the oscillator representation can be recovered in various ways, by

going to the center-less representation via transformations of coefficients. This discussion

showed how the universal coefficient theorem for Lie algebras and generally for Leibniz

algebras can be used to identify new connections: as the map ψ of the universal coefficient

theorem controls the central extensions, the universal coefficient theorem becomes a tool

that allows us to recover particular subalgebras (say the harmonic oscillator algebra) as

appearing in various extensions in different ways. A similar way of thinking might be

used for identifying new dualities in gauge/string theory. Although this is not attempted

in this work, as far as I know, I am the first to notice such a connection and to identify

this as a new possibility of deriving gauge/string dualities.

BRST denotes in general a quantization prescription for a classical system with con-

straints by means of some odd variables known as ghost fields. In a classical theory

starting with symplectic manifolds M that possess a symplectomorphic group action by

a Lie group G, we construct the map µ : M → g∗ defined by being equivariant under the

coadjoiunt action of G on g, with d(µ(∗)(g)) = ω(ρ(g), ∗) with ω as the symplectic form.

If the action of G represents a gauge symmetry, we would like to obtain M̃ = M/G

containing no redundancies. We may define a submanifold M0 and observe that the

poisson algebra of functions on M̃ fulfills

C∞(M̃) = H0(g, C (M0)) (8.232)

The zeroth cohomology of a Lie algebra with coefficients in a module consists of pre-

cisely the elements of the module that are invariant under the group action. At this

moment it is important to notice what means to change the coefficient structure in such

a cohomology. The physical quantum states are the elements of the cohomology. In

the case of the Lie algebra cohomology associated with the BRST complex, this change
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represents a change in symplectic manifold of the pre-quantum construction. The cases

for the harmonic oscillator and the free particle have been discussed previously. The

main results derived in this chapter can be recovered in the following theorems

8.1 Theorem (Summarizing previous results for the harmonic oscillator)

In the BV formalism for the simple harmonic oscillator, changing the coefficients cor-

responds to the homomorphic maps between the homology of the physical states in

the original coefficient group and the new coefficient group. The physical quantities,

however, remain unchanged.

Proof For the first part of the proof one has to look again at the universal coefficient

theorem

0→ ExtR(Hq−1(Q),K)
f−→ Hq(Q,K)

g−→ Hom(Hq(Q),K)→ 0 (8.233)

Having the form of a short exact sequence, the map f is injective and the map g is

surjective. Defined in this way for every homomorphism Hom(Hq(Q),K) there exist

one or more classes in the cohomology Hq(Q,K) associated to the physical states of the

system. Making the choice of K such that ExtR(Hq−1(Q),K) is trivial we obtain the

short exact sequence

0→ 0
f−→ Hq(Q,K)

g−→ Hom(Hq(Q),K)→ 0 (8.234)

But this being an exact sequence with the first map becoming 0
f−→ Hq(Q,K), the second

map becomes injective as well. Now g is surjective and injective, therefore bijective.

This simply means that to any physical state given by the cohomology there is one

and only one state in the group of homomorphism to the trivializing coefficient group

Hom(Hq(Q),K). Of course, other choices of coefficients can be made but then the

surjective nature of the second map must be kept in mind. Such choices have been

presented in section 8.4. On the side of the observables, one might start with the action

S =
1

2

∫
dx(φ′(x)2 − ω2φ(x)2) (8.235)

and introduce additional fictitious gauge symmetries. These gauge symmetries must then

be gauge fixed by procedures similar to BRST. Of course, there are multiple options,

as has been showed before. We can employ direct BRST, BRST-anti-BRST, or more

complex methods. Integrating back the additional fields arising via those methods will

lead us back to the original formulation and the identical physical results as has been

shown before. This already represents a change in the coefficient structure of Lie group

cohomology i.e. a change in the field structure of the theory. If we prefer to work with
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the Hamiltonian formalism

H ∼= ωaωa−ω (8.236)

This can be deformed by means of adding a bracket

H = ωaωa−ω + {Q,O} (8.237)

with O satisfying

O =
∑
k2 6=ω2

ik

(k2 − ω2)
φ∗kπ−k+iω(θωπ

∗
ω−θ−ωπ∗ω)+

1

2
(βωαω+β−ωαω)+x(βωM−ω−β−ωMω)

(8.238)

This already represents a trivial change in the coefficients in the sense of altering the

field structure of the gauge theory i.e. addition of fields, antifields and ghosts. The

detailed calculation and the definitions are the same as those explained previously in

this chapter. As said before, the physical operators (observables) are defined as elements

of the cohomology and two operators A and A′ are equivalent if they differ by means of

A′ = A+ [Q,B] (8.239)

for arbitrary B. This is precisely what happens in the case of the Hamiltonian. Namely

one obtains

H = ωaωa−ω ↔ H = ωaωa−ω + {Q,O} (8.240)

This should summarize the main application to the harmonic oscillator.

The idea of employing invariants in order to count states, as done in the description of

the oscillator algebra for the identification of the associated representations is not new.

In fact, counting BPS states is of major importance for black hole thermodynamics

[232-242]. Various anomalies described by wall crossing formulas [253, 254, 257, 258]

have been noticed and discussed. Counting curves on various varieties is in itself an

interesting mathematical problem [255].
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Part 2
Up to this point all notions related to algebraic and general topology have been in-

troduced. Also, some necessary concepts related to group theory and category theory

have been presented. At this moment it is important to take a step forward and in-

troduce some new ideas interlinking quantum field theory, gauge theory and some of

Grothendieck’s ideas related to (co)homology groups with coefficients. While the dis-

cussion in the previous chapters was based on existing results and its goal was to bring

the reader up to date with a set of ways of thinking and concepts, at this moment I

insist on the original ideas I am introducing in this work. Certainly, many concepts used

here are well known and I refer to the original works when necessary. A brief review of

some basic facts and their historical background will complement this original work.



Chapter 9

Universal Coefficient Theorem

and Quantum Field Theory

“Curiouser and curiouser.”

Lewis Carroll, Alice in Wonderland

9.1 A categorial Viewpoint on Quantum Field Theories

During the 1950’s physics was still struggling with the standard model of elementary

particles [163], renormalization [164] and experimental confirmation of the major results

of non-abelian gauge theories [165]. At the same time mathematics took a completely

different approach [166]. Only more than 30 years later did the two disciplines come

together again in a fruitful encounter started by E. Witten and C. Vafa [167]. The ap-

proach taken by mathematicians was focused on discovering original ways of thinking.

The idea of category theory was essential for this scope. The understanding that a simple

mathematical concept like the set of natural numbers can be seen as the decategorifica-

tion [168] of a deeper concept involving not only objects but also associated morphisms

has led to various changes in the ways of understanding concepts like groups, sets, etc.

Lifting a property from a given category to another via functors [169] i.e. preserving

the underlying structure while changing the framework where the property is analyzed,

has led to concepts like quantum groups, the Riemann-Roch theorems, etc. Moreover,

it was Grothendieck [248] who noticed that it is possible to characterize a space not

only by describing its properties. An alternative method is to describe all the possible

ways in which the space we wish to characterize can be mapped into another, known

space. This idea, related to the classifying space was important in understanding that

152



Chapter 9. Universal Coefficient Theorem and Quantum Field Theory 153

properties hard to detect when dealing with a single space may become obvious when

the maps between two spaces are being considered. All this plethora of mathematical

structure has been largely ignored for almost 40 years. This is in some sense under-

standable because physics was deeply rooted in the perturbative way of thinking. If we

think about quantum field theories with interactions we already see that starting from

the simplest interactions it becomes impossible to talk about exact results using the

analytical tools available to the physicist. Moreover, a great amount of partial success

can be achieved by using only perturbative tools so, at an early stage, thinking about

such subtleties as the topology of the field space or the coefficient structure of homology

was considered at best a nuisance. However, keeping only a perturbative viewpoint can

lead to absurd conclusions [170]. Mathematicians knew about the perils of speaking

about global structures in local terms or about the dangers of naively lifting properties

from one algebraic structure to another. These dangers are best described as groups

encoding the obstructions to constructions that appear to make sense when looked upon

locally. Probably Cech cohomology is the best example for this. Soon, physicists also re-

alized that taking a naive way of thinking and pursuing it without a mathematically well

defined structure may lead to wrong results. These manifested themselves as anoma-

lies. The first observations were related to the quantum non-conservation of classically

conserved currents [171]. As conservation laws are related by Noether’s theorem to con-

tinuous symmetries the first interpretation of anomalies was a breaking of symmetries

due to the quantization prescription. Today we know that such a prescription essen-

tially means to take into account all possible paths of a particle on a manifold in order

to arrive via the Feynman path integral to the quantum mechanical expectation values.

But this prescription forces us to take into account the topology of the manifold of these

paths. This is how it became clear that quantum mechanics lies at the boundary between

topology and analysis, being rooted somehow in both these disciplines. Doing quantum

mechanics without thinking correctly about the topology of the underlying space is an

action bound to fail sooner or later. While this has been understood [172], the idea of

anomaly can be defined in a broader sense, by means of category theory. In principle,

I speak about an anomaly whenever a property valid for an algebraic construction does

not make sense directly when used in another algebraic construction. Several changes in

the way we interpret the property must be performed in order for it to have a meaning in

the new construction. Understanding in what sense these changes have to be performed

is of major importance, not only in physics but also in computer science or in the theory

of language [173]. For the layperson but not only, an explanation related to the theory

of language would be the following anecdote: two people discuss without agreeing at

the beginning what is the subject of their discussion. One is thinking at her dog and

the other at her child. They describe the respective object by the impersonal “it” such

that it never becomes clear what they are talking about. The discussion starts rather
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innocently: both agree they take “it” for a walk every day, they feed “it” and they

also agree about quite a variety of actions that can be performed identically on both the

subjects of the discussion. At a certain moment however, one of them is making a rather

strange remark: “Oh, it was so happy, it even started wagging its tail”. At this moment,

the other partner of the discussion may start asking questions: how is it possible for a

child to have a tail? Was that only an analogy or a metaphor? How should the other

person change this statement such that it has meaning when applied to the subject of

her discussion? Probably the answer would be that tail wagging should translate into a

smiling face. However, probably the best thing to do in this discussion is to remark that

the two persons are speaking about different things, hence using different “frameworks”

with sometimes coinciding words. While, in a natural discussion, sooner or later this

revelation will occur, when we speak about theoretical physics and mathematics we can

fool ourselves practically indeterminately.

And so we did. Quantization of gravity is probably the best example where lifting the

ideas that defined quantum mechanics to a situation where the space-time has itself

quantum properties became rather difficult to be done meaningfully [174]. There were

several reasons and explanations for why we did not succeed in this area but, apart of all

excuses, the main reason is that we do not know how to speak meaningfully about the

quantum, topological and geometrical properties of the underlying manifold on which

we construct our theory. It must be said that the problems do not appear when the

gravitational field is weak. We can speak meaningfully about quantum field theories

on curved space-times and hence “combine quantum mechanics and gravity” [174-180].

We can also discuss about quantum field theories on space-times with variable metric.

Such constructions have been made in [181] and used by Hawking in [182] in order to

derive the fact that radiation is emitted by black holes and to derive its spectrum in a

first approximation. This is all possible due to the Bogoliubov transformation [183] and

the realization that the notion of vacuum, while well defined in standard flat spacetime,

becomes relative i.e. observer dependent, when spacetime ceases to be flat. At a deeper

level, what we use is the concept of differential forms. This is essentially a more general

notation that makes the work with curved spacetimes easy. The ability to re-derive the

symbols in a way that is general enough to be used perfectly at any level of formalization

on curved or flat manifolds has brought quite some insight into general relativity. In

the case of quantum gravity it is far more important to take into account variable or

uncertain topologies. One could ask if it is possible to derive an even more general

“framework” that would allow us to consider the change in topology in a universal way.

This idea of generalizing concepts such that they become meaningful for the most variate

situations was a constant in Grothendieck’s approach to various problems [22],[23]. It is

important to remark at this point something known as the “triangulation conjecture”.
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This can be formulated in terms of the “Hauptvermutung” of combinatorial topology

[249]. The main conjecture is that any two triangulations of a triangulable space have

a common refinement, i.e. a single triangulation that is a subdivision of both. This

assumption (conjecture) is known to be false for dimensions 4 or larger. In another

form the triangulation conjecture states that any n-dimensional topological manifold

is homeomorphic to a simplicial complex. This is true in dimensions at most 3, but

false in dimension 4 or larger, as proved in the work of Casson and Freedman [184]. It

is important to notice however that the universal coefficient theorem and the therein

used Tor and Ext groups show in what sense the notions employed in a simplicial

complex description are being “measured” via (co)homologies and up to what extent

the measurable properties encoded in (co)homologies are depending on the coefficient

groups of (co)homology. This is essentially the subject of this section and it expresses

the original work associated to this thesis.

9.2 Coefficients in (co)homology and quantum gravity

In this section I will show in what way the coefficient groups in cohomology can be useful

in quantum gravity. Plausibility arguments will be given for the usefulness of standard

and non-trivial cohomology coefficients in quantum gravity. The main reference is [284]

but I will also refer to [285] and [286]. First, one should notice that quantum gravity

is currently understood via two rather distinct and in many aspects incompatible [289]

theories. It has even been argued that if one is correct, the other one cannot be, and vice-

versa [289] (see conclusions). I will keep my neutrality with respect to such statements.

The two theories are loop quantum gravity and string theory. String theory appears

in various forms. It is basically trying with certain success, to quantize fundamental

objects which are not naturally zero-dimensional. Therefore, the major change is to

replace the fundamental point-like objects used in basic quantum mechanics with a

fundamental string-like object. In any cohomological theory, the coefficient structure

represents the zero degree cohomology of a point space. In the axiomatic definition,

this cohomology group is given by the group of integer numbers Z. This encodes the

standard way of looking at a point, namely a structureless, zero dimensional, infinitely

small object. This is also the basics of what is now known as the classical geometry.

Grothendieck however, was the first to notice that additional structure can be added

in general to a point. Therefore, it is possible to define cohomology theories where the

degree zero cohomology group of a single point space is far from being only Z. Indeed,

one can introduce coefficients belonging to twisted groups, but also cohomologies with

coefficient groups given by elliptic functions. These are particularly important in string

and M-theory, both theories of quantum gravity. To make this argument clearer we may
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start by looking at the generalized elliptic cohomologies. We define an elliptic spectrum

[284, 285] as consisting of

• an even periodic homotopy commutative ring spectrum E with formal group PE

over the coefficient group (associated to the single point space pt) E0(pt)

• a generalized elliptic curve ε defined over the coefficient group E0(pt)

• an isomorphism t of PE with the formal completion ε̂ of ε

In general a 2-periodic ring spectrum can be seen as a generalized cohomology theory E

with an orientation, of the complex line bundle CP∞, which when restricted to CP1has

an inverse in E∗. The theory is said to be even when E2n+1 = 0 for all n.

This definition involves the notion of generalized elliptic curves over a ring R [284, 285].

This means a marked curve over the scheme Spec(R) which is locally isomorphic to a

Weierstrass curve given for example by

ε : y2 + a1xy + a3y = x3 + a2x
2 + a4 + a6 (9.1)

where a1, a2, ..., a6 ∈ R.

A well known example of a cohomology theory disregarding the standard axiom of

dimension is the so called K-theory. There, the cohomology of the point space may

not only have a different group structure, but it may also have non-trivial values for

higher degrees. From a physical perspective the elliptic spectrum appears for example

in the discussion of Ramond-Ramond fields in K-theory. A K-theoretic description of

the RR-fields for example in type IIA appears in [285, 287]. Moreover, the generalized

cohomology theories that are being dealt with in string theory and M -theory have the

correct mathematical structure required to incorporate the interactions between M2-

branes and M5-branes. When speaking about cohomology theories with coefficient

groups defined by means of prime numbers (for example Z/pZ) the prime 2 appears to

be important in string theory. This happens because the 2-torsion appears in the fields

and can be seen for example in the K-theory calculation of the IIA partition function

[284, 288]. One can also consider cohomology theories whose formal group laws are

elliptic, i.e. obtained by Taylor expansion of the group law on the elliptic curve over

some commutative ring. Such theories are the complex oriented elliptic cohomology

theories. Given the expression

ε : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (9.2)
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introduce the new variables t = −x
y and s = −1

y . Solving iteratively for s with respect

to t and rewrite x and y only in terms of t yields:

x = t−2 − a1t
−1 − a2 − a3t− (a4 + a1a5)t2 + ... (9.3)

Now it is obvious that x and y are power series expansions in the variable t and with

coefficients in Z[a1, ..., a6][[t]]. The group law can be obtained near t = 0 where t is the

local parameter near the origin (t, s) = (0, 0) in E. If (t1, s1) + (t2, s2) = (t3, s3) on an

elliptic curve E in the (t, s) plane then t3 = Φ(t1, t2) is

t3 = t1 + t2 − a1t1t2 − a2(t21t2 + t1t
2
2)− 2a3(t31t2 + t1t

3
2) + ... (9.4)

therefore Φ(t1, t2) ∈ Z[a1, ..., a6][[t1, t2]]. If the coefficients aj of E lie in a ring R then

t3 = Φ(t1, t2) is in R[[t1, t2]]. The formal series Φ(t1, t2) arising form the group law on

E is a formal group law given by

Ĉ(x, y) = x+y−a1xy−a2(x2y+xy2)−(2a3x
3y−(a1a2−3a3)x2y2 +2a3xy

3)+ ... (9.5)

The formal group law can be defined as the way line bundles behave under tensor product

i.e.

ĜE(x, y) = e(L1 ⊗ L2) ∈ E∗(CP∞ × CP∞) ∼= π∗E[[x, y]] (9.6)

with e the Euler class. There are different models for complex oriented cohomology

E which are described by their coefficient rings E∗(pt). Choosing a complex oriented

elliptic cohomology theory corresponds to choosing coordinates on the elliptic curve.

The Weierstrass curve is the universal generalized elliptic curve given by the equation

y2x+ a1xyz + a3y
3 = x3 + a2x

2z + a4xz
2 + a6z

3 (9.7)

over the ring Z[a1, ..., a6] where the parameters ai are generalized modular forms. This

curve has automorphisms and thus the corresponding theory with E∗ = Z[a1, ..., a6][u, u−1]

is not universal. The elliptic curves are physical parts of spacetime and one can look at

them as they were Riemann surfaces. Thus, they are defined over the set of complex

numbers. The elliptic curves that show up in elliptic cohomology are defined over var-

ious fields or rings like the finite fields Fp, integral or p-integral polynomial rings, etc.

There is a standard procedure to get curves over the latter coefficients starting with

curves over the complex numbers. One method, described also in [284] is to go from

an elliptic curve over C to one over Z by means of a curve over the rationals Q. One

can get the curve over Z[x1, x2, ...] or Z[t] if one can define the curve over some finite

extension of Q. The resulting curve would have the same Weierstrass form except that

the coefficients ai instead of taking complex values now take values in the new field or
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ring. As an example for Z[t] one has ai(t) ∈ Z[t] and

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x+ a6(t) (9.8)

giving an elliptic curve E over Z[t]. However, in these examples only the standard groups

or fields for the coefficients have been used. Other possibilities imply additional torsion

inside these groups as well as twisted groups for the coefficients. At this moment, I

showed that the coefficient groups in (co)homology have important effects at least in the

string theoretical interpretation of quantum gravity.

The main way in which (co)homology with various coefficients enters in the study of

physical phenomena is the following. We start with a quantum state H carrying a

representation of a large symmetry algebra, G of the problem. The constraints will

naturally force us to introduce additional degrees of freedom, the “ghost states” which

will form the space Hgh. Then the constraints the constraints forming a subalgebra of

G are imposed simultaneously on the enlarged space H ⊗Hgh via the nilpotent BRST

operator Q. The quotient space Ker(Q)/Im(Q) will contain the physical states only.

This space can carry its own symmetry, namely any algebra represented on H ⊗ Hgh

with the property of being BRST invariant is a symmetry of the quotient space itself.

The BRST approach and its associated semi-infinite cohomology have been discussed

for example in [272].

9.3 Quantization Holography and the Universal coefficient

theorem

I start my presentation with a method of quantization using cohomology groups extended

via coefficient groups of different types. This is possible according to the Universal Coef-

ficient Theorem (UCT). I also show that by using this method new features of quantum

field theory not visible in the previous treatments emerge. The main argument is that

several constructions considered as absolute until now may appear as relative, depend-

ing on individual choices of group structures needed to probe a topology. The universal

coefficient theorem also gives information about how these structures as measured by

different choices of groups, relate to each other. This may result in the formulation of

new dualities and a deeper understanding of the relation between quantum field theories

and quantum gravity (string theory). As already presented, the quantization of gravity

is a major unsolved problem [185]. The equivalence principle [186], the black hole infor-

mation paradox [187], the holographic conjecture [188], emergence of space-time [189]

or coarse graining of observables [190] are only a few concepts that followed from it. I
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present here a method that makes use of a theorem of algebraic topology and homolog-

ical algebra (the universal coefficient theorem) in order to suggest that some theoretical

constructions used in previous descriptions of quantum gravity may not have an absolute

meaning independent of some arbitrary choices of groups of coefficients. These choices of

coefficients may induce different topological structures, therefore assuming independence

of coefficient groups implies a form of independence of topology. This means that the

observable topology is a property similar to the curvature in general relativity: by using

the general notation of differential forms we encapsulate in the notation itself all the

extra information required in order to deal with curved manifolds. The notation itself

is however manifestly independent on the curvature of the manifold. The same happens

with a new notation defined here, that makes use of coefficient groups in (co)homology.

The reason for considering this invariance as important in a quantum theory of gravity

is the fact that there exist arbitrary choices that may make the connectivity of a space

change.

One can cite the formation of a black hole that makes matter in a region of spacetime

collapse onto itself. After the collapse passes the horizon, there is no method of avoiding

the central region where quantum effects like spacetime topology change may appear.

Another example is the choice of making extremely accurate length measurements in

space. This implies adding energy in a given region. This may in the end generate

horizons which imply the collapse of matter towards a region where quantum gravity

and changes of topology are assumed to be possible.

At this moment it is probably important to understand that with certain choices of co-

ordinates, singularities may appear in the metric at the horizon. Such singularities are

not physical. In order to quote Hawking on this matter, such a singularity is similar to

the singularity appearing at the north pole of a sphere. It simply means that the concept

of meridians doesn’t have a meaning at the poles and there is nothing “at the north of

the north pole”. Such a singularity can be eliminated by another choice of a coordinate.

However, in the case of a sphere, it is important to notice that there is no unique contin-

uous coordinate system that may cover the entire sphere. The existence of coordinate

singularities doesn’t mean that some catastrophe happens where the singularity appears.

Indeed, on the surface of the sphere nothing happens at such a singularity. However, the

simple existence of such singularities tells us some information about the shape we want

to cover. Indeed, no matter what unique continuous coordinate system we may use on

a sphere, there will somewhere be a coordinate singularity. In order to eliminate such

singular situations, for a sphere we use two patches with which we may cover the whole

sphere. The global structure of the sphere therefore is connected to the existence of

coordinate singularities for a single uniform patch which tries to cover the whole sphere.
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For a black hole the situation is similar. There is nothing special at the horizon, but we

cannot use a single patch of coordinates to map the whole black hole. Indeed, we can

change the exterior coordinate patch such that there is no singularity at the horizon,

and therefore we may make the connection with the interior patch. However, the simple

fact that we cannot cover the whole black hole with just one patch tells us something

about the topology of the spacetime with black holes. Indeed, like for a simple sphere,

the horizon indicates that the global structure of a spacetime with a black hole is not

trivial.

Moreover, the simple existence of a horizon makes some restriction on the possible choice

of topologies. If we define a topology using open sets and we define them as sets of points

joined together if they can be connected in both directions by light then, the appearance

of a horizon makes a strong restriction on possible choices of topologies i.e. we cannot

define open sets of the above type containing points from both sides of the horizon.

I note also that the metric may well be defined on both sides and still, the problem

of a choice of open sets persists. It is possible to define the metric with a “one-way”

topology defined with “one-way” open sets from the exterior to the interior. However a

“back-and-forth” topology with open sets containing elements joined in both directions

by light is impossible. Hence one can ask the question: how does a choice of topology

relate to another? What formal description can we introduce that could take care of

any such transformations in a natural way? To these and more questions I will answer

here.

One may assume that a full theory of quantum gravity may not depend on arbitrary

choices of the kind mentioned above in the same way in which the formal aspects of

general relativity should not depend on a choice of a coordinate system.

The applicability of the universal coefficient theorem is not restricted to space-time itself

but can be used generally to field-spaces, groups, various manifolds or discrete spaces.

Its use in these different situations will be made implicitly. The main idea here is that the

identification of relevant physical observables in the QFT context is strongly dependent

on the choice of coefficient groups associated to (co)homology groups of the field space.

The (co)homological structure of a field theory can be described with various coefficient

groups, each inducing some indexation over the field space. It is well known that some

choices are better than other. In general one uses a Z2-group when orientation is not

relevant or a R-coefficient structure when continuum properties of the analyzed space

appear to be relevant. However, there are more subtle applications of the coefficient

groups.
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I show here that the choice of one coefficient group instead of another can hide a set

of physically relevant observables in the quantization procedure. Also, the logical as-

signment of observables in an equivalence class dictated by the availability of a practical

measurement of its spectrum by an observer may allow, by using the axiom of choice, the

construction of predictors for the spectrum of other observables in the same equivalence

class [191].

As a result, it appears to be impossible to assign an absolute topology to a space (be it

“physical” spacetime or the space of field configurations) in the absence of an arbitrary

choice of a coefficient group.

I start with a field theoretical context. At this level already some aspects must be

clarified. When quantizing a one particle theory one may use for example Feynman’s

path integral formulation. This implies the existence of an “expectation catalogue” for

positions in space-time indexed in some way. As no information about the intermediate

steps is available one uses the principle of quantum mechanics that states that no actual

state can be assigned to an object unless that state can be actually empirically confirmed

to be realized. In this case the integration that gives rise to the quantum amplitude must

be a sum over all possible configurations.

An extension of this principle was necessary due to the Lorentz group. As one was not

able to discuss in the context of special relativity about a predefined or fixed number

of particles, quantum fields had to be introduced. These are simply extensions of the

“expectation catalogues” of simple one-particle quantum mechanics. They are not “mea-

surable” in any physical sense individually, but their interference and their topology is

probed statistically by the rules of quantum mechanics.

It should be well known that the statistics of an experiment (say Bohm-Aharonov) de-

pends on the topology of the field space (the regions where the wavefunction is defined).

In the end, the statistics must probe all connected components of all possible configura-

tions. In the case of quantum gravity there are different approaches on how a quantum

field theoretical formulation should look like. It is however clear that such a formulation

should exist. I refer here to the works on string field theory, for example [205, 207, 208].

There the “quantum field” becomes a world-sheet-string-field “expectation catalogue”

which is expanded even more with respect to the previous situations. While a string-field

theoretical approach exists, it is not clear how the various configurations interrelate and

what configurations can exist in various situations.

Dualities are supposed to help in this aspect by identifying configurations and simplifying

the overall problem. The four-dimensional problem appears even more complicated as

the triangularization conjecture is not valid. This means there exists no homeomorphism
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between the space we wish to probe and a simplicial complex i.e. there can be more

simplicial complexes associated to one topological space, more topological spaces associ-

ated to a simplicial complex or there may be no simplicial representation at all. This is

very important because the universal coefficient theorem expressly demands that various

choices of coefficients may modify the perceived topology of the space via (co)homology

groups while starting from the same simplicial complex. In this sense, the construction

I introduced here is more general and closer to a true description of quantum gravity in

four space-time dimensions. The “ambiguity” in the choice of coefficient groups appears

hence to be natural.

Moreover, it appears to me that there exists a general method of constructing dualities

based on the ideas presented in this article. It also appears to me that the constructed du-

alities will have an applicability restricted to specific arbitrary choices of group-structures

in topology. This is conjectured to be valid also for the holographic principle. It is the

universal coefficient theorem that will in the end provide a description of what configura-

tions can be simultaneously known and what configurations will interfere at the level of

the “catalogue of expectations”. It also appears that the change of topology is of major

importance in quantum gravity as one expects a change in the topology of spacetime

during the formation of a black hole. However, the form of the laws of nature should not

depend on a specific topology. I partially follow in this introduction reference [192,193].

First construct a functor E from the category of spacetimes (Loc) to the category of local

convex vector spaces (V ec).

This functor associates to each spacetime M a configuration space E(M) of fields defined

on it. The isometric embeddings χ : M → N are mapped into pullbacks χ∗ : E(N) →
E(M). The space of the observables called F will be the space of the functionals F :

E(M) → R. It is at this point that one also has to define the topological structure

of the space (or space-time M). Physically this remains uncertain unless a choice of

a coefficient group in (co)homology is made. This will define the topology and will

allow a specific definition of the observables. Essentially the “experimental setup” (or a

coefficient group choice) tells spacetime how to connect. This connection tells quantum

mechanics how the correlations between “expectation catalogues” should be constructed

(what observables make physical sense). What follows is standard quantum mechanics

which (via the universal coefficient theorem) tells the experimentalist how to connect the

results obtained with one group structure to possible results obtained by other observers

using other group structures.

This is important when one compares, for example, the observations made when falling

towards a black hole to those of a far away observer. Finally, accurate measurements

and probing of spacetime at small scales implies adding energy in a small region of space
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which in the end may alter the topology of spacetime itself. One can observe that in

principle a topology induced by a choice of a coefficient group (via a particular exper-

imental setup) results in a modified set of observables and a modified algebra for the

resulting quantum (field) theory. Also, the geometry of the (field) space imposes restric-

tions on possible topologies (for example extreme curvature may imply restrictions over

the allowed topologies). One can summarize this as

Topology

(
probed by quantum mechanics

induced by a choice of a coefficient group

)
� Geometry

(
well defined local quantum observables

quantum operator algebras

)

In this context the main question for quantum gravity is “how do different geometries

correlate?” To this question one can give an answer when one considers the topology

of the field space and the fact that this topology is not given in an absolute sense.

The acceptance of the non-universality of topology (as proved clearly by the universal

coefficient theorem) leads to different “counting rules” for different contexts. In what

follows one defines the class of functionals called “local functionals” as

F (φ) =

∫
M
dvolMf(jx(φ)) (9.9)

where jx(φ) = (x, φ(x), ∂φ(x), ...) is the jet of φ at the point x.

Let L be a suitably defined Lagrangian. We can define an associated action functional

S[L[φ]]. The field equation becomes in this context S′M (φ) = 0 where the prime denotes

the Euler-Lagrange derivative. The space of solutions of this equation forms a subspace

of E(M) called ES(M). In the context of classical field theory one is interested in the

space of local functionals over ES(M) called FS(M). This space can be defined as the

quotient FS(M)=F(M)/F0(M) where F0(M) is the space of functionals that vanish on-

shell (on ES(M)).

A (co)homological interpretation for the FS(M) space is required. For this one needs a

vector field structure on the configuration space. The action of the vector fields X[.] on

the space of smooth functionals C∞(E(M)) is

∂XF [φ] =< F [φ], X[φ] > (9.10)

One can associate to the action functional a map from the set of test functions over the

spacetime manifold to the space of observable functionals δS : D(M)→ F(M) such that

φ 7→< S′M [φ], X[φ] >= δS(X)(φ) (9.11)
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where S′M is the Euler-Lagrange derivative of the action. Suppose there is an action S

such that F0(M) = δS(D(M)). Then

FS(M) = F(M)/F0(M) = F(M)/Im(δS) (9.12)

From this one can construct the chain complex

0→ D(M)
δS−→ F(M)→ 0 (9.13)

This can be associated with the Batalin-Vilkovisky complex used in the geometric quan-

tization. The 0-order homology of this complex is FS(M) = F(M)/F0(M). The set of

critical points of the action functional

{φ ∈ D(M)|δS [φ] = 0} (9.14)

contains connected components that can be identified by the first homotopy group

π0({φ ∈ D(M)|δS [φ] = 0}) (9.15)

The functionals on the classes of this group are the gauge invariant observables. One can

see that the correct identification of possible maps as well as homotopically equivalent

structures is extremely important for the correct construction of the field space in the

phase preceding actual quantization. Probably the best mathematical formalization of

quantum mechanics is offered by what is known as “geometric quantization” [193]. In

this formulation one starts with a classical theory and follows a set of steps that assure

the consistency of the resulting quantum theory. Obviously, not every classical theory

can be lifted to a quantum level. In some cases it is necessary to re-interpret various

properties appearing at the classical level from a quantum perspective, as I explained

previously. Indeed the method presented here may explain what changes in our ways of

thinking are required for this. One may start with a general classical action depending

on a set of fields S[φ]. This implies the existence of a symplectic manifold. The main

idea is to realize the symplectic form of this manifold as the curvature of a U(1) principal

bundle with a connection. We obtain the pre-quantum Hilbert space as the Hilbert space

of square integrable sections of the principal line bundle. One has to pick for each point

in this space a certain subspace of the complexified tangent space at that point. One

defines the quantum Hilbert space to be the space of all square integrable sections of the

line bundle that give 0 when differentiated covariantly at that point in the direction of

any vector of the tangent space. As basic quantum mechanics teaches us there exist two

sets of variables that become non-commutative operators when quantizing. These may

be called “positions” and “momenta” although their physical meaning may be rather
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different. The next step is the choice of a polarization i.e. the choice of “positions”

and “momenta”. This choice is not unique. Once a polarization is available one can

form a Hilbert space of states as the space of sections of the associated line bundle.

The last step would be to associate to the classical variables actual quantum operators

on the quantum Hilbert space. This amounts to the quantization of observables while

mapping Poisson brackets to commutators. This procedure is in general not well defined

for all operators. Strictly speaking the method of geometric quantization is not properly

defined in the context of quantum gravity. The definition of a field-space or a space

of configurations is extremely complicated and the integration over such a structure

appears to be ill-defined. However, it is precisely the method presented in this article

that may add some extra structure to this space (for example via the identification of

new dualities) such that its rigorous definition might become possible. Several attempts

of using geometric quantization in the context of string theory are known [193,244] but

the subject remains open for future research.

Given a BV complex and some quantum observables in the context of a choice of a

coefficient structure I repeat here the universal coefficient theorem. At this point it

plays the role of a lemma, which I intend to use for further constructions related to

quantum field theories.

9.1 Lemma (The Universal Coefficient Theorem)

If C is a chain complex of free abelian groups, then there are natural short exact se-

quences

0→ Hn(C)⊗G→ Hn(C;G)→ Tor(Hn−1(C), G)→ 0 (9.16)

∀ n, G, and these sequences split. Here Tor(Hn−1(C), G) is the torsion group associated

to the homology. In this way homology with arbitrary coefficients can be described in

terms of homology with the “universal” coefficient group Z

This is also valid for cohomology groups where it is formulated as

0→ Ext(Hi−1(C), G)→ H i(C;Z)⊗G h−→ H i(C;G)
r−→ Hom(Hi(C), G)→ 0 (9.17)

where now the Tor group on the right is replaced by the Ext group on the left. Moreover,

this theorem is a property of algebraic topology independent of the existence of an

underlying manifold structure for the spaces or groups on which it may be applied. I

also repeat here the example showing how the choice of the coefficient group can affect

the correct identification of the homotopy type of a function.
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9.2 Example (Homotopy and coefficient group)

Take a Moore space M(Zm, n) obtained from Sn by attaching a cell en+1 by a map of

degree m. The quotient map f : X → X/Sn = Sn+1 induces trivial homomorphisms on

the reduced homology with Z coefficients since the nonzero reduced homology groups

of X and Sn+1 occur in different dimensions. But with Zm coefficients the situation

changes, as we can see considering the long exact sequence of the pair (X,Sn), which

contains the segment

0 = H̃n+1(Sn;Zm)→ H̃n+1(X;Zm)
f∗−→ H̃n+1(X/Sn;Zm) (9.18)

Exactness requires that f∗ is injective, hence non-zero since H̃n+1(X;Zm) is Zm, the

cellular boundary map

Hn+1(Xn+1, Xn;Zm)→ Hn(Xn, Xn−1;Zm) (9.19)

being exactly

Zm
m−→ Zm (9.20)

One can see that a map f : X → Y can have induced maps f∗ that are trivial for

homology with Z coefficients but not so for homology with Zm coefficients for suitably

chosen m. This means that homology with Zm coefficients can tell us that f is not

homotopic to a constant map, information that would remain invisible if one used only

Z-coefficients.

It is important to observe that this example shows that (co)homology classes can merge

or dissociate according to specific choices of coefficient groups. By this it becomes

possible to redefine quantum field theories previously constructed on non-trivial field-

manifolds, on simply connected manifolds. The corrections appear then as Tor or Ext

groups. As the final step of this introduction I state here the main theorems of this

thesis as well as a conjecture.

9.3 Theorem (Relativity of Observables) There exist observables visible using some

choices of coefficient groups and invisible using other choices.

9.4 Theorem (Relativity of distinguishability)

There exists no unequivocal measure of distinguishability of quantum states that is

independent of the choice of the coefficient group. Distinguishability is relative.

9.5 Theorem (Relativity of Symmetry)

A particular choice of a coefficient group makes a specific symmetry structure in the

field space manifest. There exists no absolute symmetry.
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9.6 Conjecture (Relativity of Holography)

There is no general unequivocal mapping of any consistent geometric structure in a space-

time volume to its surface. In the full context of quantum gravity the existence of a

holographic principle is an undecidable statement depending on particular choices of the

coefficient groups. “Strong-weak” dualities can however be constructed and generalized

in a case-by-case way

The proofs of the theorems as well as validity arguments for the conjecture are provided

in the following subsections. The method of proof is as follows: I make a choice of a

coefficient group in cohomology (i.e. a choice of topology). I try to construct standard

quantum mechanics (eventually using geometric quantization). If geometric quantization

is impossible I can always switch to a different topology where this method is possible

and see how it relates to the topology where it was impossible via the universal coefficient

theorem. This may bring new insights about the geometric quantization prescription. I

construct a set of observables and physical states using a particular choice of the coeffi-

cient group. I obtain a set of physical states obeying some properties (distinguishability,

etc.). I make another choice of the group structure where the above stated properties are

not valid any more. By the Universal Coefficient Theorem it follows that the considered

properties are relative i.e. cannot be associated to a full theory of quantum gravity.

One method of quantization is given by what is known under the name of “Feynman

path integral”. For an introduction I partly follow Feynman’s original paper [206]. I

assume that the standard prescription of computing quantum probabilities using quan-

tum amplitudes is well known. If Pac is the quantum probability of measuring event

c when it follows the measurement of event a then the probability must be calculated

as Pac = |ϕac|2 where ϕac =
∑
b

ϕabϕbc where the sum is over the possible intermediate

states b which, I emphasize, following Feynman have no meaningful independent value.

In a 1-space and 1-time dimensional context a succession of measurements may represent

a succession of the space-coordinate x at successive times t1, t2, ..., where ti+1 = ti + ε.

Let the observed value at ti be xi. Classically the successive values of x1, x2, ... define

a path x(t) when ε → 0. If the intermediate positions are actually measured one may

talk about such a path with a well defined set of observed positions x1, x2, ... and the

probability that the specified path P (...xi, xi+1, ...) lies in a region R is given by the

classical formula

P =

∫
R
P (...xi, xi+1, ...)...dxidxi+1... (9.21)

where the integral is taken over the ranges of the variables which lie within the region R.

If the intermediate positions are not measured then one cannot assign a value to them.

In this case the probability of finding the outcome of a measurement in R is |ϕ(R)|2 and
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ϕ(R), i.e. the probability amplitude, is calculated as

ϕ(R) = lim
ε→0

∫
R

Φ(...xi, xi+1, ...) (9.22)

where Φ(...xi, xi+1, ...) defines the path. In the given limit this object becomes a path

functional. There should be no mystery nowadays that the probability amplitude should

be calculated as

ϕ(R) = lim
ε→ 0

∫
R

exp[
i

~
∑
i

S(xi+1, xi)]...
dxi+1

A

dxi
A
... (9.23)

where S is the action functional for the given path segment. In order to go a step further

and define the wavefunction in this context I will continue to follow Feynman’s paper

[206]. The region R considered above can be divided into future and past with respect

to a choice of a time position t. One can define the region R′ as the past and the region

R′′ as the future. The probability amplitude connecting these regions will be

ϕ(R′, R′′) =

∫
χ∗(x, t)ψ(x, t)dx (9.24)

where

ψ(xk, t) = lim
ε→0

∫
R′

exp[
i

~

k−1∑
i=−∞

S(xi+1, xi)]
dxk−1

A

dxk−2

A
... (9.25)

and

χ∗(xk, t) = lim
ε→0

∫
R′′

exp[
i

~

∞∑
i=k

S(xi+1, xi)]
1

A

dxk+1

A

dxk+2

A
... (9.26)

In this way one can separate the “past” and the “future” via the functions ψ and χ.

One may also construct a closer equivalence to the matrix representation of quantum

mechanics by introducing matrix elements of the form

< χt′′ |F |ψt′ >S= limε→ 0

∫
...
∫
χ∗(x′′, t′′)F (x0, ...xj)×

× exp[ i~

j−1∑
i=0

S(xi+1, xi)]ψ(x′, t′)dx0A ...
dxj−1

A dxj
(9.27)

In the limit ε → 0, F is a functional of the path x(t). At this moment one can define

various equivalences between functionals. These are to be associated to operator equa-

tions in the matrix formulation. One can of course define ∂F
∂xk

and one can calculate the

associated matrix element using an action functional S. Using the fact that the action

functional appears as exp( i~S) one obtains matrix equations as, say
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< χt′′ |
∂F

∂xk
|ψt′ >S= − i

~
< χt′′ |F

∂S

∂xk
|ψt′ >S (9.28)

which can be stated as a functional relation defined for an action S as

∂F

∂xk
↔ − i

~
F
∂S

∂xk
(9.29)

Using the fact that S =
j−1∑
i=0

S(xi+1, xi) one can rewrite

∂F

∂xk
↔ − i

~
F [
∂S(xk+1, xk)

∂xk
+
∂S(xk, xk−1)

∂xk
] (9.30)

In the case of a simple 1-dimensional problem one can write

∂S(xk+1, xk)

∂xk
= −m(xk+1 − xk)/ε (9.31)

and
∂S(xk, xk−1)

∂xk
= +m(xk − xk−1)/ε− εV ′(xk) (9.32)

Neglecting terms of order ε one obtains

m
(xk+1 − xk)

ε
xk −m

(xk − xk−1)

ε
xk ↔

~
i

(9.33)

The important aspect here is that the order of terms in a matrix operator product

corresponds to the order in “time” of the corresponding factors in a functional. The

order of the factors in the functional is of no importance as long as the indexation of

these factors is reflected in the ordering of the operators in the matrix representation.

This means the left-most term in the above equation must change order so that one

obtains the well known commutation relation

px− xp =
~
i

(9.34)

One may observe that the choice of a specific indexation of the measurement outcomes,

according to a time index (i.e. Z-group), leads to the well known commutation rela-

tions. The ideas behind path integral quantization are kept intact when going to the

relativistic context. However, when we have to go to a gravitational context the sum

over configurations (geometries) becomes non-trivial. One first attempt of dealing with

a path integral formulation for gravity has been studied by S. Hawking in [316]. There,

it is argued that the contribution to the action functional given by solutions of Ein-

stein’s equation with trivial topology i.e. R3 × S1 is trivial. Non-trivial topologies, like
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those associated to the Schwarzschild solutions are expected however to give the sim-

plest non-trivial contributions. It is also known that perturbation theory breaks down

in quantum gravity beyond the one loop calculations as the theory, as formulated by

Einstein is not renormalizable by standard means. As the topology becomes relevant,

the (co)homology together with other topological invariants become relevant. In this

sense one has to construct the (co)homology structure of the space and one has to deal

with the universal coefficient theorem. This theorem states that a specific framework,

constructed through the choice of a coefficient group in (co)homology is, up to (exten-

sion) torsion in (co)homology, equivalent with the choice of an integer coefficient group.

However, some choices of coefficient groups may make some observables manifest while

others may hide them. Moreover, simple order relations as the ones used in the proof

above are no longer uniquely defined. What was identified by Feynman as a natural

choice (time ordering) may in fact be just the result of a given coefficient group. Other

ordering relations (like radial ordering in the case of CFT’s) are also known. It is visible

in this context that the construction of a path integral prescription using another co-

efficient group will change the quantization prescription (as formulated via the algebra

of operators). Quantization doesn’t mean only algebra of operators, as has been made

obvious in the definition of geometric quantization. In an ideal situation one would

expect a physical motivation that determines the operator algebra. This might appear

in the context of the application of universal coefficient theorems.

The group structure imposed over the configuration space can be chosen for example

as R/Z case in which one arrives at a continuous cyclic structure. This will present a

somehow altered operator algebra. One may ask what is the physical meaning of the

coefficient group? In fact, it is an extra layer of information that has to be dealt with

when performing quantization. It appears that it is not sufficient to simply integrate

over non-equivalent field configurations as done in non-gravitational models. The coeffi-

cient structure adds new “degrees of freedom” to the problem. These must be considered

when performing path integral quantization in order to obtain suitable unitary results.

From this point of view, the extra-structure appears to be a step forward towards the

unambiguous solution of the unitarity problem (also known as “information paradox”).

In a less formal tone, the “information” describing the system is encoded not only in the

actual system but also in the set of rules one chooses in order to “read” that informa-

tion. I stressed in the above digression that the intermediate states in the path integral

formulation must be added to the amplitude while keeping all possible outcomes, mainly

because one cannot assign an outcome before a measurement is performed. The same

considerations are valid when dealing with coefficient groups. While one can certainly

prepare an experiment that involves a special choice of a coefficient group one will obtain

a result dependent of this choice. When no practical choice is made one cannot assign
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any “physical” value to the choices of coefficients but one must consider them when

calculating quantum amplitudes. From this perspective the question of the existence

of a “Planck scale topology” is void of meaning. “Microscopic geometries” are to be

associated to choices of coefficient groups and these choices are arbitrary. However, the

universal coefficient theorem generates classes of topologies that can be identified in the

sense of having the same Ext and Tor groups. This may lead to an overall simplifica-

tion of the path integral formulation as many configurations will appear as connected by

dualities. One should notice that both string theory and loop quantum gravity assume

special choices of topology as being absolute (Lie group topology for string theory as

the “string worldsheet” and discrete topology for LQG). I consider these choices as an

epistemological issue. In string theory one starts by postulating a fundamental string.

This implies a continuous group structure and a well defined topology. By the universal

coefficient theorem however, this is simply a convention. Using that convention one

arrives at an algebra of operators (say, Virasoro algebra). It should be clear now that

this choice has nothing fundamental to it. In loop quantum gravity one starts the other

way around: one fixes the canonical quantization prescription involving the standard

algebra and obtains in the end a particular topology (a discrete topology). Again, one

arbitrary choice determines the other. There is nothing fundamental to it either. One

cannot assign a precise topology to any space unless one makes a choice of a coefficient

group in cohomology. In order to do this one must consider the universal coefficient

theorem and its Tor and Ext groups. Any fixation on an absolute topology would be

equivalent with the postulation of the “ether” in special relativity i.e. void of meaning.

One may notice that quantum gravity cannot be defined using a fixed (non-dynamical)

spacetime manifold. In fact, analysis in terms of the universal coefficient theorem makes

the spacetime highly dynamical allowing even changes of topology. Indeed, for example

topology is not fixed by the condition of Ricci flatness, i.e. Rµν = 0. The standard

example is given by the Calabi-Yau manifolds which have a non-trivial structure of

Hodge numbers while being Ricci flat.

Aside from its dynamical structure, spacetime is also non-triangulable. This also means

there is no single spacetime to be associated to a chain complex and hence there exists

an intrinsic uncertainity when speaking about spacetime topology. All these can be

seen if one considers for example coefficient groups of finite torsion degrees. The larger

(but finite) the torsion degree of the group the more “non-local” will the associated

“observables” look. The “non-local” behaviour in extreme conditions (black holes) is

essentially the result of a specific choice of topology. This will persist until clearer infor-

mation about the group structure imposed by a particular experiment is given. When

this happens is for the experiment to decide. The situation is similar to the supposed

“objective collapse of the wavefunction” which is assumed (wrongly) to actually happen



Chapter 9. Universal Coefficient Theorem and Quantum Field Theory 172

at some scale. This mistake vanishes when one understand that the wavefunction is to

be interpreted as a “expectation catalogue”. In the same way, when information about

the connectivity of spacetime and of the “field-space” becomes manifest one will have

to adopt the local structure at hand. Of course, topologically disconnected macroscopic

black holes may retain (from the perspective of an observer lying outside) some apparent

non-local aspects as their internal structure is inaccessible.

One may ask if my method identifies the different representations for the same algebra

of operators. This is not the case. As can be seen from Feynman’s example the specific

ordering of the events generates some commutation relations which define the algebra

of operators. If one generalizes this to different choices of coefficient groups for probing

the field space one can see that the algebra of operators will not be preserved. Indeed,

one can use coefficients in a continuous group. In this case one can recover the string-

theoretical case where a continuous line-like object appears as “fundamental” and in

fact the algebra of its operators is rather different. The associated group is generally

not easily connected to the local algebra as the exp map is not always easily defined.

Continuous group coefficients are useful. It is well known that one uses continuous

coefficient groups when one wishes to avoid unnecessary complications due to the low-

scale behaviour of the space to be studied. In fact, a claimed advantage of working with

string-like objects is its so called “UV-completeness”. Of course, from the perspective of

coefficient-group-extended quantization this property is just a trade-off between using

continuous groups in order to have UV-completeness and the complications that appear

in the BRST-cohomology treatment of string theory.

9.4 Relativity of Observables

As shown in the previous subsection, the physical observables are to be identified with

the functionals over the classes of the homotopy group associated to the critical points of

the action functional. Example 9.2 already showed how this identification is relativized

by the UCT. I give here a more detailed proof. Take a set of observables obtained after

geometric quantization

A = {A1, A2, ..., An} (9.35)

where A ⊂ FS . While in the classical case FS is to be associated with a space of local

functionals, in the case of quantum gravity the locality condition may be relaxed. One

can observe that the BV-complex

0→ D(M)
ι−→ F(M)

γ−→ FS(M)→ 0 (9.36)
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with FS(M) = F(M)/F0(M) and δS = γ◦ι can be represented as the complex of example

9.2

0→ H̃n+1(X;Zm)
f∗−→ H̃n+1(X/Sn;Zm)→ ... (9.37)

In the last case f∗ is the induced map over the homology groups of the map f : X 7→
X/Sn over the analyzed spaces. In the case of the BV-complex the original maps would

be the functionals F : ES 7→ ES which are to be associated to the physical observables

of the quantum theory. In the same way as in example 2 one can define the map as a

function of degree m.

One may remark that observables that cannot be distinguished in Z will be visible if the

choice of coefficients is Zm.

In order to have a correct representation of the actual set of observables one must redefine

A as

Ã = {[A1], [A2], ..., [An]} (9.38)

where each term [Ai] may be a set of observables on its own, the elements of which may

not be discernible given a specific choice of coefficients. To show that the sequence in

homology from example 9.2 is applicable I will have to show that the set of observables

is representable in the form of a (co)homology. I showed previously that indeed the

observables are related to a homotopy group. In following reference [262, 309] I will

show that in fact there is a homological representation of the observables and indeed

one arrives at a sequence comparable to the sequence above in homology. In order to

have a better understanding of this statement it is useful to understand the meaning

of (co)homology in the standard BV formalism. Using the vector fields on E(M) it is

possible to characterize the elements of F0(M). This space includes elements of the form

φ→< S′M (φ), X(φ) >= δS(X)(φ) (9.39)

where S′M is the Euler Lagrange derivative of the original action. This notation under-

lines that one can associate to the action S a map δS = D(M)→ F(M). This map is a

differential and its image is contained in F0(M). If it also holds that F0(M) = δS(D(M))

we say that F0 is generated by the equations of motion. This is the case for many physical

situations including the Yang-Mills theory and gravity. The problem is then reduced to

the finite dimensional case [262]. One may use locality and make it sufficient to charac-

terize the local functionals that vanish on-shell. These can be written as an integration∫
M dvolM (j∞x )∗(φ)f(x) of a function on the jet space that depends only on a finite num-

ber of derivatives jkx(φ) of configuration fields φ ∈ E(M) at a given point x ∈ M . This

reduces the problem locally to a finite dimensional one [309]. Assuming that the action
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S is given such that F0(M) = δS(D(M)) holds we can write

FS(M) = F(M)/F0(M) = F(M)/Im(δS) (9.40)

and this can be written in terms of homological algebra. Take the chain complex

0→ D(M)
δS−→ F(M)→ 0 (9.41)

The zero-degree homology of this complex is F(M)/F0(M) = FS(M). In order to find

the full homological interpretation of FS(M) we need a resolution of FS(M). Given

a graded algebra A and a differential operator δ a resolution of A is (A, δ) such that

H0(δ) = A and Hn(δ) = 0 for n > 0. Now, starting from the chain above, one can start

to construct the resolution of FS(M) considering that the space of multivector fields

ΛD(M) is a graded commutative algebra with respect to the exterior product. We also

have a natural bracket structure {∗, ∗}. Having δS(X) = {X,LM (f)} for f = 1 on the

support of X ∈ D(M), it is possible to extend δS to ΛD(M) by using the graded bracket.

This results in the complex

...→ Λ2
D(M)

δS−→ D(M)
δS−→ F(M)→ 0 (9.42)

Here the map δS is the Koszul map. In what follows we want to calculate the homology

H1(ΛD(M), δS). It will be important to identify the elements of Ker(δS)D(M)→F(M).

These are the symmetries associated to the theory. But how does this approach in

general relate to the BV formalism? Vector fields D(M) correspond to functionals of

the antifields. The action functional of a vector field on a functional can be written as

∂XF (φ) =< F (φ), X(φ) >=

∫
M
dvolMX(φ)(x)

δF (φ)

δφ(x)
(9.43)

The functional derivatives δ
δφ(x) are to be identified with the antifields φ† and the ele-

ments of D(M) are

X(φ) =

∫
M
dvolMX(φ)(x)

δ

δφ
=

∫
M
dvolMX(φ)(x)φ† (9.44)

The antibracket is then

{X,Y } = −
∫
dx(

δX

δφ(x)

δY

δφ†(x)
+ (−1)|X|

δX

δφ†(x)

δY

δφ(x)
(9.45)

The most important part for characterizing the BV formalism is to show how it deals

with symmetries. Moreover this will allow us to calculate the homology and present

the (co)homological interpretation of the whole formalism. The symmetries are vector

fields on E(M) that describe directions in the configuration space in which the action S
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is constant. This can be expressed as the condition that for every φ ∈ E(M)

0 = δSX(φ) =< S′M (φ), X(φ) >= ∂X(SM )(φ) (9.46)

If a symmetry vanishes on-shell i.e. X(φ) = 0 for all φ ∈ ES(M) it is called trivial. Call

the Lie subalgebra of D(M) consisting of all symmetries as s(M) and the trivial ones call

them s0(M). The space of non-trivial symmetries then is just the quotient

sph(M) = s(M)/s0(M) (9.47)

therefore a set of equivalence classes of vector fields on E(M) with the equivalence relation

connecting elements which are on shell. The algebra of symmetries s(M) has a natural

action on F(M) by derivations. The aim of the BV formalism is to determine the

construction of the spaces s(M) and sph(M). The trivial symmetries are in the image of

δS i.e. (Imδs)Λ2D(M)→D(M). They do not contribute to the homology H1(ΛD(M), δS).

Therefore the first homology of the Koszul complex above is trivial if S doesn’t possess

any non-trivial local symmetries. We therefore get

H0(ΛD(M), δS) = FS(M)

Hk(ΛD(M), δS) = 0, k > 0
(9.48)

The complex (ΛD(M), δS) is the Koszul resolution of FS(M).

This shows that the set FS(M) can be represented as the degree zero homology of the

Koszul complex which indeed contains the observables. In general however, additional

symmetry may be introduced in the system, pushing the non-trivial homology to higher

degrees. Indeed, the various degrees of the homology correspond to the ghost numbers

of the respective formulation of the physical theory.

Therefore we can rewrite the sequence

0→ D(M)
ι−→ F(M)

γ−→ FS(M)→ 0 (9.49)

in terms of the homology with a certain coefficient structure and obtain

0→ H∗(D(M),G)→ H∗(F(M),G)
f∗−→ H∗(FS(M),G)→ 0 (9.50)

not forgetting that F(M)/F0(M) = FS(M). G is a generic notation for a group structure

which might induce the nonzero homology in different dimensions. If this happens, the

same argument of example 9.2 will also apply here, and the observables will merge.
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There are various physical confirmations for this theoretical observation. Indeed, it has

been noted in reference [195] that for example classes of microscopical observables of

black holes may be inaccessible to independent measurement due to large energies or

long times required for accurate probing. While this is certainly possible, I showed

here that the same can happen due to certain choices of coefficient groups. While it is

certainly always possible to change the coefficient group with which one probes the field

space this change may involve a change in the physical experimental setup. This would

make a simultaneous use of two coefficient groups in the same experiment impossible. As

indiscernability of observables (coarse graining) may imply emergent locality (as shown

in [195]) it may look like the UCT assures some form of locality at all levels. However,

I am cautious in calling this “locality” with its proper name. I am also cautious when

speaking about “emergent locality” or even more drastically, “emergence of space-time”

(see ref. [195]) The reasons for this caution are expressed in the following subsection.

9.5 Relativity of distinguishability

Ongoing research in quantum information has led to various alternative definitions of

distinguishability of quantum states. One recent paper [195] argues that physical criteria

like extreme energy requirements or long waiting times would make some distinctions

between quantum states impractical. I show here that in fact distinguishability of quan-

tum states is mainly related to choices of the coefficient groups of (co)homology. There

exist possible predictors that allow “guesses” concerning the presence of different phys-

ical states in the same equivalence classes associated to some observers [191]. Using

quantum information tools one observes that given a set of observables A one cannot

distinguish a random pure micro-state in a microcanonical ensemble HE of dimension dE

from the maximally entangled state ΩE = IE
dE

unless the number of different outcomes

of the operator N(A) scales as
√
dE . Whenever N(A) ∼

√
dE one would require a long

time or very large energies to achieve the accuracy that would allow the distinction of

these states. These statements presented also in [195] are partially correct. While one

can follow the standard path of constructing normed or semi-normed spaces that would

predict how “far away” quantum states are in a given configuration I show here that

these measures must be relative considering the fact that the arbitrary choice of a coeffi-

cient group may make the difference between distinguishability and indistinguishability

of two quantum states relative. This statement is in full agreement with the uncertainty

principle and in the spirit of quantum mechanics as it extends the concept of uncertainty

to the arbitrary choice of a coefficient group. In this subsection I follow ref. [195] in or-

der to introduce the concepts I require. Consider a finite dimensional subspace HE ⊂ H
of dimension dE consisting of all pure states ψ = |ψ >< ψ| that live in a microcanonical
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ensemble of energy [E−δE,E+δE]. I may assume that the Hamiltonian describing the

unitary time evolution of the system has non-degenerate energy gaps. Consider again

the set of observables A = {A1, A2, ..., An}. One may ask what are the necessary condi-

tions for such a set to distinguish a random pure state ψ ∈ HE from a maximally mixed

state in HE . One can follow two obvious paths and one less obvious path to quantify the

difference between quantum states ψ ∈ HE . What one obviously could do is to measure

the expectation value of some operator A ∈ A. However, the measurement of expecta-

tion values of an observable is not sensitive enough to distinguish any different quantum

states. A quantum measurement in general offers a set of eigenvalues a appearing with

some probabilities pa. Most of the information about the quantum system is encoded in

the probability spectrum {pa}. Hence in order to distinguish two quantum states ρ and

σ using a particular observable A one can define a measure as

DA(ρ, σ) =
1

2

∑
a

|tr(|a >< a|ρ)− tr(|a >< a|σ)| (9.51)

|a > being the eigenvectors of A. This measure is defined so that it encodes the infor-

mation of the entire spectrum {pa}. One can extremize the definition in order to define

a measure over a whole set of observables

DA(ρ, σ) = max
A∈A

DA(ρ, σ) (9.52)

If A includes the entire set of observables in the Hilbert space one may define the

distinguishability of two quantum states in general as

D(ρ, σ) =
1

2
tr|ρ− σ|A (9.53)

where |ρ − σ|A is the maximal difference in probability spectra over the entire set of

available observables. If I continue to use this language it will be impossible to identify

the restrictions due to the universal coefficient theorem. In fact one has to go a step back

and to remember that quantization implies summation over inequivalent field configu-

rations and this implies the construction of (co)homology groups. Physical observables

are identified with the functionals over the classes of these groups. Different choices of

coefficient groups in the (co)homology may lead to identification of functionals (they

may appear as homotopic to the identity) while using other groups may make them

appear in different classes (i.e. being different observables). Considering that special

features of the field space induced by mappings of finite degree cannot be ignored in the

procedure of quantization one may have for a complex like

0→ H̃n+1(X;Zm)
f∗−→ H̃n+1(X/Sn;Zm)→ ... (9.54)
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a set of observables A = {A1, A2, ..., An} while under

0→ H̃n+1(X;Z)
f∗−→ H̃n+1(X/Sn;Z)→ ... (9.55)

another set Ã = {[A1...Ai1 ], [Ai2 ...Ai3 ]..., [Aik ...Ain ]} where the observables in the square

brackets represent the classes of observables that cannot be distinguished in the given

coefficient setup. One may imagine that the choice of a coefficient group induces a

forgetful functor between the category of observables A and Ã. This functor also maps

the discernability measure from

DA(ρ, σ) = max
A∈A

DA(ρ, σ) (9.56)

towards

DÃ(ρ, σ) = max
A∈Ã

DA(ρ, σ) (9.57)

One may observe that although the definition is still valid, the set of available observables

changed significantly. In the previous subsection I invited to caution in using terms like

locality in relation to indiscernability of observables and entanglement. Indeed, the

prescription of maximization used in the definition of the measure above is not trivial.

Following the universal coefficient theorem, in order to establish the maximum over the

set of observables, one will always have to pick one element from an equivalence class.

One may not be aware of the existence of more than one element in the given class but

the class exists and a choice has to be made in order to be able to compare in the end

representatives from various classes. In order to be able to do this (as the elements of one

class are supposed to be indiscernable so one cannot define a choice function) one has

to invoke the axiom of choice. However, associating probability theory and the axiom

of choice in the context of quantum mechanics is probably the most non-trivial task in

mathematical logics. Examples of how the axiom of choice reflects on the mathematics of

coordinated inference can be found in [191]. What I may add here is that the indexation

of operators in A and Ã may give an order relation in terms of, for example, energy. In

this sense one may define the order over the operators in A as

A1 ≺ A2 ≺ ... ≺ An (9.58)

This ordering implies the visibility at a given energy. However, the deformation of some

observables such that they enter a single homotopy class after the application of a new

coefficient group may alter this order. In fact, one will have to define an order relation

between equivalence classes where the choice of representatives is not unambiguously
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defined in the absence of the axiom of choice

[Ai1 ] � [Ai2 ] � ... � [Ain ] (9.59)

Nothing stops this new ordering to invert the previous one in some instances such that

observables invisible at some energy and choice of coefficients become visible under

another choice of coefficients [194]. It follows that new “strong-weak” dualities can

be constructed using the method of coefficient groups. Their applicability goes beyond

quantum gravity to subjects like condensed matter or many particle systems. Everything

one has to do is to re-quantize the theory using a different coefficient setup and to take

into account possible torsion groups in homology. While theoretically this is possible

it remains to be seen if there are practical difficulties. Another aspect that might be

important in this context is the similarity of these problems with the “hat problems”

discussed in [191]. The main idea is that although it may look unlikely, there might exist

predictors that after a finite set of trials are always capable of assigning the equivalence

class of an operator and determine an order of occurrence. These predictors however,

depend on the availability of the axiom of choice. However, their existence may suggest

that exact locality may be dependent of some very particular choices. One may also ask

if the renormalization prescription is affected by the indiscernability of states induced by

choices of (co)homology. Possible emergence of new “topological” Ward identities (i.e.

having their origin in some remaining “invariance” under change of topology, prescribed

by the UCT) may have important roles in a possible renormalization of gravity.

9.6 Relativity of Symmetry

Symmetries are of major importance in physics in general and in quantum field theories

in particular. They manifest themselves in the quasi-invariance of an action under the

transformations of a group. The fact that one has quasi-invariance (i.e. invariance up

to a total derivative) of the action under a group may be irrelevant classically, however,

it is important in quantum mechanics as it allows the construction of group-invariant

quantum equations (Schrodinger-equations when the group is the non-relativistic Galilei

group for example). One may notice that the existence of a quantum formulation of the

laws of physics is related to the existence of non-trivial (phase) factors (i.e. additive

terms in the composition rule of the group operation, see [200]) that cannot be reduced

to zero for all group elements (i.e. they form non-trivial classes in the second cohomology

of the transformation group). One also observes that the existence of basic quantum

effects is a result of the global (topological) properties of the groups associated to the

supposed “natural” symmetries (Galilei group, Lorentz group, conformal group, etc.).
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These properties are probed via group (co)homologies. Information about a group (or

in general a space) is not only encoded in the group (space) itself but also in the way

in which the group (space) acts (is mapped) into some reference module (space). This

is why one can study group properties by analyzing the actions of the group on an

associated space. On that space one can construct a CW complex and analyze it via

combinatorial techniques. Moreover, information about a group (space) may also be

encoded in the way in which one probes that group (space). One can classify the various

ways in which information about a group fails to be encoded geometrically (i.e. non-

topologically)1 by using cohomology groups of different orders. For example the classes

of the second cohomology group H2(G,U(1)) i.e. the cohomology group of the maps

between the analyzed group G and the unitary 1-dimensional group U(1) encode the

global character of the factors in the composition rule of the group-operation in G i.e. the

way in which they fail to vanish globally [200]. The non-trivial third cohomology group

H3(G,U(1)) encodes the failure of the associativity property of the composition rule

[200]. Also, the existence of not globally vanishing (phase) factors induces super-selection

rules. They are induced in standard quantum mechanics by the presence of non-trivial

operators that commute with all the observables and thus belong to any complete set of

commuting observables. As a result, these operators decompose the Hilbert space of all

possible states of a system into coherent subspaces characterized by their eigenvalues.

The superposition principle holds only inside these superselection subspaces and no

observable may have non-zero matrix elements between states of different superselection

eigenvalues. As an example one may consider the mass of particles in a space acted

upon by a Galilei group. Bargmann superselection rules arising due to the topology of

the Galilei group forbid for example mass decay (i.e. physical subspaces corresponding

to different mass are incoherent). Of course, this is not true as one has to consider

the Lorentz group as a “true” group of nature. What one must remember here is

that the existence of such superselection rules is a result of the existence of non-trivial

second group cohomologies of the transformation groups i.e. a result of non-trivial

topology of the symmetry group as mapped over a space. Further properties can be

encoded by higher cohomology groups. However, as showed before, it is important to

notice that the topology of a space (or group) cannot be probed in an absolute sense

(regarding all the properties one may wish). Topology is only defined together with the

algebraic structure that makes computable, i.e. topological invariants and the associated

coefficient groups. In some sense this is an extension of the quantum uncertainty that

involves the topology of the space. One may quote the existence of super-selection rules

in order to avoid solutions like Wheeler’s bags of gold. I will show later on that these

expectations may be misleading. In order to extract useful properties from cohomology

1I contrast here geometrical and topological results although they might be related, see for example
Gauss-Bonnet theorem, etc.
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one must make a choice of a coefficient structure. Various choices may make classes

inside the cohomology merge or become separated. The actual “nature” of them being

“separated” or “merged” depends on the actual type of “topological measurement” (i.e.

the choice of a coefficient group). Because of this, physical properties depending on

classes of (co)homology or being defined as non-trivial function(als) over such classes

must have a relative nature. As symmetries map various states into equivalence classes

one may conclude that symmetries are in general relative. What I wrote above is visible

also in the path-integral formulation. It is well known that anomalies are failures of

a symmetry that is manifest at the “classical” level i.e. in the initial action, to exist

after one proceeds to a path-integral quantization. This failure is associated to the

non-invariance of the measure of the path integral to the transformation prescribed

by the given group. There are of course physical anomalies (like chiral anomalies)

that manifest themselves experimentally and there are gauge anomalies that must in

principle be avoided. In any sense, as seen in [201], relevant anomalies (that cannot

be set to zero via “local” transformations) are again given by the non-trivial BRST

cohomology classes at ghost number one on the space of local functionals. They are

of course topological in nature and dependent on the way in which the topology of the

given space (or group) is analyzed. In this sense, setting a (global) group structure for

the coefficients may prove useful in avoiding gauge anomalies while making use of only a

limited number of extra dimensions (or none at all). These effects are purely quantum-

gravitational in nature and refer to the situation when the probing of the topology of

a space-time region (or a space or group in general) becomes uncertain and various

choices of coefficient groups in (co)homology become relevant. Please note that this

doesn’t have to happen only at very high energies or low distances. A basic example

supporting this claim is given in reference [310]. As showed in [311] a cohomological

interpretation of anomalies due to the nilpotency of BRST operator exists. A functional

a = a(A,ω) locally depending on the gauge potential A and linear in the ghost field ω

is an anomaly if it satisfies the Wess-Zumino consistency condition δa = 0 but there is

no local functional Λloc(A) such that −δΛloc(A) = a. Physically, this means there is no

redefinition Γ→ Γ+Λloc of the effective action Γ which directly cancels the anomaly. The

mathematical setup requires the cohomology of the Lie algebra of infinitesimal gauge

transformations with local functionals of the gauge potentials as coefficients. After

realizing that the anomalies have a cohomological interpretation, one understands that

they must be related with the secondary characteristic classes of Chern and Simons. As

characteristic classes are related with the topology of fiber bundles one may ask what

topological structure controlled them? Abelian anomalies have been understood in terms

of the Atiyah-Singer index theorem. The chiral asymmetry of the zero modes of the Dirac

operator was breaking the conservation of the abelian chiral current. For non-abelian

anomalies the explanation appeared later, relating them with the twisting of the infinite
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dimensional bundle of gauge orbits [312, 313]. These were due to the non-triviality

of the determinant line bundle of the index bundle for the family of Dirac operators

parametrizing the gauge potentials [310, 314]. When the index bundle has a non-trivial

first Chern class, treating zero modes in the computation of the determinant of the Dirac

operator becomes a global problem. The phase of the determinant is not single valued

and therefore prevents the existence of a well defined effective action Γ = Γ(A) either

local or global such that a = δΓ. This usually destroys the consistency of quantum field

theories. However, one may change the coefficient group in the cohomology describing

these anomalies. One example was presented in [310] where the coefficient structure was

given by the full space of complex valued smooth functionals. As stated in [310] such

an enlargement of coefficients “dilutes the cohomology in such a way that the relevant

BRST cohomology group turns out to be isomorphic with the first Chech cohomology

group H1(G,Z)”. I performed a more general calculation in [52] where I show that global

anomalies can be shifted towards the Ext groups by means of the universal coefficient

theorem allowing the consistent construction of some extended quantum field theories

with no manifest global anomalies. I have performed another calculation in [315] where

I relate quantum entanglement with a special topology. I also showed how the coefficient

structure in cohomology may affect the notion of entanglement.

One should notice that in the case when symmetries are preserved during quantization

they are mapped into Ward identities involving Green functions. They have the role of

identifying various Feynman diagrams in the perturbative expansion allowing in this way

various proofs of renormalizability for theories that may naively look non-renormalizable

(see Yang-Mills or QCD). One may wonder if suitable splitting of equivalence classes

due to various choices of coefficient groups may add supplemental (maybe topological)

Ward identities that may prove renormalizability of gravity.

9.7 A conjecture: Relativity of Holography

Probably the most important result presented here is the possibility that the Holographic

principle is dependent on the choice of the coefficient group. The holographic princi-

ple states that the non-equivalent degrees of freedom inside a volume can be mapped

unambiguously on the surface encapsulating that volume [188]. The key word here is

“non-equivalent”. I proved in theorem 2 that discernability (or equivalence) are rela-

tive concepts. Following this line of thought the number of non-equivalent degrees of

freedom may depend on arbitrary choices. In fact one may make a choice of a coef-

ficient group where the number of degrees of freedom in a volume largely exceeds the

accessible number of degrees of freedom on the encapsulating surface. One cannot argue
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that they are not in the “observable-super-selection” sector associated to a measure-

ment because, as showed before, there are situations when there exists a topological

measurement ambiguity (i.e. arbitrary choice of coefficient groups) that makes the exis-

tence of such super-selection sectors relative. Indeed one may expect that in a complete

theory of quantum gravity one cannot count the independent degrees of freedom in the

same way as in a classical or non-quantum gravitational theory. I definitely agree with

this. The only difference with respect to the usual interpretation is that there might

not be an unequivocal prescription of counting degrees of freedom that is independent

of an arbitrary choice of coefficients. Let me underline that I do not claim that the

holographic principle is wrong (or absolutely right by that matter). It appears to me

that a choice of a coefficient group in (co)homology imposes one form of counting of

degrees of freedom (it identifies some as being in the same equivalence class). It is very

likely that for some choices a strict holographic principle emerges. In fact, for a black

hole, any group structure that misses the region behind the horizon will satisfy the stan-

dard holographic principle. However, this may not be an absolute property of quantum

gravity. I can claim this simply because a general theory of quantum gravity should be

independent of the choice of coefficients (i.e. topologically covariant) in the same way in

which general relativity is diffeomorphism covariant or some quantum field theories are

gauge invariant. Somehow surprising, on the classical side there exist solutions of the

Einstein field equations that violate the entropy law allowing essentially for an infinite

number of degrees of freedom to be present inside a compact region of space-time. The

solutions are called “Wheeler’s bags of gold” [197] and are assumed to be eliminated via

some quantum mechanism mainly in order to obtain results compatible with the Ad-

S/CFT conjecture. However, it appears to me that the “bags of gold” may have some

effects after all in a full theory of quantum gravity. They become obvious when one

adopts a topological definition of entropy in the context presented in this subsection.

In order to improve on clarity I start by reminding the standard definition of entropy

as being given by the logarithm of the number of microstates associated to the same

macrostate S = kBlog[Ω] or, when considering a general quantum case the definition

becomes S = −kBTr[ρLog[ρ]] where ρ is the density matrix operator. The entropy can

be defined as the failure of macroscopic states to reveal all the microscopic details. Oth-

erwise stated it may be interpreted as the uncertainty that remains after a macroscopic

state is fully described. The concept of entropy evolved from the practical inability of

probing classical microstates to the inherent inability of probing quantum microstates.

An extension would be towards the inability of probing the topological structure of the

analyzed space and this appears to be precisely the case when dealing with quantum

gravity and coefficient structures in (co)homology. One may observe that entropy can

in general be extracted from the (co)homology of the space of microstates. In fact the

cohomology measures precisely the failure of probing topological structures using local
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considerations. Because of this, it is a perfect tool for identifying the topological un-

certainty i.e. the topological component of the entropy. I showed before that this has

a measurable effect when a topology is chosen and contributes to the statistics when

such a topology is left unspecified. Let me call C the space of microstates available to a

specific microscopic probing of a topological space. This may be represented as a linear

combination of simplexes with various coefficients. Let δ be an operator that realizes

a form of “coarse graining” in the sense of partitioning the microstates into classes ac-

cording to the macrostates they can encode and taking into account the topology of the

associated space (i.e. as a boundary operator). Then one can define a chain complex

for cohomology as

...
δn−1

−−−→ C∗n−1
δn−→ C∗n

δn+1

−−−→ ... (9.60)

or for homology

...
δn+1

−−−→ Cn
δn−→ Cn−1 δn−1

−−−→ ... (9.61)

The star in the above description is a notation that makes the difference between ho-

mology and cohomology groups manifest. The argument here is purely formal. I simply

prove that this concept exists. In general the (co)homology group is defined as the

group obtained by taking the quotient between the kernel of δn and the image of δn−1.

In the present context the kernel of δn represents the number of microstates that are

mapped into the identity class of the space of macroscopic states and the image of δn−1

represents the result of the application of the operator over the initial microstates. The

(co)homological structure in this case represents the division of the kernel in partitions

defined by the image. The non-topological entropy may be identified with the num-

ber of microstates in a class. Indeed, the class structure is not visible macroscopically

and contains all the microstates associated to a macrostate. However, this definition

offers the advantage of taking into account the additional topological uncertainty in a

more complete way. Different coefficient groups in cohomology may merge or dissociate

classes. In this sense entropy is defined only up to a choice of a coefficient structure

over the (co)homology. While the properties of standard entropy remain unchanged if

the “topological uncertainty” is irrelevant, when this is not the case (i.e. in the case

of strong quantum gravity but not only) entropy can be defined only up to a choice of

probing the topology. Certain choices of coefficients are known to merge the equivalence

classes increasing the total number of equivalent microstates. However, each choice of

coefficients, once made must remain consistent with itself i.e. no violation of the second

law is allowed for any choice. While a maximum bound may exist for each choice, it may

be a relative notion, depending on the actual choice made. One must also note that the

classification of the topologically distinct features is now encoded in the Ext-group (in

the case of cohomology) or in the Tor-group (in the case of homology) via the universal

coefficient theorem. The map Ext(Hi−1(X), A) → H i(X;Z) ⊗ A is an injection. This
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means all elements in Ext must have a corresponding element in H i(X;Z) ⊗ A but

the reverse is not true in general. This means the Ext category offers a more accurate

classification of “topologically inequivalent phases” than would be offered simply from

cohomological considerations alone. I will not insist on this now but it may prove impor-

tant in the classification of topological phases. As a practical example, I will focus here

on the classical solution of Einstein’s field equations known as “Wheeler’s bag of gold”.

In general, the ADM (Arnowitt, Deser, Misner [198]) theory for general relativity allows

the foliation of the spacetime manifold into a series of space-like hypersurfaces. The next

step would be to re-express the Lagrangian in terms of a pure spatial metric (gij), a lapse

function N and a shift vector that represents shifts along the tangent to the surface of

constant time-coordinate. One can now find the conjugate momenta associated to these

terms and obtain a Hamiltonian equivalent of the problem. In this context solutions

to Einstein equations imply the definition of initial data which means the specification

of the 3-dimensional Riemanian metric (gij) and its conjugate momentum (πij). These

have to satisfy constraints of the form

(3)R− (I/g)(πijπij −
1

2
π2) = 0 (9.62)

∇iπij = 0 (9.63)

where (3)R is the 3-scalar curvature of gij and g = det(gij) while π2 = (Trπij)2. ∇i is

the covariant derivative corresponding to gij . Some solutions to these equations possess

a “moment of time symmetry” i.e. a point where (3)R = 0 [196-199]. It has been proved

[199] that the total energy of an axisymmetric, moment of time symmetry initial data

is positive. One can also write a general expression for an axisymmetric 3-metric of the

form

ds2 = e2q(dρ2 + dz2) + ρ2dθ2 (9.64)

However, a metric can be deformed by a conformal transformation of conformal factor φ

leading to another possible solution. Suppose now one starts with a smooth conformal

factor which is positive at infinity but becomes negative at some point. Obviously it

must pass through at least a point where it is identical to zero. In that point of time

all the points on the constant time coordinate surface S are transformed into a single

point and must be identified. The space becomes the union of an asymptotically flat

manifold and a compact manifold. These two are joined at a single point. This solution

is called the “Wheeler bag of gold” due to the singularity appearing at the intersection

point. That such a solution is indeed a valid solution of Einstein’s field equations has

been shown in reference [197].

In fact one can prove that the energy on one side may become +∞ while on the other

side −∞. This formal divergence may be only a classical artifact not to be recovered in
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a full quantum description. However, some relevant quantum effects exist. In order to

find them one has to integrate over inequivalent geometric configurations defined by the

action

S =
1

2k

∫
R
√
−gd[volM ] (9.65)

where

g = det(gµν) (9.66)

R is the Ricci scalar, gµν is the space-time metric, k = 8πGc−4, G being the gravitational

constant, c the speed of light in vacuum and the configuration space E(M) = (T ∗M)2⊗ =

T 0
2M is a space of rank (0, 2) tensors. It is generally argued that although the classical

solutions exist they may be suppressed once the correct measure of integration is used

in the quantization prescription. However, this solution is particularly interesting from

the perspective of the universal coefficient theorem. Let me consider a quantum-gravity

probing device with an internal group structure that can detect the asymptotically flat

manifold (say, for example Z). This trivial manifold can be mapped into a ball which

has non-vanishing homology with coefficients in Z only for the zero dimension. Now

attach to this space a sphere S tangent to it at a single point. Depending on the

group structure used to perform the measurement the sphere may or may not be visible.

However, the quantum gravity properties of this structure will remain encoded in the

possible Ext groups appearing in the UCT sequence. In some sense the information

will be encoded in the topology of possible maps of the group chosen to perform the

measurement and the group of the physical spacetime involving a “bag of gold”. This

Ext group is obviously non-trivial (i.e. the equivalence in standard quantum mechanical

language would be “non-commuting observables”). This requires for the quantization

prescription to take the correct Ext group into account when performing the “sum over

histories”. This allows these types of solutions to indirectly influence the quantum results

via the topologies of the Ext and Tor groups. Of course I do not expect infinite energy

in the region covered by the bag of gold as prescribed in classical general relativity but

I also do not expect to have solutions of this type being completely irrelevant in the

context of quantum gravity. In some sense it is known that processes described by single

Feynman diagrams may look non-physical and are certainly unobservable, however, it

is the cross section calculated with them that makes physical sense. The same situation

appears to happen for the bag of gold solutions. While I share the common belief

that this solution is unlikely to appear as a physical outcome in the sense predicted by

classical general relativity (infinite entropy, infinite energy), it appears to me that it

should be considered in a full theory of quantum gravity simply due to the non-triviality

of the extension group it generates. Its overall effect may be the cancellation of some

other inconsistent object so it might as well never arise as a physical configuration. One

could ask if they may somehow correlate to the cosmological horizons?
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9.8 Information, measurement and quantum gravity

As seen in the subsections above, the common ideas that appeared to be absolute in the

classical (non-quantum-gravitational) approach to physics i.e. observables, symmetries,

discernibility, entropy, etc. become relative. It is possible that a quantum theory of

gravity may not be expressible in terms of local observables and that quantum gravity

observables must have a rather special form. Analyzing the algebraic-topological aspects

of gravity it appears that one has to expand the algebraic structures in order to obtain

relevant information. For example in order to probe topologically non-trivial space-

times one has to use coefficient groups in cohomology. These may play the role of an

experimental probing device (an apparatus). In this sense an abstract representation

of an apparatus in quantum gravity may be seen as a group structure. Next, one may

ask what procedure has to be performed in order to make a quantum-gravitational

measurement. It appears that one has to provide a coefficient group (apparatus) as an

input. The choice of the group structure is not “predefined” in the same sense in which

the choice of the z-axis in the quantum measurement of a spin 1/2 particle is not defined

a priori. Once the z axis is defined one may obtain a statistics of the outcomes. In

the same sense, once a group structure is defined one obtains a (co)homology sequence

and an Ext resp. Tor group. The (co)homology obtained in this way will encode the

topological properties that can be obtained using the given coefficient group. The Ext

respectively Tor groups will encode the failure of the coefficient groups to encode the full

information about the space as well as a means to classify various choices of coefficient

groups i.e. sequences with identical Ext or Tor will form the analogue of symmetry

equivalence classes. One may also notice that this way of thinking may become useful

in the classification of topological phases of matter, apart of the obvious applications

to quantum gravity. One may imagine the quantum gravity measurement device as an

extended object that encodes a group structure. The actual measurement is the process

of obtaining the (co)homology (or homotopy) of the given space as an output of the

apparatus (i.e. with the coefficient group of the apparatus). One can regard the UCT

as a statement about how much the outcome differs when using an apparatus with a

given group structure with respect to the case when one simply tensors the outcome of

an apparatus using a trivial group structure with the previous group structure. This

difference is encoded in Tor respectively Ext and may be seen as the equivalent of the

failure of observables in standard quantum mechanics to commute.
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9.9 Quantization and topological properties of symmetry

groups

There are several important ideas that come together here. On one side I observed

that the probing of the topology of a given space or group may be fundamentally lim-

ited by specific incompatible choices of coefficient structures in the (co)homology. The

probing of the topology of a space appears to be limited not only by a lack of energy

or of time as mentioned in some earlier work [195] but also by the fact that certain

“global-measurements” associated to different coefficient groups in cohomology cannot

be performed simultaneously in a perfect sense. Some information visible using one

choice will be lost when dealing with the other choice. This fact relativizes certain ob-

jects and has various other important effects. The choice of the coefficient structure

may determine the topological features that can be observed. In this subsection I show

with some simple examples (following mainly [200]) how some topological properties are

relevant in the construction of group invariant quantum theories and how quantum ef-

fects are actually to be related to the specific behavior of a theory under some symmetry

groups. In order to keep the discussion as simple as possible I will give the examples

using the Galilei group. Its elements can be parametrized by

g = (B,A, V,R) (9.67)

where B refers to time, A refers to space, V refers to boosts and R refers to rotations.

The associated group law is

g′′ = g′ ∗ g = (B′ +B,A′ +R′A+ V ′B, V ′ +R′V,R′R) (9.68)

The action of the group on space-time is obviously

x′ = Rx+ V t+A, t′ = t+B (9.69)

In classical mechanics one can define a Lagrangian as

L =
1

2
mẋ2 (9.70)

This is considered as quasi-invariant as its transformed form differs from the original

form only by a total derivative

L→ L′ = L+
d

dt
m(xV +

1

2
V 2t) = L+

d

dt
∆(t, x;V ) (9.71)
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There is no way of removing the function ∆(t, x; g) for all transformations g of the

Galilei group by adding a total derivative to L. The classical equation of motion (La-

grange equation) is not affected by this change and ∆(t, x; g) may appear as unimportant

although it is relevant when defining conserved quantities. However, it will reappear in

the quantum case in an interesting fashion. When going to quantum mechanics one iden-

tifies the analogue of energy conservation with the Schrodinger equation and in order to

keep quantum mechanics Galilei-invariant one must assure that Schrodinger’s equation

has the same form in reference frames related via Galilei transformations. One may ob-

serve that there is no way of implementing Galilei invariance by using a transformation

directly on the wavefunction

ψ′(x′, t′) = ψ(x, t) (9.72)

However, one may observe that pure states are in fact described by rays where the set

of rays is defined as

{rays} = H/R (9.73)

where R is the equivalence relation that identifies vectors ψ and ψ′ of the Hilbert space

H which differ only in an unobservable phase. Thus one may enforce Galilei invariance

by allowing spacetime dependent phase factors as in

ψ′(x′, t′) = exp(
i

h
∆(t, x))ψ(x, t) (9.74)

One can determine ∆ by imposing Galilei invariance as

∆(t, x) = m(xV +
1

2
V 2t) = ∆(t, x; g), g ∈ G (9.75)

The exponential is the same as the one appearing in the transformation rule of the

Lagrangian. These two functions are caused by related effects. They are in fact related

to the non-trivial cohomology of the Galilei group.

The transformation law given above allows us to find the composition law of two suc-

cessive transformations

ψ′(x′) = [U(g)ψ](gx) = exp(
i

~
∆(x; g))ψ(x) (9.76)

where x′ = gx. If x′′ = g′x′ = g′gx we may write similarly

[U(g′g)ψ](x′′) = exp(
i

~
∆(x; g′g))ψ(x) (9.77)
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To compare U(g′g) with U(g′)U(g) we first notice that

[U(g′)U(g)ψ](x′′) = [U(g′)(U(g)ψ)](g′x′) =

= exp( i~∆(x′; g′))(U(g)ψ)(x′) =

= exp( i~∆(gx; g′)) exp( i~∆(x; g))ψ(x)

(9.78)

Then we obtain

U(g′)U(g) = U(g′g) exp{ i
~

(∆(gx; g′) + ∆(x; g)−∆(x; g′g))} (9.79)

which can be rewritten using

ξ(g′, g) = ∆(gx; g′) + ∆(x; g)−∆(x; g′g) (9.80)

as

U(g′)U(g) = exp{ i
~
ξ(g′, g)}U(g′g) = ω(g′, g)U(g′g) (9.81)

where ω(g′, g) are the unimodular factors. This rule defines a projective (or ray) repre-

sentation of the group G and ξ defines a two-cocycle on G. The fact that ξ cannot be

made zero for all group elements of the Galilei group (i.e. the projective representation

of the Galilei group used in quantum mechanics cannot be transformed into an ordinary

one) is expressed by saying that ξ is a non-trivial cocycle on the Galilei group. Since

pure states are represented by rays, symmetry operators may be realized by unitary ray

operators. These may form equivalence classes bringing together all operators which

differ by a phase that can be locally eliminated. The classes of inequivalent two-cocycles

define the second cohomology group H2(G,U(1)). As another interesting example of

topological effects on groups is the group extension. The simplest case may be consid-

ered the Weyl-Heisenberg group which defines essentially the quantization prescription.

It is a three-dimensional (or in general (2n+ 1)-dimensional) manifold (q, p, ζ) with the

group law given by

q′′ = q′ + q

p′′ = p′ + p

ζ ′′ = ζ ′ζ exp{ i2~(q′p− p′q)}

(ζ; q, p)−1 = (ζ−1;−q,−p)

(9.82)
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The two-cocycle is here given by

ξ(g′, g) =
1

2~
(q′p− p′q) (9.83)

This two-cocycle is only one representative of its class. One may add two-coboundaries

and obtain different but equivalent Lie algebra commutation relations. However, preserv-

ing the topological structure of the group one cannot globally eliminate these cocycles.

One may ask what if the probing of the topological structure of the transformation group

(manifold) may be affected by different choices of coefficients? Would it be possible to

merge the identity class with the class of the above cocycle? In that case would it be

possible to arrive at ’t Hooft’s conclusion (for example [202]) about “pre-quantization”?

Of course, in this case one must consider possible Ext-groups for the cohomology exact

sequence of the UCT that may return all quantum effects in another way. I will not fol-

low here this line of thought but one must acknowledge G. ’t Hooft for his work related to

this subject albeit he was probably not aware of the algebraic-topological interpretation

I present here. I must also underline that the possibility mentioned above is in essence

a quantum effect that merely introduces an ambiguity into the way in which topological

properties of groups and spaces can be probed. Standard quantum mechanics remains

valid in each equivalence class. The only difference is that due to further (quantum)

uncertainty some equivalence classes may merge when strong gravitational effects are

present or when special ambiguities in the experimental topological setup are being in-

troduced. I also stress that the “validity” of quantum mechanics is not altered and this

remains a fact, independent of the energy scales, distance scales, etc. What I show is

only that one may “abelianize” the commutation rules of quantum mechanics with the

cost of introducing Tor or Ext groups in the chain complex. The quantum effects are

simply “shifted” towards these constructions that must be taken in account in the end

of the calculations.

9.10 Topology of spacetime and anomalies

One may ask if my construction is dependent on a purely geometrical interpretation of

space-time that may indeed not be valid in the case of quantum gravity. In fact there have

been several attempts to define quantum-gravity spacetime using a discrete topology

(causal sets [203]) or some form of superposition of “microscopic geometries” [204] related

to Mathur’s “Fuzzballs” (essentially fundamental strings that in my representation would

be the result of choosing a continuous group of coefficients). My approach is a description

of why all these approaches are in some sense plausible but still incomplete.
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Considering this, string theory already makes an assumption about the topology of space

by introducing the “worldsheet” or the “fundamental string” in the non-field theoretical

approach. This might be possible but one has to take into account that by doing this one

selects a topology via a group, (say R/Z but not necessarily) which selects the length

of the string or the fact that it connects two points. As a consequence string theory

can only make predictions for “experiments” that are designed in such a way that this

configuration makes sense. Indeed it appears that this offers an UV-completion of the

theory and the prediction of the graviton. However, due to its topological non-covariance

it must contain an enormous amount of irrelevant and/or fictitious information which

my idea helps to uncover. About loop quantum gravity it is known that it introduces

a discrete topology of space-time due to its choice of the operator algebra. This too, is

an artificial construction and focuses the description on “experiments” that can probe

such a discrete structure. In this case we may speak about the Zn group and one has

to pay attention what fictitious constructions this group generates. Again, the universal

coefficient theorem and its exact sequence (with the first injective map) may give an

image about what dualities one may expect and what objects are non-physical. There

is certainly a whole range of alternatives: closed strings, open strings, n-p-branes etc.

but the reader may notice that all of them imply choices of topologies hence specific

experimental situations that should be probed. They cannot be fundamental for a

theory of quantum gravity.

In fact I argue that the topological structure of space-time may be subject to some

form of ambiguity in its accurate definition due to the impossibility of probing the full

information encoded in topology via (co)homology in an unequivocal way. In this sense

the question “what is the precise topology of space-time at extremely low scales” may

have no precise answer unless one provides a specific method of probing that topology.

In some sense the problem is similar to the double slit experiment of standard quantum

mechanics. There, the question “through what slit did the electron go” must change the

topological setup of the experiment forcing us to obtain a non-interference pattern. If

the precise trajectory of the electron is of no concern to us the topological setup allows

interference patterns. Unlike this case where we can actually control the topological

setup of the experiment and have a precise definition of it, in quantum gravity this

might be fundamentally impossible. One cannot any longer keep all topological features

independent of the choice of a coefficient structure (i.e. independent of an actual probing

of the topology, be it the topology of the space-time itself, the topology of the field space

or the topological properties of the symmetry groups acting on a given object). One

can notice that anomalies in the construction of a quantum theory of fields may be

common and gauge anomalies may appear. This is indeed dangerous for a consistent

quantum field theory. However, it has been shown that the gauge anomalies are to be
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associated with classes of the BRST cohomology [201]. Of course, if the topology of

the space becomes uncertain the associated topology of the field space will follow. It

can be possible that some choices of group coefficients in (co)homology may make the

anomalous cohomology classes equivalent to the identity (i.e. they become trivial). This

doesn’t mean that any field theory can be directly quantized but that in the extreme

case of quantum gravity a choice of coefficients might exist that makes the anomalies

cancel in a trivial way. I will continue here by analysing the effect on symmetries of

the fact that topological properties of groups and spaces depend on choices of coefficient

groups in (co)homology. Symmetries can in principle be seen as equivalence classes over

a space. Different choices of coefficient groups may merge symmetry classes and change

the structure of the sets of states to be considered equivalent in certain situations. One

can prove that an anomaly is a loop effect in the Feynamn diagram description. In fact

it appears because of the non-invariance of the path integral measure and is encoded in

the Jacobian of the symmetry transformation. This can be shown to be a loop effect due

exclusively to quantization. It is well known that one can add in general counter-terms

to the classical action as long as they are of higher order in the coupling constant. This

is because they are corrections to unspecified loop terms invisible in the classical theory.

This procedure leads to renormalization as long as the added terms are local. Let us

start with a classical action

Scl =

∫
d4x(−1

4
FαµνF

αµν + Lmatter[A,ψ, ψ̄]) (9.84)

where ψ, ψ̄ are the matter fields, A is the gauge field and Fµν is the field strength tensor

(also for a non-abelian theory). Suppose there exists a gauge anomaly and suppose one

adds a local counter-term of order 3 in the coupling constant g called ∆Γ such that

Scl → Scl +
1

6

∫
d4pd4q∆Γµνραβγ(−p− q, p, q)Aαµ(−p− q)Aβν (p)Aγρ(q) (9.85)

At order g3 such a term modifies the 3-point vertex function as

Γµνραβγ → [Γµνραβγ ]new = Γµνραβγ + ∆Γµνραβγ (9.86)

If one can find a local ∆Γ such that (pµ+qµ)[Γµνραβγ ]new(−p−q, p, q) = 0 then one says the

anomaly is irrelevant. Whenever such a local counter-term does not exist the anomaly

is relevant. One may notice that the “relevance” of anomalies is due to their failure to

be cancelled locally. As stated in the main paper, relevant anomalies can be associated

to non-trivial BRST cohomology classes at ghost number one. Let now [Γµνραβγ ]new → [c].

The arrow maps the transformed 3-point vertex function to a (co)homology class of the

group Hn(X) where X is the associated space. The description here is formal; only the
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reasoning is of importance. Using the UCT one can see that the cohomology group is

determined via the short exact sequence:

0→ Ext(Hi−1(X), A)→ H i(X;Z)⊗A h−→ H i(X;A)
r−→ Hom(Hi(X), A)→ 0 (9.87)

One can now chose A such that the map X → X/([c] ∼ id) becomes trivial. In this case

one cannot distinguish the class of the previously “relevant” anomaly from the identity

over X. This assures that there exists a coefficient structure over the cohomology that

trivializes the anomaly. This comes at a cost. One must introduce the extension group

on the left Ext(Hi−1(X), A). The extension group is generally defined in association

with the Ext functor. Its definition is not particularly involved: let R be a ring and let

ModR be the category of modules over R. Consider B ∈ModR, take a fixed A ∈ModR

and define T (B) = HomR(A,B) as the set of homomorphisms over R from A to B. The

Ext functor is defined as

ExtnR(A,B) = (RnT )(B) (9.88)

This can easily be calculated considering the injective resolution

0→ B → I0 → I1 → ... (9.89)

and computing

0→ HomR(A, I0)→ HomR(A, I1)→ ... (9.90)

where we excluded HomR(A,B) from the complex. Then the extension (RnT )(B) is the

homology of this complex. So, in the particular case above, the existence of anomalies is

“shifted” into the way in which one can non-trivially map a general group into an abelian

group. The relevant information is in this case encoded not in one of the two groups but

in the topology of the maps between them. This facilitates calculations for field theories

quantized over cohomologies with particular coefficient groups while preserving the non-

trivial information related to quantization in the Ext part of the sequence above. One

should notice that the second arrow in the UCT formula above is an injection i.e. while

all the elements of the Ext group must have a correspondence in H i(X;Z) ⊗ A, the

latter group might have different elements with no correspondence in Ext. This may

suggest that Ext may be a better measure for the true (physical) anomalies. Indeed,

in the standard model gauge anomalies introduced by chiral fermions cancel naturally

when all the fermions are included. However, there appears to be a more general rule

suggesting a more accurate method of predicting “true” particles while avoiding to fall
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in the trap of considering fictitious objects, “needed” in order to cancel anomalies, as

“physical particles”.

9.11 Beyond the Holographic principle

Finally one may ask what this idea brings new with respect to the interpretation of the

holographic principle. In order to answer this I may turn again to the idea of performing

a quantum-gravity experiment. Assume one has a topological (global) measuring device

using a particular choice of a group structure for the coefficients. It might be repre-

sented by some non-local observables [317] (the topological properties are in general not

detectable via local measurements). It remains to be seen how such a device can be

implemented practically. Assume also one performs the measurements at a scale where

quantum gravity is irrelevant and in a region where there are no black holes to talk of.

In this case the choice of the coefficient group is irrelevant. The extension and torsion is

always trivial and one obtains the same results known from simple quantum mechanics.

One can chose a complete set of commuting observables and start making predictions

considering also the effects of possible non-commuting observables as it is the custom

in standard quantum mechanics. Now consider a different region of space-time where

either because one excites gravitational modes that can alter the topology of spacetime

or because one has a black hole somewhere, the topology of the space-time stops being

trivial. In this case one has to perform a topological measurement with an apparatus

that will provide information about how the (co)homology or homotopy of the region

looks like when seen through the specific choice of the coefficient group. According to

this measurement one has to design restrictions on the observables allowed by classical

quantum mechanics. The Ext and Tor parts of the chain will not be trivial and will

have to be considered when designing further lower-scale experiments using the space-

time measured via the coefficient groups. Not all observables will exist in this situation

(due to merging of equivalence classes). A somehow metaphorical way of looking at

this is considering the group choice as a choice of coefficients in a polynomial. Classical

quantum measurements after a choice is made are metaphorically equivalent to finding

solutions of these equations. If one chooses for example rational coefficients, the number

e (the basis of the natural logarithm) will be transcendental (i.e. no polynomial with

rational coefficients can have e as a root).
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9.12 Experimental verification

The idea of adding uncertainty to the topology of space-time itself has, as I showed

before, many implications. Unfortunately most of these are not easily verifiable. I try

here to pinpoint some possible experiments where this subject may become useful. It

is known that topology is not only associated to space-time itself. As I showed before,

one may probe via (co)homology or homotopy with coefficients (of course in an abstract

sense) also field-spaces, groups and other abstract spaces. A more accessible experiment

where topological features are important is the Bohm-Aharonov experiment. There, one

may observe the effects of a non-trivial topology generated by a magnetic field, in a region

where the given magnetic field vanishes. If one could manage to create a magnetic field in

a state of quantum superposition between a situation with trivial topology and one with

non-trivial topology one could check if the measurement of the shift of the observed

interference pattern will fix the degrees of freedom of the system or if new quantum

restrictions may appear due to the quantization of the topology itself. One should notice

that the topological superposition should ideally be obtained without an entanglement

with a local object (like the spin of an electron, etc). Also, possible verifications could

be provided by the study of the topological phases of matter. I expect the procedure

given by the UCT to be particularly important for the classifications of these phases

and for the possible discovery of new ones. The fractional quantum hall effect may also

have an interpretation in terms of rational Ext groups. One may ask what happens with

the theoretical prediction of magnetic monopoles in the context of uncertain topology.

Are they still possible? If future experiments will succeed in proving the fundamental

limitations of topological measurements one can safely extend this principle towards

space-time itself. Up to this point I presented an aspect of quantization that has been

probably overlooked but that may have major implications not only in the description

of quantum gravity but also in the theory of quantum information. On the quantum

information side problems like the “hat problems” may have some interesting quantum

representations. Also possible new “strong-weak” dualities may result to be important

in fields like condensed matter or many particle physics.



Chapter 10

The Universal Coefficient

Theorem and Black Holes

“I’m not strange, weird, off, nor crazy, my reality is just different from yours.”

Lewis Carroll, Alice in Wonderland

In this chapter I intend to give a more practical application of the theorems proved

in the previous one. It represents my original research and is based on several of my

observations. While most of it is new, there are some technical aspects that have been

taken over from various sources. The main references for the theoretical background are

[200] and [212].

Probably the best method to start this discussion is to remark that the prescriptions

of general relativity and quantum mechanics are taking away most of the absolute-

ness associated to choices of coordinates, trajectories followed by particles and states

of physical systems in the absence of any accessible information about them. It is my

observation that there still remains an epistemological defect associated to these ideas.

Not to all arbitrary conventions have been taken their absolute status away. In fact the

connectivity of space is probably the last convention that still is considered absolute by

many physicists. It is my observation that one cannot assign an absolute topology to

spacetime in the absence of a method for detecting such a topology. This obstruction

is at the origin of several paradoxes and inconsistencies in the formulation of quantum

gravity, notably the “information paradox” for black holes. Because of this, in order

to construct a consistent formulation of physics in a general context, it appears to be

necessary for the laws of nature to be specified in a topology-covariant way. The at-

tempt of doing so is the main subject of this paper. In a more practical tone, one of the

197
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problems arising in the discussion of black holes in a quantum field theoretical context

is the fact that the quantum prescription of unitarity may be lost in processes involving

the thermal radiation of black holes [209]. In fact it can be shown that in a semi-classical

approximation, each process involving the presence of a horizon may lead to outgoing

thermal radiation [210]. An in-falling pure quantum state is then mapped into the ex-

ternal radiation which presents a thermal spectrum thus violating unitarity. I analyze

here the origin of this problem and find that the semi-classical approximation is insuffi-

cient for a correct quantum description of phenomena involving space-time horizons. In

fact, the solution appears to be related to topological properties of the transformation

groups considered as acting on the given space. The covariant formulation with respect

to some transformations and the related ideas leading to equivalence principles (Galilei,

Lorentz, Poincare) are important in this context. In particular, it is possible to relate

the existence of a simple manifest covariant formulation and, in a more extended way,

of an equivalence principle, to some topological properties of the transformation groups

employed in the theory. If a topological covariant formulation of a theory is required,

(as I assume to be the case in the context of black holes and horizons) its existence will

depend on the structure of the torsion (Tor) and extension (Ext) groups associated to

a coefficient structure in cohomology. The main requirement will be for the measur-

able physical properties to be independent of choices of coefficients in cohomology and

hence independent of the apparent topology induced by these choices. This condition

will introduce a set of factors (distinct factors for distinct extensions) in the canonical

quantization conditions and in the Bogolyubov transformations [215]. It can be shown

that these factors will change the thermal nature of the emergent radiation in a way

that can appear only when analyzing its topological properties (the cohomology). The

practical conclusion of this chapter is that the violation of unitarity is an artifact gener-

ated by the semi-classical nature of the approximations used until now. Once one takes

various topological effects into account, in a manifestly topologically covariant way, the

black hole radiation is corrected with non-thermal terms and an avoidance of unitarity

breaking becomes possible. As a side remark, it will also be visible that the information

can be seen as encoded in the cohomology of the space in a dimension smaller by one

unit. This is in agreement with the present formulation of the holographic principle and

one of its realizations (the AdS/CFT correspondence [216]).

The main developments of the past century (special relativity, general relativity and

quantum mechanics) have brought to our attention the fact that abstract mathematical

conventions should not stand at the fundaments of a description of reality. In general,

the role of conventions is to facilitate the comprehension of physical reality and not to

assign physical reality to conventional constructions. This idea was noted probably for

the first time by Einstein and incorporated in his theory of special relativity as the weak
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equivalence principle: “the laws of nature should not depend on the arbitrary choice of

an inertial reference frame”. This law was further generalized to the statement that “the

general laws of nature are to be expressed by equations which hold good for all systems

of co-ordinates, that is, are co-variant with respect to any substitutions whatsoever

(generally co-variant)” [211]. This statement can be translated in modern terminology

by using (co)homological algebraic notations. In order to do this let me follow reference

[212] and define

P = Tr4 ◦ L (10.1)

to be the Poincare group where Tr4 is the four dimensional translation group and L the

Lorentz group and

G = Tr4 ◦ LG (10.2)

to be the Galilei group where again Tr4 is the four dimensional translation group and

LG is the group of galilean boosts and rotations. In contrast to the Poincare group, due

to the absoluteness of time, the Galilei group admits several semi-direct structures. One

can use for example the decomposition

G = (((Tr3 ⊗B3) ◦ T )) ◦ R = H ◦ R (10.3)

where Tr3 is the 3 dimensional translation group, B3 is the 3 dimensional boost group,

T represents time translations and R represents rotations. This allows one to define

the mechanical evolution space as the homogeneous space parametrized by (t, x, ẋ).

This evolution space is however not a homogeneous space for the Poincare group, be-

cause of the different cohomological properties of the Galilei and Poincare groups: while

H2
0 (G,U(1)) = R for the Galilei group, for the Poincare groups H2

0 (P, U(1)) = 0. This

difference in the cohomological structures of the Galilei and Poincare groups has as con-

sequence the absence of any simple ’covariant’ formulation of Newtonian mechanics, as

opposed to the Poincare case [212]. In this way, the existence of a special topological

structure of the symmetry group of a theory is related to the existence of a simple enough

covariant formulation. This is not to say that a covariant formulation for the Newto-

nian mechanics is impossible. In fact, it is possible, after certain choices regarding the

probing of topological properties are made. It is important to notice how this argument

can be extended when one deals not only with invariance with respect to a symmetry

group but with invariance to a change in the measurement technique for the topology

of space-time. I showed in a previous chapter that the observed cohomological struc-

ture depends on choices of arbitrary coefficient groups. The difference in the algebraic

prescriptions induced by different choices of coefficient groups is generally encoded in

universal coefficient theorems (UCT). These theorems allow, via the same association

that connected the group cohomology with the existence of equivalence principles, the
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construction of new equivalence principles, at the higher level of (for example) group

extensions. These equivalence principles allow the formulation of the laws of nature in a

topologically covariant way and the restoration of the fundamental prescription of uni-

tarity required by quantum mechanics (albeit in a modified form) even in the case when

topology changing events may occur (as is the case for the formation of black holes).

In this way, the observation that the existence of a simple covariant formulation of a

theory depends on topological properties of the groups associated to the transformations

considered, will become relevant not only for the Galilei and Poincare groups but also

for more general situations when a change in topology occurs. Hence, this chapter aims

towards an extension of the equivalence principles as formulated by Einstein in a form

that suits better the prescriptions of quantum mechanics.

10.1 Independence of topology and the Universal Coeffi-

cient Theorem

As argued in the previous chapter, the laws of physics should not depend on unobserv-

able properties of spacetime. Specifically the choice of a particular coordinate system or

a particular coefficient group in cohomology should not be relevant for the formulation of

the laws of physics. I showed in the previous chapter, that specific choices of coefficient

groups in cohomology may affect the observable connectedness of space-time (or gener-

ally of an abstract space or group) as measured by topological techniques. Here I focus

on a different aspect, namely what changes should be made in a theory in order for it to

describe the physical reality independent on the way one choses to regard the topology?

As has been shown in [212] and as I argued in the previous section, the existence of a

trivial second group cohomology associated to a symmetry group implies the existence

of a straightforward covariant formulation of the associated theory. The triviality of the

cohomology in a given dimension however, is controlled by the choice of a coefficient

structure in the cohomology. The effect of this choice is on its turn, encoded in the UCT

via the Ext or Tor groups.

This observation is general and doesn’t relate only to the Poincare group. In fact, one

can bring the same arguments in the case of the Weyl-Heisenberg group. This encodes

the quantization prescriptions and allows a central extension structure. Moreover, its

group cohomological properties when analyzed from the perspective of particular coeffi-

cient groups allow for the covariant formulation required by the quantum prescription of

unitarity. Indeed, this prescription is not preserved in the same form when one changes

the coefficient structure used to probe the group topological properties. This is the
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reason for the paradoxes one encounters when discussing the unitarity in processes in-

volving black holes. I will continue here with a presentation of the topological properties

of the Weyl-Heisenberg group, followed by an analogy between the general (or special)

relativity covariant formulation and unitarity prescriptions in quantum mechanics. The

conclusion of this chapter shows how to use specific formulations of the universal co-

efficient theorem in order to restore unitarity when dealing with black holes and event

horizons. I will also show how a thermal density matrix appears to be modified when a

different choice of a coefficient structure in the (group)-cohomology is made. The final

result shows that the notion of density matrix has to be extended such that it incorpo-

rates relevant group topological information. Also, entanglement can be connected to

the existence of non-trivial group-cohomological classes. Hence, the universal coefficient

theorem can show how entanglement is relativized when different coefficient structures

are being chosen. This will make subsystems that look completely uncorrelated when

analyzed with one coefficient structure, appear entangled when analyzed with another

coefficient structure. The information however will always be there, in one situation,

encoded in the group law of the actual cohomology and in the other situation in the

special form of the extension or torsion that appears in the UCT. It has been brought as

an argument for the information paradox that a relatively ordered initial situation (dust

or a star) leading to a black hole has as an inescapable final state the thermal radiation.

Unless some “emission of negative entropy” [210] by the black hole occurs, information

should be lost. However, I showed in the previous chapter that the definition of entropy

in a situation where several different coefficient groups are required, must change. In

fact, the entropy will have to include topological information as well. It will not be

defined uniquely. Instead it will have different forms when regarded via different coeffi-

cient groups. This allows the changes in entropy required to restore unitarity in a global

(topological) way. In order to start this project, I remind the reader that projective

representations in physics are required since standard quantum mechanics represents

pure states as rays. Because of this, symmetry operators are represented as classes of

unitary ray operators Ū . Unless otherwise stated, in what follows G and K represent

general groups. The operation over these classes is defined as

Ū(g′)Ū(g) = Ū(g′g), g′, g ∈ G (10.4)

Actual operators in each class differ by a phase. Let us make a choice of operators in

each of the classes. Let g, g′ ∈ Π where Π is a neighborhood of the identity e ∈ G. Now

select a representative U(g′g) in the class Ū(g′g). The composition rule becomes then

U(g′)U(g) = ω(g′, g)U(g′g), |ω(g′, g)| = 1 (10.5)
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ω(g′, g) are the local factors that can be written in terms of local exponents as

ω(g′, g) = exp(iξ(g′, g)) (10.6)

Different representatives from each class U ′ will select new local factors ω′(g′, g). When

U ′(g) and U(g) belong to the same class they will be related by a phase for each g

U ′(g) = γ(g)U(g), |γ(g)| = 1 (10.7)

and this generates a relation between the local factors

ω′(g′, g) = ω(g′, g)γ−1(g′g)γ(g′)γ(g) (10.8)

If it is possible to select γ(g) such that the factors become the identity one says that

the local exponents are equivalent to 1. It is however not always possible to extend

the choice of representatives around the identity to the whole group. When this can be

done the ray representation can be replaced with an ordinary (vector) representation.

In general the local factors ω can be seen as mappings

ω : G×G→ U(1) (10.9)

satisfying the normalization condition ω(e, e) = 1 and the two-cocycle condition

ω(g′′, g′)ω(g′′g′, g) = ω(g′′, g′g)ω(g′, g) (10.10)

which is nothing but the associativity property of the factors. Two cocycles ω and ω′

are equivalent when there exists a two-coboundary

ωcob(g
′, g) = γ−1(g′g)γ(g′)γ(g) (10.11)

such that the two-cocycles are related by

ω′(g′, g) = ω(g′, g)ωcob(g
′, g) (10.12)

The classes of inequivalent two-cocycles define the second cohomology groupH2(G,U(1)).

It is important to notice that due to the identification of pure states with classes in the

second cohomology group, the fact that states are pure is dependent on the choice of the

coefficients used to probe the desired space, hence dependent on the coefficient group in

cohomology. This has a major impact on the identification of the thermal final state in

the case of a black hole. The “appearance” of the radiation as thermal (or the states

as mixed) depends on a specific choice of coefficient groups. A topologically covariant
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formulation however can show that the “locally-thermal” radiation will in fact contain

global, topological information. The operators inside a class Ū(g) can be written as

eiθU(g). In this way I introduced a new variable θ. In this case the transformation rule

becomes

eiθ
′
U(g′)eiθU(g) = ei(θ

′+θ)eiξ(g
′,g)U(g′g) = eiθ

′′
U(g′′) (10.13)

One can use the notation (ζ = eiθ, ω(g′, g) = exp(iξ(g′, g))) and form a new group

G̃ with the parameters (ζ, g) such that G̃ contains U(1) as an invariant subgroup and

G̃/U(1) = G i.e. G̃ is a (central) extension of G by U(1). Following the rationale of

this article, the next step is to formulate a quantum analogue. For this we construct the

Weyl-Heisenberg group as a manifold (q, p, ζ) with the composition law given by

q′′ = q′ + q

p′′ = p′ + p

ζ ′′ = ζ ′ζexp( i
2~(q′p− p′q))

(ζ−1; q, p)−1 = (ζ−1;−q,−p)

(10.14)

Here, the two-cocycle is given by

ξ(g′, g) =
1

2~
(q′p− p′q) (10.15)

Again, this group can be seen as a U(1) extension of the 2n dimensional abelian (p, q)

group. The two-cocycle has the role of a commutator, encoding the extent to which the

commutativity property is obstructed. A three-cocycle for example would encode an

obstruction of the associativity property, resulting in a non-trivial associator [∗, ∗, ∗] :

R × R × R → R (see for example [132]). The standard quantum construction in terms

of the Dirac bra-ket formalism relies on the possibility of formulating the quantization

prescription in a covariant form. This depends on the second group cohomology of the

associated symmetry transformation.

More practically let for example (C∗, ∂) be a chain complex over a ring R and let M be

the associated module. The chain groups are C∗. Then there is a map

HomR(Cq,M)× Cq →M (10.16)

that evaluates like

(f, z)→ f(z) (10.17)

This is a general formulation of a structure that has analogues in the covariant and

contravariant objects in general relativity but also in the bra-ket notation of standard

quantum mechanics. In quantum mechanics the amplitudes are characterized by com-

plex numbers. The adjoint is defined naturally via hermitian conjugation giving rise
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to the bra-ket formalism and allowing the construction of theories preserving overall

unitarity. In general relativity adjoints are constructed as dual 1-forms that appear as

“covariant” indices and together with their contravariant counterparts assure that the

theory can be formulated in a diffeomorphism invariant form despite the possible in-

trinsic curvature of spacetime. In principle the 1-forms take the value of a vector and

produce a scalar. If P̃ is a 1-form and ~V is a vector then < P̃ , ~V >= P̃ (~V ) = ~V (P̃ ).

The existence of such a covariant formulation and the associated equivalence principle

is related to the triviality of the second cohomology group associated to the considered

symmetry of the theory. This symmetry might be described by a (possibly central)

extension of the original group. Up to now, the statements regarding equivalence prin-

ciples have been constructed only at the level of symmetries generated by operators

forming groups or semigroups. In a more physical language, the statements of Galilei

and Einstein, namely that the laws of nature should be written in a form that remains

unchanged to a change of coordinates imply the construction of covariant formulations

in terms of vectors, tensors, spinors, etc. In the context of the Galilei group the existence

of a covariant formulation is obstructed by the fact that its second group cohomology is

non-trivial. This is due to the fact that the time component is absolute. Going to a rela-

tive time alters the group structure in a way that makes a covariant formulation manifest

and trivializes the group cohomology, leading to the Poincare group. However, there are

physical and logical indications that the laws of nature should also be written in a form

that is independent on arbitrary choices of coefficient groups in (co)homologies. This

statement implies that the laws of nature should not depend on a particular choice of

probing the topological properties of a space or a group. However, in order to construct

a theory of this form, it appears to be necessary to go beyond symmetry groups of a

given, fixed cohomological structure when formulating the equivalence principles. One

method to do so is given by the universal coefficient theorems. These theorems state that

a specific framework, constructed by the choice of a coefficient group in (co)homology

is (up to (extension) torsion in (co)homology) equivalent with the choice of an integer

coefficient group. One result of this theorem is that distinct classes in (co)homology

under one coefficient group may appear as identified under another coefficient group.

Suppose M is a module over R then the sequence:

0→ ExtR(Hq−1(C∗),M)→ Hq(C∗;M)→ Hom(Hq(C∗),M)→ 0 (10.18)

is exact. Here Ext is the group extension. It appears then that cohomology groups that

look non-trivial given a coefficient structure become trivial under another one. There

are several ways in which possible pairings as the ones discussed above can be mapped

into the realm of universal coefficient theorems. One possible pairing defined in the way
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described above is

<,>: Hq(C∗;M)×Hq(C∗)→M (10.19)

which relates homology with cohomology. This pairing is bilinear and its adjoint is a

homomorphism

Hq(C∗,M)→ Hom(Hq(C∗);M) (10.20)

Universal coefficient theorems, among other things, provide a measure of how this adjoint

fails to be an isomorphism in terms of Extq and Torq [96]. Here q represents the

dimension of the space for which the (co)homology is calculated. Particularizing this

statement in the previous cases, one may find that the bra-ket formulation of standard

quantum mechanics as well as the covariant formulation of general relativity must be

adapted in the situation when the measurement dependence of the topology of the

space(time) becomes relevant i.e. when the effects depending on the way in which the

coefficient structure is chosen in the cohomology are important.

10.2 Black Holes and the unitarity problem

The previous sections showed that when using equivalence principles and covariant for-

mulations of theories, one usually relies on specific topological properties of the symmetry

groups. Especially the second group-cohomology, when trivial, allows for a simple covari-

ant formulation as the one used in the bra-ket formalism or in the tensorial construction

of general relativity. However, not in all situations is the second group-cohomology triv-

ial. The nature of the second cohomology depends on one side on the manifold acted

upon by the group and on the other side on the coefficient structure chosen in order to

describe the cohomology itself. When the second cohomology of the required group is

non-trivial one can still formulate a covariant theory provided one considers the universal

coefficient theorem and the specific extensions and/or torsions. In this section, I present

some physical arguments for the necessity of a coefficient independent construction and,

implicitly, of theories that do not depend on arbitrary changes of topology. If in the

case of general relativity and quantum mechanics the covariance had to be implemented

with respect to a symmetry group, in order to implement the topological covariance

one has to consider the coefficient structures in (co)homology. The scalars, vectors and

tensors of general relativity will have their equivalents in the various morphisms between

extensions or torsions in the universal coefficient theorems. Probably the most impor-

tant object for which the current discussion is relevant is a black hole. The problem of

information conservation was discussed in the context of quantized fields over a given

background in [209], [214]. I partially follow the discussion presented therein, pinpoint-

ing the aspects where an extension of that treatment is necessary due to some ignored
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topological aspects. Considering, in agreement with [209] a massless Hermitian scalar

field and an uncharged non-rotating black hole, after quantization one obtains a scalar

field operator φ which satisfies the wave equation

�φ = 0 (10.21)

Given the background metric associated to the Schwarzschild spacetime [213] where the

considered black hole is present one can rewrite this as

(−g)
1
2∂µ[(−g)

1
2 gµν∂νφ] = 0 (10.22)

One can also define a conserved scalar product of the form

(φ1, φ2) = i

∫
dn−1x|g|1/2g0νφ∗1(x, t)

←→
∂ν φ2(x, t) (10.23)

the integral being over a constant t hypersurface. When φ1 and φ2 are solutions of

the field equation above and vanish at spatial infinity, then (φ1, φ2) is conserved. The

existence of a flow of particles originating at a small affine distance from the event horizon

has been derived in [210]. One particularity of this derivation is that the average number

of outgoing particles in each mode is distributed in accordance with a thermal spectrum.

Moreover, the full probability distribution, not just the average, of the emitted particles

is that of thermal radiation.

This observation creates a conflict with standard quantum mechanics when one considers

the process of an in-falling object together with the radiation emitted on the external

part of the horizon. The main issue is that this process does not preserve unitarity. If the

in-falling system is in a pure quantum state, the out-coming radiation is in a naturally

mixed state. The full information related to the in-falling object is forever hidden behind

the horizon. This result, however, appears only when one does not consider the process

as described in a topologically covariant way. Using some of the observations in [54] I

show here that there exists a special choice of coefficients in the field space cohomology

for which there exists a unitary connection between the supposed thermal radiation and

the in-falling system. This suggests that the quantum information is in fact conserved,

albeit not in the obvious way, directly in the fields, but in the topology (more precisely

in the higher cohomology) of the automorphisms of the field space. In order to show

this I continue the derivation of the spectrum of the Hawking radiation underlining

the modifications in the way of thinking that must be considered in order to obtain

the correct result. This method is in agreement with the AdS/CFT solution but its

construction allows for a higher degree of generality. Let me now take the quantum
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fields used in the field equation above and decompose them as

φ =

∫
dω(aωfω + a+

ω f
∗
ω) (10.24)

where fω and f∗ω form a complete set of solutions of the field equation and are normalized

according to

(fω1 , fω2) = δ(ω1 − ω2) (10.25)

The aω operators are time independent. The standard method of quantization would be

[aω1 , a
+
ω2

] = δ(ω1 − ω2)

0 = [a+
ω1
, a+
ω2

] = [aω1 , aω2 ]

(10.26)

Let me chose the fω such that at early times and large distances they form a complete

set for the incoming positive frequency solutions of energy ω. It is possible to compute

the spectrum of the created particles by making an expansion of the field in terms of the

late time positive frequency solutions. Let pω be the solutions of the field equation that

have zero Cauchy data on the event horizon and are asymptotically out-coming with

positive frequency. Again, consider that in this domain pω and p∗ω form a complete set

of solutions. The normalization condition is

(pω1 , pω2) = δ(ω1 − ω2) (10.27)

There must also be an in-coming component of the solution at the event horizon at late

times. Let me call this set of solutions qω. The superposition of these components at

late times is localized on the horizon and has zero Cauchy data on the distant region.

The components qω and q∗ω form a complete set on the horizon and are normalized as

(qω1 , qω2) = δ(ω1 − ω2) (10.28)

The two components, being defined in disjoint regions are assumed to have null scalar

product

(qω1 , pω2) = 0 (10.29)

The expansion of the fields in terms of the above components is then

φ =

∫
dω{bωpω + cωqω + b+ω p

∗
ω + c+

ω q
∗
ω} (10.30)
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where bω and cω are the associated annihilation operators. The commutation relations

are now
[bω1 , b

+
ω2

] = δ(ω1 − ω2)

[cω1 , c
+
ω2

] = δ(ω1 − ω2)

(10.31)

all other commutators are vanishing. The spectrum of the outgoing particles is deter-

mined by the coefficients of the Bogolyubov transformation [215] relating bω to aω′ and

a+
ω′ . One may define the operators cω and c+

ω as the annihilation and creation operators

for particles falling into the black hole. However, this definition is ambiguous due to

the fact that positive frequency components for the in-falling matter is not well defined.

The physical meaning of these operators should therefore be takes as symbolic. Using

the complete set given by fω and f∗ω one can write

pω =

∫
dω′(αωω′fω′ + βωω′f

∗
ω′) (10.32)

where α and β are complex numbers independent of the coordinates. We can therefore

calculate

bω = (pω, φ) (10.33)

and expressing φ and pω in terms of fω′ and f∗ω′ one can obtain

bω =

∫
dω(α∗ωω′aω′ − β∗ωω′a+

ω′) (10.34)

and the invariant becomes

(pω1 , pω2) =

∫
dω′(α∗ω1ω′αω2ω′ − β∗ω1ω′βω2ω′) (10.35)

It is worthwhile noticing that the coefficients can be expressed as

βωω′ = −(f∗ω′ , pω)

αωω′ = (fω′ , pω)

(10.36)

The discussion up to this point is unsurprising. The calculation of the coefficients above

can be used in order to derive the average number of created particles observed at later

times. However the exact form in which the previous calculations are being performed

does not take the fact into account that the topology as encoded by cohomology groups

changes when a black hole forms. In order to show this one has to recall the abstract

formulation of the bracket notation used in the previous chapter. While the curvature

of spacetime is correctly taken into account in the previous discussion, there are certain



Chapter 10. The Universal Coefficient Theorem and Black Holes 209

modifications required for the pairing operations used above to be isomorphically trans-

lated from the language of flat or curved spacetime to the language of spacetime with

a horizon. Let the pair (X, τ) be a topological space given by X with a topology τ . It

is important to notice that there are several possible choices of topologies over a space.

One possible choice would be to consider any two points joined together in a subset for

a specific topology if they can be connected by light in both directions. The space made

up of low density dust before the formation of a black hole has every point connected in

such a topology. Once a horizon forms the topology defined in the above way changes.

Moreover, after the horizon is formed, any topology that, prior to the formation of the

horizon, connected two points on different sides of what is now the horizon, must change

in order to consider the new situation.

Because of this, each of the constructions defined above has to be redefined. Consider

first the conserved scalar product over the field space:

(φ1, φ2) = i

∫
dn−1x|g|1/2g0νφ∗1(x, t)

←→
∂ν φ2(x, t) (10.37)

Such a scalar product depends on the topology of the field space at least at the level of the

second cohomology. The two fields appearing in the above inner product are solutions

of the wave equation. Their form is correct and the corrections due to topology changes

are formally absorbed by the metric when this notation is used. However, the general

pairing of such fields in the context of a non-trivial topology must take into account the

universal coefficient theorem. In this way, a sampling of the field space is needed. This

sampling requires the introduction of simplexes (basic building blogs that generate the

analyzed space, see chapter 11 or chapter 3).

One may ask what happens if a structure of this form is used in order to map a space be-

fore and after the collapse of a dust cloud into a black hole. While all the simplexes can

be defined in the initial case, after the formation of a horizon some subtleties arise. If the

definition of the topology is such that points separated by a horizon are not defined to

belong in the same open set then the simplex structure must be altered. However, there

is no physical difficulty in extending the metric of spacetime beyond the horizon. Also,

particles can fall through the horizon. In order to maintain a topological covariant de-

scription, the change must therefore be made via the coefficients used in the description

of the space as a linear combination of simplexes. Because of this, several concepts re-

quired in the construction of the Hawking radiation and the derivation of its distribution

function will have to be adapted. First, any pairing that is required for the definition

of an invariant structure must be constructed via the universal coefficient theorem. It

is the extension that controls the pairing and the UCT provides the information about

what is “lost” when one makes a change in the topology via the coefficient structure.
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This will have some effect on the definition of entanglement, the construction of density

matrices, etc. Second, I will show that the correction given by the “lost information”

encoded in the extension group appears in the form of an extra factor in the composition

rule. In order to do this I will refer again to [212]. Let fi : Gi → Gi+1 be a collection of

group homomorphisms, then the sequence

...→ Gi
fi−→ Gi+1

fi+1−−−→ Gi+2 → ... (10.38)

is called exact if

Im fi = ker fi+1 (10.39)

As a result, for any exact sequence fi ◦ fi−1 = 0. Using this formulation, let G and K

be two abstract groups. A group G̃ is said to be an extension of G by K if K is an

invariant subgroup of G̃ and G̃/K = G. In terms of exact sequences this means that

1→ K → G̃→ G→ 1 (10.40)

is exact i.e. K is injected into G̃ and G̃ is projected onto G by the canonical homomor-

phism so that G = G̃/K. However, the mere knowledge of K and G does not define G̃

uniquely. In order to be able to discern extensions one has to define two exact sequences

1→ K
i1−→ G̃1

π1−→ G→ 1 (10.41)

1→ K
i2−→ G̃2

π2−→ G→ 1 (10.42)

If the two group extensions are related via an isomorphism f̃ :

f̃ : G̃1 → G̃2 (10.43)

and the injective maps i1,2 and the projections π1,2 satisfy

i2 = f̃ ◦ i1

π1 = π2 ◦ f̃
(10.44)

then the extensions are equivalent. Consider now the two group extensions, defined by

two different two-cocycles ξ1 and ξ2 with their group laws defined separately with simple

brackets (...) for the first group and square brackets [...] for the second group:

(θ′, g′)(θ, g) = (θ′ + θ + ξ1(g′, g), g′g), [θ′, g′][θ, g] = [θ′ + θ + ξ2(g′, g), g′g] (10.45)
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If there exists an isomorphism f̃ as defined above and if we can rewrite

(θ, g) = (θ, e)(0, g) (10.46)

(0, e) being the identity of this law, f̃ is completely determined when the images of (θ, e)

and (0, g) are given. From the conditions on the injection and projection above one

obtains
f̃ ◦ i1 = i2 ⇒ f̃(θ, e) = [θ, e]

π2 ◦ f̃ = π1 ⇒ f̃(0, g) = [η(g), g]
(10.47)

This implies a general form for f̃ namely

f̃(θ, g) = [θ + η(g), g] (10.48)

The knowledge of η determines the knowledge of f̃ . However, f̃ is also a homomorphism

hence

f̃(θ′ + θ + ξ1(g′, g), g′g) = [θ′ + θ + ξ1(g′, g) + η(g′g), g′g] (10.49)

must be equal to

f̃(θ′, g′)f̃(θ, g) = [θ′ + η(g′), g′][θ + η(g), g] =

= [θ′ + θ + ξ2(g′, g) + η(g′) + η(g), g′g]
(10.50)

and hence
ξ1(g′, g) = ξ2(g′, g) + η(g′) + η(g)− η(g′g) =

= ξ2(g′, g) + ξcob(g
′, g)

(10.51)

where the notation ξcob(g
′, g) is used for the two-coboundary generated by η(g). The

calculation above gives a condition for the equivalence of extensions. One can see that

proportional two-cocycles ξ2 = λξ1 may define equivalent groups but inequivalent exten-

sions. In order to make the connection with the bracket construction and to classify the

extensions one has to rely on a fiber bundle definition of the extension. Let therefore G

and K be abstract general groups and G̃ be the extension of G by K. One can relate

the cosets of K in G̃, each defining an element g ∈ G with the fibers over g of a fiber

bundle that defines the extension. The fiber through g̃0 ∈ G̃ is given by

π−1(π(g̃0)) = {g̃|g̃ = kg̃0, k ∈ K} (10.52)
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A section of G̃(K, G̃/K = G)

s : G→ G̃, s : (g)→ s(g) (10.53)

selects an element in G̃ in each fiber. Now, given a fiber

π(s(g′′)) = π(s(g′)s(g)) (10.54)

thus there exists a factor ω(g′, g) ∈ K such that

s(g′)s(g) = ω(g′, g)s(g′, g) (10.55)

and this relation defines the factor ω(g′, g). One can define ω(g′, e) = ω(e, g) = s(e) and

take s(e) = ẽ ∈ G̃. Thus, one obtains the normalized section. Similarly one can obtain,

for a normalized section, also a normalized factor:

ω(g, e) = ω(e, g) = ω(e, e) = e ∈ K (10.56)

As a general statement, relative to any normalized trivializing section s : G → G̃ one

can associate a factor system ω : G×G→ K satisfying

ω(g′′, g)ω(g′′g′, g) = ([s(g′′)]ω(g′, g))ω(g′′, g′g) (10.57)

where [s(g)]k = s(g)ks(g)−1 ∀k ∈ K. According to this fiber bundle representation of

the extensions, the group law of the group extension can be defined in terms of the factor

system as

(k′′, g′′) = (k′, g′) ∗s (k, g) = (k′[s(g′)]kω(g′, g), g′g) (10.58)

Returning to the physical problem, the invariant bracket defined above,

(φ1, φ2) = i

∫
dn−1x|g|1/2g0νφ∗1(x, t)

←→
∂ν φ2(x, t) (10.59)

must be extended in order to obtain a topologically covariant description. The change in

topology can be considered as the effect of a specific choice of the coefficient structure in

(co)homology. The definition of the adjoint of the topological bracket can be identified

as the right hand side of the universal coefficient theorem. When a choice of coefficients

is considered such that the horizon of the black hole becomes visible one obtains a

correction to the bracket as given by the factor that characterizes the extension of the

homology group in a dimension smaller by one unit. It will be this extension that

will generate the algebra to be used in the physical situation defined by the coefficient

structure where the horizon is visible. The bracket is defined now with a correction
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in the group operation associated to its defining symmetry. Hence a topological factor

would be missing in the construction used in [210]. I underline that this factor is purely

topological and in a sense of a quantum nature. Hence one has to extend the scalar

bracket when a topological covariance is required:

(φ1, φ2) = i

∫
dn−1x|g|1/2g0νφ∗1(x, t)

←→
∂ν φ2(x, t) (10.60)

must be transformed into

(φ1, φ2)′ =< φ1, φ2 > ω(φ1, φ2)(φ1, φ2) (10.61)

where the < ... > notation refers to the topological invariant and ω(φ1, φ2) refers to the

factor system that characterizes the extension and depends on the choice of the coefficient

structure. This factor will appear also in the coefficients defining the probability of

particle detection far from the black hole horizon. The fact that an object can fall

behind the horizon while nothing can travel from behind the horizon to the outside

will imply the change in the topology used to define the considered phenomenon in

the presence of a black hole. This change will be encoded in the factor system. It will

however not be visible in any perturbative analysis. By topology I mean here the general

topological notion i.e. a choice related to the points that are considered to be connected

in some sense or “assembled” together. To make these considerations more accurate I

will follow again [209].

Consider therefore the vacuum state at the infinite past as

|0− >=
∑∑

λAB|AI > |BH > (10.62)

where |AI > is the outgoing state with nja particles in the jth outgoing mode and |BH >

is the horizon state with nkb particles in the kth mode going into the hole. Otherwise

stated
|AI >=

∏
j(nja!)

−1/2(b+j )nja |0I >

|BH >=
∏
k(nkb!)

−1/2(c+
k )nkb |0I >

(10.63)

One can chose an observable at the far future, composed only of {bj} and {b+j } and

operating only on the vectors |AI >. The expectation value of this observable can be

written as

< 0−|Q|0− >=
∑∑

ρACQCA (10.64)
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where QCA =< CI |Q|AI > is the matrix element of the observable in the Hilbert space

of the outgoing states. The density matrix is

ρAC =
∑

λABλ̄CB (10.65)

and is associated to measurements in the far future but not to measurements of systems

falling into the black hole. It is at this point where several extensions of the standard

prescription are necessary. This density matrix does not encode the full information

that can be obtained in the far future. It does encode however everything that can be

obtained from non-topological considerations. In order to see this one has to observe

the fact that the information can be encoded not only directly, as considered here, but

also via the cohomology groups associated to the field space. I showed in the previous

chapter that quantum observables are relative, depending on the particular choice of a

coefficient group in the cohomology of the field space. A particular form of the universal

coefficient theorem is

0→ Ext1R(Hi−1(X;R), G)→ H i(X;G)
h−→ HomR(Hi(X;R), G)→ 0 (10.66)

This can be interpreted in a form that resembles the interpretation of the non-commutativity

of some physical observables: the third arrow

H i(X;G)
h−→ HomR(Hi(X;R), G) (10.67)

maps the cohomology with coefficients in the group G into the homomorphisms between

the homology with coefficients in R and the group G. The sequence is exact, hence this

map is a surjection. This means there are no elements in the set of homomorphisms from

the homology with coefficients in R to the group G not represented in the cohomology

with coefficients in G. However, there are elements in the cohomology that can be

mapped into the same element of Hom. The second arrow

Ext1R(Hi−1(X;R), G)→ H i(X;G) (10.68)

is an injection. Hence the extension encodes the way in which the use of a coefficient

structure instead of another changes the classes of the cohomology.

One can extend the uncertainty principle from the non-commuting observables to the

mutually incompatible coefficient structures in cohomology. Indeed, the universal coeffi-

cient theorem shows that physical observables in a quantum field theory on a topological

space are relative, depending on a particular choice of the coefficient group in the co-

homology. Observables visible when using one coefficient structure for the probing of
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the functional space may become indistinguishable when another coefficient structure,

incompatible with the first, is used. This fact can be translated in terms of density

matrices. Indeed one can construct a density matrix in the form given above

ρ =
∑
i

ρi|Ψi >< Ψi| (10.69)

which can be represented in an arbitrary basis as

ρ =
∑
i,a,b

ρi|φa >< φa|Ψi >< Ψi|φa >< φa| =
∑
ab

|φa >< φb|ρab (10.70)

The expectation value of an observable can be defined as

F̄ = tr[ρF ] =
∑
ab

Fba =
∑
ab

ρab < φb|F |φa > (10.71)

I showed in the previous chapter (Theorem 2) that the discernibility of quantum states is

relative in the sense that it depends on the choice of a coefficient group in the cohomology.

Here, I show a consequence of this. Indeed, let now take a system composed of two

subsystems identified by the variables q1 and q2. Suppose the entire system is in a pure

state and let that state be |Ψ12 >. If this state can be factorized into a product of pure

states from subsystem 1 and subsystem 2 as

|Ψ12 >= |Ψ1 > ⊗|Ψ2 > (10.72)

then the subsystems are said to be unentangled. Otherwise the systems are said to be

entangled. However, this notion cannot be described unambiguously in the presence of

horizons because there exists at least one choice of coefficients in cohomology where the

subsystems are entangled and one choice where the subsystems are independent while

both choices being compatible with the region inside and outside the horizon. It is

always possible to traverse the horizon towards the interior of the black hole, hence the

physics should not change due to a choice of topology or a choice of a coefficient group.

The condition for this is translated in the isomorphism condition for the extensions,

formulated in the previous section. In terms of cocycles this leads to the fact that the

density matrices must differ in an additive coboundary. One should not have a difference

between the two density matrices as seen via one coefficient group and the other of

the form ξ1 = λξ2 as this relation cannot insure the isomorphism of the extensions.

Hence, the density matrix must be extended additively, leading to terms that break the

factorization into pure states. Otherwise stated, pure states can be seen as classes in the

second cohomology group H2(G,U(1)) associated to the above mentioned group. The
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universal coefficient theorem implies that the classes can merge or dissociate according to

the coefficient groups used to map the analyzed space (or group). Hence, as the notion

of “entangled” or “unentangled” is well defined in flat or curved space, it becomes a

relative notion when the necessity of a topologically covariant description arises. Another

way of looking at this is to see that the non-trivial commutation relations appear as

two-cocycles in the cohomology associated to the Weyl-Heisenberg group in particular,

as shown in the previous section, and in general, the non-commuting property of two

general observables which leads to the block structure of the density matrix depends on

the choice of coefficient groups in the associated cohomology. Hence, the “uncertainty

principle” introduced at the level of topological information via the universal coefficient

theorem can be mapped directly into block diagonal elements of the density matrix.

Hence, quantum correlation arises as a global topological property when a horizon that

enforces two different choices of coefficient groups appears. Of course, this observation

may have implications not only for black holes but also for entangled states in topological

condensed matter systems.

10.3 Coefficient groups, the ER-EPR duality and topology

In the previous section I argued that entanglement depends on the choice of coefficient

structures in cohomology. I will support the formal derivations made therein with more

concrete algebraic homology calculations in this section. Particularly I will show that

the presence of entanglement is dependent on the perceived topology of the underlying

space. I will also prove by means of a direct example that one particular perceived

topology, associated to a coefficient structure in cohomology is associated to the presence

of entanglement, while another coefficient structure makes the previous entanglement

disappear, trivializing the cohomology with that coefficient group. The discussion in this

section therefore brings the claims related to entanglement made in the previous section

on more concrete fundaments. Historically, the origin of entanglement lies within basic

quantum mechanics [290]. However, there is no doubt today that there is a connection

between entanglement of vacuum and the emergence of spacetime [291], [292].

At a very intuitive level the statement behind the newly discovered ER-EPR duality

[293] is very appealing. The connection between spacetime topology and entanglement

however remains an unproved conjecture. The ideas behind it have their origin far

deeper into the past. They have already been mentioned in [294], [295] and several

conclusions have been extracted in [296], [297]. The new formulation of the ER-EPR

duality basically reminds us that the statistical connection between space-like separated
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regions of vacuum associated to generic quantum field theories may have a topological

interpretation as well.

However, the algebraic topological implications of the ER-EPR statement have only

marginally been explored [298]. There has been a strong temptation to connect quantum

entanglement to the topological entanglement defined in terms of linked loops, knots or

braids in three-dimensional space [299], [300]. Indeed, quantum entanglement is a global

structural feature of a quantum system which may sometimes have the appearance of

non-locality. Topology generally deals with global features of spaces and topological

entanglement is indeed given by a global structure, for example braids or links. Here, I

will show that this analogy is insufficient and quite restrictive. While linking or braiding

is certainly a form of topological entanglement that may have an analogue in quantum

entanglement, it cannot possibly cover all possible forms of quantum entanglement.

A more general situation is given by the Mayer-Vietoris theorem [301]. Indeed, this

theorem has a strong unifying character, connecting topological features of various spaces

with properties of chains defined on subspaces of the original space. This induces new

restrictions on the observables when the topology of the spacetime is non-trivial.

In order for this article to be self-contained, a discussion about the meaning of entan-

glement in quantum field theory is required. Indeed, like in basic quantum mechanics,

a relatively good indicator for entanglement is the violation of Bell’s inequalities. This

must however be formulated in the context of generic quantum field theories. Two

mathematically rigorous formulations exist: one based on quantum fields satisfying the

Wightman axioms and the other one based on local algebras satisfying the Haag-Kastler-

Araki axioms. Both allow consistent descriptions of entanglement.

In the local algebraic description of quantum field theory, Bell’s inequalities concern

results of correlation experiments involving measurements on two subsystems. Such

experiments can be characterized according to [302] by the so-called correlation dualities.

These represent a set of three objects, (p̂,A,B). A and B being real vector spaces with a

specific vector ordering defined on them and having a well defined identity id = 1. p̂ is a

bilinear function p̂ : A×B → R. The observables of one such subsystem are represented

by partitions of the identity in the respective subsystem i.e. {ai|i ∈ I},
∑

i ai = 1,

ai ≥ 0, ∀i ∈ I. Every i ∈ I is interpreted as a possible outcome of the measurement

of an observable ai. The probability of the joint occurrence of two outcomes i ∈ I and

j ∈ J in the respective two subsystems will then be by definition p̂(ai, bj). Using this

definition the Bell correlation is defined as

β(p̂,A,B) =
1

2
sup(p̂(x1, y1) + p̂(x1, y2) + p̂(x2, y1)− p̂(x2, y2)) (10.73)
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the supremum being taken over all xi ∈ A and yi ∈ B. The expression for the Bell

equality is then β(p̂,A,B) = 1 which we expect to be violated. When the vector spaces

A and B modeling the observables of the considered subsystems are in fact C∗ algebras

(like in quantum mechanics) the Bell correlation satisfies the inequality β(p̂,A,B) ≤
√

2.

When dealing with relativistic quantum field theory the basic structure is an assignment

to each open space-time region O ∈ R4 of a C∗-algebra A(O) of norm-closed bounded op-

erators on some Hilbert space. This assignment must satisfy certain axioms originating

in physics.

First if there are two regions of space-time O1 ⊆ O2 then the associated algebras also

satisfy A(O1) ⊆ A(O2). Therefore, each A(O) is a subalgebra of the C∗-algebra A
generated by

⋃
O⊂R4

A(O).

Second, in order to define the flat relativistic space-time, Poincare covariance must be

obeyed. Therefore, for flat space-times there must exist a representation {αλ|λ ∈ P†+} of

the identity connected component P†+ of the Poincare group by a group of automorphisms

on A such that αλ(A(O)) = A(Oλ) where Oλ is the image of O under the transformation

corresponding to λ.

Third, if O1 is spacelike separated from O2 then every element of the algebra A(O1)

commutes with every element of the algebra A(O2). This assures the existence of a no-

tion of locality. It is important to make a clear distinction between what I call locality

in this article, namely the property that observables in spacelike separated regions com-

mute, and another, weaker definition of locality used sometimes in quantum information

theory, focusing mostly on the quantum fields or their simpler analogues, the wavefunc-

tions. Indeed, apparent non-local effects resulting from wavefunction superpositions or

quantum field correlations are not truly non-local according to the definition of this

article. They may naively look non-local but, according to the operational definition of

locality they are local.

Finally, there exists a physical, faithful i.e. one-to-one representation π of A on a

separable Hilbert space H such that on H there is a nontrivial strongly continuous

unitary representation U(P†+) of the universal covering group of the Poincare group P†+
satisfying first, U(λ)π(A)U(λ)−1 = π(αλ(A)) for each A ∈ A, λ ∈ P†+, and second, the

generators {Pµ}3µ=0 of the translation subgroup satisfy the condition P 2
0 −P 2

1 −P 2
2 −P 2

3 ≥
0 and P0 ≥ 0 where P0 is the generator of time translations. Self adjoint elements

A ∈ A(O) of the local algebras are interpreted as observables which are measurable in

the corresponding space-time region O ⊂ R4. A positive, normalized linear functional

φ on the C∗-algebra A is supposed to correspond to a physical state of the system

whose local observables are represented by the net {A(O)}. For such a state φ and an
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observable A ∈ A(O), φ(A) is considered to be the expected value of the observable A

of the statistical system that has been prepared in the state φ.

If A and B are commuting C∗-algebras and φ is a state on a C∗-algebra C containing

both A and B then (φ,A,B) determines a correlation duality p̂(A,B) = φ(AB) for each

A ∈ A and B ∈ B. Therefore if φ is a state on an algebra A generated by a net of local

algebras {A(O)} and if O1 and O2 are any two spacelike separated regions in Minkowski

space then (φ,A(O1),A(O2)) is a correlation duality.

In the alternative formulation based on the Wightman axioms we employ so called quan-

tum fields i.e. operator valued distributions φ on space-time which act on the physical

state space. These fields are then integrated with test functions f having support in

a given region O of space-time φ[f ] =
∫
d4xf(x)φ(x). The resulting objects form un-

der the operations of addition, multiplication and hermitian conjugation a polynomial

*-algebra P(O) of unbounded operators.

Both approaches however assume Poincare invariance and therefore must be replaced

with local Lorentz invariant formulations when space-time is curved. Moreover, if we

want to connect quantum field theory to quantum information theory, we need a suffi-

ciently accurate description of a qubit. Given a Hilbert space, a qubit can be physically

realized as any two dimensional subspace of that Hilbert space. Such realizations how-

ever will often not be localized in space. We can restrict ourselves to approximately

well localized realizations and represent the qubit as a two dimensional quantum state

attached to a single point in space. If we want to ensure relativistic invariance we no-

tice that there are no finite dimensional faithful unitary representations of the Lorentz

group. For flat space-time we can go to the Wigner representations. These provide us

with unitary and faithful but still infinite dimensional representations of the Lorentz

group. These representations strongly rely on the symmetries of Minkowski space and

in particular on the inhomogeneous Poincare group. The basis states are taken to be

eigenstates of the four-momentum operator such that P̂µ |p, σ〉 = pµ |p, σ〉 where σ refers

to some discrete degree of freedom i.e. a spin or a polarization. To obtain a physical two-

dimensional quantum state we may restrict ourselves to a specific momentum eigenstate

|p, σ〉 of fixed p. The remaining degrees of freedom will then be discrete. However, when

we go from flat to curved space-time we loose the translational symmetry and therefore

the momentum eigenstates |p, σ〉. We still have local Lorentz invariance. A qubit must

still be understood as a two-level quantum system with the property of being spatially

well localized. The history of such a localized quantum system is a sequence of two

dimensional quantum states |ψ(λ)〉 each associated to a point xµ(λ) on the worldline

parametrized by λ. Each quantum state in this sequence |ψ(λ)〉 must be thought as
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belonging to a distinct Hilbert space Hx(λ) attached to each point xµ(λ) of the trajec-

tory. The parallel transport is then a sequence of infinitesimal Lorentz transformations

acting on the quantum state and this sequence is in general path dependent. There-

fore, in general it is not possible to compare quantum states associated with distinct

points in space-time. As a consequence it is not meaningful to say that two quantum

states associated to distinct points in space-time are the same. We may however use

quantum teleportation and entangled states to define what means ”the same” in the

context of curved space-time. Therefore the whole sequence of quantum states attached

to points along a worldline describing the history of |ψ(λ)〉 will be called a quantum field

theoretical qubit. One can of course take a localized qubit in a superposed state and

split it up into a spatial superposition transported simultaneously along two or more

distinct worldlines and make it recombine at some future space-time region to produce

quantum interference phenomena [330]. Such spatial superpositions will still be con-

sidered to be localized if the components of the superposition (the two elements of the

expectation catalogue) are each well localized around space-time trajectories [331], [332],

[333]. Moreover, any qubit can be written as a superposition of states by means of the

Hadamard matrix. Therefore any qubit can be written in terms of topological cycles.

The classification of such cycles is then naturally based on a (co)homology theory.

Taking into account the topology of the space, various qubits can be classified according

to the possible deformations such worldline cycles may support. For a simply connected

space the situation is straightforward. Any such cycle can be continuously deformed to a

single worldline without leaving the space. For a p-connected space-time with p ≥ 2 there

exist certain classes of worldlines cycles that cannot be continuously mapped into simple

worldlines i.e. cannot be rotated back by simple one-qubit Hadamard matrices. Such

classes depend on the connectivity of the space and are precisely defined by (co)homology

groups. A cycle can also be constructed by taking the tensor product of two qubits.

In particular two-qubit states may correspond to two worldline segments which may

be connected in various ways. If the two worldlines combined belong to a non-trivial

(co)homology group then there exists an obstruction in expressing them independently

on the given space-time topology and therefore they may not be considered as separable.

At this point the connection between space-time topology and superposed quantum

states starts being clear. The rest of this article will go further and connect entanglement

to topology by a similar way of thinking.

It is not new [303], [304] that the partition of a quantum system into subsystems is

dictated by the set of operationally accessible measurements. Given a Hilbert space H
it is possible to either look at it as a bipartite space i.e. H1 ⊗ H2 or as an irreducible

space H. If the space can be seen as a bipartite space then a tensor product structure

exists and this may support entangled states i.e. states that cannot be represented as a
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direct product of separate states on each of the partitions of the Hilbert space. But what

induces the partitioning of a given Hilbert space? It has been argued by [305] that this

partitioning is due to the experimentally accessible observables. Therefore a maximally

entangled state is only defined as such when the particular experimental setup capable

of detecting the associated properties is specified.

However, I proved previously that observables, when described in terms of (co)homology

groups are dependent on the coefficient groups used. Indeed, given a certain choice of

coefficients in (co)homology, observables merge together becoming undistinguishable.

Another important aspect is that the use of certain coefficient groups may mask the

topological properties of an underlying space. Therefore, topology can only be defined

up to the coefficient groups in (co)homology. In order to be more specific, take the

torus T1. Its homology in dimension 1 is H1(T1) = Z ⊕ Z and the 0-dimensional and

2-dimensional homology groups are each isomorphic to Z. However, the first cohomology

group H1(T1;G) with coefficients in a group G is isomorphic to the group of homom-

rophisms from Z⊕Z to the group G. This group Hom(Z⊕Z,G) is trivial if G is a torsion

group. If not, it is a direct sum of copies of G⊕G. Hence the torsion of the coefficient

group in cohomology determines the visibility of a torus as such. Maintaining the chain

of cohomology groups with the new coefficients, but reversing the arrows and allowing

for a dualizing operation we return to the homology chain, defined this time with the

new coefficient structure and preserving the same ”accuracy” in detecting topological

spaces. The supplemental information remains only encoded in the extension Ext that

appears in universal coefficient theorems used when switching the coefficient groups.

Therefore, from the perspective of (co)homology with coefficients and implicitly of quan-

tum states or quantum observables, there exists a duality between toruses and spheres,

the relation between the two shapes being given by a particular choice of coefficients.

It is therefore pertinent to ask what will happen with the entanglement when coefficient

groups in cohomology are being chosen such that the space appears to be a torus i.e.

when an ER bridge emerges.

Consider therefore a space-time and let it contain a compact region Ω with non-trivial

topology (i.e. the topology of an n-torus, a Klein bottle, etc.). As a simplification,

the asymptotic regions may be compactified such that the whole picture appears to be

isomorphic to a torus. I will consider the compactified and non-compactified objects

similarly and I will not start any speculations about the topology of the outer regions

(i.e. the large scale topology of the universe) here. For all practical purposes of this

article, the ER-bridge will look like Ω ∼= R×Σ where Σ is a 3-manifold with non-trivial

topology (i.e. torus, Klein bottle, etc.). When looking at the hypersurfaces Σ we have



Chapter 10. The Universal Coefficient Theorem and Black Holes 222

to see them as spacelike in this context. As a slight simplification I will discuss the case

of a two-dimensional torus embedded in a three dimensional space in this article. This

doesn’t affect the generality of the discussion. Going to higher dimensions and to spaces

with higher genera will be the subject of a future article where multipartite entanglement

will be the main focus. Here, the main subject will be recovering bipartite entanglement

from topological considerations alone and therefore the torus T2 is sufficient.

I shall call an ER-bridge as being topologically a torus. The important feature that

leads me to this name is that the space-time in this case contains a worldtube (the

time evolution of a closed surface) that cannot be continuously deformed into a world

line (the time evolution of a point). This is the homotopical definition of a torus. This

deformation can however be done on a sphere, and it generates the homotopical definition

of a sphere which is equivalent to that of a plane i.e. on both, any closed curve can be

homotopically deformed into a point. This is the context in which I will use the terms

“torus” and “sphere” in this article.

I showed previously that the quantum field theoretical analogues of qubits in curved

space-times are to be associated to worldlines. When the qubit is in a superposed state

such a worldline can be seen as a cycle. Let me therefore call |Ψ〉 a qubit associated

to the geodesic relating the exterior of the black hole to its interior, which avoids the

intrinsic singularity and is continuable indefinitely with respect to its natural length.

This would be a qubit state in the context of an ER bridge. It doesn’t take too much

effort to notice that such a worldline (qubit) is not continuously deformable into a

worldline which never enters the horizon in the first place. Also, a superposed qubit

which splits between the interior and the exterior of the ER-bridge forms a cycle which

cannot be reduced to a point i.e. a cycle which is not a boundary. Also, connecting two

non-superposed worldlines we may obtain a worldline around a large cycle of the above

defined torus. Such a cycle will also belong to a non-trivial (co)homology. The worldline

segments remaining only inside the wormhole or only outside will form elements in

a trivial (co)homology. Therefore, qubits, seen as worldlines are classified in terms of

(co)homology groups and pairs of qubits may belong to non-trivial (co)homology groups.

With this, the connection between quantum information, qubits and homological algebra

is established.

One main result connecting algebraic topology and homological algebra is the so called

Mayer-Vietoris sequence. Its main underlying idea of the is that the (co)homology of a

given space may be obtained via the (co)homology of some subspaces defined on that

space together with the intersection of those subspaces. Otherwise stated, the following
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sequence is exact

...→ Hn+1(X)
∂∗−→ Hn(A ∩B)

(i∗,j∗)−−−−→ Hn(A)⊕Hn(B)
k∗−l∗−−−→ Hn(X)

∂∗−→ Hn−1(A ∩B)→

...→ H0(A)⊕H0(B)
k∗−l∗−−−→ H0(X)→ 0

(10.74)

Here Hn+1(X) is the homology of the original space X, A and B are the subspaces of X

chosen to describe the topological properties of the whole space X, Hn(A∩B) is the n-th

homology of the intersection of the two considered subspaces and finally Hn(A)⊕Hn(B)

is the direct sum of the n-th homologies of the considered subspaces. The associated

maps are defined as follows: the map i includes A ∩B into A, i : A ∩B ↪→ A, the map

j includes A ∩B into B, j : A ∩B ↪→ B, the map k includes A into X, k : A ↪→ X and

the map l includes B into X, l : B ↪→ X. The map ∂∗ is a boundary map lowering the

dimension of the given group. The symbol ⊕ denotes the direct sum of abelian groups.

This is a purely mathematical result. However, its implications for physics and most

importantly for the construction of a quantum theory of space-time (and implicitly grav-

ity) cannot be ignored. The main statement of Mayer-Vietoris is that the (co)homology

of a space with a more complicated topology can be calculated by dividing that space

into pieces of known (co)homology and assembling them together in a controlled way.

The main goal of this article is to show that the formation of a space-time torus induces

entanglement via the various maps appearing in the Mayer-Vietoris sequence. Recipro-

cally, entanglement of two qubits induces a superposition which results in a p-connected

space-time when the coefficient structures of the associated (co)homology groups are

modified accordingly.

The main idea behind the ER-EPR duality is that a non-trivial space-time topology can

be associated to the entanglement of two patches of space-time in a trivial topology. I

will not insist on the particular geometry of the space-time as the main idea behind ER-

EPR is about topology. As a basic example one can consider a situation in which a black

hole forms in a certain region of space-time and it is continued via a hyper-cylinder to

another region of space-time where another black hole forms. The process that leads to

the formation of such a structure alters the topology significantly. In fact, one may start

with a topologically trivial space-time and end up with a topologically non-trivial one.

The final configuration in the present context is conventionally called an Einstein-Rosen

bridge (short ER bridge). Obviously, no actual information transfer is possible as the

wormholes are non-traversable.

This space can be described as a simple tensorial product of circles, similar to any

generic torus. Concretely the space can be written as Tn = S1 × ...× S1 i.e. the n-fold

product of a circle. Quantum states however, as I have shown in the previous chapters
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are to be searched in the (co)homology of a given space. I caution the reader again

that effects induced by quantum states should not be directly used to define locality or

violation of locality if the case appears. As noted before, the correlations may appear to

be non-local while in fact they are local in the sense of commuting observables. In order

to compute the cohomology associated to quantum states on a non-trivial topology one

needs theorems similar to Mayer-Vietoris. But we should remember that the long exact

sequence describing the homology of our final space depends on the direct sum between

the homologies of the two subspaces and on the homology of the intersection of these.

The first step in the construction is to find an open cover of S1 (one of the constituent

circles of the torus) by two (hyper)-intervals I1 and I2 such that the intersection I1 ∩ I2

is equal to the disjoint union J1
⊔
J2 of two smaller intervals. Now, by employing

the Mayer-Vietoris sequence for the open cover U = I1 × Tn−1, V = I2 × Tn−1 and

U ∩ V = (J1
⊔
J2)× Tn−1. This leads by induction to the homology of the torus

Hk(T
n) = Z(nk ) (10.75)

where (nk) is the binomial coefficient of n choose k. What is important to notice in

this otherwise standard calculation is the physical interpretation: when the spacetime

deforms itself so strongly that the topology changes, in order to calculate the associated

homology and hence the associated quantum states, we may have to split the space

in easily computable shapes. These are to be associated with unentangled systems in

standard quantum mechanics. However, these are never sufficient to compute the actual

cohomology. Therefore looking for example only at the two black holes we always miss

important topological information. This information is retrieved if we correctly make use

of the Mayer-Vietoris theorem and therefore include the (co)homology of the intersection

of the two open covers used in the first place. This intersection may have non-trivial

topology and represents the entanglement when looked upon from a quantum mechanical

perspective.

Therefore one arrives at three relevant results:

First, the inclusion map relating the homology of the intersection of two subspaces of the

full topological space X to the direct sum of the homologies of the same two subspaces

induces a Hadamard-matrix operation which affects the qubit associated to the branch it

acts upon. The map which includes the direct sum above into the full topological space

X is a c-NOT operation on the branches associated to the two qubits. The global effect

of these two maps arising in the Mayer-Vietoris sequence for a torus is the entanglement

of the qubits described by the worldlines on the two branches of X.
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Second, two entangled qubits correspond each to worldlines which, combined, induce

the (co)homology of a not simply connected space. Superpositions of the qubits are

equivalent to combinations of (co)homology groups as presented via the Mayer-Vietoris

theorem for the torus. The apparently disconnected components can be considered (not

simply) connected if the coefficient structures in the (co)homologies associated to the

respective qubits becomes torsional or cyclical.

Finally, in general the ER-EPR conjecture is true, the entanglement being in all situa-

tions induced by the inclusion maps appearing in the Mayer-Vietoris sequences.

In what follows I give proofs of the first theorems and partial evidence for the final

corollary. First I will revise some known facts about the entanglement of vacuum and

some basic entanglement measures [306], [307], [308]. This will prepare the stage for the

discussion in terms of homological deformations of the covering domains and the connec-

tivity of the space-time itself. Finally, the maps of the Mayer-Vietoris sequence required

for the construction of a torus will be interpreted in terms of quantum information gates.

As seen when referring to relativistic algebraic quantum field theory, a good measure

for entanglement is the Bell inequality. More explicitly, states which violate Bell’s in-

equalities are necessarily entangled although states which are entangled may not violate

Bell’s inequality. Given a quantum system, we may define a pair of algebras associated

to the observables of two subsystems, say (M,N ). A physical state may be defined as

φ : A → C where A is an observable algebra, while φ takes values over the complex

numbers. A given such state is called a product state across the pair of algebras (M,N )

if φ(MN) = φ(M)φ(N) for all M ∈ M and N ∈ N . In such states the observables of

the two subsystems are not correlated and the subsystems are in a sense independent.

A state φ on M
∨
N is separable if it is in the norm closure of the convex hull of the

normal product states across (M,N ) i.e. it is a mixture of normal product states. If

this is not so, we call φ an entangled state across (M,N ). Only if both algebras are

non-commutative i.e. quantum, can we have entangled states on the composite sys-

tem. A consequence of the Reeh-Schlieder theorem is that for any non-empty spacelike

separated observables O1 and O2 with non-empty causal complements, independent on

the distance between them, there exist more than one projection Pi ∈ R(Oi) which are

positively correlated in the vacuum state such that φ(P1P2) > φ(P1)φ(P2). This shows

that the vacuum is not a product state across (R(O1),R(O2)). In order to determine if

it is entangled we need a different measure called the maximal Bell correlation, defined

for the pair (M,N ) in the state φ, as

β(φ,M,N ) = sup
1

2
(M1(N1 +N2) +M2(N1 −N2)) (10.76)
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where the supremum is taken over all self adjoint operators Mi ∈ M and Nj ∈ N with

norm less or equal to one. Bell inequality in the case of algebraic quantum field theory

can be formulated as

β(φ,M,N ) ≤ 1 (10.77)

If φ is separable across (M,N ) then β(φ,M,N ) = 1. Under quite general physical as-

sumptions, in a vacuum representation of a local net of observables, β(φ,R(W ),R(W ′)) =
√

2 which maximally violates the Bell inequality. Moreover, for any spacelike separated

double cones whose closures intersect i.e. tangent double cones, β(φ,R(O1),R(O2)) =
√

2.

Now that a construction capable of measuring entanglement has been designed and the

observables and quantum states have been assigned each to their own space-time regions,

it remains to be shown that it is possible to define entanglement as being generated by

the maps of the Mayer-Vietoris sequence for a torus.

Indeed, I showed previously that qubits can be associated to worldlines in quantum

field theory and that one- or two-qubit states can be classified in terms of (co)homology

groups. Such groups will be represented by means of the basis {|a〉 , |b〉}. The (co)homology

would then be defined by the linear combinations of elements in this basis each such

combination satisfying the topological properties defining their respective (co)homology.

The coefficients of such a linear combination belong to the coefficient structure of the

cohomology. Therefore in order to work in the context of quantum mechanics the ho-

mology with complex coefficients Hn(X;C) will be constructed by means of vectors

|Ψ〉 = c1 |a〉 + c2 |b〉 with c1, c2 ∈ C. This is a more suitable representation for qubits.

Two-qubit states will also be classified by means of (co)homology groups but this classi-

fication may not be trivial i.e. two independent states belonging to trivial (co)homology

groups may become two-qubit states belonging to non-trivial (co)homologies. This would

appear as a result of the application of an entangler gate e.g. Hadamard gate on one

branch followed by a two-qubit c-NOT gate.

Now, by looking at the Mayer-Vietoris sequence one notices the appearance of direct

sums of homology groups like

Hn(A;C)⊕Hn(B;C) (10.78)

Whenever the objects involved in such direct sums appear in finite numbers and represent

abelian structures (like the complex numbers), the direct sums are isomorphic to the

direct products and hence

Hn(A;C)⊕Hn(B;C) ∼= Hn(A;C)×Hn(B;C) (10.79)
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As a basic example one may consider R×R ∼= R⊕R which both represent the cartesian

plane. I will continue to use however the ⊕ notation for the sake of generality as, for

example in the case of infinite direct sums or in the case of topological spaces with no

additional structures, such an isomorphism will not apply. For all the considerations

relevant to the present discussion however one may assume that ⊕ ∼= ×.

What remains to be seen in what follows is that patching together a torus by means of

the Mayer-Vietoris sequence implies the appearance of entanglement. To see this, one

has to understand the basics of the Mayer-Vietoris method. Its original use was to detect

the (co)homology of an unknown topological space X by means of known (co)homologies

of subspaces of X which were wisely chosen such that by patching them together, the

full space X could be obtained. The maps capable of doing this patching formed a long

exact sequence called the Mayer-vietoris sequence. In this discussion this procedure is

somehow reversed, as now we know the full space is a T2 torus and its homology is also

known. We consider the two patches A and B on the left and the right side of the

torus and form the Mayer-Vietoris sequence paying attention at the particular forms the

respective maps can take. The two patches will intersect (by convention) in the upper

and lower regions of the torus. The qubits belong respectively to the homologies of the

patches A and B and, after connecting A and B and including them into the torus they

will represent entangled qubits on the torus.

It is important to notice that in the Mayer-Vietoris theorem the two groups Hn(A∩B;C)

and Hn(A;C)⊕Hn(B;C) are isomorphic as groups but the inclusion maps between them

do obviously not induce isomorphisms. If we look again at the Mayer-Vietoris sequence,

mainly at the map Hn(A ∩ B;C)
(i∗,j∗)−−−−→ Hn(A;C) ⊕Hn(B;C) we notice that the map

(i∗, j∗) is induced in homology by the inclusions i : A ∩B ↪→ A and j : A ∩B ↪→ B and

is not an isomorphism neither when acting on the space, nor in its homology induced

form.

This map is in fact fundamental to the understanding of the dependence of entanglement

on the topology, therefore we need to have it expressed in more comfortable terms.

Consider therefore the standard two dimensional torus T2 and let’s start computing its

second homology group by means of the Mayer-Vietoris sequence. On this path I will

make the connections to entanglement as manifest as possible. For n = 2 we have the

Mayer-Vietoris sequence in the form

...→ H2(A;C)⊕H2(B;C)→ H2(T2;C)
∂−→ H1(A∩B;C)

(i∗,j∗)−−−−→ H1(A;C)⊕H1(B;C)→ ...

(10.80)
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In this part of the long sequence we can calculate all groups except the one of the torus

(which however we assume it is known or at least it is not our concern to calculate it).

We therefore may already write down the known parts

...→ 0→ H2(T2;C)
∂−→ C⊕ C (i∗,j∗)−−−−→ C⊕ C→ ... (10.81)

Notice that here too, the map (i∗, j∗) is not an isomorphism. Take therefore 1-cycles

generating the homologies of A, B and A∩B respectively in this way: for each cylinder

formed by the intersection A ∩B chose your cycle as the equatorial circumference. Let

the associated homology classes be α and β. These cycles will each generate C and we

will have

(i∗, j∗) : C[α]⊕ C[β] ↪→ C[α]⊕ C[β] (10.82)

but α = β when we are in Hn(A;C) and Hn(B;C) therefore

(i∗, j∗)(α, 0) = (i∗, j∗)(0, β) = (α, β) (10.83)

Applying a global twist in the torus (i.e. keeping the upper intersection circle unchanged

and rotating the lower intersection circle around an axis perpendicular to its center by

π) will not affect the physical situation but will generate the map (i∗, j∗) which can then

be written (considering the normalization factor imposed by hand in advance) as the

matrix

1√
2

(
1 1

1 −1

)
: C⊕ C→ C⊕ C

This matrix resulted solely from the Mayer-Vietoris theorem, a twist in the torus and a

specific choice of basis but, in terms of quantum entanglement it is a standard Hadamard

matrix. This matrix is used to map the qubit |0〉 into the superposition of two states

with equal weight i.e. 1√
2
(|0〉 + |1〉). In terms of quantum field theoretical qubits this

encodes the representation of a worldline qubit in the form of a cycle qubit. In order

to better show the analogy with quantum mechanics I detail the maps arising in the

Mayer-Vietoris sequence and connect them to the hadamard-CNOT entangler gate for

a bipartite system. In particular I show how the Hadamard map created by the (i∗, j∗)

inclusions is combined with the other maps arising from the Mayer-Vietoris sequence in

order to produce entangled states on the two branches of a torus. The general situation is

as follows. Take two qubits |Ψ1〉 and |Ψ2〉 each defined in terms of quantum field theory

on curved space-time as specific worldlines. In the quantum information approximation

they can be seen as unit vectors each in C × C. For the beginning, the two states will

encode both the |0〉 state. Start now with an ER space-time configuration (torus). Take

the subspaces of the torus covering each one of the two handles on the left and on the
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right side of the torus. The intersections between these two covers occur by convention

on opposing regions of the torus, let me call them the upper and the lower intersection.

Let me also call the left region of the torus by A and the right region by B. Starting from

the intersections of the two covers, the two qubits are being mapped respectively onto

the two handles of the torus by means of the inclusion maps H1(A ∩B;C) ↪→ H1(A;C)

and respectively H1(A ∩ B;C) ↪→ H1(B;C). The upper intersection will be mapped

on the left and on the right side by the map (i∗, j∗) producing a rotated state on the

upper half of the torus as if acted upon by the Hadamard gate (the normalization is

introduced by hand according to the principles of quantum mechanics). The result will

be |Ψ1〉 = 1√
2
(|0A〉 + |1B〉). In general, on the lower side of the torus one can obtain

similarly |Ψ2〉 = 1√
2
(|0A〉 − |1B〉). However, to obtain the Hadamard gate (the minus

sign in the last entry of the matrix) on the upper side, we used a twisted torus. This

amounts basically to a change of basis. This twist will untwist the action of (i∗, j∗) on

the lower half of the torus (which would otherwise by itself try again to twist the torus)

and therefore the final state on the lower torus will remain |Ψ2〉 = |0〉. This untwisting

operation on the lower half leads to a lower map of the form

(i∗, j∗) =

(
1 0

0 0

)

which acting on the state |0〉 leaves it unchanged (considering the convention of having

|0〉 in the form of a column vector with the upper entry 1).

Therefore at this moment, after applying the first map of the Mayer-Vietoris sequence

we obtained two qubits on the upper and lower halves of the torus

1√
2
(|0A〉+ |1B〉), |0〉 (10.84)

In order to obtain the torus, the direct sum of the two homologies must be mapped in

the total homology of the space. This map acts on the upper and lower components i.e.

it acts on the two qubits above. This means it must be a two-qubit gate. The map is

H1(A)⊕H1(B)
(k∗−l∗)−−−−−→ H1(T2). The notation (k∗ − l∗) is formal. It can be interpreted

as a formal difference for the cycles of the torus but when acting on qubits it will act

as a CNOT gate, as will be seen soon. The patches have to be continuously embedded

into the whole torus. But the lower side adds an extra twist via the map (k∗ − l∗)

which compensates the twist on the upper intersection (the upper intersection is not

twisted by this map but it was twisted by the previous one). Therefore this map flips

the second (lower) qubit when the initial first qubit has been flipped by the previous

map (generating the superposition). But as the initial state was |0〉 it will only flip the

lower qubit when the upper state is |1〉. Moreover, it brings us the actual homology
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of the torus back. Therefore what we obtained is a CNOT gate acting on two qubits,

namely

(k∗ − l∗) =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(obviously, when acting on an actual qubit the proper normalization constants will be

added) Together with the previously introduced Hadamard gate the resulting state is

now

|Ψ〉 =
1√
2

(|0〉 |0〉+ |1〉 |1〉) (10.85)

which is defined over the whole torus and therefore I can drop the indices A and B.

Summarizing, the quantum states after the action of the first Mayer-Vietoris map (i∗, j∗)

for the torus, are

|0〉
|0〉

}
(i∗,j∗)−−−−→

{
1√
2
(|0A〉+ |1B〉)

|0〉

As has been seen before in order to obtain an entangled state we also need the CNOT

map. This map has two roles: first it has to include a second qubit in the superposed

states above, second it has to switch the state of the second qubit when the first qubit is

in the state |1〉 such that a truly entangled state of the two qubits emerges and third, it

has to restore the whole torus from the two patches A and B. I have shown above that

such a map arises naturally from the Mayer-Vietoris sequence for a torus. For a better

understanding one may have a careful look at the Mayer-Vietoris sequence

...→ H1(A∩B;C)
(i∗,j∗)−−−−→ H1(A;C)⊕H1(B;C)

(k∗−l∗)−−−−−→ H1(T2;C)
∂−→ H0(A∩B;C)→ ...

(10.86)

We are now interested in the map, (k∗ − l∗). This one takes as input the sates on the

two sheets covering the two handles of the torus and maps them together into a formal

difference, generating the homology of the torus i.e. the vector space where the resulting

entangled states will reside. While the map (i∗, j∗) was injective, this map is surjective

in order to preserve the exactness of the sequence. Merging together elements of the two

sheets such that they connect in a continuous way obviously takes two qubits as an input

and performs an operation on one, depending on the state of the other. These are all

properties desirable for maps in the category of the CNOT map of quantum computing.

The final construction I am deriving from the Mayer-Vietoris sequence is shown in fig. 1.

Notice first that the maps k and l basically map the regions A and B into the whole of

X = T2 after the map (i∗, j∗) has been applied. They take the superposed state obtained
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Figure 10.1: The standard Hadamard entangler gate

after the application of the Hadamard-type map (normalization is assumed) and map it

into the torus as a whole. Two aspects are important. First this will bring together the

new superposition state and the original state |0〉. This basically implies tensoring the

superposed qubit in the upper half with the original qubit in the lower half. Second, the

two sheets must generate a torus and therefore the combination between the two maps

k and l must be taken such that this will be the case. Formally we have

1√
2
(|0A〉+ |1B〉)

|0〉

}
(k∗,l∗)−−−−→ 1√

2
(|0A〉+ |1B〉)⊗ |0〉

(k∗−l∗)−−−−−→ 1√
2
(|0〉 |0〉+ |1〉 |1〉)

The ER ⇒ EPR part of the duality has been derived by analyzing the form and the

actions of the maps in the Mayer-Vietoris sequence of a torus. In order to make the

reciprocal affirmation EPR ⇒ ER plausible we have to explain how the entanglement

of disconnected spaces (and the states defined on them) may result in a connected space.

In general it is verified that spaces of different topology exist in mutually orthogonal

sectors of the associated Hilbert space and therefore the paradox is particularly stringent.

The connectivity of a space is determined by means of the (co)homology which, in the

case of complex coefficients also represents the qubit states. However, when we alter

the algebraic structure of the coefficients in cohomology, the information about the

connectivity of a space may appear to change. Could therefore a specific non-trivial

choice of coefficients lead to a non-trivial superposition of disconnected topological spaces

that may result in connected topological spaces? We will start with two circular spaces

S1 and show that by means of a particular change in coefficients the two circular spaces

representing together a disconnected space, will become a space homeomorphic to a

single circle and hence a connected (although not simply connected) space. Then the

resulting not simply connected space will be mapped by means of another change in

coefficients into a simply connected space homeomorphic to a single point (see Fig. 2).

The particular choice of coefficients must contain a certain twisted cyclicality. In this

subsection I will discuss the process in terms of integer and twisted cyclical integer
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Figure 10.2: Two circles merging, as seen by using various torsions in the coefficient
groups of (co)homology. The change in the coefficient structure brings us from two
independent circles to the wedge sum between two circles tangent at a common point,
then to a single circle and finally to a simple point. The information is presented as

seen by homology with various coefficients

coefficients. In the next subsection a short discussion of the acyclicity of the circle will

imply the use of complex coefficients [334].

In order to begin, consider a circle space S1 and an abelian group A. Let then ρ :

π1S
1 → Aut(A) a representation of the fundamental group of the circle into the abelian

group A.

Then, the homology of the circle with coefficients in the group A twisted by the map

ρ is Hk(S
1, Aρ). As a simple example one can consider the group A = Z3 and the the

map ρ : Z→ Aut(Z3) as being

ρ =



0→ 0

1→ 2

2→ 1

3→ 0

4→ 2

...

(10.87)

The cellular chain complex associated to the homological representation of the circle is

then

0→ Z[t, t−1]
δ−→ Z[t, t−1]→ 0 (10.88)

δ is the boundary map which by definition represents the multiplication with (t − 1).

Therefore t and t−1 define the required ring structure for the circular space. We there-

fore have an isomorphism Z[π1S
1] ∼= Z[t, t−1] ∼= Z[Z] which will slightly simplify the

calculation without affecting the final result. Let me now tensor with Z3 in order to

obtain the homology with the desired coefficients over Z[t, t−1]. Then I obtain

Z3
∼=−→ Z[t, t−1]⊗Z[t,t−1] Z3

δ⊗Id−−−→ Z[t, t−1]⊗Z[t,t−1] Z3
∼=−→ Z3 (10.89)

The first map is a → 1 ⊗ a and the last map is 1 ⊗ a → a. It is required to reduce to

1⊗ a before applying the last map. The result therefore is
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a→ 1⊗ a→ (t− 1)⊗ a = 1⊗ (ta− a)→ ta− a (10.90)

The boundary map obtained after tensoring with Z3 is then

D : Z3 → Z3 (10.91)

D(0) = 0

D(1) = t · 1− 1 = 2− 1 = 1

D(2) = t · 2− 2 = 1− 2 = 2

(10.92)

and hence is the identity on Z3. Therefore the homology groups of S1 with coefficients

in Z3 twisted by the nontrivial map ρ are all trivial

H0(S1;Z3)ρ ∼= H1(S1;Z3)ρ ∼= ... ∼= 0 (10.93)

This shows how a circle can be mapped into a point via a controllable change of coef-

ficients in homology provided all information obtained about the space is obtained via

(co)homology. Let me further apply a similar procedure that will merge two disjoint

circles into one single circle. In order to do this the coefficient group A will now be Z2

and the twisting will have the form

ρ =



0→ 1

1→ 0

2→ 1

3→ 0

...

The analyzed space will now be a disjoint union of circles S1 namely X = S1tS1. By a

simple application of Mayer-Vietoris theorem it results that Hq(S
1) ∼= Hq(S

1)⊕Hq(S
1).

Now, by using the twisted coefficients as described above, the homology won’t be able

to distinguish the two circles and hence we arrive at the single circle case.

It appears that the “quantum superposition” of topological spaces may be governed

by a deeper form of entanglement, one in which the role of the linear superposition is

altered by the structure of the coefficient ring in (co)homology. Therefore, by employ-

ing different coefficient structures one may entangle topologically disconnected pieces of

space-time producing (not necessarily simply) connected space-times if certain restric-

tions on the coefficient structures are being imposed. This new form of entanglement

is governed by the universal coefficient theorem in the sense that it allows us to switch

from the information which can be obtained by means of one coefficient structure to the
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information obtainable via the other coefficient structure. Like in the case of normal

entanglement, some questions about the topological space cannot be meaningfully an-

swered when one relies exclusively on one coefficient structure. Therefore, entanglement

as a linear combination of topological spaces in this case admits extra-flexibility due to

the various possible choices of coefficient rings and the global effects such choices entail.

This cannot be ignored because in this case the coefficient rings may alter the topological

information which can be extracted from the given spaces. Therefore, finally, I briefly

extend the analogy between qubits and homological algebra by going to a (co)homology

theory with twisted complex coefficients. The key property of twisted (co)homology is

the twisted acyclicity of the circle [334]. This property tells us that a twisted homol-

ogy of a circle with coefficients in C which have a non-trivial monodromy must vanish.

Subsequently a twisted homology theory of this kind completely ignores the parts of the

space it wishes to describe which are formed by circles along which the monodromy of

the coefficient system is non-trivial. The implications to physics are important mainly

because, as I argued before the use of coefficient systems of various forms and of the uni-

versal coefficient theorem amounts to a prescription of finding new dualities in physics

i.e. different analytical tools used to describe the same phenomena. In this case the

duality is between entanglement and topology. In general for a homology theory, the

dimension of H0(X;C) is equal to the number of path-connected components in X.

Also, in classical homology theory (based on the standard Eilenberg-Steenrod axioms)

H0(X;C) does not vanish unless X is empty. For twisted homology this last property

is not valid anymore. Particularly when we analyze a circle X = S1, we consider the

map µ : H1(S1) → C× taking the generator 1 ∈ Z = H1(S1) to ζ ∈ C×. By this twist

we then have the acyclicity of the circle in the sense that H∗(S
1;Cµ) = 0 if and only

if ζ 6= 1. Moreover, let X be a path connected space and µ : H1(S1 × X) → C× be a

homomorphism. Then let ζ be the image under µ of the homology class realized by a

fiber S1 × pt. Then H∗(S
1 × X;Cµ) = 0 if ζ 6= 0. The proof of these results can be

found in [334]. Physically this means that we may consider quantum states on a region

of our space as belonging to the homology with complex coefficients |Ψ〉 ∈ H1(X;C). X

is in this case is the direct sum of two disconnected regions X = A tB. The homology

of such a space will be the direct sum of the homologies of the two disjoint regions

H1(X;C) = H1(A;C) ⊕H1(B;C). We can choose A and B to be spacelike separated.

The state |Ψ〉 is entangled over A and B although the space itself doesn’t show any

topological features at this moment. The same properties will remain valid when we

change the coefficient structure C → Cµ where the twisting induced by µ is such that

the coefficients form a twisted system with a non-trivial monodromy around any circle

connecting region A and B. But with such coefficients H1(X;C) becomes trivial and

hence the two regions become trivially identified i.e. in a sense similar to quantum

teleportation. However, we can now modify the space X, by introducing the required
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circles which will make it look like a torus. This cannot affect the homology with twisted

coefficients as it is not sensitive to circular components. However, if we now move back

to untwisted coefficients we need to carefully employ the universal coefficient theorem

and we will obtain the standard homology of a torus in complex coefficients, particularly

H1(X;C) = C ⊕ C. Summarizing, we started with a flat space and an entangled state

and by changing the coefficient structure to a twisted one, making some undetectable

changes to the space which left the homology intact and then changing back to the

original coefficients we obtained the homology of a torus in complex coefficients. Of

course the last transformation cannot be performed without penalizing some bijective

maps due to the universal coefficient theorem. However, the physically relevant states

remain unchanged, the only modifications being at the level of the Tor and Ext functors

arising in the universal coefficient theorem for homology respectively cohomology. But

how can it be that the physical states obtained when we go back to complex coefficients

do not match the original states (as we do not have an absolute bijection because of

the Tor and Ext functors)? First one should notice that Ext and Tor encode precisely

the deviations introduced by adding the circular components. Therefore, this collapse

of the bijection is simply because to begin with we made an assumption which cannot

hold after a proper topological analysis, namely that in the original case we have a flat,

topologically trivial space-time and entangled states. The whole point of this article

is to show that such a situation is impossible, as entanglement automatically has to

imply non-trivial space-time topologies. The main result is that entanglement is pre-

cisely encoded in the homology of a torus and a torus precisely encodes entanglement

but entanglement cannot exist in topologically trivial space-time. It is obviously inter-

esting to interpret this result in the case of basic quantum entanglement experiments

where, apparently, the topology of space-time changes. How should such a change be

interpreted in terms of basic entanglement experiments and apparently flat space-time

remains a mystery, although mathematically it is possible to have a flat, topologically

non-trivial space-time.

One may ask if locality is preserved in this situation. Indeed, the problem of locality

when unitarity is restored appears to be fundamental to the AdS/CFT solution of the

information paradox [214]. The information, in the approach of this chapter, is encoded

in the global topological structure of the field in such a way that it is not accessible by

any local measurements. One has to remember that the quantum field is not a mea-

surable quantity. There is no physically observable “quantum field” in the same way

in which there is no physically observable wavefunction. Nevertheless, the global, topo-

logical properties of the fields (and wavefunctions) are important and encode relevant

information. Any local measurement can be seen as a “small” (weak) measurement.

Can such a measurement reveal the global information? The correct answer to this
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question is no. Any weak measurement will reveal a weak information that will not

provide any access to the information encoded globally and retrievable only via a statis-

tical topological measurement. If one choses a coefficient structure for which the global

non-triviality is invisible, locality is regained. Information is conserved but only in the

factors appearing due to the use of the extension group. Hence unitarity is still preserved

but in a “hidden” form (in the extension). If one choses a suitable coefficient structure

the global information becomes accessible due to the manifest visibility of the global

non-triviality. However, one cannot recover the information unless one performs a prob-

ing of the topology. This may look non-local in a sense but the information obtained

in this way concerns topologically non-trivial field (wavefunction) structures hence this

“non-locality” is not a physical one but rather one related to a choice of performing

certain measurements.

In this chapter I have shown that topological corrections to the thermal radiation of a

black hole as given by the requirement of topological covariance of the laws of physics

can account for a factor in the coefficients defining the thermal radiation. This factor

imposes non-trivial changes in the form of the distribution function that amount to non-

thermal corrections. This observation confirms the suspicions that the solution of the

unitarity problem relies on non-perturbative effects and on topological properties of the

quantum groups involved in the derivation of the radiation distribution function. While

the results are mostly formal and qualitative in nature, they do show that the method

based on my idea has valid physical substrate.



Chapter 11

From Grothendieck’s schemes to

QCD

“ ‘Do you know, I always thought unicorns were fabulous monsters, too? I never saw

one alive before!’

’Well, now that we have seen each other’, said the unicorn, ‘if you’ll believe in me, I’ll

believe in you’ ”

Lewis Carroll, Alice in Wonderland

11.1 Rings and ringed spaces

In order to have a self-contained discussion about universal coefficient theorems, coef-

ficient groups and their effects on quantum field theories some supplemental concepts

must be introduced. I suppose that the concept of ring is well understood. Basically it

represents a set of elements for which we can define two operations: multiplication and

addition. The set is then a group for addition and a monoid for multiplication while

the multiplication is distributive with respect to addition. The set can contain not only

numbers but various other objects. In the theory of rings we can define the so called

ideal of a ring. For a ring (R,+, ·) we consider (R,+) to be its additive group. We call a

subset I its ideal if it is an additive subgroup of R that absorbs through multiplication

by elements of R all the other elements. Formally this can be written as

• (I,+) is a subgroup of (R,+)

• ∀x ∈ I, ∀r ∈ R: x · r ∈ I

237
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• ∀x ∈ I, ∀r ∈ R: r · x ∈ I

For a ring ideal we can define the prime ideal which is a subset of a ring that extends

the notion of prime numbers defined only on the ring of integers. The prime ideals for

the integers are the sets that contain all the multiples of a given prime number together

with the zero ideal.

As a formal definition we say that an ideal P of a commutative ring R is prime if it has

the following two properties

• If a and b are two elements of R such that their product ab is an element of P

then a is in P or b is in P ,

• P is not equal to R

In order to make the connection with algebraic geometry, it may be useful to note that

the zero set of ideals in polynomial rings define the geometric varieties.

Another useful concept is that of schemes, introduced by Grothendieck in his attempts

to confer a more general perspective to algebraic geometry [166]. I will describe them

briefly, following mainly [217] and the lecture notes [245]. There are two important

structures that come together in order to define a scheme: firstly, a topological space,

i.e. open sets and a definition of how to put elements together in these open sets and,

secondly, the structure sheaf. An easy analogy, useful in the construction of schemes is

the idea of a manifold. Indeed, from a topological point of view a manifold is a space

that preserves the local property of being euclidean. This means that there exists an

open cover {Ui} ⊂M such that each Ui is homeomorphic to Rn. The coordinate patches

must also satisfy compatibility conditions that allow us to define the notion of a smooth

function. We call the spectrum of a commutative ring R to be the set of its prime ideals

and we denote it by Spec(R). We define a topology for Spec(R). The closed sets are of

the form

V (I) = {p ∈ Spec(R)|I ⊆ p} (11.1)

where I is any ideal in R. Hence, from a geometric point of view we define a way in which

various algebraic varieties are connected to each other. This leads us to think about

what changes may be necessary i.e. what constraints we have to impose on the various

fields or rings we employ in order to “transform” one variety into another. This whole

construction will prove to be relevant in various mathematical and physical problems.

Most importantly, it may relate various terms in the topological genus expansion of string

theory or quantum chromodynamics. At this point we have a topology but we still need

a method of discussing about functions on the topological space. One of the central ideas
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of algebraic geometry is thinking of rings as sets of functions on certain spaces, namely

on their spectra. In analogy with smooth manifolds we must think about the functions

more than about the space since the functions may not be completely determined by the

space. We therefore have to think about R as functions on Spec(R). In order to be able

to meaningfully discuss about them we need a sheaf of rings. We define it as OX on a

topological space X as an assignment of a ring OX(U) to each open set U in X together

with, for each inclusion U ⊆ V a restriction homomorphism resV,U : OX(V ) → OX(U)

subject to the following conditions

• resU,U = idU

• if U ⊆ V ⊆W then resV,U ◦ resW,V = resW,U

• For each open cover {Uα} of U ⊆ X and for each collection of elements fα ∈
OX(Uα) such that for all α, β if resUα,Uα∩Uβ (fα) = resUβ ,Uα∩Uβ (fβ), then there is

a unique f ∈ OX(U) such that for all α, fα = resU,Uα(f).

We may think of the elements of OX(U) as functions defined on U . The restriction

homomorphisms correspond to restricting a function on a big open set to a smaller one.

Intuitively, the axioms say that the elements behave as functions, hence

• restricting a function to its original domain does nothing at all

• Restricting and then restricting again is the same thing as restricting all at once

• If we have functions defined on some different open sets and these functions agree

on the overlaps then we can glue them all together to get a unique function on the

union of these open sets, and if we restrict this glueing to one of the open sets we

get the corresponding function back.

A topological space equipped with a sheaf of rings on it is called a ringed space.

If we consider the manifold category and let M be a smooth manifold then for each open

set U of M we have C(U), the set of real valued continuous functions on U . Under point-

wise addition and multiplication, this is a ring. If V ⊆ U then we have the restriction

homomorphism C(U)→ C(V ) given by actually restricting functions. It is easy to verify

that this in fact is a sheaf. This is one of the prototypical examples of a sheaf.

Considering again M a smooth manifold and the sets C∞(U) of C∞ real valued functions

on U , where U is an open set in M , these are still closed under point-wise addition and

multiplication and the same restriction maps from above still hold. It can be verified

that this still is a sheaf.
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It is interesting to note that manifolds can also be defined in the opposite way: instead of

defining them as a topological space with certain open cover satisfying some conditions

and then deriving a sheaf from that, we can simply define them as a space together

with a sheaf satisfying a similar property. This definition is equivalent to the coordinate

charts definition [245].

11.1 Definition [245] A smooth manifold is a topological space together with a sheaf

of real-valued continuos functions subject to the condition that there exists an open

covering {Uα} with the restriction sheaf to each Uα isomorphic to Rn. Moreover, here

Rn is equipped with the sheaf of standard differentiable functions.

In what follows we denote a space just by X or Y while understanding that we mean

a space together with a given sheaf of rings. There are various sorts of sheaves, for

instance sheaves of abelian groups or, more generally, of R-modules over some ring R,

defined in exactly the same way.

11.2 Definition [245] Let X be a topological space and OX , O′X be two sheaves of

rings on X. Then a morphism φ : OX → O′X is a collection of ring homomorphisms

φ(U) : OX(U) → O′X(U), one for each open set U ⊆ X, which commute with the

restriction maps. That is, if V ⊆ U ⊆ X are open sets, then the following diagram

commutes

OX(U)
φ(U)−−−−→ O′X(U)

resU,V

y resU,V

y
OX(V )

φ(V )−−−−→ O′X(V )

(11.2)

It is also possible to create a sheaf from an existing one.

Given a sheaf OX on a space X and U an open subset of X we can define a sheaf OU

on U by taking OU (V ) = O(V ), for any open subset V of U and by keeping the same

restriction maps.

Sheaves can also be pushed along continuous functions

11.3 Definition [245] Let X and Y be topological spaces, OX a sheaf on X and f :

X → Y be a continuous function. We define the pushforward sheaf f∗OX on Y by

declaring f∗OX(U) = OX(f−1(U)) for any open set U in Y with the obvious restriction

maps. It is easy to check that this will be a sheaf.

If we have a sheaf on X and a basis of open sets for X then the sheaf is completely

defined by its values on the basis.
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11.4 Definition [245] The structure sheaf of Spec(R) is the scheme OSpec(R) defined by

OSpec(R)(Spec(R)f ) = Rf (11.3)

i.e. the localization of R at the element f . We say just Spec(R) when we mean the

set of prime ideals in R together with the Zariski topology and this sheaf of rings on it.

Spectra of rings are the first example of a scheme and will play the same part in defining

general schemes as Rn does in defining smooth manifolds.

11.5 Definition [245] A spectrum of a ring with the sheaf of rings defined above is

called an affine scheme.

11.6 Example [245] If k is a field then Spec(k) is the one point space with OSpec(k)(∗) =

k

11.7 Example [245] Spec(Z) is one point for each prime number corresponding to the

maximal ideal (p) as well as one non-closed point (0).

It is interesting to note that when the ring has nilpotent elements, functions are no longer

determined by their values. Let us define for example k to be a field and R = k[x]/x2.

Then R has only one prime ideal, namely (x), so Spec(R) is one point, with k[x]/(x2)

at that point. The function x is then everywhere zero but is not the zero function.

A question that arises is : what do we mean when we think about elements on a ring R

as functions on Spec(R)? This can be made rigorous as follows

11.8 Definition [245] For a point p ∈ Spec(R) we have the following canonical map

R→ R/(p)→ k(p) (11.4)

where k(p) is the fraction field of R/(p). For an element f ∈ R we define f(p) to be the

image of f under this map. This definition does not always yield actual functions.

11.8 Example [245] Let X = Spec(Z) and consider the element f = 7 ∈ Z. Then

f((2)) = 1 in the ring Z/2Z, f((5)) = 2 in the ring Z/5Z, and f((7)) = 1 in the ring

Z/7Z. In particular note that the values of f lie in different fields.

The set {p ∈ Spec(R)|f(p) = 0} still does make sense though. Also, if k is an alge-

braically closed field, and R = k[x1, ..., xn] then for all maximal ideals m, k(m) = k

since it is a finite extension of an algebraically closed field. Therefore they are really

functions in the classical sense.

With the notion of affine scheme and isomorphism of sheaves we can define a general

scheme
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11.9 Definition [245] A scheme is a topological space X, together with a sheaf of rings

which is locally affine in the following sense: there is an open covering {Uα} of X such

that the restriction of OX to each Uα is isomorphic to an affine scheme.

This is just like the smooth manifold category where we can define a smooth manifold to

be a topological space with a sheaf of differentiable functions on it (the sheaf of rings),

that is locally isomorphic (in the sense above) to some Rn with its standard sheaf of

differentiable functions.

11.2 Topological strings and the holomorphic anomaly equa-

tions

In what follows I intend to show that using different coefficient groups in (co)homology,

the genus expansion can be transformed such that all topological terms of genus higher

than 1 can be described in terms of spheres. This is a drastic statement, as, from

any classical topological point of view, a torus is not a sphere. However, it appears

that by a surprising choice of coefficients in (co)homology, a torus can, for all practical

purposes, i.e. from the perspective of the integration over ribbon-graph diagrams on

it, be treated like a sphere. The universal coefficient theorem, then, will encode the

additional information related to the degeneration of the torus into a sphere in the form of

Tor and Ext groups. This cannot however happen unless we allow some degeneration of

surfaces as well as some singularities. In order to make this consistently, I need to enlarge

some concepts. For example, I cannot speak only in terms of a single manifold category,

as the morphisms in that category must be continuous and p-times differentiable. I

propose here a different mechanism that relates algebraic varieties, namely the coefficient

ring (or group) in cohomology. In this way I extend the mapping of one algebraic

variety into another (as introduced by Grothendieck [22]) to algebraic topology with

(co)homology groups with torsion coefficients. The main application on which I would

like to insist is quantum chromodynamics (QCD), namely the theory of quarks and

gluons. The results on this theory are however more speculative in nature. Therefore

I will start by introducing a theory where a recursive relation between manifolds of

different genera exists and is well understood. This is the theory of topological strings

and the recursive relation is known as the holomorphic anomaly equation. For this

introduction I follow mainly [235] and [246]. However, it appears that the universal

coefficient theorem is also capable of encoding general anomalies that appear when an

algebraic variety degenerates into another one. Holomorphic anomaly equations can

then be seen as a particular case to more general relations that can be derived from

universal coefficient theorems.
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A major simplification in dealing with string theory was brought by the discovery of the

topological phase of string theory. General string theory and particularly superstring

theory has many possible formulations. The worldsheet may be described by an N = 1

supersymmetric Ramond-Neveu-Schwarz (RNS) formalism. It may also be described

by a Green-Schwarz (GS) formalism. For any quantum theory, be it of strings or of

fields the most important task is the calculation of scattering processes. This is in

general very difficult. In order to do this, one has to obtain in one form or another,

excitations that correspond to every kind of elementary particle. While bosonic string

theory is obviously insufficient, if string worldsheet supersymmetry is extended to N = 2

some geometrical properties arise that make the calculations somehow easier. The field

theoretical equivalent of this construction can be shown to be a topological field theory.

For example a (2, 2) sigma model contains bosonic fields. These can be seen as maps

from a Riemann surface to a Kahler manifold. Exact supersymmetry can exist only when

the Riemann surface is flat. However, a curved surface prohibits in general the existence

of a covariant constant spinor that can be considered a supersymmetry transformation

parameter and hence supersymmetry is broken. By a topological twist however, it is

possible to modify the theory such that some fermionic symmetry remains. This also

generates a scalar supercharge which is preserved on any Riemann surface. A flat sigma

model can be transformed into a curved one by changing the flat metric into a curved one

and the partial derivative into a covariant one. As the scalar supercharge is nilpotent in

any Riemann surface we can define an associated cohomology. The physical spectrum of

the topological theory is given by this cohomology. We therefore obtain a “topological

sigma model”. The procedure of introducing the topological twist is a defining property

of topological models. The correlation functions of this theory are independent of the

metric on the Riemann surface. When we couple the theory to gravity on the Riemann

surface we obtain the associated topological string theory and the Riemann surface

becomes a worldsheet of string theory. As long as we do not allow the variation of

the worldsheet metric we talk about a sigma model. Topological string theory does

not have local degrees of freedom. Topological string theory is exceptionally solvable

[235]. The reason for this is the existence of various differential equations satisfied

by the topological correlation functions. These result from topological Ward identities

derived using the independence of the worldsheet theory from the worldsheet metric. It

is because of the topological nature of the theory that we can integrate these equations

up to some integration constants specified by the classical data of the underlying model.

A particularly interesting special case is the N = 2 superconformal field theory with

central charge ĉ = 3 because they give many non-trivial topological amplitudes and can

be related to four dimensional physics. The most important differential equation in this

case is the holomorphic anomaly equation of Bershadsky, Cecotti, Ooguri and Vafa [246],
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[247] which controls the amplitudes as functions over the coupling space. The origin of

the holomorphic anomaly can be related to the unitarity and CPT invariance of the

underlying conformal field theory [235]. In general we are interested in the perturbative

topological string amplitudes. We call them F (g,h) and define them as the integral over

the moduli space M(g,h) of oriented Riemann surfaces of genus g and with h boundary

components. F (g,h) are functions over the coupling space which is a complex manifold.

In general a Riemann surface is not compact. In that case, we can make a statement

regarding the anti-holomorphic derivative ∂̄F (g,h). In particular we can say that this

derivative is zero. However, in order to compactify the Riemann surface we have to

add some boundaries. In particular, we add to M(g,h) certain objects ∂M(g,h) that

allow us to make M(g,h) compact. The anti-holomorphic derivative ∂̄F (g,h) receives

corrections precisely from these terms. Otherwise stated the additional terms arise from

the singularities or “contact terms” that appear in the integrand of F (g,h) when the

Riemann surface degenerates. Corrections of this type must encode all the possible

ways in which such a “degeneration” may occur. The boundary term itself is not a

holomorphic function over the coupling space. For a closed string (g, h) = (g, 0) the

Riemann surface can degenerate in two distinct ways encoded by the following formula

∂īF (g) =
1

2
Cīj̄k̄e

2KGj̄jGk̄k(
∑

g1+g2=g

F (g1)
j F (g2)

k + F (g−1)
jk ) (11.5)

Here, F (g) with various subscripts i, j, etc. are the amplitudes with insertions i.e.

derivatives of F (g) in holomorphic directions on the moduli space. Cijk = F (0)
ijk is the

three point function on the sphere and it is holomorphic. The sum is a recursive relation

for the topological amplitudes, genus by genus.

The open string will have h 6= 0. We need to choose some boundary conditions i.e.

to specify some D-brane configuration. Consider the Yukawa coupling, i.e. the first

non-vanishing amplitude at tree-level. The sphere 0, 1, and 2 point functions vanish

and all higher-point functions on the sphere can be computed by simply taking the

derivatives. Consider Ω(z) ∈ H3,0(Y ) as the holomorphic 3-form as a function of the

complex structure moduli of the Calabi-Yau manifold Y . Let me define the Gauss-Manin

connection first. This represents a generalization of the concept of parallel transport in

the context of a vector bundle made from a family of algebraic varieties. The base space

is considered the space of the parameters defining the family and the fibers are taken

to be the de-Rham cohomology group Hk
dR. Flat sections of the bundle are described

by differential equations like for example the Picard-Fuchs equation for the family of

elliptic curves. Calling the Gauss-Manin connection ∇ we have

Cijk = − < Ω,∇i∇j∇kΩ > (11.6)
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where the bracket < ∗, ∗ > represents the symplectic pairing on H3(Y ) i.e.

< ∗, ∗ >=

∫
Y
∗ ∧ ∗ (11.7)

In the case of open strings the invariant holomorphic data that characterizes a topological

D-brane at tree level is a Poincare normal function. Such a normal function ν is defined

by a three-chain Γ ⊂ Y whose boundary is a holomorphic curve. Such a three chain

does not specify an element in H3(Y ) completely but since the boundary is holomorphic,

integration against Γ gives a well defined pairing with cohomology classes in H3,0(Y )

and H2,1(Y ). This can be written as

T =< Ω, ν >=

∫
Γ

Ω (11.8)

which physically can be identified with the domainwall tension. The hallmark of a

normal function is

< Ω,∇ν >= 0 (11.9)

All the information about ν is then contained in the disk two point function which is an

infinitesimal invariant

F (0,1)
ij = ∆ij =< Ω,∇i∇jν > (11.10)

Mathematically, the infinitesimal invariant is a cohomology class whose representative

depends on a lift of ν to H3(Y ;C). But given

T =< Ω, ν >=

∫
Γ

Ω (11.11)

and its physical interpretation as a domainwall tension, we have a preferred lift obtained

by imposing ν to be real i.e.

ν ∈ H3(Y ;R) ⊂ H3(Y ;C) (11.12)

But the reality of ν is not compatible with the holomorphic dependence on the param-

eters. This is precisely the holomorphic anomaly of the disk two-point function.

Hence the anomaly leading to the recursive relation for the amplitudes of different genera

originates in the fact that we restrict the complex cohomology to a real cohomology.

Reality of the cohomology however is in conflict with the notion of holomorphicity.

We already saw to begin with that the non-zero terms contributing to the anti-holomorphic

derivative of F are related to the degeneration of the Riemann surface and its change of

genus. Can this be interpreted in the sense of the universal coefficient theorem? Appar-

ently yes, although the interpretation might be somehow different with respect to what
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we are used with.

11.3 A giant leap: Quantum Chromodynamics

Before arriving at the conclusion of this thesis, I present in this section a new way

of analyzing Feynman diagrams. The main application originates from the universal

coefficient theorem, but in general, homological algebra may prove itself extremely useful

in deriving new, non-perturbative results for various quantum field theories [259-260].

Quantum Chromodynamics is a non-abelian gauge theory with the gauge group SU(3)

where the fermions live in the direct representation while the gluons live in the adjoint

representation. It is a very accurate theory that can be analyzed perturbatively in the

high energy regime [218] where the first obvious expansion parameter (the coupling) can

be considered as small [219]. Its results in that domain are accurate enough to validate

it as the correct theory of strong interactions [220]. However, due to the property of con-

finement (which is not systematically proved but for which we have strong experimental

evidence [221]) the perturbative approach becomes less and less reliable at low energy

[222]. This is because there is a strong contribution towards the coupling constant from

low energy corrections [223]. These make the perturbative approach break down at

energies comparable to our immediate observations [224], [225] i.e. nuclear physics, pre-

dictions for the masses of protons, neutrons, hadrons, etc. This is why non-perturbative

methods are being employed at that level. Today we rely in this area mostly on lattice

approaches which are notoriously computationally intensive [226]. There are however

different other methods. One method tries to connect regions unaccessible to a pertur-

bative approach in QCD to regions of other theories that can easily be solved either via

perturbative methods, as in the standard way, for example like in [227] or via meth-

ods originating from, say, general relativity [228]. These methods are spin-offs from the

study of dualities [229] and are impressively promising today. Another, somehow related

method is the large N expansion [230]. This appeared due to the search for alternative

expansion parameters when the most obvious choice (the coupling constant) became

unreliable. For a simplified alternative model (the Gross-Neveu Lagrangian [231])

L = ψ̄i/∂ψ +
g2

2N
(ψ̄ψ)2 (11.13)

the 1/N expansion parameter appears naturally in the interaction term. This can be

understood with an analogy to simple quantum mechanics [231] : a state |ψ〉 which can

be written as a sum of N orthonormal states with equal amplitudes

|ψ〉 = α(|1〉+ |2〉+ |3〉+ ...+ |N〉) (11.14)
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has as normalization condition

N |α|2 = 1 (11.15)

and hence (ψ̄ψ)2 has as coefficient 1/N . The limit N → ∞ then gives the desired

approximation. QCD is more complicated than this Gross-Neveu model. In principle,

QCD is a SU(3) theory with gluons in the adjoint representation of the gauge group. In

order to define an accessible expansion parameter we will consider 3→ N →∞. In this

way we will write SU(N) instead of SU(3) for the gauge group, the case N = 3 being a

restriction to the physical situation. There will be a covariant derivative

Dµ = ∂µ + i
g√
N
Aµ (11.16)

where the gauge field will be of the form Aµ = AAµT
A with the TA matrices normalized

according to

TrTATB =
1

2
δAB (11.17)

The indices A and B refer to the adjoint representation of the gauge group. The coupling

constant is considered to be g/
√
N instead of g in order to obtain a sensible and non-

trivial large N limit [231]. One can define the field strength then as

Fµν = ∂µAν − ∂νAµ + i
g√
N

[Aµ, Aν ] (11.18)

the Lagrangian being

L = −1

2
TrFµνF

µν +

NF∑
k=1

ψ̄k(i /D −mk)ψk (11.19)

The large N limit can be taken with the number of flavors NF fixed. The quark propa-

gator has the form

< ψa(x)ψ̄b(y) >= δabS(x− y) (11.20)

and is represented in the Feynman diagrams as a single line. The gluon propagator is

< AAµ (x)ABν (y) >= δABDµν(x− y) (11.21)

where A and B are the indexes of the adjoint representation. A gluon can be seen as a

N ×N matrix with two indices, (Aµ)ab = AAµ (TA)ab and the propagator becomes

< Aaµb(x)Acνd(y) >= Dµν(x− y)(
1

2
δadδ

c
b −

1

2N
δab δ

c
d) (11.22)

One can redraw the gluon lines from the standard Feynman diagrams in a way that

explicitly shows these two indices on each line [230]. In this way one arrives at something
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Figure 11.1: (a) ribbon graphs on a planar topological space (or sphere), (b) ribbon
graphs on a toroidal topological space [230]

called a “ribbon graph” where each gluon line is now represented as a double arrow (in

the case of an SU(N) theory; an SO(N) theory for example would have only double

lines, with no orientation). Putting together various processes one arrives at a situation

where these double arrow graphs fill a topological space. Indeed, they can be classified

with respect to the homotopy class of the topological space they can fill: sphere or planar

diagrams, non-planar diagrams of genus 1 (a single hole torus) or of genus 2 (a double

hole torus) etc [233]. In QCD planar diagrams with quark lines are represented as planar

diagrams with the quark line as the boundary or as spheres with holes represented by

the quark loops. These appear with order N in the expansion. Diagrams with no quark

lines (gluon lines only) form closed spheres and appear to be of order N2. Some diagrams

however cannot be drawn in a plane with only quark lines at the boundaries or on a

sphere with no boundaries. In that case, these diagrams behave as powers of 1
N and are

represented on toruses of various genera [231]. See figure 1 for a graphical representation.

In a more general sense, increasing the size of the group to SU(N) where N →∞ makes

the theory simplify considerably. This is remarkable because one would not expect from

a theory with an infinite number of degrees of freedom to manifest itself in a simpler

way than a theory with a finite, and rather small number of degrees of freedom. It is

possible to prove that in some theories, terms in the series expansion in 1
N are related

to homotopy classes of diagrams. The fact that diagrams become less relevant in the

large N limit is classified by the topological space they can fill.

The series expansion in this limit is not the classical expansion in the coupling constant

but instead in 1
N and the diagrams arrange themselves such that each term of this

expansion corresponds to a set of diagrams on a topological space characterized by a

given genus.

In order to see the way in which the situation simplifies one should go back to what is

known as the ’t Hooft model. There, one considers a theory similar to QCD but on only

two spacetime dimensions and in the large N limit. The theory is confining and there
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are several simplifications. What is important however, is that in this simplified model

all the diagrams appearing in the theory can be represented on the surface of a plane or

on a sphere. This is not a general fact of QCD. Due to this fact, specific to the case of

2 dimensional QCD in the ’t Hooft model, we may solve this theory exactly. Complete

planarity makes a theory exactly solvable.

It is therefore important to consider the topological properties of the space formed by

the ribbon graph diagrams and particularly to see in what cases non-planar diagrams

behave like planar diagrams. One observes that each color index loop forms a polygon

(simplified, it encompasses a 2-simplex) that can be glued together with another index

loop in order to form a surface. The topology of a space can be determined at various

homological “resolutions” with various homological-algebraic tools. Here “resolution”

refers to the visibility of a certain topological feature. It has nothing to do with the

scale at which one looks and with the analogy to a “magnifying glass”. Maybe the best

analogy would be a detector sensible to certain topological properties if suitably tuned.

In general, what the physicist wishes is to integrate over such a topological space in

order to obtain the answers encoded in the diagrams defined on it. For this, one needs

an integration measure. This measure is in general sensitive to the (co)homology of the

space. The (co)homologies are invariants of the topological space of a certain accuracy

(strength). They are in general defined in terms of chain complexes [96]. The chain

complexes are defined starting from the q-simplexes ∆q [96]

∆q = {(t0, t1, ..., tq) ∈ Rq+1|
∑

ti = 1, ti ≤ 0∀i} (11.23)

together with face maps

f qm : ∆q−1 → ∆q (11.24)

defined as

(t0, t1, ..., tq−1)→ (t0, ..., tm−1, 0, tm, ..., tq−1) (11.25)

This abstract construction must be mapped into a realistic space X. In order to do this

a continuous map is required (see fig. 2)

σ : ∆q → X (11.26)

Considering this, any space can be constructed as a chain

{X} =

l∑
i=1

riσi (11.27)
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Figure 11.2: Mapping a simplex on an arbitrary manifold [232]

where {ri} is the set of coefficients belonging in general to a ring R. The space X as

seen via the basis formed from the q-simplexes defined above is denoted Sq(X;R). One

defines a boundary map as

∂ : Sq(X;R)→ Sq−1(X;R) (11.28)

such that

∂(σ) =

q∑
m=0

(−1)mσ ◦ f qm (11.29)

One can extend the above definition by introducing the covariant functor S∗(−;R). This

means that given a continuous map

f : X → Y (11.30)

this will induce a homomorphism

f∗ : S∗(X;R)→ S∗(Y ;R) (11.31)

with the definition

f∗(σ) = f ◦ σ (11.32)

Then, the complex (S∗(X;R), ∂) is called the simplicial chain complex of the space X

with coefficients in R. The homology of this chain complex with coefficients in R is then

Hq(X;R) =
ker ∂

Im ∂
(11.33)

where ker represents the kernel of the considered map and Im represents its image.

Hence the homology groups depend on the coefficient rings R used to define them. For

simplicity one can also restrict the rings to groups. I showed in the previous chapters of
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this thesis that the universal coefficient theorems can express the (co)homology groups

of a space with a certain coefficient group in terms of (co)homology groups of the same

space with a different coefficient group. I also showed in the previous chapters of this

thesis that some information visible when a certain group is used becomes invisible when

another group is used. The main idea is that the information about the homotopy class

of a function may be accessible when a certain coefficient group is used, while not visible

from the (co)homological perspective when another coefficient group is used. However,

the universal coefficient theorem, written as

0→ Ext(Hn−1(C), G)→ Hn(C;G)→ Hom(Hn(C), G)→ 0 (11.34)

for cohomology or as

0→ Hn(C)⊗G→ Hn(C;G)→ Tor(Hn−1(C), G)→ 0 (11.35)

for homology gives us the extra information related to the homotopy classes, just that

in this case encoded in the “homological obstruction” given by the Ext respectively Tor

groups. Here H∗(C) is the *-th dimension homology of the chain complex C, H∗(C;G)

is the *-th dimensional cohomology of the chain complex C measured with coefficients

in G, Hom(H∗(C), G) is the group of all homomorphisms from H∗(C) to the coefficient

group G, H∗(C;G) is the *-th dimensional homology group with coefficients in the group

G and the Ext and Tor functors are here the extensions and the torsions of the respective

homologies. These behave as obstructions to the exactness of the short sequence where

they would be absent.

Translated in terms of 1
N expansions, this would mean that, when using a certain coef-

ficient group, the integration measure may “see” the non-planar graphs as planar while

the formal differences between the two types can be found only in the form of Ext and

Tor groups and modified group operations. In this way, one can relate theories con-

taining non-planar diagrams, considered hard to solve today, to theories containing only

planar diagrams and homological-algebraic corrections to some composition rules. These

corrections will differ for each topological genus they originate from. This would make

many theories exactly solvable if the above mentioned corrections are correctly under-

stood. In some sense, this amounts, loosely speaking, to a renormalization procedure:

the “non-solvability” due to non-planar contributions is eliminated, maintaining the rel-

evant, computable “non-planar” contributions only in the form of modifications of group

laws as specified by the Ext and/or Tor groups. Applications to QCD should be obvious:

exact calculations, new dualities, a new systematic approach to non-perturbative QCD.

In the context of string theory this would allow to probe regions beyond the perturba-

tive string expansion in a systematic way in the same way in which the renormalization
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group prescription in renormalizable quantum field theories allows us to go beyond the

strict perturbative regime.

In a sense, until now, the lack of strength of topological invariants (their inability to

discern some topological spaces) was certainly not seen as a desirable property. However,

several physical and finally natural phenomena can also not make the distinction between

some topological spaces defined in terms of chain complexes. For example, naturally a

measure of an integral over a topological space is related more to the cohomology of the

space than to its actual mathematically perfectly described shape. Natural phenomena

are also defined in terms of integrations over spaces with certain measures. This reminds

us of the coarse graining in the problems analyzed via renormalization groups. However,

in this case it is not the large scale that hides features but the topological invariants

and other homological tools that we naturally use. In this sense I see this idea as

a generalization of “renormalization group approaches”. The renormalization group

transformations now become changes in the group structures used in (co)homology. The

regularization step becomes the identification of the problems originating from the non-

planar nature of the corrections and the translation of these into the language of derived

functors (Ext and Tor). The standard example of how a function that looks homotopic

to a constant in the cohomology with a set of coefficients, is in fact homotopically non-

trivial when analyzed with another set of coefficients, has been presented in [54] and

also in chapter 9.

Let me be more accurate and translate this into notions related to integration. This has

important consequences in the way we calculate the terms in the topological expansion

of QCD but also in practical calculations of integrals over topologically non-trivial man-

ifolds in general. In principle the homology groups, Hk(C) relate to the shape of the

manifold. The cohomology groups, Hk(C) relate to the differential forms defined over

the manifold. Hence, if there is a manifold M characterized by a sequence of homology

groups, then, one can define the integral ∫
M
ω (11.36)

characterized by the differential form ω and by the manifold M . In QCD the differential

form may encode the integration over all internal bands of a genus term. Integration

can be seen as the pairing

Hk(M,R)×Hk(M,R)→ R (11.37)

such that

([M ], [ω])→
∫
M
ω (11.38)
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where this pairing is constructed with real coefficients and this coefficient structure

characterizes also the measure of integration and implicitly the differential form ω. Here,

[M ] represents a class in homology and [ω] represents a class in cohomology. The pairing

above however is an isomorphism (one-to-one relation) only when this particular choice

of coefficients is made. For other coefficients this pairing may fail to be an isomorphism.

The correction is encoded in a term controlled by the Ext and Tor groups

Hk(M,G)×Hk(M,G)→ G (11.39)

where the map becomes

([M ], [ω])→
∫
{M}

ω ⊕ CExt(Hn−1(C),G) (11.40)

Here, the first integral is over the surface {M} visible when the coefficient structure G
is used and the correction appears as CExt(Hn−1(C),G) depending on the extension group

constructed from the homology with general integer coefficients over a lower dimension.

Here I simply used the universal coefficient theorem in cohomology. The non-trivial

topology however is not visible from the lower dimension hence the simplification.

In this way I show that properties defined on some more complex topological objects

may be acceptably described on simpler topological objects if controlled changes in the

groups used to describe them are being employed.

The observations above may appear relevant for the large N expansions in quantum

chromodynamics. As has already been noticed by ’t Hooft [230], QCD bears strong

similarities with string theory. Therefore, going beyond the perturbative expansion in

this case may even prescribe how to talk about quantum gravity and finally how to unify

physics in general. The name given to this approach is M-theory.

Indeed, one of the first motivations for string theory was the description of mesons [222],

namely states of quarks and antiquarks together with the color “bond” between them.

This bond has a very peculiar behavior. While the electromagnetic interaction is medi-

ated via a field that becomes weaker and more diffuse at larger distances (hence at lower

energies), the potential associated to color becomes denser and denser, increasing the

strength of the interaction. This effect called confinement gives to the strong interaction

an especially important behavior at low energies.

We can still try to develop QCD in the same way as we did with the other interactions:

try to construct the associated Feynman diagrams, to apply the renormalization pre-

scriptions and to finally solve the problem. In doing so we obtain a series expansion.

This series expansion is meaningful only in the high energy domain. In the low energy
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domain something very interesting occurs. It has been noted by ’t Hooft [239] that the

gluon propagators can be represented using double arrows instead of simple lines, one

arrow for each of the indexes of the field matrix in the adjoint representation of the

gauge group.

When doing this, the Feynman diagrams start looking more like rubber bands, having

their own thickness. These bands are now associated to the propagators. They can also

be linked together such that in the end they fill a surface of a specific topology.

After this is done, one obtains a classification of diagrams in terms of the topological

genus. A theory containing only diagrams that in the large N limit can be represented

on a plane or a sphere can at least in principle be solved exactly [231].

The next corrections depend on the genus of the torus associated to the surface on which

the diagrams reside. An exact solution of the full theory including these corrections

remains unknown.

This chapter opens a new research avenue, one that brings together on one side algebraic

topology and homological algebra (mainly some early results by A. Grothendieck on

(co)homology with coefficient groups) and, on the other side, some outstanding problems

in physics. The mathematics invented by Grothendieck, while certainly brilliant and

universally appreciated by mathematicians, remained somehow esoteric for physicists.

In this last chapter of this thesis I intend to change this by showing a way in which his

results can have an impact on physical research. While this chapter does not offer a final

resolution of all the physical puzzles, it offers a new way of thinking that largely extends

the applicability of several methods, well known to the physicists e.g. renormalization

prescription, renormalization group, regularization, etc.

In standard quantum field theory it is possible to split a divergent parameter of a the-

ory (e.g. the coupling) into a renormalized component and a singular counter-term.

However, this partitioning is based on an arbitrary reparametrization. One can make a

different choice by transferring a finite amount from the renormalized parameter to the

divergent counter-term without changing physics. Suppose one has a graph with a renor-

malized value which is too large to allow the computation of its associated quantity in the

lower orders of a perturbative expansion. It is however possible to adjust the splitting

into the renormalized part and the divergent counter-term such that the counter-term

cancels not only the initial divergence but also the excessively large piece of the graph’s

finite part. The large piece now comes in the lowest orders of the perturbation expansion

instead of appearing at high orders [224].

The renormalization procedure is based on a regularization prescription (a method that

allows the identification of the “problems”, e.g. the divergencies) and a renormalization
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prescription i.e. a method of canceling systematically the divergencies at each order

by employing terms of the same form as those already existing in the Lagrangian. This

leads to corrections in the terms controlling the mass, charge, etc. defined in the original

theory [224].

The whole renormalization program appeared because in any process there are contri-

butions from quantum fluctuations originating at every scale of the theory. In essence, a

process that looks simple at one renormalization point may appear as very complicated

at another point. In order to disentangle this mixture of scales and complicated graphs

one may use the renormalization group when one has to deal with contiguous scales or

one may use the tools of effective field theory when more distant scales are involved.

What if there exists a third approach and something similar would be possible for the

topological expansion? This would imply not the scale of the theory but the visi-

ble (co)homological properties. The “disentanglement of scales” would translate into

reparametrizations relating different (co)homological properties. Topology tells us that

a torus and a sphere, or two toruses of different genera are not homeomorphic, hence

cannot be smoothly transformed into one another. This is however not the only pos-

sibility of relating the two objects. In fact, homological algebra gives various tools by

which we can find what are the obstructions to transformations we would like to per-

form. These obstructions may in some cases be eliminated by less obvious changes in

the way we look at our theories. In this chapter, I show that there exists a system-

atic prescription that, used properly, maps the information defined on a torus of any

genus into a sphere. There are however strong obstructions to this mapping that can be

eliminated by employing various coefficient groups in the cohomology associated to the

space. These obstructions, if properly considered, may have an effect analogous to the

renormalization group flow or the passage to an effective theory. The difference with

respect to these other approaches is that the obstructions appear as corrections to the

algebraic structure of the theory and not as corrections to specific parameters.

We saw while analyzing the holomorphic anomaly equation that a torus can degenerate

into a sphere in certain situations. Here I show that such a situation can be modeled via

the universal coefficient theorem as interpreted above. Figure 1 shows how obviously

different a torus is from a sphere. In fact we can detect the differences naturally, by

looking at them. Mathematically however, we need to define certain invariant objects

that on one side should change when a relevant change in the topology of what we intend

to measure occurs and on the other side, must remain invariant to any other variation

that does not change the topology. Whenever such an invariant is incapable to detect

a certain change that would result in a change of topology, we say it is “blind” to a
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Figure 11.3: A sphere and a torus. They appear to be topologically different. This
difference is measured by topological invariants that are defined such that they are
the same on surfaces that are topologically identical. Homology and cohomology are
such invariants. However, the invariants are not always ideal. In order to define them
correctly one needs additional information, brought to them by what is known as the
“coefficient structure”. There exist coefficient groups with enough torsion such that the
cohomology group that may make the distinction between the two becomes incapable
of doing so. This makes the integration over the cohomology (cohomology being the
only construction that is useful in diagrammatic calculations) equivalent for the two
cases. Representative Feynman ribbon-graph diagrams are presented below each of the

topological objects.

specific topological transformation. This makes that invariant of a rather low quality if

our desire is an accurate description of a shape.

Homologies and cohomologies are in general relatively good topological invariants. They

are easily computable and probe the topology relatively well. However there are well

known situations when objects with the same homology have different homotopical and

topological properties (see for example Poincare’s homological sphere [232]). While this

is a way in which (co)homologies may fail in their ability to discern topologies, it is

not this the method I wish to insist upon here. Instead, I remind the reader that

homologies and cohomologies, in order to be calculated and measured, must be defined

including a set of coefficients (the coefficient group) [23]. I explained above how these

enter in the construction of (co)homology. Enough to say now that they determine the

sensitivity of the (co)homology to various features that would otherwise remain invisible.

Figure 2 shows another set of two surfaces. Both unorientable and both undetectable

by (co)homology as such when an unadapted coefficient group is employed. In the same

way in which homology may be insensitive to unorientability for various shapes, the

cohomology may become insensitive to the presence of a torus instead of a sphere. For

example [261] take the torus T1. Its homology in dimension 1 is H1(T1) = Z⊕Z and the
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Figure 11.4: A Klein bottle and a Moebius strip. Two unorientable surfaces that
cannot be detected by homology with arbitrary coefficients. The coefficient groups,
in order to make the (co)homology capable of detecting these shapes must have a
certain level of torsion. If one uses real or rational coefficients these surfaces cannot
be identified as such. However, the supplemental information will be encoded by the
universal coefficient theorem when one attempts to change the coefficients in homology
or cohomology to a coefficient group with torsion. Then, obstructions in the exact
sequence describing the universal coefficient theorem will appear, in the form of Tor

resp. Ext groups.

0-dimensional and 2-dimensional homology groups are each isomorphic to Z. However,

the first cohomology group H1(T1;G) with coefficients in a group G is isomorphic to

the group of homomorphisms from Z ⊕ Z to the group G. This group Hom(Z ⊕ Z,G)

is trivial if G is a torsion group. If not, it is a direct sum of copies of G ⊕ G. Hence,

the torsion of the coefficient group in cohomology determines the visibility of a torus

as such. Otherwise, the information remains only encoded in the extension Ext that

appears in the universal coefficient theorem used when one has to change the coefficient

groups used in cohomology.

One can bring a similar argument for homology. There too one has coefficient groups,

only that this time they appear in the formal expansion in terms of the simplexes defining

the chain complex. It is important to mention that specific choices of the coefficient

groups in homology and cohomology may completely alter the visibility of topological

features. When considering the topological expansion for QCD this amounts to the

mapping of the diagrams that can be represented on a simple torus into diagrams that

can be represented on a sphere. The same is valid for the upper genera tori which may

become indiscernible from their lower genus counterparts and finally from a sphere.

This amounts to great simplifications in the calculation of the large N expansions and

may lead to new, topological factorization theorems. It is important to understand the

role of the universal coefficient theorem in this construction. It essentially gives the

homological algebraic obstruction to the visibility of a torus from the perspective of a

(co)homology group with a given set of coefficients. The coefficient groups behave like an

instrument that, if tuned appropriately, gives us the desired information about a specific
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topological property. If however, tuned differently they can mask some information.

This masked information will reveal itself in the Ext and Tor groups of the universal

coefficient theorem. If we go back to the representation of QCD as a genus expansion,

we observe that the obstructions given by Ext or Tor manifest themselves as controlled,

order by order deformations of the algebras of the gauge groups. Using for example

SO(N) as a gauge group instead of SU(N), would transform the double arrows of the

ribbon-graph representation of the gluon matrix into an un-oriented double line ribbon-

graph. In this case, the gluing of diagrams would allow also Klein bottles as surfaces

and the difference with respect to the oriented SU(N) theory would be encoded in the

form of the Tor obstruction in the universal coefficient theorem.

It is important to notice that the integration required to calculate the classes of diagrams

summarized by a topological surface implies a measure of integration that depends only

on the cohomology group.

Hence, what we are interested in is not the chain complex description of the space

but, instead, the cohomology of the surface with a certain set of coefficients and the

way it transforms under the universal coefficient theorem. Indeed, these two aspects

encode the full information about the theory [23]. Therefore it appears that there exist

a vast generalization of the notion of “renormalization” and “renormalization group”

that may transform the difficult summation over topological genera into the calculation

of mere planar or spherical graphs in QCD together with controllable deformations of

the algebras encoding the higher genus diagrams. This may lead to an exact solution for

the strong coupling regime of QCD and a solution of the confinement problem. Also, the

same method can prove to be of major use in the domain of strongly correlated electrons

and in strongly coupled condensed matter systems. On the theoretical side, this idea is

based on the observation of Grothendieck [22-23] that in order to completely characterize

a space one cannot rely only on the abstract notion of (co)homology but instead, one

also has to consider the coefficient groups in (co)homology. In this way, this article

proposes an application of several concepts from homological algebra to practical physical

situations. The applications are not limited to QCD. Indeed, they can be applied to

go beyond the perturbative domain of string theory and to better characterize the still

mysterious M-theory. Due to the application of the large-N expansion to condensed

matter, several other practical applications can be envisaged.
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Conclusions

“ If you drink much from a bottle marked ‘poison’ it is certain to disagree with you sooner

or later.”

Lewis Carroll, Alice in Wonderland

The structure of this thesis was based on two parts. The first part may look somehow

old-fashioned. Indeed, it represents work done either one hundred years ago or during

the second half of the 20th century. However, how can we make any progress if we

ignore the work of the predecessors? In fact, while working for the original research

which stands at the fundaments of this thesis I reviewed many books written by the

originators of the ideas related to general topology, homological algebra or algebraic

topology [22],[24],[25],[26],[28],[29],[41],[43],[44]. It is important to understand where

we stand now in order to be able to make any progress. It sometimes happens that

physicists have the tendency to misinterpret mathematical notions in more than a single

way. One of the mistakes physicists tend to make, and I include myself therein, is that

we stop with the “understanding” process whenever we get the most superficial grasp

of what a concept means. We often are not aware of the axiomatic definitions given by

mathematicians and therefore use concepts that we understand only partially or not in

their full complexity. Usually, the physicist’s understanding is restricted to the most

obvious applications. It often happens that our most commonly used concepts have far

deeper meanings which, most of the time we do not see. Category theory is therefore a

very important tool that can make us understand how concepts understood in a specific

framework can also be understood and transferred to another framework.

At this moment, we do not have a categorial theory for quantum mechanics. In the

same way, we do not have a precise axiomatic definition of quantum field theory that
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would allow us to derive certain properties of, say, QCD. The standard reply is “why

do we need such a definition when, simply using the ad-hoc prescriptions, we get all the

results we need?”. The answer to this would be “how can we be sure that we obtain all

the results we need?” We may not even come close to the full extent of the applications

of axiomatization. The only difference is that most of the mathematicians are aware of

this weakness while physicists tend not to care about it. I hope, with this thesis, I make

the reader aware of the fact that we are unaware of what generalizations quantum field

theories may support and what effects these may have on the way we understand reality.

This is mainly why this thesis also has a second part. There, I use the Universal

Coefficient Theorem in order to get a new view on some results in physics and also to

open some new paths for thinking.

We use to think about numbers in a very limited way. In some sense, we use them as

artifacts with very little consideration for the way they have been developed. However,

for a very long time human civilization knew only about integer numbers. Then rational

numbers were invented. Irrational numbers and real numbers came as a surprise. For

the pythagoreans the mere thought about irrationals was a blasphemy. However, today,

we understand the role of numbers and number fields in far greater details. It would

therefore be a pity not to employ this knowledge for the simplification of various physical

problems. This was the original goal of this thesis, which, I hope, was reached in the

pages above.

This thesis is not a closed work. Many future applications of the ideas presented here

are possible. The main idea that has led to this research was based on the question

“how does a numerical group of coefficients used to describe a problem affect the solv-

ability of the problem”? I presented effects of the change in coefficients in various fields.

Notably, observations related to the effects of finite fields brought me to observations

of phenomena envisaged in string theory via the homological anomaly equations and

the topological recursion relations. The same observations led me to a different way of

understanding the wall-crossing formulas and the counting rules of BPS states. Future

work may relate to other subjects of human inquiry. For example cryptography is based

on the fact that some problems may look harder when solved in one direction and easier

in the opposite direction. The discrete logarithm problem for example is based on the

fact that, for some groups, the determination of the period of an element is a hard prob-

lem i.e. the determination of k such that ak = b is hard while the exponentiation can be

computed easily. Cyclic subgroups of elliptic curves over finite fields generate something

called “elliptic curve cryptography”. The observation that changing the coefficient fields

defining the elliptic curves can lead to equivalent but easier problems may be of major

importance. Also the fact that a change in the coefficient group of the (co)homology has
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controllable effects defined by the universal coefficient theorem may lead to observations

related to how difficult it really is to solve some discrete logarithm problems.

The homological algebraic side of the problem is also important. It is possible that some

morphisms between group homologies may prove that some groups allow easier solutions

for the discrete logarithm problem while being related in some way to groups for which

the problem appears hard. This may lead to new domains where problems considered

hard may appear in fact simple.

Hence, this thesis is at the intersection of several interesting subjects of modern research:

quantum field theory, string theory, elliptic curves but also modular forms, modular

arithmetics and cryptography. It may also be related to the vast domain of dualities

between string theories and gauge field theories. The path it opens may lead to simpler

solutions to some of the problems considered today to be so difficult that encryption

protocols are being designed on the assumption that they cannot be solved efficiently. I

hope, this path will not remain deserted in the future.
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Appendix: Some relevant proofs

This Appendix contains the proofs of the theorems, propositions and lemmas which were

only mentioned in the main text. The expert reader may follow the main text only. The

details and main arguments for the statements therein can be found here.

2.15 Lemma Let S be a subset of R which is bounded above and let p be the supremum

of S. If S is a closed subset of R, then p ∈ S.

Proof Suppose p ∈ R−S. As R−S is open there exist real numbers a and b with a < b

such that p ∈ (a, b) ⊆ R − S. As p is the least upper bound for S and a < p it is clear

that there exists an x ∈ S such that a < x. Also x < p < b and so x ∈ (a, b) ⊆ R − S.

But this is a contradiction since x ∈ S. Hence our supposition is false and p ∈ S.

2.16 Proposition Let T be a clopen subset of R. Then either T = R or T = ∅.

Proof Suppose T 6= R and T 6= ∅. Then there exists an element x ∈ T and an element

z ∈ R − T . Without loss of generality, assume x < z. Put S = T ∩ [x, z]. Then S,

being the intersection of two closed sets, is closed. It is also bounded above, since z

is obviously an upper bound. Let p be the supremum of S. By the previous Lemma,

p ∈ S. Since p ∈ [x, z], p ≤ z. As z ∈ R− S, p 6= z and so p < z. Now T is also an open

set and p ∈ T . So there exist a and b in R with a < b such that p ∈ (a, b) ⊆ T . Let t be

such that p < t < min(b, z), where min(b, z) denotes the smaller of b and z. So, t ∈ T
and t ∈ [p, z]. Thus t ∈ T ∩ [x, z] = S. This is a contradiction since t > p and p is the

supremum of S. Hence out supposition is false and consequently T = R or T = ∅.

2.24 Lemma Let f be a function mapping R into itself. Then f is continuous if and

only if for each a ∈ R and each open set U containing f(a), there exists an open set V

containing a such that f(V ) ⊆ U .
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Proof Assume that f is continuous. Let a ∈ R and let U be any open set containing

f(a). Then there exist real numbers c and d such that f(a) ∈ (c, d) ⊆ U . Put ε equal

to the smaller of the two numbers d− f(a) and f(a)− c, so that

(f(a)− ε, f(a) + ε) ⊆ U (13.1)

As the mapping f is continuous, there exists a δ > 0 such that f(x) ∈ (f(a)−ε, f(a)+ε)

for all x ∈ (a− δ, a+ δ). Let V be the open set (a− δ, a+ δ). Then a ∈ V and f(V ) ⊆ U
as required.

Reversely, assume that for each a ∈ R and each open set U containing f(a) there exists

an open set V containing a such that f(V ) ⊆ U . We have to show that f is continuous.

Let a ∈ R and ε be any positive real number. Put U = (f(a) − ε, f(a) + ε). So U is

open an open set containing f(a). Therefore there exists an open set V containing a

such that f(V ) ⊆ U . As V is an open set containing a, there exist real numbers c and d

such that a ∈ (c, d) ⊆ V . Put δ equal to the smaller of the two numbers d− a and a− c,
so that (a− δ, a+ δ) ⊆ V . Then for all x ∈ (a− δ, a+ δ), f(x) ∈ f(V ) ⊆ U as required.

So, f is continuous.

2.25 Lemma Let f be a mapping of a topological space (X, τ) into a topological space

(Y, τ ′). Then the following two conditions are equivalent:

• for each U ∈ τ ′, f−1(U) ∈ τ

• for each a ∈ X and each U ∈ τ ′ with f(a) ∈ U , there exists a V ∈ τ such that

a ∈ V and f(V ) ⊆ U .

Proof Assume that the first condition is satisfied. Let a ∈ X and U ∈ τ ′ with f(a) ∈ U .

Then f−1(U) ∈ τ . Put V = f−1(U) and we have that a ∈ V , V ∈ τ and f(V ) ⊆ U .

So, the second condition is satisfied. Reversely, assuming that the second condition is

satisfied, let U ∈ τ ′. If f−1(U) = ∅ then f−1 ∈ τ . If f−1 6= ∅, let a ∈ f−1(U). Then

f(a) ∈ U . Therefore there exists a V ∈ τ such that q ∈ V and f(V ) ⊆ U . So for

each a ∈ f−1(U) there exists a V ∈ τ such that a ∈ V ⊆ f−1(U). This implies that

f−1(U) ∈ τ . So the first condition is satisfied.

Putting these two lemmas together we can see that f : R→ R is continuous iff for each

open subset U of R, f−1(U) is an open set.

2.29 Proposition Let (X, τ) and (Y, τ1) be topological spaces. Then f : (X, τ) →
(Y, τ1) is continuous if and only if for every closed subset S of Y , f−1(S) is a closed

subset of X.
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Proof The result is direct if one observes that

f−1(compl(S)) = compl(f−1(S)) (13.2)

where compl is the complement.

2.32 Proposition Let (X, τ) and (Y, τ1) be topological spaces and f : (X, τ)→ (Y, τ1)

surjective and continuous. If (X, τ) is connected then (Y, τ1) is connected.

Proof Suppose (Y, τ1) is not connected. Then it has a clopen subset U such that U 6= ∅
and U 6= Y . Then f−1(U) is an open set, since f is continuous, and also a closed set,

that is, f−1(U) is a clopen subset of X. Now, f−1(U) 6= ∅ as f is surjective and U 6= ∅.
Also f−1(U) 6= X since if it were, U would equal Y by the surjectivity of f . Thus (X, τ)

is not connected. This is a contradiction. Therefore (Y, τ1) is connected.

2.34 Theorem Let f : [a, b] → R be continuous and let f(a) 6= f(b). Then for every

number p between f(a) and f(b) there is a point c ∈ [a, b] such that f(c) = p.

Proof As [a, b] is connected and f is continuous we have that f([a, b]) is connected.

This implies that f([a, b]) is an interval. now f(a) and f(b) are in f([a, b]). So, if p is

between f(a) and f(b) then p ∈ f([a, b]), that is, p = f(c) for some c ∈ [a, b].

2.36 Corollary (The fixed point theorem) Let f be a continuous mapping of [0, 1] into

[0, 1]. Then there exists a z ∈ [0, 1] such that f(z) = z. The point is called a fixed

point.

Proof If f(0) = 0 or f(1) = 1 the result is obviously true. Thus it suffices to consider

the case when f(0) > 0 and f(1) < 1. Let g : [0, 1]→ R be defined by g(x) = x− f(x).

Clearly g is continuous g(0) = −f(0) < 0 and g(1) = 1 − f(1) > 0 Consequently there

exists a z ∈ [0, 1] such that g(z) = 0 that is, z − f(z) = 0 or f(z) = z.

2.42 Proposition Let (X, d) be a metric space and τ the topology induced on X by

the metric d. Then a subset U of X is open in (X, τ) if and only if for each a ∈ U there

exists an ε > 0 such that the open ball Bε(a) ⊆ U .

Proof Assume U ∈ τ . Then for any a ∈ U there exists a point b ∈ X and a δ > 0 such

that

a ∈ Bδ(b) ⊆ U (13.3)

Let then ε = δ − d(a, b). Then

a ∈ Bε(a) ⊆ U (13.4)

Reversely, assume that U is a subset of X with the property that for each a ∈ U there

exists an εa such that Bεa(a) ⊆ U . Then U is an open set.
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2.44 Proposition Let (X, d) be any metric space and τ the topology induced on the

X by d. Then (X, τ) is Hausdorff.

Proof Let a and b be any points of X with a 6= b. Then d(a, b) > 0. Put ε =

d(a, b). Consider the open balls Bε/2(a) and Bε/2(b). Then these are open sets in (X, τ)

with a ∈ Bε/2(a) and b ∈ Bε/2(b). So, to show τ is Hausdorff we have to prove that

Bε/2(a) ∩Bε/2(b) = ∅.

Suppose x ∈ Bε/2(a) ∩Bε/2(b). Then d(x, a) < ε
2 and d(x, b) < ε

2 . Hence

d(a, b ≤ d(a, x) + d(x, b) <
ε

2
+
ε

2
= ε (13.5)

This says d(a, b) < ε which is false. Consequently there exists no x ∈ Bε/2(a) ∩Bε/2(b);

that is, Bε/2(a) ∩Bε/2(b) = ∅, as required.

2.48 Proposition Let (X, d) be a metric space. A subset A of X is closed in (X, d)

if and only if every convergent sequence of points in A converges to a point in A. This

means that A is closed in (X, d) if and only if an → x where x ∈ X and an ∈ A for all

n, implies x ∈ A.

Proof Assume that A is closed in (X, d) and let an → x where an ∈ A for all positive

integers n. Suppose that x ∈ X −A. Then, as X −A is an open set containing x, there

exists an open ball Bε(x) such that x ∈ Bε(x) ⊆ X − A. Noting that each an ∈ A,

this implies that d(x, an) > ε for each n. Hence the sequence a1, a2, ..., an... does not

converge to x. This is a contradiction. So, x ∈ A, as required. Conversely, assume that

every convergent sequence of points in A converges to a point of A. Suppose that X−A
is not open. Then there exists a point y ∈ X−A such that for each ε > 0, Bε(y)∩Q 6= ∅.
For each positive integer n, let xn be any point in B1/n(y) ∩ A. Then we claim that

xn → y. To see this let ε be any positive real number, and n0 any integer greater than
1
ε . Then for each n ≥ n0

xn ∈ B1/n(y) ⊆ B1/n0
(y) ⊆ Bε(y) (13.6)

So xn → y and by our assumption, y ∈ A. This is a contradiction and so X −A is open

and thus A is closed in (X, d).

3.2 Lemma Any point x in the simplex can be written as x =
∑

i xivi with xi ≥ 0 and∑
i xi = 1. The xi are called barycentric coordinates and they are unique.

Proof In general we can always translate a simplex into another one with v0 = 0. Now,

if v0 = 0 then v1, ..., vi have to be independent. So, x =
∑i

p=0 xpvp =
∑i

p=1 xpvp hence

xp, p > 0 are determined by x and then so is x0 = 1−
∑i

p=1 xp.
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3.8 Lemma The above formula for ∂i gives a well defined K-map ∂i : Ci(X, T ;K) →
Ci−1(X, T ;K).

Proof

• First it is verified that the formula only depends on the orientation. For instance

for two orderings xyz and zxy which give the same orientation one has ∂σzxy =

σxy − σzy + σzx and ∂σxyz = σyz − σxz + σxy coincide.

• Second, it is also verified that the map descends to Ci → Ci−1 i.e. that the opposite

orientations produce opposite results.

The two verified requirements signify that for any permutation one has the action of the

boundary operator expressed in terms of the sign of the permutation.

4.16 Definition(Quasi-isomorphisms) We say that a map of complexes f : A∗ → B∗

is a quasi-isomorphism if the induced maps of cohomology groups Hn(f) : Hn(A∗) →
Hn(B∗), n ∈ Z are all isomorphisms.

4.17 Lemma A left resolution of M is the same as a quasi-isomorphism of complexes

P ∗ →M# such that P i = 0 for i > 0.

Proof If (P ∗, q) is a resolution of M then the only non-zero cohomology group of P ∗

is H0(P ∗) ∼= M , the same being true for M#. Moreover the morphism of complexes

P ∗ → M# is given by q : P 0 → M which induces isomorphisms of H0(P ∗) = P 0/dP−1

onto M = H0(M#).
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