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Abstract 

 

The work in this thesis investigated the detection of cytomegalovirus (CMV) DNA 

from dried blood spots (DBS) by polymerase chain reaction. The hypothesis was that 

testing DBS could be formed into a suitable strategy for CMV detection with 

applications in newborn screening for congenital CMV (CCMV) and in resource 

limited settings. An iterative approach was taken to assay development in 

collaboration with clinicians with proven cases and controls. Specificity was greater 

than 99%, but initial sensitivity for CCMV diagnosis was only 74%. Serial testing of 

DBS created in the laboratory showed that CMV DNA remained detectable on DBS 

for 24 months; a clinically relevant timescale for retrospective diagnosis.  

A significant association between DBS CMV viral load and the degree of 

sensorineural hearing loss (SNHL) was found. This relationship was non-linear 

suggesting an explanation for the clinical benefit of short term therapy in neonates 

with this chronic infection. 

Sensitivity was increased to 90% for CCMV diagnosis by the development of a one 

tube nested PCR and this method detected all cases who developed SNHL on follow 

up. This suggests that DBS testing could be suitable for newborn screening.  

The role of DBS for studies in resource limited settings was investigated. DBS were 

compared to plasma for CMV DNA detection. CMV acquisition in infants born to  

HIV-1 positive mothers was investigated with breast milk CMV viral load and 

maternal CD4 counts shown to be major determinants of infant CMV acquisition 

suggesting the possibility that restoring maternal immunity or reducing breast milk 

CMV levels may reduce transmission.  
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Overall these results support the working hypothesis and provide valuable guidance 

on the use of DBS in clinical cohorts. Large scale studies of selected and universal 

screening to allow intervention against CCMV are now warranted. 
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Chapter 1 

1 Introduction 
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1.1 History of Cytomegalovirus 
 

Cytomegalovirus (CMV) has been identified as an important viral pathogen in 

humans for more than a century. In 1904 Ribbert et al first described large 

“protozoan like” inclusion bearing cells in sections of kidney and parotid glands of 

children that he first observed in 1881 (Ribbert H, 1904). During this period 

histopathologists frequently found large cells containing a central nuclear body 

surrounded by two well defined zones and named them “owl’s eye inclusion bodies”. 

Later in 1925, Von Glahn and Pappenheimer noted that Lipschuetz has seen similar 

inclusions in a man following varicella infection. They believed these unusual cells 

may not be due to an unknown protozoan infection and might be related to a group 

of viruses. By 1950, Wyatt el at described 25 cases of a rare lethal congenial 

infection and suggested the name, “generalised cytomegalic inclusion disease”, 

although its viral aetiology was not known (WYATT, SAXTON et al., 1950). 

The development of human embryonic cell culture provided the breakthrough with 

three investigators independently isolating human cytomegalovirus (Smith, 

1956;Weller, Macauley et al., 1957;Rowe, Hartley et al., 1956).  Weller and co-

workers proposed the term "cytomegalovirus" and subsequently isolated CMV from  

urine samples of infants with generalised disease (Weller, 1970). 

Human cytomegalovirus or human herpes virus 5 is classified as a member of the 

Betaherpesvirinae subfamily, within the Herpesviridae family.  This classification was 

originally based on the slow growth in cell culture and species specificity and this 

classification was later confirmed by genetic sequence homologies  to other 

herpesvirus genomes (Roizman B & Pellett PE, 2001;Griffiths, Emery VC et al., 

2009).   
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1.2 Virus Structure  
 

Under the electron microscope CMV shows the appearance of a typical herpesvirus 

virion (figure 1.1). The virion is approximately 200-300nm in diameter which contains 

three identifiable regions, the capsid 100nm in diameter embedded in a 

proteinaceous matrix (the tegument), which is surrounded by a lipid envelope. The 

capsid exhibits icosahedral symmetry with 162 capsomers enclosing the large 

double stranded DNA genome (Chen, Jiang et al., 1999). The tegument contains a 

number of virus encoded key regulatory proteins which are mostly phosphorylated. 

The tegument is surrounded by a host cell derived lipid envelope containing more 

than 20 virus encoded surface glycoproteins (Mocarski, Shenk et al., 2007). These 

include glycoprotein B (gB), gH, gL, gM, gN and gO (Varnum, Streblow et al., 2004). 
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A) 

 

 

 

 

 

 

 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1 Representation of the structural features of Herpesviruses 

A) schematic picture of a herpes virion (not to scale); courtesy of Dr R Milne) 

B) Segmented surface rendering of a single herpes virion tomogram after 

denoising. (1) Outer surface showing the distribution of glycoprotein spikes 

(yellow) protruding from the membrane (blue). (2) Cutaway view of the 

virion interior, showing the capsid (light blue) and the tegument (orange) 

inside the envelope (blue and yellow). pp, proximal pole; dp, distal pole. 

Scale bar, 100 nm (adapted from (Grunewald, Desai et al., 2003). 
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1.3 Structure of the genome 
 

The genetic content of CMV (strain Ad169) was first determined by Chee et al; in 

1989 (Chee, Bankier et al., 1990). However, it is now known that in vitro cell cultured 

derived laboratory strains do not accurately represent the genetic content of wild 

type virus and clinical strains have been shown to include extra open reading frames 

(ORFs) and genetic content (Cha, Tom et al., 1996;Dolan, Cunningham et al., 2004).    

CMV has a linear double stranded DNA (dsDNA) genome that is the largest of the 

human herpesviruses with approximately 230 kilobases (kb).  The nucleotide 

sequence of several clinical isolates has been determined and it is estimated that 

CMV encodes for 165 ORFs (Dolan, Cunningham et al., 2004). An alternative 

proteomic analysis suggests that over 700 peptides or proteins may be encoded 

(Stern-Ginossar, Weisburd et al., 2012). The genome consists of unique long (UL) 

and unique short segments (US), each of which is flanked on one end by terminal 

repeated sequence (TRL and TRS) and internal repeats (IRL and IRS) on the 

opposing end which allow the virus to exist in four isomeric forms (figure 1.2)  

(Davison, Dolan et al., 2003;Dolan, Cunningham et al., 2004;Mocarski, Shenk et al., 

2007) Individual genes are designated by location within the genome for example 

UL55 is the 55th gene in the UL region, according to the original report of the CMV 

strain Ad169 sequence (Chee, Bankier et al., 1990). 
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Figure 1-2: Comparative schematic genome organisations of human herpesviruses.  

 

(HCMV) human cytomegalovirus; Varicella zoster virus (VZV); human simplex virus (HSV); Epstein-Barr virus (EBV). The lettering within the 

individual regions of the genome depicts the following features: terminal repeat long (TRL), unique long (UL), unique short (US), internal repeat 

long (IRL), internal repeat short (IRS), terminal repeat short (TRS), and internal repeat (IR).This figure is taken from (Crough & Khanna, 2009) 

with permission & is not to scale. 
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1.4 Cellular tropism 
 

CMV has a strict host specificity; within the human host there seems to be broad cell 

tropism, rendering CMV capable of infecting most cell types, with CMV detected in 

endothelial cells, connective tissue cells, smooth muscle cells, neuronal cells, 

mucosal epithelial cells and cells of the monocyte/macrophage lineage (Sinzger, 

Digel et al., 2008). 

In vitro primary cell cultures of human foreskin or embryonic lung fibroblasts are the 

most commonly used cell type for propagation of CMV as they yield relatively high 

titre viral stocks in cell culture supernantant. However primary cell lines have a finite 

life in cell culture limiting their use. The entry of CMV into certain cell types such as 

endothelial and epithelial cells is dependent on the unique long b’ (ULb’) region of 

the genome, encoding three genes (UL128-131) whose products interact to form a 

complex with gH/gL to promote fusion at the host cell plasma membrane (Vanarsdall 

& Johnson, 2012).  It is now know that proteins encoded for in the UL128-131 locus 

of the CMV genome play an essential role in CMV entry into certain cell types with 

epithelial and endothelial cells requiring both gB and a pentameric form of gH/gL 

denoted gH/gL/UL128-131 for entry via a mechanism which involves 

macropinocytosis or endocytosis and low-pH-dependent fusion with endosomes  

(Ryckman, Jarvis et al., 2006;Wang & Shenk, 2005) but is redundant for entry into 

fibroblasts (Hahn, Revello et al., 2004;Wang & Shenk, 2005) and has resulted in the 

inability of isolates of CMV to replicate efficiently in endothelial cells (Sinzger, 

Schmidt et al., 1999) or to transfer virus from virus-infected cells to leukocytes 

(Hahn, Revello et al., 2004). All serially passaged non-endotheliotropic laboratory 

strains of CMV show mutations or deletions in the UL128–131A locus affecting at 

least one of the genes (Hahn, Revello et al., 2004;Akter, Cunningham et al., 2003) 
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Thus, an intact/wild-type UL128–131A locus is essential for infection of most of the 

host cells of CMV, with the exception of fibroblasts. 

 

1.5 CMV replication 
 

The lytic replication of CMV is very similar to other members of the herpesvirus 

family. The role of some gene products can be understood by analogy to other 

herpesviruses. The lytic  cycle of CMV can be sub divided into a series of distinct 

steps; attachment, cell entry, gene transcription and DNA replication, followed by 

virion assembly and egress (Mocarski, Shenk et al., 2007) figure1.3. 

 

1.5.1  Attachment and cell entry 

 

CMV infects a wide spectrum of cell types; the main pathway of entry into host cells 

is mediated through a membrane fusion event involving multiple receptor-ligand 

interactions on the cell surface.  The second pathway involves endocytosis of the 

enveloped capsid within the membrane of the endocytic vesicle (Ryckman, Jarvis et 

al., 2006). Many different cell surface molecules can serve as receptors for virus 

entry but only two viral complexes have been shown to be essential for entry 

glyocprotein B (gB) and the glycoprotein gH/gL dimer. Analogous studies of 

herpesviruses have shown that gB is important for viral fusion (Vanarsdall & 

Johnson, 2012) and interaction of gB with heparan sulphate glycoprotein is believed 

to initiate a signalling cascade which allows other interactions between cell surface 

molecules and viral glycoproteins to  occur, such as the heterodimeric complexes of 

glycoproteins H, L, M,  which ultimately leads to fusion and the delivery of the capsid 
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into the infected cell (Compton & Feire, 2007). gB has also been shown to interact 

with a number of cellular components including epidermal growth factor receptor 

(EGFR), intergrins. (Wang, Huong et al., 2003;Compton & Feire, 2007;Feire, Koss et 

al., 2004) and tetherin (Viswanathan, Smith et al., 2011) and that gB can bind and 

trigger Toll like receptor 2 (TLR-2) which facilitates subsequent replication (Boehme, 

Guerrero et al., 2006). 

 

1.5.2  Viral Gene transcription and DNA replication 

 

Once the virus nucelocapsid containing the viral genome and tegument is deposited 

into the cytoplasm it appears that the capsid is transported along cytoplasmic 

microtubules and is translocated to the nucleus where viral DNA is released to enter 

through nuclear pores as a linear molecule (Mocarski, Shenk et al., 2007). The 

double stranded DNA undergoes circularisation and the gene expression pathway of 

CMV then follows a standard template for herpesviruses (Fortunato & Spector, 

1999). Immediate early (IE) gene expression, which occurs during the first 4 hours 

post infection,  followed by early (E) gene expression and the synthesis of proteins 

key for viral replication. Finally late (L) gene synthesis occurs, producing structural 

proteins that are used to construct new virions (Mocarski, Shenk et al., 2007) 

The major immediate early promoter (MIEP) drives the synthesis of two key proteins 

IE72 (UL123) and IE86 (UL122) which are two major immediate early transactivators 

which play an essential role in activation of E and L gene expression and DNA 

replication (Yee, Lin et al., 2007). Included in these early responses are activation of 

the gene products which are also known to influence replication via anti-apoptotic 

function, activation of phosphoinositide-3  kinase and induction of host cell antiviral 
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responses by blocking interferon (IFN)-inducible protein kinase R  (Yu & Alwine, 

2002;Sambucetti, Cherrington et al., 1989;Child, Hakki et al., 2004).  

About 6 hours post infection, the E stage of CMV replication begins following 

expression of the major immediate early genes which primarily encode for viral 

proteins that are required for viral DNA replication or control a range of cellular 

responses that aid viral replication, facilitate cellular survival and escape from host 

immune surveillance. This results in a large proportion of the viral genome becoming 

transcriptionally active including expression of UL112/UL113 and UL54 (viral DNA 

polymerase) lasting around 18-24 hours post infection when the synthesis of viral 

DNA begins (Mocarski, Shenk et al., 2007). 

The final set of genes to be expressed are the L genes, These encode virion 

structural proteins and are required for the assembly of an infectious particle. Little 

information is available regarding late gene expression in infected cells (Mocarski, 

Shenk et al., 2007). The entire replicative cycle in vitro is slow and estimated to take 

48-72 hours in permissive human fibroblasts.  

The CMV genome contains one origin of lytic replication (oriLyt) which is structurally 

complex and DNA synthesis is dependent on its transcriptional activation (Pari & 

Anders, 1993). Viral DNA synthesis is dependent on a large multiprotein complex 

including UL54-UL44 (DNA polymerase catalytic subunit; polymerase accessory 

protein), UL57 (single stranded DNA binding protein), and the heterotrimeric complex 

of helicase-primase (HP) which consists of UL105 (HP1), UL70 (HP2), UL102 (HP3) 

(Anders DG, Kerry JA et al., 2007). The CMV genome replicates using a rolling 

circular mechanism producing a concatameric structure, which needs to be cleaved 

into unit genomes lengths prior to encapsidation (Mocarski, Shenk et al., 2007).  
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1.5.3  Virion Assembly and Egress 

 

Studies of alphaherpesviruses have provided much greater understanding of the 

mechanisms of viral capsid assembly and DNA packaging during herpesvirus 

replication (Newcomb, Homa et al., 2001;Heymann, Cheng et al., 2003;Brown & 

Newcomb, 2011). Capsid maturation, encapsidation and release from cells are 

crucial functions which are carried out by L and E genes. Viral DNA is encapsidated 

in the nucleus and matures by moving to the cytoplasm (Mocarski, Shenk et al., 

2007).  Studies suggest herpesvirus nucleocapsids are transported out of the 

nucleus through a process of envelopment and de-envelopment across the nuclear 

membranes. This process is called nuclear egress (Mettenleiter, Klupp et al., 

2009;Mettenleiter, Muller et al., 2013). This process occurs in different subcellular 

compartments; in the first step (envelopment) the viral capsid starts at the inner 

nuclear membrane where transfection studies have shown that a complex of two 

proteins, whose homologs in CMV are encoded by the genes UL50 and UL53, 

facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C 

(PKC),  and/or the viral protein kinase UL97 to phosphorylate lamins (Mettenleiter, 

Klupp et al., 2009). This process delivers viral particles to the perinuclear space 

where they undergo a de-envelopment event. A secondary process (final 

envelopment) occurs in the cytoplasm in close proximity to the Golgi apparatus 

where the bulk of the tegument proteins are added to the nucelocapsid as it travels 

through the cytoplasm (Mocarski, Shenk et al., 2007). Once the virions are 

packaged, they are shed from the host cell through an exocytosis mechanism, the 

vacuoles containing the enveloped infectious virions are transported to the plasma 

membrane, where they fuse, resulting in the release of mature virions from the 

infected cell into the extracellular space (Mettenleiter, Muller et al., 2013). 
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Figure 1-3 Herpesvirus replication cycle: 

 a) Attachment and entry b) Gene expression, three classes of viral genes are transcribed 

and translated. Immediate-early proteins (IE) (yellow) participate in further transcription. C) 

DNA replication, early proteins (E) (green) synthesise new viral DNA molecules using 

circularised DNA as a template d) Capsid assembly and nuclear egress. Late proteins (L) 

(blue) assemble into capsids, which incorporate newly replicated viral DNA. Nucleocapsids 

leave the nucleus by budding through the inner nuclear membrane into the perinuclear 

space. Through a complex process of de- and re-envelopment, mature virions reach 

exocytic vesicles, which fuse with the plasma membrane and release new virions into the 

extracellular space (Coen & Schaffer, 2003), reproduced with permission).   
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1.6 Latency and virus reactivation 
 

Latency, or the ability of virus DNA to persist for the lifetime of the host after primary 

infection without extensive gene transcription and is an important biological property 

of all herpesviruses. The concept of CMV latency, in vivo is not at a single cell level 

and is more likely to include both sites of low level productive infection and true 

latent infection. Viral latency can be operationally defined as the maintenance of the 

viral genome in the absence of production of infectious virions but with the ability of 

the viral genome to reactivate under certain conditions (Sinclair, 2008). The ability to 

reactivate from latency is a common feature of CMV and is likely to occur in healthy 

individuals but is normally controlled by the host immune response. However, in the 

immunocompromised individual this can lead to disease and is a well-established 

cause of mobidity (Rubin, 2001;Griffiths, Emery VC et al., 2009) Genomic viral DNA 

has been detected in various cell types including monocytes and macrophages 

(Taylor-Wiedeman, Sissons et al., 1991;Soderberg, Larsson et al., 1993), 

lymphocytes (Schrier, Nelson et al., 1985), endothelial cells (Sinzger, Grefte et al., 

1995) and CD34+ bone marrow progenitor cells (Mendelson, Monard et al., 1996). 

Although the exact list of sites of latency are yet to be determined, cells of myeloid 

lineage appear to be a major candidate (Sinclair, 2008) with active viral replication 

related to the state of cell differentiation (Soderberg-Naucler, Fish et al., 1997b). The 

viral genome is maintained as closed circular DNA that persists as an episome in 

latently infected cells and is not integrated into the host DNA (Bolovan-Fritts, 

Mocarski et al., 1999). 

The mechanisms that favour the establishment of latency are unknown, but at least 

three possible pathways have been proposed. The first is that the virus enters the 
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cell in a latent state with no de novo gene expression. The second is that following 

entry the virus enters the lytic stage but is interrupted driving the virus into latency. 

The third is the expression of a subset of ‘latent’ genes unrelated to lytic infection but 

necessary for the establishment of latency (Kondo, Kaneshima et al., 

1994;Goodrum, Jordan et al., 2002;Reeves, Lehner et al., 2005;Crough & Khanna, 

2009). Repression of the viral MIEP is a key event in latency (Sinclair, 2010;Reeves, 

2011) In addition signalling events can induce reactivation from latency, these stimuli 

include pro-inflammatory cytokines such as tumour necrosis factor TNF-α and 

interferon-ɣ (Soderberg-Naucler, Fish et al., 1997a). Reactivation of CMV has also 

been shown in response to inflammation or stress but the precise underlying 

mechanisms are unknown (Prosch, Wendt et al., 2000).   

  

1.7 Immune responses to CMV 
 

Following initial infection the human immune system devotes a large and continuous 

portion of its response to limit CMV replication (Elkington, Walker et al., 2003). The 

underlying reasons why the host devotes a large portion of its response to CMV is 

not known, but is likely to reflect the persistent nature and sporadic low-level 

reactivations of the virus and the resulting immune control. It may have a detrimental 

effect on health contributing to immune senescence in the elderly (Pawelec, 

Derhovanessian et al., 2009). 

Due to the strict host specificity of CMV, the investigation of functional immune 

responses in human disease is restricted. Animal models are frequently used with 

murine cytomegalovirus the most commonly used model. However this is not without 

limitations. 
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The human immune response to CMV infection is generated by cells of both the 

innate and adaptive immune systems; with the innate immune system being the first 

line of defence against viral infection. This response is essential for the early 

detection of CMV as it enters the host cell to establish infection. The host recognises 

the virus as foreign and activates several mechanisms and pathways of innate 

immune response. These include inflammatory cytokines and interferon which help 

establish an antiviral state (Marshall & Geballe, 2009) and leads to up regulation of 

co-stimulatory molecules that are crucial for priming the adaptive immune response 

and also includes recruitment of professional antigen presenting cells (APCs), 

phagocytes and NK cells (Isaacson, Juckem et al., 2008) Innate immunity in the 

perinatal period is an important host defence against CMV infection, due to the 

immaturity of the adaptive immune response (Gibson, Piccinini et al., 2004). Studies 

have shown that CMV recognition by the innate response is mediated by TLR-2 

which recognises gB and gH, leading to activation of the NF-κB-dependent signal 

transduction pathway (Boehme, Guerrero et al., 2006). 

 

 

Following primary infection CMV is processed by APCs which stimulate the antigen 

specific host immune response, this adaptive response uses both humoral and 

cellular immunity to control CMV infection (Jackson, Mason et al., 2011) and to 

ultimately drive the virus into latency. Suppression of this immune control can lead to 

CMV reactivation or symptomatic primary infection, resulting in CMV disease 

(Steininger, 2007;Limaye, Kirby et al., 2008). Likewise, in the immature host CMV 

can have a devastating effect when acquired in utero.  

A whole range of proteins within CMV elicit a specific antibody response. These 

include the structural tegument proteins pp65, pp150 and pp28, capsid proteins 
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UL86 and UL48.5, the envelope glycoproteins gB, gH and gM and non-structural 

proteins such as the IE1 protein (Britt & Boppana, 2004;Gandhi & Khanna, 2004). 

Neutralising antibodies predominantly target the glycoproteins gB, gH/gL and gM/gN 

with the gB epitope  antigen domain1 being the dominant target (Britt, Jarvis et al., 

2005). gH/gL can also associate with UL128, UL130, and UL131A to form a 

pentameric complex (Ryckman, Rainish et al., 2008;Wang & Shenk, 2005;Adler, 

Scrivano et al., 2006) with antibodies targeting this complex contributing to a large 

fraction of the neutralising activity in CMV hyperimmune globulin (Fouts, Chan et al., 

2012) Overall antibodies against CMV may be crucial in restricting viral 

dissemination and  restricting the severity of clinical disease (Gerna, Sarasini et al., 

2008).  

In the context of T-cell responses; broadly targeted CMV specific T cells dominate 

the memory compartments of seropositive healthy adults, comprising on average 

10% of the overall  cluster of differentiation (CD) 4+ and CD8+ memory 

compartments in peripheral blood. It is now known that the CD4 and CD8 arms of 

the adaptive immune response target virtually the whole CMV proteome (Sylwester, 

Mitchell et al., 2005) with certain proteins more frequently targeted including pp65, 

IE1, IE2, UL48 and pp150.    

CMV specific CD8 T cells in healthy individuals are characterised by a late stage 

phenotype which shows high expression of CD57 and low levels of CD27 and CD28 

with high levels of perforin and granzyme A (Appay, Dunbar et al., 2002).  

 

The CMV-specific adaptive immune responses are difficult to monitor as primary 

infection in healthy adults is usually asymptomatic. However Wills et al, have shown 

that healthy CMV seropositive donors have high frequencies of CMV specific 

memory cytotoxic T lymphocyte precursors in their peripheral blood that strongly 
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recognise tegument protein pp65 (Wills, Carmichael et al., 1996). Thus, the majority 

of studies have been carried out in CMV-naive kidney transplant recipients who 

received a kidney from a CMV positive donor. In general following peak CMV 

replication CD4+ CMV specific T cells circulate and secrete Th1 cytokines including 

IFN-γ and TNF-α (van Leeuwen, Remmerswaal et al., 2004). This is subsequently 

followed by the appearance of CMV-specific CD8+T cells in the peripheral blood co-

expressing CD45RA and CD45R0 surface cell phenotype, and the cell cycle 

associated nuclear marker Ki67.  CD28 expression is lost  with variable expression 

of CD27 (van de Berg, van et al., 2008) and cells can express both perforin and 

granzyme B, making them capable of lysing CMV infected cells (Hertoghs, Moerland 

et al., 2010). Following CMV infection, virus-specific CD8+ T cells express CD45RA− 

CD45R0+ characteristic of memory T cells and gradually lose CD27 and re-acquire 

CD45RA expression, but still retain their human leucocyte antigen (HLA) class I-

restricted cytolytic potential (La & Diamond, 2012) 

 

1.8 Immune evasion 
 

CMV has evolved a multitude of immune evasion strategies. Multiple genes have 

been identified which subvert host immune surveillance and interfere with both the 

innate and adaptive host immune responses preventing viral clearance (see table 

1.1 (Miller-Kittrell & Sparer, 2009). The host immune response is dependent on MHC 

class I presentation of antigenic peptides on the host cell’s  surface to cytotoxic T 

cells (Cresswell, Ackerman et al., 2005). CMV down regulates this MHC class I 

response from the IE to L stages of infection.  
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During immediate early expression pp65 phosphorylates the IE-1 protein, selectively 

blocking the processing and presentation of IE derived peptides (Gilbert, Riddell et 

al., 1996). In addition CMV expresses US2, US3, US6, US10 and US11 that down 

regulate MHC class 1 expression by either interference with antigen processing, 

export or egress to the Golgi apparatus (Jones & Sun, 1997;Jones, Wiertz et al., 

1996;Ahn, Gruhler et al., 1997;Furman, Dey et al., 2002;Wiertz, Jones et al., 1996). 

US2 and US3 also target the MHC class II pathway resulting in down regulation of 

class II cell surface display.(Miller, Cebulla et al., 2001).  

Natural killer cells of the innate immune response will recognise and kill cells that fail 

to display class I MHC. The significance of this NK response is reflected in the 

evasion strategies CMV has evolved to impede NK cell activity (Wilkinson, Tomasec 

et al., 2008). These include a range of MHC class I homologues and other gene 

products that are capable of modulating both inhibitory and stimulatory NK receptors. 

These include UL40 which increases cell surface expression of HLA E protecting 

infected cells by providing an inhibitory signal to NK cells (Tomasec, Braud et al., 

2000). Other CMV genes which have been shown to manipulate the NK cell 

response are UL16, UL83, UL141 and UL142 (Dunn, Chalupny et al., 

2003;Chapman, Heikeman et al., 1999;Browne & Shenk, 2003;Tomasec, Wang et 

al., 2005;Wills, Ashiru et al., 2005) and a micro RNA miR-UL112 (Stern-Ginossar, 

Elefant et al., 2007) which block the effect of stimulatory NK signals. 
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Table 1-1 CMV genes involved in immune evasion; mechanism of evasion and effect 
on host immune response. 

 

 

Mechanism of evasion 

 

 

CMV Gene 

product 

 

Effect on immune system 

 

MHC Class I down-regulation 

  

 

US2, US3, US6, 

US11  

 

Decreased presentation of CMV 

antigens to CD8+ T cells  

Decreased presentation of CMV 

antigens to CD4+ T cells  

 

CMV-IE-1 phosphorylation  

 

 

UL83 (pp65)  

 

T cells cannot target first genes 

expressed upon reactivation  

 

MHC Class I homolog  

 

UL18  

 

 

Inhibition of macrophage cell lysis  

 

Inhibitory receptors, down regulation 

of ligands  

 

UL16, UL142  

 

Evasion of NK cells  

 

Up regulation of HLA-E and gpUL18 

 

UL40 

 

Evasion of NK cell mediated lysis 

 

Chemokine receptor  

 

US28  

 

Immune homing interference 

 

IL-10 homolog  

 

UL111a  

 

Immune suppression 

 

Inhibitors of apoptosis  

 

UL36, UL37  

 

 

Decrease in phagocytosis of 

infected cells by APCs  

 

Down regulation of MHC class I-

related chain B 

expression  

 

MicroRNA (miR-

UL112)  

 

Decreased recognition by NK 

cells and T cells via NKG2D  
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1.9 Transmission of CMV 
  

Transmission of CMV occurs at mucosal sites by direct or indirect person to person 

contact. Sources of CMV include urine, saliva, breast milk, cervical and vaginal 

secretions and semen, blood, and tears. CMV transmission can also occur via blood 

products and organ allografts (Stagno, 2001). In most individuals CMV infections are 

sub-clinical, however virus secretion can persist for years after congenital, perinatal, 

post natal and primary infections in adults. In particular urine and saliva of young 

children may contain high viral loads and are a major source of CMV infection 

(Murph & Bale, Jr., 1988;Staras, Flanders et al., 2008).  Perinatal transmission of 

CMV is common with virus acquired from the birth canal or breast milk (Stagno, 

2001;Schleiss, 2006), with 96% of seropositive mothers having CMV DNA detectable 

in mature breast milk during lactation (Hamprecht, Maschmann et al., 2001). It is 

also suggested that CMV can remain viable on environmental surfaces, therefore 

giving another possible mode of transmission (Stowell, Forlin-Passoni et al., 2012). 

In solid organ transplant recipients, CMV can be transmitted via the donor organ. 

CMV seronegative patients (R-) receiving an organ from a seropositive donor 

(D+)are at the highest risk of CMV infection and resulting CMV disease (Pereyra & 

Rubin, 2004). Typing of CMV has shown that even when the recipient is seropositive 

to CMV they are at risk of becoming infected with a different strain from the donor 

organ (Grundy, Lui et al., 1988) or can reactivate latent CMV. However, pre exsiting 

immunity is associated with lower risk of disease but is modulated by type of 

allograft, level of immunosurpression, HLA matching and the level of latent CMV in 

the organ (Stratta, Pietrangeli et al., 2010). 

In contrast seropositive allogeneic bone marrow transplant patients receiving bone 

marrow from a seronegative donor are at highest risk of CMV infection (Rubie, Attal 
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et al., 1993). Typing of CMV has shown that virus is reactivated in the host and that 

transfer of cellular immunity from a seropositive donor may also offer some 

protection against CMV replication (Wimperis, Brenner et al., 1986;Riddell, 

Watanabe et al., 1992). 

 

1.10 Epidemiology of CMV infection 
 

Infection with CMV is widespread across all global regions with an overall CMV IgG 

(against CMV antigens) seroprevalence rate of approximately 60% in adult 

populations. Seroprevalence generally increases with age and can vary widely 

depending on ethnicity and socioeconomic status, with highest rates (up to 100%) 

seen in developing countries throughout Africa and Asia (Ho, 1990;Cannon, Schmid 

et al., 2010). In women of childbearing age, CMV seroprevalence in the UK has been 

found to be 54% and independently associated with increasing parity, older age, 

lower social class, and being single at antenatal booking (Tookey, Ades et al., 1992) 

with similar rates observed in the USA (Staras, Dollard et al., 2006). In contrast 

seroprevalence in women of childbearing age in developing countries is >90% 

(Kenneson & Cannon, 2007) and has been linked to household size, hygiene 

standards and child care practices (Stagno, 2001). 
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1.11 Clinical manifestations 
 

CMV disease can follow primary infection, re-infection (with another strain) or 

reactivation. For the majority of patients primary (and recurrent) CMV infection has 

been described as ‘asymptomatic’ (Griffiths, Emery VC et al., 2009), however data is 

limited on the proportion of primary infections that are symptomatic. 

In renal and liver transplant patients analysis in the context of donor and recipient 

serostatus showed that, the majority (78%) of patients that were CMV seronegative 

at time of transplant developed CMV viraeima (primary infection), with the CMV 

seropositive recipients developing CMV viraeima in 54% of cases (reactivation/re-

infection) (Atabani, Smith et al., 2012). 

 In immunocompetent patients an infectious mononucleosis, similar to the syndrome 

associated with Epstein Barr Virus (EBV) may occur and has been attributed to up to 

20% of mononucleosis like cases (Klemola, Von Essen et al., 1970). Abnormal liver 

function, splenomegaly and reduced white cell counts have also been observed 

(Griffiths, Emery VC et al., 2009) However when the immune system is compromised 

for example with HIV infection, with acquired immunodeficiency syndrome (AIDS), 

following transplantation and in the neonate CMV can become pathogenic causing a 

range of clinical manifestations (Emery, 2001) see figure 1.4). 

Viral replication and load have been shown to be important factors in pathogenesis, 

with a direct association between CMV viral load and disease (Cope, Sweny et al., 

1997;Hassan-Walker, Kidd et al., 1999;Emery, Sabin et al., 2000;Regoes, Bowen et 

al., 2006). A threshold relationship between CMV viruria and disease has been 

described in renal transplant patients where the quantity of CMV in urine was directly 

linked to the risk of CMV disease in a non-linear fashion (Cope, Sweny et al., 1997). 
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Figure 1-4: CMV-induced disease pathology.  

CMV causes disease in individuals where the immune system is compromised (adapted 

from Poole et al; 2014) 
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1.11.1 CMV in transplantation 

 

In transplant recipients CMV infection can have both direct and indirect effects 

(figure 1.5) with direct effects being associated with high CMV viral loads and the 

detection of the virus in the affected organ. CMV has also been associated with other 

indirect clinical conditions which can occur without CMV  but whose incidence is 

increased when CMV is present (figure1.5).  
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Figure 1-5: Overview of the direct and indirect effects of CMV in transplantation.  

MHC: major histocompatibility complex, EBV: Epstein–Barr virus, and PTLD: post-transplantation lymphoproliferative disorder. 

(Reproduced with permission from(Fishman, 2007).
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1.11.2 CMV and HIV  

 

Prior to the introduction of highly active antitretroviral therapy (HAART), CMV was 

one of the most frequent opportunistic infections in HIV-positive patients in 

developed countries and a major cause of mortality and morbidity (Bowen, Griffiths 

et al., 1996;Gallant, Moore et al., 1992) with up to 9% of AIDS patients developing 

CMV disease (Gallant, Moore et al., 1992) and up to 44% of patients developing a 

CMV-associated disease during the course of their HIV infection predominately CMV 

retinitis (Hoover, Saah et al., 1993) Other manifestations include gastrointestinal 

disease ( colitis, esophagitis and gastritis), neurological disease 

(meningoencephalitis, neuritis or polyradiculopathy), and pulmonary disease 

(pneumonitis). The frequency of clinical manifestations of CMV infection was shown 

to be related to the CD4+ T-cell count with CMV disease rarely observed until the 

CD4+ T-cell count dropped below 100 cells/µl or when other signs of severe 

immunodeficiency, such as other opportunistic infections, were present (Crowe, 

Carlin et al., 1991). 

 With the introduction of HAART in the mid-1990s, there was a sharp decline in CMV  

disease (Ledergerber, Egger et al., 1999); (Brodt, Kamps et al., 1997). A natural 

history study showed that asymptomatic CMV viraemia disappeared in patients given 

HAART, presumably due to the re-appearance of CMV specific immune responses 

(Deayton, Sabin et al., 2002) 
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1.11.3 HIV and CMV infant acquisition 

 

An increased prevalence of CCMV in children infected with HIV compared with those 

who are uninfected has been reported (Doyle, Atkins et al., 1996) with the French 

perinatal cohort reporting a threefold higher risk of developing symptomatic CCMV in 

HIV infected newborns compared to HIV uninfected newborns with CCMV (Guibert, 

Warszawski et al., 2009). However data on the incidence of CCMV in HIV-positive 

mothers in resource-limited settings is lacking. 

Vertical transmission of CMV in HIV infected mothers to their infants has been 

shown to be more frequent, with one African study in Kenyan infants  reporting that 

17% of HIV infected mothers had detectable viraemia (Slyker, Lohman-Payne et al., 

2009b) and a cumulative incidence of  CMV DNA detected in the plasma of  90% of 

HIV-exposed but uninfected infants and 93% of infants who had acquired HIV-1 in 

utero by 3 months of age (Slyker, Lohman-Payne et al., 2009). In the setting of 

maternal HIV-1 infection maternal CD4 measurements, HIV-1 RNA viral load, CMV 

viral load and death have been reported to correlate with subsequent infant disease 

progression and mortality, though the precise mechanisms are unknown (Obimbo, 

Mbori-Ngacha et al., 2004;Ioannidis, Tatsioni et al., 2004;Newell, Coovadia et al., 

2004;Abrams, Wiener et al., 2003;Slyker, Lohman-Payne et al., 2009b). In Vitro, 

HIV-1 replication has been shown to be up-regulated in syncytiotrophoblast cells of 

the placenta  when co-infected with CMV suggesting that interactions betweenHIV-1 

and CMV may contribute to virus transplancental transmission  (Toth, Mosborg-

Petersen et al., 1995).    
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1.12 Treatment of CMV infection 
 

1.12.1 Antiviral therapy 

 

There are currently four antiviral drugs available for the treatment of CMV infections: 

ganciclovir (GCV), valganciclovir (VGCV), foscarnet (FOS), and cidofovir (CDV). 

Their mechanisms of action are summarised in figure 1.6 

 

Ganciclovir  

 

GCV is a deoxyguanosine analogue and in 1988 was the first drug to be approved 

for the treatment of CMV. Since then, it has remained the first-line treatment for CMV 

infections. VGCV is a prodrug (L valyl-ester formulation) of GCV that can be given 

orally. After oral administration VGCV is rapidly converted to GCV by intestinal and 

hepatic esterases. 

In a CMV infected cell, GCV is selectively phosphorylated by the viral protein kinase 

homologue pUL97 (the product of the UL97 gene). Following this initial 

phosphorylation cellular kinases convert GCV monophosphate ( GCV MP) into an 

active GCV triphosphate (GCV TP), which potently inhibits the CMV DNA 

polymerase by direct competition with deoxyguanosine triphosphate on the enzyme 

binding site. GCV TP is also actively incorporated into the viral DNA, where it acts as 

a chain terminator (Biron, Stanat et al., 1985;Balfour, Jr., 1999;Sullivan, Talarico et 

al., 1992)  
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Foscarnet and Cidofovir 

 

FOS and CDV are also potent inhibitors of the viral DNA pol. However due to their 

toxicity profiles, they are usually reserved for treatment of patients who have failed or 

who do not tolerate GCV therapy. CDV is a nucleotide analogue of cytidine that is 

phosphorylated into its active form by cellular enzymes (Cihlar & Chen, 1996). Once 

it is in its active diphosphate form, CDV inhibits CMV DNA pol by a mechanism 

similar to that of GCV. 

FOS is a pyrophosphate analogue and differs from CDV and GCV by the fact that it 

does not require any step to convert it into an active form. FOS mode of action is that 

it binds to and blocks the pyrophosphate binding site on the viral polymerase, 

preventing incorporation of incoming deoxynucleoside triphosphates (dNTPs) into 

viral DNA (Chrisp & Clissold, 1991). 
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Figure 1-6: Mechanisms of action of systemic antivirals ganciclovir, foscarnet and 

cidofovir against CMV infection. 

 

GCV and CDV, once phosphorylated, compete with dNTPs for the binding site on the DNA 

pol (A) and are incorporated into CMV DNA (B), thus inhibiting viral DNA replication. FOS 

directly inhibits viral DNA replication by blocking the pyrophosphate (ppi) binding site(C), 

thus preventing ppi cleavage from incoming dNTPs and subsequent incorporation of the 

nucleotide into viral DNA.  

MP: monophosphate, DP: diphosphate, and TP: triphosphate. 

(Reproduced with permission from(Gilbert & Boivin, 2005). 
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1.12.2 Other treatments under development with activity against CMV 

infection 

 

Several experimental agents with much lower toxicity compared to GCV, FOS and 

CDV have recently been developed and evaluated in clinical trials 

These drugs include maribavir, brincidofovir and letermovir and CMV 

immunoglobulin. 

 

Maribavir 

 

Maribavir (originally named 1263W94) is an inhibitor of the UL97 protein kinase of 

CMV which actively inhibits inhibits viral DNA assembly and egress of viral capsids 

from the nucleus of infected cells (Biron, Harvey et al., 2002). Maribavir originally 

showed promise in a phase 2 clinical trial in allogeneic stem cell transplant patients 

(Winston, Young et al., 2008) but failed to meet study goals in two phase 3 trials. 

One in allogeneic HSCT recipients and the other in liver transplant recipients. Both 

studies showed a good safety profile for maribavir but its efficacy for CMV prevention 

was sub-optimal (Marty, Ljungman et al., 2011;Marty & Boeckh, 2011). The failure of 

the trial has been suggested to be related to study design and the dose selected for 

the study (Marty & Boeckh, 2011). Resistance to maribavir has already been seen 

(Avery, Marty et al., 2010) 
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Brincidofovir 

 

Recently brincidofovir a lipid prodrug of CDV that produces high intracellular levels of 

CDV diphosphate has been shown to prevent CMV disease in stem cell 

transplantation (Marty, Winston et al., 2013). The addition of a lipid side chain has 

improved the absorbency of the prodrug across plasma membranes limiting the 

amount of drug in the general circulation and its associated renal toxicity.    

 

Letermovir 

 

Letermovir inhibits the viral terminase  enzyme complex UL56 (Goldner, Hewlett et 

al., 2011). This inhibition allows the CMV DNA to be produced but stops it from being 

packaged into infectious particles. The drug has proven to be well tolerated and 

demonstrated clinical efficacy when used prophylactically in a phase 2 trial in stem 

cell transplantation, meeting all primary endpoints (Chemaly, Ullmann et al., 2014). 

 

Cytomegalovirus immune globulin 

 

CMV immune globulin is used in combination with an antiviral agent for prophylaxis 

of high-risk transplant recipients and has been approved by the United Stated Food 

and Drug Administration when given in conjunction with GCV. Recent data have 

evaluated the efficacy of CMV immunoglobulin in pregnant women with primary CMV 

infection to reduce the rate of vertical transmission and improve neonatal outcome 

with no significant difference reported compared to recipients of placebo (Revello, 

Lazzarotto et al., 2014) 
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1.13 Prevention 
 

1.13.1 Vaccine 

 

The development of a safe and effective vaccine against CMV infection is one of the 

highest health priorities as the  Institute of Medicine has reported that a vaccine able 

to protect against cytomegalovirus infection would be highly cost effective(Stratton, 

Durch et al., 2001) The estimated costs of medical and educational care for children 

affected by CCMV in the USA were $1.9 billion per year, whereas the investment 

needed to develop a CMV vaccine would be approximately $360 million.  

 However CMV is a highly diverse virus with immune evasion strategies that allow it 

re-infect and reactivate from latency, so it represents a more complex target than 

other viruses for which vaccines have been developed. 

Several CMV candidate vaccines have been evaluated (Cheeran, Lokensgard et al., 

2009). In a clinical trial a live attenuated vaccine produced from the Towne strain of 

CMV induced protection from severe cytomegalovirus disease but not CMV re-

infection following renal transplantation; vaccine development was subsequently  

discontinued (Plotkin, Higgins et al., 1994).  

Pass et al. published the first results of a phase 2, randomised, double-blind, 

placebo-controlled clinical trial of a recombinant CMV gB vaccine with MF59 

adjuvant. The vaccine protected 50% of seronegative women against primary CMV 

infection and the authors concluded that the vaccine has potential to decrease cases 

of maternal and congenital CMV infection (Pass, Zhang et al., 2009). The same 

vaccine or placebo was given to both seronegative and seropositive candidates 

awaiting solid organ transplantation. The vaccine reduced both the level of viraemia 

and the need for pre-emptive treatment post transplant and the correlate of 
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protective immunity was found to be the antibody titre against gB (Griffiths, Stanton 

et al., 2011).  

Another phase 2, randomised, placebo-controlled clinical trial used two DNA 

plasmids (gB and pp65) in seropositive patients undergoing stem cell transplants;  

the need for preventative treatment was reduced and the correlate of protection was 

the number of ELISPOT  forming cells (Kharfan-Dabaja, Boeckh et al., 2012). These 

results suggest that a CMV vaccine can both protect against primary CMV infection 

and boost natural immunity in the seropositive host. However, future studies, such as 

a phase 3 clinical study, are needed to confirm the efficacy of these vaccines. 

 

1.13.2 Preventative Programmes 

 

Preventative programs for congenital CMV infection have been developed by the 

Centers for Disease Control and Prevention (CDC) and the American College of 

Obstetricians and Gynaecologists in the United States to educate pregnant women 

to reduce their exposure to CMV. Saliva and urine from young children are 

significant sources of CMV infection for  pregnant women (Adler, 1991;Staras, 

Flanders et al., 2008) and educating pregnant women in  good personal hygiene 

practices (i.e. hand washing, not sharing food utensils and not kissing young children 

on the mouth)  has reduced the risk of CMV infection when compared to non-

pregnant mothers attempting conception (Adler, Finney et al., 2004). A recent 

randomised controlled trial showed that hygiene information given to CMV 

seronegative pregnant women significantly prevents maternal infection, with  

the cmv conversion rate of 1.2% in the intervention group vs 7.6% in the comparison 

group (Revello, Tibaldi et al., 2015). 
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Sexual transmission from a seropositive male partner should also be considered as 

a potential route by which women may be infected with CMV (Fowler & Pass, 2006) 

and condoms can be used to prevent infection. 

Overall, it is likely that both virus acquired from young children and sexually are 

responsible for reinfection of seropositive mothers with new or different strains of 

CMV and promoting awareness of  congenital CMV (CCMV) and preventative 

measures to all prospective mothers remains a key health target (Nyholm & 

Schleiss, 2010) 

 

1.14 Congenital CMV 
 

1.14.1 Epidemiology of Congenital CMV  

 

CMV is the most common congenital virus infection, affecting about 2 to 22 

newborns per 1000 every year depending on the population (Kenneson & Cannon, 

2007). The epidemiology has a complex relationship with maternal infection; CCMV 

can result from primary infection, reinfection (by another strain), or by reactivation of 

latent virus. Significant differences in seroprevalance exist between populations, 

which correlate closely to socioeconomic status and race (Cannon, Schmid et al., 

2010;Kenneson & Cannon, 2007;Stagno, Dworsky et al., 1982) and as a result up to 

50% of women of child-bearing age  may be susceptible to primary CMV infection in 

developed countries (Cannon, 2009). Primary infection has been reported to occur in 

1 to 8% of initially seronegative pregnant women (Rahav, 2007) however, primary 

CMV infection in the mother is rarely diagnosed during pregnancy as the infection is 

mild or asymptomatic (Stagno, Reynolds et al., 1977).  Viral transmission from 

mother to fetus occurs at the uterine-placental interface (Maidji, McDonagh et al., 
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2006). The risk of fetal infection is highest in maternal primary infection with an 

overall transmission rate of rate of 32% (Kenneson & Cannon, 2007). This risk in 

primary infection has been reported to increase with gestational age in some studies, 

up to 77% in the third trimester (Bodeus, Hubinont et al., 1999), however severe 

sequelae are considered to be more common if the fetus becomes infected early in 

gestation. The risk of CCMV is significantly lower in infection resulting from 

reactivation or re-infection in the mother with a reported transmission rate of 1.4% 

(Kenneson & Cannon, 2007) as preconceptional immunity against CMV provides 

partial but incomplete protection against intrauterine transmission (Boppana, Rivera 

et al., 2001). There is a 69% reduction in risk of having a baby with CCMV in 

seropositive women compared with seronegative women from the same community 

(Fowler, Stagno et al., 2003). 

Therefore the prevalence of CCMV varies widely around the world.  Two recent 

systematic reviews reported an overall prevalence of 0.64% and 0.7% (Kenneson & 

Cannon, 2007;Dollard, Grosse et al., 2007).  In general the incidence of CCMV 

infection increases with maternal seroprevalence, with regions where maternal 

seroprevalance is low reporting rates of CCMV to be 0.6-0.7%, whilst in highly 

seropositive populations rates of CCMV infection have been reported to be 1-5%, the 

difference reflecting the increased chance of reactivation or reinfection within the 

seropositive mother (Kenneson & Cannon, 2007;Dollard, Grosse et al., 2007).  

However the full clinical burden of CCMV in a high seoprevalence setting is yet to be 

defined. Estimates of the prevalence of CCMV infection and sequelae in infected 

children in high (90%)- and low (50%)-seroprevalence settings are summarised in 

figure 1.7 with estimated numbers taken from systemic reviews of the literature. 
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1.14.2 Clinical Manifestations of Congenital CMV & Burden of Disease 

 

No recent data exist for the burden of CCMV in the UK. Systematic reviews of 

published work indicate that, in the USA approximately 13% of infected infants show 

severe clinical sequelae at birth with neurological damages, sensorineural hearing 

loss (SNHL), visual impairments or mental retardation (Dollard, Grosse et al., 2007). 

Organ damage in the fetus is thought to be caused by virus replication and placental 

dysfunction (Adler & Marshall, 2007). The effects of CMV can include growth 

retardation, prematurity, splenomegaly, hepatomegaly, thrombocytopenia, 

microcephaly, pneumonitis, jaundice and cerebral calcifications.  

Within this symptomatic group there is a perinatal mortality rate of around 0.5%, with 

70-80% of the surviving babies having major neurological sequelae with poor 

prognosis (Dollard, Grosse et al., 2007) 

Children who are born without symptoms at birth (asymptomatic) are at risk of 

developing late onset disease. The majority (90%) of CCMV infected infants appear 

asymptomatic at birth but sequelae can develop months or years later affecting 14% 

overall (Dollard, Grosse et al., 2007). Although the risk for an infected fetus is higher 

if the mother has primary infection, the seroprevelance of CMV is so high worldwide 

that many cases of CCMV are born to ‘immune’ mothers (Cannon, Schmid et al., 

2010). This complex epidemiology has implications for the deployment of vaccines to 

prevent disease caused by CCMV. 
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Figure 1-7:  Estimates of the prevalence of CCMV infection and sequelae in infected children in 

high (90%) and low (50%) seroprevalence settings.  

The following assumptions are made: risk of primary infection 2%, risk of intrauterine transmission in primary 

infection 40% and in CMV positive mothers 1%. Sequelae rates are based on estimates from (Dollard, Grosse et 

al., 2007). Proportions within each category do not correspond to 100% because a child may have >1 

complication. The figure does not take into account the effect of maternal human immunodeficiency virus 

infection, racial or ethnic backgrounds which may increase the risk of CMV vertical transmission and sequelae in 

infected infants. ( Reproduced with permission from (Manicklal, Emery et al., 2013). 

 * most of the children in the asymptomatic group will have hearing loss. There are insufficient data to accurately 

estimate the number of children with cognitive/motor deficits and vision impairment 
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1.14.3 Hearing loss 

Hearing loss (HL)  is an  heterogeneous trait with many known genetic and 

environmental causes including infection (Nance, 2003). Establishing the incidence 

of congenital deafness in a population is complex and can vary widely, for example 

HL loss linked to congenital rubella infection, which can be epidemic in nature. Other 

environmental causes of hearing loss include prematurity, head trauma, 

subarachnoid haemorrhage, and drug ototoxicity.  

Genetic causes are classified according to the pattern of inheritance, clinical 

features, or the identification of the genetic mutation.  

Newborn hearing screening 

Two screening techniques are commonly used: 

 Automated auditory brain-stem response which measures average neural 

response to a large number of repeated sound signals of the same pitch and 

intensity 

 spontaneous or sound-induced otoacoustic emissions which detects sound 

produced by movements of outer hair cells of the cochlea. 

1.14.4 Sensorineural hearing loss 

 

Sensorineural hearing loss is the result of damage to the hair cells within the cochlea 

or the hearing nerve (or both). SNHL hearing loss changes both the ability to hear 

quiet sounds and the quality of the sound that is heard. SNHL is permanent as once 

the cochlea hair cells become damaged, the damage is irreversible. 
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 In the UK, childhood HL is defined as a bilateral SNHL of 40 dB or more, whilst in 

the USA a SNHL of 35 dB or more in either ear is typically the threshold used to 

identify patients who are referred for confirmatory testing. A combined reported 

incidence of HL for the UK and USA is 1.86 per 1000 newborns, increasing to 2.7 

per 1000 children at 4 years of age (Nance, 2003) see figure 1.8. 

SNHL is the most common long term complication of CCMV, with an overall 

prevalence of 10–15% (Dahle, Fowler et al., 2000;Dollard, Grosse et al., 2007;Ross, 

Fowler et al., 2006). In children who are symptomatic at birth with cytomegalic 

inclusion disease the prevalence is higher at 30-40%. SNHL from CCMV can be 

either unilateral or bilateral and can vary greatly from mild to profound deafness.  

Approximately half of SNHL attributable to CCMV infection are late-onset or 

progressive but the pathological mechanisms involved are unknown. CMV DNA has 

been detected in the perilymph of children undergoing cochlear implantation up to 

the age of 7 years (Bauer, Parizi-Robinson et al., 2005;Sugiura, Yoshikawa et al., 

2004;Di, Cattani et al., 2009) supporting the hypothesis of ongoing CMV replication 

in the inner ear (Di, Cattani et al., 2009). It is estimated that up to half of the children 

with CCMV related SNHL would not be detected by the newborn hearing screening 

(Fowler, Dahle et al., 1999). An alternative approach to preventing SHNL would be to 

identify neonates at birth by screening them for CCMV. The Collaborative Antiviral 

Study (CASG) showed in a randomised controlled trial that intravenous delivery of 

the anti-viral drug GCV reduces CMV replication and hearing deterioration in infants 

with symptomatic CCMV and central nervous system involvement (Kimberlin, Lin et 

al., 2003). A trial of orally administered VGCV in symptomatic infants comparing 6 

weeks treatment with 6 months did not improve hearing outcome in the short term 
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but reported modestly improved hearing and developmental outcomes in the long 

term (Kimberlin, Jester et al., 2015). Thus early diagnosis of CCMV infection could 

potentially allow for anti-viral treatment of CCMV to control hearing loss. However 

the side effects of GCV such as neutropenia can be severe, although reversible.
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Figure 1-8: The incidence of deafness at birth in the UK and United States, and its prevalence at four years of age  

(reproduced with permission from (Nance, 2003). 

Abbreviations: CMV: cytomegalovirus, mtA1555G: the mitochondrial A1555G mutation, and EVA enlargement of the vestibular 

aqueduct.
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1.14.5 Diagnosis of CCMV 

 

The asymptomatic nature of CCMV infection and progressive SNHL presents 

a diagnostic conundrum. Fowler et al reported in 1992 that after a mean follow 

up of 4.7 years 25% of children born to mothers with primary infection 

developed one or more sequelae. In children born to mothers who 

experienced non-primary infection (reinfection or reactivation) 8% of children 

developed one or more sequelae attributable to CCMV. SNHL is observed in 

approximately 10-15% of children with CCMV (Fowler, Stagno et al., 1992). 

The majority of children with hearing loss show delayed onset or progressive 

hearing loss during childhood. (Dahle, Fowler et al., 2000). Thus the presence 

of symptoms at birth cannot be used as a guide to choose who to test for 

CCMV; instead, a routine screening programme would be necessary. 

 

Classically; the diagnosis of CCMV infection was by the isolation of virus from 

urine or saliva within the first 3 weeks of life. This timeline was established as 

the earliest age that perinatal CMV infection could be detected in urine by cell 

culture was 3 weeks. 

CMV DNA detection by polymerase chain reaction (PCR) in urine, saliva and 

blood has recently been described as an alternative to cell culture for the 

diagnosis of CCMV (Coll, Benoist et al., 2009;Dollard, Schleiss et al., 

2010;Gandhi, Fernandez-Alvarez et al., 2010) 

However, early postnatal acquisition of infection is common, with CMV from 

perinatal infection being detected in blood as early as 12 days of life 

(Hamprecht, Maschmann et al., 2001) , so the timing of the sample is pivotal 

to the diagnosis (Peckham, Johnson et al., 1987).  
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Retrospective diagnosis 

 

 Diagnosis is not possible from urine or saliva samples taken after 14 days of 

age because perinatal infection cannot be excluded in these later samples. It 

is not possible, therefore, to determine whether late onset sequelae such 

SNHL and developmental delay identified in late infancy are due to CCMV or 

other factors such as an underlying genetic predisposition in a child with 

perinatal infection. 

 

Dried blood spots (DBS) are taken routinely 5–8 days after birth from every 

baby born in the United Kingdom. Small amounts of blood are collected on 

Guthrie cards and used in newborn screening assays to identify biochemical 

and genetic disorders including phenyleketonuria, congenital hypothyrodism 

and cystic fibrosis. In 1994, Shibata et al. first reported the successful 

detection of CMV DNA from DBS using PCR (Shibata, Takano et al., 1994). In 

2000 Barbi et al compared detection of CMV DNA from DBS using PCR with 

virus isolation for the diagnosis of CCMV and found 100% concordance 

between the two methods. These early results and the timing of the DBS 

showed DBS could potentially be used to identify congenitally infected 

newborns and secondly used to retrospectively confirm congenital CMV in 

children who present with unexplained SNHL and or neurological damage 

(Barbi, Binda et al., 2000). 
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Diagnosis of CMV infection in the mother and  fetus 

 

The majority of maternal primary infections are asymptomatic, those that do 

report symptoms give a generalised illness with glandular fever or flu-like 

illness (Stagno, 2001). Maternal primary infection is proven by CMV IgG 

seroconversion (CMV IgG negative to CMV IgG positive). CMV IgM may also 

be present but interpretation can be difficult as IgM can persist for months 

after primary infection and can be present after reactivation and reinfection 

(Lazzarotto, Varani et al., 1999;Lazzarotto, Gabrielli et al., 2004) Therefore, a 

positive CMV IgM and or IgG should be further investigated by using an 

avidity assay to determine the binding maturity of the CMV IgG antibodies.  

CMV IgG antibodies that exhibit low-affinity (those that bind less tightly with 

their target protein) are an indication that infection occurred <20 weeks prior 

to testing(Grangeot-Keros, Mayaux et al., 1997).  As antibodies mature their 

binding affinity increases (affinity maturation), a high CMV IgG avidity index 

can exclude a recent primary infection and when detected before 12 to 16 

weeks of gestation indicates a significantly lower risk of CCMV (Lazzarotto, 

Spezzacatena et al., 1999) The combination of low-avidity CMV IgG 

antibodies together with a positive CMV IgM strongly indicates a maternal 

primary CMV infection  in the preceding 3 or 4 months (Lazzarotto, Varani et 

al., 2000).  

Once CMV infection is established in the mother, fetal infection and prognosis 

can be closely monitored  by 2 to 4 weekly fetal ultrasound (US) examinations 

and  amniotic fluid viral load testing (Yinon, Farine et al., 2010) as cerebral 

ultrasound abnormalities are strongly associated with a poor prognosis 



 
 

63 
 

(Benoist, Salomon et al., 2008). Amniotic fluid CMV viral load confirms fetal 

infection but timing of amniotic fluid sampling is critical to its diagnostic 

sensitivity, with amniocentesis carried out after 20 weeks gestation and at 

least 7 weeks post maternal infection (Liesnard, Donner et al., 2000;Donner, 

Liesnard et al., 1994;Revello & Gerna, 2002). The first time requirement is to 

allow for fetal kidney function to be well established so that CMV appears in 

the amniotic fluid; the second is to allow for a presumed delay while CMV 

passes from the maternal to the fetal compartments. 

 

1.14.6 Treatment of congenital CMV infection 

 

Prenatal treatment 

 

GCV cannot be used in pregnancy due to its mutagenic potential in animals. 

Valaciclovir has been given to pregnant women with primary CMV infection 

and proven fetal infection which appears safe and decreases the circulating 

viral load (Jacquemard, Yamamoto et al., 2007). 

CMV hyper immune globulin has also being used in a non-randomised trial to 

prevent CMV transmission to the fetus and improve neonatal outcome with 

some benefit reported (Nigro, Adler et al., 2005). However a recent 

randomised controlled trial showed no significant reduction of intrauterine 

transmission of CMV (Revello, Lazzarotto et al., 2014). 
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Treatment of the Neonate 

Currently GCV and VGCV are the preferred antivirals  for the treatment of 

CCMV (Faulds & Heel, 1990) with a  6-week course of intravenous GCV or 

oral VGCV considered for neonates born with central nervous system 

involvement (CNS) (Gandhi, Fernandez-Alvarez et al., 2010). 

 The efficacy of GCV for the prevention of progressive hearing loss in infants 

with proven congenital CMV CNS disease (microcephaly, other neurological 

findings, neuroimaging abnormalities, or hearing loss) was evaluated in a 

randomized trial by Kimberlin et al in 2003. Results showed that after 12 

months of follow-up, a higher rate of normal hearing, improved hearing or 

prevention of worsening of hearing in those with a baseline hearing deficit, 

was seen in children who had a 6-week course of intravenous GCV, 

compared to children with no therapy (Kimberlin, Lin et al., 2003). A 

secondary analysis on the same study population also showed neurological 

benefits following GCV treatment with children who received GCV having 

fewer developmental delays at 6 and 12 months than untreated infants 

(Oliver, Cloud et al., 2009). However, side effects of GCV include bone 

marrow toxicity, particularly neutropenia, thrombocytopenia and anaemia. 

A randomized multicentre placebo-controlled trial (CASG112; NCT00466817) 

commenced in 2008 to compare the clinical benefit of 6 weeks versus 6 

months of VGCV in symptomatic infants to define the role of prolonged 

antiviral therapy and address if a reduction in ongoing viral replication in end 

organs may contribute to improved long-term outcome. The results reported 

did not improve hearing outcome in the short term but reported modestly 
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improved hearing and developmental outcomes in the long term (Kimberlin, 

Jester et al., 2015). 

1.14.7 Screening for congenital CMV 

 

Screening is defined as, ‘a systematic application of a test to asymptomatic 

individuals at risk of a specific disorder to trigger further investigation or 

preventative action’ (Wald, 2008). CCMV may be appropriate to include in 

national newborn screening programs because of its incidence (it is more 

common than other disorders tested for by programs) and the fact that it is a 

major cause of disability.  To date the most significant obstacles to the 

implementation of screening for CCMV include the lack of a standardised 

high-throughput screening test and a protocol for follow-up of CMV-infected 

children. However the possibility of prompt diagnosis of CCMV should not be 

underestimated as it is crucial in minimising the impact of CCMV disease. 

The CCMV disease burden in the USA in 1990’s was estimated to be 1.86 

billion dollars annually (>300,000 US dollars per child)(Arvin, Fast et al., 

2004). Universal newborn CMV screening would identify infants at risk of 

CMV disease including hearing loss, and could lead to early intervention such 

as cochlear implants which may reduce the impact of hearing loss on speech, 

language and social development. Thus, early diagnosis could allow 

interventions to compensate for hearing loss.  This is very important as it 

could prevent further deterioration in hearing and language skills which in turn 

could mean the difference between the child being moderately deaf and 

profoundly deaf with implications for schooling and social development. A 

major barrier to a screening programme for CCMV is that to date no approved 
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and validated intervention for CCMV exists. Although GCV therapy has been 

shown to prevent progression of hearing loss in symptomatic babies the side 

effects can be severe and there is no evidence base to support its use as a 

treatment in asymptomatic children. However screening would provide early 

detection of CCMV infected infants and therefore provide the opportunity for 

early intervention and enhanced monitoring of affected infants for late onset 

disease.  The development of a suitable screening test could help recruit 

children into a randomised controlled trial to determine if GCV is effective at 

reducing SNHL. 

The most obvious platform for congenital CMV screening would be the 

neonatal DBS, which are routinely used to screen for other inherited 

conditions. Detection of CMV DNA from DBS has been suggested for 

screening but this approach has not yet been demonstrated to be sensitive 

enough for use in a large-scale newborn screening programme. However, 

methods for the extraction and detection of CMV DNA are dynamic and 

rapidly improving as DNA extraction methods and PCR assays are refined.  

Therefore it is envisaged that if a sufficiently sensitive and specific test did 

become available, the costs and logistics of adding a PCR-based test to the 

newborn screening programme would require careful consideration. 

 

 

 

 

 



 
 

67 
 

1.15 Aims of this thesis 
 

1.15.1 Setting the scene 

 

The work in this part time PhD thesis began in 2005. Therefore it is important 

to 'set the scene' of diagnostic testing for CCMV as the field of viral molecular 

diagnostic testing has dramatically changed during the course of this thesis 

with PCR now the method of choice for much viral diagnostics. However this 

was not the case in 2005, where the method of choice for the diagnosis of 

congenital CMV was restricted  to cell culture with  the isolation of CMV from  

urine samples taken within the first 21 days of life being the 'gold standard'  

diagnostic test. This method was used for  both diagnostic testing and large 

epidemiological studies (Adler, 2007). However this method does not lend 

itself to high throughput and relies on virus remaining viable prior to 

inoculation in cell culture.  With the development of PCR, Shibata et al were 

the first to report that CMV DNA could be detected from DBS using PCR in 

1994 (Shibata, Takano et al., 1994)  followed by Barbi et al in 1996 and 2000 

when their study compared detection of CMV DNA from DBS using PCR with 

virus isolation for the diagnosis of CCMV and found 100% concordance 

between the two methods. (Barbi, Binda et al., 2000). These early results and 

the timing of the  newborn DBS suggested that DBS could be used to 

retrospectively confirm congenital CMV in children with compatible symptoms, 

but still had many unanswered questions regarding the DBS as a sample 

matrix and its applicability for screening. 
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Therefore the aim of this thesis is to study several aspects of detection of 

CMV from DBS. I will systematically address the concerns surrounding DBS 

as a sample type and their potential to be used in general for both 

retrospective diagnosis of CCMV and to facilitate modern diagnostic testing in 

resource limited settings. Finally I will apply this knowledge to assess the 

feasibility of using DBS for screening newborns for CCMV. I will use an 

iterative approach of devising an assay, using it to test defined cohorts of 

patients, redefining the assay and testing it on additional cohorts. Overall, I 

hope to facilitate development of a testing programme for CCMV in the UK by 

devising a highly sensitive high throughput assay that is suitable for both 

detection of CMV in clinical cohorts and in newborn screening. 

 

Evaluation of CMV DNA detection from DBS 

Detection of CMV DNA can vary depending on the method of DNA extraction 

from the cards (Soetens, Vauloup-Fellous et al., 2008), the amplification 

method used and the region of the CMV genome being detected (Barbi, Binda 

et al., 2006). I have addressed these issues by evaluating and optimising 

DNA extraction and PCR methods to develop a DBS assay for the detection 

of CMV DNA (Chapter 3) Secondly, the assay developed has been used to 

address concerns raised in the literature over the stability of CMV DNA in 

DBS over time and the risk of cross contamination under standard UK storage 

conditions (Chapter 3). Finally, the DBS sample was systematically evaluated 

against 'gold standard' reference plasma samples for the diagnosis of CMV 

infection in a clinical cohort with a high prevalence of CMV (Chapter 5). 
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The introduction of a national diagnostic service for the retrospective 

diagnosis of CCMV from DBS 

This topic is addressed in several ways. Firstly, the sensitivity and specificity 

of the assay was optimised in a clinical cohort of children with laboratory 

confirmed CCMV (Chapter 3). The optimised DBS assay developed in chapter 

3 and 4 was then used to investigate the role of CCMV in SNHL and a 

diagnostic algorithm for the retrospective diagnosis of CCMV from children 

with SNHL was developed and adopted for use in the UK (Chapter 4). Finally 

the DBS assay was introduced into the routine diagnostic service of the 

laboratory for the retrospective diagnosis of CCMV in children with compatible 

symptoms (Chapter 6). 

 

The use of DBS in clinical cohorts for the detection of CMV infection 

The applicability of the DBS sample type, to facilitate modern diagnostic  

testing methods in resource limited settings was addressed, DBS  samples 

were analysed for the detection of CMV infection in two cohorts of infants born 

to HIV positive mothers in resource limited settings. The results were used to 

investigate the role of maternal CMV levels in multiple compartments during 

the antenatal/postpartum period and their association with infant CMV 

acquisition (chapter 7). 

Potential for the use of DBS in newborn screening for CCMV 

The results of the previous studies were used to address the feasibility of 

screening newborns for CCMV by the laboratory analysis of the newborn 

DBS. Firstly the developed methods were adapted to be suitable for larger 
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volume testing and the resulting methods tested in two large clinical cohorts 

(Chapter 6 and 7). Secondly the sensitivity of the DBS assay was addressed 

by the development of a one-step nested PCR with high analytical 

performance that is suitable for high throughput (Chapter 6). Finally the 

potential of the high throughput nucleic acid extraction and one step nested 

protocol for newborn screening was determined (Chapter 6).
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Chapter 2  

2 General Materials and Methods 
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2.1 Study Timeline 
 

The work in this part time thesis was undertaken over a period of 8 years 

(including a year of maternity leave).  It is therefore important to understand 

the study timeline in relation to the results and development work. The work 

started in 2005 and developed from an interest in diagnostic testing whilst 

working full time as a diagnostic scientist in the Department of Virology at the 

Royal Free Hospital, London and has been performed alongside this full time 

diagnostic role . As part of this job I had undertaken testing for CCMV and 

developed an interest in this area. 'Proof of concept' papers had just been 

published for the  detection of CMV DNA from dried blood spots in the 

retrospective diagnosis of CCMV, but there was no offer of this test routinely 

in the UK. Alongside this interventions; including the use of antivirals in the 

treatment of CCMV had recently been described and the awareness of CCMV 

was increasing therefore there was a need for an accurate and reliable 

diagnostic test for CCMV in the UK. This test was offered routinely from 2005 

onwards with the aim of setting up an assay suitable for screening for CCMV. 

This study has taken an iterative approach and as new methods have been 

developed they have been assessed and validated  with the outcome of assay 

improvement.  
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2.2 Clinical Collaborations 
 

Clinical collaborations were set up with the following groups. 

British Paediatric Surveillance Unit: Congenital CMV Study  

The Unit was set up in 1986. It is a joint initiative of the Royal College of 

Paediatrics and Child Health, Public Health England (PHE) and the Institute of 

Child Health (ICH) to support research into rare childhood disorders. Children 

born in the UK with suspected or laboratory diagnosed CCMV were reported 

between 2001-2002 by paediatricians via the British Paediatric surveillance 

unit (BPSU) notification system (BPSU 17th Annual report, 2002-2003). CCMV 

cases were confirmed on the basis of PCR or virus isolation from urine, blood, 

saliva or tissue taken at biopsy within 3 weeks of birth.  ‘Possible’ CCMV 

cases were infants with positive samples only after 3 weeks of age and 

symptoms compatible with CCMV which were not accounted for by any other 

diagnosis. The DBS of children reported via the BPSU notification system 

were retrieved from storage after obtaining the parents’ consent. All residual 

DBS material was tested under code with local ethical approval. At time of 

analysis the clinical presentation (CMV status) and outcome of the children 

was not known. 

CMV in hearing impaired children (CHIC study)  

An independent ethically approved study 'CMV in Hearing Impaired Children' 

(CHIC) was established to look at the relationship between CCMV and SNHL. 

The study was conducted over 14 months and recruited patients from 5 

national health service (NHS) sites (Royal Ear Nose and Throat Hospital, 

London, Bradford Teaching Hospitals NHS Trust, Queen's Medical Centre 

Nottingham, Milton Keynes General NHS Trust and Northampton General 
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NHS Trust) From April 2005 to June 2006 potentially eligible participants were 

identified by informing Consultant audiological physicians (community and 

hospital-based), Consultant paediatricians, neonatologists, virologists, and 

fetal medicine Consultants of the study and asking them to report any children 

with CCMV or unexplained SNHL. Signed informed consent was obtained 

from the parents/guardians to allow retrieval and testing of the child's residual 

DBS for CMV DNA and data collection from the child's notes. All testing of 

residual material was done under code. At time of analysis the clinical 

presentation (CMV status, hearing loss) and outcome of the children was not 

known 

Collaborative studies with the University of Washington, USA  

 

A collaborative study with the University of Washington, Seattle USA was  

undertaken on samples from Kenya.  All work performed by them is 

acknowledged in each chapter, all other work is my own.  

Participants 

All studies were approved by the University of Washington Institutional 

Review Board and the Ethics and Research Committee of Kenyatta National 

Hospital, and written informed consent was obtained from all mothers on 

behalf of themselves and their infants. A cohort of infants born to HIV infected 

women were used to study acute CMV acquisition and DBS detection 

methods. Specimens were selected from a larger perinatal HIV transmission 

cohort, details of which have been presented elsewhere (Lohman-Payne, 

Slyker et al., 2009;Lohman, Slyker et al., 2005;Obimbo, Mbori-Ngacha et al., 

2004;John-Stewart, Mbori-Ngacha et al., 2009;Gichuhi, Obimbo et al., 

2005;Lohman, Slyker et al., 2003). 
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2.3 Dried Blood Spots 

Clinical diagnostic samples 

 

Based on my preliminary results routine diagnostic testing of DBS samples for 

retrospective diagnosis of CCMV was introduced in 2005. DBS samples were 

received into the laboratory for the retrospective diagnosis of congenital CMV 

from throughout the UK. 

Laboratory prepared test DBS 

 

Newborn screening standard Whatman 903 cards (Whatman, GE Healthcare 

Maidstone, England) were obtained from NHS supplies within the Royal Free 

Hospital, London, UK.   

Test DBS were prepared from either CMV positive or negative anticoagulated 

(sodium citrate) whole blood samples from solid organ transplant recipients 

whose viral loads were previously determined for diagnostic purposes by 

quantitative real time PCR in our laboratory. DBS were prepared by applying 

50µl of whole blood with a wide range of CMV viral loads onto the Whatman 

903 card. The prepared cards were left to air dry overnight and then stored at 

room temperature, touching each other to mimic UK newborn screening 

laboratory storage conditions. 

 

Quality Control Molecular Diagnostic DBS proficiency panels 

 

Quality Control for Molecular Diagnostics (QCMD) is an independent 

international external quality assessment proficiency testing organisation. 

QCMD provides a CMV DBS panel as part of its congenital infection external 
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quality assurance programme. Blood spots are manufactured and represent a 

wide range of CMV viral loads. In this study the 2007 and 2011 CMV DBA 

panels were analysed. 

2.4 Extraction of viral DNA from DBS samples 
 

Unless stated, total nucleic acid was extracted from a semicircle of DBS 

(10mm diameter). On occasions where a semicircle was not available the total 

sample was used.  

Control measures  

Strict control measures to avoid false positive results were applied to all DBS 

processing (Kwok & Higuchi, 1989) of 3 separate rooms for PCR with strict 

protocol. To prevent contamination by carryover of CMV DNA the scissors or 

punch were washed thoroughly with 0.1M hydrochloric acid and 70% ethanol 

prior to and after cutting each DBS. Negative (blank) DBS were included as 

an extraction control and subjected to every step of the process to ensure no 

contamination occurred. 

 

QiAmp DNA blood Mini kit  

Total nucleic acid was extracted from the DBS using the commercial 

extraction system Qiagen mini blood kit (Qiagen, Hilden, Germany) A 

semicircle of DBS was cut into 3 pieces and added to 180µ ATL buffer. The 

tube was vortexed for 10 seconds and then incubated at 85ºC for 10 minutes. 

The tube was centrifuged briefly (6,000xg for 1 minute) to remove any 

droplets from the lid and allowed to cool. Once cool, 20µl of proteinase K 
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(>600 mAU/ml) were added and the tube incubated at 56 ºC for 1 hour.  200µl 

of lysis buffer AL were added, mixed by vortexing and incubated at room 

temperature for 10 minutes, 200µl of absolute alcohol was added and the tube 

vortexed thoroughly. The lysate was then transferred to a QIAamp spin 

column and placed over a 2ml collection tube, after centrifugation at 6,000xg 

for 1 minute. The column was placed onto a new 2ml collection tube and 

washed by the addition of 500μl of Buffer AW1. The spin column was then 

centrifuged at 6,000xg, 1 minute, after which the collection tube was changed 

and 500μl Buffer AW2 were added, the column centrifuged at 14,000xg, 3 

minutes. An extra spin was performed (6,000xg for 1 minute) to ensure 

complete removal of buffer. The spin column was then placed on a 1.5ml 

microcentrifuge tube and the resulting nucleic acid was eluted into 60ul of AE 

buffer by centrifuging at 6,000xg for 1 minute. The eluted nucleic acid  was 

stored at -20ºC. 

 

EasyMAG extractions  

Semi-automated nucleic acid extractions were performed using the magnetic 

particle based extraction system the NucliSENS EasyMAG (Biomerieux, 

Marcy l'Etoile, France) with manual pre-treatment. Briefly half a DBS was 

added to 2mls of EasyMAG lysis buffer in a 5ml lidded tube and 20µl of 

proteinase K solution >600mAU/ml (Qiagen, Hilden, Germany) added. The 

mixture was rocked on a plate shaker at room temperature in a horizontal 

position for a minimum of 30 minutes. The tube was then spun in a centrifuge 

at 1500 x g for 30 seconds to remove any paper fibres. The resulting 

supernatant was then added to the EasyMAG and processed as per 
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manufacturer’s instructions running the “off board lysis protocol” (generic 

protocol, version 2.0.1) with an elution volume of 60µl. 

 

QIAsymphony Extractions 

Automated nucleic acid extractions were performed on the  QIAsymphony SP  

workstation (Qiagen, Hilden, Germany) using the QIAsymphony DNA mini kit 

(magnetic particle based automated extraction) with manual pre-treatment. 

Briefly, half a DBS was added to 400ul of ATL lysis buffer and 20µl of 

proteinase K solution >600mAU/ml (Qiagen, Hilden, Germany) in a 5ml lidded 

tube. The tube was then incubated in a waterbath for 1 hour at 56ºC. The tube 

was then spun in a centrifuge at 1500 x g for 30 seconds to remove any paper 

fibres. The resulting supernatant was then transferred to a 2ml tube and 

loaded onto the QIAsymphony SP workstation. Extraction was performed as 

per manufacturer’s instructions running the VirusBlood-V5_DSP protocol with 

an elution volume of 60µl 
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2.5 Quantitative TaqMan Real time PCR 

 

Principle of the TaqMan assay 

 

Traditionally a PCR is run to an end point, analysis is then performed to detect 

the  amplified product for example by running DNA on an agarose gel after 

the reaction has finished and visualising the product via intercalating dye. In 

contrast, real-time PCR allows the accumulation of amplified product to be 

detected and measured as the PCR progresses, that is, in “real time”. The 

TaqMan assay (Heid, Stevens et al., 1996) is based on two principles; Taq 

polymerase exhibits a 5’ to 3’ exonuclease activity (Holland, Abramson et al., 

1991) and the fluorescence resonance energy transfer (FRET) (Cardullo, 

Agrawal et al., 1988). In the TaqMan assay the Taq polymerase cleaves a 

target specific internal probe. This oligonucleotide probe is labelled at the 5’ 

end with a reporter fluorophore and a quencher dye at the 3’ end. When the 

probe is intact fluorescence of the reporter is quenched due to its proximity to 

the quencher. During the combined annealing/extension step of the 

amplification reaction, the probe hybridises to the target and the specific     

5'—>3' exonuclease activity of Taq cleaves off the reporter. The reporter dye 

energy is no longer transferred to the quencher (no FRET) resulting in a 

measurable fluorescent signal. This fluorescent signal is proportional to the 

amount of amplified product in the sample and increases with every PCR 

cycle. The TaqMan instrument reads the increase of fluorescence over PCR 

cycle (Rn) and constructs an amplification plot (figure 2.1) An arbitrary 

threshold is set for the PCR and the cycle where Rn exceeds the threshold is 

determined.  The cycle number at which this occurs is called the threshold 



 
 

80 
 

cycle, or Ct. The Ct of a reaction is determined mainly by the amount of 

template present at the start of the amplification reaction. If a large amount of 

template is present at the start of the reaction, relatively few amplification 

cycles will be required to accumulate enough product to give a fluorescent 

signal above background. Due to this relationship Ct can be used to quantify 

the genome copy numbers of target in a sample 

 

Quantitation using a standard curve 

Absolute quantitation was performed by generating a standard curve. 

A serial dilution of known copy number template (plasmid that contained the 

cloned region of interest) was used.  

Linear regression of the Log10 starting quantity of template versus Ct were 

then plotted to give the standard curve. The plot was then used for 

extrapolating the quantity of the target in the sample (figure 2.2)  
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Figure 2-1: TaqMan Amplification plot.  

 

The threshold line and crossing point for Ct value are shown. Initially, 

fluorescence remains at background levels, and increases in fluorescence are 

not detectable. The increase in fluorescence (signal >background) is then 

plotted to construct an amplification curve. With increasing cycling a non-

exponential ‘plateau’ phase is reached until completion of cycling.  
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Figure 2-2: Standard curve generated by plotting Ct vs concentration 
(log10)  

The concentration of the unknown can be extrapolated against the known Ct 

data for each standard. The dotted arrow corresponds to the sample 

concentration which reaches the threshold at Ct 27 
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2.5.1  Quantitative CMV gB PCR 

 

A singleplex real-time amplification was performed on the TaqMan 7000/7500 

(Applied Biosystems, Warrington ,UK) with primers and probes specific for a 

highly conserved region of CMV glycoprotein B (gB) UL55 as previously 

described (Mattes, Hainsworth et al., 2005). 

gB1: 5’ GAGGACAACGAAATCCTGTTGGGGA 3’ 

gB2: 5’ TCGACGGTGGAGATACTGCTGAGG 3’ 

Probe: 5’ FAM-CAATCATGCGTTTGAAGAGGTAGTCCA-TAMRA 

 

Forward primer (gB1) and the reverse primer (gB2) corresponded to 

nucleotides 1942 to 1964 and 2066 to 2031 of the CMV gB ORF. The 150bp 

product was detected using a TaqMan probe labelled at the 5’ end with 6-

FAM and the 3’ end with TAMRA  

DNA amplification was performed  in 30ul total reaction volumes. Each 

reaction contained 10µl of DNA extract 15ul of “Universal Mastermix” (Applied 

Biosystems, Warrington,UK) 0.25µM of gB1 and gB2 and 0.1µM of probe. 

PCR cycling conditions were 10 minutess at 95ºC followed by 50 cycles of 

15s at 95ºC and 1 minute at 60ºC with data acquisition during the 60ºC 

extension. 

Quantitation was achieved using serial dilutions of cloned target to produce a 

standard curve to determine the CMV viral load. CMV viral loads were 

calculated using the Sequence Detection System software version 2.1.1.  

The theoretical limit of detection of the assay was 100 genomes/ml (1 

genome/reaction). 
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A minimum of 3 no template controls and extraction water controls were run 

on each individual run to control for contamination. A known concentration of 

CMV strain Ad169 was run in triplicate on each run to control for inter-assay 

variation of viral load. All DBS were analysed for CMV DNA in triplicate.  

 

2.5.2  β globin PCR 

 

A singleplex real-time amplification was performed on the TaqMan 7000/7500 

(Applied Biosystems, Warrington ,UK) with primers and probes specific for a 

highly conserved 101bp  region of  the human β globin gene (GenBank 

Sequence Database accession numbers U01317 β-globin gene).  as 

previously described  (Lo, Tein et al., 1998).   

 

β globin 1:354- 5’ GTGCACCTGACTCCTGAGGAGA 3’ 

β globin 2: 455- 5’ CCTTGATACCAACCTGCCCAG 3’ 

β globin Probe: 402- 5’ VIC-AAGGTGAACGTGGATGAAGTTGGTGG-TAMRA 

3’ 

 

The  PCR cycling conditions were 95 °C for 10 minutes (Taq Activation), 

followed by 50 cycles at 95 °C for 15 seconds, and at 60°C for 1 minute. The 

total PCR volume was 25 μl, which contained 300nM of each primer, 100 nM 

probe, 12.5µl TaqMan Universal Master Mix (Applied Biosystems, Warrington 

UK) and 5ul sample input. 

Data was analysed using Sequence Detection System software Version 1.3 

(Applied Biosystems, Warrington, UK). 
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Generation of a β globin quantitation plasmid standard 

To accurately quantify the amount of cellular DNA, a plasmid containing the 

101bp β globin PCR target region was cloned and quantified.  

 

Amplification of the β globin target region 

Amplification of the target region was performed by PCR. Reactions were set 

up in a reaction volume of 50µl, which contained 10X buffer containing 1.5mM 

magnesium chloride (MgCl2), 375µM of each dNTP, 300nM of primers and 2.5 

units of pfuUltra high fidelity DNA polymerase (Stratagene, Cheshire, UK). 

PCR cycling conditions were 95ºC for 3 minutes followed by 40 cycles of 90ºC 

for 1 minute, 55ºC for 30 seconds and 72ºC for 3 minutes, followed by a final 

extension at 72ºC for 10 minutes. 

 

Gel electrophoresis 

Agarose gel electrophoresis was used to confirm the presence and correct 

size of 101bp PCR product. A 1.5% agarose gel was made by dissolving 1.5g 

molecular grade agarose (Sigma Aldrich, Dorest, UK) in 100ml Tris Borate 

EDTA (TBE) buffer (Sigma Aldrich, Dorest, UK)   by heating in a microwave. 

Once cooled, 10mg/ml ethidium bromide (Sigma Aldrich, Dorest, UK)  was 

added. PCR products were mixed with 5X loading dye (Invitrogen, Paisley, 

UK) and loaded onto the gel with the DNA mass hyperladder 1 (Bioline, 

London, UK). The gel was run for approximately 45 minutes at 100 volts. All 

bands on gels were visualised using a UV transilluminator (Biorad, 

Hertfordshire, UK). 
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Purification of PCR product 

Purification of the PCR product was performed with the QIAQuick Gel 

extraction kit (Qiagen, Hilden, Germany). The resulting DNA was eluted into 

nuclease free water. 

 

A-tailing 

To enable efficient TA cloning, purified products were added to a mix of 

250µM dATP, 10X buffer containing 2.5mM MgCl2 and 2.5 units of Amplitaq 

gold polymerase (Qiagen, Hilden, Germany). The mix was heated to 95ºC for 

10 minutes followed by 72ºC for 20 minutes. 

PCR cloning 

The TOPO TA cloning kit (Invitrogen, Paisley, UK) was used to clone the 

amplified PCR product.  TOPO TA cloning uses the Topoisomerase I to ligate 

the PCR product with the A nucleotide overhang into the vector which 

contains a T nucleotide overhang. The ligation reaction consisted of 4µl PCR 

product, 1µl salt solution and 1µl pCR-2.1 TOPO vector. The ligation reaction 

was incubated at room temperature for 5 minutes and then stored on ice 

ready for transformation. 2µl of the ligation was transferred into a vial of 50µl 

TOP10F’ E. coli cells (Applied Biosystems, Warrington, UK) and incubated on 

ice for 15 minutes. Cells were then heat shocked (42ºC for 45 seconds) and 

cooled on ice. 250µl SOC medium (Invitrogen, Paisley, UK) was added to the 

cells and the resulting mix incubated at 37ºC for 1hour on an orbital shaker. 

Cells were plated onto lysogeny broth (LB) agar plates containing 50µg/ml 

ampicillin (Invitrogen, Paisley, UK) and 100mM Isopropyl β-D-1-
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thiogalactopyranoside (ITPG) (Invitrogen, Paisley, UK) and incubated 

overnight at 37ºC. 

LB Agar plates 

500ml of LB agar was made from LB powder (Invitrogen, Paisley, UK) in 

deionised water according to the manufacturer’s instructions with the addition 

of 7.5g agar (Sigma Aldrich, Dorest, UK). The resulting mixture was 

autoclaved and allowed to cool prior to the addition of ampicillin (Invitrogen, 

Paisley,UK)  and ITPG (Invitrogen, Paisley,UK), poured into petri dishes, 

allowed to solidify and stored at +4°C in the dark for the maximum of 1 week.  

 

Miniprep 

A single transformed white colony was selected from the LB plates and added 

to 2mls LB broth containing 50µg/ml ampicillin and incubated overnight at 

37ºC on an orbital shaker. The resulting plasmid DNA was extracted from the 

bacterial cells using the QIAprep Spin Miniprep kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s instructions.  

LB Broth  

500ml of broth was made from LB powder(Invitrogen, Paisley, UK)  in 

deionised water according to the manufactures  instructions. The resulting 

broth was autoclaved and allowed to cool and stored at room temperature.  

 

Determination of plasmid concentration 

To determine the plasmid DNA yield the DNA concentration was determined  

by measuring the plasmid sample absorbance at 260nm on the Nanodrop 
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2000c (Thermo Scientific, Willington, USA) and using the relationship that an 

A260 of 1.0 = 50µg/ml pure dsDNA. 

 

Concentration (µg/ml) = (A260 reading – A320 reading) × dilution factor × 

50µg/ml 

The plasmid concentration was calculated from the DNA concentration using 

the following equation  

 

cDNA [ng μl−1] = DNA Concentration  

l DNA = length of DNA fragment in base pairs 

NA = Avogadro constant  (6.022 × 1023 ) 

Mbp = average weight of a double-stranded base pair (660 g mol−1 = 6.6 × 1011 

ng mol
−1

) 

 

2.5.3  Real Time PCR data analysis 

 

Qualitative Data analysis 

Due to limited sample being available a single extraction was carried out on 

each DBS. The resulting extract was run in triplicate, DBS were counted 

positive if a positive sigmoid curve signal was seen in the real time PCR 

assay. Qualitative data from triplicate testing of DBS were analysed as 

follows; DBS were counted positive if ≥2 of the triplicates gave a positive 
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signal in the PCR assay.   For samples that were confirmed with the UL69 

PCR assay the sample was counted positive if ≥2 wells were positive in both 

the initial screening gB assay and UL69 assay. For any discrepant results the 

sample was repeated (if sufficient DBS was available) if the same results 

were found then the UL69 result was taken as the final result (figure 2.3) 

Quantitative Data Analysis 

 

In the quantitative data analysis, detected CMV viral load and mean loads 

were calculated from the amount of blood contained in the area of card tested. 

CMV viral loads were converted into CMV genomes per ml of original blood 

sample. Negative (undetected) samples were assigned the minimum detected 

load (100 copies). 

CMV loads were also reported in genomes/106 cells. CMV loads were 

normalised against a β globin standard. The total number of cells detected 

was determined and a ratio calculated for normalisation. The resulting ratio 

was then used to convert the number of CMV genomes to the number of CMV 

genomes/106 cells using the following equation. 

 

 

 =  CMV genomes/106 cells 
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Figure 2-3: Flow diagram for interpretation of triplicate testing of DBS 

results 

DBS were counted positive if ≥2 of the triplicates gave a positive signal in the 

PCR assay. For any discrepant results the sample was repeated (if sufficient 

DBS was available) if the same results were found then the UL69 result was 

taken as the final result. 

 

 

Report as CMV DNA 

not detected 

Extraction of DBS (sinlge) 

Real Time CMV gB PCR/ 

UL69 PCR (triplicate) 

Report as CMV DNA 

detected 

Positive +/+/+ Positive +/+/- Negative +/-/- Negative -/-/- 
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2.6 Statistical analysis 
 

Each chapter contains details of the statistical analysis performed.  

STATA SE version 13.0 and GraphPad Prism version 5 was used for 

statistical analysis. These included Wilcoxon signed rank test to compare two 

related values, Student’s T test to compare independent values, one way 

ANOVA (Kruskal-Wallis)   to determine differences between groups.  Linear 

regression and Spearman’s rank correlation was used to analyse relationship 

between two variables. 

Generalised estimating equations were used to examine associations 

 And Cox proportional hazard regression was used to identify correlates. All 

generalised estimating equations models used robust standard errors and 

exchangeable correlation matrices. 

Receiver operator characteristic were used to examine sensitivity/ specificity 

and predict cut off thresholds. 

Logistic regression was used to model relationships between DBS CMV viral 

load and SNHL and to predict the probability of CMV transmission by 1 year 

at different maternal baseline CD4 counts and 2-week breast milk CMV DNA 

levels.  

Unless stated CMV and HIV viral loads were log10-transformed to normalise 

distribution GraphPad Prism version 5 was used for plotting graphs 
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Chapter 3 

3 Evaluation of dried blood spots for the 

retrospective diagnosis of congenital CMV 
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3.1 Introduction 
 

The gold standard for diagnosis of congenital cytomegalovirus infection is 

virus isolation from urine or saliva before the first 3 weeks of life (Lazzarotto, 

Varani et al., 1999;Stagno, 2001).  Recently, CMV DNA detection by 

polymerase chain reaction (PCR) has become the method of choice for many 

diagnostic laboratories. This newer molecular approach has many benefits 

over virus isolation including high sensitivity and specificity, no requirement for 

cell culture, no need for viable virus to be present in the specimen and 

reduced labour and turnaround times.  

Early postpartum and perinatal acquisition of CMV is common and infection 

arises via contact with maternal secretions or ingestion of breast milk. 

Although mainly asymptomatic, postpartum and perinatal infection with CMV 

can produce a variety of clinical symptoms. These symptoms appear to be 

transient and to have no effect on neonatal outcome (Vollmer, Seibold-Weiger 

et al., 2004). Therefore it is essential to distinguish between CCMV and 

perinatal infection to ensure long term follow-up of CCMV infected infants.  

Only 10% of babies congenitally infected with CMV will be symptomatic at 

birth, therefore the majority of infected babies will be asymptomatic, have no 

diagnostic investigations performed and no samples stored for future analysis. 

Due to the possible early acquisition of virus, samples taken after 21 days of 

life will not be able to differentiate between perinatal infection and congenitally 

acquired CMV. Therefore, to determine if late onset sequelae such as SNHL 

and developmental delay identified in late infancy are due to CCMV or other 
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factors such as an underlying genetic predisposition is a major problem, 

unless early samples are available.  

Guthrie cards or DBS are taken routinely as part of the newborn screening 

programme 5–8 days after birth from every baby born in the United Kingdom. 

The concept that capillary blood, obtained from pricking the heel or finger and 

blotted onto filter paper, could be used for early identification of disease to 

facilitate the pre-symptomatic treatment of congenital diseases in newborns 

led to mass neonatal screening for metabolic diseases being introduced in 

Scotland by Robert Guthrie in 1963, with national screening for 

phenylketonuria beginning in 1969-70. All babies in England are screened for 

phenylketonuria, congenital hypothyroidism, sickle cell disease, cystic fibrosis 

and medium-chain acyl-CoA dehydrogenase deficiency (MCADD). In the 

USA, 28 diseases are tested for using DBS depending on the State (MMWR 

Weekly, 2012) 

In 1994, Shibata et al were the first to report that CMV DNA could be detected 

from DBS using PCR (Shibata, Takano et al., 1994). In 2000 Barbi et al 

compared detection of CMV DNA from DBS using PCR with virus isolation for 

the diagnosis of CCMV and found 100% concordance between the two 

methods. (Barbi, Binda et al., 2000) These early results and the timing of the  

newborn DBS suggested that DBS could be used to retrospectively confirm 

congenital CMV in children who present with unexplained SNHL and/or 

neurological damage consistent with CCMV.  

DBS samples are, by definition, small-volume collections with each spot 

holding a maximum of 80ul of whole blood on a standard Whatman 903 
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screening card (Whatman, GE Healthcare) The sensitivity of CMV DNA 

detection from DBS compared to detection of CMV by virus isolation in urine 

or saliva reported in the literature ranges from 28-100% depending on the 

methods used and the population tested (reviewed by Snijdewind et al 

(Snijdewind, van Kampen et al., 2012).  The studies which showed the 

highest sensitivities for detection of CMV DNA from DBS were performed on 

children who were symptomatic at birth. (Barbi, Binda et al., 2000;Scanga, 

Chaing et al., 2006;Vauloup-Fellous, Ducroux et al., 2007) Lower sensitivities 

were reported in cohorts of children with asymptomatic as well as 

symptomatic cases. (Soetens, Vauloup-Fellous et al., 2008); (Yamamoto, 

Mussi-Pinhata et al., 2001;Boppana, Ross et al., 2010). 

However, the use of DBS for retrospective diagnosis of CCMV has raised 

some critical questions. It has also been shown that sensitivity of DNA 

detection from DBS depends on methodology with DNA extraction, the 

amplification method used and the region of the CMV genome being detected 

(Soetens, Vauloup-Fellous et al., 2008);(Scanga, Chaing et al., 2006;Barbi, 

Binda et al., 2006); (de Vries, Claas et al., 2009) with the different 

methodologies and area of DBS tested making direct comparison between 

studies impossible. Also the stability of viral DNA within the DBS matrix is not 

known. Johansson et al; selected 32 infants for retrospective analysis of CMV 

DNA in DBS samples stored since birth. The PCR was performed 12-18 years 

after DBS collection and showed  that CMV DNA can be detected in DBS up 

to 18 years old (Johansson, Jonsson et al., 1997),but these cards could be 

from children with the highest viral load at time of sampling and CMV DNA 

could still be detectable despite significant degradation.  
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The detection of  CMV DNA may also be influenced by the DBS storage 

conditions, for example, storage for prolonged periods at room temperature in 

non-sterile conditions with potential cross contamination of cards stored 

adjacent to those from babies with congenital CMV  been reported 

(Johansson, Jonsson et al., 1997)   

To date, no studies have addressed the stability of CMV DNA in DBS or the 

potential for cross contamination between cards stored in the UK. The work in 

this chapter sought to address these important issues systematically. 
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3.2 Aims 
 

Overall the work in this chapter uses an iterative approach to optimise CMV 

DNA detection from the DBS sample matrix. To achieve this I had the 

following aims 

 Optimise the existing methodology for nucleic acid extraction and CMV 

detection from the DBS 

 Investigate the stability of CMV DNA on DBS in long term storage and 

the possibility of cross contamination between stored DBS. 

 

A major obstacle to developing and moving forward CCMV diagnosis is the 

lack of available samples from proven cases. At present DBS are  only taken 

as part of routine neonatal care. This leaves a ‘catch 22’ situation, as a variety 

of neonatal samples including urine and saliva is required for full validation but 

no samples are available. Therefore my final aim was to  

 Establish and maintain clinical collaborations to access DBS samples 

from children with confirmed CCMV or suspected CCMV to provide a 

basis for testing the methodology of DNA extraction, and real time PCR 

detection in a clinical cohort 
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3.3 Materials and methods 
 

3.3.1  Dried Blood Spot analysis 

 

 

Preparation of study DBS  

Newborn screening standard Whatman 903 cards (Whatman, GE Healthcare 

Maidstone, England) were obtained from NHS supplies within the Royal Free 

Hospital, London, UK.   

Test DBS were made from either CMV positive or negative  anti-coagulated 

(sodium citrate) whole blood samples from solid organ transplant recipients 

whose viral loads were previously determined for diagnostic purposes by 

quantitative real time PCR in our laboratory (viral loads 15,259 and 10,265 

genomes/ml respectively). These loads were chosen to represent viral loads 

obtained from neonates with CCMV in our laboratory prior to this study. 

DBS were prepared by applying 50µl of whole blood onto the Whatman 903 

card. The prepared cards were left to dry overnight and then stored at room 

temperature, touching each other to mimic normal UK storage conditions. 

DBS were subjected to DNA extraction and amplification by real time PCR 

every month for up to 24 months. A total of 9 sample sets were prepared: two 

positive DBS sets and seven negative DBS sets. 

Initially, DBS were prepared from the positive blood (15,259 ge/ml) and three 

negative samples for a period of 16 months. These DBS were tested in 

triplicate for 16 consecutive months. After reviewing the results for 16 months 

of storage a second sample set was prepared to extend the study to 24 

months.  The second sample set was prepared from a CMV positive blood 
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with a lower viral load (10,265 ge/ml) and four CMV negative bloods. These 

DBS were tested in triplicate for 24 consecutive months. 

 

Preparation of study DBS for determination of the limit of detection 

 CMV PCR positive whole blood samples (as described previously) with 

known viral loads were used to generate DBS of known CMV viral load.                   

12 DBS cards were produced in total with viral loads that ranged from                                   

214 – 129,071 ge/ml. The resulting DBS were left to dry overnight before 

being stored under conditions to mimic UK Newborn Screening standard 

storage. After 1 month of storage DBS were subjected to DNA extraction and 

amplification by real time PCR.  

Determining the number of CMV genomes per DBS 

For analysis it is assumed that each DBS contains 0.38µl of whole blood per 

mm² (absorption of whole blood into Whatman 903® card) (QCMD, CMV 

DBS09 Instruction manual, QCMD, Glasgow, UK). 

Therefore for the following studies the following equation is used to 

incorporate the area of DBS and therefore blood volume in the DBS analysis. 

Ir[1000/Ar0.38]=SC 

Where: Ir = Initial results (genomes/ml) 

Ar = area of DBS used for extraction in mm²                        

SC = sample concentration in genomes/ml 
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The CMV input per semicircle of DBS was determined using the equation: 

 CMV load = ×/1000(Ar (0.38) 

Where  × = CMV viral load in genomes/ml, Ar = area of DBS in mm² 

Whatman 903® cards are standardised to meet United States Federal Drug 

Agency and medical device regulations. The range of diameters quoted for 

each DBS is 15-17mm (Whatman Neonatal brochure 042009). For all 

experimental calculations a DBS diameter size of 16mm was assumed. This  

corresponds to a total DBS area of 201.96 mm2 or an area 100mm2 per 

semicircle DBS.  

Quality Control Molecular Diagnostic DBS proficiency panel 

 

An external quality assurance panel of 9 DBS samples was distributed in 

2007 by the QCMD (QCMD, Glasgow. UK) Seven samples were derived from 

whole blood, negative for CMV DNA and IgG antibody, and spiked with 

cultured in vitro CMV strain Towne in various concentrations or clinical 

material (7.3 x 102 – 9.6 ×105 genomes/ml). Two additional samples were 

CMV-negative whole blood. The panel was distributed to 33 European and 

South African laboratories.  

The DBS samples were extracted and tested in triplicate, the DBS was 

counted positive if ≥2 of the triplicates gave a positive signal in the real time 

PCR assay. 
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British Paediatric Surveillance Unit: Congenital CMV study 

The DBS of children reported via the British Paediatric Surveillance Unit 

(BPSU) notification system were retrieved from storage after obtaining the 

parents’ consent. Children with diagnosed or suspected congenital CMV born 

in the UK between  2001 - 2002 were reported by paediatricians via the BPSU 

notification system (BPSU 17th Annual report, 2002 - 2003). CCMV cases 

were confirmed on the basis of PCR or virus isolation from urine, blood, saliva 

or tissue taken at biopsy within 3 weeks of birth.  ‘Possible’ CCMV cases were 

infants with positive samples only after 3 weeks of age and symptoms 

compatible with CCMV which were not accounted for by any other diagnosis. 

Consent for DBS retrieval was obtained from the parents of 63 children, and 

55 DBS were retrieved and analysed under code for the presence of CMV 

DNA. The cards had been stored in standard UK storage conditions and all 

were collected within the first 21 days of life. 

DBS sample preparation 

A semicircle of DBS was used for analysis. The area was measured and then 

cut with scissors to ensure consistency in sample input across all extraction 

methods. All DBS samples were then cut into 3 pieces for extraction. 

Strict control measures to avoid cross contamination were applied. 

 Scissors were cleaned with 0.1M HCl prior to and after cutting each DBS to 

remove any possible DNA cross contamination. 



 
 

102 
 

 Negative (blank) DBS were cut with the same scissors and processed 

alongside the DBS samples in every step of the process.  

Disposable gloves were worn and changed after each DBS had been handled  

 

DNA Extraction: Heat Shock Protocol  

DNA was extracted from DBS using a protocol described by Barbi et al; 

(Barbi, Binda et al., 2000). Blood was eluted from the DBS sample by 

incubating the semicircle of DBS at 4°C overnight in 25µl of minimum 

essential medium without supplement (Gibco, UK) and then by heating in a 

heating block the resulting supernatant and DBS mixture at 55°C for 60 min 

followed by 100°C for 7 min. The samples were then cooled on the bench to 

room temperature and centrifuged at 6708xg (10,000rpm) for 3 min; the 

resulting supernatant was removed from the DBS pieces and frozen at −80°C 

overnight. After thawing, 10µl of supernatant was used as input into the PCR. 

 

DNA Extraction: Biomerieux Nuclisens EasyMag DBS protocol   

As part of this study a protocol was developed for the extraction of total 

nucleic acid using the semi-automated Nuclisens EasyMag system 

(Biomerieux, Basingstoke. UK).  A DBS pre-treatment lysis step was 

developed and added to the automated methodology. Briefly, blood was 

eluted from the DBS in 2ml EasyMag lysis buffer with the addition of 20µl 

proteinase K (>600 units/ml) (Qiagen, Hilden, Germany ). The mixture was 
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incubated at room temperature for 30 minutes on a plate rocker. The total 

resulting supernatant was removed from the DBS pieces using a pastette and 

used as sample input into the EasyMag system.  

The Nuclisens EasyMag generic 1.0 protocol was used for extraction with a 

final elution that generated 60µl of total nucleic acid extract.  

 

PCR for C Reactive Protein Gene 

To confirm the CMV negative results were not due to inhibition of the PCR (a 

false negative result) a real time PCR was performed for a human gene. A 

positive signal in the PCR would confirm both the presence of amplifiable 

human DNA and the absence  of inhibition. The PCR was modified from 

Wardinger et al 2000. (Wandinger, Jabs et al., 2000)  A 101bp region was 

amplified that spanned the first exon and part of the intron within the C 

reactive protein (CRP) gene.   

Amplification was carried out using the following primers and probe                        

CRP forward primer: 5’CTTGACCAGCCTCTCTCATGC 3’                     

reverse primer 5’TGCAGTCTTAGACCCCACCC3’.                                                            

Probe 5’ FAM-TTTGGCCAGACAGGTAAGGGCCACC-TAMRA 

Primers were purchased from Invitrogen UK and the probe was purchased 

from Applied Biosystems UK. The PCR was carried out in a volume of 50ul; 

which contained 25µl TaqMan universal mastemix, 20nM of each primer and 

100nM of probe. Cycling conditions were 10 minutes at 95°C followed by 45 
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cycles of 95°C for 15 seconds and 60°C for 1 minute. The resulting 

fluorescence was measured in real time using the ABI TaqMan 7000 

sequence detection system software version 1.3  (Applied Biosystems, UK). 

3.3.2  Statistical analysis 

 

GraphPad prism 5 was used for statistical analysis. 

 To compare the genome number of CMV DNA detected from a DBS with the 

equivalent volume of whole blood a Wilcoxon signed rank test was used.  

Linear regression analysis was performed to investigate the relationship 

between the amount of CMV DNA detected from a DBS and the CMV viral 

load in the whole blood sample. 

For the stability study DBS samples were split into groups according to the 

age of DBS at the time of analysis, to provide similar and adequate numbers 

for reasonable comparison.  A one-way ANOVA (Kruskal–Wallis) was used to 

analyse differences between groups. Linear regression was used to analyse 

trends in viral load with age of DBS. 

The mean cycle threshold values for the CMV positive DBS samples were 

compared using a Wilcoxon signed rank test. 

 

3.4  Results 
 

To validate the use of DBS for the retrospective diagnosis of CCMV, it was 

necessary to evaluate and improve the assay by testing known positive and 

negative controls repeatedly. This established the stability of CMV DNA in 

DBS over time and the risk of cross-contamination under standard UK storage 
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conditions. Furthermore it established the sensitivity and specificity of CMV 

PCR of DBS for retrospective diagnosis of CCMV. 

 

3.4.1  Initial assay validation 

 

DBS were obtained through the BPSU: congenital CMV study.  A total of 55 

DBS were retrieved as part of this study, 31 from children with confirmed 

CCMV infection and 24 from children with possible CCMV infection. 

Nucleic acid from all 55 DBS was extracted using the QiaAmp DNA mini kit 

DBS protocol and tested in triplicate using the gB real time PCR assay.  

A sample was considered positive if a signal in ≥2 of the triplicates gave a 

positive signal above a fixed fluorescent threshold (set above baseline) in the 

DBS assay. 

Initial results with a 5µl nucleic acid extract input into the PCR gave a positive 

result in 18/55 giving an overall detection of 32.7%. When this was analysed 

into possible and confirmed CCMV infection, 17 samples from the confirmed 

CCMV group (55%) and 1 possible CCMV infection (4%) gave a positive 

result.  

 Increasing the input to 10µl, 27/55 (49%) samples tested positive for CMV 

DNA, corresponding to an increase in overall detection of 16.3%. When this 

was analysed into possible and confirmed CCMV infection, 23 samples from 

confirmed CCMV (74%) group and 4 possible CCMV infections (17%) gave a 

positive result.  This corresponded to an overall increase in detection of 19% 

in the confirmed CCMV group and 13% in the possible CCMV group. 
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The sensitivity of the test for the detection of CMV DNA from a DBS was 

found to be 74.2% (95% CI: 55.38% - 88.11%) with a 10ul input.  

When the viral loads were analysed the additional CCMV cases identified 

corresponded to the DBS with the lowest CMV viral load (CMV viral load 

range 124 – 241 genomes per DBS semicircle). 

When the input was increased to 15µl no extra positive signals were observed 

suggesting that the limit of detection for the assay had been achieved. 

 A 10µl sample input was chosen for future work. 

 

CRP assay 

All DBS samples tested had a detectable signal for the CRP gene, thereby 

validating both the DBS sample and extraction protocol for removing 

inhibitors. 

 

3.4.2  Sensitivity of CMV DNA detection from DBS 
 

The CMV viral load (genomes/ml) was calculated for both the DBS sample 

and the equivalent volume of whole blood. Samples which showed a CMV 

viral load >100 genomes/ml were classed as positive (theoretical limit of 

detection of the PCR assay) as this equates to 1 genome per reaction in the 

PCR. The lowest CMV viral load tested which gave a positive signal in the 

DBS assay was 1,702 ge/ml. The relationship between whole blood viral load 

and the detection of CMV DNA from the DBS sample matrix was further 

investigated. Assuming that each DBS contains 0.38µl of whole blood per 

mm² (absorption of whole blood into Whatman 903® card) (QCMD, CMV 
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DBS09 Instruction manual, QCMD, Glasgow, UK). When the results were 

compared a significant difference was seen between the whole blood and 

DBS viral load (p= 0.001) (See table 3-1) with the mean viral load recovered 

in the DBS sample lower than the whole blood viral load. On further 

investigation  a linear relationship was found  between the CMV viral load 

recovered from a DBS and that found in whole blood (R2 =0.904) (See figure 

3-2) and all  DBS samples with a CMV viral load < 3 log10 were negative in the 

gB PCR assay. 

 From this data set a DBS with a viral load of 1,702 ge/ml of whole blood was 

required to give a positive result from a semicircle of DBS in the CMV DBS 

assay. 
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Table 3-1: Comparison of CMV viral loads in paired whole blood and 

'test' DBS samples.  

The table shows the CMV viral load in the whole blood sample used to make the 

'test' dried blood spots (DBS). The resulting mean CMV viral load obtained from 

triplicate testing of the test DBS, log10 genome/ml difference between the two results 

obtained and standard deviation. 

 

*Samples which showed no amplifaction signal  were assigned the theoretical 
detection limit of the PCR 

 

Whole blood CMV viral 
load (genomes/ml) 

 

Mean CMV viral load 
obtained in DBS 
assay (genomes/ml) 

Log10 difference 
between mean viral 
load results 
(genomes/ml) ±SD 

 
214 <100* -  

 
398 <100* - 

 
863 <100* - 

 
893 <100* - 

 
1702 874 0.40 ±0.21 

 
2026 957.6 0.72±0.36 

 
2554 877.8 0.73±0.24 

 
3601 1900.6 0.80±0.18 

 
15904 5498.6 0.34±0.15 

 
31921 14826 0.61±0.07 

 
72619 15215.2 0.84±0.14 

 
129071 38965.2 0.62±0.09 
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Figure 3-1: Correlation between CMV viral loads obtained from whole blood and paired DBS samples 

 

Mean CMV viral load results were obtained from paired whole blood and dried blood spot (DBS) samples (triplicate testing). A linear 

relationship was seen with the amount of CMV recovered from a DBS increasing with the whole blood CMV viral load (R2 = 0.904). 

Data were analysed using linear regression. The line of best fit (blue) and 95% confidence band (red) are shown. R2 and P values 

were determined in Graphpad Prism.
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3.4.3  Stability of CMV DNA in DBS over time 

 

To investigate the stability of CMV DNA on DBS, CMV DNA positive and negative 

study cards were produced from whole blood samples from adult solid organ 

transplant patients with or without CMV viraemia. Two DBS sample sets from whole 

blood samples with CMV viral loads 15,259 ge/ml and 10,265 ge/ml were used. A 

total of seven negative DBS sample sets were tested in parallel over the 24 month 

period. 

Initially, 24 DBS were prepared from the 15,259 genomes/ml positive blood and 

three negative samples. These were tested in triplicate for 16 consecutive months. 

Initial results showed that CMV DNA was still detectable after 16 months of storage. 

(see figure 3-2a). Therefore, the study period was extended to 24 months.  A second 

sample set was prepared from a CMV positive blood with a lower viral load (10,265 

ge/ml) and four negative bloods. 

CMV DNA was still detectable on the second positive DBS sample set after 24 

months of storage despite a moderately low CMV viral load in the original whole 

blood sample used for initial card preparation (390/DBS input).  On further analysis 

of viral load both positive cards showed a decline in viral load over the 24 month 

period. There was a significant difference between the median log viral load detected 

after 18-24 months of storage compared to 0-5 months (median log 2.3 vs 3.0 

respectively; p=0.0007) (see figure 3-2b). 

Linear regression was used to plot the slope of decline. This was used to predict the 

time point the DBS would become undetectable in the assay. It is predicted that the 

DBS CMV viral loads 15,259 ge/ml and 10,265 ge/ml would become undetectable 

after 35 months and 32 months of storage. 
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Analysis of the seven CMV negative blood test cards showed consistently negative 

results over the 24 month study period. No cross contamination between cards was 

seen despite being stored in close contact with CMV positive DBS giving 100% 

specificity for the study cards. 
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 Figure 3-2: Log10 CMV viral load (genome/ml) in two simulated DBS over time in 
storage.   

Depicted are the mean CMV DNA viral loads from triplicate testing over time. The median viral 

load detected (all samples) is shown as a dashed orange line and the assay cut off (100 

genomes/ml) is shown as a dashed green line. There was a significant difference between the 

median log viral load detected after 18-24 months of storage compared to 0-5 months (median 

log 2.3 vs 3.0 respectively; p=0.0007). 

 

p=0.0007 
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3.4.4  Extraction optimisation and quality control  

 

During the course of this study, a newer semi-automated extraction system (the 

EasyMag (Biomerieux, Basingstoke, UK) was validated for use in the diagnostic 

service of the laboratory. The system is based on a nucleic acid purification method 

developed by Boom et al 1990 (Boom, Sol et al., 1990) with enhanced magnetic 

silica technology. A full validation was performed for DBS extraction on the EasyMag 

system using the QCMD 2007 CMV DBS panel.  

The DBS samples in the QCMD panel were used to evaluate three different 

extraction methods. The Qiagen mini blood DNA kit (original protocol), the EasyMag 

semi-automated extraction system and the heat shock protocol (method with 

reported 100% sensitivity). 

The heat shock method was the most labour intensive protocol and gave the lowest 

recovery of CMV DNA (figure 3.3). On triplicate CMV testing it gave positive results 

in only 2 samples (29%) which corresponded to the highest viral loads (9.6x105 and 

3.9x106 genomes/ml). 

Using the Qiagen Mini DNA extraction method three samples tested positive  (43%). 

These corresponded to the three highest viral loads 8.8 x104, 9.6x105 and 3.9x106 

ge/ml. When the DNA yields were quantified, the Qiagen kit recovered more CMV 

DNA than the heat shock method but less than the EasyMag protocol (see figure    

3-4). 

On triplicate testing the EasyMag extraction system showed the optimum extraction  

results with  CMV DNA detected in 5  cards (71%). When the CMV yields were 

quantified, the Easymag recovered the highest quantity of CMV DNA among the 3 

extraction methods tested (see figure 3-3). 
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All extracts when tested for CMV DNA by PCR failed to detect CMV DNA from the 

DBS with the lowest viral load (730 ge/ml). This corresponds to 27 genomes of CMV 

DNA per semicircle of DBS. The two negative DBS were reported negative in all 

three extraction protocols (see table 3-2). The EasyMag extraction protocol was 

adopted for use with DBS. 
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Table 3-2: Qualitative results of CMV DNA detection in the QCMD dried blood 
spot 2007 panel.  

 

Dried blood spots (DBS) were tested using 3 different extraction methods, the expected 

results and the percentage of results reported back correctly to the QCMD from participating 

laboratories; Brackets () show the number of CMV positive wells per triplicate. 

 

QCMD CMV 
DBS 
reported 
Viral load 
(c/ml) 

Heat Shock 
Protocol  

Qiagen Mini 
DNA 
Blood result 

EasyMag 
result 

Expected result 
(% correct 
qualitative results 
of all participants) 
 

Negative  - - - Negative (96) 

Negative - - - Negative (96) 

7.3 x 102 - - - Positive (0) 

7.3 x 102 - - - Positive (7) 

9.4 x 103 - - Positive (2/3) Positive (48) 

9.4 x 103 - - Positive (2/3) Positive (52) 

8.8 x 104 - Positive (2/3) Positive (3/3) Positive (93) 

9.6 x 105 Positive (3/3) Positive (3/3) Positive (3/3) Positive (96) 

3.9 x 106 Positive (3/3) Positive (3/3) Positive (3/3) Positive (100) 

Total number 
of positives 
correctly 
identified 
 

2/7  3/7 5/7  
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Table 3-3: The CMV viral loads detected from the 2007 QCMD CMV dried blood 

spot panel after extraction by either the heat shock protocol, Qiagen Mini DNA 

kit or the Biomerieux EasyMag semi-automated system.  

DBS were tested in triplicate. Depicted are the CMV viral loads in genomes/ml obtained after 

adjusting for initial input (estimated to be 38µl of whole blood).  Bars show the mean CMV 

DNA viral load of triplicate testing of each extraction protocol. 
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 3.5 Discussion 

 The work in this chapter evaluated the use of DBS for retrospective diagnosis of 

CCMV. The existing methodology for nucleic acid extraction and detection of 

cytomegalovirus DNA from DBS was optimised to give the highest level of sensitivity.   

To confirm the use of DBS for the retrospective diagnosis of CCMV, stability of CMV 

DNA on the DBS was investigated.  In the standardised test, CMV DNA remained 

stable for 18 months and was still detectable for up to 2 years after preparation. This 

important observation provides the evidence for retrospective testing of DBS for 

CCMV inchildren up to 2 years of age. However a decline in DBS viral load was seen 

after 2 years of storage. These results show that CMV DNA is sufficiently stable to 

allow investigation of children who present with SNHL up to the age of 24 months. It 

is interesting to note that CMV DNA was still detectable in DBS samples received in 

the diagnostic virology laboratory in children up to 17 years of age (see 7.4.1). If the 

slope of decline in the linear regression analysis is forecast for the test DBS with the 

lowest viral load, the viral load would become undetectable after 32 months of 

storage.  

Practically with CCMV DBS this cannot happen in all cases, because we would not 

be able to detect virus in children as old as 17 years without an extremely high viral 

load in the original sample. If a back calculation is performed using linear regression 

a CMV load of >108 ge/ml would be required. Reviewing blood (pre-treatment) CMV 

DNA viral load results received into the laboratory from congenitally infected 

neonates reveals that CMV loads in whole blood rarely are detected above 105ge/ml. 

It is therefore possible that CMV load in DBS declines initially and then remains 

stable at a lower viral load for a prolonged period of time. Long term studies could 

investigate this and the effect of different storage conditions on long term storage. 
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Cross contamination studies showed no contamination between positive and 

negative cards for the 24 month study period.  Currently guidelines exist for the 

secure storage of newborn screening cards but not storage conditions. Informal 

enquiry has shown that most newborn screening laboratories store DBS in secure 

filing cabinets at room temperature. This important observation shows that a DBS 

testing positive for CMV is highly unlikely to be due to cross contamination during 

storage and validates the use of DBS for retrospective diagnosis of CCMV.  

A Quality Control in Molecular Diagnostic DBS panel for CMV reported a false 

positivity of 9% across laboratories in 11% of datasets submitted (Barbi, MacKay et 

al., 2008). During my analyses no false positive results were seen and the three 

different extraction protocols reported no false positives with the QCMD 2007 DBS 

panel. 

The results of this small study show that nucleic acid extraction methodology plays a 

critical role in the recovery of CMV DNA from the DBS. The three different extraction 

methods used in this study gave sensitivities of 29-71% in the QCMD samples. The 

most efficient was the EasyMag extraction method although the small size of this 

study did not have the power to confirm a statistical significant difference.  

Optimal sensitivity was obtained when samples were tested in triplicate. Triplicate 

testing was shown in the initial validation on the BPSU samples to increase detection 

of CCMV by 9.7%.  The sensitivity study showed a loss of CMV genomes recovered 

from the DBS when compared to the equivalent volume of whole blood and that DBS 

spotted with the lowest viral loads had the lowest detected loads reflecting the 

importance of CMV DNA concentration. Since this work was performed a study by 

De Vries et al in 2009 found significant differences between assay sensitivity 

dependent on extraction method with optimal sensitivity achieved when samples 
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were tested in triplicate supporting the critical role of the extraction methodology. (de 

Vries, Claas et al., 2009) 

Sensitivity in the DBS was investigated by the use of DBS produced from positive 

whole blood with known CMV viral loads and cards received through the 

independent BPSU study.  A viral load of 1,702 ge/ml of original whole blood was 

required to detect CMV DNA from a semicircle of DBS using the study protocol. This 

compares favourably with a recently published QCMD panel  assessing DBS testing 

across numerous laboratories which found a 50% sensitivity threshold of 9.4 x 103 

ge/ml (Barbi, MacKay et al., 2008). A study in 2007 reported a 95% sensitivity of 3.6 

log10 genomes/ml (3,081 ge/ml) CMV DNA using the Qiagen Mini DNA kit and a 

whole DBS input. (Vauloup-Fellous, Ducroux et al., 2007) Potential variables 

between studies include the amount of DBS input, we have consistently used a 

semi-circle of DBS throughout these studies, as this amount is representative of the 

DBS that remains after newborn screening for metabolic diseases. This limited 

amount of sample and the CMV viral load of the neonate are likely to be a 

contributing factors in the cut off and sensitivity of the assay. However the sensitivity 

in the BPSU confirmed CCMV cohort was found to be 74%. The assay sensitivity will 

be addressed further by the development of a nested PCR in chapter 7. 
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Chapter 4  

4 Retrospective diagnosis of congenital 

cytomegalovirus infection from dried blood 

spots in children with sensorineural hearing 

loss. 
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4.1 Introduction 
 

Sensorineural hearing loss (SNHL) is permanent hearing loss as a result of damage 

to the hair cells within the cochlea or cranial nerve number VIII (or both). SNHL 

reduces the ability of the individual to hear sounds but also reduces the quality of the 

sound they hear. SNHL can be mild, moderate or severe and can result in total 

deafness.  

CMV is the most common congenital virus infection, affecting about 0.2 to 2.2% of 

newborns every year depending on the population (Kenneson & Cannon, 

2007;Kenneson & Cannon, 2007) with a worldwide average of 0.7% (Dollard, Grosse 

et al., 2007). Overall,  approximately 12.7% of infected infants show severe clinical 

sequelae at birth including neurological damage with or without SNHL, visual 

impairment,  mental retardation with or without SNHL (Dollard, Grosse et al., 2007). 

The majority (87.3%) of CCMV infected infants appear asymptomatic at birth but 

sequelae can develop months or years later affecting 13.5% overall (Dollard, Grosse 

et al., 2007). The most commonest of these is SNHL which affects 6-23% (Fowler & 

Boppana, 2006)  

It is estimated that 5,000 babies born in the USA each year are destined to develop 

disease caused by CCMV. This makes CCMV the most common viral cause of 

SNHL and neurodevelopmental delay (Cannon & Davis, 2005;Cannon, 2009)  

The prevalence of CCMV in the UK is thought to be comparable to that of the 

worldwide average of 0.7% with only one large study from the 1980s providing an 

estimate of 0.3%. (Peckham, Chin et al., 1983) Peckham et al, estimated that 12% of 

all cases of congenital bilateral SNHL were caused by CCMV in the UK (Peckham, 
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Stark et al., 1987). However these figures are likely to be an underestimate of the 

total burden of SNHL caused by CCMV as they report on bilateral severe hearing 

loss only.   

Progressive SNHL with CCMV infection was first reported by Dahle et al in 1974 

(Dahle, McCollister et al., 1974). A study by Fowler et al followed up a cohort of 307 

children with asymptomatic congenital CMV and compared their hearing thresholds 

with 76 uninfected siblings and a cohort of children whose neonatal screen for CMV 

was negative. In the asymptomatic group 7.2% had SNHL and half of these infants 

had further deterioration of hearing at 18 months. Importantly 18% of these children 

had delayed onset SNHL detected at a median age of 27 months. Children with 

congenital CMV had no other risk factors for SNHL. Fluctuation of hearing thresholds 

was seen in 23%, and high frequency SNHL in 32% (Fowler, McCollister et al., 

1997). In another study by Johansson et al SNHL was identified at birth in 5.2% of 

children identified with CCMV, but by 72 months the incidence of SNHL was 15.4% 

(Johansson, Jonsson et al., 1997). Overall in developed countries CCMV accounts 

for 21% of hearing loss at birth and 24% of hearing loss 4 years of age (Morton & 

Nance, 2006;Grosse, Ross et al., 2008). 

 

The clinically silent asymptomatic infection and progressive nature of SNHL in 

CCMV infection has proven to be a major obstacle to CCMV diagnosis. Newborn 

hearing screening may miss or underestimate hearing loss in these asymptomatic  

children who may develop SNHL, so the presence of symptoms at birth cannot be 

used as a guide to choose who to test for CCMV; instead, a routine screening 

programme for CCMV infection would be necessary. 
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Detection of viruria and viraemia have been associated with the presence of SNHL in 

CCMV. In one study urine CMV titres during infancy were associated with the 

development of SNHL (Rivera, Boppana et al., 2002) and in a later study both urine 

and peripheral blood titres were associated with symptomatic CCMV infection 

(Boppana, Fowler et al., 2005). Viraemic infants were also found to be more likely to 

have SNHL by Bradford et al, on both study enrolment and six month follow up 

(Bradford, Cloud et al., 2005). Level of viraemia has also been associated with the 

presence of sequelae in CCMV, with different viral loads correlated to different risk of 

sequelae. In one study a low level DNAemia (<1000 genome copies/ 105 

polymorphonuclear leukocyes) was highly predictive of absence of sequelae with a 

negative predictive value of 95% for sequelae at age 12 months with 19/20 infants 

with low level DNAemia having normal neurological outcomes(Lanari, Lazzarotto et 

al., 2006). However a later study by Ross et al could not confirm the association 

between systemic virus burden and SNHL in CCMV, but did suggest that 

asymptomatic children with a peripheral blood viral load  of ≤3500 ge/mL appeared 

to be at lower risk for SNHL (Ross, Novak et al., 2009). 

The majority of CCMV related SNHL occurs before the age of 3 years coinciding with 

speech and language development. Retrospective testing of DBS could provide a 

diagnosis for SNHL. This prompt recognition could lead to early intervention such as 

cochlear implants which would be expected to reduce the impact of hearing loss on 

speech, language and social development  (Yoshida, Kanda et al., 2009). Thus, 

early diagnosis could allow interventions to compensate for hearing loss.  This is 

very important as it could prevent further deterioration in hearing and language skills 

which in turn could mean the difference between the child being moderately deaf and 

profoundly deaf with implications for schooling and social development. It is also 
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possible that valganciclovir could be given at this age and a randomised placebo 

controlled trial to study this is in preparation (NCT01649869). 

 

4.2  Aims 
 

Overall, the goal of this chapter was to develop the laboratory methods to allow a 

testing programme to be established in the UK for the retrospective diagnosis of 

CCMV in older children presenting with SNHL. The following aims were addressed: 

 To investigate the use of DBS for the retrospective diagnosis of CCMV in a 

clinical cohort of children with SNHL. 

 

 To investigate the relationship between CMV viral load on DBS and severity 

of SNHL in CCMV.  

 

 To determine whether the non-linear ‘threshold’ relationship demonstrated in 

transplant and AIDS patients. (Cope, Sweny et al., 1997;Cope, Sabin et al., 

1997;Emery, Cope et al., 1999) is present in children with CCMV and SNHL. 

 

 To establish and validate a new diagnostic approach for the use of DBS for 

retrospective diagnosis of CCMV by developing a diagnostic algorithm for 

investigating congenital CMV infection as a cause of sensorineural hearing 

impairment.  

 

To address these aims a clinical collaboration was developed with an audiovestibular 

physician, Dr Simone Walter. An independent ethically approved study CHIC was 
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established to look at the relationship between CCMV and SNHL. The study was 

conducted over 14 months and recruited patients from 5 sites (Royal Ear Nose and 

Throat Hospital, London, Bradford Teaching Hospitals NHS Trust, Queen's Medical 

Centre Nottingham, Milton Keynes General NHS Trust and Northampton General 

NHS Trust) the results were published in 2008 (Walter, Atkinson et al., 2008). I 

developed the assays and performed all the virological testing while the clinical work 

and audiological assessments were performed by Dr S Walter. I was blind to the 

audiology results at time of testing the DBS and Dr Walter was blind to the DBS 

results until the clinical and virology results were completed.  
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4.3  Material and methods 

4.3.1  CMV in hearing impaired children study Study Population 

There were two groups of eligible children aged 0 -18years: 

 Children known to have congenital CMV, with or without SNHL 

 Children with unexplained SNHL 

 

Identification of Eligible Participants 

From April 2005 to June 2006 potentially eligible participants were identified by 

informing Consultant audiological physicians (community and hospital-based), 

Consultant paediatricians, neonatologists, virologists, and fetal medicine Consultants 

of the study and asking them to report any children with CCMV or unexplained 

SNHL. Signed informed consent was obtained from the parents/guardians to allow 

retriveal and testing of the child's DBS for CMV DNA and data collection from the 

child's notes. DBS were retrieved from 39 children with confirmed congenital CMV 

and 35 children with sensiorneural hearing loss of unknown cause. Exclusion criteria 

consisted of having a known cause of SNHL, being born in a country without 

newborn DBS screening and, for the unexplained SNHL group, having another 

cause of SNHL strongly suspected from their history or examination.  

 

Case definitions 

Cases were confirmed on the basis of PCR or virus isolation from urine, blood, saliva 

or tissue taken at biopsy within 3 weeks of birth. ‘Symptomatic congenital CMV’ was 

defined as CMV excretion within the first three weeks plus any of the following: 

petechiae, hepatosplenomegaly, jaundice with conjugated hyperbilirubinaemia, 
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microcephaly, seizures, chorioretinitis.  Asymptomatic cases were infants with 

positive samples taken within 3 weeks of life, but with no clinical disease. 

SNHL was defined as air conduction thresholds >20 decibel hearing loss (dBHL) for 

pure tones, or >30 dBnHL for clicks, tone pips or bursts on auditory brainstem 

response testing (ABR) when middle ear function was normal, and as bone 

conduction thresholds >20 dBHL for pure tones, or >30 dBnHL for clicks, tone pips 

or bursts on ABR when middle ear function was abnormal. 

DBS analysis 

A semiciricle of DBS was extracted using the QiaAmp DNA blood mini Kit (Qiagen, 

Hilden Germany). Standard control measures to avoid cross contamination were 

applied. Scissors were cleaned with 0.1M HCl prior to and after cutting each DBS.  

Negative (blank) DBS were included as an extraction control and subjected to every 

step of the process to ensure no contamination occurred. 

The resulting nucleic acid extract was tested using an in-house real-time TaqMan 

PCR assay detecting a highly conserved region of glycoprotein B (as described in 

Chapter 2). 
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4.3.2  Development of CMV UL69 PCR 

 

To confirm the detection of CMV DNA from the DBS. a real time PCR to amplify a 

second region of the CMV genome was developed; the UL69 region. The PCR 

serves a dual purpose; to confirm the presence of CMV DNA on the DBS and to 

validate the retrospective diagnosis of CCMV in a child with compatible symptoms. 

The UL69 region was chosen as it was expected to be  highly conserved and no 

amplification of this region had been performed previously; therefore limiting the 

possibility of contamination from amplified PCR product in the confirmatory assay. 

 

Primer and probe design 

 

The real time PCR was designed to amplify a conserved sequence in the CMV 

polymerase (UL69) gene. The primers and probe were designed with PRIMER 

EXPRESS software (version 1.5, Applied Biosystems, Foster City, CA). The UL69 

sequence data was obtained from the GeneBank sequence database for the Merlin 

strain of CMV (Accession number AY446894). Primers were aligned to UL69 

sequences (n=4) published in GeneBank to ensure that the selected primer and 

probe combinations were in conserved regions of the gene.  

The primer and probe sequences were (5’ TO 3’) 

UL69 Forward primer:  CTGTCACACGACGAGCTCATG 3’ 

UL69 Reverse Primer: TTCCTCCAGCCAATCGAACT 

TaqMan dual labelled UL69 Probe:                                                                            

FAM-ACACCGACTACCTGTTGCACATCCGTCA- TAMRA 
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Primers were purchased from Invitrogen, Carlsbad, CA,USA and probe was 

purchased from Applied Biosystems. 

Optimisation of assay condition 

 

The real time PCR assay was developed and evaluated on ABI PRISM 7500 with 

Sequence Detection System software Version 1.3 (Applied Biosystems). 

Primer and probe concentrations were optimised by a chessboard titration. Serial 

dilutions of each primer and probe (50nM – 900nM) were used to determine the 

combination of primer and probe concentrations that gave the minimum threshold 

cycle (Ct). 

 

The PCR cycling conditions were optimised using a known copy number laboratory 

strain of CMV (Ad169). A serial dilution was run from 1x107 to 1x102 ge/ml. The PCR 

was performed at different extension temperatures between 55°C and 60°C to find 

the amplification conditions that gave the minimum reproducible Ct value with the 

PCR amplification efficiency closest to 100%. Amplification plots were visualised and 

calibration curves were constructed using ABI 7500 system SDS Software version 

1.2 

Amplification efficiency (E) was determined using the slope of the standard curve 

using the following formula: 

E = 10^(-1/slope)  

This was converted into a % amplification efficiency using the following formula 

E %= (10^(-1/slope)-1)*100 

 Linear regression was used to determine the slope of best fit for the CMV Ad169 

standard curve. 
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The  PCR cycling conditions were 95 °C for 10 min (Taq Activation), followed by 50 

cycles at 95°C for 15 s, and at 55°C for 1 min. The total PCR volume was 25 μl, 

which contained 600 nM of each primer, 400 nM probe, 12.5µl TaqMan Universal 

Master Mix (Applied Biosystems, Warrington UK) and 5ul sample input.  

 

Sensitivity and specificity of PCR 

Primer sequences were compared with sequences on BLAST GenBank to avoid the 

likelihood of non-specific amplification. 30 CMV negative control samples were 

analysed. The controls were produced from viral clinical isolates (Herpes simplex 

virus 1 & 2, VZV, Epstein Barr virus and Human herpes virus 6) and were extracted 

using the EasyMag semi-automated extraction system prior to analysis. 

Tenfold serial dilutions of CMV (Ad169) were used to determine the assay sensitivity. 

Standard calibration curves were generated using ABI 7500 system SDS Software 

version 1.2.  

 

UL69 Assay Validation 

The UL69 PCR was validated against the QCMD 2007 CMV DBS quality assurance 

panel. The panel consisted of nine DBS samples in total. Seven samples were 

derived from whole blood, negative for CMV DNA and antibody, and spiked with cell-

grown CMV strain Towne in various concentrations or clinical material (7.3 × 102 – 

9.6 ×105 ge/ml). Two additional samples were CMV-negative whole blood.  

 

Total nucleic acid was extracted from the DBS using the semi-automated Nuclisens 

EasyMag system (as previously described in chapter 3). Briefly, blood was eluted 

from the DBS in EasyMag lysis buffer with the addition of proteinase K. The mixture 
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was incubated at room temperature for 30 minutes on a plate rocker. The total 

resulting supernatant was used as sample input into the EasyMag system with a final 

elution volume of 60µl.  

The resulting DBS extract was tested in triplicate in both the real time gB and UL69 

PCR, the DBS was counted positive if ≥2 of the triplicates gave a positive signal in 

the real time PCR assay. The cycle threshold values of the CMV positive samples 

were compared. 

4.3.3  Statistical analysis 

 

The mean cycle threshold values of the CMV positive samples were compared using 

a Wilcoxon signed rank test.  

The mean log10 viral load in the children with confirmed CCMV was compared to the  

children with normal hearing using a student’s t test (not assuming equal variances).  

The mean log10 viral load in children with bilateral SNHL was compared to those 

without using a student’s t test (not assuming equal variances). 

The relationship between log10 DBS viral load and SNHL the best and worst ear 

average hearing thresholds was investigated using a Spearman's rank correlation  

Other confounding variables associated with SNHL were examined using Fisher’s 

exact or Wilcoxon signed rank tests of significance as appropriate. Significantly 

associated factors (p=>0.05) were entered into a logistic regression model. Step 

wise logistic regression was performed for the predictive variables against increased 

risk of SNHL.  

 

A four parameter logistic regression model was used to model the relationship 

between DBS CMV viral load and SNHL. The equation for the model was as follows 
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y=A*C/A+(C-A)*exp(-B*x))+D  

Computations were performed using Regress+ available at 

http://www.causascientia.org/software/Regress_plus.html 
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4.4  Results 
 

4.4.1  Sensitivity of dried blood spots for retrospective diagnosis of 

congenital CMV 

 

84 children took part in the study; the DBS was retrieved for 74 children (88%) in 

total. 52 participants were female and 22 male. The median age at  DBS testing was 7 

years (see figure 4-2).  Of these 39 DBS were received from children with confirmed 

CCMV infection 5 of which had received ganciclovir therapy. In the remaining 34 

untreated children nine had normal hearing and 25 had SNHL. 28 of the 39 DBS 

from children with confirmed CCMV infection tested positive (71.8%).DBS were 

received from 35  children with sensorineural hearing loss of unknown cause, 8 

tested positive for CMV DNA (23%) consistent with a diagnosis of CCMV (see figure 

4.1). 

One false positive low level result was identified as part of the CHIC study. The false 

positive was identified following clinical observation that urine PCR and serum IgG 

from this child were negative. Following this observation a confirmatory CMV PCR 

was developed to detect a different region of the CMV genome to the screening gB 

assay. The PCR was designed to amplify the UL69 region of the CMV genome. All 

samples which initially tested positive in the gB assay were re-extracted and tested 

with the UL69 assay to confirm positive results. 
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Figure 4-1: Flow chart of the dried blood spot samples received as part of 
CHIC study. 

 

 The number of DBS retrieved and percentage positive in each study group is 

shown.  

* one false positive DBS result was later identified  

 

 

 

 

 

Known CMV 

N=43 

Unexplained 

SNHL  N=41 

DBS RETRIEVED 

TOTAL NUMBER 

35 

28 (71.8%)  

39 

Symptomatic 27 

Asymptomatic 12  

NUMBER DBS POSITIVE 

84 participants 

8 (23%)  

consistent with CCMV  

*1 false 
positive 
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Participant 

 

Gender 

 

Age (years) 

1 Male 6.3 

2 Male 10.4 

3 Female 8.27 

4 Female 9.25 

5 Female 8.85 

6 Female 0.69 

7 Female 7.69 

8 Male 2.72 

 

  

Figure 4-2:The age of participants at time of DBS testing in the CHIC study 

 

A) shows the number of participants and their age in years for the CHIC study (grouped into 
2 year time periods).B) shows the age and gender of the unexplained SNHL DBS positive 
children. 
 
 

A) 

B) 
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4.4.2  Relationship between CMV viral load and hearing loss 

 

The relationship between the CMV viral load measured in a DBS and the hearing 

loss was investigated. The CMV viral load per semicircle of DBS was calculated for 

the DBS retrieved from the CHIC study. The log DBS viral loads showed normal 

distribution, however hearing thresholds were not with most children being classified 

as normally hearing or bilaterally profoundly deaf (consistent with longitdudinal  

audiological data from  (Dahle, Fowler et al., 2000). 

 In the 39 children known to have had CCMV 5 had been treated with ganciclovir so 

were excluded from the analysis. Of the remaining 34 children, 9 had normal hearing 

and 25 had SNHL. The mean log viral load was significantly higher in the 25 children 

with SNHL than in the 9 children with normal hearing (2.69 log10 genomes vs 1.64; 

p=0.01, 95% CI -1.84to -0.27). The mean log DBS CMV viral load was significantly 

higher in the 18 children with bilateral severe SNHL (>70dBHL) than in the children 

with milder hearing loss (2.84log10  genomes vs 1.93; p=0.01, 95% CI -1.6 to -0.2). 

When the DBS were categorised into groups based on increasing viral load a 

relationship was seen between the number of cards testing positive and the number 

of children having SNHL. When each group was expressed as a percentage of 

children with SNHL  only 50 % of children had SNHL in the negative group compared 

to the viral load group >3 log10  genomes where 100% of children had SNHL (figure 

4.3).Overall as the CMV viral load recovered from the DBS increased so did the 

percentage likelihood of the child having SNHL (see figure 4.3). 

To examine the relationship between log10 DBS viral load and SNHL the best and 

worst ear average hearing thresholds were plotted against log10 DBS viral load. 

Negative DBS were assigned a value of 1 log10 for data analysis purposes. In the 34 

children with SNHL there were significant positive Spearman's rank correlations 
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between pure tone average hearing thresholds and the CMV viral load measured in 

the DBS (r=0.445, p=0.008 (worst ear) and r=0.482, p=0.004 (best ear)). The 

scatterplot showed a non-linear relationship (R2=0.51) with a sigmoid best fit curve 

suggesting a threshold effect, linking severity of SNHL with higher CMV viral load 

(see figure 4.4). Other confounding variables associated with SNHL were examined 

for all children (Jaundice, admission to neonatal intensive care unit, gentamicin 

treatment and gestation) and found not to be significantly associated with SNHL. 

 In the symptomatic group, presence of petechiae, hepatosplenomegaly, intrauterine 

growth retardation, birth weight, maternal antenatal symptoms, brain imaging 

abnormalities, visual problems and cerebral palsy were found not to significantly 

associated with SNHL.  

A significant relationship between SNHL and increasing age, increasing log10 DBS 

viral load and presence of CNS involvement was found.  On multivariable regression 

analysis the Log10 CMV viral load remained independently associated with increased 

risk of SNHL.
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Figure 4-3: The percentage of children with SNHL in the CHIC study according 
to the log10 dried blood spot viral load. 

 

CMV positive patients were grouped into 4 groups based on the dried blood spot 

result/viral load. As the CMV viral load measured in the DBS increased so did the 

percentage of children having SNHL 

 

Abbreviation: DBS- dried blood spot, CMV – cytomegalovirus, SNHL- sensorineural 

hearing loss, CHIC - CMV in Hearing Impaired Children
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Figure 4-4 Relation between dried blood spot CMV viral load and hearing 

thresholds.           

 The best fit curve was sigmoid suggesting a threshold effect, linking severity of 

SNHL with higher CMV viral load (Threshold interpretation: <20 dBHL: normal 

hearing, >95 dBHL: profound SNHL) adapted from (Walter, Atkinson et al., 2008). 

 

Abbreviation: DBS- dried blood spot, CMV – cytomegalovirus,  dBHL – decibel 

hearing level, SNHL- sensorineural hearing loss
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Initially, in the unexplained SNHL group 9/35 DBS tested positive for CMV 

DNA. However one false positive was detected in this group and was 

excluded from the analysis. The DBS gave a low level viral load result (310 

genomes/ semicircle DBS), the child was found to be CMV IgG seronegative 

and not excreting CMV in urine. Her mother was also found to be CMV IgG 

seronegative. 

Therefore for the unexplained SNHL group, 8/35 (23%) DBS tested positive 

for CMV DNA consistent with congenital CMV as a possible cause for their 

deafness. It is important to be aware of false positive laboratory results, 

therefore a diagnostic algorithm for the diagnosis of CCMV in SNHL was 

developed which limits the use of DBS testing in clinical practice to children 

with evidence of previous exposure to CMV either by positive serology, blood 

or saliva samples (see figure 4.5). 
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Child With SNHL

(Consider testing mother for HCMV IgG if  

negative exclude CCMV )

<1 year old      

Urine/ Saliva x2
>1 year old urine/Saliva             

(+/- HCMV IgG)

Urine / 

saliva 

negative

exclude 

CCMV

Urine or 

saliva 

positive

Urine, saliva 

or IgG 

positive

Urine 

/saliva 

negative

IgG   

negative 

exclude 

CCMV

IgG    

positive

Obtain parent’s written permission to test DBS

DBS HCMV DNA detected: 

Consistent with congenital 

HCMV*

DBS HCMV DNA not 

detected: SNHL unlikely 

to be caused by HCMV

 

 

 

Figure 4-5: Suggested diagnostic algorithm for investigating congenital 

CMV infection as a cause of sensorineural hearing impairment. 

*provided that the dried blood spot was collected within 3 weeks of date of 

birth and that the initial PCR positive result with gB (UL55) was confirmed by 

retesting with UL69 primers.  
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4.4.3  Development of a confirmatory CMV PCR for DBS  

 

 One false positive was detected during the CHIC study.  To address this 

problem a confirmatory PCR to detect a different region of the CMV genome 

to the screening gB assay; the UL69 gene was developed and optimised. 

 

Optimisation of UL69 primer and probe concentrations  

 

After optimisation, the optimum primer and probe concentrations were found 

to be 600 nM of each primer and 400 nM probe in a total sample volume of 

25µl (12.5µl TaqMan Universal Master Mix (Applied Biosystems, Warrington 

UK) and 5ul sample input). PCR cycling conditions were 95 °C for 10 min 

(Taq Activation), followed by 50 cycles at 95°C for 15 s, and at 55°C for 1 min. 

 

Sensitivity of CMV UL69 PCR 

Tenfold serial dilutions of CMV Ad169 were run in the CMV UL69 PCR. Each 

dilution series was run ten times and the mean Ct used to generate a 

standard curve. The standard curve derived showed a high R2
 value 0.998 

and a slope of -3.3578 corresponding to a PCR efficiency of 98.52%. The 

dynamic range of the assay ranged from 103−107 copies/ml and was 

associated with a very high correlation coefficient (>0.985) with the coefficient 

of variation being <5% across the replicates. 

The limit of detection was determined from serial dilution of the Ad169 strain. 

The dilution series was run in triplicate on ten separate UL69 PCR runs. The 

lowest replicate which showed amplification for 3/3 triplicates was 700 ge/ml 

(7 genomes/reaction). However it should be noted that PCR of low copy 
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number dilutions are stochastically limited and theoretically detecting less 

than 3 copies per PCR reaction is not possible. 

 

Specificity of CMV UL69 PCR 

 

Primers were aligned to UL69 sequences (n=4) published in GenBank to 

ensure that the selected primer and probe combinations were in conserved 

regions of the gene. No mismatches were found in primer and probe set 

selected. Nucleotide BLAST searches found no marked sequence homology 

between the UL69 PCR amplicon with other sequences registered on the 

database confirming that the amplification should be specific for CMV UL69. 

None of the 30 CMV negative control samples or viral clinical isolates (HSV-1, 

HSV-2, VZV, EBV and human herpes virus 6) showed any reactivity in the 

CMV UL69 assay. 

 

CMV UL69 assay validation using QCMD samples 

 

The QCMD CMV DBS panel was used to validate the UL69 PCR for DBS 

testing. Each DBS was extracted and tested in triplicate. Qualitative results 

are shown in table 4-1 together with the number of triplicates testing positive 

(the DBS was counted positive when ≥2 triplicates tested positive). CMV DNA 

was detected in at least 2/3 triplicates in all DBS with CMV viral loads of 9.4 x 

103 ge/ml or higher. The two DBS with viral loads reported to be 730 ge/ml 

were negative in the CMV UL69 assay (0/3 triplicates positive). Both of the 

CMV negative DBS showed no amplification in the UL69 assay.  



 
 

144 
 

 

Comparison of the CMV UL69 PCR to the CMV gB assay 

The purpose of the UL69 PCR is to confirm the CMV positive result in all DBS 

which test positive in the first line screening PCR (CMV gB), therefore both 

the assays should show similar detection limits.  

The Ct values of the UL69 and gB were compared. The mean Ct for both the 

UL69 and gB PCR was determined for each of the QCMD DBS. No significant 

difference was found between the resulting mean values when the two 

methods were compared p=0.4393 (paired t test). See figure 4.6. 
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Table 4-1: Qualitative results of CMV DNA detection in the QCMD DBS 
2007 panel. 

 

 DBS were tested using the CMV UL69 PCR, the results, expected results and the 

percentage of results reported back correctly to the QCMD from participating 

laboratories () show the number of CMV positive wells per triplicate. 

Abbreviation: DBS- dried blood spot, CMV- cytomegalovirus ge/ml - 

genomes/ml 

 

 

QCMD CMV DBS 

Viral load (ge/ml) 

 

CMV UL69 PCR result 

 

Expected result (% 
correct qualitative 

results of all 
participants) 

 

Negative - Negative (96) 

Negative - Negative (96) 

7.3 x 102 - Positive (0) 

7.3 x 102 - Positive (7) 

9.4 x 103 Positive (2/3) Positive (48) 

9.4 x 103 Positive (2/3) Positive (52) 

8.8 x 104 Positive (3/3) Positive (93) 

9.6 x 105 Positive (3/3) Positive (96) 

3.9 x 10
6
 Positive (3/3) Positive (100) 

 

 

. 
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Figure 4-6: The Ct values of the 2007 QCMD dried blood spot panel after 

testing by either CMV gB or UL69 PCR. 

 DBS were tested in triplicate. Depicted are the Ct values obtained from each DBS 

and their corresponding stated CMV viral loads in Log10 genomes/ml.  Bars show the 

mean Ct of triplicate testing of each PCR protocol. No significant difference seen 

between the resulting mean values when the two methods were compared p=0.4393. 

  

Abbreviation: DBS- dried blood spot, CMV – cytomegalovirus, Ct- cycle 

threshold. 

 

 

 

Log10 CMV DNA viral load in DBS  

(genomes/ml) 
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4.5 Discussion 
 

CCMV is the most common cause of infant SNHL and current management of 

this condition is inadequate. This study aimed to establish and validate a new 

diagnostic approach for the use of DBS for the retrospective diagnosis of 

CCMV. 

The percentage of confirmed congenital children testing positive in this 

retrospective study was found to be 72%, so providing an estimate of the 

sensitivity of detecting CCMV infection in children selected because they had 

SNHL.     

Varying sensitivities have been reported in the literature (Barbi, Binda et al., 

2000) with a variety of methods and varying amounts of DBS tested and 

different groups of patients. 

Soetens et al, reported a sensitivity of 73% in a CCMV cohort of 53 

asymptomatic and 2 symptomatic children when using a whole DBS sample 

(Soetens, Vauloup-Fellous et al., 2008). In this thesis the BPSU study 

(chapter 3) gave a similar sensitivity (74%) when using DBS to retrospectively 

diagnose CCMV. It should be noted that in this study a semicircle of DBS was 

used as there is often insufficient material left over from routine testing to use 

a full DBS for routine testing. Interestingly, the studies which report a 

sensitivity of 100% used a population of children who were diagnosed with 

CCMV via cell culture from urine and may reflect infants with the highest viral 

loads and therefore not give a true picture of the sensitivity of their assay. Two 

DBS studies have tested unselected samples with urine and or saliva samples 

tested simultaneously. They reported DBS sensitivities for CMV detection of 
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70% and 80% which is more consistent with the results found in this chapter 

(Johansson, Jonsson et al., 1997;Yamamoto, Mussi-Pinhata et al., 2001). 

In the children with unexplained SNHL 8/33 (23%) DBS tested positive for 

CMV DNA which is consistent with previous reports. Barbi et al, reported a 

similar detection rate of 25% in children with unexplained deafness (Barbi, 

Binda et al., 2006).  

One false positive was detected during the CHIC study. A Quality Control in 

Molecular Diagnostic DBS panel for CMV reported a false positivity of 9% 

across laboratories in 11% of datasets submitted (Barbi, MacKay et al., 2008).  

To address this problem, I developed a confirmatory PCR to detect a different 

region of the CMV genome to the screening gB assay. The PCR was 

designed to amplify the UL69 region of the CMV genome.  This second 

confirmatory real time PCR removed the possibility of amplicon contamination 

producing false positives in the gB assay. All DBS testing positive in the gB 

assay were re-tested using the UL69 PCR to confirm their positivity. The 

assay was fully validated to ensure that the sensitivity of both the first line 

screening test (CMV gB PCR) and the UL69 PCR were comparable. A 

diagnostic algorithm for the diagnosis of CCMV in SNHL was developed for 

clinicians which limits the use of DBS testing in clinical practice to children 

with either positive serology, blood or saliva samples, thereby saving 

excessive testing and precious blood spots. In 2008 the testing algorithm was 

published and has been adopted in the UK as the standard of care for 

investigating CCMV in children with unexplained SNHL (Walter, Atkinson et 

al., 2008). 
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The relationship between CMV viral load and risk of disease is well 

established for transplant and AIDS patients.(Cope, Sweny et al., 1997;Cope, 

Sabin et al., 1997;Emery, Cope et al., 1999;Emery, Sabin et al., 2000;Emery, 

Sabin et al., 2000)) The results from the CHIC study suggest that there is also 

a correlation between CMV viral load from the DBS and SNHL. Studies using 

real time PCR quantitation have shown that viral load in urine and blood at 

birth is higher in symptomatic babies compared to asymptomatic babies born 

with CMV infection but more importantly that viral load correlates with future 

SNHL(Rivera, Boppana et al., 2002;Boppana, Fowler et al., 2005;Bradford, 

Cloud et al., 2005). Ross et al, studied symptomatic and asymptomatic 

children with CCMV and showed that peripheral blood viral load was not 

directly associated with hearing loss but viral loads of <3,500 copies/ml were 

associated with a lower risk of hearing loss and better hearing outcomes 

(Ross, Novak et al., 2009). This provides an important rationale for the 

antiviral therapy studies now underway in children born with congenital CMV 

disease whose objective is to reduce the future development of SNHL. 

 In the transplant setting the risk of CMV disease increases significantly at key 

CMV load thresholds with a non-linear relationship (Cope, Sweny et al., 

1997). This illustrates the importance of early intervention with antiviral drugs 

to maintain CMV loads at relatively low levels to minimise the risk of patients 

progressing to CMV disease and such pre-emptive therapy has successfully 

reduced CMV disease in transplant patients (Atabani, Smith et al., 

2012;Owers, Webster et al., 2013) This threshold effect may explain the 

reported beneficial effects of a 6 week course of ganciclovir on hearing 

outcomes in CCMV (Kimberlin, Lin et al., 2003) when children with CCMV 
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continue to excrete virus for months. Thus, a transient lowering of peak CMV 

viral load may reduce the risk of SNHL despite the fact that CMV replication 

continues at lower levels.  

The results of the CHIC study suggesting a sigmoid relationship for the 

severity of SNHL versus CMV viral load may inform the design of future 

clinical trials designed to reduce the proportion of children with CCMV who 

develop SNHL. In particular, the threshold relationship supports the 

investigation of relatively short courses of treatment as a way of controlling 

disease while minimising exposure of young children to drugs with potential 

side effects.  
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Chapter 5 

5 Applicability of DBS for CMV testing in 

clinical cohorts from resource poor 

countries 
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5.1 Introduction 

 

Dried blood spots are widely used for newborn screening of inherited and 

metabolic conditions, additionally the use of DBS for the retrospective 

diagnosis of congenital CMV infection is well established,(reviewed by Barbi 

et al (Barbi, Binda et al., 2006).    

Detection and quantitation of CMV from blood samples is routinely performed 

diagnostically and has many clinical uses (Atkinson & Emery, 2011). In 

contrast CMV DNA detection from DBS is an emerging technique consisting 

of a multi-step process of nucleic acid extraction and DNA amplification. The 

detection of CMV DNA from DBS is challenging due to the limited amount of 

blood available. However, this approach for sampling blood has several 

advantages over traditional methods of venipuncture sample collection; 

crucially there is no need for phlebotomy, cards are prepared from a small 

volume of blood (usually a single finger or heel prick), the method is relatively 

inexpensive and cards need no specialist storage or transport requirements. 

These practical benefits have made DBS an attractive alternative to  fresh 

whole blood for the diagnosis and monitoring of viral infections in the 

developing world or in infant cohorts where limited blood volume may be 

available. However sensitivity and specificity of the DBS sample has not been 

systematically evaluated against 'gold standard' sample types of plasma or 

whole blood. 

CMV was first suggested as a co-factor in HIV progression in 1989, with CMV 

seropositive individuals 2.5 times more likely to progress to AIDS defining 
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diseases compared to CMV seronegative individuals and survival analysis 

showed that the risk increased approximately 2 years after seroconversion 

(Webster, Grundy et al., 1989). Since this seminal study HIV and CMV co-

infection in adults has been associated with disease progression and mortality 

(Kempen, Martin et al., 2003;Spector, Hsia et al., 1999;Deayton, Prof Sabin et 

al., 2004) and a recent large HIV cohort study of 6,111 individuals by Lichtner 

et al, has shown that CMV co-infection is associated with an increased risk of 

severe non-AIDS defining events (Lichtner, Cicconi et al., 2014). In addition 

Johnson et al have recently shown that HIV-1 infected mothers with ongoing 

or primary CMV infection  have an elevated frequency of HIV-1 transmission 

and suggested cord blood mononuclear cells undergo increased proliferation 

when stimulated with CMV antigens, upregulating the T central memory cells 

and expression of CCR5 which may promote in utero transmission of HIV-1 

(Johnson, Howard et al., 2015). 

In resource limited settings children born to HIV positive mothers with 

maternal CMV DNAemia are associated with impaired growth and 

development (Gompels, Larke et al., 2012a) and a higher risk of mortality 

(Slyker, Lohman-Payne et al., 2009). CMV can be transmitted in utero, during 

delivery or postpartum via exposure to CMV in breast milk or saliva. In sub-

Saharan Africa >80% of children acquire CMV within the first 12 months of life 

establishing a lifelong latent infection, with 90% of HIV exposed but uninfected 

and 89% of HIV infected children experiencing detectable DNAemia by 6 

months of age (Slyker, Lohman-Payne et al., 2009).  
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 In this chapter I identified a cohort of HIV positive mother/ baby pairs in 

Nairobi, Kenya where both longitudinal concomitantly collected DBS and 

plasma were available. These paired samples were used to investigate the 

sensitivity and specificity of CMV detection from DBS and to validate a higher 

throughput methodology for extraction of DBS suitable for large research 

cohorts. The results provide valuable estimates to guide the use of DBS to 

monitor viral acquisition and address how DBS specimen selection may 

influence the overall outcome of a study. 
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5.2 Aims 
 

The work in this chapter aimed to systematically quantify differences in CMV 

DNA detection using real-time PCR in DBS compared to paired  plasma as a 

reference sample in an HIV positive population. 

 Using paired plasma and DBS samples collected longitudinally, I aimed to 

determine ways in which using DBS may potentially misclassify results in a 

longitudinal study providing valuable information to guide the use of DBS in 

future prospective studies in this cohorts. 

 

To achieve this I have three aims: 

 to determine the sensitivity, specificity, negative predictive value and 

positive predicative value of the DBS sample for CMV DNA detection 

when compared to reference plasma results. 

 to compare detection rates between DBS and plasma samples and 

determine if sample type affects the time to first detection. 

 to determine if CMV viral load plays a role in CMV detection from DBS 

in this cohort. 

To be able to carry out these aims I established a collaboration with the 

Department of Global Health, University of Washington, Seattle USA for 

access to paired infant and child DBS and plasma samples. 
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5.3 Methods 
 

5.3.1  Participants 

 

All studies were approved by the University of Washington Institutional 

Review Board and the Ethics and Research Committee of Kenyatta National 

Hospital, and written informed consent was obtained from all mothers on 

behalf of themselves and their infants. A cohort of infants born to HIV infected 

women were used to study acute CMV acquisition and detection. Specimens 

were selected from a larger perinatal HIV transmission cohort, details of which 

have been presented elsewhere (Lohman-Payne, Slyker et al., 2009;Lohman, 

Slyker et al., 2005;Obimbo, Mbori-Ngacha et al., 2004;John-Stewart, Mbori-

Ngacha et al., 2009;Gichuhi, Obimbo et al., 2005;Lohman, Slyker et al., 

2003). Mothers were recruited during the third trimester of pregnancy from 

prenatal clinics in Kenyatta National Hospital, Nairobi between 1999 and 

2004. Women were provided with short-course antenatal zidovudine for the 

PMTCT according to contemporaneous guidelines (Shaffer, Chuachoowong 

et al., 1999).This study was conducted before antiretroviral therapy (ART) 

became widely accessible, and women received no ART other than PMTCT 

during study follow-up. Mother- infant pairs were followed-up in the study 

clinic for 1 year, with an additional year of follow-up for infants acquiring HIV 

infection. Infant peripheral blood and DBS were collected at birth and months 

1, 3, 6, 9, 12, 15, 18, 21 and 24. Blood was separated using density-gradient 

centrifugation and plasma was cryopreserved at -70ºC for future virological 

studies. 
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5.3.2  Infant HIV-1-diagnosis 

 

Infant HIV-1 infection was diagnosed by detection of either HIV-1 gag DNA 

(Panteleeff, John et al., 1999), or RNA from plasma (Emery, Bodrug et al., 

2000) using the GenProbe assay.  

 

5.3.3  Specimen selection 
 

60 mother/infant pairs were selected form the larger cohort based on 

availability of previous CMV testing in plasma, as reported in (Slyker, 

Lohman-Payne et al., 2009) Because >85% of CMV transmissions occurred 

within the first 6 months of life.  Samples from birth to 3 months were selected 

for comparison between plasma and DBS. 

 

5.3.4  CMV DNA detection in plasma samples 

 

CMV extraction and quantitative CMV PCR were determined on plasma 

samples in infants up to 24 months of age by the collaborators in the 

Department of Epidemiology, University of Washington USA.  Briefly total 

nucleic acid was extracted from 50µl -200µl of plasma using the Qiagen 

UltraSens virus extraction kit (Qiagen, Valencia, California, USA) according to 

the manufacturer’s protocol. For comparative purposes the CMV gB real time 

PCR protocol was used as described in chapter 2. 
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5.3.5  Development of high throughput methodology for extraction 

of DBS samples 

 

An extraction methodology was developed for extraction of DBS samples on 

the QIAsymphony instrument (Qiagen, UK). This instrument has the benefit of 

being fully automated with barcode input and sample tracking.  A selection of 

known positive (previously tested by EasyMag) DBS were used to evaluate 

the higher throughput system. Nucleic acid was extracted from DBS using the 

QIA|Symphony automated extraction system (Qiagen, Crawley, UK) with the 

QIAsymphony DNA Mini Kit following manual pre-treatment: DBS was added 

to 400μl Buffer ATL and 20μl proteinase K, and incubated at 56°C for 30 

minutes. The resulting supernatant was transferred into a 2 ml tube, without 

disturbing the digested DBS, and loaded onto the QIAsymphony SP. 

Extraction was carried out using the “VirusBlood200_V5_DSP” protocol with 

an elution volume of 60μl. A total of 96 samples could be processed per 

batch.  

 

5.3.6  CMV DNA detection in DBS 

 

Real-time PCR was used to detect the CMV glycoprotein B gene (UL55) as 

previously described in chapter 2 and 3 and the assay used for CMV 

quantitation from paired plasma samples for comparison. 
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5.3.7  Statistical analysis 

 
 
Sensitivity and specificity of DBS for CMV detection were performed using 

plasma DNA detection as a gold standard. An online calculator was used to 

determine sensitivity, specificity, NPV and PPV available at 

http://www.medcalc.org/calc/diagnostic_test.php (accessed October 2013). 

STATA SE version 13.0 (STATA Corp., College Station, Texas USA) was 

used for all other statistical analysis. Assuming that plasma would be more 

sensitive method for CMV detection, non parametric receiver operating 

characteristic (ROC) curves were used to determine the optimal cut-off of 

plasma CMV load for the detection of CMV from the DBS sample. The AUC 

was compared between HIV-infected and HIV-exposed uninfected infants 

using the Mann-Whitney U test. The time to first CMV DNA detection between 

DBS and plasma samples was investigated using a paired Wilcoxon signed-

rank test, with the first CMV DNA detection used to define infection. A t -test 

was used to test the difference between the plasma CMV viral loads with 

CMV DNA detected in paired DBS and those with CMV DNA not detected. All 

p values reported are for two-tailed tests with p values ≤0.05 regarded as 

significant 
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5.4 Results 
 

5.4.1  Patient characteristics 

 

60 mother infant pairs were selected for this sub-study; all mothers were 

known to be HIV positive. 40 infants were HIV infected (HI) (67%) and 20 

were HIV exposed uninfected (HEU) (33%) during the study period. Patient 

characteristics have been described elsewhere in detail (Slyker, Lohman-

Payne et al., 2009). In both the HI and HEU infants the majority of CMV 

infections (plasma detection) occurred in the first 3 months of life (90%) as 

previously reported (Slyker, Lohman-Payne et al., 2009) 5 cases of congenital 

CMV (8%) were included: CMV DNA being detected in the infant plasma 

sample at birth, paired DBS samples were available for 4 of the CCMV infants 

of which 3 (75%) were positive for CMV DNA.  The DBS sample without 

detectable CMV DNA had the lowest peak viral load of 1.76 log10 CMV 

genomes/ml, while the CMV detected viral loads were 2.25, 2.6 and 3.0 log10 

CMV genomes/ml in the CCMV children. 

 

5.4.2  Sensitivity and specificity of CMV DNA detection in DBS 

compared to plasma samples 

 

DBS were compared to the paired ‘gold standard’ plasma samples to assess 

the sensitivity and specificity for detection of CMV DNA. The overall sensitivity 

of DBS compared to plasma samples for detection of CMV DNA was 45%. 

Specificity was 100% with a PPV of 100% and NPV of 71% (Table 5.1). 
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When evaluating a continuous-scale diagnostic test, specificity and sensitivity 

may change depending on the set point of measurement. ROC curves were 

used to evaluate the sensitivity and specificity of DBS to diagnose CMV 

across the range of observed plasma CMV loads (Figure 5.1a). The analysis 

was repeated but stratified by HIV status (figure 5.1b) to see if HIV co-

infection had any effect on outcome.  For the ROC sensitivity was plotted 

against 1- specificity (false positive rate) for different viral load cut off points. 

Each point therefore represents a sensitivity/specificity pair corresponding to a 

viral load threshold. For all DBS tested the ROC showed an optimal cut-off for 

CMV viral loads above 206 genome/ml. When infants were stratified by HIV 

status, similar optimal cut-offs for plasma viral load were seen (>286 CMV 

genomes/ml for HEU, >221 CMV genomes/ml for HI, p=0.4). The AUC of the 

ROC was 0.91 for detection of CMV DNA from all DBS, when stratified by HIV 

status the  AUC were not significantly different  between each group (AUC 

0.981 for HEU, 0.828 for HI respectively, p= 0.6). 
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Table 5-1: Sensitivity, specificity, positive predictive values and negative 

predictive value  of the Dried blood spot samples when compared to 

paired plasma samples for the detection of Cytomegalovirus DNA. 

 

 

Parameter 

 

% 

 

 

CI (95%) 

 

Sensitivity 

 

 

45% 

 

29-61% 

 

Specificity 

 

 

100% 

 

93-100% 

 

PPV 

 

 

100% 

 

82-100% 

 

NPV 

 

 

71% 

 

59-80% 

 

The results are shown with the 95% confidence intervals (CI). 

(PPV: positive predictive value; NPV: Negative predictive value) 
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Figure 5-1: Receiver operator curves for cytomegalovirus DNA detection from  

dried blood spots compared to paired plasma samples.   

 

Specificity was plotted against 1-specificity to determine a threshold CMV viral load 

of detection for CMV from the DBS sample and area under curve (AUC) for overall 

accuracy. a) represents all DBS samples showing  good overall accuracy for 

discriminating CMV DNA in DBS samples (AUC 0.905) b) shows ROC stratified by 

HIV status, HIV exposed uninfected (blue), HIV infected (red), with no significant 

difference seen between groups (AUC 0.981, 0.828 respectively).  

a)

) 

b

)) 
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The time to first detection of CMV DNAemia was considered the time of CMV 

acquisition. The time to first detection of CMV DNA was compared between 

DBS and plasma. The incidence of CMV DNA detection in plasma samples 

was 90% at 3 months of life while in contrast DBS testing showed 31% overall 

detection of CMV DNA at 3 months. 

 

To further compare the time to first detection in the two sample groups a 

paired Wilcoxin signed-rank test was performed. For all samples the Wilcoxin 

shows a trend for significance (p=0.051) between time to first CMV detection 

in plasma versus time to first detection in DBS. To investigate this trend 

further; to determine whether using DBS would significantly affect an estimate 

of timing of infection in a longitudinal study the median time to first detection 

of CMV DNA was compared for DBS and plasma, Overall, using the plasma 

specimen resulted in earlier detection of CMV DNA (median= 2months) 

compared to DBS (median=2.8 months; p=0.05) No difference was seen 

when samples were stratified by HIV status (table 5.2). 
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Table 5-2: Comparison of time to first Cytomegalovirus DNA detection in 
dried blood spots and plasma samples. 

 

 

  

Median time to 1st CMV detection (months) 

 

Sample type 

 

Plasma 

 

DBS 

 

p value 

 

HIV infected 

 

1.50 

 

1.90 

 

0.31 

 

HIV exposed 

 

2.33 

 

2.67 

 

0.55 

 

All  

 

2.0 

 

2.8 

 

0.05 

 

 

The mean time to first CMV detection for DBS versus plasma for all samples and 

samples stratified by HIV status is shown. Overall, using the plasma specimen 

resulted in earlier detection of CMV DNA. No difference was seen when samples 

were stratified by HIV status 
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The viral load of the plasma samples was then investigated to see if there was 

a correlation between viral load and CMV DNA detection from DBS. The 

mean CMV viral load of the paired plasma samples in which CMV was DNA 

detected in DBS was 3.04 log10 CMV genomes/ml.  In contrast the mean CMV 

viral load from plasma samples in which CMV DNA was not detected was 

2.37 log10 CMV genomes/ml (p=0.0023)( figure 5.2). The mean peak viral load 

in plasma was 2.96 log10  CMV genomes/ml (range 2.6 - 4.9 log10 CMV 

genomes/ml), with the mean peak viral load in DBS being  3.7 log10 CMV 

genomes/106 cells (range 2.6 -5.2 log10 CMV genomes/106 cells). 
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Figure 5-2: The Log10 Cytomegalovirus genomes/ml in plasma samples 
related to paired dried blood spot result.  

 

DBS samples were reported as CMV DNA not detected or detected.  Error bars show 

the mean CMV viral load and SD. There was a significant difference between the 

plasma viral loads stratified by DBS detection (p=0.0023). 

 

 

 

P=0.0023 
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5.5 Discussion 
 

The aim of this study was to systematically quantify differences in CMV DNA 

detection using real-time PCR in DBS compared to plasma as a reference 

sample in an HIV positive population. Using paired plasma and DBS samples 

collected longitudinally, I was able to determine ways in which using DBS may 

potentially misclassify results in a longitudinal study providing valuable 

information to guide the use of DBS in future prospective studies in these 

cohorts.  

This sample cohort chosen was ideal to evaluate sensitivity and specificity of 

CMV detection from DBS for the following reasons, most plasma samples 

were CMV DNA positive, a wide range of viral loads were observed and finally 

most children remained viraemic. Although the sensitivity of DBS was low 

compared to plasma (45%), the PPV (100%) and NPV (71%) were high, and 

the tests were most comparable when CMV viral loads were >206 

genomes/ml. Together, these data suggest DBS are a useful tool to identify 

individuals with significant levels of CMV replication in populations where 

CMV is highly prevalent. Clinically significant (over 1000 CMV DNA copies/ml) 

values are thus likely to be accurately classified as positive using DBS, 

although CMV viral loads measured by DBS would be expected to return 

values below what was measured in plasma. This sensitivity is consistent with 

the viral load data in which the mean CMV viral load of the paired plasma 

samples in which CMV was DNA detected in DBS was 3.04 log10 CMV 

genomes/ml.  In contrast the mean CMV viral load from plasma samples in 

which CMV DNA was not detected was 2.37 log10 CMV genomes/ml and will 
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account for why many of the plasma samples with low virl loads were not 

detectable in the DBS assay.  

These results show that using DBS for a prospective study, even with a very 

narrow window of CMV acquisition (0-3 months) will likely delay the detection 

of CMV in viraemic individuals as the lower viral loads will not be detected.  

loads are expected, although it should be noted that due to the monthly  

Detection of CMV in DBS has mainly focused on children with congenital 

CMV where there is a lack of comparison between concomitantly collected 

blood samples. Sensitivity and specificity has been ascribed to number of 

cases of congenital CMV or the production of DBS from known quantities of 

CMV spiked into whole blood or plasma prior to analysis (Atkinson, Walter et 

al., 2009;Binda, Caroppo et al., 2004;Barbi, Binda et al., 2006;Barbi, Binda et 

al., 2000;Boudewyns, Declau et al., 2009;de Vries, Barbi et al., 

2012;Boppana, Ross et al., 2010). Although sensitivity of CMV DNA detection 

in the DBS compared to plasma was only 45%, this study suggests the 

sensitivity would be appropriate for monitoring cohorts at risk of CMV disease 

for example solid organ transplant patients and AIDS patients where the 

relationship between CMV viral load and risk of disease is well established 

(Cope, Sweny et al., 1997;Cope, Sabin et al., 1997;Emery, Cope et al., 

1999;Emery, Sabin et al., 2000;Emery, Sabin et al., 2000); (Humar, Gregson 

et al., 1999) and significant levels of DNAemia are expected; but not for 

cohorts with low viral loads. Specificity was found to be 100% with a PPV of 

100%. The ROC was in agreement with a good ability to differentiate patients 

positive for CMV DNA from those negative for CMV DNA.  
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Overall, plasma samples showed superior sensitivity for detection of CMV 

DNAemia with the detection of CMV DNA associated to plasma CMV viral 

load, however it must be noted that the amount of sample available from a 

DBS will be significantly lower than the volume of plasma tested. 

Plasma collection may not be suited to every study, plasma separation 

requires specialist equipment and cold-chain storage for shipping, which may 

be lacking at low-resource facilities. In young infants, blood volumes may be 

very limiting. In contrast, DBS utilise very small blood volumes (~50µl), require 

no processing, can be stored without refrigeration prior to shipping, and can 

be transported for analysis at reference laboratories without the sample 

associated biohazard risk. In resource limited settings DBS sampling allows 

testing of patients for viral infections as it greatly facilitates the logistics of 

sample collection. 

In conclusion, the use of DBS can simplify sample collection and virological 

monitoring for CMV infection, but has reduced sensitivity compared to plasma, 

which is dependent upon CMV viral load and ultimately may reflect sample 

volume. Clinic resources, patient origin (adult/infant), and emergent need for 

prospective diagnosis should be evaluated critically to determine whether 

DBS is an appropriate specimen for a site. A sampling strategy based on DBS 

should be fully validated prior to use to determine sensitivity and specificity in 

a study population with lower prevalence of CMV DNAemia than examined 

here. Despite its limitations, DBS may have the ability to improve patient care 

in remote clinics and are often the only viable option in resource limited 

settings where logistical constraints often preclude storage and transport of 

plasma or whole blood samples.  
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Chapter 6 

6 The relationship between CMV detection 

in different maternal body compartments 

and acquisition on CMV by the infant in 

the setting of HIV-1 infection  
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6.1 Introduction 
 

Mother to child transmission of infection is a major public health concern with 

World Health Organisation programmes in place to try to eliminate 

transmission of HIV. In the context of HIV infection, in developed countries 

transmission is prevented by a combination of interventions including elective 

caesarean sections, antiviral prophylaxis, HAART and avoidance of breast 

feeding. However vertical transmission continues to be a problem in 

developing countries where HIV status may not be known or interventions not 

possible. In the absence of antiretroviral prophylaxis, breastfeeding is a major 

route of transmission of HIV infection (Dunn, Newell et al., 1992). 

CMV acquisition from breast milk is a common mode of transmission of CMV 

Premature infants are particularly at risk of CMV disease if they acquire CMV 

via breast feeding in the neonatal period (Kurath, Halwachs-Baumann et al., 

2010). In areas with high CMV seroprevalence,  breast milk transmission has 

been show to account for the majority of infants acquiring CMV before the age 

of one year (Stagno, Reynolds et al., 1980). 

 It has been shown that >80% of healthy women have detectable CMV in their 

breast milk or cell free whey (Vochem, Hamprecht et al., 1998 (Hotsubo, 

Nagata et al., 1994;Asanuma, Numazaki et al., 1996;Hamprecht, Maschmann 

et al., 2001;Yasuda, Kimura et al., 2003)  with CMV being first detected at  2–

3 weeks after delivery, peaking by 3–6 weeks and  becoming undetectable in 

most individuals by 8–10 weeks after delivery (Hamprecht, Witzel et al., 

2003). The CMV present in breast milk could be from multiple sources 
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including mammary epithelial cells, lymphocytes and  migrating 

monocyte/macrophages.  

Intrapartum transmission is thought to result from contact with CMV from the 

cervix or vagina during birth. Asymptomatic cervicovaginal shedding of the 

virus is common with CMV being detected in ~10% of non-pregnant women, 

and 11-35% of pregnant women in the third trimester (Stagno, Reynolds et al., 

1975a;Shen, Chang et al., 1993;Chandler, Alexander et al., 1985).  In women 

with cervicitis CMV inclusion bodies are found within glandular epithelial cells, 

endothelial cells, and mesenchymal stromal cells, suggesting that these cells 

may be involved in CMV reactivation in the cervix (McGalie, McBride et al., 

2004).  

Maternal immunity does not prevent CMV infection but seems to prevent overt  

CMV disease. Studies of healthy children in highly seroprevalent regions 

show that 85% of children are infected with CMV by 1 year of age (Miles, van 

der et al., 2007). In Kenya, in the setting of maternal or infant HIV-1, virtually 

all HIV infected women are co-infected with CMV (Slyker, Lohman-Payne et 

al., 2009b). CMV acquisition occurs early in life, with >80% of Kenyan infants 

infected by 3 months of age (Slyker, Lohman-Payne et al., 2009). For those 

infants who acquire HIV, CMV is linked to early mortality, neurologic deficit 

and rapid progression to AIDS (Nigro, Krzysztofiak et al., 1996;Kovacs, 

Schluchter et al., 1999;Slyker, Lohman-Payne et al., 2009b;Nigro, 

Krzysztofiak et al., 1996;Gompels, Larke et al., 2012b)). In the Zambia, in 

studies of both HIV-1 infected (HI) and HIV-1-exposed, uninfected infants 

(HEU) early CMV  acquisition has been associated with numerous detrimental 
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outcomes including  poorer growth and lower psychomotor scores (Gompels, 

Larke et al., 2012b). 

These observations emphasise that vertical transmission of CMV in African 

infants with HIV coinfection can be harmful, however efforts to address this 

problem are hampered by the lack of a CMV vaccine or antivirals with a good 

safety profile. Preventing or delaying CMV acquisition may represent a novel 

strategy to improve the health of infants in areas with high seroprevalence 

and HIV co-infection but requires a better understanding CMV replication and 

transmission in the setting of maternal HIV-1. 
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6.2 Aims 
 

This chapter aims to bring together and build on the DBS methods developed 

and validated in the previous chapters of this thesis and apply them practically 

to investigate a large cohort of maternal and infant samples.  

In this chapter I have worked collaboratively with the University of Washington 

USA to study a large cohort of HIV-1 positive women and their infants. Using 

specimens and data from a randomised trial of valaciclovir suppressive 

therapy in Nairobi, Kenya, I have studied the incidence of CMV detection in 

different maternal compartments (blood, breast milk and cervical secretions) 

to investigate potential relationships between HIV viral load, CD4 count and 

CMV detection in these compartments, with the ultimate aim of identifying 

maternal correlates of vertical transmission of CMV. 

Specific aims of this chapter are summarised below. 

 To set up a collaborative study with the University of Washington USA to 

study a large mother/infant cohort. 

 To use the methods developed in this thesis to analyse both maternal and 

infant samples for the detection and quantitation of CMV in the context of a 

maternal HIV infection and high CMV seroprevalence. 

 To investigate potential relationships between maternal CMV DNA viral 

load in different compartments, immunosuppression (CD4 count) and HIV 

viral load in MTCT of CMV infection.  
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6.3 Materials and methods  
 

6.3.1  Study collaboration 

 

The work in this chapter was a collaborative study with the University of 

Washington, Seattle USA. All work undertaken by them is acknowledged in 

this chapter, all other work is my own. This study was added as an additional 

arm into a clinical trial which evaluated the efficacy of valaciclovir to reduce 

maternal HIV-1 RNA levels (NCT00530777) the results of which were 

published in 2012 (Drake, Roxby et al., 2012a). 

 

6.3.2  Participants and Sampling 

 

All studies were approved by the University of Washington Institutional 

Review Board and the Ethics and Research Committee of Kenyatta National 

Hospital Kenya, and written informed consent was obtained from all mothers 

on behalf of themselves and their infants. 

All  women were HIV/HSV-2 co-infected and were recruited during 28-32 

weeks of pregnancy. All were treated with antivirals for the prevention of HIV 

transmission. The antiviral regime consisted of twice daily zidovudine from 28 

weeks and every 3 hours during labour until delivery and single dose 

nevirapine at the onset of labour. From June 2009, maternal lamivudine and 

twice daily zidovudine for 1 week postpartum were also offered. Women were 

randomised to valaciclovir 500 mg b.i.d. or placebo at 34 weeks gestation (74 

to each group), and continued to 1 year postpartum. Participants were 

evaluated at 34 and 38 weeks gestation, delivery, and at 2, 6, 10, and 14 

weeks and 6, 9, and 12 months postpartum. Venous blood was collected from 
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mothers and DBS were collected from infants at all visits. Cervical swabs 

were collected at 34 weeks (pre-randomisation) and 38 weeks gestation, and 

breast milk was collected at all postpartum visits. 

 

6.3.3  HIV-1 detection and CD4 counts 

 

Both the HIV-1 load and CD4 counts were previously determined as part of 

the original study by the Epidemiology Department in the University of 

Washington as described (Drake, Roxby et al., 2012a) 

Briefly, CD4 counts were measured at 32 weeks gestation. HIV-1 RNA viral 

load was measured using the GenProbe assay (Gen-Probe Inc, San Diego, 

CA). The limit of detection for this study was 150 copies/ml for plasma and 

100 copies/ml for cervical secretions and breast milk.  

Specimens with undetecctable values were assigned a load at half the lower 

limit of detection. At 6 weeks, infant DBS were tested for HIV-1 RNA using the 

Amplicor assay (Roche Molecular Systems, Inc., Branchburg, NJ) and 

confirmed by detection of    HIV-1 gag and pol DNA by an in-house PCR as 

described by  (Panteleeff, John et al., 1999). Infant testing at subsequent 

visits was performed using the in-house HIV-1 gag and pol PCR.   
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6.3.4  CMV DNA detection and quantitation in maternal samples 

 

Extraction of maternal plasma samples, breast milk and cervical secretions 

was performed in the Epidemiology Department, University of Washington 

USA by Kristjana Ásbjörnsdóttir. Briefly total nucleic acid was extracted from 

50µl -200µl of sample using the Qiagen UltraSens virus extraction kit (Qiagen, 

Valencia, California, USA) according to the manufacturer’s protocol. Samples 

were then shipped to me for quantitative CMV PCR analysis. CMV PCR 

detecting the glycoprotein B gene (UL55) was used as previously described in 

chapter 2. The limit of detection was 100 genomes/ml for virus extracted from 

maternal plasma, cervical secretions and breast milk.  

 

6.3.5  CMV DNA detection in infant DBS 
 

Nucleic acid was extracted by me from DBS using the QIAsymphony 

automated extraction system (Qiagen, Crawley, UK) with the QIAsymphony 

DNA Mini Kit following manual pre-treatment: DBS was added to 400μl Buffer 

ATL and 20μl proteinase K (>600 mAU/ml, Qiagen, Crawley UK), and 

incubated at 56°C for 30 minutes. The resulting supernatant was transferred 

into a 2 ml tube, without disturbing the digested DBS, and loaded onto the 

QIAsymphony SP. Extraction was carried out using the 

“VirusBlood200_V5_DSP” protocol with an elution volume of 60 μl.  

CMV PCR detecting the glycoprotein B gene (UL55) was used as previously 

described in chapters 2 & 3. Viral loads from infant DBS were normalised to 

genomes/million cells against a β-globin standard as described in chapter 5 

with a lower limit of detection of 100 genomes/million cells. 
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6.3.6  Statistical analysis 

 

STATA SE version 13.0 (STATA Corp., College Station, Texas USA) was 

used for statistical analysis in association with Barbra Richardson and  Katie 

Odem-Davis in the department of Biostatistics, University of Washington, 

Seattle, Washington, USA. All p values reported are for two-tailed tests with p 

values ≤0.05 regarded as significant. 

HIV-1 and CMV viral loads were log10-transformed to normalise distributions. 

For specimens where >30% of values were undetectable, data were 

dichotomised as detectable/undetectable (CMV in blood and cervix; HIV-1 in 

cervix and breast milk). Plasma HIV-1 and breast milk CMV were treated as 

continuous variables.  CD4 was dichotomised based on the cohort median at 

baseline (450cells/µl). 

GEE were used to measure associations where there were repeated 

measurements within a maternal compartment. The binomial link function was 

used to analyse virus detection as a dichotomised (detected/not detected) 

outcome. Linear models with Gaussian distribution were used to analyse CMV 

levels as a continuous outcome. All GEE models utilised robust standard 

errors and an exchangeable correlation matrix.  

Correlates of infant acquisition of CMV were identified using Cox proportional 

hazards regression, and were restricted to the infants who remained HIV-

uninfected throughout follow-up. The first positive DBS specimen was taken to 

indicate the timing of infant CMV acquisition. 

Since HIV-1 levels were reduced by valaciclvoir treatment (Drake, Roxby et 

al., 2012a) all GEE models included adjustment for study treatment allocation. 
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Models examining CMV-CMV correlations between different maternal 

compartments additionally adjusted for plasma HIV-1 viral load.  

Logistic regression was used to predict the probability of CMV transmission by 

1 year with varying maternal baseline CD4 counts and 2 week breast milk 

CMV viral load. The model was first fit with infant CMV detection as outcome 

and with CD4 and breast milk viral load as predictors. Parameter estimates 

from this model were then used to predict infection rates at differing CD4 

counts (350, 450, 750 and 1000 cells per µl) and breast milk viral loads. The 

confidence intervals were then computed using a delta method standard error 

for each predicted probability. 
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6.4 Results 
 

6.4.1  Study participants  

 

 Study participation is summarised in figure 6.1, a total of 148 women were 

randomised to the study. After exclusions, a total of 131 infant/mother pairs in 

which the infant remained HIV- exposed but uninfected during follow-up were 

studied.  

 

6.4.2  Samples for CMV analysis 

 

For the study period, CMV DNA detection and viral loads were measured in 

146 maternal plasma specimens, 246 cervical swabs, 542 breast milk 

specimens, and 964 infant DBS. 
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Figure 6-1:  Study participants, recruitment and samples tested for a 

cohort of HIV-1 positive women and their infants 
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6.4.3  Maternal CMV detection and quantitation 

 

In maternal plasma samples, 4.8% of women had detectable CMV DNA at 34 

weeks gestation (figure 6.2a), CMV viral loads ranged from 1.6 - 4.1 log10 

CMV ge/ml with a median viral load of 1.8 log10 CMV ge/ml (IQR=1.8-2.0 log10 

CMV ge/ml; figure 6.2b). 

In cervical swabs (34 and 38 weeks gestation) CMV was detected frequently 

with 66% of women having CMV DNA detected (figure 6.2a), cervical viral 

loads ranged from 1.5-5.4 log10 CMV ge/ml in positive specimens, with a 

median viral load of 2.6 log10 CMV ge/ml (IQR=1.7-3.5 log10 CMV ge/ml; 

figure 6.2b).  Both the rate of cervical CMV detection and the level of CMV 

detected increased significantly over time (p=0.001) and (p=0.01) 

respectively. 

In breast milk 99% of women had CMV DNA detected at one or more study 

visit  with viral loads ranging from 2.1-7.5 log10 CMV genomes/ml, with a 

median of 5.5 log10 CMV genomes/ml (IQR=4.9-6.4 log10 CMV ge/ml; figure 

6.2b). Breast milk CMV viral loads were highest early postpartum and 

declined slowly over time at a rate of approximately -0.076 log10 CMV ge/ml 

per month (p=0.002) figure 6.2b.
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Figure 6-2: Cytomegalovirus (CMV) detection in different compartments in   

HIV-1 positive women.  

A: shows the proportion of women with CMV DNA detected at different study 

visits in plasma, cervix and breast milk samples; B: shows the CMV DNA 

level (log10 CMV ge/ml) at each visit for plasma, cervix and breast milk 

samples. Blue midlines depicit median viral load with bars depiciting 

interquartile range adpated from, (Slyker, Farquhar et al., 2014) 

 p= number of weeks gestation of pregnancy and w = weeks postpartum 
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6.4.4  Relationships between CMV detection in multiple maternal 

compartments  

 

142 women had samples from all three compartments analysed.  

Data analysis resulted in four patterns of CMV DNA detection across the three 

compartments (Figure 6.3A). The majority of women had CMV detected in  

both cervix and breast milk (62%). Only 1 woman had no detectable CMV in 

any compartment tested (0.7%), and although her CMV IgG status was 

unknown her infant was CMV DNA positive on the DBS at the 2 week visit, 

suggesting that she was seropositive. The 7 women with detectable CMV 

DNA in the plasma also had CMV DNA detected in the other compartments 

(both cervix and breast milk).  

Regression models were used to measure the relationship between either the 

detection of CMV (blood, cervix) and CMV viral load (breast milk) between the 

different compartments, adjusting for both plasma HIV-1 viral load and 

valaciclovir allocation.  CMV DNA detection in plasma at 34 weeks gestation 

was associated with CMV DNA detection in the cervix (OR=7.2, p=0.04), and 

CMV viral load in breast milk (β=0.65, p=0.03; Figure 6.3B). There was also a 

strong association between CMV DNA detection at 34 weeks gestation in the 

cervix and later CMV viral load in breast milk with women with CMV DNA 

detected in the cervix having approximately half a log10 higher CMV viral load 

in their breast milk, when compared to women without CMV detected in the 

cervix (β=0.47, p=0.005). 
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A) 

 

Plasma 

 

Cervix 

 

 

Breast milk 

% of women CMV 
DNA detected 

(number) 

- - - 0.7% (1) 

- - + 32% (46) 

- + + 62% (88) 

+ + + 4.9% (7) 

 

B) 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3: Pattern of cytomegalovirus DNA detection and relationship 

between different maternal compartments. 

A: shows the 4 patterns of CMV DNA detection and percentage of women in each 

category from 142 women with sampling in all compartments. B: shows the 

relationship between CMV DNA detection in different maternal compartments. Odds 

ratios (OR) and β coefficients from regression models showed; i) detection CMV DNA 

in plasma at 34 weeks gestation was a predictor of CMV DNA detection in the cervix 

and breast milk ii) detection of CMV DNA in the cervix at 34 weeks gestation was a 

predictor of CMV viral load in the breast milk (adapted from (Slyker, Farquhar et al., 

2014). 95% confidence levels (CI) are shown. 
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6.4.5  Relationship between HIV-1, CD4 count, and maternal CMV 

DNA detection 

 

Maternal plasma HIV-1 viral load was strongly correlated with both cervical 

CMV DNA detection and breast milk CMV levels (Figure 6.4). Each log10 

increase in plasma HIV-1 viral load was associated with a >2-fold increased 

likelihood of detecting CMV in the cervix (OR=2.3, p<0.001) and with a 0.15 

log10 higher CMV DNA level in breast milk (p=0.004). No association was 

found between plasma HIV-1 viral load and the detection of CMV DNA in the 

plasma (p=0.2). 

The relationships between maternal CD4 count and CMV DNA detection in 

the various compartments were assessed. Women were assigned to either a 

high or low CD4 count category, based on the cohort median at baseline            

(450 cells/µl). No association between CD4 category and CMV DNA detection 

was found in the plasma (p=0.2) or cervix (p=0.5). However, having a CD4 

count above the cohort median was associated with approximately 0.5 log10 

reduction in CMV levels in the breast milk (β=-0.45, p=0.008). 
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Figure 6-4: Relationships between HIV-1 plasma viral load or CD4 count and CMV DNA detection in different 

maternal compartments. 

The odds ratios (OR) and beta coefficients (β) with 95% confidence intervals (CI) derived from regression models are shown. CD4 was 

dichotomised at the median count of 450 cells/µl at 34 weeks gestation. Models including breast milk were exclude time points after 6 

months as very few women were still breastfeeding. Significant relationships are indicated by red arrows (adapted from, (Slyker, 

Farquhar et al., 2014) 

Abbreviations HIV- Human immunodeficiency virus, CMV- Cytomegalovirus
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6.4.6  Predictors of acquisition of CMV by infants 

 

In total 66% (87/131) of infants had detectable CMV DNA in DBS during the 

first year of life, 3% (4/131) had detectable CMV at birth indicating congenital 

infection, 6% (8/131) of infants became CMV positive before 2 weeks of age, 

indicating congenital or early acquisition from intrapartum infection; and 

another 3% (4/131) became positive at their 2-week visit. The bulk of 

remaining infections (47%) were detected between 6 weeks and 14 weeks of 

age (62/131). 

Using univariate Cox regression, CMV DNA viral load in breast milk at 2 

weeks postpartum was associated with earlier infant CMV detection  (HR=1.5, 

95% CI 1.2-1.9; p=0.001). However breast milk HIV-1 RNA detection was not 

associated with infant CMV acquisition. Breast milk CMV levels remained 

associated with infant CMV infection when adjusting for maternal CD4 

category (HR=1.4, 95% CI 1.1-1.8; p=0.003) but not when adjusting for HIV-1 

RNA viral load (HR=1.2, 95% CI 0.95-1.5; p=0.1). Plasma HIV-1 viral load in 

pregnancy and at 2 weeks postpartum was also significantly associated with 

infant CMV detection (HR1.5, 95% CI 1.2-1.9; p<0.001 and HR1.4, 95% CI 

1.1-1.7; P=0.005 respectively).   

A CD4 count below the cohort median (450 cells/µl) at 32 weeks gestation 

was associated with ~80% increased risk of infant CMV acquisition (p=0.008).  

There was also a trend for an association between the detection of CMV in 

the cervix at 38 weeks gestation and the risk of infant CMV (HR=1.5 95% CI 

0.88-2.7, p=0.1). However cervical HIV-1 RNA detection was not associated 
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with infant CMV. No association was found between maternal CMV DNA 

detection in plasma at 34 weeks gestation and CMV acquisition. 

 

A logistic regression model was used to estimate the probability of CMV 

transmission according to maternal CD4 count and breast milk CMV viral load. 

The model estimated the probability of CMV infant acquisition by 1 year of age 

as a function of maternal breast milk CMV viral load at 2 weeks postpartum for 

a range of maternal CD4 counts (350 cells/µl, 450 cells/µl, 750 cells/µl and 

1000 cells/µl). The probability of CMV acquisition increased as the CD4 count 

decreased. At a CD4 count of 350 cells/µl the 50% probability of CMV 

transmission occurred at a DNA load in breast milk of 3.55 log10 CMV ge/ml. 

This increased to 3.85 log10 CMV ge/ml at 450 cells/µl, 4.75 log10 CMV ge/ml 

at 750 cells/µl and 5.5 log10 CMV ge/ml at 1000 cells/µl (figure 6.5). These 

results suggest that maternal immune reconstitution is directly related to the 

CMV viral load and that mothers showing immune control of virus require a 

larger infectious dose of virus to transmit to their infant. It suggests that higher 

CD4 levels in breast milk could potentially impact local containment of CMV 

reactivation by supporting adaptive immune responses in this 

 compartment. 
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Figure 6-5: Estimated probability of CMV transmission according to maternal CD4 count and breast milk CMV DNA level. 

Bold black curves, model probability  of infant CMV transmission by 1 year of age as a function of breast milk CMV viral load at 2 weeks 

postpartum (log10 CMV DNA genomes/ml). Each of the 4 graphs represents a fixed maternal CD4 count at 32 weeks gestation. 95% confidence 

intervals are shown by a grey dashed line, with the red dashed line depicting the breast milk viral load  at which there is a 50% probability of 

CMV trasnsmission (adapted from (Slyker, Farquhar et al., 2014).
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6.5 Discussion 
 

CMV is known to cause perinatal infection with acquisition from breast milk a major 

source of virus. In areas with high CMV seroprevalence  breast milk transmission 

has been show to account for the majority of infants acquiring CMV before the age of 

one year (Stagno, Reynolds et al., 1980). In Kenya virtually all HIV infected women 

are co-infected with CMV (Slyker, Lohman-Payne et al., 2009b) with CMV acquisition 

occurring early so that >80% of Kenyan infants are CMV infected by 3 months of age 

(Slyker, Lohman-Payne et al., 2009). Perinatal acquisition of CMV infection in the 

setting of maternal or infant HIV-1 infection has been shown to be a predictor of 

morbidity and mortality (Slyker, Lohman-Payne et al., 2009b) with HEU infants 

showing numerous detrimental outcome from perinatal CMV acquisition (Gompels, 

Larke et al., 2012b). 

This study is the first to examine the incidence of CMV detection in different maternal 

compartments (blood, breast milk and cervical secretions) during the 

antenatal/postpartum period and to probe the relationship between CMV DNA 

detection in these compartments in the HIV-1 infected woman and the relationship 

between maternal CMV DNA detection and infant CMV acquisition. In the majority of 

women, CMV DNA detection was independently associated with each compartment, 

and could be ascribed to 4 distinct patterns of detection with only a small subset of 

women having systemic CMV reactivation with virus detected in all compartments 

(4.8%). 

 A correlation between CMV detection in the cervix and later breast milk CMV DNA 

viral load was found suggesting that similar factors may be affecting CMV 

reactivation at these two sites. Plasma HIV-1 viral load during pregnancy was 
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associated with CMV detection in the different compartments, but local HIV-1 levels 

within breast milk and cervix were not.  

Breast milk CMV viral load at 2 weeks postpartum and CD4 count were strongly and 

independently associated with infant CMV acquisition, with the predicted CMV viral 

load required for 50% CMV transmission increasing with higher maternal CD4 

counts. This suggests that restoring cell mediated immunity may offer some 

protection against MTCT of CMV, with CD4 cells contributing to protection by 

secreting cytokines (Gamadia, Remmerswaal et al., 2003)] and by providing help for 

CTL activation (Khanolkar, Fuller et al., 2004). 

Distribution of host cells and localised immunity may play a role in the variable CMV 

DNA and HIV-1 detection between maternal compartments. Consistent with previous 

work, we observed an increase in cervical CMV detection over time (Stagno, 

Reynolds et al., 1975a), and a decrease in breast milk CMV viral load (van der 

Strate, Harmsen et al., 2001). 

Previous studies in HIV negative subjects have shown no correlation between CMV 

in the genital tract and in the urine, nor between breast milk and saliva. This 

suggests that the CMV DNA detected was due to localised reactivation in each 

compartment (Stagno, Reynolds et al., 1975a;Vochem, Hamprecht et al., 1998;Jim, 

Shu et al., 2009). In this study CMV viral load was highly variable across the different 

maternal sites; however longitudinal analyses enabled us to probe relationships 

between compartments. 

 Plasma CMV DNA detection was rare, being found in only 7 of the women tested 

and was accompanied by concurrent detection  of CMV DNA in the cervix, and later 

in breast milk, suggesting systemic reactivation. However it should be noted that 
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CMV DNA detection in plasma may have a lower sensitivity of detection when 

compared to whole blood so some low level DNAemia may have been missed. CMV 

DNA detection in the cervix was strongly associated with breast milk CMV viral load. 

This relationship could possibly be explained by CMV tropism for epithelial and 

endothelial cells, which are present in both breast and cervical tissue. Additionally, 

mucosal immunity could result in similar selection pressure on virus in both the 

cervix and breast milk.  CMV-specific effector memory T cells have been detected in 

breast milk (Ehlinger, Webster et al., 2011), gut associated lymphoid tissue 

(Shacklett, Cox et al., 2003) and although no data exist for the cervix, CMV specific 

T cells would be expected to migrate to the cervical mucosa. No relationship 

between CMV specific cellular immune responses and breast milk was found in a 

previous study by Ehlinger et al; supporting the data presented here and suggesting 

that mucosal CMV responses may be tissue specific and limited to tissues which are 

reactivating CMV (Ehlinger, Webster et al., 2011). 

HIV-1 viral load in maternal plasma was strongly associated with CMV DNA 

detection in the cervix and breast milk and maternal CD4 count at 32 weeks was 

associated to later breast milk CMV viral load. However, HIV-1 and CMV detection in 

each compartment studied were not correlated. 

Previous studies have demonstrated a relationship between CMV and HIV-1 in 

blood, cervical secretions, semen, and breast milk (Slyker, Lohman-Payne et al., 

2009b;Gantt, Carlsson et al., 2008;Sheth, Danesh et al., 2006;Lurain, Robert et al., 

2004) which is thought to result from immunosuppression and/or direct HIV-CMV 

interactions within cells or tissues. 

All women in this study had antiretroviral prophylaxis for the PMTCT of HIV. 

Additionally, the women were randomised to valaciclovir versus placebo for 
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suppression of HSV 2.  Maternal antiviral prophylaxis consisted of twice daily oral 

zidovudine from 28 weeks and every 3 hours during labour until delivery and single 

dose nevirapine at the onset of labour. From June 2009, maternal lamivudine and 

twice daily zidovudine for 1 week postpartum were additionally offered for 

prophylaxis. The introduction of these antiretrovirals caused a rapid fall in maternal 

HIV-1 viral load, and valaciclovir was also found to contribute to the reduction of HIV-

1 load in plasma and in breast milk (Drake, Roxby et al., 2012b) which may have 

disrupted the relationship between HIV-1 and CMV in each compartment studied. 

This in turn may have affected the ability to detect an association between HIV-1 and 

CMV in the breast milk and cervix. However when data were stratified by treatment 

allocation, no differences were seen; suggesting valaciclovir had no effect on the 

association.  

CMV shedding in breast milk of seropositive women is common with transmission 

rates of up to 70% reported (Hamprecht, Maschmann et al., 2001;Dworsky, Yow et 

al., 1983;Jim, Shu et al., 2004) and CMV DNA load independently associated with 

risk of CMV transmission to the infant (Jim, Shu et al., 2009;Hamprecht, Maschmann 

et al., 2008). A direct association between HIV-1 and CMV breast milk viral loads 

has been described in maternal HIV-1 infection (Gantt, Carlsson et al., 2008).  

Additionally in this study CD4 count was also directly associated with infant CMV 

acquisition, independently of maternal breast milk CMV viral load.  

In measles infection, reduced placental transfer of  measles antibodies from 

immunosuppressed HIV-1 infected women results in increased susceptibility of their 

infants to measles infection (Farquhar, Nduati et al., 2005). This reduction of 

maternal antibody could also occur for CMV antibodies resulting in increased 

susceptibility of the infants to CMV infection.  Transmission of CMV via saliva may 
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also be an important, yet unmeasured route of CMV transmission in this cohort; 

immunosuppressed mothers are more likely to have CMV shedding in saliva 

(Fidouh-Houhou, Duval et al., 2001) and have a higher likelihood of CMV 

transmission. Also, due to the early acquisition of CMV, other children who may be 

shedding CMV in their urine and/or saliva could be additional sources of horizontal 

transmission in the study group (Bello, 1992).  

In this study, infant DBS were used to diagnose infant CMV acquisition (no infant 

plasma samples were taken as part of the original study protocol). As shown in 

chapter 6, DBS are less sensitive than plasma samples for diagnosis of acute CMV 

infection and therefore it is likely that the true number of infant infections has been 

underestimated, as well as the relationships with maternal correlates of CMV 

transmission. Finally, because the focus for this study was on CMV acquisition,   

HIV-1 was used in the models as a predictor and CMV as the outcome and so the 

relationships observed could be bidirectional in nature. 

An important observation in this study was that 4 infants (3%) had no detectable 

CMV DNA on their week 0 sample, but were CMV DNA positive in their week 2 DBS. 

This would be consistent with the findings of Hamprecht et al who detected viraeima 

in a breast fed child at 12 days of age (Hamprecht, Maschmann et al., 2001) and 

may have consequences for both retrospective diagnosis of CCMV and screening 

when DBS are taken at greater than 14 days after birth. 

Overall these data suggest that presence of CMV DNA is different between systemic 

and mucosal compartments and suggests that a relationship may exist between 

mucosal compartments (cervix and breast). It also highlights the important role for 

immunosuppression in MTCT of CMV from breast milk. In the absence of a licensed 

CMV vaccine, these data suggest that early initiation of antiretroviral therapy for the 
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prevention of CMV acquisition could potentially reduce perinatal transmission of 

CMV and improve infant outcomes by restoring maternal immunity and reducing 

HIV-1 levels. This may offer an alternative approach to reducing or delaying CMV 

acquisition in infanthood. 
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Chapter 7  

7 Diagnosis of congenital CMV infection: 

potential for newborn screening 
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7.1 Introduction 

 

The diagnosis of CCMV is challenging because most infected infants are 

asymptomatic or have nonspecific symptoms. Early postnatal acquisition of infection 

is common (Peckham, Johnson et al., 1987). Perinatal CMV infection is commonly 

acquired at birth or through breast feeding which is not associated with CNS damage 

or disease. Therefore, the timing of sampling is pivotal because a diagnosis of 

CCMV cannot be made with certainty in children unless samples are available within 

a few days of birth. With the evolution of molecular techniques (namely PCR) 

perinatal infection has been detected in blood as early as day 12 of life by PCR, 

narrowing the sampling time frame to very short period for CCMV investigation 

(Hamprecht, Maschmann et al., 2001) as demonstrated in chapter 6 in this thesis. 

DBS are taken routinely after birth in many countries for biochemical and genetic 

analysis and are stored for prolonged periods of time. DBS testing is a safe, simple 

and universally accepted screening tool for commonly inherited and metabolic 

conditions. The UK newborn screening programme currently screens for 

phenylketonuria, congenital hypothyroidism , sickle cell , cystic fibrosis ( and 

medium-chain acyl-CoA dehydrogenase deficiency 

(http://newbornbloodspot.screening.nhs.uk/) (see figure 7.1). Due to the timing of 

sample acquisition (UK guidelines 5-8 days old), DBS have been shown to be useful 

to retrospectively diagnose CCMV in a child presenting with compatible symptoms 

later in infancy or childhood (Barbi, Binda et al., 2006;Vauloup-Fellous, Ducroux et 

al., 2007;Walter, Atkinson et al., 2008).   

http://newbornbloodspot.screening.nhs.uk/
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Figure 7-1:The genetic and biochemical conditions screened for as part of the UK Newborn Screening Programme 

(reproduced with permission) 
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Screening is defined as, ‘a systematic application of a test to asymptomatic 

individuals at risk of a specific disorder to trigger further investigation or preventative 

action’ (Wald, 2008) and should be performed if the benefits of identification 

outweigh the costs and potential harms. General criteria for screening have been 

proposed by Wilson and Jungner on behalf of the World Health Organisation (see 

table 7.1) (Wilson J JG, 1968). In a recent review Dollard et al. (Dollard, Schleiss et 

al., 2010) showed that CCMV now easily satisfies most of the Wilson and Junger 

criteria for screening. One exception is that antiviral treatment has not been proven 

to benefit asymptomatic CCMV children. However, it does reduce the incidence of 

future disease amongst those identified because they have CNS symptoms 

(Kimberlin, Lin et al., 2003) and in those with symptoms not necessarily involving the 

CNS (Kimberlin, Jester et al., 2015). 

 Overall there is a general consensus that newborn screening would identify many of 

asymptomatic congenitally infected infants at risk of developing late onset disease. 

This prompt recognition could lead to early intervention such as antiviral treatment to 

prevent the onset or progression of hearing loss and need for cochlear implants.  

Thus, early diagnosis could allow interventions to compensate for hearing loss. 

Despite this, no country currently screens for CCMV. 
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Table 7-1: Criteria for screening as proposed by Wilson and Jungner 

 

 

Disease The condition being screened should be an important health problem 
 
The natural history of the condition should be well 
understood 
 
There should be a detectable early stage 
 

Test A suitable test should be devised for the early stage 
 
The test should be acceptable 
 
Intervals for repeating the test should be determined 

Treatment Treatment at early stage should be more beneficial than at a late stage 
 
Adequate health service provision should be made for the extra clinical 
workload resulting from screening 
 
The risks, both physical and psychological, should be less than the 
benefits 
 
The costs should be balanced against the benefits 
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Newborn screening for CMV has been suggested using saliva or urine samples due 

to their reported high sensitivities (Boppana, Ross et al., 2011). However DBS have 

the advantage that newborn screening programmes using DBS (Guthrie cards) are 

already in place in many countries. Thus DBS samples are available on every child 

born without any additional sample requirements. Dollard et al. have reviewed 

several aspects of laboratory techniques associated with newborn screening and 

have concluded that in view of the existing programmes, DBS would be the most 

practical specimen of choice (Dollard, Schleiss et al., 2010). 

A newborn screening test requires high throughput capacity. However the standard 

nested PCR assays with the highest reported sensitivities for CMV DNA detection 

from DBS are not suitable for high throughput due to inherent potential for 

contamination and/or labour intensive methods.  

The CMV and Hearing Multicentre Screening study (CHIMES) is being conducted in 

the United States. This seven year study aims to develop a diagnostic assay for the 

detection of CCMV, with the overall aim of using the assay for universal screening.  

The study aims to recruit over 100,000 infants to determine whether universal 

screening should become health policy and thereby run in conjunction with already 

established newborn hearing screening programmes. Preliminary results have found 

a sensitivity of DBS testing of only 34% in 92 infants testing positive for CCMV from 

over 20,000 infants tested when compared to saliva testing. (Boppana, Ross et al., 

2010) However it is not clear whether their extraction and PCR methodology has 

contributed to the low sensitivity.  More studies are required to determine whether 

other high throughput methods can produce acceptable testing sensitivities.  
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7.2  Aims 
 

Overall, I hope to adapt the laboratory methods developed in chapter 4 to help 

introduce a national diagnostic service for the retrospective diagnosis of CCMV from 

DBS.Once this is established I will then assess the feasibility of screening newborns 

for CCMV by the laboratory analysis of the newborn DBS sample by  assessing the 

applicability of the high throughput nucleic acid extraction and one step nested 

protocol for high throughput  testing of DBS for CMV DNA. 

 

To achieve this I have the following aims: 

  To introduce an internal control into the DBS assay. This will serve a dual 

purpose; firstly as an internal control to ensure that negative DBS results are 

true negatives and are not due to inhibition of the PCR. Secondly it will act as 

a standard for quantitation, meaning that a ratio of CMV genomes/ cells can 

be determined and results can be normalised for comparative studies. 

 

 To develop an easy but sensitive assay with high analytical performance for 

detection of CMV DNA from DBS that is suitable for high throughput 

screening. 
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7.3  Materials and methods 

7.3.1  Routine testing for the retrospective diagnosis of CCMV 

 

The Department of Virology introduced routine diagnostic testing of DBS for the 

retrospective diagnosis of CCMV in 2005 following full assay validation (see chapters 

3 and 4). A review of DBS testing was performed for all samples received between 

1st January 2005 and 31st December 2012. 

7.3.2  Development of an internal control for the DBS assay 

 

 A β globin quantitative real-time PCR was developed (as described in chapter 2). 

The real time PCR was designed to amplify a conserved sequence in the human β-

globin gene. The primers and probe sequences were taken from a previously 

published method (Lo, Tein et al., 1998) and adapted for use in the DBS assay. 

 

7.3.3 Generation of a quantitation plasmid standard 

 

To accurately quantify the amount of cellular DNA, a plasmid containing the β globin 

PCR target region was cloned and quantified (see chapter 2). 

 

Generation of the β globin PCR standard curve 

 

The standard curve was determined using a known copy number plasmid generated 

in the cloning experiments. A serial dilution was run from 1x107 to 1x102 ge/ml in 

triplicate on 10 different runs. The mean cycle threshold value was taken for each 

dilution and was plotted onto a standard curve. 
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Amplification plots were visualised and calibration curves were constructed using 

ABI 7500 system SDS Software version 1.3 (Applied Biosystems, Warrington, UK) 

Linear regression was used to determine the slope of best fit and intercept for the 

standard curve. 

 

7.3.4  One Step Nested PCR development 

 

A one step nested PCR was developed to amplify a target in exon 4 of the major 

immediate early region of CMV (UL123).   

Two sets of primers were modified from a previously published method (Taylor-

Wiedeman, Sissons et al., 1991) and an internal FAM/ZEN double quenched probe 

was designed to allow detection of amplified products in the same tube with 

minimum background florescence. The published external primers (outer 1, 2) were 

modified to give an annealing temperature at least 10°C higher than the internal 

primers (inner 1,2). Theoretically this would allow first round PCR amplification to be 

carried out at 68°C where only the external primers would bind and amplify target 

sequence. The extension temperature was then reduced to 55°C to allow 

amplification of the target with both the external and internal primers. During this 

extension the probe will bind to target sequence and be degraded; resulting in 

fluorescence which can be monitored in real time. Double quenching was used to 

reduce background and improve reporter signal. Primers and probe were purchased 

from Integrated DNA Technologies (Leuven, Belgium).  A schematic diagram of the 

nested PCR (figure 7.2) and the primer and probe sequences for the one step 

nested PCR are summarised in Table 7.2. 
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Optimisation of assay condition 

 

The real time PCR assay was developed and evaluated on ABI PRISM 7500 with 

Sequence Detection System software Version 1.3 (Applied Biosystems). 

The PCR cycling conditions were fixed at a set temperature. Therefore the primer 

and probe concentrations were optimised by a ‘chessboard’ titration. Each primer set 

was tested from 0.2µM to 1.2µM (in 0.2µM increments) with a set probe 

concentration of 0.3µM. Following primer optimisation, serial dilutions of the probe 

(0.2µM to 1µM) were run to determine optimal probe concentration that gave the 

minimum Ct for 100 genomes/reaction. 

 

One step nested PCR amplification  

 

DNA amplification was performed in 30µl total reaction volume. 

Each reaction contained 10µl of DNA extract 15µl QuantiFAST mastermix (Qiagen, 

UK), 1µM of each primer and 0.2µM of probe. Real time PCR was carried out in a 

TaqMan 7500 system (Applied Biosystems, UK). PCR conditions were: template 

denaturation and activation of Taq polymerase for 10 minutes at 95°C was first 

followed by 15 cycles of 95°C for 15 seconds and 68°C for 45 seconds. This was 

followed by a second cycling step of 95°C and 55°C for 30 cycles. The TaqMan was 

set to acquire data during the second cycling step at the 55°C extension 
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Figure 7-2: Schematic diagram of one step nested PCR  

(not to scale) 

A one step nested PCR was developed to amplify a target in exon 4 of the major 

immediate early region of CMV (UL123). The thermodynamic profile was adapted so 

that initial 15 cycles of PCR yielded a 373bp product from the outer primers 

(Outer1,2). A 2nd PCR cycle incorporated the inner primers (inner 1,2) and yielded a 

293bp product. An internal double quenched probe allowed simultaneous 

amplification and detection of the amplicon in real time (Atkinson, Emery et al., 

2014).

Inner 1
 

 Probe 

 

Inner 2
 

 

Outer 1 

 

Outer 2
 

 

373bp 

   CMV UL123 

293bp 
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         Table 7-2: Primers and probe used for the CMV UL123 one step nested PCR.  

 

 

 

 

 

                   

 

 

 

 

                       

 

FAM, 6-carboxyfluorescein; ZEN, internal quencher; IB®FQ Iowa Black dark quencher 

              Tm= melting temperature 

 

 

Primer probe name           (Sequence 5’-3’)                                                                                     Tm 

Reverse Primer 1st round     GATAGTCGCGGGTACAGGGGACTCTG                                         71  

Forward Primer 1st Round   GGTCACTAGTGACGCTTGTATGATGACCATGTACGG                  74  

Reverse Primer Nested        GTGACACCAGAGAATCAGAGGA                                                    58   

Forward Primer Nested        AGTGAGTTCTGTCGGGTGCT                                                           58  

Probe                                      6 FAM-AGG AGA CTA /ZEN/GTG TGA TGCTGG CCA A-IB®FQ 
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7.3.5  CMV UL123 One Step nested PCR Validation 

 

Sensitivity of one step nested assay  

 

DBS samples were tested from 3 sample sets. Each set was extracted and tested in 

parallel by the two different detection methods (UL123 one step nested PCR and 

CMV gB real time PCR). 

Sample set 3, the 2011 QCMD CMV DBS panel ( CMV/DBS11) was also tested in 

the CMV UL69 PCR to confirm the effect of the UL123 one step nested on assay 

sensitivity.  

 

Samples 

1.  CMV negative and positive DBS prepared from the World Health 

Organisation first International standard for CMV (who/35/10.2138 report). 

Serial dilutions from 500,000IU/ml to 100 IU/ml were prepared in a whole 

blood matrix and 50µl adsorbed onto standard Whatman 903™ DBS cards 

obtained from the Royal Free Hospital neonatal unit. The prepared cards were 

allowed to dry for a minimum of 48 hours prior to testing.  

 

2. 20 DBS samples from newborns with CCMV infection were obtained from an 

earlier published study (17th BPSU Annual Report 2002).  The cases were 

diagnosed by PCR or isolation of CMV from blood, urine, saliva or tissue 

taken via biopsy within 3 weeks of birth, or maternal serology consistent with 

CMV seroconversion. In addition, 6 DBS were received from infants identified 

through the BEST study from failed newborn hearing screening programme 

(NHSP). 
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3. The 2011 CMV DBS panel (ref CMV/DBS11) obtained from Quality Control for 

Molecular Diagnostics (QCMD, Glasgow UK) the panel comprised of 10 DBS.  

Each spot was prepared from a whole blood matrix with varying 

concentrations of CMV (AD169 strain). The CMV concentration ranged from 

625-20,000 copies/ml. It should be noted that the DBS received as part of the 

panel are larger than the diagnostic newborn screening cards, with one DBS 

stated to be equivalent to 50µl of whole blood. 

7.3.6 Assay specificity 

 

In addition, to determine the specificity of the assay, 200 blood samples from 

donor/recipient CMV negative solid organ transplant patients were analysed. These 

samples had been received diagnostically for routine CMV screening post transplant 

and found to be CMV negative in our diagnostic RT PCR assay (Atabani, Smith et 

al., 2012). 

7.3.7 Assay reproducibility 

 

In addition, to determine the reproducibility of the assay, a set input of 100 

genomes/reaction of CMV laboratory strain Ad169 was tested on 20 separate runs.  

 

DNA extraction from DBS 

An area of 100mm² of DBS was used for extraction which equates to a semicircle of 

DBS. To prevent contamination the scissors used to cut the DBS were cleaned with 

0.1M hydrochloric acid between cards. Each DBS extract was analysed in triplicate. 

Nucleic acid was extracted using the QIAsymphony automated extraction system 
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with the QIAsymphony DNA Mini Kit (Qiagen, Crawley, UK) as previously described 

in chapter 5. 

 

DNA extraction from whole blood 

Nucleic acid was extracted using the QIAsymphony automated extraction system 

with the QIAsymphony DNA Mini Kit (Qiagen, Crawley, UK) as per manufacturer’s 

instructions.  Extraction was carried out using the “VirusBlood200_V5_DSP” protocol 

with an elution volume of 60μl. Each blood sample was analysed in triplicate. 

 

CMV gB and UL69 PCR  

The single round real time CMV gB and UL69 PCRs were used as previously 

described in Chapters 3 & 4. 

 

7.3.8  Throughput characteristics and methodology  

 

 

The applicability of the high throughput methods were evaluated by testing a large 

cohort of DBS samples. DBS were received as part of the maternal Valacyclovir and 

Infant Cytomegalovirus Acquistion: A randomised Controlled Trial among HIV 

Infected women. The cohort was selected to test the high throughput methods due to 

the large number of DBS and known high rate of CMV acquisition in infants in the 

first year of life.  Applicability was determined by the maximum number of samples 

per run of the QIAsymphony automated system and the current methodology; the 

EasyMag extraction system.  
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DBS samples  

Infant blood was collected by heel prick onto filter paper at birth, 2, 6, 10, 14 weeks 

of age and 6, 9, and 12 months of age. The resulting DBS were stored at room 

temperature. A total of 141 babies took part in the study with 1027 DBS received for 

testing. Blood from 3x6 mm DBS was extracted using the QIAsymphony DNA mini 

kit as previously described in chapter 5. 

 

CMV DNA detection 

Real-time quantitative PCR was used to detect the CMV glycoprotein B gene as 

previously described in chapter 3. CMV viral loads from DBS were normalised to 

copies/106 cells against a β-globin standard with a lower limit of detection of 100 

copies/million cells as described in chapter 2. 
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7.4 Results 

7.4.1  Routine diagnostic testing  

 

Using the developed methodology, the Department of Virology introduced routine 

diagnostic testing of DBS for the retrospective diagnosis of CCMV in 2005 following 

full assay validation. An audit of all DBS testing performed between 2005 and 2012 

has been performed. 

The department received 1522 requests for DBS testing for the time period 1st 

January 2005 to 31st December 2012. Of these requests 74 were received as part of 

an ethically approved study (CHIC study) whose results were published in 2008  and 

discussed in chapter 4  (Walter, Atkinson et al., 2008).  Excluding these study DBS, 

the department received 1448 diagnostic requests. The age of the DBS at testing 

ranged from 1 month to 20.2 years with a median age of 2.1 years. 

 An increase in sample numbers was seen over the 7 year period (see figure 7.3) but 

the overall rate of positivity remained fairly constant 9.8-14.5% for the period 2007 to 

2012 (see Table 7.3). A total of 177 of the DBS received tested positive for CMV 

DNA (12.2%) age range 1 month to 16.8 years during the study period. A mean 

positive rate of 12.3% was seen between 2007 and 2012 (9.8-13.8%) (see Table 

7.3). 
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Figure 7-3: The number of dried blood spots received each year for retrospective testing for congenital cytomegalovirus 
in the Department of Virology Royal Free Hospital between 2005 and 2012. 
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Table 7-3: The breakdown of the number of dried blood spots tested, median 

age of child at testing, percentage testing positive for cytomegalovirus DNA, 

and median age of the child testing positive for the samples received for 

retrospective diagnosis of congenital CMV between 2005 and 2012 in the 

Department of Virology, Royal Free Hospital 

 

 

 

 

 

 

 

Year 

 

Number of 

DBS 

 

Median age 

at testing  

(years) 

 

Proportion 

of CMV 

positive DBS 

(%) 

 

Median age 

of positive 

DBS (years) 

 

IQR 

(years) 

2005 70 5 29 

2.8 

0.25-6.5 

2006 124 2.5 30.6 2 0.16-6 

2007 145 2 14.5 3 0.4-7 

2008 172 1.92 11 4 1-7 

2009 209 1.08 11 0.75 0.25-2.83 

2010 248 1.83 13.8 1.5 0.58-4.08 

2011 278 0.92 13.67 0.5 0.08-2.67 

2012 276 1 9.8 1.2 0.25-4.05 
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A decrease in the age of cards tested has been shown over the time period, with the 

median age of the DBS at time of testing reducing annually from 5 years in 2005 to 1 

year in 2012. This was also reflected in the median age of the cards testing positive 

for CMV DNA with the median dropping from 4 years in 2008 to 1 year in 2012 

(Table 7.3).  

The clinical details of the 155 DBS requests for the time period June 2012- Dec 2012 

were analysed. The majority of requests were received from children with 

unexplained SNHL (47%). However a large proportion of cards tested were received 

without any clinical information (35%).  During this period 8 DBS tested positive for 

CMV DNA. 4 of which were received for investigations of SNHL, 3 had no clinical 

details provided and 1 DBS had both prematurity and SNHL listed as clinical 

indicators for testing. 

 

7.4.2  β globin validation results 

 

 A standard curve (Ct values/copies β globin) was generated using the plasmid 

standard. A dilution series from 1x107 to 1x102 genomes was run in triplicate on 10 

different runs with the mean cycle threshold obtained used to obtain the standard 

curve. 

The standard curve derived showed a high R2
 value 0.996 across the dynamic range 

103−107 ge/ml. 
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To determine the log10 β globin load the following equation was used.  

                                    

Where y = Ct value of the unknown sample. 

Once the absolute β globin load was determined this could be used to normalise the 

CMV results to the number of CMV genomes/106 cells. 

 

7.4.3  One step nested PCR results 

 

 

Optimisation of assay condition 

 

Following titration an optimum concentration of 1µM for each primer and 0.2µM of 

probe was found to give the lowest Ct with the highest normalised fluorescent signal 

at a set input of 100 genomes/reaction.  

 

 

 Detection limit of one step nested PCR  

The sensitivity of the one step nested PCR assay was determined using triplicate 

testing of DBS spotted with whole blood serial dilutions of the WHO CMV 

international standard. The analytical sensitivity per well was found to correlate to an 

original blood sample which contained 500 IU/ml (2.08 IU/input) figure 7.4. 

The QCMD samples showed a similar detection limit with the lowest CMV 

concentration DBS sample (625 ge/ml) giving a positive result in the nested assay, 

using a previously determined conversion factor of 1.25 genomes/IU.  
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When the Ct value was plotted over the log10 CMV viral load the coefficient of 

determination (R2) value was 0.972. This shows a good linear relationship between 

Ct and the CMV viral loads tested, suggesting that the Ct is related to CMV 

concentration in the linear phase of the one step nested PCR (see figure 7.4 inset).  
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Figure 7-4: Real Time amplification of dried blood spots prepared from World Health Organisation international standard 
using one step nested UL123 assay  

 

Main figure shows amplification curves obtained from DBS spiked with serial dilutions of the 1st WHO international CMV standard and 

IU/PCR input.  

Inset shows the linear range of the one step nested PCR by plotting cycle threshold over log10 CMV viral load 
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Specificity of one step nested PCR 

None of the 200 CMV negative blood samples showed amplification when tested in 

triplicate in the one step nested PCR assay.  

 

Reproducibility of one step nested PCR 

For a set input of 100 genomes/reaction (CMV Ad169) the assay showed good inter-

assay reproducibility.  For 20 separate runs the mean Ct was 21.29 with a standard 

deviation of 0.94 and a variance coefficient of 0.04. 

 

Performance and evaluation of one step nested PCR with DBS sample 

Results obtained with the one step nested PCR assay were compared to those 

generated using the CMV gB assay. All samples were tested in parallel using the 

equivalent input.  

In the QCMD panel all 9 CMV positive samples were correctly identified (100%) in 

the one step nested PCR assay. In comparison only 6/9 (67%) positive samples 

were identified with the CMV gB assay. The one true CMV negative DBS showed no 

amplification in both assays. The DBS with discordant results corresponded to the 3 

samples with the lowest viral loads 625, 1250 and 2500 ge/ml (viral loads stated in 

the QCMD final report). To confirm that enhanced detection was not due to the target 

region or primer design, the QCMD panel was also tested using a real time PCR 

CMV UL69 assay. The same 6/9 samples tested positive in the assay for the UL69 

region as the gB assay confirming these results with an independent primer set. 

DBS samples obtained from 20 children with laboratory confirmed CCMV gave 

positive results in 18/20 (90%) samples with the one step nested assay. 16/20 
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samples tested positive in the CMV gB real time assay (80%), again showing 

enhanced detection with the one step nested PCR (figure 7.5). The two negative 

samples in the one step assay were also negative in the gB assay. In addition 6 DBS 

were received from infants identified through the BEST study from failed newborn 

hearing screening programme (NHSP) 3/6 cards tested positive by the one step 

assay (50%) compared to 2/6 with the single round PCR (33%). 

Overall sensitivity of the one step nested PCR assay in identifying neonates with 

confirmed CCMV was 21/26 (81%; 95% CI, 60.6% to 93.4%). In contrast the single 

step gB real time PCR had a sensitivity of 18/26 (69%;95% CI, 48.2%-85.6%) giving 

an increased detection rate of 12% in children with laboratory diagnosed CCMV 

infection. After analysis of the clinical data from the 20 confirmed CCMV children the 

two negative samples came from babies with  asymptomatic presentation with a 

normal clinical outcome (no problems repo rted, apparently normal development) at 

follow up (20.8 and 20.5 months after birth; (table 7.4). On further investigation, the 

additional positive DBS in the CCMV failed NHSP identified through the BEST study 

had a sample of whole blood tested in the neonatal period (prior to the DBS being 

taken) with a viral load of 7,700 ge/ml. The c0hild presented with unilateral SNHL, 

subependymal cysts on cranial imaging and received 6 weeks’ treatment with 

valganciclovir. 

Overall the outcome was known in 25/26 CCMV children. The mean follow up period 

was 19.9 months (SD 4.6 months). The one step nested PCR detected CMV DNA in 

20/25 samples compared to the gB assay with 17/25 testing positive. On further 

investigation of the 3 samples positive only with the nested PCR, one DBS was from 

a symptomatic infant with mild SNHL at follow up. The two other DBS samples were 

from symptomatic children with bilateral hearing loss at follow-up (table 7.4). 
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Figure 7-5: Sensitivity of one step nested and single round PCR for detecting 

Cytomegalovirus from dried blood spots in two clinical sample sets.  
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Table 7-4: Correlation between neonatal presentation of congenital 

cytomegalovirus, clinical outcome and the proportion of dried blood spots 

testing positive for CMV DNA in the one step nested PCR. 

 

 

 

Neonatal 
Presentation 

 

Outcome* Number of DBS 
testing positive with 

single round PCR 

Number of DBS testing 
positive with nested 

one step PCR 

Asymptomatic Normal 3/7 3/7 

Symptomatic Normal 2/2 2/2 

Symptomatic Mild 5/6 6/6 

Symptomatic Moderate 5/7 7/7 

Symptomatic Severe 3/3 3/3 

 

 

*Outcome: Normal- No reported problems  Mild: Unilateral hearing loss, mild cerebral 

palsy, mild language delay, Moderate: Bi-lateral profound deafness, deafness and other 

problem   Severe: Multiple serious problems e.g. Severe global delay. Taken  from  

(Atkinson, Emery et al., 2014). 
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High throughput results to detect perinatal infection 

 

A total of 1027 infant DBS were tested from 141 infants. 198 DBS samples tested 

positive for CMV DNA (19.3%).  CMV DNA was detected in 93 infants, giving a rate 

of CMV acquisition of 66% in the first year of life.  Among infants who acquired CMV 

the range of viral loads measured from DBS samples was 154 to 12,224,673 

genomes/106 cells (2.2 to 7.1 log10 genomes/106 cells). The median viral load 

detected was 44,505 genomes/106 cells. The results of the study were published in 

2014 (Roxby, Atkinson et al., 2014). 

 

Extraction Time and Sample Throughput 

At present all automated extraction systems require a manual pre-treatment step for 

DBS samples, there is no capacity for using DBS as a primary input. 

The QIAsymphony has a capacity of 96 samples (4 racks containing 24 samples 

each). Each run of 24 takes approximately 1 hour to set up (including pre-treatment) 

and 1hr 10 minutes on the instrument. The QIAsymphony can be continuously 

loaded and 96 DBS can be extracted in 6 hours.  

Once extracted, DNA extracts can be eluted into a 96 well plate format which can be 

used directly for PCR-set up (either manual or automated). Depending on detection 

methods (one step nested or gB PCR) the total processing time to result for a single 

DBS is 4hrs 30 minutes. For 96 samples total processing time is 8hrs and 30 

minutes with a manual (hands on ) processing time of 1hour 30 minutes (figure 6.6). 

In contrast the EasyMag has a capacity of 24 samples. Each run of 24 takes 

approximately 1 hour to set up (including pre-treatment) and 40 minutes on the 
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instrument. The extraction method is more labour intensive as samples need to be 

loaded and resulting nucleic acid extracts unloaded. There is no continuous loading 

function. Depending on detection methods (one step nested or gB PCR) the total 

processing time to result for a single DBS is 4hrs. For 96 samples the total 

processing time would be is 8hrs, but the hands on time would be much greater at 

4hours (figure 7.6). 
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Figure 7-6: The total processing time to result for 96 dried blood spots for both 

the QIAsymphony and EasyMag extraction system.  
 

The automated (blue) and manual processing time (red) for each system is shown. 

The QIAsymphony shows the longest processing time but a much reduced manual 

processing requirement. 

 

 

 

 



 
 

228 
 

7.5  Discussion 
 

The Department of Virology introduced routine retrospective testing for CMV DNA 

from DBS in 2005. During the audit period a total of 1448 diagnostic requests were 

received with an increase in test requests over the 7 year period. This highlights both 

the number of children with compatible symptoms presenting after 21 days of age 

and the demand for an accurate test. 

A decrease in the age of infants tested has been shown over the time period, with 

the median age of the DBS at time of testing reducing annually to 1 year in 2012. 

This age at testing is significant for two reasons. Firstly, the CMV DNA has been 

shown to be stable for at least 24 months on simulated DBS samples (Chapter 3) so 

clinical samples should ideally be submitted within this time. Secondly, provision of 

an earlier diagnosis may allow infected children to be recruited into clinical trials to 

determine if hearing can be preserved during the critical period of speech 

development or improve language and developmental outcomes through intervention 

for example, speech therapy, sound amplification and early fitting of cochlear 

implants in children with hearing loss. At present, evidence from randomised 

controlled trials requires treatment to be initiated within the first month of life but a 

new study, starting in 2015, will address whether treatment starting up to the fourth 

birthday can also provide clinical benefits. 

CCMV has long been identified as a potential candidate for inclusion in newborn 

screening programs because it satisfies several of the criteria for screening as 

proposed by Wilson and Jungner (Wilson J JG, 1968) as adopted by the WHO to 

qualify for screening.  

The incidence of CMV infection in West London is high in 0.32% of births 

(Townsend, Forsgren et al., 2013) compared with the incidence of the metabolic and 
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endocrinological disorders tested for in the core neonatal screening panel (0.01-

0.08%). 

 

Universal newborn hearing screening programmes have been introduced by use of 

otoacoustic emission (OAE) in the UK and most European countries. However, 

hearing loss with CCMV can be progressive and may develop months after birth in 

asymptomatic children,  establishing that screening for CMV would identify these at-

risk children at birth (Dollard, Grosse et al., 2007) 

Current methodologies for DBS testing for CCMV have shown poor sensitivity 

providing no encouragement to begin screening (Boppana, Ross et al., 2010). The 

work in this chapter demonstrates enhanced detection of CMV DNA from DBS using 

a novel one step nested protocol when compared with a single round PCR.  PCR 

based testing for viral targets often report high sensitivities but use a much larger 

sample volume. For example whilst an HIV RNA viral load assay may detect a 

sensitivity of 50 copies/ml an original volume of sample of 1ml would be required. I 

hypothesised that the low sensitivity reported from DBS is due to the small sample 

volume (typically equivalent to between 10 and 80ul of whole blood) and that a highly 

sensitive detection method would be required in order to detect these very small 

quantities of CMV, such as nested PCR. 

Proof of concept studies show that CMV can be detected in DBS. However the 

methods reporting the highest sensitivities for CMV DNA detection from DBS are not 

suitable for high throughput screening because of labour intensive methodologies 

and/or detection. My study is the first to report a sensitive method which has the 

potential to be used as a high throughput screening tool. The single tube format 

should minimise cross contamination compared with conventional nested PCR 
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methods. 

Newborn screening for CMV has been suggested using saliva or urine samples due 

to their reported high sensitivities (Boppana, Ross et al., 2011). However DBS have 

the advantage that newborn screening programmes using DBS (Guthrie cards) are 

already in place in many countries. Thus DBS samples are available on every child 

born without any additional sample requirements. 

A study by Boppana et al recently reported DBS to have low sensitivity when 

compared to saliva rapid culture. (Boppana, Ross et al., 2010) It has been shown 

that DNA extraction and CMV detection methods can have significant effects on the 

reported assay sensitivity. (de Vries, Claas et al., 2009);(Soetens, Vauloup-Fellous 

et al., 2008) highlighting the importance of assay methodology. 

In this chapter, the overall sensitivity of the one step nested PCR was 81%. 

Interestingly the four CMV negative samples from confirmed CCMV cases with 

known outcome (table 7.4) were asymptomatic infants with normal outcome at follow 

up. Studies using PCR quantitation have shown that viral load in urine and blood at 

birth is higher in symptomatic babies compared to asymptomatic babies, but more 

importantly that level of viraemia correlates with future sensorineural hearing loss 

(Boppana, Fowler et al., 2005;Bradford, Cloud et al., 2005).  In solid organ transplant 

patients quantitative studies have likewise shown that risk of disease is associated 

with high viral load (Cope, Sweny et al., 1997). We proposed a sigmoid relationship 

for the severity of SNHL versus CMV viral load at birth in chapter 4 (Walter, Atkinson 

et al., 2008). However this ‘threshold effect’ is novel in the context of newborn 

screening and denotes that a test without 100% analytical sensitivity that 

nevertheless detected all children at risk of developing disease would be deemed 

acceptable for the purposes of screening. My data support this because the DBS 
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from the asymptomatic children with normal outcome are CMV PCR negative in 

contrast to the symptomatic children with severe outcome who had CMV detected in 

all DBS screened. This possibility should now be evaluated in much larger numbers 

of cases and controls to determine whether an assay with less than 100% sensitivity 

for infection could nevertheless identify all cases destined to develop disease. We 

should also review at this point the definition of screening: ‘a systematic application 

of a test to asymptomatic individuals at risk of a specific disorder to trigger further 

investigation or preventative action’ (Wald, 2008). The main benefit of screening for 

CCMV is to identify children at risk of late-onset or progressive hearing loss (not 

detectable at birth) and other CMV-associated impairments or disabilities and to 

provide the opportunity for early intervention and antiviral treatment to prevent further 

damage.  

The development of a β globin quantitative real-time PCR allows the amount of 

human DNA present of the DBS after extraction to be determined. This provides the 

unique opportunity to normalise viral loads for comparison to the number of cells 

present (in this study CMV genomes/106 cells). This normalisation could also prove 

useful in determining threshold levels if a sigmoid relationship between disease and 

viral load is confirmed. 

Traditionally, newborn screening for genetic and biochemical disorders was based 

on mass spectrometry. The first DNA based newborn screen for severe combined 

immunodeficiency (SCID) was included in the USA screening core panel in 2010.The 

assay is based on the detection and quantitation of T cell receptor excision circles 

(TREC) from DBS by real time PCR (Kwan, Church et al., 2013). The UK is currently 

running a pilot study for SCID screening and, if implemented, the TREC assay will be 

the first DNA based  test to be added to the UK screening panel. This will provide the 
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expertise and instrumentation required for DNA extraction and real time PCR. Once 

these are in place it will provide the ideal opportunity for the addition of new 

molecular based tests into the newborn screening repertoire including those for 

CMV.  

When considering universal neonatal screening a cost effective assay with high 

sensitivity and high throughput (minimum 96 well format) is required. In this chapter 

the applicability of the high throughput methods developed were evaluated by testing 

a large cohort of DBS samples from Kenya. The cohort was selected to test the high 

throughput methods due to the large number of DBS, high maternal seroprevelence 

and known high rate of CMV acquisition in infants in the first year of life. It has been 

previously shown that >80% of infants acquire CMV in sub-Saharan Africa before the 

age of 1 year (Kaye, Miles et al., 2008). The rate of CMV acquisition in the study was 

66% which was lower than expected. This underestimation may be due to 

differences in the sensitivity of detection methods for CMV between studies, with the 

higher detection rate testing plasma samples (as demonstrated in chapter 5). It could 

also be due to short duration viraemia which may have been missed by the sampling 

approach. No plasma samples were collected in our cohort and we were unable to 

confirm CMV infection using serology or compare DBS and plasma results.  

In England and Wales there are seventeen newborn screening laboratories 

(http://www.newbornscreening.org/laboratories.asp). The last reported birth rate for 

the same region was 698,512 (live births) in 2013 (Office for National Statistics, 

2014).  Assuming each laboratory performs an equal number of tests this would 

equate to 41,000 DBS tests for CMV per laboratory per annum. In this chapter I 

tested 1,027 DBS specimens for CMV DNA in a short period of time (10 days). 

Therefore with adequate laboratory resources my data shows that detection of CMV 
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from DBS is possible and that inclusion of CMV screening in the newborn 

programme is feasible. However, further studies are required to develop extraction 

methodologies for example using DBS sample as primary input and removing the 

need for pre-treatment. 

Retrospective testing for CCMV from DBS is needed and demand has increased on 

a yearly basis since its introduction in 2005. However current methodologies for DBS 

testing for CCMV have shown poor sensitivity providing a barrier to neonatal CCMV 

screening. To address this a novel real time one step nested PCR was developed 

which showed enhanced sensitivity for detection of CMV DNA from DBS. This rapid 

one step nested PCR allows detection of CMV in 1.5hrs and removes the associated 

contamination risk of a two-step nested PCR and/or gel based detection method.   

Overall newborn screening will allow a greater number of infected infants to be 

identified and provide the opportunity for early intervention and to fully assess the 

relevance of the ‘threshold effect’ in context of newborn screening.  Additionally, 

these studies should also aim to recruit asymptomatic children identified into a 

randomised controlled trial to assess the efficacy and safety of antiviral treatment in 

babies born without symptoms.
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Chapter 8 

8 General Discussion 
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The work in this PhD thesis aimed to investigate several aspects of the use of DBS 

for both the retrospective diagnosis of CCMV infection and their potential as a 

screening tool. Furthermore it addressed the use of DBS for the detection of viral 

DNA in studies in resource limited settings where logistical constraints often preclude 

storage and transport of plasma of whole blood samples.  

In this chapter, the implications of the main findings are discussed, overall 

conclusions are formulated and recommendations for future studies are made. 

8.1 Disease burden and diagnostic conundrum of CCMV 
 

CCMV is an important public health problem. It is estimated that approximately 6,000 

children per annum born in the USA will have neurological disabilities due to CCMV 

infection, this disease burden is greater than that of either Down's syndrome or spina 

bifida for which prenatal screening is standard care (Cannon & Davis, 2005). The 

diagnosis of CCMV is challenging; maternal CMV infection is often asymptomatic or 

presents with non CMV specific 'flu like' symptoms and existing maternal immunity is 

not protective to virus reactivation or re-infection. Disease presentation in the 

congenitally infected child can vary and symptoms are not exclusive to CCMV alone. 

The biggest obstacle in the diagnosis of CCMV is that approximately 90% of 

congenitally infected children are asymptomatic at birth, however these children face 

a significant risk of developing late onset disease most commonly SNHL (Dollard, 

Grosse et al., 2007).  In the absence of a newborn screening programme CCMV 

diagnosis cannot be made with certainty in children presenting after 14 days of life 

(unless early samples are available) due to confounding results from  perinatal CMV 

infection (as shown in this thesis).  Infants who acquire CMV infection intrapartum or 
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postpartum usually have no acute illness (with the exception of some low birth 

weight premature infants) and infections are not associated with the neurological 

disease associated to CCMV. This complex presentation presents a diagnostic 

conundrum. 

8.2 Use of DBS for retrospective diagnosis of CCMV 
 

The concept of using newborn DBS for the diagnosis of congenital CMV was first 

reported in 1994. Shibata et al; retrospectively analysed DBS for 661 newborns and 

found 25% of healthy babies and 33% of low birth weight infants to be positive for 

CMV DNA from their newborn DBS sample (Shibata, Takano et al., 1994b). 

Following this observation Barbi et al; reported 100% sensitivity and 99% specificity 

of the DBS sample for the diagnosis of CCMV compared to virus isolation in urine 

(Barbi, Binda et al., 1996;Barbi, Binda et al., 2000). In 1997 Johansson et al, 

reported 81% sensitivity and 100% specificity of DBS samples for CCMV diagnosis  

in children aged 12-18 years (Johansson, Jonsson et al., 1997). In another study, the 

median age of delayed onset SNHL in asymptomatic children was found to be 27 

months of age (Fowler, McCollister et al., 1997) showing that CMV DNA could be 

found on DBS older than the median age of onset of SNHL. However the use of DBS 

for retrospective diagnosis raised some critical questions surrounding cross 

contamination and stability of CMV DNA because the reported results could also be 

dependent on other factors such as storage conditions or initial blood viral load, so 

stability under ‘routine storage conditions’ was important to establish.  

The first part of this thesis aimed to address these questions. DBS are essentially 

small volume blood samples, it was therefore important to determine the sensitivity 

of the DBS assay in relation to a whole blood sample taken at the same time. The 
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mean CMV viral load in cord blood of 18 congenitally infected neonates has been 

reported as 2,300 copies/ml  (3.4 log10) (Halwachs-Baumann, Genser et al., 2002). 

Another study reported a mean peripheral blood CMV DNA viral load of 400,000 (5.6 

log10) copies/ml in symptomatic infants, 82,000 (4.9 log10) copies/ml in asymptomatic 

infants and higher viral loads in infants with hearing loss versus those with normal 

hearing (Boppana, Fowler et al., 2005).  In my study the whole blood with the lowest 

viral load that still tested positive for CMV DNA when spotted onto a DBS was 1,700 

genomes/ml. Importantly, this result was lower than the median viral loads reported 

by the two studies suggesting that  the DBS assay should be capable of detecting 

CMV viraemia in the congenitally infected child. These observations, alongside the 

stability and cross contamination data, led to the introduction of a national routine 

diagnostic service for the retrospective diagnosis of CCMV in 2005. Which in turn 

produced more clinical samples for me to evaluate.  

8.3 DBS as a newborn screening tool for CCMV 
 

Screening for CCMV from DBS has been suggested (Dollard, Schleiss et al., 

2010;de Vries, Vossen et al., 2011). Previous studies have focused on the detection 

of CMV from DBS in cohorts of congenitally infected infants with a range of 

sensitivities (64-100%) being reported (reviewed by (Barbi, Binda et al., 2006).  

These results suggested that newborn screening for CMV from DBS samples could 

be possible through the use of optimised methods to provide a highly sensitive 

platform for CMV DNA detection.   

In 2010 the CMV and Hearing Multicentre Screening (CHIMES) study (a population 

based multicentre screening study using high throughput automated sample 

preparation to detect CCMV from paired saliva and DBS) published their results on 

the diagnostic accuracy of DBS for newborn CMV screening in comparison to rapid 



 
 

238 
 

culture of saliva samples. The results showed poor sensitivity with only 28% of 

CCMV infection being detected with a one primer assay and 34% being detected 

with two primer assay and led the authors to conclude that DBS real time PCR 

assays are not suitable for CCMV newborn screening (Boppana, Ross et al., 2010). 

The data presented in this thesis would dispute this finding and suggest this 

conclusion was premature as the methodology may have contributed to the low 

reported sensitivity. This thesis has highlighted the key role of nucleic acid extraction 

and amplification techniques in the detection of CMV DNA from DBS. In chapter 3 

extraction methodology was shown to play a critical role in the recovery of CMV DNA 

from the DBS with sensitivities of 29-71% for the same sample set dependent on 

extraction method used. Other studies have also shown large differences in reported 

sensitivities dependent on extraction methodology, region of CMV being amplified 

and the amplification method itself (de Vries, Claas et al., 2009;Barbi, Binda et al., 

2006;Vauloup-Fellous, Dubreuil et al., 2006;de Vries, Claas et al., 2009;Scanga, 

Chaing et al., 2006;Yamamoto, Mussi-Pinhata et al., 2001); (Soetens, Vauloup-

Fellous et al., 2008).  These factors together could have a major impact on the 

reported sensitivity of the CHIMES study so further investigation into DBS PCR 

assays should continue. The most recent study to investigate DBS sensitivity agreed 

with this conclusion as the prevalence measured with DBS was similar to reports 

using standard viral culture methods when screening 3972 newborns using 

established and optimised DBS methods (Kharrazi, Hyde et al., 2010). 

In this thesis high throughput extraction technology was evaluated on two large 

cohorts of DBS samples. Additionally a one-tube nested real time PCR suitable for 

high throughput screening was developed which showed enhanced detection of 

CMV DNA from DBS. However this 90% sensitivity is novel in the context of newborn 
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screening and denotes that a test without 100% analytical sensitivity for infection that 

nevertheless detected all children at risk of developing disease would be deemed 

acceptable for the purposes of screening. If the reported threshold association 

between viral load and outcome was proven   it would suggest that the ‘missed’ 

cases would be the children with the absent or lowest viral load who would therefore 

have the lowest risk of CMV disease (Boppana, Fowler et al., 2005;Lanari, 

Lazzarotto et al., 2006;Arav-Boger & Pass, 2007). This possibility should now be 

evaluated in much larger numbers of cases and controls. 

8.4 Relationship between CMV viral load and  CCMV disease 
 

Throughout this thesis CMV viral load has been shown to be a factor in the detection 

of CMV DNA from DBS. This is an important consideration in determining whether 

DBS will perform adequately for CCMV screening and retrospective diagnosis. The 

pathogenesis of CCMV disease is unknown, however the severity of the disease is 

likely to be multifactorial, and include host and viral genetics as well as host 

immunological response. CMV viral load is a reflection on the ‘fitness’ of viral 

replication, or conversely, how the immune system is able to keep the CMV infection 

in check. Therefore the severity of disease is likely to be related to the inoculum of 

virus and/or the inability of the immature immune system to control replication. 

Recent studies have shown an impaired interferon-gamma secretion by fetal CD8-T 

cells and defective expansion of the pp65 specific cytotoxic T lymphocytes in 

response to CMV antigen in infants with CCMV (Elbou Ould, Luton et al., 

2004;Pedron, Guerin et al., 2007) and that functional exhaustion limits effector CD4 

and CD8 T lymphocyte responses during fetal life (Huygens, Lecomte et al., 2015).  

Termination of CMV excretion has also been correlated to the  development of CMV 

specific cellular immunity (Pass, Stagno et al., 1983). 



 
 

240 
 

In 1975 Stagno et al, were the first to report that there was a significant difference 

between the CMV viral load in urine of symptomatic CCMV children versus 

asymptomatic and that the urine viral load in asymptomatic CCMV was greater than 

the urine viral load of perinatally infected children (figure 8.1) (Stagno, Reynolds et 

al., 1975b). These results were the first to imply the possibility of a threshold (non- 

linear) relationship between CMV disease and CMV viral load.  More recently, 

increasing urine CMV viral load has been positively associated with SNHL by Rivera 

et al (Rivera, Boppana et al., 2002) and real time PCR quantitation has shown  that  

CMV viral load in blood correlates with future sensorineural hearing loss (SNHL) 

(Ross, Novak et al., 2009). This result was replicated by Boppana et al; who have 

also shown higher CMV loads in both urine and blood of symptomatic CCMV 

children compared to asymptomatic in a prospective study (Boppana, Fowler et al., 

2005).  

In this thesis a statistically significant association, between viral load on DBS and the 

presence and degree of SNHL in both symptomatic and asymptomatic CCMV was 

found in 34 children, suggesting an association between CMV blood viral load and 

risk of hearing deficit. This relationship was reminiscent of the threshold concept of 

CMV disease in solid organ transplant patients and AIDS patients where the 

relationship between CMV viral load and risk of disease is well established (Cope, 

Sweny et al., 1997;Cope, Sabin et al., 1997;Emery, Cope et al., 1999;Emery, Sabin 

et al., 2000;Emery, Sabin et al., 2000); (Humar, Gregson et al., 1999). An 

observation supported by  Ross et al; who showed that peripheral blood viral load 

was not directly associated with hearing loss but viral loads of <3,500 copies/ml were 

associated with a lower risk of hearing loss and better hearing outcomes in both 

symptomatic and asymptomatic CCMV (Ross, Novak et al., 2009). However, this 
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observation was not found in another study by Bradford et al; who found no 

association between blood CMV viral load and SNHL when compared to the 

presence of CMV DNA alone. But this study only recruited symptomatic CCMV 

children with CNS involvement which may have affected the outcome (Bradford, 

Cloud et al., 2005).  

An ultimate goal would be to define a prognostic marker which could predict the 

outcome of CCMV infection. From the results generated in this thesis It was not 

possible to define a prognostic ‘threshold’ viral load, but the relationship itself 

warrants further investigation and could also explain the continued detection of CMV 

DNA in the DBS of older children with late onset hearing loss, as the children who 

are more likely to be symptomatic may have had higher viral loads.  
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Figure 8.1 A) relationship between viral load in the urine of newborns infected with CMV 

congenitally (asymptomatic or symptomatic at birth) and infected post-natally using TCID50 

assessment in fibroblast cell culture over the initial 42 months of life (re-drawn from (Stagno, 

Reynolds et al., 1975b). B) Non-linear relationship between CMV viral load in renal 

transplant patients  urine and probability of CMV disease reproduced with permission from 

(Cope, Sweny et al., 1997). 
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Prompt antiviral treatment has the potential to prevent or delay the onset or 

progression of hearing loss in CCMV (Kimberlin, Lin et al., 2003;Kimberlin, Jester et 

al., 2015). In transplant patients CMV viral load is used to initiate and monitor pre-

emptive anti-CMV therapy with the therapeutic effects of antivirals measured by the 

resulting decrease in viral load. Studies suggest that ongoing viral replication may be 

responsible for the SNHL associated with CMV DNA being detected in the perilymph 

of children with CCMV (Sugiura, Yoshikawa et al., 2004;Bauer, Parizi-Robinson et 

al., 2005;de Vries, Vesseur et al., 2013) and CMV labyrinthitis being shown in animal 

and human models (Woolf, Koehrn et al., 1989); (Sugiura, Yoshikawa et al., 2004;Li, 

Kosugi et al., 2008) Therefore it is reasonable to predict that lowering the viral load 

may be beneficial to a child with CCMV. This could explain the reported beneficial 

effects of the CASG randomised controlled trial of 6 weeks intravenous ganciclovir 

on CMV replication and hearing deterioration in infants with symptomatic CCMV 

(Kimberlin, Lin et al., 2003). Thus, a transient lowering of CMV viral load may reduce 

the risk of SNHL, providing an important rationale for antiviral therapy studies in 

children born with CCMV disease. Support for this has concept was also found in the 

recent six weeks versus six month CASG treatment trial where four times the drug 

exposure did not give four times the clinical benefit (Kimberlin, Jester et al., 2015). 

While this study has been in progress the use of saliva and urine samples for 

screening purposes has gained popularity, this in part is due to the high viral loads 

associated with these sample types (Boppana, Ross et al., 2011;Yamamoto, Mussi-

Pinhata et al., 2006;Paixao, Almeida et al., 2012;Koyano, Inoue et al., 2011;Williams, 

Kadambari et al., 2014). However, saliva sampling can be prone to false positive 

PCR results due to oropharyngeal contamination during birth and or breast milk CMV 

contamination, so timing of the newborn saliva sample is critical to outcome and the 
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logistics of setting up a new screening programme using a different sample type may 

prove to be problematic to implement. 

An intrinsic part of newborn screening for CCMV will be the requirement for high 

throughput methodologies, an assay will be required to be sensitive, specific and 

suitable for 96 or 384 format testing. Classically newborn screening was based on 

mass spectrometry technologies, however the first DNA based newborn screen for 

severe combined immunodeficiency (SCID) was included in the US screening core 

panel in 2010 and is being piloted in the UK at present. The assay is based on the 

detection and quantitation of T cell receptor excision circles (TREC) from DBS by 

real time PCR (Kwan, Church et al., 2013) and if implemented, will be the first DNA 

based screen to be added to the UK screening panel. This will provide the expertise 

and instrumentation required for DNA extraction and real time PCR. This is the ideal 

opportunity for the addition of new molecular based tests into the newborn screening 

repertoire and based on the data in this thesis and commitment to use an iterative 

approach to improve the assay based on new technologies a pilot study screening 

for CCMV from DBS is feasible and should remain under investigation alongside 

screening programmes based on saliva and urine. Additionally the established 

technique of mass spectrometry for the detection of CMV-specific proteins could be 

investigated.  

Prevention of CMV infection is an ultimate goal, the Institute of Medicine listed 

prevention of CCMV as a top priority based on cost effectiveness and improvement 

in quality adjusted life years  (Stratton, Durch et al., 2001) and the CDC has 

published guidelines for the prevention of maternal acquisition of CMV whilst 

pregnant based on hand washing and the avoidance of exposure to bodily fluids.  
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A universal vaccination programme would show the largest benefits (Griffiths, 2012). 

CMV vaccine development is currently underway; however a licensed CMV vaccine 

for the prevention of CMV infection is not likely in the next few years. In the absence 

of a CMV vaccine, prevention of MTCT of CMV is being investigated 

Maternal treatment with CMV hyperimmune globulin has been studied in Italy in a 

non-randomised trial to prevent vertical transmission of CMV infection. A decrease in 

fetal infection was reported with the infection rate in the hyperimmune globulin arm 

16% compared to 40% in the non-treated arm (Nigro, Adler et al., 2005). However a 

recent randomised, placebo controlled blinded trial of the same preparation of 

hyperimmune globulin used at the same dose did not shown any beneficial effect of 

the hyperimmune globulin treatment and reported an increased trend for premature 

delivery in women who received the treatment (Revello, Lazzarotto et al., 2014). A 

large randomised, placebo-controlled, clinical trial of CMV immune globulin for 

prevention of maternal-fetal transmission of CMV infection is currently underway 

(http://clinicaltrials.gov/ct2/show/NCT01376778).  

 

8.5 Maternal CMV detection and infant acquisition in resource 

limited settings 
 

In resource limited settings early acquisition of CMV in infants exposed or infected 

with HIV has been proven to be detrimental to the infant (Slyker, Lohman-Payne et 

al., 2009b). In the absence of an effective vaccine or treatment, preventing or 

delaying rates of CMV acquisition may represent a novel strategy to improve the 

health of infants in areas with high seroprevalence and HIV co-infection. Chapters  6 

and 7 of this thesis validated and utilised DBS methodologies developed to study 

http://jpids.oxfordjournals.org/external-ref?link_type=CLINTRIALGOV&access_num=NCT01376778
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both maternal CMV detection and infant acquisition in resource limited settings 

where logistical constraints often preclude storage and transport of plasma or whole 

blood samples. The presence of CMV in distinct maternal compartments, HIV viral 

load and maternal CD4 count was investigated with the aim of identifying biomarkers 

which could predict perinatal transmission of CMV. The results presented are the 

first analysis of CMV natural history in different maternal body compartments and 

show that CMV reactivation in mucosal compartments is common during late 

pregnancy and breastfeeding and is relevant for transmission. It is interesting to note 

the relationship between CMV detection in the different maternal compartments and 

detection of CMV DNA in the plasma suggested that blood viral load is an overall 

indicator of systemic viral reactivation or infection.  Breast milk CMV viral load and 

maternal CD4 count are major determinants of MTCT of CMV; these data suggest 

that restoring maternal immunity or reducing CMV breast milk levels may prevent 

MTCT of CMV infection and support the concept that CMV disease is likely to be 

related to the inoculum of the virus and/or the inability of the immune system to 

control replication. Therefore, expanding maternal access to highly active 

antiretroviral therapy in pregnancy could improve infant outcomes by directly 

reducing HIV replication and indirectly controlling CMV. 

8.6 Overall conclusions 
 

The burden of disease caused by CCMV is finally being recognised and the 

foundations for newborn screening for CCMV are being laid with several publications 

and reviews evaluating newborn screening for CCMV (Grosse, Dollard et al., 

2009;Dollard, Schleiss et al., 2010;Din, Brown et al., 2011;Boppana, Ross et al., 

2010;de Vries, Vossen et al., 2011;Kharrazi, Hyde et al., 2010). The potential to 
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identify asymptomatic children at risk of late onset SNHL or other sequelae and 

benefit of early interventions to protect hearing should not be underestimated. The 

benefit of early antiviral treatment to prevent hearing deterioration has been shown in 

symptomatic infants and a large scale study on the benefits of antiviral treatment in 

asymptomatic children is now required. However, the potential harms from CCMV 

screening must be investigated. 80% of children with CCMV do not develop 

permanent sequelae and therefore a positive screening result could lead to parental 

anxiety in a large number of cases. Maternal anxiety when screening for CCMV was 

recently addressed in the UK in a study by Williams et al., no additional anxiety was 

reported in mothers of infants screened (Williams, Kadambari et al., 2014) 

CCMV infection now satisfies the majority of criteria of Wilson and Jungner (Dollard, 

Schleiss et al., 2010) and is being recognised and acknowledged in the USA with 

Utah signing the first house bill (HB0081), which mandates CMV education for 

pregnant women, as well as CMV screening for infants who fail their newborn 

hearing test.  The scene is now set for a large scale study on screening and 

intervention in CCMV. I hope that my work in producing a nested PCR might help the 

ultimate goal of controlling SNHL caused by CCMV. 

8.7 Future studies 
 

To address remaining analytic and logistic issues large-scale newborn screening for 

CCMV should be investigated using optimised methods specific for DBS. The use of 

commercial partners and /or commercial assays should also be investigated as new 

mass throughput analysers are currently in development for clinical use. 

Additionally, since current metabolic screening is mainly performed using mass 

http://le.utah.gov/~2013/bills/static/HB0081.html
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Spectrometry assays, it would be logistically advantageous to investigate the 

detection of CMV specific proteins for the detection of CMV on DBS. 

Recent advances in whole genome sequencing in clinical samples alongside human 

genomes may provide insight into transmission patterns of CMV from mother to fetus 

and their potential role in severity and outcome of CCMV infection. Future studies 

analysing a large number of newborns and their mothers could address this and 

reveal important biomarkers for CMV transmission. 
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