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Abstract 

This paper introduces a novel methodology based on disaggregate analysis of two-car crash 

data to estimate the partial effects of mass, through the velocity change, on absolute driver 

injury risk in each of the vehicles involved in the crash when absolute injury risk is defined as 

the probability of injury when the vehicle is involved in a two-car crash. The novel aspect of 

the introduced methodology is in providing a solution to the issue of lack of data on the speed 

of vehicles prior to the crash, which is required to calculate the velocity change, as well as a 

solution to the issue of lack of information on non-injury two-car crashes in national accident 

data. These issues have often led to focusing on relative measures of injury risk that are not 

independent of risk in the colliding cars. Furthermore, the introduced methodology is used to 

investigate whether there is any effect of vehicle size above and beyond that of mass ratio, 
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and whether there are any effects associated with the gender and age of the drivers. The 

methodology was used to analyse two-car crashes to investigate the partial effects of vehicle 

mass and size on absolute driver injury risk. The results confirmed that in a two-car collision, 

vehicle mass has a protective effect on its own driver injury risk and an aggressive effect on 

the driver injury risk of the colliding vehicle. The results also confirmed that there is a 

protective effect of vehicle size above and beyond that of vehicle mass for frontal and front to 

side collisions. 

 

Keywords: Two-car collision, driver injury risk, secondary safety, vehicle mass, velocity 

change 

  



1. Background 

Amongst various vehicle design features, vehicle mass is a key variable from a policy 

perspective because of its effect on fuel consumption and emissions on the one hand, and its 

effect on safety performance of vehicles within the fleet on the other hand. A decrease in 

mass of the vehicles within the fleet is associated with a decrease in overall fuel consumption 

and emissions (Tolouei and Titheridge, 2009); however, the effect of vehicle mass on safety 

is more complicated. While it is generally accepted that decreasing the mass of a vehicle, all 

other factors being constant, imposes a greater risk of injury to its occupants when the vehicle 

is involved in a crash, it is not clear what effect a change in the distribution of vehicles’ mass 

within a fleet has on the overall safety of the fleet. This is mainly due to the uncertainty on 

the combined effect of mass of a vehicle on the safety performance of that vehicle as well as 

that on the safety performance of the other vehicles with which the vehicle collides.  

There are two distinct aspects of the safety performance of a vehicle in a fleet: primary safety 

performance, which is linked to the risk of crash involvement of the vehicle, and secondary 

safety performance, which is linked to the risk of occupant injury (to a specific level) when 

the vehicle is involved in a particular type of crash. While there is no evidence of any direct 

effect of vehicle mass on the primary safety performance of a vehicle, mass is a key variable 

that is directly related to the secondary safety performance of the vehicle. In a two-vehicle 

crash, the injury risk of occupants in the lighter vehicle tends to be higher than that in the 

heavier vehicle due to the greater velocity change during the collision. In the case of a frontal 

collision, for example, between two vehicles with masses 
1m  and 

2m  travelling with speeds 

1v  and 
2v , it can be easily shown using Newtonian mechanics that the velocity change of the 

first vehicle during the collision (   ) depends on the proportion of the total mass contained 

by the other vehicle  
  

     
  and the closing speed        : 

      
  

     
         .       (1) 

There are therefore two aspects of the effects of mass of a subject vehicle on its secondary 

safety performance in a crash with another vehicle: a protective effect related to the injury 

risk (injury probability) of the occupants in the subject vehicle, and an aggressive effect 

related to the injury risk that mass imposes on the occupants of the other vehicles in collision 

with the subject vehicle. In order to investigate the relationship between vehicle mass and 

secondary safety performance, two-car crashes have been studied intensively in vehicle safety 



research. This is because they form a case for vehicle crashes where both protective and 

aggressive effects of mass are best represented since the closing speed is identical for both 

drivers in the crash. Two-car crashes can also provide insight into crashes between any pair 

of vehicles and also into single-vehicle crashes (Evans, 1994). However, there are certain 

disadvantages or shortcomings associated with the methodologies used so far. 

In a two-car crash, Equation 1 implies that the relative mass of the two cars directly 

influences the velocity change (Δv). Δv has been regarded and used in vehicle safety research 

as the best measure of crash severity contributing to the injury risk of vehicle occupants 

(Evans, 1994). The main difficulty in investigating the relationship between injury risk and 

Δv is lack of information on the speed of the vehicles prior to a crash, which is required 

together with mass of the vehicles to calculate Δv (see Equation 1).  

Equation 1 implies that in a two-car crash, the velocity change ratio is inversely related to the 

mass ratio of the cars (
   

   
  

  
  

 ). As a result of this relationship and lack of data on 

vehicle speed, several studies have investigated the relative injury risk in two-car crashes as a 

function of mass ratio. Evans (2004) has intensively studied the effect of vehicle mass in two-

car crashes using 1978-1998 US crash fatality data and he has shown empirically that in a 

crash between two cars of different masses, the fatality risk ratio ( ) of the lighter to the 

heavier car increases as a power function of mass ratio (  
  

  
 ) of the heavier to the 

lighter car (Evans and Frick, 1993): 

     .         (2) 

The value of parameter   for a given set of two-car crashes is estimated by aggregating the 

crash data into categories associated with values of µ in given ranges and estimating a least 

square fit to                   where    and    for each crash category k are the ratio 

of driver fatalities of the lighter cars to the heavier cars and the average mass ratio, 

respectively. Equation 2, which is regarded by Evans (2004) as the “first law of two-car 

crashes”, has been commonly accepted and used by the researchers and practitioners in the 

area of vehicle safety. Different values of exponent   for various sets of US crash data are 

estimated ranging from 2.70 (crashes in all directions) to 3.80 (frontal crashes) (Evans and 

Frick, 1992, Evans and Frick, 1993; Evans, 1994; Evans and Frick, 1994; Evans, 2001, 

Evans, 2004). While Evans’ relationship provides a simple approach to estimate injury and 

fatality risk ratio as a function of mass ratio in two-car crashes, it is associated with some 



disadvantages (see Tolouei, 2011 for details). For example, Evans (1994) shows that the 

underlying assumption behind Equation 2 on the relationship between absolute driver injury 

and fatality risk ( ) and vehicle velocity change (  ) has the following form: 

      
   

 
          (3) 

where   and   are parameters that are estimated from the crash data. As Evans (1994) points 

out, this relationship suffers from a major structural problem that results in values of risk 

greater than 1 when     . Besides, this does not provide the relationship between   and 

mass of vehicles in two-car crashes explicitly. A few other studies have investigated a similar 

relationship to that of Evans (Equation 2) between fatality and injury risk ratio and mass ratio 

in two-car crashes (e.g. Ernst et al., 1991; Ernvall et al., 1992; Joksch, 1998; Ross and 

Wenzel, 2001). These are all empirical studies based on aggregate analysis of crash data 

which have used a similar approach to that of Evans and Frick (1993) as explained earlier. 

Other studies have investigated the relationship between vehicle mass and driver risk of 

injury directly. For example, Broughton (1996a) discussed the effect of vehicle mass on 

injury risk in two-car crashes based on British crash data where injury risk is defined as the 

probability of driver injury when the vehicle is involved in a two-car crash in which at least 

one of the drivers is injured. He found that driver risk falls steadily with increasing mass 

according to a linear relationship and that mass could explain a high proportion of variation 

in the casualty data. This generally reflected the greater protection of drivers in the heavier 

cars compared to that of drivers in the lighter cars in fleet; however, this relationship alone 

does not provide any information on the aggressive effect of vehicle mass in fleet as it does 

not include the mass of the colliding vehicle. Besides, the measure of injury risk that he has 

used is not the ideal measure as it is a relative measure and hence is not independent of risk 

of injury in the colliding car (Broughton, 1996b). Wenzel and Ross (2005) defined risk as the 

driver deaths per year per million registered vehicles for a given car model and all types of 

crashes and found that mass alone is only a modestly effective predictor of risk. The 

difference between their results and those from previous studies on the effect of mass could 

arise because they used a different measure of vehicle safety; one which is a measure of both 

primary safety (crash involvement) and secondary safety (injury risk). 

The ideal measure of secondary safety in two-car crashes is the absolute injury risk defined as 

the probability of driver injury when the vehicle is involved in a crash, whether or not the 

driver in the colliding vehicle is injured. However, the relationship between vehicles’ mass 



and absolute driver injury risk in two-car crashes has remained unclear in the literature. The 

major issue is that absolute driver injury risk cannot be directly estimated from the crash data 

because data on non-injury crashes (crashes in which neither of the drivers are injured) is not 

normally available. Besides, data on the speed of the vehicles prior to the crash, which 

contribute to the injury risk through    (see Equation 1), is not available.  

One other issue which has not been addressed properly in the analysis of injury risk in two-

car crashes is the partial effects of vehicle mass and size. There is generally a high level of 

correlation between vehicle mass and size (vehicle length or wheelbase has been often used 

as a proxy for vehicle size in the literature). Many of the studies that have investigated the 

effect of mass on risk of injury and fatality have not controlled for the effect of vehicle size 

appropriately; therefore, their estimates could contain the effects of vehicle size as well. 

There is evidence in the literature suggesting different effects of mass and size on risk of 

injury and fatality given a crash; however, there are inconsistencies in the results of different 

studies (for example, see Grime and Hutchinson, 1982; Evans and Wasielewski, 1987; 

Broughton, 1999; Ross and Wenzel, 2001; Van Auken and Zellner, 2005). The main 

question, which has remained unclear in the literature, is whether there is any effect of 

vehicle size above and beyond that of mass ratio (Hutchinson and Anderson, 2009). This is of 

particular importance because there is the potential to reduce vehicle mass while maintaining 

its size through various mass-reduction technologies (Wenzel and Ross, 2001). 

The study reported in this paper introduces a novel methodology based on a disaggregate 

analysis of two-car crash data to estimate partial effects of mass, through the velocity change, 

on absolute driver injury risk in each of the vehicles involved in the crash when absolute 

injury risk is defined as the probability of injury when the vehicle is involved in a two-car 

crash. The novel aspect of the introduced methodology is in providing a solution to the issue 

of the lack of data on the speed of vehicles prior to the crash as well as a solution to the issue 

of the lack of information on non-injury two-car crashes in national accident data, which has 

often led to focusing on relative measures of injury risk that are not independent of risk in the 

colliding cars. Furthermore, the introduced methodology is used to investigate whether there 

is any effect of vehicle size above and beyond that of mass ratio, and whether there are any 

effects associated with the gender and age of the drivers.  The methodology is then used to 

analyse two-car collisions to investigate the partial effects of vehicle mass and size on 

absolute driver injury risk. 



2. Methodology 

As was mentioned in the previous section, in the case of a collision between two vehicles, the 

velocity change of the vehicles during the collision (    and    ) are given by:  

      
  

     
           (4) 

      
  

     
   ,        (5) 

where   is the closing speed of the vehicles. In the case of a front to front and front to back 

collision,         and         (     ), respectively. In the case of a front to side 

collision at right angle, it can be shown that      
    

  (see Appendix 1 for more 

details).     and     in Equations 4  and 5 can be rearranged as the following: 

       
 

   
          (6) 

       
 

   
  .        (7) 

In a two-vehicle collision, the probability of injury of the driver of vehicle 1,      , increases 

with closing speed   and with increasing the value of mass ratio   while the probability of 

injury of the driver of vehicle 2,      , increases with closing speed   and with decreasing 

the value of mass ratio  . One of the functional forms having the appropriate properties to 

describe       and      , both of which range between zero and one, is the logistic function;  

this was therefore chosen in this study to describe       and       as 
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and 

       
            

              
 

          
 

   
  

            
 

   
  

 .     (9) 

In these equations,    and     represent the characteristics of the driver (age, gender, etc) and 

the vehicle (dimensions, make, model, etc) that could contribute to the driver injury risk.    

and    can be expressed as the following: 

                                           (10) 

where    denotes the driver number (1 or 2), 



        is a set of driver and vehicle characteristics for vehicle  , and 

        is a set of parameters to be estimated in the model fitting process.  

As can be seen from Equations 8 and 9, the probability of driver injury in each vehicle 

depends on the closing speed  . As mentioned earlier, the main difficulty associated with the 

analysis of injury risk in two-car crashes arises because the vehicles’ speeds immediately 

prior to the crash (   and   ) are not usually observed; therefore, the closing speed   is rarely 

known.  

Suppose      represents the probability distribution of closing speed   that is generally 

characterised by a mean   and a vector   of constant parameters depending on the types of 

distribution (such as standard deviation for the case of normal and log-normal distribution, 

scale and shape for the case of Gamma distribution, etc). Then the overall probabilities of any 

collision resulting in injury of the drivers of vehicles 1 and 2 are: 

               
 

 
        (11) 

and 

               
 

 
 .        (12) 

There are four possible driver injury outcomes of any two-vehicle collision depending on the 

driver injury outcome of each vehicle. Since the probability of injury depends on the closing 

speed  , and   is common to the two vehicles in the collision, the two events of driver 1 and 

driver 2 being injured are jointly dependent. Therefore the four possible injury outcomes are 

in fact joint injury probabilities as shown in Table 1. In this case, we expect that if the driver 

of vehicle 1 is injured, it is more likely that the driver of vehicle 2 is injured too. 

Table 1: Possible joint injury outcomes of a two-vehicle collision 

 Driver 1 not injured Driver 1 injured 

Driver 2 not injured                              

 

 

                          

 

 

 

Driver 2 injured                          

 

 

                      

 

 

 

 

According to Equations 8 to 10, the     are functions of the parameter  , the parameters   

relating to the vehicle and driver characteristics, and the parameters   and   characterising 

the distribution of closing speed     . Since the speeds of the vehicles prior to the collision 



are not observed,   and   are nuisance parameters that will be estimated in the model fitting 

process. 

It is noted that      is the prior distribution of closing speed in two-car crashes. When      

is combined with the probability of injury outcome conditional on v (     ), we get the 

unconditional injury outcomes ij. Bayes’ Theorem can then be used to determine the 

posterior speed distribution; that is, the distribution of speed v, given any of the injury 

outcomes       , where x = 0 or 1 indicates non-injury and injury respectively. In a 

simplified example where there is only one vehicle in the crash, Bayes’ Theorem implies that 

         
               

      
 

        

      
     (13) 

where             is the conditional probability of injury given speed  ,        is the 

combined probability of injury irrespective of speed  , and          is the posterior 

distribution of   given injury (   ). Similarly, the posterior distribution of   given no 

injury (   ) is given by  

         
               

      
 

            

      
       (14) 

The posterior distribution of   in two-car crashes for any injury outcome shown in Table 1 

can be determined in the same way; these will be different for the different cells of the injury 

outcomes matrix. This is shown below using a simple numerical example.  

Suppose that in a two-car collision between two cars of the same mass (   ), the values of 

parameters C1, C2, and β in Equations 8 and 9 are respectively -9, -9, and 0.16. Also, suppose 

that   has a Normal distribution with mean 100 and standard deviation 20. It can be shown 

that the joint injury outcomes in Table 1 will be    =0.51,    =0.16,    =0.16,    =0.17. 

Figure 1 and 2 show, respectively, the prior speed distribution and the posterior speed 

distributions for each injury outcome; these are different distributions with different values of 

the mean.  



 
Figure 1: Prior speed distribution  

 
Figure 2: Posterior speed distributions for different injury outcomes shown in Table 1 

 

The other difficulty in estimating the absolute driver injury risk (   and   ) is the fact that no 

observation is available if there are no injuries (    is unknown). However, the conditional 

driver injury risk, defined as the probability of driver injury in a collision in which there is at 

least one driver injury, can be calculated directly from the observed data. The conditional 

joint injury probabilities are defined as below: 

                                          
   

     
  (15) 

where   for each driver represents the binary injury outcome (0 = no injury, 1 = injury). 

Closing speed   determines the “severity” of the collision (measured by     ) whilst mass 

ratio   determines the “imbalance” between the injuries of the two drivers (measured by  

     ). The three possible conditional joint injury outcomes as defined by Equation 15 are 

shown in Table 2. The observed values of these are available from the crash data. 



Table 2: Conditional joint injury outcomes of a two-vehicle collision 

 Driver 1 not injured Driver 1 injured 

Driver 2 not injured -     
   

     
  

Driver 2 injured     
   

     
      

   
     

  

 

2.1 Maximum likelihood estimation of parameters 

The joint injury probabilities     shown earlier in Table 1 can be formed using Equations 8 to 

12 as a function of unknown parameters ( ,  , m,  ) where a probability density function is 

assumed for closing speed (    ). Having formed    , the three conditional joint injury 

probabilities (   ) shown in Table 2 can be described as functions of these unknown 

parameters: 

    

 
          

 
   

          

             
 

   
                 

 
   

   

 
 

   
       

             
 

   
                 

 
   

   

 
 

     (16) 

    

 
          

 
   

          

             
 

   
                 

 
   

   

 
 

   
       

             
 

   
                 

 
   

   

 
 

     (17) 

    

 
          

 
   

             
 

   
          

             
 

   
                 

 
   

   

 
 

   
       

             
 

   
                 

 
   

   

 
 

  .    (18) 

The unit of observation will be two-car collisions with three possible conditional joint injury 

outcomes. For any values of the parameters the probabilities of the observed conditional joint 

injury outcomes can be calculated for each collision. By combining these over the whole 

dataset, the likelihood function can be calculated as the following. For each observation, 

define, 

     
                       

 0                                  
        (19) 



where   and   show, respectively, the binary injury outcome for the drivers 1 and 2 (i.e. 

     ,      ,      ). The likelihood function over the whole dataset can be calculated 

using the following: 

                 
         

         
      

 
       (20) 

where   denotes the total number of records in the dataset and n refers to the collision 

number in the data set  (n = 1, 2, ... N). An optimisation algorithm can then be applied to find 

the values of the parameters that maximise the logarithm of the likelihood function (log-

likelihood function) shown below: 

                             
                

                
  

   . (21) 

2.2 Probability distribution of closing speed 

As mentioned earlier, a distributional form is required for the closing speed with a given 

probability density function      the parameters of which (   ) will be estimated in the 

model estimation process. In this study, two continuous probability distributions were 

investigated separately to describe the distribution of closing speed. A Normal distribution 

was investigated first because it is a simple well-described distribution which is defined with 

only two parameters (mean and standard deviation). However, the disadvantage of the 

Normal distribution in this case is that it has an unbounded range; hence specific constraints 

are required on the distribution parameters to ensure the values of closing speed   remain 

positive during the model fitting process. Therefore, a log-normal distribution was also 

investigated for  . This has the advantageous property that it is bounded below by 0, and 

therefore it is free from any constraint required to ensure positive values for closing speed   

during the model fitting process. Comparison of model estimation results for the different 

density functions formulated confirmed that a log-normal distribution of closing speed fits the 

two-car collisions data substantially better than a Normal distribution (Tolouei, 2011). 

Therefore in this paper, a log-normal distribution with parameters   and   is assumed for the 

closing speed   where   and   are, respectively, the mean and standard deviation of the 

associated Normal distribution (i.e.   and   are the mean and standard deviation of      ). 

Evidence suggests that vehicles have different average speeds on different types of roads as 

classified according to their speed limit. Speeds generally tend to be higher on roads that have 

a higher speed limit than on those that have a lower speed limit (DfT, 2006; DfT, 2007). 

Therefore, it can be argued that the distribution of closing speed is different for different 



types of roads where the speed limit varies. This can be investigated by including the variable 

speed limit, which is observed for each collision, in the probability density function of the 

distributions being investigated. This allows us to specify a different prior distribution for 

different speed limits. Two cases are therefore investigated as described below. 

2.2.1 Case A: same distribution for all speed limits 

In this case, the same log-normal distribution for   is assumed for all the collisions 

irrespective of the speed limit of the road.   has a log-normal distribution with parameters   

and  , therefore      has a log-normal distribution with parameters            and 

  (i.e.    and   are mean and standard deviation of      ). Transforming      , which has 

a normal distribution, to      , which has a standard normal distribution with mean 0 and 

standard deviation 1, results in the following relationship: 

                            .     (22) 

In this equation, both   and  , in addition to the standard deviation  , are unknown 

parameters. A new variable   is therefore defined as           . Therefore,  

      .         (23) 

The probability density function      can be expressed based on the unit Normal density 

function for       according to the following: 

          
 

 
         

 

    
                    (24) 

where       
        

 
. The conditional joint injury probabilities that are required to form 

the likelihood function in Equation 21 are then calculated according to the following: 
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where      and      are given by Equations 23 and 24, respectively. The integration is 

calculated numerically over the standardised normal variable z. 

The parameters   (representing driver and vehicle factors as shown in Equation 10), and   

and   that maximise Equation 21 are estimated subject only to the following constraint: 

    .         (28) 

The estimated values of these parameters are then used to predict the values of absolute 

driver injury risk for vehicle 1 and 2 for any given value of mass ratio   using the following 

equations: 
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 .    (30) 

2.2.2 Case B: different distributions for different speed limits 

We now consider the possibility that the distribution mean for       is related to the speed 

limit    according to the following: 

             .        (31) 

Replacing this in Equation 22 gives 

         .         (32) 

In this equations, both   and  , as well as the standard deviation  , are unknown parameters. 

A new variable   is therefore defined as     . Equation 32 can be rewritten as  

        .         (33) 

Therefore, the only difference between this case and the formulation shown in Case A is that 

instead of parameter  , the parameter   is estimated which is used together with the estimated 

value of   as well as the observed value of speed limit    to characterise the distribution of 

closing speed.  



3. Two-car crash dataset 

The methodology just introduced is now used to analyse driver injury risk in frontal two-car 

crashes. The data used is based on the UK STATS19 Police reported data which includes all 

road accidents that involve personal injury. Basic STATS19 data is publicly available for use 

as in annual basis
1
.  Data from 2000 to 2006 was used to extract frontal two-car crashes in 

which at least one of the drivers was injured. Frontal crashes alone constitute about 43% of 

all crashes in the dataset. This is probably because these are high severity crashes resulting in 

a greater number of KSI drivers.  

STATS19 data contains information on the age and gender of each driver, and the severity of 

their injury.  Unfortunately, it does not include data on vehicle mass. However, the Vehicle 

Registration Mark (VRM) for each vehicle involved in a crash is recorded. This provides the 

opportunity to link the STATS19 vehicle data to vehicle makes and models. A separate 

dataset, developed by the UK Department for Transport (DfT) includes make and model data 

on each of the vehicles involved in the accidents where the data is available. This dataset was 

linked to the basic two-car crash dataset to include make and model information for each car 

involved in a two-car crash. Due to a considerable proportion of missing data on makes and 

models, however, only about 66% of two-car crashes included make and model information 

for both of the cars. 

Investigation to find an available vehicle mass dataset in Great Britain was not successful. 

Therefore, detailed data on kerb mass for all the variants of popular makes and models were 

extracted from the UK Car Magazine2, which is a web-based data source, using a computer 

programme. It is notable that mass data is different for different variants of makes and models 

stratified by engine size, year of manufacture, and engine specifications. Having downloaded 

available mass data for all popular makes and models, another computer programme was 

used to assign mass to each make and model in the two-car crash dataset. This could be done 

with a high level of accuracy as the VRM data includes information on engine size, year of 

manufacture, and engine specification for each make and model. Due to a high proportion of 

missing mass data for makes and models involved in two-car crashes, especially older cars, 

only about 21% of all two-car crashes in the STATS19 data (about 85000 crashes) included 

mass data for both of the cars involved in the crash.  

                                                 
1
 Department for Transport, Local Government and the Regions, Road Accident Data, 2000-2006 [computer 

file]. Colchester, Essex: UK Data Archive [distributor], http://www.data-archive.ac.uk. 
2 http://data.carmagazine.co.uk/cars/specs/ 



There are three levels of casualty severity in STATS19 data: killed (within 30 days as a result 

of sustained injury), seriously injured, and slightly injured. The main analysis of two-car 

crashes was performed for serious or fatal injuries only due to the greater importance of these 

injuries. This is consistent with the similar studies based on STATS19 data (for example see 

Broughton, 1996c; Broughton, 2007). Therefore, the final sample dataset included two-car 

crashes where at least one of the drivers was either Killed or Seriously Injured (KSI); this 

included a total of 2485 two-car crashes.   

Descriptive statistics of vehicle design variables in the dataset (mass, length, width, height, 

and wheelbase) are shown in Table 3 (the maximum number of observations in this table is 

twice the total number of collisions because there are two vehicles per collision). The average 

vehicle mass in the dataset is 1150 kg; it ranges from 690 kg (for a variant of Citroen AX) to 

about 2600 kg (for a variant of Land Rover Range Rover). Vehicle length varies from 270 cm 

(for a variant of Volkswagen Polo) to 516 cm (for a variant of Mercedes S class) with an 

average of 413 cm. As the statistics for “Length” and “Wheelbase” suggest, there is more 

variation in “Length” compared to “Wheelbase” in the dataset. This suggests that “Length” is 

preferred to “Wheelbase” as a variable that represents the vehicle size. The average width of 

vehicles in the dataset is 178 cm where the minimum and maximum widths belong to variants 

of Renault Clio and Ford Mondeo, respectively. 

Table 3: Descriptive statistics of vehicle design variables in the dataset (injury level: KSI) 

Vehicle variable 
Descriptive statistics 

Min Mean Max Std. Deviation Obs. 

Mass (kg) 690 1150 2599 250 4970 

Length (cm) 270 413 516 36 4970 

Width (cm) 142 178 223 15 4970 

Height (cm) 122 143 194 9 4302 

Wheelbase (cm) 142 255 448 13 4970 

 

Driver factors in a vehicle that is involved in a two-vehicle crash can potentially contribute to 

the risk of injury to the driver of that vehicle (through correlation with  the physical strength 

of the driver) as well as to that to the driver of the colliding vehicle (through influencing 

driving style and aggressivity). The distribution of drivers involved in frontal injury crashes 

by age and gender are reflected in Table 4. The category with the largest number of records in 

the dataset is that of male drivers aged 35-54. 

   



Table 4: Distribution of drivers by age and gender in the dataset (injury level: KSI) 

Driver age 
Driver gender 

Total 
Male Female Unknown 

17-24 712 315 1 1028 

25-34 666 390 1 1057 

35-54 1099 642 0 1741 

+55 680 330 0 1010 

Unknown 60 28 46 134 

Total 3217 1705 48 4970 

 

4. Injury risk modelling 

The effects of different factors on driver injury probability (Equations 29 and 30) in frontal 

two-car collisions were estimated by forming and maximising the log-likelihood function, 

described by Equation 21, over the two-car crash dataset. Two different distributional 

assumptions, defined and formulated in detail in Section 2 (Case A and Case B), are 

investigated for the closing speed  ; these are summarised in Table 5. 

Table 5: Summary of the defined distributions for closing speed   

Distribution 

of v 

Case A (distribution is 

independent of speed limit   ) 

Case B (distribution is 

dependent on speed limit   ) 

Log-normal 

              

                     
            

      

                 

 

Unknown parameters:  ,   

              

                     
            

         

        

                 

Unknown parameters:  ,    

  : speed limit 

 

The maximum likelihood estimation was performed using the “R” package
1
. In calculating 

the log-likelihood function value, the integration in Equations 25 to 27 was performed 

numerically using Simpson’s rule (Moin, 2001).  

4.1 Maximum likelihood estimation results 

In the model estimation process for frontal collisions, vehicles 1 and 2 had the same labels 

(vehicle 1, vehicle 2) as those in the original STATS19 data. These are believed to be 

arbitrary).  In the first step, the simplest model form that includes no driver or vehicle effects 

except mass ratio   (i.e.         ) was estimated for the two distributional assumptions 

(Case A and Case B in Table 5) to find the distributional form that led to the best description 

                                                 
1
 R Development Core Team, 2005. R: A Language and Environment for Statistical Computing, R Foundation 

for Statistical Computing, Vienna, Austria, http://www.R-project.org. 



of the injury severity distribution. Therefore there were three parameters to estimate for each 

distribution form: the constant    that represents    and    in Equations 29 and 30, and two 

parameters that describe the closing speed distribution as summarised in Table 5. The 

maximum likelihood estimation results are shown in Table 6. In this table, the models have 

the same labels as their assumed distribution equivalents. Figure 1 shows how the maximised 

log-likelihood value varies by the standard deviation of logarithm of closing speed ( ).  

Table 6: Maximum likelihood estimation results: Log-normal distribution of v 

Parameters 
Model A0 Model B0 

Est. Std. Error CI- CI+ Est. Std. Error CI- CI+ 

   -4.39 0.60 -5.58 -3.21 -5.18 0.28 -5.73 -4.63 

  5.00 1.46 2.13 7.87 - - - - 

  - - - - 0.07 0.01 0.05 0.09 

  0.47 0.22 0.05 0.90 0.73 0.06 0.62 0.85 

LL value -2507.84 -2443.42 

AIC 2514 2449 

Obs 2485 2485 

CI- and CI+ show, respectively, lower and upper bound of 95% confidence interval of the estimates 

 

 
Figure 3: Maximised log-likelihood versus standard deviation of logarithm of closing speed (σ) 

 

The results show that the best model with highest log-likelihood value is Model B0, in which 

all the estimated parameters are statistically significant and the log-likelihood is substantially 

higher than that for Model A0. According to this model, the closing speed has a log-normal 

distribution with a mean value that depends on the speed limit (           ). The spread 

of the distribution of closing speed is described by the single parameter σ, which in the log-

normal distribution gives the relationship to the mean speed:                        

  . This model, not surprisingly, fitted the data substantially better than the corresponding 

one that did not use speed limit in the model for the distribution of closing speed. Therefore, 

Model B0 was chosen as the one to be expanded to include further explanatory variables. 

-2540

-2535

-2530

-2525

-2520

-2515

-2510

-2505

-2500

0.00 0.20 0.40 0.60 0.80 1.00

Lo
g 

Li
ke

lih
o

o
d

 v
al

u
e

σ

Model A0

-2480

-2475

-2470

-2465

-2460

-2455

-2450

-2445

-2440

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Lo
g 

Li
ke

lih
o

o
d

 v
al

u
e

σ

Model B0



The variables related to driver age and driver gender were added to Model B0 to investigate 

the effects of these factors. These contribute to    and     in Equations 29 and 30 as shown 

by Equation 10. The first hypothesis was that injury risk to the driver in each vehicle is 

influenced by the physical condition of the driver as represented by driver age and gender. 

These variables were added to Model B0 to test this hypothesis.    and     for this model, 

labelled as Model B1, are described as the following: 

                                      (34) 

                                 .     (35) 

The maximum likelihood estimation results for Model B1 are shown in Table 7. The widely-

used dummy coding method has been used to code the categorical variables relating to driver 

age and gender that were shown in Table 4 where male driver and the age category 35-54 are 

taken as the reference categories.  

Table 7: Maximum likelihood estimation results: adding the effects of driver characteristics 

Parameters 
Model B1 

Est. Std. Error CI- CI+ 

        -5.178 0.268 -5.703 -4.653 

        (Female) -0.417 0.080 -0.574 -0.260 

       (Age 17-24) -0.241 0.102 -0.441 -0.040 

       (Age 25-34) -0.190 0.100 -0.385 0.006 

        (Age +55) 0.646 0.100 0.449 0.843 

  0.060 0.010 0.041 0.079 

  0.797 0.061 0.677 0.917 

LL value -2393.72 

AIC 2408 

Obs 2485 

CI- and CI+ show, respectively, lower and upper bound of 95% confidence interval of the estimates 
 

It was then hypothesised that injury risk to the driver in each vehicle is influenced not only by 

the physical vulnerability of its driver, but also by the driving style of the driver of the 

colliding vehicle as represented by variables age and gender (e.g. the effect of more 

aggressive driving). Therefore in the new model, labelled as Model B2,    and     are 

described as the following: 

                                               (36) 

                                             .   (37) 

The estimation results for Model B2 are shown in Table 8. 



Table 8: Maximum likelihood estimation results: adding the effects of driver characteristics and driving style 

Parameters 
Model B2 

Est. Std. Error CI- CI+ 

        -5.185 0.581 -6.324 -4.046 

    (Female) 0.320 0.320 -0.307 0.946 

   (Age 17-24) -0.001 0.378 -0.742 0.740 

   (Age 25-34) -0.150 0.391 -0.916 0.616 

    (Age +55) -0.410 0.418 -1.230 0.410 

    (Female) 0.718 0.316 0.099 1.337 

   (Age 17-24) 0.189 0.366 -0.528 0.906 

   (Age 25-34) 0.023 0.394 -0.751 0.796 

    (Age +55) -1.063 0.425 -1.895 -0.230 

  0.086 0.009 0.069 0.103 

  0.629 0.051 0.528 0.729 

LL value -2393.724 

AIC 2416 

Obs 2485 

CI- and CI+ show, respectively, lower and upper bound of 95% confidence interval of the estimates 
 

Comparison of the maximum likelihood estimation results for Models B0, B1, and B2 

reflected in Tables 6 to 8 shows that Model B1 has the best goodness of fit (measured by log-

likelihood through the AIC) as well as the estimated parameters that are statistically 

significant (except for         which shows that there is no difference between age range 

25-34 and the reference category of 35-54). Therefore it is the model that best represents the 

effects of drivers’ age and gender on driver injury probability in two-car crashes. Thus the set 

of data used in this study does not show any age and gender-specific effect on driving style 

that influences injury risk in the colliding vehicles.  

One of the fundamental questions in the analysis of injury risk in two-car crashes which has 

remained unclear is whether there is any effect of vehicles’ size beyond the effect of mass 

ratio. In order to examine this, the variables related to vehicle size were added to Model B1 

as explanatory variables (see Equations 34 and 35). Two models were estimated: Model B3 

in which vehicle size is represented by “vehicle length” (m), and Model B4 in which vehicle 

size is represented by “vehicle length × vehicle width” (m
2
)
1
. The results, reflected in Table 

9, shows that both models have a better goodness of fit than that of Model B1 (measured by 

log-likelihood through the AIC) as well as statistically significant estimated coefficients for 

the variable “Size”. This confirms that there is an effect of vehicle size above and beyond that 

of mass ratio in frontal collisions. The negative coefficient of size in these models, which are 

statistically significant at the 5% level, shows that vehicle size is protective. The goodness of 

                                                 
1
 Due to a substantial number of missing data on vehicle height, the effect of volume is not examined in these 

models. 



fit of Model B4 is significantly better than that of Model B3. Therefore Model B4, in which 

vehicle size is represented by “vehicle length × vehicle width”, is the model that best reflects 

the partial effects of different contributing factors on driver injury probability in frontal 

crashes where injury is defined by either fatality or serious injury. It should be noted that 

vehicle age was also included in the model as a variable to investigate its effect on injury risk. 

The results showed that the estimated coefficient of vehicle age was not statistically 

significant and the model fit was not improved, therefore it was excluded fromn the final 

model. 

Table 9: Maximum likelihood estimation results: adding the effects of vehicle size 

Parameters 
Model B3 Model B4 

Est. Std. Error CI- CI+ Est. Std. Error CI- CI+ 

        -3.002 1.006 -4.973 -1.031 -2.982 0.691 -4.336 -1.627 

        (Female) -0.388 0.081 -0.547 -0.230 -0.401 0.081 -0.559 -0.243 

       (Age 17-24) -0.283 0.104 -0.486 -0.080 -0.274 0.103 -0.477 -0.072 

       (Age 25-34) -0.206 0.100 -0.403 -0.010 -0.194 0.101 -0.391 0.003 

        (Age +55) 0.625 0.101 0.427 0.822 0.635 0.101 0.438 0.833 

        (Size) -0.401 0.174 -0.741 -0.060 -0.204 0.056 -0.314 -0.094 

  0.047 0.011 0.025 0.068 0.038 0.011 0.016 0.059 

  0.899 0.092 0.719 1.078 0.983 0.115 0.758 1.209 

LL value -2389.86 -2383.36 

AIC 2406 2399 

Obs 2485 2485 

CI- and CI+ show, respectively, lower and upper bound of 95% confidence interval of the estimates 
 

As mentioned above, the assumption of log-normal distribution for closing speed was made 

on the basis of its simplicity and advantageous properties over Normal distribution. It was 

also mentioned that comparison of model estimation results for the different density functions 

formulated confirmed that a log-normal distribution of closing speed fits the two-car 

collisions data substantially better than a Normal distribution (Tolouei, 2011). In order to 

investigate the sensitivity of the estimated parameters on the distributional assumption, we 

also assumed a Gamma distribution for the closing speed and fitted the final model (Model 

B4) using this assumption to compare the estimated effects of different variables. The results 

showed that the estimated effects of different variables on the injury risk are reasonably 

similar (in terms of values of estimates and significance of effects) for the two distributional 

assumptions considered. This suggests that the conclusions from the modelling are not 

unduly sensitive to the assumption of shape of f(v). 



The estimated values of parameters in Model B4 were used to predict driver injury 

probabilities for different values of the explanatory variables using Equations 29 and 30 when 

in these equations,    and    are given by Equations 34 and 35, and      and      are given 

by Equations 23 and 24, respectively. As was mentioned earlier, the integration is calculated 

numerically using Simpson’s rule
1
 over the values of   in the interval [0,40] with increments 

of 0.01.  

4.2 Effects of vehicle mass 

The estimated injury probabilities for a few examples of two-car crashes are shown in Table 

10 where examples are defined depending on the values of mass ratio μ and speed limit; these 

are for crashes with drivers in the reference category (male drivers aged 35-54). As the model 

estimation results showed, the driver injury probabilities (P1 and P2) are influenced not only 

by mass ratio, but also by “Size” of the vehicles in a collisions. Therefore, the estimated 

values of P1 and P2 can be different for a given value of μ depending on the dimensions of the 

vehicles. The relationship between vehicle mass and “Size” in the dataset is shown in Figure 

2 when “Size” is defined by “vehicle length × vehicle width”. The trend in the data is closer 

to an exponential function than a linear one. In the two-car crash examples in Table 10, an 

average value of “Size” is calculated for the given values of mass using the relationship 

shown in Figure 1; these are used in estimating P1 and P2.  

Table 10: The effect of mass ratio (μ) on injury probabilities (P1 and P2) in frontal collisions 

Crash μ (m2/m1) Speed limit P1 P2 R=P1/P2 

1 
m1=1000 

m2=1000 
1.0 40 0.079 0.079 1.00 

2 
m1=1000 

m2=1500 
1.5 40 0.101 0.043 2.38 

3 
m1=1000 

m2=2000 
2.0 40 0.116 0.025 4.56 

4 
m1=1000 

m2=1000 
1.0 60 0.135 0.135 1.00 

5 
m1=1000 

m2=1500 
1.5 60 0.170 0.078 2.19 

6 
m1=1000 

m2=2000 
2.0 60 0.194 0.048 4.00 

 

The results suggest that, for example, if two cars with a similar mass (1000 kg) crash into 

each other on a road where the speed limit is 60 mile/hr, the probability of each driver being 

killed or seriously injured is about 13.5%. However, if car 2 had a mass twice that of car 1 

(1000 kg compared to 2000 kg), the probability of driver of car 1 (the lighter car) being killed 

                                                 
1
 See, for example, (Moin, 2001) for a description of Simpson’s rule 



or seriously injured would increase to about 19.4% while the probability of driver of car 2 

(the heavier car) being killed or seriously injured would decrease to about 4.8%. These results 

are consistent with vehicle mass having both protective and aggressive effects in two-car 

crashes. The results also show that, in general, the probability of injury increases with speed 

limit; this represents the effect of the closing speed of the vehicles involved in the collision 

on driver injury probability.  

 

Figure 4: Relationship between vehicle mass and size (Length × Width) 

 

4.3 Effects of vehicle size 

It was shown that vehicle size has a protective effect over and above the effect of mass ratio 

in frontal two-car crashes. It was also shown that the best variable representing the effect of 

vehicle size (of those tested) is the product of vehicle length and vehicle width. The estimated 

effects of vehicle size, based on the estimated Model B4, are shown for a few examples of 

frontal two-car crashes in Table 11; these are for crashes with drivers in the reference 

category (male drivers aged 35-54).  

Table 11: The effects of vehicle mass (kg) and vehicle size (Length × Width (m
2
)) on injury probabilities (P1 

and P2) in frontal collisions 

Crash μ (m2/m1) Speed limit P1 P2 R=P1/P2 

1 
m1=1000   Size1=6 

m2=1000   Size2=6 
1.0 60 0.145 0.145 1.00 

2 
m1=1000   Size1=6 

m2=1000   Size2=7 
1.0 60 0.145 0.131 1.10 

3 
m1=1000   Size1=6 

m2=1000   Size2=8 
1.0 60 0.145 0.119 1.21 

4 
m1=1000   Size1=6 

m2=1500   Size2=9 
1.5 60 0.181 0.079 2.30 

5 
m1=1000   Size1=7 

m2=1500   Size2=9 
1.5 60 0.166 0.079 2.11 

6 m1=1000   Size1=8 

m2=1500   Size2=9 
1.5 60 0.152 0.079 1.94 

 

Mass = 325 e0.168 x Size

R2 = 0.76, No. of Obs.  = 11590

Size (m2)

M
as

s 
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The results are shown for two sets of mass ratios (1.0 and 1.5) where the size of one of the 

cars varies while all other factors including mass of the two cars are kept constant. 

Comparison of the estimated values of P1 and P2 for crashes 1 to 3 in Table 11 shows that 

increasing “Size” for car 2 from 6 m
2
 to 8 m

2
, when its mass is constant (1000 kg), decreases 

the probability of its driver being killed or seriously injured from about 14.5% to about 

11.9%. On the other hand, in a frontal crash where mass ratio is 1.5 (1000 kg compared to 

 500 kg), increasing “Size” for the lighter car (car  ) from 6 m
2
 to 8 m

2 
decreases its driver 

injury probability from about 18.1% to about 15.2% without affecting the driver injury 

probability of car 2.  

The findings on the effects of vehicle size is important from the policy point of view because 

the relationship between mass and size reflected in Figure 2 suggests that there is the 

potential to make changes to vehicle design to increase the size of vehicles while vehicle 

mass is maintained. This could increase the safety performance of a vehicle without any 

adverse impact on the safety performance of the other vehicles in the fleet.  

4.4 Effects of driver factors 

The estimated coefficients of driver age and driver gender variables were used to estimate 

their partial effects on driver injury risks in both vehicles using the same methodology that 

was used to estimate the partial effects of mass ratio and vehicle size. The results for a few 

examples of frontal collisions where they are different only in a driver factor are shown in 

Table 12.  

Table 12: The effects of driver age and gender on injury probabilities (P1 and P2) in frontal collisions 

Crash μ (m2/m1) Speed limit P1 P2 R=P1/P2 

1 
m1=1000  Driver1=male aged 35-54    

m2=1000  Driver2=male aged 17-24 
1.0 60 0.135 0.119 1.13 

2 
m1=1000  Driver1=male aged 35-54 

m2=1000  Driver2=male aged +55 
1.0 60 0.135 0.183 0.74 

3 
m1=1000  Driver1=female aged 35-54    

m2=1000  Driver2=female aged 17-24 
1.0 60 0.112 0.099 1.13 

4 
m1=1000  Driver1=female aged 35-54    

m2=1000  Driver2=female aged +55 
1.0 60 0.112 0.151 0.74 

5 
m1=1000  Driver1=male aged 17-24 

m2=1000  Driver2=female aged 17-24 
1.0 60 0.119 0.099 1.20 

6 
m1=1000  Driver1=male aged 35-54 

m2=1000  Driver2=female aged 35-54 
1.0 60 0.135 0.112 1.21 

7 
m1=1000  Driver1=male aged +55 

m2=1000  Driver2=female aged +55 
1.0 60 0.183 0.151 1.21 

 



A negative coefficient for female driver in Model B4 shows a lower injury probability for 

female drivers than male drivers. The results show that, for example, in a frontal collision 

between two cars with the same mass (1000 kg) but different driver genders, the probability 

of injury for the male driver is about 13.5% while the probability of injury for the female 

driver is about 11.2%. This effect is not in accordance with the general expectation that 

female drivers are generally more vulnerable than male drivers when involved in similar 

crashes due to a relatively less physical strength. One possible explanation might be given by 

the type of cars female drivers tend to drive compared to male drivers. For example, they 

might tend to drive model variants that are newer or have better secondary safety features. 

Examination of the available two-car crash data (crashes between 2000-2006) shows that, for 

example, about 60% of the vehicles that were driven by male drivers were registered for the 

first time before 2000 while, for female drivers, this figure is about 50%. This suggests there 

is a general tendency for female drivers to drive vehicles that are newer compared to male 

drivers. It should be noted that in the analysis of two-car crashes in Great Britain during 

2000-2004, DfT (2006) found the consistent results that female drivers are less likely to be 

killed than men drivers when involved in the crashes.  

On the other hand, the estimated effects for driver age show that a younger driver has a lower 

risk of injury than an older driver of a similar vehicle when involved in crashes (P2=0.119 in 

crash 2 compared to P2=0.183 in crash 3 in Table 12); this is in accordance with the 

prevailing wisdom. 

4.5 Other types of collisions 

The same methodology has been used to analyse driver injury risk in front to side and front to 

back collisions (Tolouei, 2011). Similar to frontal collisions, it was found that the 

distributional form that best describes the closing speed in both front to side and front to back 

crashes is a log-normal distribution in which mean is related to the speed limit of the road. 

The results also confirmed that, identical to frontal collisions,  the probability of injury of the 

driver of a vehicle 1 increases with speed limit and with increasing mass ratio (       ) 

while the probability of injury of the driver of vehicle 2 increases with speed limit and with 

decreasing mass ratio.  

The results for front to side collisions confirmed that similar to the case of frontal collisions, 

there is a protective effect of vehicle size above and beyond that of vehicle mass; the data did 

not show any effect of vehicle size in front to back crashes. The findings on the effects of 



driver age and gender in both front to side and front to back collisions were in general similar 

to those in the case of frontal collisions (see Section 4.4 for details). 

5. Summary and discussion 

This paper has introduced a novel methodology to estimate the partial effects of mass and 

size on absolute driver injury risk in each of the vehicles in a two-car crash. In the introduced 

methodology, the driver injury probability is described by a logistic function that includes, 

for each vehicle involved in the crash, the velocity change (defined as a function of mass 

ratio and closing speed) as well as various driver and vehicle characteristics. Because data on 

the speed of the vehicles prior to the crash is not available, a distribution for closing speed is 

assumed, the parameters of which are estimated in model estimation process. The 

methodology uses the conditional joint injury probabilities in two-car crashes as the basis of 

analysis to solve the issue related to lack of data on crashes where no driver is injured; these 

conditional joint probabilities are used to form the likelihood function. The parameters 

describing the driver injury probability in each vehicle are estimated by maximising the 

likelihood function over the two-car crash dataset. 

This methodology was used to analyse frontal two-car crashes in Great Britain. The results 

confirmed that in a two-car collision, the probability of injury of the driver of vehicle 1 

increases with speed limit and with increasing mass ratio (       ) while the probability 

of injury of the driver of vehicle 2 increases with speed limit and with decreasing mass ratio; 

that is, in a two-car collision vehicle mass has a protective effect on its own driver injury risk 

and an aggressive effect on the driver injury risk of the colliding vehicle. Another novel 

aspect of the analysis based on the introduced methodology was separating the effect of 

vehicle mass from that of vehicle size on absolute driver injury risks of the vehicles involved 

in a two-car crash, where vehicle size is represented by “vehicle length × vehicle width”. The 

results confirmed that there is a protective effect of vehicle size above and beyond that of 

vehicle mass for frontal collisions. It was mentioned briefly that the findings on the effects of 

vehicle mass, vehicle size, and driver factors were similar for all types of two-car collisions; 

the only exception was the effects of vehicle size in front to back collisions where the data 

did not show any effect of vehicle size above and beyond that of mass ratio. 

Investigation of the relationship between vehicle mass and injury risk in detail is in particular 

important as it is the key to understand the relationship between environmental and safety 

outcomes within the vehicle fleet. Although it has been discussed that vehicle mass imposes a 



trade-off between individual vehicles’ secondary safety performance and fuel consumption 

(Tolouei and Titheridge, 2007), the results presented in this paper suggest that mass might not 

necessarily impose a trade-off between safety and environmental goals in the vehicle fleet as 

a whole. This is because the secondary safety performance of a vehicle depends on both its 

own mass and the mass of the other vehicles in the fleet. It was shown that absolute driver 

injury risk in a frontal collision changes by mass ratio and not the absolute mass of the 

vehicles. Therefore, in a uniform fleet downsizing scenario, which is a favourable scenario 

for the fleet fuel economy due to a reduction in vehicles’ mass within the fleet, no subsequent 

increase in the number of casualties is expected provided that the downsizing only focuses on 

vehicle mass whilst maintaining vehicle size.  

On the other hand, a reduction in fleet diversity by decreasing the variance of mass within the 

fleet could be a favourable scenario regarding safety. It can be shown using the findings 

presented in this paper that increasing the size of lighter cars within the fleet while 

maintaining their mass on one hand, and decreasing the mass of heavier cars within the fleet 

while maintaining their size on the other hand is a desirable scenario in favour of both safety 

and environmental goals (Tolouei, 2011). The relationship between vehicle size and mass 

reflected in Figure 2 shows a considerable variation in mass for a given size. This suggests 

that there is the potential to decrease the mass of many vehicles in the fleet whilst 

maintaining their dimensions. As Ross and Wenzel (2001) discussed, there are a number of 

mass-reduction techniques (e.g. use of lightweight materials in design, use of lighter high-

efficiency propulsion systems) which could be used by manufacturers to reduce the kerb 

mass of their new car models. A combination of policies targeting both new vehicle design 

through various mass-based regulations and the consumer car purchase process through 

various economic incentives could be an effective way in achieving an informed change in 

the mass distribution of vehicle fleet. These together with various policy options, and their 

advantage and disadvantages should be discussed in detail in future studies.  
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Appendix 1 

In this appendix, we provide a proof of the results for the speed change in a two-car collision 

given in section 2. 

Suppose that car 1, of mass m1, is travelling in the direction of the x axis at a speed v1, and car 

2, of mass m2, is travelling at speed v2 in a direction that is at an angle  to the x axis (so that 

if  = 0, the collision is head-on; if it is 180 degs, it is a rear-end shunt; and if it is 90 degs, it 

is a right-angle collision).  After impact, we assume the two cars are effectively one object, of 

mass m1+m2, travelling at a velocity that has a component ux in the x direction and a 

component uy in the y direction. 

By conservation of momentum in each of the two directions we have:  

(m1+m2)ux = m1v1 – m2v2cos  and (m1+m2)uy = m2v2sin. 

 

The change in velocity for car 1 has components:     
            

     
 in the x direction, and  

       

     
 in the y direction. Therefore the square of the magnitude of this change in velocity is:  

                         
 

        
 =  

  

     
 
 
   

    
            =  

  

     
 
 

  . The 

symmetrical result:   
  

     
 
 

   for car 2 can also be found. 

Therefore, when  = 0 (head-on), v reduces to v1 + v2 ;  when  = 180 (shunt), v reduces to
 
v1 

– v2; and when  = 90 (right-angle), v reduces to    
    

 . 

 


