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Abstract—Massive multiple input multiple output (MIMO) is
one of the key technologies for fifth generation and can sub-
stantially improve energy and spectrum efficiencies. This paper
explores the potential benefits of massive MIMO in spectrum
sharing networks. We consider a multiuser MIMO primary net-
work, with NP-antenna primary base station (PBS) and K single-
antenna primary users (PUs), and a multiple-input–single-output
secondary network, with NS-antenna secondary base station and
a single-antenna secondary user. Using the proposed model, we
derive a tight closed-form expression for the lower bound on the
average achievable rate, which is applicable to arbitrary system
parameters. By performing large-system analysis, we examine the
impact of large number of PBS antennas and large number of
PUs on the secondary network. It is shown that, when NP and K
grow large, NS must be proportional to lnK or larger, to enable
successful secondary transmission. In addition, we examine the
impact of imperfect channel state information on the secondary
network. It is shown that the detrimental effect of channel estima-
tion errors is significantly mitigated as NS grows large.

Index Terms—Average achievable rate, cognitive radio, im-
perfect channel state information (CSI), massive multiple input
multiple output (MIMO), power efficiency.

I. INTRODUCTION

MASSIVE multiple-input–multiple-output (MIMO) sys-
tems, where a base station (BS) equipped with very

large (massive) antenna arrays serves many users in the same
time–frequency resource, have attracted much research interest
recently [1]–[4]. One of the key properties of massive MIMO
is that the channels become favorable for most propagation
environments. Under favorable propagation, with simple linear
processing (linear precoders in the downlink and linear de-
coders in the uplink), the effects of interuser interference and
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uncorrelated noise disappear, and hence, the linear processing
is nearly optimal. Owing to the multiplexing gain and the
array gain, huge spectral efficiency and energy efficiency can
be obtained. In addition, [5] showed that massive MIMO is a
scalable technology, and with a simple power control algorithm,
massive MIMO can provide uniformly good service for all
users. Therefore, massive MIMO is a promising candidate
technology for “fifth” generation (5G) of wireless systems.

On a parallel avenue, over the past decade, there has been a
great deal of interest in the cognitive radio technology, for its
ability to improve spectrum utilization [6]–[8]. Cognitive radio
refers to an opportunistic utilization of the spectrum, which
enables unlicensed systems using the same spectrum as the li-
censed systems, while avoiding contaminating the licensed sys-
tems. Typically, there are three main cognitive radio systems:
interweave, overlay, and underlay cognitive radio systems [9].
In interweave cognitive radio systems, the secondary user (SU)
first senses the licensed spectrum. If this spectrum is not used
by the primary users (PUs), the SU will utilize this spectrum. In
overlay cognitive radio systems, the SU uses the same spectrum
as the PU, and the SU has to deploy sophisticated signal
processing techniques to get rid of the interference inflicted on
the primary system. By contrast, in underlay cognitive radio
networks, the SU is allowed to use the spectrum of the PU
under the condition that the interference at the PU caused by
the SU is less than a predefined interference threshold [8],
[10]. The underlay cognitive radio system has attracted much
recent work on its performance analysis and system design
due to its operational simplicity and capacity of high spectrum
utilization.

Most of existing studies in the literature consider the cog-
nitive radio systems that the transceivers deploy only few
antennas. The design and analysis of cognitive radio systems
with the use of very large (massive) antenna arrays at the
transceivers are of particular importance, particularly in 5G
wireless systems, where a very high user throughput is required.
Despite its importance, there has been very little related work
in the literature [11], [12]. In [11], the authors considered
a cognitive radio system where both primary and secondary
networks consist of one massive antenna BS and one single-
antenna user. The pilot decontamination algorithm, which aims
at maximizing the quality of the channel estimation for the
secondary system, was proposed. A spatial interweave cog-
nitive radio system, which consists of the multiuser massive
MIMO primary and multiuser massive MIMO secondary net-
works, was investigated in [12]. By contrast, in our work, we
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propose and analyze the performance of an underlay cogni-
tive radio system, which includes a multiuser massive MIMO
primary network and a multiple-input–single-output secondary
network. More precisely, the primary network includes a pri-
mary base station (PBS) equipped with NP antennas and
K single-antenna PUs, whereas the secondary network includes
one NS-antenna secondary base station (SBS) and one single-
antenna SU. All K PUs and SU share the same time–frequency
resource. We consider the downlink transmission, and both BSs
use the low-complexity maximum ratio transmission (MRT)
technique. We focus on the performance of the secondary
system. The main contributions of this paper are summarized as
follows.

i) In contrast to [7], [8], and [10], we first derive the distribu-
tion of the signal-to-interference-plus-noise ratio (SINR)
for the downlink transmission in the secondary network,
considering the downlink multiuser MIMO transmission
in the primary network. This is a fundamental result not
found in the existing literature. Then, by using Jensen’s
inequality, we derive a closed-form expression for a lower
bound on the average achievable rate, with any finite
numbers of antennas and users. Numerical results verify
the tightness of our bound, particularly when the number
of BS antennas is large.

ii) We examine the potential of massive MIMO to reduce the
power levels, and it is shown that the use of large antenna
arrays can improve power efficiency in spectrum sharing
networks. We also examine the asymptotic performances
where SBSs have massive antenna arrays for both cases:
perfect and imperfect channel state information (CSI)
knowledge. These results enable us to examine the effects
of the use of massive antenna arrays at the PBS or/and the
SBS on the performance of the secondary system. More
precisely, we show that the secondary system works well
when the number of PBS antennas is large. However,
when both NP and K grow large with the same rate, the
performance of the secondary system will be degraded
significantly. To overcome this problem, the SBS must
add more antennas. The number of SBS antennas must
be proportional to lnK or more. Interestingly, we show
that the adverse effect of channel estimation errors can be
significantly mitigated when the number of SBS antennas
is large.

The notation of this paper is as follows: † denotes the
conjugate transpose operator, CN (0,Λ) denotes the complex
Gaussian distribution with zero mean and covariance matrix Λ,
‖ · ‖ denotes the Euclidean norm, E{·} denotes the expectation
operator, 0M×N denotes the M ×N zero matrix, IM denotes

the M ×M identity matrix, tr(·) denotes the trace,
d∼ de-

notes the same distribution, and
d→ denotes the convergence in

distribution.

II. COGNITIVE RADIO NETWORK

We consider the downlink transmission in the underlay
spectrum sharing network. As shown in Fig. 1, the multiuser

Fig. 1. Downlink transmission in the underlay spectrum sharing network.

MIMO primary network consists of a PBS equipped with
NP antennas and K single-antenna PUs (NP ≥ K). The sec-
ondary network consists of an SBS equipped with NS antennas
and a SU with a single antenna. All channels are assumed to
be quasi-static fading channels, where the channel coefficients
are constant for each transmission block but vary indepen-
dently between different blocks. In the primary network, the
channel coefficient from the nPth PBS antenna to the kth PU
is
√
αPkhnP,k (nP = 1, . . . , NP and k = 1, . . . ,K), where αPk

represents the large-scale fading coefficient modeling the path
loss and shadow fading and is assumed to be constant over
the kth PU, and hnP,k ∼ CN (0, 1) is the complex Gaussian
random variable (RV) and represents the small-scale fading
coefficient. The interfering channel coefficient from the nSth
SBS antenna to the kth PU is

√
αSkgnS,k with constant value

αSk and gnS,k ∼ CN (0, 1) (nS = 1, . . . , NS). In the secondary
network, the channel coefficient from the nSth SBS antenna to
the SU is

√
βSgnS with constant value βS and gnS ∼ CN (0, 1),

and the interfering channel coefficient from the nPth PBS
antenna to the SU is

√
βPhnP with constant value βP and

hnP ∼ CN (0, 1).
We assume that PBS and SBS have perfect CSI, and the low-

complexity MRT transmit beamformer is used at the SBS, and
MRT precoding is used at the PBS. The interference power
at all PUs inflicted by the SBS must not exceed the maximal
peak interference level IP, in order to prevent the primary
transmission from harmful interference. As such, the transmit
power at the SBS is given by

Pt = min

{
IP
Z1

, PS

}
(1)

where Z1=max
k

{|gk(g
†
S/‖g†

S‖)|2}, gk=
√
αSk[g1,k, . . . , gNS,k]∈

C1×NS , and gS =
√
βS[g1, . . . , gNS ] ∈ C1×NS , and PS is the

SBS’s maximum transmit power.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: MASSIVE MIMO IN SPECTRUM SHARING NETWORKS: ACHIEVABLE RATE AND POWER EFFICIENCY 3

Given that W is the precoding matrix at the PBS, the
received signal at the SU is

y =
√
PtgS

g†
S

‖g†
S‖

x+
√
PPhPWzT + n0 (2)

where x is the transmit symbol from the SBS with
E{x} = 0 and E{|x|2} = 1; z = [z1, . . . , zk, . . . , zK ] is
the interfering symbol vector from the PBS with E{z} = 01×K

and E{z†z} = IK ; the interfering channel vector is
hP =

√
βP[h1, . . . , hNP ] ∈ C1×NP ; the MRT precoding matrix

at the PBS is W =
√
εH, with H = [h†

1, . . . ,h
†
k, . . . ,h

†
K ] ∈

CNP×K , h†
k =

√
αPk[h1,k, . . . , hNP,k]

† ∈ CNP×1, and ε =
1/E{tr(W†W)}; PP is the PBS’s average transmit power; and
n0 is the additive white Gaussian noise (AWGN) with zero
mean and unit variance. Based on (2), the receive SINR at the
SU is given by

γ1 =
Pt‖gS‖2

εPP‖hPH‖2 + 1
. (3)

In light of the SBS’s transmit power Pt shown in (1), we
reexpress (3) as

γ1 =
min

{
IP
Z1

, PS

}
‖gS‖2

εPP‖hPH‖2 + 1
. (4)

III. AVERAGE ACHIEVABLE RATE

Here, we derive a tight lower bound on the average achiev-
able rate, which can be used to examine the secondary net-
work’s performance behavior. The result accurately captures
the impact of arbitrary antennas and channel parameters on the
average achievable rate. With this in mind, we first present some
useful statistical properties in the following Proposition.

Proposition 1: The SINR of the downlink transmission from
the SBS to the SU can be written as

γ1
d∼ X1

εPPY1 + 1
(5)

where X1 = min{IP/Z1, PS}Z2, with Z2 = ‖gS‖2, and Y1 =

‖hP‖2‖(hP/‖hP‖)H‖2 = ‖hP‖2
∑K

k=1 |Υk|2, with Υk =

(hP/‖hP‖)h†
k. The probability density function (PDF) of X1 is

given by

fX1
(x) =FZ1

(
IP
PS

)
xNS−1e−

x
PSβS

(NS − 1)!(PSβS)
NS

+

K∑
k=1

(−1)k+1

k!

×
K∑

n1=1

· · ·
K∑

nk=1︸ ︷︷ ︸
|n1

⋃
···
⋃

nk|=k

αS
xNS−1

(
x

IPβS
+ αS

)−(NS+1)

(NS − 1)!(IPβS)
NS

× Γ

(
NS + 1,

x

PSβS
+

IPα
S

PS

)
(6)

whereFZ1
(IP/PS)=1+

∑K
k=1((−1)k/k!)

K∑
n1=1

· · ·
K∑

nk=1︸ ︷︷ ︸
|n1

⋃
···
⋃

nk |=k

e−α
S(IP/PS),

|n1

⋃
· · ·
⋃
nk| denotes the cardinality of the union of k

indices, αS � (
∑k

t=1 (α
S
nt
)
−1
), and Γ(·, ·) is the incomplete

gamma function [13, (8.350.2)]. The PDF of Y1 is given by

fY1
(x) =

ρ(A)∑
j=1

θj(A)∑
h=1

χj,h(A)
2μ−h

j x(NP+h)/2−1

(h− 1)!(NP − 1)!

×

(
μj

βP

)−(NP−h)/2

(βP)NP
KNP−h

(
2

√
x

βPμj

)
(7)

where A = diag{αP
1 , . . . , α

P
K} is a K ×K diagonal matrix,

ρ(A) is the number of distinct diagonal elements of A,
μ1, . . . , μρ(A) are the distinct diagonal elements in decreas-
ing order, θj(A) is the multiplicity of μj , χj,h(A) is the
(j, h)th characteristic coefficient of A, which is defined in
[14, Definition 4], and Kν(·) is the modified Bessel function
of the second kind [13, (8.432.6)].

Proof: Please refer to Appendix A. �
With the help of Proposition 1, the exact average achievable

rate can be readily obtained as R̄ = E{log2(1 + γ1)}.
Corollary 1: Using Jensen’s inequality, we derive a tight

lower bound on the average achievable rate as

R̄L = log2(1 + eΔ) (8)

where Δ=E{ln γ1}= E{ln(X1/(εPPY1+1))}, and the closed-
form expression for Δ is derived as (9), shown at the bottom
of the page. In (9), ψ(·) is the digamma function [24], Ei(·) is

Δ =ψ(NS) + ln IPβS − FZ1

(
IP
PS

)
ln

IP
PS

+

K∑
k=1

(−1)k+1

k!

K∑
n1=1

· · ·
K∑

nk=1︸ ︷︷ ︸
|n1

⋃
···
⋃

nk|=k

[
Ei

(
−αSIP

PS

)
− e−αSIP/PS ln

IP
PS

]

−
ρ(A)∑
j=1

θj(A)∑
h=1

χj,h(A)
μ−h
j

(
μj

βP

)−(NP−h)/2

(h−1)!(NP−1)!(βP)
NP

(εPP)
−(NP+h)/2G4,1

2,4

[
(εPPβPμj)

−1

∣∣∣∣ −1− νh,2,−νh,2
− νh,1

2 ,
νh,1

2 ,−1− νh,2,−1− νh,2

]
(9)
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the exponential integral function [13, (8.211.1)], νh,1 = NP −

h, νh,2 = (NP + h)/2− 1, and Gm,n
p,q

[
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

]
de-

notes the Meijer G function [13, (9.301)].
Proof: The proof for (9) is provided in Appendix B. �

For large NS, ψ(NS) ≈ lnNS [15]; thus, we get a tight ap-
proximation for the average achievable rate, which is given by

R̄1
L ≈ log2(1 +NSeΔ̃)

≈ log2 NS + Δ̃log2e (10)

where Δ̃ = Δ− ψ(NS). From (10), we find that the average
achievable rate scales as log2 NS. Accordingly, the performance
difference for different numbers of antennas at the SBS can be
easily evaluated using (10).

IV. MASSIVE MIMO ANALYSIS

Here, we examine the asymptotic performance of the sys-
tem where the PBS and the SBS are equipped with massive
antenna arrays. Some interesting insights will be presented. For
simplicity, we consider the case where the large-scale fading
effect is neglected, i.e., αSk = αPk = βS = βP = 1, ∀ k.1 Under
this assumption and from Proposition 1, the receive SINR at the
SU is rewritten as

γ1
d∼
min

{
IP
Z1

, PS

}
Z2

1
KNP

PPY1 + 1
. (11)

A. Effects of Massive MIMO at Primary Systems on
Secondary Network

In this part, we analyze the effects of using massive antenna
arrays at the primary network on the secondary network.

1) K and NS Are Fixed and NP → ∞: Intuitively, with a
massive array, the PBS can focus its emitted energy into the
spatial directions where the PUs are located. At the same time,
the PBS can purposefully avoid transmitting into directions
where the SU is located, and hence, the interference from the
PBS is bounded as NP → ∞. More precisely, by using the law
of large numbers, we have

1

KNP
PPY1 =

PP
K

‖hP‖2
NP

K∑
k=1

|Υk|2
d→ PP

K

K∑
k=1

|Υk|2. (12)

As a result, the receive SINR at the SU converges to a nonzero
value when the number of PBS antennas goes to infinity, i.e.,

γ1
d→

min
{

IP
Z1

, PS

}
Z2

PP
K

∑K
k=1 |Υk|2 + 1

. (13)

1Same insights shown here can be obtained for the case where the large-scale
fading is taken into account.

In this case, a tight lower bound on the average achievable rate
is R̄L→log2(1 + eΔ1), where

Δ1 =ψ(NS) + lnPS +

K∑
k=1

(
K

k

)
(−1)k+1Ei

(
−kIP

PS

)

−
K−1∑
j=0

(−1)K−j−2

(K − 1− j)!

(
K

PP

)K−1−j

eK/PPEi(−K/PP)

−
K−1∑
j=0

(−K/PP)
K−1−j

(K − 1− j)!

K−1−j∑
m=1

(m− 1)!(−K/PP)
−m.

(14)

The proof for (14) is provided in Appendix C. From (14),
we find that adding more number of PBS antennas on the
SU’s average achievable rate has no impact on the average
achievable rate.

We next present the large-system analysis, in order to exam-
ine the effect of large number of PUs on the performance of the
secondary link.

2) NS and κ1 = NP/K Are Fixed and NP → ∞: This case
corresponds to the scenario where the number of PBS antennas
is large but may not be much greater than the number of PUs.
When K is large, the SBS transmit power has to be reduced
such that the received interference at all the PUs is smaller than
a given threshold IP. Thus, the performance of the secondary
link is significantly degraded when K is large. This observation
is confirmed by the following analysis.

Since Z1 is the maximum of K independent and identi-
cally distributed (i.i.d.) exponential RVs, the distribution of Z1

is asymptotically normal, as K → ∞. More precisely, from
[16, Proposition 1], as K → ∞, we have

Z1
d→ 1 + lnK + Z̄1 (15)

where Z̄1 ∼ N (0, 2). By using (15) together with the law of
large numbers, we obtain

γ1 → 0, as NP → ∞, NP/K = κ1. (16)

The performance of the secondary link is affected by the
number of PUs via the interference and the constraint on the
transmit power of the SBS. As we can see from (16), when
K grows large, the power constraint effect causes a significant
degradation on the secondary system performance. In this case,
the SBS cannot be permitted to share the spectrum and transmit
the signal to the SU.

3) κ1 = NP/K and κ2 = NS/ lnK Are Fixed and NP →
∞: As discussed in the previous case, when the number of PBS
antennas and the number of PUs go to infinity, the receive SINR
at the SU converges to zero. One possible way to overcome this
problem is adding more SBS antennas. An interesting question
is: how many antennas do we need at the SBS? From (15), we
can see that Z1 scales as lnK , as K is large, whereas Z2 in
(11) scales as NS. Therefore, when the number of PUs grows
large, the number of SBS antennas has to grow with the same
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speed as lnK . As NP → ∞ together with fixed κ1 = NP/K
and κ2 = NS/ lnK , we have

γ1
d∼

min
{

IP
Z1

, PS

}
Z2

PP
‖hP‖2
NP

∑
K

k=1
|Υk |2

K +1

=
min

{
IP lnK
Z1

, PS lnK
}

NS

lnK
Z2

NS

PP
‖hP‖2
NP

∑
K

k=1
|Υk |2

K + 1

d→
min

{
IP lnK

1+lnK+Z̄1
, PS lnK

}
NS

lnK

PP + 1
≈ IPκ2

PP + 1
(17)

where the convergence follows from (15) together with the law
of large numbers. We can see that, by using a massive array at
the SBS (NS ∝ lnK), the receive SINR at the SU converges to
a nonzero value. Furthermore, by increasing κ2 (or increasing
NS), we can achieve an arbitrary quality-of-service (QoS) for
the secondary link. In this case, the average achievable rate is
R̄ = log2(1 + (IPk2/(PP + 1))).

B. Power Efficiency

Here, we examine the potential of massive MIMO to reduce
the transmit power. By using massive antenna arrays at the PBS,
we can reduce the transmit power PP proportionally to 1/NP,
while maintaining a desired QoS for all the PUs [17]. Using a
very low transmit power at the PBS is an interesting operating
point of the massive primary systems. Here, we consider the
potential for power savings in the secondary network where the
SBS operates in the very low transmit power regimes.

Define PP � EP/NP and PS � ES/NS and assume that EP

and ES are fixed regardless of NP and NS. Again, by using (11)
and the law of large numbers, as NP and NS go to infinity, we
obtain

γ1 → ES. (18)

This implies that, by using massive antenna arrays at the PBS
and the SBS, we can cut the transmit power of the PBS
and the SBS proportionally to 1/NP and 1/NS,2 respectively,
while maintaining a given QoS. For this case, the secondary
network’s performance is equivalent to a single-input–single-
output AWGN channel with no interference and transmit
power ES.

C. Imperfect CSI Knowledge

In realistic scenarios, the imperfect knowledge of the inter-
fering channel from the SBS to the PUs poses challenges to
the underlay cognitive network. The interference impinged on
the PU may exceed the maximal peak interference level IP
during the SBS transmissions. Different from [10], where the
PU and the SU are single-antenna nodes, we extend this line of
work to a network consisting of multiple PUs and multiantenna
PBS and SBS. Due to the independence of the channel vector
from the PBS to the SU with the PBS’s precoding matrix, the
impact of the primary network transmission on the SU is not
changeable regardless of perfect or imperfect CSI at the PBS.

2Here, we have ignored the increase of the circuit power consumption due to
more antennas, as in [17]. The investigation of circuit power consumption with
massive MIMO is found in [18].

For simplicity, we assume that perfect CSI is available at the
PBS. We show that the accuracy of CSI of the channel between
the SBS and the PUs, as well as the channel between the SBS
and the SU, can be relaxed as NS grows large. Here, we will
show that using massive MIMO can alleviate the adverse effect
of imperfect CSI knowledge.

Imperfect CSI of the channel between the SBS and the kth
PU can be modeled as [19]

gk = δSkĝk +

(√
1− (δSk)

2

)
ek (19)

where gk ∼ CN 1×NS(01×NS , INS) is the true channel vector,
ĝk ∼ CN 1×NS(01×NS , INS) is the channel estimate available at
the SBS, and ek ∼ CN 1×NS(01×NS , INS) is an i.i.d. Gaussian
noise term. The correlation coefficient δSk measures the ac-
curacy of the channel estimation, i.e., δSk = 1 corresponds to
perfect CSI, δSk = 0 corresponds to no CSI knowledge, and
δSk ∈ (0, 1) represents partial CSI.3 Likewise, imperfect CSI
about the channel between the SBS and the SU is

gS = σĝS + (
√
1− σ2)eS (20)

where gS ∼ CN 1×NS(01×NS , INS) is the true channel vector,
ĝS ∼ CN 1×NS(01×NS , INS) is the channel estimate, and eS ∼
CN 1×NS(01×NS , INS) is an i.i.d. Gaussian noise term. The
parameter σ (0 ≤ σ ≤ 1) is the correlation coefficient. Similar
to [10] and [19], we assume that the correlation coefficient is a
constant value.

We still consider the MRT beamforming at the SBS.4 The
interference power at the kth PU is written as

Ptλ
S
k = min

{
IP

Ẑ1

, PS

}
λSk (21)

where λSk= |gk(ĝ
†
S/‖ĝ†

S‖)|2, and Ẑ1=max
k

{|ĝk(ĝ
†
S/‖ĝ†

S‖)|2}.

The receive SINR at the SU becomes

γ1 =
min

{
IP
Ẑ1

, PS

}
σ2
∥∥∥ĝ†

S

∥∥∥2
1

KNP
PPY1 + (1− σ2)min

{
IP
Ẑ1

, PS

}
ĝSE{e†

SeS}ĝ†
S

‖ĝ†
S‖2 + 1

=
σ2 min

{
IP
Ẑ1

, PS

}∥∥∥ĝ†
S

∥∥∥2
1

KNP
PPY1 + (1− σ2)min

{
IP
Ẑ1

, PS

}
+ 1

. (22)

We next show the benefits of massive antenna arrays at the
secondary network with imperfect CSI knowledge. To this end,
two important cases are examined as follows.

1) NS → ∞ and K and NP Are Fixed: This case corre-
sponds to the scenario where massive antenna arrays are only
used at the secondary network.

We first examine the interference leakage probability. An
interference leakage is declared when the interference power
at the kth PU is larger than the peak allowable interference

3As mentioned in [19], the correlation coefficient can be extended to an
arbitrary function of the system parameters.

4The linear transmission scheme can achieve the optimality with large arrays
[20], [21].
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power Ip. Based on (21), the interference leakage probability
is upper bounded as

Pr
(
Ptλ

S
k > Ip

)
= Pr

(
min

{
IP

Ẑ1

, PS

}
λSk > Ip

)

< Pr
(
PSλ

S
k > Ip

)
= e−

Ip
PS . (23)

Here, λSk follows the exponential distribution with unit mean,
as suggested in Appendix A. From (23), we find that reducing
the SBS’s transmit power can decrease the interference leakage
probability. For low transmit power of PS → 0, Pr(PtλSk >
Ip) → 0, which implies that an arbitrary small value of the
interference leakage probability can be achieved.

In the secondary network, the receive SINR at the SU given
in (22) becomes

γ1
d→

σ2 min
{

IP
Ẑ1

, PS

}
NS

1
KNP

PPY1 + (1− σ2)min
{

IP
Ẑ1

, PS

}
+ 1

. (24)

Based on (24), the average achievable rate is R̄L→log2(1 +
eΔ2), where Δ2 is provided in Appendix D.

For low transmit power of PS → 0, the receive SINR at the
SU in (24) reduces to

γ1
d→ σ2PSNS

1
KNP

PPY1 + (1− σ2)PS + 1
. (25)

In (25), the interference term (1− σ2)PS resulting from
channel estimation error can be arbitrarily small, as PS → 0.
Based on (25), the average achievable rate reduces to

R̄L → log2(1 + eΔ3) (26)

where Δ3=lnNS+ln[σ2PS/(1+(1−σ2)PS)]−((�1)
−(NP+K)/2/

(NP − 1)!(K − 1)!)G4,1
2,4[(�1)

−1|−1−�3,−�3

−(�2/2),�2/2,−1−�3,−1−�3
],

with �1 = (PP/KNP)/(1 + (1− σ2)PS), �2 = NP −K ,
and �3 = (NP +K)/2− 1.

Remark 1: It is shown from (24) and (25) that the receive
SINR at the SU is proportional to NS under imperfect CSI,
which, in turn, implies that we can still cut the transmit power
at the SBS proportionally to 1/NS, while maintaining a given
QoS. In addition, reducing the SBS’s transmit power can reduce
the interference term (1− σ2)min{IP/Ẑ1, PS}, which results
from the imperfect channel estimation.

Remark 2: Based on Remark 1, (23), and (25), reducing the
SBS’s transmit power proportionally to 1/NS reduces the inter-
ference leakage probability. Therefore, the detrimental effect of
imperfect CSI in cognitive radio networks can be significantly
mitigated when the SBS is equipped with large antenna arrays.

2) κ1 = NP/K and κ2 = NS/ lnK Are Fixed and NP →
∞: The significance of this case has been mentioned
in Sections IV-A2 and IV-A3. In this case, we have
min{IP/Z1, PS}→(IP/lnK) (as illustrated in Section IV-A3);
hence, PtλSk → (IPλ

S
k/ lnK). The interference leakage proba-

bility becomes

Pr
(
Ptλ

S
k > Ip

)
→ Pr

(
IPλ

S
k

lnK
> Ip

)
= e− lnK . (27)

Fig. 2. Average achievable rate versus PS for NP = 16, K = 5, IP = 10 dB,
PP = 15 dB.

Based on (27), we find that an arbitrary small value of interfer-
ence leakage probability can be achieved, when the number of
PBS antennas goes to infinity.

With the assistance of (17) and (24), the receive SINR at the
SU becomes

γ1
d→ σ2 IP

lnKNS

PP + (1− σ2) IP
lnK + 1

≈ σ2IPNS

(PP + 1) lnK
. (28)

It is indicated from (28) that the detrimental effect of imperfect
CSI at the SBS vanishes when the number of SBS antennas
grows large. In this case, the average achievable rate is
R̄→ log2(1 + (σ2IPNS/(PP + 1) lnK).

V. NUMERICAL RESULTS

Here, numerical results are presented to verify our analysis.
We first consider a practical scenario that different links may
have different large-scale fading coefficients. This setting en-
ables us to validate the expression for the average achievable
rate. We also show the accuracy of our massive MIMO analysis.
We focus on the average achievable rate in the secondary
network.

Fig. 2 plots the average achievable rate versus the SBS’s
maximum transmit power PS for different numbers of anten-
nas at the SBS. The large-scale fading coefficients are set
as βS = βP = 1, [αP1 , α

P
2, α

P
3 , α

P
4, α

P
5] = [0.5, 0.7, 1, 0.65, 0.6],

and [αS1 , α
S
2, α

S
3, α

S
4 , α

S
5] = [0.8, 1, 0.6, 0.7, 0.4]. The analytical

curves for the lower bound of the average achievable rate
are obtained from (8), which are tightly matched to the exact
Monte Carlo simulations. As suggested, the average achievable
rate increases with increasing number of antennas at the SBS.
Due to the interference constraint, there exist rate ceilings at
high signal-to-noise ratio (SNR).
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Fig. 3. Average achievable rate versus NP for K = 6, IP = 10 dB, PP =
10 dB, PS = 10 dB.

Fig. 4. Average achievable rate versus NP for κ1 = 5, IP = 10 dB,
PP = 10 dB, PS = 15 dB.

Fig. 3 plots the average achievable rate for the case that K
and NS are fixed and NP → ∞ in Section IV-A1. The analytical
and Monte Carlo simulated curves for the lower bound of
average achievable rate are obtained based on (13). Our asymp-
totic analysis for large NP is in a strong agreement with the
exact Monte Carlo simulation. As mentioned in Section IV-A1,
increasing number of antennas at the PBS has negligible effect
on the average achievable rate. The average achievable rate
increases with increasing number of SBS antennas.

Fig. 4 plots the average achievable rate for the case that
κ1 = NP/K and κ2 = NS/ lnK are fixed and NP → ∞ in
Section IV-A3. The asymptotic analytical curves are obtained
based on (17). Our asymptotic analysis can well predict the per-
formance behavior. As suggested in Section IV-A3, increasing
the number of PBS antennas has negligible effect on the average

Fig. 5. Average achievable rate versus NS for K = 6, NP = 64, IP = 10 dB,
PP = 10 dB.

Fig. 6. Average achievable rate versus NP for κ1 = 5, IP = 10 dB,
PP = 10 dB, PS = 10 dB.

achievable rate. The average achievable rate is improved by
increasing κ2 (increasing NS).

Fig. 5 plots the average achievable rate with imperfect
CSI for the case that NS → ∞ and K and NP are fixed in
Section IV-C1. The channel estimation accuracy coefficients
are assumed to be δS1 = · · · = δSK = σ. The analytical curves
for approximate average achievable rate are obtained from (26).
Our approximate analysis has a tight match with the exact
Monte Carlo simulations, particularly in the low-SNR regime.
As predicted, the accuracy of channel estimation has a big effect
on the average achievable rate. The average achievable rate
improves with increasing NS. Due to the large array gain, the
transmit power can be saved, and the channel estimation accu-
racy can be alleviated for a given average achievable rate value.
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Fig. 6 plots the average achievable rate with imperfect CSI
for the case that κ1 = NP/K and κ2 = NS/ lnK are fixed
and NP → ∞ in Section IV-C2. The channel estimation accu-
racy coefficients are assumed to be δS1 = · · · = δSK = σ. The
asymptotic analytical curves are obtained based on (28). Our
asymptotic analysis can well predict the average achievable
rate. It is observed that the exact Monte Carlo simulations
slowly converge to the asymptotic results with increasing
NP. The average achievable rate decreases with lowering the
channel estimation accuracy and improves with increasing κ2

(increasing NS).

VI. CONCLUSION

In this paper, we have considered the application of massive
MIMO in spectrum sharing networks. We first derived a tight
lower bound of the average achievable rate, which can be used
to measure the performance for any finite numbers of antennas.
We then presented the asymptotic analysis for massive antenna
arrays at the PBS and the SBS. In particular, we analyzed the
impact of large number of PUs on the secondary networks.
The impact of imperfect CSI in the secondary network was
also examined. Based on our analysis, we clearly established
the importance of using massive MIMO in the future spectrum
sharing networks for 5G. For future work, the adoption of the
peak interference level in massive MIMO spectrum sharing
networks would be of interest.

APPENDIX A
PROOF OF PROPOSITION 1

We first derive the PDF of X1. Conditioned on gS,
gk(g

†
S/‖g†

S‖) is a complex Gaussian RV with zero mean and
variance αSk. Since the PDF of a complex Gaussian RV is fully
described via its first and second moments, gk(g

†
S/‖g†

S‖) is a
complex Gaussian RV, which is independent of gS. As such,
the cumulative density function (CDF) of Z1 is

FZ1
(x) = Pr

⎛
⎝max

k

⎧⎨
⎩
∣∣∣∣∣∣gk

g†
S∥∥∥g†
S

∥∥∥
∣∣∣∣∣∣
2⎫⎬
⎭ < x

⎞
⎠

=
K∏

k=1

(
1− e−x/αS

k

)

=1 +

K∑
k=1

(−1)k

k!

K∑
n1=1

· · ·
K∑

nk=1︸ ︷︷ ︸
|n1

⋃
···
⋃

nk|=k

e−αSx. (29)

Taking the derivative of (29), we obtain the PDF of Z1 as

fZ1
(x) =

K∑
k=1

(−1)k+1

k!

K∑
n1=1

· · ·
K∑

nk=1︸ ︷︷ ︸
|n1

⋃
···
⋃

nk|=k

αSe−αSx. (30)

In addition, the PDF of Z2 is given by [22]

fZ2
(x) =

xNS−1e−x/βS

(NS − 1)!(βS)
NS

. (31)

The CDF of X1 is expressed as

FX1
(x) = Pr

{
min

(
IP
Z1

, PS

)
Z2 < x

}

= Pr

{
Z2 <

x

PS
, Z1 <

IP
PS

}
︸ ︷︷ ︸

J1

+ Pr

{
Z2

Z1
<

x

IP
, Z1 ≥ IP

PS

}
︸ ︷︷ ︸

J2

. (32)

Noting that Z1 and Z2 are independent, it is easy to see that

J1 = FZ2

(
x

PS

)
FZ1

(
IP
PS

)
(33)

where FZ2
(x) is the CDF of Z2. In addition, J2 is derived as

J2 =

∞∫
IP
PS

FZ2

(
xt

IP

)
fZ1

(t)dt. (34)

Based on (32), the PDF of X1 is

fX1
(x) =

∂J1
∂x

+
∂J2
∂x

. (35)

From (33), we obtain

∂J1
∂x

=
1

PS
fZ2

(
x

PS

)
FZ1

(
IP
PS

)
. (36)

Substituting (31) into (36), we obtain

∂J1
∂x

= FZ1

(
IP
PS

)
xNS−1e−

x
PSβS

(NS − 1)!(PSβS)
NS

. (37)

From (34), we observe that

∂J2
∂x

=

∞∫
IP
PS

t

IP
fZ2

(
xt

IP

)
fZ1

(t)dt. (38)

Plugging (30) and (31) into (38), after some algebraic manipu-
lations, we obtain

∂J2
∂x

=
K∑

k=1

(−1)k+1

k!

K∑
n1=1

· · ·
K∑

nk=1︸ ︷︷ ︸
|n1

⋃
···
⋃

nk|=k

αS
xNS−1

(NS − 1)!(IPβS)NS

×
∞∫

IP
PS

tNSe−(
x

IPβS
+αS)tdt

=

K∑
k=1

(−1)k+1

k!

K∑
n1=1

· · ·
K∑

nk=1︸ ︷︷ ︸
|n1

⋃
···
⋃

nk|=k

αS
xNS−1

(
x

IPβS
+αS

)−(NS+1)

(NS − 1)!(IPβS)
NS

× Γ

(
NS + 1,

x

PSβS
+

IPα
S

PS

)
. (39)

Based on (35), (37), and (39), we obtain the desired expres-
sion for the PDF of X1 as (6).
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We next derive the PDF of Y1. Y1 can be rewritten as Y1 =
ξ1ξ2, where ξ1 = ‖hP‖2, and ξ2 =

∑K
k=1 |Υk|2, with Υk =

(hP/‖hP‖)h†
k. We see that Υk is a complex Gaussian RV with

zero mean and variance αPk, which is independent of hP. The
PDF of ξ1 is given by

fξ1(x) =
xNP−1e−x/βP

(NP − 1)!(βP)
NP

(40)

and the PDF of ξ2 is given by [23]

fξ2(x) =

ρ(A)∑
j=1

θj(A)∑
h=1

χj,h(A)
μ−h
j

(h− 1)!
xh−1e

− x
μj . (41)

Since ξ1 and ξ2 are independent, the CDF of Y1 is written as

FY1
(x) = Pr(ξ1ξ2 < x)

=

∞∫
0

Fξ1

(x
t

)
fξ2(t)dt. (42)

Taking the derivative of FY1
(x) in (7), we obtain the PDF of

Y1 as

fY1
(x) =

∞∫
0

1

t
fξ1

(x
t

)
fξ2(t)dt

=

ρ(A)∑
j=1

θj(A)∑
h=1

χj,h(A)
μ−h
j xNP−1

(h− 1)!(NP − 1)!(βP)
NP

×
∞∫
0

1

tNP−h+1
e−x/tβPe

− t
μj dt. (43)

After calculating the integral, we obtain (7).

APPENDIX B
DETAILED DERIVATION OF (9)

From (8), we calculate Δ as

Δ = E{lnX1} − E {ln(εPPY1 + 1)} . (44)

In (44), E{lnX1} is derived as

E{lnX1} =

∞∫
0

lnxfX1
(x)dx

=FZ1

(
IP
PS

)
1

(NS−1)!(PSβS)NS

∞∫
0

xNS−1e−
x

PSβS lnxdx

︸ ︷︷ ︸
Ξ1

+

K∑
k=1

(−1)k+1

k!

K∑
n1=1

· · ·
K∑

nk=1︸ ︷︷ ︸
|n1

⋃
···
⋃

nk|=k

αS

(NS−1)!(IPβS)
NS

×
∞∫
0

xNS−1

(
x

IPβS
+ αS

)−(NS+1)

× Γ

(
NS + 1,

x

PSβS
+

IPα
S

PS

)
lnxdx

︸ ︷︷ ︸
Ξ2

. (45)

Using
∫∞
0 xv−1e−μx lnxdx = μ−vΓ(v)(ψ(v) − lnμ) [13,

(4.352.1)], Ξ1 is calculated as

Ξ1 = (PSβS)
NS(NS − 1)! (ψ(NS) + lnPSβS) . (46)

Changing the order of integration and using [13, (4.352.1)],
after some manipulations, Ξ2 is evaluated as

Ξ2 =

∞∫
0

xNS−1 lnx

∞∫
IP
PS

tNSe−(
x

IPβS
+αS)tdtdx

=

∞∫
IP
PS

tNSe−αSt

∞∫
0

e−
x

IPβS
txNS−1 lnxdxdt

=(IPβS)
NS

(NS − 1)!

αS

[
(ψ(NS) + ln IPβS) e

−αSIP/PS

−e−αSIP/PS ln
IP
PS

+Ei

(
−αSIP

PS

)]
.

(47)

Substituting (46) and (47) into (45), after some manipula-
tions, we obtain

E{lnX1} =ψ(NS) + ln IPβS − FZ1

(
IP
PS

)
ln

IP
PS

+
K∑

k=1

(−1)k+1

k!

K∑
n1=1

· · ·
K∑

nk=1︸ ︷︷ ︸
|n1

⋃
···
⋃

nk|=k[
Ei

(
−αSIP

PS

)
− e−αSIP/PS ln

IP
PS

]
. (48)

In addition, E{ln(εPPY1 + 1)} is derived as

E {ln(εPPY1 + 1)}

=

∞∫
0

ln (εPPx+ 1) fY1
(x)dx

=

ρ(A)∑
j=1

θj(A)∑
h=1

χj,h(A)
2μ−h

j

(
μj

βP

)−(NP−h)/2

(h− 1)!(NP − 1)!(βP)
NP

×
∞∫
0

x(NP+h)/2−1 ln(εPPx+ 1)KNP−h

(
2

√
x

βPμj

)
dx

=

ρ(A)∑
j=1

θj(A)∑
h=1

χj,h(A)
μ−h
j

(
μj

βP

)−(NP−h)/2

(h−1)!(NP−1)!(βP)
NP

(εPP)
−(NP+h)/2

×G4,1
2,4

[
(εPPβPμj)

−1

∣∣∣∣ −1− νh,2,−νh,2
− νh,1

2 ,
νh,1

2 ,−1−νh,2,−1−νh,2

]
.

(49)

Substituting (48) and (49) into (44), we obtain Δ in (9).
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APPENDIX C
DETAILED DERIVATION OF (14)

We derive the tight lower bound of the average achiev-
able rate when K and NS are fixed and the large-scale
fading effect is neglected and NP → ∞. Noting that X1 =
min{IP/Z1, PS}Z2 and ξ2 =

∑K
k=1 |Υk|2, the tight lower

bound of the average achievable rate is given by R̄L =
log2(1+ eΔ1), with Δ1 = E{lnX1}− E{ln((PP/K)ξ2+1)}.
In this case, E{lnX1} in (48) reduces to

E{lnX1}=ψ(NS)+lnPS +

K∑
k=1

(
K

k

)
(−1)k+1Ei

(
−kIP

PS

)
.

(50)

In addition, the PDF of ξ2 in (41) reduces to

fξ2(x) =
xK−1e−x

(K − 1)!
. (51)

E{ln((PP/K)ξ2 + 1)} is derived as

E

{
ln

(
PP
K

ξ2 + 1

)}
=

∞∫
0

ln

(
PP
K

x+ 1

)
fξ2(x)dx. (52)

By employing [13, (4.337.5)], we calculate (52) as

E

{
ln

(
PP
K

ξ2 + 1

)}

=
K−1∑
j=0

(−1)K−j−2

(K − 1− j)!

(
K

PP

)K−1−j

e
K
PP Ei(−K/PP)

+

K−1∑
j=0

(−K/PP)
K−1−j

(K − 1− j)!

K−1−j∑
m=1

(m− 1)!(−K/PP)
−m.

(53)

Based on (50) and (53), Δ1 is derived as (14).

APPENDIX D
DETAILED DERIVATION OF Δ2

As suggested in Appendix C, Δ2 = E{lnX1} − E{lnX2},
whereX1=σ2 min{IP/Ẑ1, PS}NS, andX2=(1/KNP)PPY1+
(1− σ2)min{IP/Ẑ1, PS}+ 1. We first calculate E{lnX1} as

E{lnX1} = ln(σ2NS) +

∞∫
0

ln

(
min

{
IP
x
, PS

})
fẐ1

(x)dx

= ln(σ2NS) + ln(PS)

IP
PS∫
0

fẐ1
(x)dx

+

∞∫
IP
PS

ln

(
IP
x

)
fẐ1

(x)dx

= ln(σ2NS) + ln

(
PS
IP

)
FẐ1

(
IP
PS

)
+ ln(IP)

−
∞∫

IP
PS

ln(x)fẐ1
(x)dx. (54)

Note that FẐ1
(x)=(1−e−x)K and fẐ1

(x)=
∑K

k=1

(
K
k

)
k(−1)k+1e−kx. Substituting them into (54) yields

E{lnX1} = ln(σ2NSIP) + ln

(
PS
IP

)
(1− e−IP/PS)

K

+
K∑

k=1

(
K

k

)
(−1)k+1

(
−e−(

IP
PS
) ln

(
IP
PS

)
+ Ei(−kIP/PS)

)
.

(55)

We next derive E{lnX2} as

E{lnX2}

=EY1

{
EẐ1

{
ln

(
1

KNP
PPY1+(1−σ2)min

{
IP

Ẑ1

, PS

}
+1

)}}

= EY1

⎧⎨
⎩

∞∫
0

ln

(
1

KNP
PPY1 + (1 − σ2)min

{
IP
x
, PS

}
+ 1

)

×fẐ1
(x)dx

⎫⎬
⎭

= FẐ1

(
IP
PS

)

×
∞∫
0

ln

(
1

KNP
PPy + 1 + (1− σ2)PS

)
fY1

(y)dy

+

∞∫
0

∞∫
IP
PS

ln

(
1

KNP
PPy+1+(1−σ2)

IP
x

)
fẐ1

(x)fY1
(y)dxdy

(56)

where fY1
(y) is the PDF of Y1, which is given by

fY1
(y) =

∞∫
0

1

t
fΥ1

(y
t

)
fξ2(t)dt

=
2y(NP+K)/2−1KNP−K(2

√
y)

(NP − 1)!(K − 1)!
. (57)

Based on (55) and (56), Δ2 can be obtained.
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