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Summary 
In the early 1960s, Anthony Edwards and Luca Cavalli-Sforza made an effort to apply R.A. Fisher’s 
maximum likelihood (ML) method to estimate genealogical trees of human populations using gene 
frequency data.  They used the Yule branching process to describe the probabilities of the trees and 
branching times and the Brownian motion process to model the drift of gene frequencies (after a 
suitable transformation) over time along the branches.  They experienced considerable difficulties, 
including “singularities” in the likelihood surface, mainly because a distinction between parameters 
and random variables was not clearly made.  In the process they invented the distance (additive-tree) 
and parsimony (minimum-evolution) methods, both of which they viewed as heuristic approximations 
to ML.  The statistical nature of the inference problem was not clarified until Edwards 1, which 
pointed out that the trees should be estimated from their conditional distribution given the genetic 
data, rather than from the “likelihood function”.  In modern terminology, this is the Bayesian 
approach to phylogeny estimation: the Yule process specifies a prior on trees, while the conditional 
distribution of the trees given the data is the posterior.  This article discusses the connections of the 
remarkable paper of Edwards 1 to modern Bayesian phylogenetics, and briefly comments on some 
modelling decisions Edwards made then that still concern us today in modern Bayesian phylogenetics.  
The reader I have in mind is familiar with modern phylogenetic methods but may not have read 
Edwards 1, which is published in a statistics journal.   

The model and the statistical problem of phylogeny estimation.  The data considered by Edwards 
and Cavalli-Sforza 2,3 consist of gene frequencies of common blood groups from different human 
populations.  Edwards treated different human populations while I focus on different species here.  
The data-generating model consists of two components.  A Yule branching process, with a constant 
per-lineage rate  of splitting, is used to describe the probability distribution, f(F, t|, n), of the 
phylogeny (F) and the branching times: t = t1 = 1, t2, …, tn – 1 (fig. 1).  The Yule process assigns 
uniform probabilities to the labelled histories.  The term labelled history, due to Edwards 1, refers to a 
rooted tree topology with internal nodes ordered by time.  For example, the rooted tree topology ((a, 
b), (c, d)) corresponds to two distinct labelled histories depending on whether the age of the a-b 
ancestor is older or younger than the age of the c-d ancestor.  We note that other models of 
cladogenesis, such as the coalescent process 4 and the constant-rate birth-death process 5, all generate 
labelled histories with equal probabilities.  In using the Yule process to describe the process of species 
formation, Edwards fixed the first branching event (the root of the tree) at time t1 = 1, and conditioned 
on the number of species at the present time to be n.  He derived the joint density for the tree form (F) 
and branching times (t) as 

 f(F, t| ) = 
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The second component of the model is the Brownian motion process used to describe the 
evolution of the continuous characters over time.  Note that such Brownian models are now widely 
used in phylogenetic and phylogeographic analyses of morphological measurements from different 
species 6,7.  The Brownian motion or random walk in one dimension gives the location of the particle 
time t later, given that it is at location x0 at time 0, as a Gaussian variable, xt ~ N(x0, t2), where the 
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parameter 2 controls how fast the particle drifts and represents the evolutionary rate for the 
continuous character.  Gene frequencies at multiple blood group loci are treated as a p-dimensional 
Brownian motion.  The different dimensions (different variables) are moving independently, with the 
same 2.  However, the measurements for the same character observed in the modern species (which 
are the tips of the tree) are correlated because they may have shared some branches.  For example, 
cov(x7k, x9k) = (t1 – t3)2, where (t1 – t3) is the time shared by the two paths from the root to the tips 7 
and 9 (fig. 1).  Thus given 2, the tree form (labelled history F) and branching times (t), and the state 
at the root (x1k), each character k observed in a modern species is normally distributed with mean x1k 
and variance t12.  The data or the measurements of the k characters among all modern species have 
the probability density  

 f(|F, t, 2, x1) = 11
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where 1 is a p  1 vector with all elements to be 1 and T is the variance-covariance matrix given by the 
tree.  This is a n-variate normal density, and is nowadays known as the phylogenetic likelihood.  This 
is equation (8) of Edwards. 

The true parameters in the model are the Yule branching rate , the Brownian parameter 2, and 
the initial state x1.  Given those it should be possible to simulate the process.  The other unknowns, 
including the tree F, the branching times t, and the character states at the interior nodes xik, 2  i  n – 
1, 1  k  p, are random variables.  If one simulates the process using the true parameters, those 
random variables will have different realized values among simulated replicates.  Edwards 1 pointed 
out that the true parameters should be estimated by ML, with the likelihood calculated by integrating 
over the random variables, that is, by summing over the trees (F) and integrating over the branching 
times (t) as well as the ancestral states.  The likelihood function is thus 

 L(, 2, x1) = f(|, 2, x1) = 2
1( , | ) ( | , , , )d
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Here the notation is heuristic, and the sum is over all possible tree forms and the integral is over the (n 
– 2) branching times within each tree.  The computation was deemed impossible and the model was 
not analyzed.  Nevertheless, Edwards pointed out that random variables, F and t, should be estimated 
from their conditional distribution given the data, with the true parameters replaced by their MLEs.   

The singularity on the “likelihood” surface.  Early attempts by Edwards and Cavalli-Sforza 2,8 
treated the branching times (t) and ancestral states (x) as parameters.  The “likelihood” function was 
defined as the product of the multivariate normal densities for character changes along the branches.  
For any branch i  j, with branch length ti – tj, the density is 
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given by the Brownian motion model.  As pointed out by Edwards 1, this “likelihood” increases 
without bound if xik = xjk for all k and if ti  tj: there are lines of singularity in the likelihood surface 
when there is no change along a branch for any of the p characters and when the branch disappears.  
Here the mistake was to treat the ancestral states and branching times as parameters, when they are in 
fact random variables with statistical distributions under the model. 

Some remarks 
Application of the Yule process.  While the Yule process of pure birth is implemented in some 
Bayesian programs such as BEAST 9, it is more common to use the birth-death process, which is more 
general by allowing species extinctions and species sampling 10,11.  Often the distribution of times is 
obtained by conditioning on the number of lineages at the present time and on the age of the root, as 
in Edwards 1, but variations exist.  For example, Thompson 12 suggests fixing 2 = 1, instead of fixing 
t1 = 1, and she treats n as data (as n may be informative about the birth rate ), rather than 
conditioning on n tips at the present time.  Gomberg 13, in an unfinished report, prefers not 
conditioning on the present time, although the details are not so clear.  The differences among those 
variants are not well understood.   

Ancestral states at the root.  The characters states at the interior nodes of the tree are known as 
ancestral states.  On a species phylogeny, they represent the states of the characters in the extinct 
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common ancestors of modern species.  Edwards 1 and also Thompson 12, p.119 treated the states at the 
root (x1) as parameters.  This has the problem of introducing many parameters in the model, such that 
the number of parameters increases without bound when the number of characters increases.  For 
discrete characters such as the nucleotides (T, C, A, and G) in DNA sequences, it is customary to use 
continuous-time Markov chains to describe transitions between character states and to assume that the 
process has been stationary for exceptions see 14.  Then the root states have a distribution given by the 
stationary distribution of the Markov chain.  For continuous characters, the Brownian motion does not 
have a stationary distribution.  Felsenstein 15 discussed an algorithm to estimate the ancestral states, 
eliminating x1.  Statistical justifications for this procedure were discussed by Thompson 12, p.119.   

The maximum likelihood method of phylogeny estimation.  The Yule process component of the 
model was dropped when Felsenstein 15 revisited the problem of phylogeny reconstruction using 
continuous characters.  Thus the tree (F) and times (t) do not have statistical distributions anymore 
and become true parameters, which are estimated by maximizing the likelihood function, which 
averages over the ancestral states.  Similarly, Thompson 12, p. 60, in extending the method of Edwards 1, 
dropped the Yule process.  These are the early ML implementations of the Brownian-motion model 
for continuous characters. 

Origin of Bayesian phylogenetics  
Felsenstein 16, p.291 has included a discussion of early applications of Bayesian or Bayesian-like ideas 
to phylogenetics.  Perhaps the most relevant is the calculation of posterior probabilities for trees by 
Kishino and Hasegawa 17, see also 18, who calculated the likelihood by optimizing the branch lengths 
for each tree, while a fully Bayesian approach should average over the branch lengths or branching 
times.  The modern approach to Bayesian inference of molecular phylogenies was introduced by three 
groups working independently in the 1990s: Bob Mau and Michael Newton in Wisconsin 19, a 
research student in Ohio State University, Shuying Li 20, and Bruce Rannala and me in Berkeley 10,21.  
All those works integrate over the branching times through a prior to calculate the posterior 
probabilities of trees.  The first two groups are statisticians, applying Bayesian MCMC algorithms to 
phylogeny estimation.  Note that the 1990s was the time when Bayesian MCMC algorithms were 
introduced into various branches of sciences, even though they were developed a few decades earlier 
22,23. 

In our case, we owe the motivation entirely to Edwards 1.  After finishing my PhD in Beijing in 
1992, I went to Cambridge to work with Adrian Friday and Nick Goldman.  We occasionally saw 
Edwards, but I believe he was working on his book on Venn diagrams, rather than phylogenetics.  
Adrian, Nick and I were developing Markov models of sequence evolution for use in the ML method, 
and we had much discussion about whether the tree should be treated as a discrete parameter or a 
statistical model.  I have provided detailed argument elsewhere that the distinction is not a semantic 
one see, e.g., 24,25, pp. 159-163.  For example, it is not so clear how to decide whether a log likelihood 
difference between two trees is due to chance.  We have the rule of thumb 26, p.202 that an improvement 
of 2 log-likelihood units (or 1.92 if we use the asymptotic 2

1 ) is good enough for including one 
additional parameter, but we lack such a “calibration” when two trees are compared.  The use of 
bootstrap to evaluate the significance of trees has met with difficulties in interpretation 27-29.  I was 
also concerned that the ML tree topology does not have the large-sample efficiency of the ML 
estimate of a conventional parameter see, e.g., 24.  Those concerns motivated my work with Bruce, 
when both of us were postdocs in Monty Slatkin’s phylogenetics laboratory in Berkeley.  We were 
curious to see what the alternative statistical methodology, the Bayesian, might offer, given the 
difficulties with the ML.  We decided to try Edwards’s 1 prescription, but with two changes.  First, we 
worked with DNA sequence data, using a continuous-time Markov chain model instead of the 
Brownian motion model for continuous characters, with summation over the ancestral states achieved 
using Felsenstein’s 30,31 pruning algorithm.  Second we used the birth-death process (instead of the 
Yule) to specify a prior on the trees and times but this was an easy replacement.  We used numerical 
integration to integrate over the times, so that the method is applicable to small trees only.  This effort 
led to Rannala and Yang 10.   

This is one of the first Bayesian molecular phylogenetic analyses, and the results are interesting.  
We applied our program to two datasets of four or five ape species (human, common chimpanzee, 
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pygmy chimpanzee, gorilla, and orangutan).  We estimated the birth rate , death rate , and the 
transition/transversion rate ratio parameter  by ML, and used those to calculate the posterior 
probabilities for trees, as stipulated by Edwards 1.  The maximum a posteriori (MAP) trees are 
reasonable in both datasets, grouping the human with the chimpanzees, but the posterior probability in 
one dataset, at 0.9999, is uncomfortably high.  This dataset, of 11 mitochondrial tRNA genes (739bp) 
and published by Horai et al. 32, is fairly small, and the human-chimpanzee-gorilla relationship was a 
hard phylogenetic problem at the time.  Spuriously high posterior probabilities for trees continue to 
trouble us today, especially as datasets for phylogenetic analysis are getting increasingly large 33-35.  
The problem appears to have to do with the asymptotic behaviour of Bayesian model selection when 
applied to opposing and nearly equally wrong models. 

Phylogeny estimation and statistical inference 
I suppose my characterization of Edwards 1 as the first effort to apply Bayesian statistics (rather than 
ML) to phylogeny estimation might not be looked upon by Edwards himself as reasonable.  Indeed in 
his Discussion, Edwards 1, p. 104 has this to say about the Bayesian approach: 

and a detailed study of the present problem has, if anything, strengthened my conviction 
that a Bayesian approach in this instance would be a gross over-simplification.  I am not 
prepared to give the true parameters prior probability distributions because I can see no 
model which would justify them.  We may also note that the adoption of a Bayesian 
approach would not automatically resolve the dilemma of how to summarize a posterior 
distribution in a great many variables in terms of a few descriptive parameters, for 
maximizing the posterior probability would lead to the singularities, …  

 
A few words of clarification may thus be called for, related to the changing usage of the term 

“Bayesian” and the philosophy of statistical inference.  The word “Bayesian” was apparently coined 
by R.A. Fisher in 1950 36,37, to refer derogatorily to the method of inverse probability, the inference 
method that uses the Bayes theorem to derive probability distributions for parameters.  The word 
“inverse” refers to the fact that the probability is here defined backwards from the data to the 
parameter or hypothesis, or from effects to causes.  Given the probability of heads for a fair coin,  = 
1
2 , say, the probability of x = 2 heads in n = 4 coin tosses is ! 3

!( )! 8(1 )x n xn
x n x   

   .  This has a 

simple frequency interpretation: if we do many experiments, each of which involves tossing the coin 4 
times, then in 3

8  of the experiments, we will see 2 heads.  Now suppose we have observed x = 2 heads 

in n = 4 tosses of a coin, what is the probability distribution of ?  To a non-Bayesian, this question is 
not meaningful.  The approach of assigning a prior on  based on subjective beliefs or without a 
physical model is the inverse method, and Edwards’s formulation is not such a method.   

In the tree problem, the Yule (or birth-death) process is a biologically plausible even if simple 
model.  The true parameters are the Yule branching rate  and the Brownian drift parameter 2, which 
should be estimated by maximizing the likelihood function, while the tree is a random variable and its 
realized value should be estimated from the conditional probability given the data.  This is a standard 
likelihood method for estimating realized values of random variables in the model, nowadays known 
as empirical Bayes.  Edwards would thus consider his method to be a likelihood method (although not 
maximum likelihood) of phylogeny estimation.   

Nevertheless, modern use of the term “Bayesian” does not have the derogatory tone, and use of a 
physical/biological process is a common approach to specifying a prior.  Of course, one may argue 
that the full or hierarchical Bayesian approach would assign priors on parameters  and 2, rather than 
using their MLEs, but in this article, I have not made an effort to distinguish the empirical Bayes and 
the full (hierarchical) Bayes, or whether the prior is based on a biological model or chosen for 
convenience.   

In passing, it may be noted that the challenge of summarizing the posterior distribution of 
phylogenetic trees still exists today.  However, the singularity in the posterior mentioned by Edwards 
does not exist because the posterior for a tree is calculated by integrating over the ancestral states and 
branching times. 
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Modern times 
The early studies of Rananla and Yang 10,21, Mau and Newton 19, and Li et al. 20 assumed the 
molecular clock (rate constancy over time), which is often violated in comparisons of distant species.  
Bayesian phylogenetics really took off with the development of the program MrBayes 38,39, which 
adapted branch-swapping algorithms such as nearest neighbor interchange (NNI), subtree pruning and 
regrafting (SPR), and tree bisection and reconnection (TBR) 40 into MCMC proposal algorithms to 
move between trees.  The clock constraint was relaxed, enabling phylogenetic inference to be 
conducted under more realistic models.  A more recent program, BEAST, infers rooted trees under the 
clock and relaxed-clock models 9, while PhyloBayes implements sophisticated nonstationary models 
to deal with substitution heterogeneity among lineages that may be important for deep phylogenies 41.  
Nowadays those Bayesian programs are standard tools in molecular phylogenetics, together with fast 
likelihood programs such as RAxML 42 and PhyML 43. 

A brief introduction to Bayesian phylogenetics is provided in Yang 44.  More extensive recent 
reviews include Zwickl and Holder 45 and Yang 25: Chapters 8 and 9.  An edited book by Chen et al. 46 
summarizes current research topics in the field.  Phylogenetics may well be the largest application 
area of Bayesian statistics.  It provides a rich testing ground for advanced Monte Carlo computational 
algorithms.  Jerzy Neyman 47 was certainly right to identify molecular phylogenetics as “a source of 
novel statistical problems”. 
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Figure 1.  A phylogeny for seven (n = 7) species or populations used to illustrate the inference 
problem considered by Edwards 1.  The tips (final particles) are numbered n, n + 1, …, 2n – 1.  The 
interior nodes are numbered 1, 2, …, n – 1.  They represent the branching events and are ordered by 
time: t1 > t2 > … > tn – 1.  The time machine runs backwards, so that the present time is t = 0 while the 
age of the root (the origin at the first split) is fixed at t1 = 1.  The data are observed measurements in p 
characters from the n modern species:  = ik, where ik (i = n, …, 2n – 1; k = 1, …, p) is the 
measurement from species i in character k.  Edwards considered the tree form (labelled history F), the 
times of non-root internal nodes, t = t1 = 1, t2, …, tn – 1, as well as the ancestral character states x = 
xik, i = 1, .., n – 1; k = 1, …, p, as quantities of interest.   
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