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Abstract

We will develop three new Bayesian nonparametric models for genetic variation. These

models are all dynamic-clustering approximations of the ancestral recombination graph

(or ARG), a structure that fully describes the genetic history of a population. Due

to its complexity, e�cient inference for the ARG is not possible. However, di↵erent

aspects of the ARG can be captured by the approximations discussed in our work. The

ARG can be described by a tree valued HMM where the trees vary along the genetic

sequence. Many modern models of genetic variation proceed by approximating these

trees with (often finite) clusterings. We will consider Bayesian nonparametric priors

for the clustering, thereby providing nonparametric generalizations of these models and

avoiding problems with model selection and label switching.

Further, we will compare the performance of these models on a wide selection of infer-

ence problems in genetics such as phasing, imputation, genome wide association and

admixture or bottleneck discovery. These experiments should provide a common test-

ing ground on which the di↵erent approximations inherent in modern genetic models

can be compared. The results of these experiments should shed light on the nature of

the approximations and guide future application of these models.
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Chapter 1

Introduction

The cost per basepair of DNA sequencing is rapidly decreasing (Wetterstrand, 2014)

allowing large volumes of genetic sequence data to be collected by academic consor-

tiums, corporations and hospitals. Along with this increase in the availability of genetic

sequence data is a need for modern machine learning methods tailored to specific prob-

lems in genetics. Such problems include disease association, inference of demographic

history and inference of properties such as recombination rates and mutation rates. The

scientific, economic and health benefits that could be derived from e↵ective solutions to

these problems are clear. But the e↵ectiveness of any solution to such problems relies

on the accuracy of the underlying statistical models used to describe genetic sequence

data. Bayesian nonparametric methods are modern machine learning methods which,

due to their flexibility, provide e�cient and accurate statistical models with many prop-

erties that are well suited for describing genetic sequence data (Teh et al., 2006; Xing

et al., 2006, 2007; Sohn and Xing, 2007; Airoldi et al., 2006; Xing and Sohn, 2007b;

Sohn and Xing, 2007).

All genetic material arises through inheritance and mutation. Random processes can

be used to describe both of these phenomena: inherited material is governed by recom-

bination and natural selection, whereas mutated material is governed by a variety of

random processes such as single nucleotide variations (SNVs), copy number variation

and other processes (Hein et al., 2005). However, two main concerns prevent us from

fully characterizing the joint distribution of a set of genetic sequences. First, although

we know the form of most of the random processes required to describe inheritance and

mutation, we remain uncertain about many of the parameters involved in the processes

such as their rates. Second, even if the parameters were known, the complexity of the

latent objects involved (such as the taxons or the ancestral recombination graphs) often

precludes e�cient inference. Because of this, researchers in statistical genetics often

make simplifying assumptions about the latent objects and parameters of the genetic

processes and provide approximate models so that tractable inference can proceed.

Bayesian nonparametric models allow prior distributions to be specified in which the
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complexity of the latent objects is arbitrary and learned along with the model parame-

ters during inference (Hjort et al. 2010, Orbanz and Teh 2010, Teh 2010). These prior

distributions are attractive choices for approximate models of genetic processes because

e�cient and accurate inference can be conducted while still providing complex latent

objects. Further, many aspects of genetic processes, such as allele or species sampling

formula (Ewens, 1972) naturally arise from these priors.

In this thesis, we will present three new closely related dynamic-clustering models for

sequence data based on Bayesian nonparametric methods and explore their application

to problems in genetics through a series of experiments. In these models, the genetic

sequences are clustered separately into genetically similar clusters at each location of

interest on the chromosome according to a Bayesian nonparametric joint distribution

on partitions. Our approach extends other traditional methods in dependent Dirichlet

processes in Bayesian nonparametrics such as those based on MacEachern (1999).

Dynamic-clustering models have many diverse applications beyond genetics. In ma-

chine learning, these models have been used as topic models for documents and also to

describe social networks, geopolitical organization and the formation of political blocs

in a↵airs of state (examples of such applications can be found for example in Blei and

La↵erty 2007, Kemp et al. 2006 and Friggeri 2012). The models developed in this

thesis can also be applied to these diverse domains. In a short departure from the main

application of this thesis, in order to show the versatility of these methods, we will use

one of the Bayesian dynamic-clustering models presented in this thesis to describe the

voting behavior of Members of Parliament in the Canadian House of Commons (this is

done in Chapter 5). We apply our model model to detect when Members of Parliament

cross the floor (i.e., switch parties) and also to predict the voting behavior of Members

of Parliament.

In the remainder of Chapter 1, we will summarize the contributions of this thesis

and then provide a review of relevant background and related methods in statistical

genetics. In section 1.1, we will provide a description of the sources of data that

are relevant for Bayesian nonparametric haplotype models (haplotypes are patterns of

mutations that are inherited together). In section 1.2 we will review the coalescent with

recombination and the genetic basis for its assumptions and approximations. Further,

we will describe other popular hidden Markov models for dynamic-clustering in genetics

and their relation to the three new methods presented in this thesis and we will provide a

new unified view of these models through the classification of their transition matrices.

In section 1.3 we will introduce Bayesian nonparametrics and then we will provide

intuition for the three new dynamic-clustering models presented in this thesis, and we

will preview the experiments and baselines that we will use in later Chapters to explore

these models.

In Chapter 2, we review dynamic-clustering models and Bayesian nonparametric meth-

ods and provide a unified framework for this theory using random partitions and
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hierarchical Dirichlet processes. In Chapters 3 and 4, we present BNPPHASE (Elliott

and Teh, 2015), the Bayesian nonparametric version of the fastPHASE (Scheet and

Stephens, 2006) model, and the discrete fragmentation-coagulation process (or DFCP El-

liott and Teh 2012). In Chapter 5, we present the Wright-Fisher partition valued pro-

cess. These three models constitute our three new Bayesian nonparametric models of

genetic sequence data (and other sorts of data, such as voting data) based on dynamic-

clustering. We compare these three models with some established parametric models

such as BEAGLE (Browning and Browning, 2009), fastPHASE (Scheet and Stephens,

2006), IMPUTE/IMPUTE2 (Marchini et al., 2007; Howie et al., 2009) and a method based

on collaborative filtering (Salakhutdinov and Mnih, 2007). We explore the posterior

distributions of these models, develop some of their asymptotic properties, and high-

light their advantages through a series of experiments in which data from The 1000

Genomes Project Consortium (2010), The International HapMap Consortium (2003)

and data from simulations are considered. Finally, in Chapter 6 we conclude and

outline programs for future work.

1.1 Data types and problems in statistical genetics

In this section, we review the types and sources of data that we will use in the experi-

ments described in later Chapters.

1.1.1 Phased data

Humans are diploid organisms and therefore if a biallelic marker (i.e. location on the

chromosome at which genetic material can occur in two forms) is observed then the

minor allele (i.e. the less common form) would occur 0, 1 or 2 times in each individual.

These values correspond to genotypes consisting of a homozygous major allele, a het-

erozygous allele or a homozygous minor allele, respectively. An example of a biallelic

marker is a single nucleotide polymorphism (SNP): a location at which a mutation

occurring in the ancestry of the population has resulted in two possible DNA basepairs

that can be observed at the location. When multiple SNPs are observed, it is often

important to know from which of the two copies of the chromosome the minor alleles

originates. This information is essential for a description of the haplotype structure of

the population (Daly et al., 2001). If an individual is found to be heterozygous at two

SNPs at locations A and B, then the minor alleles can be ordered in two ways:

1. One chromosome could have the minor allele at SNPs A and B and the other

chromosome could have the major allele at SNPs A and B (the chromosomes are

‘11’ and ‘00’).

2. One chromosome could have the minor allele at SNP A and the major allele at

SNP B and the other chromosome could have the major allele at SNP B (the
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chromosomes are ‘01’ and ‘10’).

Genetic sequence data which includes the ordering of the heterozygous alleles is referred

to as phased data. For the experiments conducted in this thesis, we will consider three

sources of phased data:

1. Phased trio data. If a diploid individual is sequenced and both of the individual’s

parents are also sequenced, then the chromosome from which an allele originates

for that individual can be determined for every location at which the three in-

dividuals are not all heterozygous. Thus, trio data provides a source of phased

data. The proportion of sites that can be phased this way for a trio depends

on the expected minor allele frequency of the sample. Assuming Mendelian in-

heritance and Hardy-Weinberg equilibrium (we refer to Hein et al. 2005 for an

explanation of these conditions), this proportion is simply p where p is the minor

allele frequency at that site.

2. Male X chromosome data. In humans, males have one copy of the X chromosome.

Although some of the X chromosome is homologous to the Y chromosome (the

pseudoautosomal regions), by omitting these regions phased data can be formed.

Since the X chromosome undergoes meiotic recombination in females, the male

X chromosome is a good model for the other 22 chromosome. An example of

male X chromosome data from The 1000 Genomes Project Consortium (2010) is

presented in Figure 1.1.

3. Simulated data. Data simulated from the ARG provides phased information, as

all aspects of the process can be recorded during simulation.

Presently most DNA sequencing methods are unable to determine the ordering of the

minor alleles. These data are unphased data and are prevalent due to the currently

prohibitive cost of DNA sequencing methods based on chromosome sorting (Yang et al.,

2011) or imaging (Payne et al., 2013). In unphased data, the observation of the two

copies of a chromosome for a diploid individual are represented by a sequence of un-

ordered pairs of alleles. Phasing is the process of ordering the alleles within each pair

so that the pattern of alleles for one chromosome is given by the first coordinate of

the pairs and the pattern of alleles for the other chromosome is given by the second

coordinate of the pairs.

We will often focus on phased rather than unphased data in this thesis for two reasons.

Firstly, phased data is simpler to model. As Bayesian nonparametric models are already

quite complicated, we will focus on their detailed description for phased data. Their

extension to unphased data will often be clear. Secondly, we expect that in the future

the cost of sequencing methods that provide phased data will decrease and in silico

phasing will become obsolete.

We have found that the accuracy of imputation tasks performed on phased data is highly

correlated with the accuracy of similar tasks on unphased data. Therefore, analysis of
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Figure 1.1: Representation of data from The 1000 Genomes Project Consortium
(2010). x-axis indicates chromosome position, y-axis indicates sequence identity.
Rows (which are exchangeable) sorted lexigraphically from left according to allele
pattern: each row corresponds to an individuals haplotype and each column cor-
responds to a marker. White indicates major allele, black indicates minor allele.
The ordering of the rows is chosen by a left-aligned lexographical sorting (i.e.,
individuals with minor alleles in the first marker are ordered first, and if the first
` markers of two individuals match, the individual with a minor allele at marker
`+ 1 is ordered first).

phased data provides a simple framework for comparison; this analysis carries over to

other more complicated models.

1.1.2 Imputation

Assume we are given N phased chromosomes observed at L possible locations. Assume

further that the L locations are biallelic markers (i.e., the L locations correspond to

mutations that occur in only two forms such as SNPs or SNVs). Imputation tasks

involve predicting the alleles on each chromosome that are unobserved at some subset

of the L locations. Imputation is required in study/reference paradigms (explained

below) and situations in which the observation of genetic material is noisy. Imputation

is also useful to assess the accuracy of a model. In this last case, often a hold out

condition will be considered. This hold out condition can be designed to emulate

a study/reference paradigm or uniform or location-biased noise. After imputation,
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models can be assessed by comparing the imputation accuracy of each model on the

held out data.

We will denote by x

i`

the allele of the i-th individual at the `-th marker. Since the

markers are biallelic, x is a 0/1 matrix (i.e., each entry is either zero or one). Thus,

x

i`

= 1 means that the i-th individual has the minor allele at location ` whereas x
i`

= 0

means that the i-th individual has the minor allele at location `. Furthermore, we will

indicate the case where the `-th marker is not observed for individual i by the notation

x

i`

= ‘?’. We will refer to the set of unobserved entries of x by x

hid

and the set of

observed entries by x

obs

. So, x
hid

= {(i, `) : x
i`

= ‘?’} and x

obs

= {(i, `) : x
i`

= 0 or 1}.
Thus, the goal of imputation is to describe Pr(x

hid

|x
obs

).

In study/reference paradigms, study chromosomes are typed at a small number of lo-

cations and reference chromosomes are typed at all L locations. This situation occurs

frequently as a preprocessing step in genome wide association studies in which limited

resources lead to sparse observations of the genetic sequences of study participants.

Study power can be gained by registering these study individuals against publicly avail-

able reference panels (The Wellcome Trust Case Control Consortium, 2007; Marchini

and Howie, 2010). In this case, if we have N

S

study individuals and N

R

reference

individuals, and the study individuals are observed only at {`
1

, . . . , `

L

} ✓ {1, . . . , L}
then x

hid

= {(i, `) : 1  i  N

S

, ` 2 {`
1

, . . . , `

L

}}. We refer to Browning and Browning

(2011) for a review of imputation methods and their application to association studies

and study/reference paradigms.

In uniform noise conditions, inclusion of (i, `) in x

hid

occurs independently with proba-

bility p for each pair (i, `). Finally, in biased noise conditions, inclusion of (i, `) occurs

independently with a probability that is a function of the minor allele frequency at

location `. Usually, alleles with small minor allele frequency exhibit more uncertainty

in observation. In this thesis, we will mainly consider imputation tasks with uniform

noise conditions.

1.2 Review of statistical genetics and related work

Suppose that N genetic sequences from a population are observed. Most of the genetic

material at a fixed chromosome location will be identical across all of N sequences.

This is due to the shared ancestry of the population. Di↵erences in the material will

only be present at locations for which a mutation has occurred more recently than the

most recent common ancestor of the sample. In the remainder of this Chapter, we

will give an overview of the statistics governing the joint distribution of the pattern of

mutations in the sample of N genetic sequences.
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Figure 1.2: Example of a draw from Kingman’s coalescent with N=5 sequences.
The x-axis indicates sequence identity and the y-axis indicates time in generations
(with most recent lineages below and most ancient lineages above). All sequences
coalesce in N�1= 4 events. Sequences 1 and 5 have a have a common ancestor
at time tA. Sequences 1, 5 and 2 have a common ancestor at time tB, and so
it continues in this fashion until all sequences coalesce. The intensity of this
genealogy is found using Kingman’s coalescent as follows: in step A, coalescence
is found at time tA and between times 0 and tA the coalescent rate is

�5
2

�
=10, and

so intensity of first step is 10 · exp(�10tA). In step B, coalescence is found at time
tB and between times tA and tB the coalescent rate is

�4
2

�
=6, and so intensity of

second step is 6 exp(�6(tB� tA)). Intensity of the entire process is the product of
intensities for each step, yielding 180 · exp(�4tA � 3tB � 2tC � tD).
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1.2.1 The coalescent and the ancestral recombination graph

Under mild genetic assumptions (which are briefly discussed in the next subsection),

the ancestry of a haploid population (i.e., a population of organisms in which there is

only one copy of each chromosome per cell and no recombination) is given by Kingman’s

coalescent (Kingman, 1982). This process is a prior on genealogies formed by tracing

the lineage of the N sequences backwards in time and placing coalescent events with

rate 2

Ne

�
k(t)

2

�
where k(t) is the number of distinct lineages existing at time t, and N

e

is

the e↵ective population size (which is proportional to the total number of individuals

in the population). At each coalescent event, two lineages chosen uniformly among all

pairs of lineages are combined into one lineage. This continues until all the lineages have

coalesced into the most recent common ancestor. A worked example of this process

is given in Figure 1.2. The parameter N

e

governs the total rate of coalescence and is

defined to be twice the expected time until two given lineages coalesce. Thus, as the

e↵ective population size increases, the rate at which the lineages coalesce decreases.

This can be seen intuitively because the probability that two individuals share a recent

ancestor increases as the size of the total population decreases.

To account for recombination events occurring in the ancestry of a diploid population

(i.e., a population of organisms that undergoes meiotic recombination and has two

copies of most chromosomes per cell), Kingman’s coalescent can be extended to form

a model known as the coalescent with recombination (Hudson, 1983). In this extended

model, the ancestry can be completely described by an ancestral recombination graph

(abbreviated as ARG). In an ARG, a recombination process in which recombination

events occur with rate ⇢k(t)/2 is superimposed on Kingman’s coalescent. Here, ⇢ is a

scaled recombination rate. At each recombination event, a lineage is chosen uniformly

among all lineages and that lineage is split at a random point along the sequence to

form two new ancestors for the lineage. All material to the left of the splitting point is

inherited from one of the ancestors and all material to the right of the splitting point

is inherited from the other ancestor. In this way, the coalescent with recombination

can be simulated by tracing lineages backwards in time until a most recent common

ancestor for the entire sample is reached.

In addition to this view of the coalescent with recombination as a process simulated

backwards in time (i.e., a Markov process whose axis is time), the coalescent with

recombination can also be viewed as a spatially defined non-Markovian process that

takes values in an augmented space of genealogies (Wiuf and Hein, 1999). In this spatial

representation (which we will refer to as the spatial construction of the coalescent

with recombination), the axis of the process is the chromosome location. Given a

population of chromosomes, this process defines a genealogy at the first chromosome

position, and then moves from left to right along the chromosome and updates the

genealogy at ancestral recombination points. By superimposing the genealogies from

each chromosome location, a structure is formed that is identical in interpretation to
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the ancestral recombination graph. Further, generating an ARG by simulating lineages

backwards in time yields the same distribution over graphs as does the superposition

of the genealogies from the spatial construction of the coalescent with recombination.

We refer to (Wiuf and Hein, 1999) for the details of the non-Markovian nature of the

spatial construction.

1.2.2 Mutation models

Conditioned on the ancestral recombination graph, mutations can be modelled by spec-

ifying the ancestral time, lineage and chromosome location at which each mutation

occurs. Then, the mutated lineage can be traced forward in time to arrive at observed

genetic material. All observed genetic material that coalesces with the mutated lineage

more recently than the time of the mutation will inherit the mutation.

Many models have been proposed for the joint distribution over the time, lineage,

location and nature of mutations. The most simple and general model is the infinite

sites model (Kimura and Crow, 1964). In this model, chromosome locations are indexed

by the unit interval. The time, lineage and location of the mutations are modelled

by a Poisson process with intensity given by ✓k(t)dtd`, where ✓ is a mutation rate

parameter, t is the time of the mutation, k(t) is the number of lineages at time t, and

` is the chromosome location of the mutation: a mutation occurring at time t is placed

at the chromosome location ` ⇠ Uniform(0, 1) on a lineage chosen uniformly at random

from all lineages existing at time t. Due to the nature of the uniform distribution,

with probability 1 all mutations will occur at distinct locations. This model eliminates

much of the complexity that arises from recurrent mutations, polyallelic sites, structure

in mutation rates and natural selection. The assumptions underlying this model are

further discussed in the next subsection.

In the posterior inference for genetic sequences considered in this thesis, we will always

condition on a set of observed mutations. Therefore, although much work has been

done to extend the infinite sites model to capture more aspects of the genetic process,

the results of our inference procedures are agnostic about many aspects of the mutation

model such as the joint distribution over the location, time and precise nature of the

mutation. For example, in SNP data in humans it is known that the relative rate of

mutation between the purine and pyrimidine classes (i.e., the mutations A $ T, and G

$ C between basepairs) are larger than the relative rate of mutation within the two

classes (Felsenstein, 1981). However, in a study/reference genome wide association

study, the bases for the alleles for each SNP are given, and so these relative rates do

not a↵ect posterior inference.
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1.2.3 Assumptions for the coalescent with recombination

In order to derive Kingman’s coalescent we must adopt a neutral mutation model (i.e.,

we assume that mutations do not a↵ect fitness), and we must also assume that the ef-

fective population size is constant. In order to extend Kingman’s coalescent to ARGs,

we must further adopt the assumptions of random mating (i.e., we must assume that

each pair of individuals is equally likely to have o↵spring) and uniform recombina-

tion rates along the chromosome. We will adopt all of these assumptions throughout

this thesis with some exceptions. Firstly, instead of assuming uniform recombination,

we will often consider location-varying recombination rates with arbitrary functional

form. Secondly, we will sometimes consider inference in situations wherein the e↵ective

population size varies throughout the ancestry of the population (this is done with

population bottlenecks in Chapter 3).

The extent to which these assumptions bias studies is controversial. For example,

it has been argued that most mutations are either deleterious or have no a↵ect on

fitness (Kimura, 1983) and so the neutral mutation model could be accurate for the

vast majority of observed mutations (according to Kimura 1983, if a mutation can

be observed in a postfoetal organism, it was not deleterious). Also, random mating

seems like a reasonable assumption to adopt for studies in which the data arise from

a small number of unrelated individuals sampled from a large population. However,

studies adopting the random mating assumption can be confounded if they involve large

numbers of unrelated individuals, or individuals sampled from a small population, or if

they involve chromosome regions which experience significant selective pressure. This

is due to cryptic relatedness, a phenomenon which can lead to inflated false discovery

rates in association studies (Voight and Pritchard, 2005). For more discussion about

these assumptions we refer to Hein et al. (2005).

1.2.4 Inference and approximations

Inference based on ARGs and Kingman’s coalescent is di�cult due to the combina-

torial size of the latent spaces involved, the complicated dependence structures in-

duced by recombination events and the lack of analytic forms for many of the poste-

rior statistics involved in ARGs and coalescents (such as the recombination rates and

e↵ective population sizes). Despite these di�culties, inexact methods such as approxi-

mate Bayesian computation (Huelsenbeck and Ronquist, 2001), sequential Monte Carlo

methods (Görür and Teh, 2009) and methods based on discretization of ARGs (Ras-

mussen et al., 2013) have been used. It is, however, unlikely that these methods could

scale to large datasets consisting of thousands of genomes. For example, in Rasmussen

et al. (2013) the authors apply their argweaver model to phase a dataset consisting of

only 54 genomes provided by Complete Genomics and note that they could not scale

their model to larger datasets. The computational complexity of argweaver and related
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methods is O(N2

L), where N is the sample size and L is the number of markers.

Because of the di�culty inherent in conducting inference directly on ARGs, ARGs are

often approximated by simpler processes and then inference is conducted using these

simpler, approximate processes. One of the most successful approximations of the ARG

is the sequentially Markov coalescent (McVean and Cardin, 2005). The sequentially

Markov coalescent (abbreviated as SMC) takes as its starting point the spatial con-

struction of the coalescent with recombination (Wiuf and Hein, 1999) described earlier

in this section. The SMC relaxes the non-Markovian nature of the spatial construction

by providing a Markovian version of the transition rules of the latent genealogy-valued

process from (Wiuf and Hein, 1999). So, whereas the spatial statistics of the genetic

process are not Markov along the chromosome, the SMC provides the ‘closest’ Markov

version the genetic process. In McVean and Cardin (2005), the authors argue that

not much is actually lost by the SMC approximation. In an experiment in which two

sequences with 20 markers were simulated from either the SMC or the full spatial con-

struction from Wiuf and Hein (1999), the pairwise correlation among the markers was

found to be essentially the same for both cases. In other work, the estimates of the

time to the most recent common ancestor of a marker found using the SMC was found

to be quite accurate (Li and Durbin, 2011).

In the SMC, the genealogy of the observed genetic material is assumed to be governed

by the following genealogy-valued Markov jump process (MJP). As before, we assume

that we are constructing a genealogy of N genetic sequences. For the SMC, first, the

latent genealogy of the N sequences at the left-most location of the chromosome is

sampled from Kingman’s coalescent. Next, the MJP is simulated from left to right

such that jump events occur with rate ⇢T (`)/2 where T (`) is the total branch length

of the latent genealogy at location `. If a jump event occurs at location `, the latent

genealogy is modified by drawing a point uniformly on the genealogy at ` � � and

then removing the edge that the point lies on. This partitions the genealogy into two

sub-genealogies: a floating genealogy and a main genealogy. (The main genealogy is

the sub-genealogy that coalesced more anciently.) The floating genealogy and the main

genealogy are then coalesced to form the new genealogy at location `. This is done

by extending the lineage of the floating genealogy backwards in time and coalescing

it with a lineage chosen uniformly from the lineages of the main genealogy with rate

k(t)⇢/2 where, as for the definition of Kingman’s coalescent above, k(t) is the number

of distinct lineages existing at time t in the main genealogy. (The new coalescent time

of the two genealogies may be more ancient than the TMRCA of the main genealogy).

A worked example of the intensity of a sample from the SMC is given in Figure 1.3.

For a more detailed description of the SMC, we refer to Wiuf and Hein 1999.

Even though its definition is simple, inference based directly on the SMC, such as the

genealogy-valued hidden Markov model (HMM) fromWebb et al. (2009), is still unlikely

to scale to large datasets. (In Webb et al. 2009 the authors applied their model to phase
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Figure 1.3: Worked example of a sample from the sequentially Markov coalescent.
Suppose that the SMC is simulated with N = 6 sequences and the tree at the first
location (A), the location of the first event (B), and the tree at the first event are
all given as above. From section 1.2.1, the intensity of drawing the tree at A under
Kingman’s coalescent is 2700 · exp(�5t1� 4t2� 3t3� 2t2� t1) where t1, . . . , t5 are
the times of the coalescent events. The total size of the tree at A is 6t1 + 5(t2 �
t1) + . . .+2(t5� t4)=T . The event rate of the MJP for the SMC after location A
is ⇢T/2 and so the intensity of the first event is ⇢T/2 exp(�⇢T/2`B) where `B is
the distance from A to B. At B, a point is chosen on the edge connecting sequence
3 to its coalesce with sequence 4. Since the point is chosen uniformly, the intensity
of that event is 1/T . Finally, the floating genealogy consisting of the lineage of
sequence 3 is coalesced with the main genealogy (this is the gray image between
locations A and B in the plot). Since the floating genealogy coalesces before the
first event of the main genealogy, this event occurs with intensity 5 exp(�5tB)
where tB is the time to coalescence of sequence 3 at B. Thus, the intensity of
the sample from the SMC shown in the plot is the product of these intensities:
13500 · exp(�5t1 � 4t2 � 3t32t2 � t1 � 5tB)/T .
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15 mouse genomes sequenced by Perlegen Sciences.) Instead, many recent models use

the Markov assumption of the SMC and further simplify the latent space by considering

partition-valued processes and HMMs instead of the genealogy-valued process. These

models are discussed in the next subsection.

1.2.5 Approximating the SMC with dynamic-clustering

As we saw earlier in this section, the joint distribution governing genetic sequences

sampled from a population can be approximated by a genealogy-valued Markov process

that varies along the chromosome (this is known as the SMC approximation). Each

sequence in the sample corresponds to a leaf in the genealogies (i.e., a vertex at the

bottom of the tree). At each location on the chromosome, the genetic similarity between

each pair of sequences can be measured by taking the time until the material from the

two sequences at that location coalesce, implied by the genealogy (i.e., the hypermetric

induced by the genealogy viewed as a tree). All sequences that are genetically similar

with respect to the genealogy at a chromosome location have similar mutation patterns

around that location.

Genealogies can be well approximated by partitions. A partition of a finite set S is a

set of disjoint subsets (called blocks) of that set such that the blocks are nonempty and

their union is all of S. For a given genealogy, we can induce a partition by choosing

a time t and placing all elements that coalesce earlier than that time into the same

block. In a similar way, a genealogy-valued process induces a dynamic-clustering (i.e.,

a partition-valued process) by repeating this procedure at every location of the process.

Note that the models we will discuss in this thesis do not operate by firstly inferring a

genealogy and then forming the partitions induced by choosing a time t and partitioning

the sequences based on their coalescence classes. Instead, this view of induced partitions

serves as intuition about how approximating genealogy-valued processes by dynamic-

clustering works.

1.2.6 The product of approximate conditionals

The SMC approximation, combined with this intuitive link between dynamic-clustering

and genealogy-valued processes, has lead to much research based on HMM approx-

imations of the genetic process. The first such model proposed was the product of

approximate conditionals (PAC) model (Li and Stephens, 2003). In the PAC model,

each sequence is modelled as a composition of noisy copies of segments from the other

sequences. The boundaries between the segments is governed by a transition rate c,

which can depend on the chromosome location. In the construction of the PAC model,

the sequences are indexed and each sequence is modelled in order, conditioned only on

sequences with smaller indices.
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The PAC model approximates the SMC by providing a simple HMM defined along the

chromosome in which the genetic similarity between sequences is a function of chromo-

some location. Inference based on the PAC model has an O(N2

L) complexity, which is

relatively tractable when compared to the complexity of models based directly on the

SMC or ARG. In addition, unlike the models which were developed before it (such as

the composite likelihood model from Fearnhead and Donnelly 2002), the PAC model

achieves this relatively tractable complexity while considering the joint distribution

over all locations rather than just considering the joint distributions between pairs of

locations.

Conditioned on the allele patterns of the N sequences, this generative process induces

a posterior distribution on the rates c

`

and the mutation rate ✓. Posterior inference

about c
`

and ✓ can be done using MCMC and the forwards-backwards algorithm. The

conditional distribution of c
`

and ✓ can thus be represented by samples, or the MAP

of these parameters can be estimated (Li and Stephens, 2003).

Unfortunately, the construction of the PAC model does not lead to an exchangeable

distribution—the distribution of the rates depends on the order in which the individuals

are presented in the study. Furthermore, while tractable relative to inference based on

the SMC or ARG, the O(N2

L) complexity for inference based on the PAC model still

precludes scalability to large studies.

The PAC model induces a dynamic-clustering on a collection of sequences. The PAC

model requires that the order of these sequences be specified. The clustering is provided

in a sequential scheme in which one individual is considered at a time (i = 1, 2, . . .).

There are i � 1 possible clusters for each location of each sequence i > 1. For i = 2,

each location is assigned to the first cluster. For i > 2, the first location of sequence i

is assigned to cluster j < i with probability 1/(i � 1). Then, for each location ` > 1,

with probability c

`

the cluster assignment of sequence i at location ` is copied from the

cluster assignment of sequence i at location `�1, and with probability 1�c

`

the cluster

assignment of sequence i at location ` is again assigned to cluster j < i with probability

1/(i� 1). Here, c
`

captures the probability of breaks in the haplotype mosaic induced

by ancestral recombination events.

This model, and the likelihood that relates it to the observed SNPs, is given formally

by the generative process presented in the following enumeration:

1. The alleles for the biallelic locations on the first sequence are drawn uniformly

from all 2L possible haplotypes.

2. For each sequence i such that 1 < i  N :

(a) A Markov chain is drawn with i�1 states corresponding to the first i�1

sequences. The initial distribution of the Markov chain is uniform over

the i� 1 states. Then, between each consecutive pair of locations, with

probability c

`

/(i�1) the Markov chain transitions to one of the other states



Review of statistical genetics and related work 26

drawn uniformly from all i�2 other states. With probability 1� c

`

, the

Markov chain has a self transition (and the state stays the same).

(b) For each location ` such that 1  L:

i. With probability ✓: the allele at location ` for sequence i is set to be the

same as the allele of the sequence corresponding to the Markov chain

state at location `.

ii. Otherwise: the allele at location ` for sequence i is set to 0 with proba-

bility 1/2 and to 1 with probability 1/2.

This dynamic-clustering has a couple counter-intuitive properties. Firstly, because

the clusters available to each sequence depends on the ordering of the sequences, the

resulting dynamic-clustering is not an exchangeable distribution (this can be seen for

example because sequence i > 1 can only join clusters 1, . . . , i�1). Secondly, the cluster
assignment of the first sequence is undefined (instead of assigning the first sequence to

clusters and then generating the alleles for the first sequence as an imperfect mosaic

formed by those clusters, instead the alleles for the first sequence are drawn uniformly

from all 2L possible haplotypes).

In Li and Stephens 2003, the authors propose averaging over many random orderings of

the sequences in order to overcome the limitations listed above. Many methods based

on Li and Stephens 2003 (such as the three methods we will present in this thesis) are

designed to be exchangeable, mitigating the need for averaging over random orderings.

1.2.7 Classification of HMMs in statistical genetics

The limitations and counter intuitive properties of the PAC model have been addressed

extensively by the HMM methods for genetic sequences developed over the past decade.

In addition, these models have been extended to capture more advanced aspects of the

genetic process such as population structure and relatedness.

We can classify all HMMs based on the PAC model broadly into three classes according

to the nature of the transition matrices that their generative processes induce on the

conditional state assignment of each sequence. Many of these models use a version

of the transition rate c of the PAC model to regulate self-transitions (as in ‘sticky’

HMMs Fox et al. 2011) and haplotype lengths: in the prior, a sequence will transition

with rate c and if a transition occurs, a new state is chosen with a probability specified

by the model. If a transition does not occur, the next state of the item is a copy of

the old state. The parameterization of that probability can involve latent parameters

associated with the sequence identity (i), or the chromosome location (`), or both, or

neither of these two indices.

1. Location dependent models. The first class of HMMs includes models for which the
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transition matrices of the conditional state assignment of each sequence depend

only on the chromosome location. This class contains fastPHASE (Scheet and

Stephens, 2006), which builds on the PAC model by supposing that, rather than

copying one of the i�1 sequences that appear before it, the i-th sequence copies

one of K latent, unobserved haplotypes. The prior probability in the fastPHASE

model of copying the k-th latent haplotype given that a transition occurs is ⇡
`k

,

where ⇡
`k

is the latent proportion of haplotype k at location `. The allele emis-

sion probabilities for each haplotype and the proportions ⇡
`k

are learned during

inference. The fastPHASE model is exchangeable and the K latent haplotypes

(rather than the observed sequences) provide centroids for the clusters. Other

models in this class include IMPUTE/IMPUTE2 (Marchini et al., 2007; Howie et al.,

2009) and SHAPEIT/SHAPEIT2 (Delaneau et al., 2012, 2013). In these models,

the transitions at each location are parameterized by their location index within

latent haplotype structures.

The prior transition and emission matrices (respectively) induced on the condi-

tional state assignment of the i-th sequence under the fastPHASE model are as

follows:
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(1.1)

From (1.1), we see that the o↵-diagonal elements of the transition matrix depend

only on the location ` and not the sequence index i. The BNPPHASE model that

we will present in Chapter 3 is also contained in this first class of HMMs.

2. Sequence dependent models. For the second class of HMMs, the transition ma-

trices depend only on the sequence identity (or, the sequence index). The most

popular model in this class is the admixture model STRUCTURE (Pritchard et al.,

2000; Falush et al., 2003), which, in its multilocus form has the following condi-

tional transition and emission matrices:
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(1.2)

When the o↵-diagonal entries of the transition matrix in (1.2) are normalized

(i.e., when we condition on the event that a transition occurs) we see that the

transition does not depend on the chromosome location ` and instead depends on
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only the sequence identity i. In admixtures, each individual inherits alleles from

the admixed populations, but the proportion of alleles from each population in

the admixture can vary from one individual to another due to genetic drift. This

variance is captured by the STRUCTURE model and other models with sequence

dependence. Recently, a Bayesian nonparametric version of STRUCTURE has been

developed (De Iorio et al., 2015). In that work, the transition matrix (1.2) is

extended to an HMM with infinitely many states.

3. Models with neither location nor sequence dependence. In this third class of

HMMs, all of the structure in the genetic process is encoded directly in the state

transition probabilities rather than in latent variables associated with individual

sequences or chromosome locations. In the priors induced by HMMs from the first

two classes, when transitions occur, the previous state of a sequence is ‘forgotten’

and a new state is chosen with either a location-specific or an individual-specific

distribution.

This class includes homogeneous HMMs in which the transition matrix is a

stochastic matrix (i.e., there are no restrictions on the transition matrix other

than that its columns sum to one). The HDP-HMM from Xing et al. (2006);

Xing and Sohn (2007a) is of this form. Other models in this class include

BEAGLE (Browning and Browning, 2009). The DFCP that we will present in Chap-

ter 4 is also an example of this class. The BEAGLE software, like the DFCP, infers

latent haplotype graphs that parsimoniously describe a population genetic se-

quence data. However, the BEAGLE model does this in an ad-hoc, non-Bayesian

way. As a result, the BEAGLE model is not reversible or exchangeable.

4. Location and sequence dependent models. In the final class of HMMs, the nor-

malized o↵-diagonal elements of the transition matrices depend on both the chro-

mosome location and the sequence identity. These models can arise when the

definitions of the first two classes of models are combined. For example, in Scheet

and Stephens (2006), an extension to the fastPHASE model is considered for data

collected from several subpopulations. The authors assume that each sequence

is drawn from one of the subpopulation, and they allow the proportions ⇡
`

to

vary among the subpopulations. In this case, (1.1) is extended by replacing ⇡
`k

with ⇡
si,`,k where s

i

is the subpopulation assignment of individual i (thus adding

sequence dependence through s

i

).

1.3 Contributions of this thesis

Due to recombination events occurring in the ancestry of a population, similarity among

genetic sequences in individuals is a function of chromosome location. Therefore, if at

one end of a chromosome two sequences have identical patterns of mutations, at the
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Figure 1.4: Genetic similarity is a function of chromosome location. Sequences
of material are from two di↵erent individuals. Sections from each end of Chro-
mosome 1 are displayed (Karchin et al., 2005). Sections are neighborhoods of
the first and last SNP on Chromosome 1 as reported in data from The Interna-
tional HapMap Consortium (2003). Red and blue indicate alleles. Grey indicates
homologous material (i.e., basepairs that are the same for all humans). At loca-
tion rs13441248, the two sequences have the same alleles whereas at rs1665289
the two sequences have di↵erent alleles. Genetic processes leading to this sort of
structure are explained in section 1.2.

other end of the chromosome the mutation patterns of the two sequences could be

di↵erent from each other. See Figure 1.4 for an example involving single nucleotide

polymorphism, or SNP, data (SNPs are defined in section 1.1). Hidden Markov mod-

els (HMMs) and chromosome painting models are commonly used to approximate this

location dependent genetic similarity (Scheet and Stephens, 2006; Browning, 2006; Mar-

chini et al., 2007; Delaneau et al., 2012, 2013). In such models, each genetic sequence

is associated with a sequence of latent states. The states are clusters of locally-similar

sequences: two sequences that share the same state at a given location have similar

patterns of mutations around that location.

This work contributes two new HMMs for genetic similarity based on Bayesian non-

parametric priors. In section 1.3.1 we provide the intuition behind Bayesian statistics

and Bayesian nonparametrics. Then, in section 1.3.2 we preview the three models that

constitute the contribution of this thesis.

In addition to the presentation and exploration of these models, we also contribute a

derivation of the conditional distributions for random coagulation and fragmentation

of partitions (Elliott and Teh, 2012). These conditionals are required for inference in

the DFCP model.

1.3.1 Introduction to Bayesian nonparametrics

In Bayesian statistics, inference is performed by first placing a prior distribution on

a model’s parameter space. Then, after some data are observed, the posterior distri-

bution of the parameters conditioned on the observed data is computed using Bayes

rule. This can be done through Monte Carlo Markov chain simulation or in some cases

through analytic calculation (i.e., by solving the integral appearing in the denominator

of Bayes rule). Alternatively, this can be done through sequential Monte Carlo (SMC)
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or approximately through variational inference. Finally, using the posterior distribu-

tion, the model parameters can be estimated. For genetic data, this can provide insight

into the processes governing the data such as recombination rates, mutation rates or

time to most recent common ancestor (TMRCA). Estimation of missing data can also

be provided by this framework, allowing imputation of noisy or missing genotype data

in assays. Bayesian methods are standard in statistics and confer many benefits such

as quantification of uncertainty and shrinkage (for a review of Bayesian methods see

Gelman and Meng 2004 or Hjort et al. 2010).

Bayesian nonparametric statistics were originally designed to provide priors with both

large support and tractable posterior distributions (Hjort et al., 2010; Ferguson, 1973).

The bedrock of Bayesian nonparametric statistics is the Dirichlet process (DP). The

DP can be thought of as a prior on the component weights of a mixture model with an

infinite number of components. As such, the DP can be thought of as a generalization

of the Dirichlet distribution to an infinite simplex wherein each simplex dimension

represents the location of an atomic mass (i.e., a draw from a DP is a weighted sum of

countably many atomic masses, whose weights sum to one). Inference in mixture models

based on the DP prior simultaneously infer both the number of mixture components

and the likelihood parameters of the components (parameters such as the minor allele

frequencies in our genetic applications). The DP provides a particularly useful prior for

HMMs. Marginally, finite HMMs define a mixture model over the space of emissions

and transitions. In this formulation, the states of the HMM correspond to mixture

components, and marginally the coe�cient of each mixture component is given by the

stationary distribution over the HMM states (Teh et al., 2006). By using a DP priors

on the transition matrix, the DP can allow the number of latent HMM states to be

inferred and to be unbounded (Beal et al., 2002) (although, if the true number of latent

HMM states is finite, the DP will be inconsistent Ghosal 2010).

There are three main advantages for inference conferred by DP priors for HMMs:

1. In many parametric HMMs (i.e., HMMs with a fixed and finite number of states),

the HMM states are labelled with parameter values or indices. These models are

invariant to permutations of the labels. The symmetries arising from each of the

permutations of the labels therefore create an abundance of posterior modes in

the model. Because modes are attractive, these symmetries tend to make MCMC

inference algorithms converge more slowly. The intuition behind this can be

understood as follows: if an MCMC state is the same ‘distance’ from two of the

modes then the state is ‘pulled’ towards both of the modes with an ‘equal force’

and so the state will not move as quickly towards any given mode as it would if

there were fewer modes. This is known as the label switching problem (Celeux,

1998; Jasra et al., 2005). DP priors can avoid this problem by integrating out

the label of the underlying mixture models, which results in distributions defined

directly on the space of partitions of the data items. This is illustrated in Teh
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et al. (2011).

2. Typically, the number of clusters used in HMMs for genetic variation is chosen

using model selection, or reversible jump MCMC (RJMCMC). Model selection

requires either training the model separately for each proposed number of states

(the model classes) and evaluating Bayes factors and information criterion, or

ad-hoc methods for each model class. With DP priors, the number of clusters is

automatically inferred along with the other model parameters. Inference using

DP priors is often simpler than RJMCMC and the prior specified by DPs are

often more naturally connected with the assumptions about the data than the

prior specified by RJMCMC (this is due to the connection between the Dirichlet

process and allele sampling, which is explained in Chapter 2). DP priors can

therefore reduce the amount of computation time required to conduct inference

on data for which the number of clusters is not known.

3. DP priors add flexibility to models by increasing their expressiveness (i.e., their

priors have a larger support). This can lead to higher imputation accuracy and

faster inference (Hjort et al., 2010).

The three models we contribute in this thesis allow these benefits to be realized: in all

three models we provide DP priors for HMMs of genetic variation and we integrate out

the labels and parameters of the HMM states to avoid the label switching problem.

1.3.2 Bayesian nonparametric models of genetic variation: a preview

With these benefits of Bayesian nonparametrics listed above in mind, in the remainder

of this section, we will preview the three new models contributed in this thesis, giving

a brief overview of their natures.

1.3.2.1 The Bayesian nonparametric version of fastPHASE

The first model we will present in this thesis (the BNPPHASE model) is based on a

hierarchical Dirichlet process (Teh et al., 2006) in which the latent states correspond

to genetic founders or admixture components of a population. In previous research,

hierarchical Dirichlet process HMMs (HDP-HMMs) with arbitrary transition matrices

have been applied to genetic data (Xing et al., 2006; Xing and Sohn, 2007a). As we saw

in section 1.2, genetic data is highly structured. By ignoring this structure, arbitrary

transition matrices can over-fit when trained on genetic data. Furthermore, genetic

processes often have a nonhomogeneous component, and in Xing et al. (2006) and Xing

and Sohn (2007a), the authors assumed that the transition matrices were homogeneous

(i.e., the same transition matrix was used at each location on the chromosome).

The BNPPHASE model extends Xing et al. 2006 and Xing and Sohn 2007a by forming a
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Figure 1.5: Haplotype structure of the Utah residents with ancestry from north-
ern and western Europe (CEU) and Yoruba in Ibadan, Nigeria (YRI) populations
from HapMap (The International HapMap Consortium, 2003) found by the DFCP
model. Data consists of SNPs from a region near the TAP2 gene from the HapMap
project. x-axis indicates SNP location and label. y-axis represents clusters from
last sample of an MCMC chain converging to DFCP posterior. Letters inside clus-
ters indicate base identity. Lines between haplotypes indicate transitions between
contiguous haplotypes.

nonhomogeneous HMM and adding additional structure to the transition matrix such as

emphasized self transitions (Fox et al., 2011). This additional structure is informed by

approximations of the genetic process such as those developed in Scheet and Stephens

(2006). The resulting structure in the transition matrix of the BNPPHASE model implies

that BNPPHASE has fewer free parameters than an HDP-HMM with arbitrary transition

matrices. This leads to more e�cient learning in the BNPPHASE model and also less

over-fitting.

As in Xing et al. (2006) and Xing and Sohn (2007a), the BNPPHASE model is nonpara-

metric and the number of states is learned during inference simultaneously with the

other model parameters. The finite truncation of the BNPPHASE model onto the first K

states is similar to a version of the fastPHASE model Scheet and Stephens (2006) with

K latent states, hence its name (this will be explored further in Chapter 3).

In Chapter 3, we derive the BNPPHASE model and show how it approximates the genetic

processes that will be described in section 1.2. We develop inference for the BNPPHASE

model based on MCMC and we apply it to genotype imputation and to estimation of

the time to the most recent common ancestor of a sample.

1.3.2.2 The discrete fragmentation-coagulation process

The second model that we will present in this thesis is the discrete fragmentation and

coagulation process (DFCP). The DFCP is a partition-valued HMM wherein the latent

partition transitions from one location to the next by the splitting and merging of

its clusters. As a model of genetic data, the DFCP provides a dynamic-clustering for

the observed genetic sequences. At each location of interest on the chromosome, a

latent partition of all of the genetic sequences is proposed. The transitions between

partitions at adjacent locations are given by random fragmentation and coagulation
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operators (Pitman, 2006). The parameterization of the operators is chosen in a way

such that the resulting marginal prior distribution on the partition structure at each

location of interest is induced by a DP, and has other desirable statistical properties

(these properties are discussed in more detail in Chapters 2 and 4).

The DFCP is informed by the fine-scale haplotype structure of genetic variation (Daly

et al., 2001). A haplotype is a pattern of mutations on a chromosome that all tend to

be inherited together by virtue of their proximity to each other on the chromosome.

Genetic variation of a population can often be described by piecing together a haplotype

mosaic using the haplotypes that recur in the population. The end points of these

blocks correspond to recombination hotspots (Je↵reys et al., 2001), or to locations

of recombination in the ancestry of the population. This phenomenon was explained

further in section 1.2.

The DFCP is a discrete analogue of the continuous fragmentation-coagulation process

(CFCP) which was previously proposed for modelling local mosaic structure in genetic

sequences (Teh et al., 2011). Inference algorithms derived for the CFCP also scale linearly

in the number and length of the sequences (Teh et al., 2011). However, since the CFCP

is a Markov jump process the computational overhead needed to model the arbitrary

number of latent events located between two consecutive observations might preclude

scalability to large datasets. The DFCP provides the advantages of the CFCP whilst being

more scalable. The CFCP can also be derived as the limit of the DFCP achieved as the

sampling frequency of the chromosome goes to infinity.

In Chapter 4, we will fully describe the DFCP model. We will present inference for the

DFCP based on a forwards-filtering/backwards-sampling MCMC algorithm. In a series

of experiments, we compared the scalability, MCMC mixing and imputation accuracy

of the DFCP and the CFCP models. The experiments were done using SNP data from the

Thousand Genomes project (The 1000 Genomes Project Consortium, 2010) and data

simulated from the coalescent with recombination model (Hudson, 2002). An example

of a draw from an MCMC chain with the DFCP posterior is given in Figure 1.5. In

that figure, a dynamic-clustering of sequences of mutations around the TAP2 gene in

a dataset from the HapMap project (The International HapMap Consortium, 2003) is

shown.

1.3.2.3 The Wright-Fisher partition valued process

The third and final model that we will present in this thesis is the Wright-Fisher

partition valued process (WFP). Like the DFCP and the CFCP, the WFP defines a process

directly on the set of partitions of a set of data items. In the WFP, the latent partitions

transition through the shrinking and growing of their clusters according to simple rates.

The WFP model has much similarity to the BNPPHASE model: in both models, HMM

states correspond to population proportions that vary ‘smoothly’ over the duration of



Contributions of this thesis 34

the process. As a result, the WFP is useful for the same sort of imputation problems

that we will apply the BNPPHASE model to. However, because the WFP is not based

on a hierarchy, its construction is simpler. Further, the WFP model is reversible (i.e.,

it assigns the same probability to observed genetic data regardless of which end of

the chromosome is at the first HMM location). In contrast, BNPPHASE model and the

fastPHASE model from Scheet and Stephens (2006) are not reversible.

We provide inference for the WFP model using particle MCMC methods. This is ex-

plained in more detail in Chapter 5. Also in Chapter 5, in a short departure from

the main application of this thesis, we apply the WFP model to voting data from the

Canadian House of Commons.



Chapter 2

Bayesian nonparametrics and

dynamic-clustering

2.1 Introduction

Bayesian nonparametrics were first applied as a model for the prior distribution of

nonparametric parameter spaces (Ferguson, 1973). In this classical application, the

Dirichlet processes were used to associate a latent parameter with each observed data

item. A draw from the DP posterior induces a clustering of the data items through the

equivalence classes formed by the identity of the latent parameters: all data items with

the same latent parameter are placed in the same cluster.

The DP enjoys many statistical properties that make it a versatile and tractable prior.

For example, it is exchangeable: given a DP prior, the posterior distribution on the data

items does not depend on the order in which the data items are observed. Exchange-

ability is a desirable property for distributions designed to model studies in which the

inclusion of data items into the study is an independent, random procedure (examples

of such studies include surveys in which respondents are polled). However, for studies in

which covariates are also collected, the joint distribution of the data items conditioned

on the covariates is no longer exchangeable.

We will illustrate this conditional non-exchangeability by considering latent Dirichlet

allocation (LDA) for topic models of documents (Blei et al., 2002), which is a typical

example application. We will think of documents as collections of words. In a topic

model, each document is associated with a latent distribution over topics. Further, we

will associate to each topic a latent distribution over all of the words in a vocabulary.

Under the LDA model, each word in a document is assumed to be generated by the

following process: first, a topic is chosen according to the document-specific distribution

over topics. Second, the word is chosen according to the topic-specific distribution over

words given by the topic chosen in the first step. A description of the LDA model is
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Figure 2.1: Plate diagram for the LDA model. xid is the d-th word of the i-
th document. yi is the distribution over topics for the i-th document. z` is the
distribution over words of the `-th topic. ✓ and ' are priors on y and z respectively.

given more precisely by the graphical model in Figure 2.1.

The formulation of the LDA in the above paragraph is exchangeable. But suppose that

the documents are papers published in the proceedings of some annual conference. If

we also observe as a covariate the year in which each of the documents was published,

then due to trends in the keywords, and the popularity of various topics discussed in the

conference, we would not expect the documents to be exchangeable conditioned on the

publication year. We would, however, still expect the documents to be exchangeable

within a given year (i.e., the joint distribution induced on the subset of documents that

were all published in a given year is exchangeable).

To deal with covariates and conditional non-exchangeability, dependent Dirichlet pro-

cesses have been developed that incorporate covariates into the model through a de-

pendency structure (MacEachern, 1999). This has given rise to the field of dependent

random processes (DRPs), which generally augment exchangeable random processes

with covariates.

Like the Dirichlet process, DRPs can also be used to induce clusterings on data. There

are two main ways in which such clusterings can be realized by DRPs. In the first way, a

latent random process is parameterized by a covariate t (here, t could be the observation

time or location of the item). Each data item i is associated with a single covariate

value t

i

, and a single clustering is produced for the items (this clustering is ‘static’

in the sense that each item is in a single block of the clustering, and the clustering

is not parameterized by t). This is the classical way in which DRPs were introduced

in MacEachern (1999), and is used for example in dynamic LDA models (Rao and

Teh, 2009), function estimation (Dunson, 2006) and in relational models (Miller et al.,

2009; Ho et al., 2010).



The Dirichlet process through measures, partitions and sequential schemes 37

In the second way, both the latent random process and the data items are parameterized

by t. In this case, each data item i is associated with a series of observations. The items

are clustered jointly at each value of the covariate t, producing a dynamic-clustering.

This second way is more relevant for models of genetic variation: The chromosome is a

linear structure and genetic sequence data typically samples genetic material from many

chromosome locations. The models that we will present in this paper are examples of

this second way of clustering data through DRPs. Other examples include (Palla et al.,

2014), (Ahmed and Xing, 2008), (Beal et al., 2002) and (Blei and Frazier, 2011).

In this Chapter, we will give a formal development of the Dirichlet process and the

hierarchical Dirichlet process (Teh et al., 2006). In sections 2.2 and 2.3 we develop the

theory and notation required to derive inference for the three dynamic-clustering models

presented in this thesis. In section 2.4 we describe the fragmentation and coagulation

operators, which are ways of introducing dependencies between clusterings through the

splitting and merging of their clusters. We will discuss the duality of the fragmentation

and coagulation operators. As a novel contribution of this Chapter, we derive the

conditional distributions of fragmentation and coagulation. These conditionals will be

used in Chapter 4 to derive Gibbs updates for the DFCP.

2.2 The Dirichlet process through measures, partitions

and sequential schemes

In finite mixture models, data items are assumed to be generated by a process in which

first, the latent component assignment of each data item is drawn from a distribution

over K mixture components and second, each data item is drawn from a distribution

parameterized by its component assignment. This is illustrated in equation (2.1) below.

To provide a conjugate posterior distribution, often the Dirichlet distribution is used

as a prior on the distribution of the data items over the mixture components. Because

the Dirichlet distribution is supported on the K-simplex, a draw from the Dirichlet

distribution can be thought of as a random probability distribution function over the

K mixture components. This is illustrated in the following generative process for a

mixture model of some data items x
i

:
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on the set (!
1

, . . . ,!

K

) such that
P

K

k=1

!
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= 1 and !

k

> 0. The vector a

1

, . . . , a

K

are hyperparameters (a
k

> 0) and z

i

are the latent component assignments for the

data items. The symbol f is a law governing the likelihood of the data for each mix-

ture component, under the parameters of the mixture component ( ). The law f is

parameterized by  2 X, and the probability measure µ is a prior on  .

The Dirichlet process extends this Bayesian theory to infinite mixture models. Rather

than providing a random distribution function on the K-simplex as in equation (2.1),

the Dirichlet process provides a random probability measure G supported on the param-

eter space X (the space X must be a Polish space, more detail is given in Ghosal 2010).

The Dirichlet process is defined through its joint distribution on finite collections of dis-

joint measurable subsets of X.

Definition 1. Let µ be a probability measure on X and let ↵ > 0 be a concentration

parameter. A random probability measure G on X is a Dirichlet process if for every

partition of X into a collection of disjoint measurable subsets B

1

, . . . , B

K

:

(G(B
1

), . . . , G(B
K

)) ⇠ Dirichlet(↵µ(B
1

), . . . ,↵µ(B
K

)). (2.2)

For each ↵ > 0 and probability measure µ there exists a unique random probability

measure G satisfying (2.2). The existence and uniqueness of G can be proven using the

normalization of Lévy processes (Ferguson, 1973). We will denote this Dirichlet process

by G ⇠ DP(↵, µ). With probability one, G is a discrete probability measure and as

long as µ does not have finite support, G is a sum of a countably infinite number of

atoms (Ghosal, 2010).

By using the countability of the support of the Dirichlet process, with probability 1 we

can also construct it through the following stick breaking scheme, which makes explicit

the joint distribution among the atom weights and atom locations:

G =
1X

k=1

!

k

�

 k
, ⌫

k

i.i.d⇠ Beta(1,↵), !

k

= ⌫

k

k�1Y

k

0
=1

(1� ⌫
k

0),  

k

i.i.d⇠ µ. (2.3)

Here the �s in the definition of G are the atoms (they are Dirac delta functions). We can

define a random variable ' with range 1, 2, . . . induced by ! through Pr(' = k) = !

k

.

We will denoted this by '|! ⇠ !. Through this definition, ! can be thought of as a

specification of a prior on the masses of the components of the mixture model: each

k = 1, 2 . . . is a component of the mixture model, and the random variable ' selects

a component of the mixture by sampling from the distribution given by the masses of

the components. The distribution of the infinite random vector ! is referred to as the

Gri�ths-Engen-McCloskey (GEM) distribution, and is denoted by ! ⇠ GEM(↵).

As in (2.1),  
k

is the parameter of the k-th mixture component. The component

assignments ('
i

)
i2R induce a partition R on R through the equivalence relation given



The Dirichlet process through measures, partitions and sequential schemes 39

1

2

3

4
5

6

7

Figure 2.2: Example clustering R of the set R = {1, . . . , 7} into 4 blocks. #R =
4, and R = {{1}, {2, 3, 7}, {4, 5}, {6}}. Block assignment of item 1 is '1 = {1},
block assignment of item 2 is '2 = {2, 3, 7}, block assignment of item 3 is '3 =
{2, 3, 7} and so on (i.e., block assignment of n is the unique a 2 R such that
n 2 a).

by i ⌘ j if '
i

= '

j

. (A partition of a finite set R is a set of nonempty disjoint subsets

of R, which we will refer to as blocks, whose union is all of R.) The distribution

on partitions of R formed by marginalizing ! is called the CRP (Chinese restaurant

process) distribution and it is denoted by R ⇠ CRP(R,↵). The law of the CRP

distribution is given by the following equation (we refer to Aldous 1985 for a derivation):

Pr(R = A|↵) = ↵

#A�(↵)

�(↵+#R)

Y

a2A
�(#a). (2.4)

Here, A is a partition of R and #A is the cardinality of A as a set (i.e., #R is the

number of blocks in the partition R).

2.2.1 Ewens’ sampling formula and random partitions

We will now consider the distribution on partitions (i.e., clusterings) of the set R =

{1, . . . , n} defined through Ewens’ sampling formula (Ewens, 1972; Fisher et al., 1943).

This formula arises under mild genetic assumptions as the distribution on the pattern

of alleles observed at a locus. Under Ewens’ sampling formula, if we observe alleles of n

individuals and if ⇣
i

denotes the allele of individual i, and if s
j

is the number of alleles

that appear j times in the sample (i.e., s
1

+ 2s
2

+ . . .+ ns

n

= n), then:

Pr(s
1

, . . . , s

n

|↵) = n! �(↵)

�(↵+ n)

nY

j=1

↵

sj

j

sj
s

j

!
(2.5)
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Here ↵ > 0 is a concentration parameter. As in the case of the CRP defined in the

previous section, the allele assignments ⇣
i

induce a partition (or clustering) on the set

R = {1, . . . , n}. This distribution on partitions is given by ⇣
1

, . . . , ⇣

n

and each block of

the partition is formed by taking blocks of R for each equivalence class of the relation

in which i ⌘ j if they have the same allele (i.e., if ⇣
i

= ⇣

j

). We will denote this partition

by R. We can use Ewens’ sampling formula to assign a probability to R and thereby

define a random partition. In order to do this, we must multiply equation (2.5) by

the number of partitions of R that yield the sequence (s
1

, . . . , s

n

) to correct for the

multiplicity of the sequence. This number is n!�1
Q

n

j=1

j!s
j

!. After this multiplication

and the change of variables s
m

= #{a 2 R : #a = m}, we find the probability of R is

given by the CRP probabilities in equation (2.4).

2.2.2 The CRP through a sequential scheme

A sample from a CRP can be realized through the following sequential scheme. In this

scheme, R can be enumerated in any fixed order (Blackwell and MacQueen, 1973):

1. The first element of R joins a block by itself.

2. For i > 1, the i-th element of R joins a block by itself with probability (w.p.)

↵/(i+ ↵� 1) or an existing block a w.p. #a/(i+ ↵� 1).

The probability of arriving at a given partition R through this scheme is also given

by equation (2.4), which shows that this scheme does not depend on the fixed order

in which the items of R are enumerated. The invariance of the probability of R to

permutations of R means that the CRP distribution is exchangeable. As an example,

consider the partition of {1, . . . , 7} given in Figure 2.2. In that figure, for Ewens’

sampling formula, s
1

= 2, s
2

= 1, s
3

= 1, s
4

= 0, . . . , s
7

= 0 and so the probability of this

partition as given by equation (2.5) is 7!�(↵)/�(↵+7) ·↵2

/(12 ·2!) ·↵1

/(21 ·2!) ·↵1

/(3 ·1!)
multiplied by 1!2! · 2!1! · 3!1!/7!, the number of partitions with the same values of

(s
1

, . . . , s

7

). Under the CRP, equation (2.4) defines the probability of the partition given

in Figure 2.2 to be ↵4�(↵)/�(↵+7)·2·1·0!·0!. Finally, under the above sequential scheme,

assuming that the items are enumerated in increasing order, the probability of arriving

at the given partition is 1 ·↵/(↵+1) ·1/(↵+2) ·↵/(↵+3) ·1/(↵+4) ·↵/(↵+5) ·2/(↵+6).

These three probabilities are equal. They are equal to 2↵3

/(↵+1)·1/(↵+2) · · · 1/(↵+6).

2.3 The hierarchical Dirichlet process

Suppose that we have sets R
1

, . . . , R

L

and we wish to form partitions of these sets and

then link the blocks of all of the partitions together to form a dynamic-clustering. One

of the simplest and most standard ways of doing this is through a hierarchical Dirichlet

process (HDP), which we now describe. Let ↵
0

> 0 and ↵ > 0 be concentration
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parameters and let µ be a probability measure on a space X. Let G
0

⇠ DP(↵
0

, µ), so

G

0

=
P1

k=1

!

k

�

 k
, as in equation (2.3). Since G

0

is a probability measure, it can be

used as the mean measure of other Dirichlet processes. We will define G
1

, . . . , G

L

|G
0

i.i.d⇠
DP(↵, G

0

). For each 1  `  L, by equation (2.3), we have that G

`

=
P1

k=1

!

`k

�

�`k

where �
`k

|G
0

i.i.d⇠ G

0

for k = 1, 2, . . ..

Since G
0

is a discrete measure and �
`k

|G
0

⇠ G

0

, for every fixed k there will be infinitely

many indices k0 such that �
`k

0 =  

k

. If ⇠ ⇠ G

`

, then in order to find the law of the index

of ⇠ in  

1

, 

2

, . . ., we must first sum together all of the weights !
`k

0 of G
`

such that

�

`k

0 =  

k

. We will denote this summation byR
`k

=
P1

k

0
:�`k0=k

!

`k

0 . Then, if ⇠|G
`

⇠ G

`

,

the unique index k of ⇠ in  

1

, 

2

, . . . has the law Pr(k) = R
`k

. From equation (2.3)

and from the properties of the Dirichlet distribution, we have the following conditional

stick breaking construction for R
`k

(this construction is given in section 4.1 of Teh

et al. 2006, and the construction is conditioned on ! and the concentration parameter

↵):

⌫

`k

i.i.d⇠ Beta

 
↵!

k

,↵

 
1�

k�1X

k

0
=1

!

k

0

!!
, ⇡

`k

= ⌫

`k

k�1Y

k

0
=1

(1� ⌫
`k

0). (2.6)

We will refer to the distribution on ⇡|!,↵ induced by equation (2.6) as the coagu-

lated version of the GEM distribution. To realize a dynamic-clustering of R
1

, . . . , R

L

we draw component assignments z

i`

for each element i 2 R

`

using the distribution

Pr(z
i`

= k) = ⇡

`k

. Then, we will suppose that items in blocks that share the same

component assignment are in same cluster under the HDP (even if the indices of the

Rs are di↵erent). The dynamic-clustering of R
1

, . . . , R

L

is then formed according to

the following equivalence relation: elements i 2 R

`

and i

0 2 R

`

0 are in the same cluster

if z
i`

= z

i

0
`

0 . Here, i and i

0 can be equal or unequal as can ` and `

0. This provides

a link between the clustering of a single item at two di↵erent values of `, as well as a

link between the clustering of two di↵erent items at a single value of `. In this way,

the dynamic-clustering induces partitions R
`

of R
`

(two elements i, i

0 are in the same

cluster if and only if z
i`

= z

i

0
`

).

2.4 Fragmentation and coagulation operators

Another way to realize dynamic-clustering on partitions is through the joint distribu-

tions on partitions defined by fragmentation and coagulation operators. These opera-

tors are random partition valued functions of partitions. In Chapter 4, we will describe

the DFCP through a latent Markov chain of partitions such that the joint distribution

of each pair of adjacent partitions is defined through the splitting and merging of their

clusters according to the fragmentation and coagulation operators. We will define these

operators in this section and we will examine their conditional distributions, which are

required to derive e↵ective Gibbs updates for the DFCP. We will also show that the frag-
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mentation and coagulation operators are dual: if the parameters of the fragmentation

and coagulation operators are chosen correctly, then their composition will leave the

CRP distribution invariant (i.e., if we draw a partition from a CRP, and then apply the

fragmentation operator and then the coagulation operator, then the resulting distribu-

tion will be marginally CRP distributed). The conditionals for the fragmentation and

coagulation operators were used to derive message passing in Elliott and Teh (2012),

but the precise equation for the conditional distributions are presented for the first time

in this thesis.

Before defining these operators, we will first extend the definition of the CRP distribu-

tion on partitions by adding a discount parameter. The two parameter version of the

CRP distribution is given as follows:

Pr(CRP(R,↵, d) = R) =
[↵+ d]#R�1

d

[↵+ 1]N�1
1

Y

a2R
[1� d]#a�1

1

. (2.7)

Here the number of elements #R is N and [x]n
d

= (x)(x + d) . . . (x + (n � 1)d) is

Kramp’s symbol and ↵ > �d, d 2 [0, 1) are the concentration and discount parameters

respectively (Pitman, 2006). This definition agrees with the one parameter version

(d = 0) of the CRP defined in equation (2.4). An equivalent sequential scheme is given

as follows:

1. The first element of R joins a block by itself.

2. For i > 1, the i-th element of R joins a block by itself w.p. (↵+ dK)/(i+ ↵� 1)

or an existing block a w.p (#a�d)/(i+↵� 1), where K is the number of blocks.

From the sequential scheme, we can see that the discount parameter encourages new

items to join new blocks, and the extent of this encouragement increases to balance

the tendency of blocks to join large blocks that already exist. This balance leads to a

power-law in the number of blocks in the partition: if d < 0  1 then #R = O(nd)

whereas if d = 0, R follows the law (2.4) and #R = O(↵ log(n)) (Pitman, 2002).

As mentioned earlier, the fragmentation and coagulation operators are random par-

tition valued functions of partitions. The fragmentation Frag(R,↵, d) of a partition

R is formed by independently partitioning further each cluster a of R according to

CRP(a,↵, d) and then taking the union of the resulting partitions, yielding a partition

of R that is finer than R. Conversely, the coagulation Coag(R,↵, d) of R is formed by

partitioning the set of clusters of R (i.e., the set R itself) according to CRP(R,↵, d)

and then replacing each cluster with the union of its elements, yielding a partition that

is coarser than R. (If every cluster of a partition A is contained in at least one of the

clusters of a partition B then A is said to be finer than B and B is said to be coarser

than A. Note that this is not a strict relationship and so a partition is always finer and

coarser than itself.) The fragmentation and coagulation operators are linked through

the following theorem from Pitman (1999).
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Theorem 1. Let R be a set, let A
1

,B
1

,A
2

,B
2

be random partitions of R such that:

A
1

⇠ CRP(R,↵d

2

, d

1

d

2

), B
1

|A
1

⇠ Frag(A
1

,�d
1

d

2

, d

2

),

B
2

⇠ CRP(R,↵d

2

, d

2

), A
2

|B
2

⇠ Coag(B
2

,↵, d

1

).

Then, for all partitions A and B of the set R such that B is finer than A:

Pr(A
1

=A,B
1

=B) = Pr(A
2

=A,B
2

=B). (2.8)

This theorem is implied by Pitman (1999). In that work, the duality is presented

in terms of a 2-parameter version of the Dirichlet process known as the Pitman-Yor

process (Pitman and Yor, 1997). A purely algebraic version of this duality theorem for

partitions was given in Gasthaus and Teh (2010).

2.4.1 Conditionals for fragmentation and coagulation operators

Suppose that R and Q are partitions of R = {1, . . . , n} such that Q ⇠ Frag(R, 0, d).

Then, by the definition of the fragmentation operator, the distribution of Q conditioned

on R is only supported on pairs of partitions such that Q is finer than R. Thus, for

each block a 2 R there is a unique set of blocks in Q that are contained in a. These

are the blocks into which a fragments. We will denote these blocks in Q by F

a

: so

F

a

= {b 2 Q : b ✓ a} and a = [
b2Fab. The conditional distribution of Q given R is as

follows:

Pr(Q|R, d) =
Y

a2R

�(#F

a

)d#Fa�1

�(#a)�(1� d)#Fa

Y

b2Fa

�(#b� d),

=
d

#Q�#R

�(1� d)#Q

 
Y

b2Q
�(#b� d)

! 
Y

a2R

�(#F

a

)

�(#a)

!
. (2.9)

For coagulation, suppose that the partitions Q and R are such that Coag(Q,↵/d, 0) =

R. As in fragmentation, the coagulation operator only gives support to the distribution

of R conditioned on Q if Q is finer than R and we will denote the blocks in Q that

coagulate to form a block a 2 R by C

a

. Thus, for each a 2 R, C
a

= {b 2 Q : b ✓ a}.
The conditional distribution of R given Q is as follows:

Pr(R|(Q,↵, d) = R) =
(↵/d)#R�(↵/d)

�(↵/d+#Q)

Y

a2R
�(#C

a

). (2.10)

Equations (2.9) and (2.10) both assume that Q is finer than R. If Q is not finer than

R then both the joint probabilities (2.9) and (2.10) are zero.
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2.4.2 Conditionals for clustering a single item

To derive Gibbs updates for the location-varying cluster assignment of a single item

in the DFCP in Chapter 4, we will need the distribution of the cluster assignment of a

single item in a fragmented or coagulated partition conditioned on the partition of all

the other elements. In particular, if R is a partition of R then by R�i we will refer

to the projection of the partition R onto R � {i}, here � denotes set di↵erence. (The

projection of R onto S ⇢ R is formed by removing all elements of R � S from each

block of R and also removing any resulting empty sets from R.) In this section, we

will derive R|R�i,Q�i and Q|Q�i,R�i where R and Q are related as before through

random fragmentation and coagulation.

Let a

i

(respectively b

i

) be the cluster assignment of i 2 R in R (respectively Q). We

will consider the distribution over a
i

and b

i

conditioned on R�i and Q�i respectively. If
the i-th item is placed in a new cluster by itself in R (i.e., if it forms a singleton cluster)

we will denote this event by a

i

= ?. For Q�i we will denote the respective event by

b

i

= ?. Otherwise, the i-th item is placed in an existing cluster in R�i (respectively
Q�i) and we will denote this event by a

i

2 R�i (respectively b 2 Q�i). Thus the

support of the random objects a

i

and b

i

are respectively R�i [ {?} and Q�i [ {?}.
In particular, the event a

i

= ? means that R = R�i [ {{i}} and the event a

i

2 R�i
means that R =

�R�i � a

i

� [ {{i} [ a

i

} (the same is true for b
i

and Q�i).
If R ⇠ CRP(↵, 0), then the distribution of a

i

conditioned on R�i is given by the

sequential scheme for the CRP distribution:

Pr(a
i

= a|R�i) =
8
<

:
#a/(n� 1 + ↵) if a 2 R�i,
↵/(n� 1 + ↵) if a = ?.

(2.11)

To find the conditional distribution of b
i

given a

i

under the fragmentation and coagula-

tion operators, we use their definition as combinations of independent CRP partitions of

the clusters in R and Q. First, we will consider the fragmentation Frag(R, 0, d) = Q.

If a
i

= ?, then the i-th data item is in a cluster by itself in R and so it will remain

in a cluster by itself after the fragmentation operator is applied. Thus, b
i

= ? with

probability 1. On the other hand, if a
i

= a 2 R�i then b

i

must be one of the clusters

in Q into which a

i

fragments. This can be a singleton cluster, in which case b

i

= ?,

or it can be one of the clusters b 2 Q�i in which case b 2 F

a

. Since a is fragmented

according to CRP(a, 0, d), when the i-th data item is added to this CRP it is placed in

a cluster b 2 F

a

with probability proportional to (#b�d) and it is placed in a singleton

cluster with probability proportional to d#F

a

. Normalizing these probabilities yields
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the following joint distribution:

Pr(b
i

= b|a
i

= a,R�i,Q�i) =

8
>>>><

>>>>:

(#b� d)/#a if a 2 R�i, b 2 F

a

,

d#F

a

/#a if a 2 R�i, b = ?,

1 if a = b = ?,

0 otherwise.

(2.12)

Next, we will consider the coagulation Coag(Q,↵/d, 0) = R. To find the conditional

distribution of a
i

given b

i

= b, we will use the definition of the coagulation operation.

If b 6= ?, then the i-th data item could not have been in a singleton cluster in Q�i and
so it must follow the rest of the data items in b to the unique a 2 R�i such that b ✓ a

(i.e., b coagulates with other clusters to form a). If b = ? then the i-th data item is in

a singleton cluster in Q�i and so we can imagine it being the last item added to the

coagulating CRP(Q,↵/d, 0) of the clusters of Q. Hence the probability that i-th data

item is placed in a cluster a 2 R�i is proportional to #C

a

while the probability that it

forms a cluster by itself in R�i is proportional to ↵/d. After normalization, this yields

the following joint probability:

Pr(a
i

= a|b
i

= b,R�i,Q�i) =

8
>>>><

>>>>:

1 if a 2 R�i, b 2 C

a

,

d#C

a

/(↵+ d#Q�i) if a 2 R�i, b = ?,

↵/(↵+ d#Q�i) if a = b = ?,

0 otherwise.

(2.13)

2.5 Summary

In this Chapter, we have outlined the history of dynamic-clustering and distance de-

pendent random processes and their use as priors in Bayesian nonparametric statistics.

We have shown a connection between the Dirichlet process and Ewen’s sampling for-

mula, a distribution on partitions that arises naturally in allele sampling. We have

shown two ways to realize dynamic-clustering through the Dirichlet process, firstly

through sequences of dependent random processes (the hierarchical Dirichlet process)

and secondly, through the fragmentation and coagulation operators. We have derived

the conditional distributions for the cluster assignment of a single item in partitions

defined through fragmentation and coagulation operators. These conditional distribu-

tions appear for the first time in this thesis and they will be used in Chapter 4 to

derive Gibbs updates for the conditional cluster assignment of sequences in the discrete

fragmentation and coagulation process. The mathematics developed in this Chapter

will be used throughout the remainder of this thesis in the application of the three new

dynamic-clustering methods presented in this thesis.



Chapter 3

The Bayesian nonparametric

version of fastPHASE

3.1 Introduction

We will now present a Bayesian nonparametric HMM for dynamic-clustering of genetic

sequences based on the hierarchical Dirichlet process (Elliott and Teh, 2015). This

model allows tractable inference and it captures properties important for the genetic

process such as haplotypes and nonhomogeneous structure (these are reviewed in sec-

tion 1.2.1). The popular fastPHASE model (Scheet and Stephens, 2006) can be seen as

a finite truncation of this model. We will refer to this model as the BNPPHASE model

(for the Bayesian nonparametric version of fastPHASE). The Bayesian nature of the

BNPPHASE model allows the statistical properties of the genetic process to directly in-

form the structures found by BNPPHASE during inference. This leads to high accuracy for

genotype imputation and also to interpretability of the model parameters. Further, by

defining distributions directly on the space of partitions, the BNPPHASE model avoids

the label switching problem (Jasra et al., 2005). The advantages of using Bayesian

nonparametrics in this situation are reviewed in more detail in section 1.3.1.

The nonhomogeneous structure of the BNPPHASE model makes it particularly well suited

for modelling data from population bottlenecks. Population bottlenecks are events

occurring in the ancestry of a population in which the number of individuals in the

population shrinks suddenly due to external factors such as environmental or ecological

changes, migration or changes in human behavior. For example, in the 19th century,

the northern elephant seal was hunted into near extinction, and shrunk to a population

of fewer than 30 animals. After hunting ceased, the population expanded (Hoelzel et al.,

1993). The genetics of populations which have experienced bottlenecks display founder

e↵ects in which all genetic material of the post-bottleneck individuals originates from

a small number of founders. In such data, genetic variation of an observed sample
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is predominantly explained by the original variation between the founders and also

the recombination events occurring in the post-bottleneck genealogies. Such data is

modelled well by HMMs in which each population founder corresponds to an HMM

state.

We conducted three experiments using the BNPPHASE model involving sequences of bial-

lelic markers in phased genetic data. In our first three experiments, we examined the

imputation accuracy of the BNPPHASE model and compared it to that of fastPHASE

and also other baselines. We found that the BNPPHASE model performed competitively

with the state-of-the-art in the imputation of missing data. In our first experiment,

we examined imputation accuracy on a ‘toy’ dataset generated from the ARG with

an identity-by-descent rule wherein all mutations were assumed to have occurred more

anciently than the bottleneck. This simulated a very recent bottleneck from a small

number of founders. In our second experiment, we performed genotype imputation on

male X chromosome data from the Thousand Genomes Project (The 1000 Genomes

Project Consortium, 2010). As explained in section 1.1, the phase of male X chromo-

some data is known, and so a ground-truth for the imputation of held out data can be

established, providing valid accuracies.

In our third experiment we examined the correlation between the time to the most

recent common ancestor (TMRCA) and the number of clusters used by the BNPPHASE

model (i.e., the latent dimensionality of the nonparametric HMM). For the data, we

generated sequences from a population bottleneck data designed to model the out-

of-Africa population bottleneck in humans. We found a strong negative correlation

between these values in both the BNPPHASE and fastPHASE models. After regressing

the TMRCA against the number of clusters, residual error of the BNPPHASE model was

smaller than that of other methods.

Markov models based on the HDP have been used previously to describe genetic vari-

ation. In Xing et al. (2006), an HDP-HMM was used to model genetic sequences. The

HDP-HMM places an HDP prior on the full transition matrix of an infinite HMM (Beal

et al., 2002), resulting in a homogeneous process. In contrast, the BNPPHASE model in-

troduces nonhomogeneity into the HMM prior. This allows the BNPPHASE model to

capture genetic structure in which the proportions for genetic founders or admixture

components varies along the chromosome. We refer to section 1.2.7 for more detail

about the relation of the BNPPHASE model to other HDP-HMMs.

In the remainder of this section, we discuss the statistical properties of genetic sequence

data arising from population bottlenecks. Then, we provide some intuition for the

BNPPHASE model and the likelihood of phased genotype data given by the BNPPHASE

model. We also give intuition as to why the BNPPHASE model is a good model for

population bottleneck data. In section 3.2, we provide the details for the generative

process of the BNPPHASE model, and derive inference for the BNPPHASE model based on

MCMC using Gibbs updates for the latent state assignments of a sequence and slice
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sampling for updating the parameters. In section 3.4 we describe the experimental

paradigms for the three experiments that we conducted involving the BNPPHASE model.

In sections 3.5, 3.6 and 3.7 we provide the results of these experiments, some discussion

and then we conclude.

Open source code implementing MCMC inference for the BNPPHASE model is provided

at the website http://www.github.com/lell/BNPPhase. This code is written in a

combination of java and scala and is published under the BSD 2-clause license.

3.1.1 Population bottlenecks and genetic sequence data

In Kingman’s coalescent for genealogies, the coalescent rate of the lineages in the geneal-

ogy is twice the inverse e↵ective population size 2

Ne
(this is explained in section 1.2.1).

To simulate from a version of Kingman’s coalescent in which the population size changes

during the ancestry, we can parameterize N

e

by time and then sample a nonhomoge-

neous Poisson process with intensity 2

Ne(t)
. At the times given by the points in the

Poisson process, we can then coalesce a pair of lineages chosen uniformly from all

pairs extant at that time. In a similar way, the coalescent with recombination can be

simulated for varying e↵ective population size by superimposing the nonhomogeneous

version of Kingman’s coalescent and a nonhomogeneous recombination process with

rate 2⇢

Ne(t)
(we refer to Hein et al. 2005 for more detail).

Population bottlenecks can be defined through the shape of the e↵ective population size

N

e

(t) as a function of time—any sudden shrinking of N
e

(t) specifies a bottleneck. Data

from a population bottleneck can therefore be simulated by sampling from the time-

varying version of the coalescent with recombination with such an N

e

(t) (an example

is given in Figure 3.1). Since N

e

(t) is proportional to the inverse of the coalescence

rate, we see that if a large bottleneck occurs recently in the ancestry of a population,

most of the coalescence should occur during the bottleneck. However, coalescence that

occurs more anciently than the bottleneck will tend to occur at a much slower rate.

This remark implies that for such a population, the TMRCA as a function of chro-

mosome location will tend to be drawn either at a time during the bottleneck, or at

a time governed by a heavy-tailed distribution centered much more anciently than the

population bottleneck. This leads to nonhomogeneous structure, as the TMRCA will

transition along the chromosome between intervals of coalescence during the bottleneck

and coalescence much more anciently than the bottleneck.

3.1.2 Intuition for the BNPPHASE model

The BNPPHASE model is an HMM approximation of the coalescent with recombination.

Suppose that N phased genetic sequences from a population are typed at L biallelic

markers. The BNPPHASE model associates a latent cluster assignment to each sequence
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Figure 3.1: Genealogy of 6 homologous sequences with simulated ancestry. y-
axis indicates time to coalescence. x-axis indicates chromosome position, with A

labelling a location near one end of chromosome and B labelling a location near
other end. Simulation conducted with parameters from (Li and Durbin, 2011)
designed to model out-of-Africa bottleneck in humans. This illustrates location-
dependent nature of genetic similarity: sequences 1 and 6 would be quite similar
at location A, but quite di↵erent at location B.
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Figure 3.2: Top: Genealogy of 5 genetic sequences with simulated ancestry from
a population bottleneck. y-axis indicates time to coalescence. x-axis indicates
chromosome location, with marker A labelling one end of chromosome, marker
B labelling the middle of chromosome and marker B labelling the other end.
Coalescence of lineage indicates arrival at common ancestor. Note that TMRCA
is a function of chromosome location. Bottom: Illustration of reasonable latent
sample found by BNPPHASE model. Color indicates sequence identity (with red
being sequence 1, blue being sequence 2 and so on). Dotted lines indicate cluster
transitions. y-axis indicates cluster assignment (sequences close to each other on
the y-axis are in the same cluster). Cluster assignment ‘matches’ genealogical
structure of top. Sequences remain in the same cluster from one marker to the
next with probability 1�r`�1 or transit to cluster k with probability r`�1!`,k.
Factors describing conditional probability of the green sequence (sequence 3) are
shown by the terms in green.
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and location. Between each pair of consecutive locations, a given sequence either re-

mains in the same cluster, or with some probability proportional to a rate r

`

(which

depends on chromosome location `) is reassigned to one of the clusters with a locus-

dependent probability.

The latent rate r

`

governs the dependence among the clusterings: if r
`

= 0 then the

clusterings at each location are the same and if r

`

= 1 then the clusterings are all

independent. Intuitively, we want to infer small values of r

`

on regions of the ge-

netic sequence for which the underlying genealogy structure from the coalescent does

not change much, and larger values of r
`

for locations where recombination events in

the ancestry of the population have lead to substantial changes in the latent geneal-

ogy structure. (For example, for the recombination hotspots described in S. Myers

et al. 2005 r

`

should be relatively large compared to the background regions.)

We introduce latent variables z
i`

denoting the cluster assignment of the i-th sequence

at the `-th location and auxiliary variables y

i`

indicating if the i-th sequence has a

transition event after the `-th location. We also introduce cluster weights !
`k

for the

k-th cluster at locus ` (such that !
`k

� 0 and
P

k

!

`k

= 1). If y

i, �̀1 = 1, then the

cluster assignment of the i-th sequence at position ` is a priori drawn from a discrete

distribution with the probability of z

i`

= k being !

`k

. Otherwise (if y

i,`�1 = 0) the

cluster assignment of the i-th sequence at position ` is copied from z

i, �̀1. For the first

position (`=1) the prior distribution on the cluster assignment of the i-th individual

is given by !
1k

.

The number of clusters at each location, and the prior distribution over the local

cluster weights !
`k

, are given by a a hierarchical Dirichlet process. In order to make

this distribution well defined, we will have to identify the clusters at each location `

with global clusters that persist across the whole process. The hierarchical Dirichlet

process is the simplest method for identifying the clusters at each location such that

the number of clusters is unbounded and the induced prior distribution on the cluster

assignments does not depend on the order in which the individuals are observed or

the size of the population from which the study individuals were selected (i.e., it is

exchangeable and projective).

An illustration of the BNPPHASE model is provided in Figure 3.2. If we assume that the

number of clusters is fixed at K, then we get a finite truncation of BNPPHASE which

is described later in section 3.3.1. This finite truncation is similar to the fastPHASE

model (Scheet and Stephens, 2006), but with a Bayesian prior on the parameters.

In Figure 3.2(bottom), we imagine that our data consist of five phased genetic sequences

typed at three biallelic markers (labelled as A, B and C). The sequences are labelled by

color: red, blue, green, magenta and teal. The latent cluster assignment for BNPPHASE

has represented the data using four latent clusters (corresponding to the y-level of

the sequences in Figure 3.2(bottom). At the first marker, BNPPHASE has clustered the
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data into two clusters: with the red and blue sequences in cluster 1 (contributing !2

A,1

to the probability), and remaining sequences in cluster 3 (contributing !

3

A,3

to the

probability). Between marker A and marker B, the green, magenta and teal sequences

transit to new clusters contributing (1�r

A

)2r3
A

to the probability (the fact that the

red and blue sequences do not transit contributes an additional (1�r

A

)2). Between

marker A and B, the green, magenta and teal sequences have transitioned to clusters 1,

1 and 4 respectively contributing !2

B,1

!

B,4

respectively to the prior. The probabilities

for the transitioning and clustering between markers B and C can similarly be read o↵

of Figure 3.2 resulting in a total probability (conditioned on ! and r) of the illustration

in Figure 3.2:

(1�r
A

)2r3
A

(1�r
B

)4r
B

!

2

A,1

!

3

A,3

!

2

B,1

!

B,4

!

C,3

.

3.1.3 Likelihood of phased data under the BNPPHASE model

We will assume that the observed genetic sequences are phased and typed at biallelic

markers, they can be summarized by the matrix x=((x
i`

)L
=̀1

)N
i=1

where x
i`

=1 indicates

that sequence i has the minor allele at location ` and x

i`

=0 indicates that sequence i has

the major allele at location ` (this is the form of phased data described in section 1.1).

Given a fixed setting of the latent variables and parameters of the BNPPHASE model,

the matrix x is a matrix of independent Bernoulli random variables. The distribution

of each entry x

i`

depends only on the cluster assignment (z
i`

) of the i-th sequence at

location `. In particular, if the i-th sequence is in cluster k at location `, then the

probability that x
i`

=1 is ✓
`k

and the probability that x
i`

=0 is 1�✓
`k

. Here, ✓
`k

2 [0, 1]

is a parameter associated with the k-th cluster and the `-th location.

In the BNPPHASE model, we place a hierarchical prior on ✓

`k

as follows: ✓
`k

is drawn

from a beta distribution with local mean and mass which both depend on `, so ✓
`k

⇠
Beta(�

`

�

`

, �

`

(1��
`

)). The local mean �
`

is drawn from the beta distribution Beta(b, b)

where b is a global parameter controlling the variance of the allele frequencies. We

placed exponential priors with rate 1 on b and on each of the local masses �
`

.

3.1.4 Inference for the BNPPHASE model

We use MCMC to conduct inference on the posterior distribution of the BNPPHASEmodel

conditioned on observed data. In the experiments described in this Chapter, we will be

interested in the conditional distribution of missing alleles. We will also be interested

in the posterior distribution over the number of clusters found by the BNPPHASE model.

These statistics are estimated by averaging the marginal distributions of all MCMC

iterations produced after a number of burn-in iterations have been completed.

For a fixed sequence i, we update the latent cluster assignments z
i`

and transitions y
i`
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for `=1, . . . , L by using the forwards filtering/backwards sampling algorithm (Früwirth-

Schnatter, 1994) along with a bespoke auxiliary variable method to e�ciently handle

the infinite state space of the hierarchical Dirichlet process. The rates r

`

and the

parameters of the likelihood b, �

`

and �
`

are updated using slice sampling (Neal, 2003).

The likelihood parameters ✓
`k

are integrated out. These updates are all derived in

section 3.2.

3.2 Methods

In this section, we will formulate the full distribution of the BNPPHASE model using the

stick breaking representation of hierarchical Dirichlet processes. We will then develop

the MCMC inference methods required to provide tractable updates for the BNPPHASE

posterior distribution. In sections 3.2.1 and 3.2.2, we will provide two equivalent gen-

erative processes for the BNPPHASE model. The first generative process will make use

of the stick breaking construction of the HDP. For the second generative process, we

will marginalize some aspects of the stick breaking construction for the hierarchical

Dirichlet process. This will allow us to define the BNPPHASE HMM directly on the space

of partitions of the sequence identities. We will describe the marginalized version of the

HDP in 3.2.3. The second generative process provides a representation of the BNPPHASE

for which tractable inference can be derived, which is done in section 3.2.5.

3.2.1 Generative process for the BNPPHASE model from stick breaking

The BNPPHASE model can be described by the following generative process. We will

suppose that the concentration parameters ↵
0

> 0,↵ > 0 as well as the likelihood

parameters b > 0,�
`

> 0 and �
`

> 0 are fixed.

1. Draw !|↵
0

according to the GEM distribution from equation (2.3):

⌫

k

i.i.d⇠ Beta(1,↵
0

), !
k

= ⌫

k

k�1Y

k

0
=1

(1� ⌫
k

0).

2. For each 1  `  L: draw ⇡

`

|↵,! according to the coagulated version of the GEM

distribution from equation (2.6):

⌘

`k

i.i.d⇠ Beta

 
↵!

k

,↵

 
1�

k�1X

k

0
=1

!

k

0

!!
, ⇡

`k

= ⌘

`k

k�1Y

k

0
=1

(1� ⌘
`k

0).

3. For each 1  ` < L: draw r

`

⇠ LogUniform(r
min

, 1) (i.e. log r
`

is uniformly

distributed).

4. For each 1  i  n:
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r1 r2 · · · rT�1

yi1 yi2 · · · yi,T�1

zi0 zi1 · · · zi,T�1

xi0 xi1 · · · xi,T�1

✓0k ✓1k · · · ✓T�1,k

⇡0 ⇡1 · · · ⇡T�1

!

8 0  i  N � 1

8 0  k < 1

Figure 3.3: Plate diagram for entire BNPPHASE model. For brevity, the hierarchi-
cal Dirichlet process parameters ↵0 and ↵ and the hyperparameters for ✓ are not
shown. T denotes number of markers.

(a) Draw z

i1

|⇡
1

⇠ ⇡
1

.

(b) For each 1  ` < L: draw y

i`

|r
`

⇠ Bernoulli(r
`

) and:

i. If y
i`

= 1: draw z

i,`+1

|⇡
`+1

⇠ ⇡
`+1

.

ii. Otherwise if y
i`

= 0: set z
i,`+1

to z

i`

.

5. For each 1  `  L: draw �

`

|b ⇠ Beta(b, b).

6. For each 1  `  L, k = 1, 2, . . .: draw ✓

`k

|�
`

,�

`

⇠ Beta(�
`

�

`

, �

`

(1� �
`

)).

7. For each 1  `  L, 1  i  n: draw x

i`

⇠ Bernoulli(✓
`,zi`

).

A plate diagram showing the independence relations among the variables and parame-

ters of the BNPPHASE model implied by this generative process is provided in Figures 3.3
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b

�t �t

✓tk xt rest

8 1  t  T

8 1  k  Kt

Figure 3.4: Plate diagram for hierarchical likelihood used by BNPPHASE model.
Node ‘rest’ indicates prior from BNPPHASE model. Variables ✓`k will be integrated
out in MCMC inference.

and 3.4. Here, r
`

⇠LogUniform(u, v) means that r
`

is a random variable such that log r
`

is uniformly distributed on the interval [log u, log v]. We chose this weakly informative

heavy tailed prior on r

`

so that haplotypes can extend over large chromosome regions

(over which r

`

has small values) while still allowing recombination hotspots (S. Myers

et al., 2005) to occur (these are locations for which r

`

is close to 1).

3.2.2 Generative process for the BNPPHASE model from partitions

We found that inference based on equations (2.3) and (2.6) was hard to specify because

message passing algorithms for the generative process enumerated in the above section

do not have finite support (the messages would be parameterized by the support of z,

which is infinite). To overcome this problem, we derive inference for a marginalized

version of the HDP. In this version of the HDP, we marginalize the GEM propor-

tions ⇡
`

and define messages directly on the space of the partitions of the sequences.

Marginalizing latent variables in Bayesian nonparametric models also tends to improve

the e�ciency of inference (this can be seen for example in the collapsed LDA sampler

from Kurihara et al. 2007), which further recommends this approach.

3.2.3 The hierarchical Dirichlet process through partitions

The marginalized version of the HDP works by replacing ⇡
`

by a sequence of partitions

R
`

. Each block of the partition is assigned to a component of the ‘upstairs’ Dirichlet

process G

0

. Then, blocks that are assigned to the same component are identified

(in essence, this construction combines the CRP distribution with the stick breaking

construction through marginalizing ⇡
`

).

The marginalized version of the HDP is constructed as follows. Let R
1

, . . . ,R
L

be

random i.i.d. partitions such that R
`

|↵ ⇠ CRP(R
`

,↵) for 1  `  L (here, ↵ > 0
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ω1

ω2

ω3

ωø

φa=1
φb=1
φc=3
φd=2
φe=1

K=3

Λ={a,b,c,d,e}

1

...

Figure 3.5: Stick breaking construction for Dirichlet process with K = 3. Unit
interval divided into !̃1, !̃2, !̃3 and !̃? = 1�!̃1�!̃2�!̃3. Component assignments
'a, . . . ,'e are sampled from Pr(k|!) = !k.

is the concentration parameter of the ‘downstairs’ Dirichlet processes). We will now

assign the blocks of R
`

to atoms (or, components) of the DP G

0

. For each ` and for

each block a of the partition R
`

we will draw the component assignment '
`a

associated

with the block a by sampling '
`a

|G
0

⇠ G

0

i.i.d. as in section 2.2.

As before, let z
i`

be the component assignment of the i-th sequence at location `, and

let y

i`

be a binary variable indicating if the i-th sequence has a ‘jump’ event after

location `. We will denote the set of all individuals that ‘jump’ after location ` by R

`

.

Thus, R
`

= {i : 1  i  n, y

i,`�1 = 1} for ` > 1 and we will define R

1

to be {1, . . . , n}.
Finally, if y

i,`�1 = 1, then we will denote by ⇣
i`

the block in R
`

containing i (i.e., the

block that sequence i ‘jumps’ to after `). If y
i,`�1 = 0, we will set ⇣

i`

to 0.

Since the set of all blocks a 2 R
`

is finite, there will be a finite number of distinct

components among the draws ('
a`

)
a2R` . We will refer to this number of distinct

components from the set {'
`a

}
a2R`,`=1,...,L

by K and we will assume that the masses of

these K components are given by !̃
1

, . . . , !̃

K

. Further, we will refer to the remaining

components of ! by !̃? = 1�PK

k=1

!̃

k

. This is the sum of the weights of the components

that are not among the K unique components appearing in ('
`

)
`=1,...,L

. An example

of this construction, with K = 3 is given in Figure 3.5. Note that the subscripts

of !̃
1

, . . . , !̃

K

do not correspond to the order in which the masses !
1

,!

2

, . . . that are

sampled through stick breaking in equation (2.3) (hence the tilde distinction). Instead,

the order of the subscripts is arbitrary, and chosen for convenience.

If y
i,`�1 = 1, then the distribution of ⇣

i,`

is given by the conditional CRP probabilities

from equation (2.11). On the other hand, if y
i,`�1 = 0, then we will set ⇣

i`

= 0 and set

z

i`

= z

i,`�1. In this case, the cluster assignment of individual i at location ` is copied

from the assignment at location ` � 1 and we can ignore the block for individual i at

location ` because the cluster was not found by examining the component assignment
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of a block, (recall that this is denoted by setting ⇣
i`

to zero). Thus, for the rest of this

methods section we have:

⇣

i`

= 0, y

i,`�1 = 0 for ` > 1. (3.1)

Due to equation (3.1), the value of y
i,`�1 can be inferred by ⇣

i`

for all 1 < `  L.

Therefore, we will drop the variable y

i`

from the rest of this methods section, and just

write ⇣
i`

= 0 if sequence i does not ‘jump’ before ` and ⇣

i`

6= 0 if sequence i ‘jumps’

before ` (and in this latter case ⇣
i`

will be the block of R
`

individual i ‘jumps’ to after

location `).

Suppose that ↵
0

> 0 and ↵ > 0 are fixed concentration parameters, and the hyperpa-

rameters b and �
`

and �
`

of the likelihood model are also fixed. Then, the BNPPHASE

model is given by the following generative process:

1. Draw R
1

⇠ CRP({1, . . . , n},↵) (2.4).
2. For each 1 < `  L:

(a) Draw R

`

✓ {1, . . . , n} according to Pr(R
`

) = r

#R`
`�1 (1� r

`�1)n�#R` .

(b) Draw R
`

⇠ CRP(R
`

,↵).

3. Draw ! ⇠ GEM(↵
0

) (2.3).

4. For each 1  `  L, a 2 R
`

: draw '

`a

according to the probability density

function Pr('
`a

= k) = !

k

5. For each 1  `  L, 1  k  K: draw ✓

`k

i.i.d⇠ Beta(�
`

�

`

, �

`

(1� �
`

)).

6. For each 1  `  L, 1  i  N :

(a) If i 2 R

`

: set ⇣
i`

 the unique a 2 R
`

s.t. i 2 a and set z
i`

 '

ta

.

(b) Otherwise: set ⇣
i`

 0 and set z
i`

 z

i,`�1.

7. For each 1  `  L, 1  i  N : draw x

i`

i.i.d⇠ Bernoulli(✓
`,zi`

).

The generative process presented in this section is equivalent to the enumeration in

section 3.2.1. The joint density of x, z,R,!,' and the parameters is given by the

following equation:

Pr(x, z,R,!,',↵

0

,↵, b,�, �, ✓, r)

=Pr(!|↵
0

) Pr('|!) Pr(R
1

|↵)
LY

`=2

Pr(R
`

|R
`

,↵)r#R`
`�1 (1�r`�1)N�#R`

Y

i,`

⇤(x
i`

|z
i`

, ✓

`,:

)

·Pr(↵) Pr(↵
0

) Pr(b)

0

@
LY

`=1

Pr(�
`

|b) Pr(�
`

)
Y

`,k

Pr(✓
`,k

|�
`

,�

`

)

1

A
L�1Y

`=1

Pr(r
`

). (3.2)
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R1 R2 · · · RT

⇣:,1 ⇣:,2 · · · ⇣:,T

zi1 zi2 · · · ziT

xi1 xi2 · · · xiT

✓1k ✓2k · · · ✓T,k

'1a '2a · · · 'Ta

!

8 1  i  N

8 1  k < 1

8 a ✓ {1, . . . , N}

Figure 3.6: Plate diagram for marginalized version of BNPPHASE model. Support
of 'ta is blocks (subsets of {1, . . . , N}) appearing in partition induced by ⇣:,`.
Parameters ↵,↵0, r`, �`k,�`k, b. As in 3.3 HDP parameters and hyperparameters
not shown for brevity. T denotes number of markers.
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Cluster 1

Cluster 2

Cluster 3

φa=1

φb=2

φc=2

φd=1

φe=2

φf=3

φg=3

K=3

Clustering (z)

Partitions (ζ)R1

R2

R3

Figure 3.7: Relationship between partition structure (bottom) and dynamic clus-
tering (top). x-axis indicates marker position and y-axis indicates cluster or block
identity. Colors indicate sequence identity. At ` = 1, R1 = {a, b, c} where
a = {red, blue}, b = {green} and c = {magenta}. Since 'b = 'c = 2, blocks
b and c are in the same cluster (zgreen,1 = zmagenta,1).

Here ⇤(x
i`

|z
i`

, ✓

`,:

) = ✓

xi`
`,zi`

(1 � ✓
`,zi`

)1�xi` is the likelihood of the observed allele from

sequence i at location ` conditioned on its cluster assignment (this likelihood is further

discussed in section 3.1.3). Here, and for the remainder of the text, we adopt the

MATLAB notation A

b,:

= (A
bc

)
c2A, where A is the support of the second index of A (and

equivalently for A
,c

).

The variables ⇣ and R are determined by R (and vice versa) and although we have

written equation (3.2) in terms of R, the equivalent equations for ⇣ should be clear.

The dependence relationships of equation (3.2) are illustrated in the graphical model

shown in Figure 3.6. A summary of all of the distributions on the parameters of the
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prior is as follows:

↵

0

⇠ LogNormal(log↵
0mean

,↵

0var

), (3.3)

↵ ⇠ LogNormal(log↵
mean

,↵

var

), (3.4)

for all 1  `  L, �

`

⇠ Exponential(1), (3.5)

for all 1  `  L, �

`

|b ⇠ Beta(b, b), (3.6)

b ⇠ Exponential(1), (3.7)

for all z 2 Z, 1  `  L, ✓

tz

|�
`

,�

`

⇠ Beta(�
`

�

`

, �

`

(1� �
`

)), (3.8)

for all 1  ` < L, r

`

|r
min

⇠ LogUniform(r
min

, 1). (3.9)

The constants r

min

< 1,↵
0mean

,↵

0var

,↵

mean

and ↵
var

are all positive fixed real valued

hyperparameters.

An example dynamic clustering demonstrating this view of the BNPPHASE model as a

hierarchy with partitions at the bottom level and a Dirichlet process at the top level is

given in Figure 3.7. Note that in this example, multiple di↵erent partition structures

could have given rise to the dynamic clustering at the top of the figure given the right

settings of '. For example, if R
1

= {a, b0} where a = {red, blue} as in the figure, and

b

0 = {green,magenta} and '
b

0 = 2 then dynamic clustering would have been the same.

3.2.4 Marginalizing the allele emission variables ✓

For a fixed location `, we consider the conditional probability Pr(x
`

|z
`

, �

`

,�

`

) with the

allele emission variables ✓
`k

marginalized. Due to the conjugacy of the hierarchical

likelihood, the conditional distribution of the observed alleles x can be expressed in

terms of the allele counts of the sequences assigned to each cluster at location `. Let

n

1`k

=#{i : z
i`

= k, x

i`

=1} and n

0`k

=#{i : z
i`

= k, x

i`

=0} denote the counts of the

number of times each allele is observed among the sequences assigned to each cluster.

Then the conditional distribution for x is given as follows:

Pr(x
:,`

|z
:,`

, �

`

,�

`

) /
KY

k=1

�(�
`

�

`

+ n

1`k

)�(�
`

(1� �
`

) + n

0`k

)

�(�
`

+ n

1`k

+ n

0`k

)
. (3.10)

3.2.5 MCMC for inference and imputation

We will provide a bespoke Gibbs update for sampling the latent cluster assignment

variables for a sequence (i.e., the vectors z
i,:

and ⇣
i,:

) conditioned on x, z
i

0
,:

and ⇣
i

0
,:

for

i

0 6= i and !̃,' and � and � (we will refer to these variables as ‘rest’). Following this,

we will provide Gibbs updates and slice sampling updates for the HDP variables and

likelihood parameters. The concatenation of all of these updates provides an MCMC

kernel which leaves the posterior distribution of the BNPPHASE model invariant. Note
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that in these procedures, ✓ (and ⇡
`

) will always be integrated out.

3.2.5.1 Gibbs update for latent cluster assignment of sequence i

The sequences z
i,:

, ⇣

i,:

will be resampled using message passing specified by a two-step

scheme. In the first step, z
i,:

, ⇣

i,:

will be updated using a forwards-filtering/backwards-

sampling (Früwirth-Schnatter, 1994) method wherein the supports for the messages for

z

i`

and ⇣

i`

are augmented with the symbol ? which represents events in which new

blocks are created in the partitions R
`

. In the second step, all of the newly created

blocks are assigned to components of the DP G

0

. We note that this two-step scheme

obviates a problem that would have arisen if we had marginalized ⇣

i`

(namely, that

new messages would have had to have been introduced for each partition of the set

of locations `0 such that z

i`

0 = ?, leading to an exponentially sized support for the

messages).

To find the distribution of the sequences z
i,:

, ⇣

i,:

conditioned on the rest of the variables,

we will use the notation from section 2.4.1 to refer to the partitions induced by removing

i from R
`

for ` = 1, . . . , L and also removing any resulting empty components from

!̃

1

, . . . !̃

K

(recall that these are the unique elements among the assignments '
`a

). By the

exchangeability of the CRP, we can then assume that individual i is the last individual

observed, and use the sequential scheme for the CRP and the definition of the DP to

find the joint conditional distribution of the variables ⇣
i,:

and z

i,:

.

Suppose that we are given a fixed setting of all of the BNPPHASE latent variables and pa-

rameters including the dynamic clustering of the n individuals. This induces a dynamic

clustering on the set of all of the individuals except for the i-th individual through the

‘forgetting’ of the assignments of the i-th individual. Adopting the notation from sec-

tion 2.4.1, will denote the induced dynamic clustering as follows: by R

�i
`

we will refer

to the set consisting of R
`

but with i removed. So, if ⇣
i`

6= 0 then the i-th sequence

‘jumps’ before ` and thus ` 2 R

`

and in this case R

�i
`

= R

`

� {i}. If alternatively

⇣

i`

= 0 then i is not in R

`

and R

�i
`

= R

`

.

Recall that !̃ refers to the weights of the top-level Dirichlet process corresponding to

atoms that exist among the assignments of blocks a 2 R
`

to to atoms (this is defined

in section 2.3). By !̃�i we will refer to the components of !̃ that the blocks of R�i
:

are assigned to (i.e., !̃�i is formed from !̃ by removing components that appear only

among the component assignments of singleton blocks {i} — blocks that were removed

from R
`

to form R�i
`

, for any `).

By K

�i we will denote the number of distinct component assignments '
`a

among the

blocks of the restricted partitions: K�i = #{'
`a

: a 2 R�i
`

, 1  `  L}. So, K�i  K,

and K

�i = K if and only if sequence i is never in a cluster by itself among R
1

, . . . ,R
L

.

Note that if a component !̃
k

with k < K is such that the only assignments of blocks
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to k involve the block {i}, then !̃

k

does not appear in !̃

�i. In this case, the indices

of !̃�i are not consecutive. To avoid excessive notation, without loss of generality

we will suppose that !̃ is actually ordered such that the indices are consecutive and

!̃

�i = (!̃�i, . . . , !̃�i
K

�i).

We will now consider the possible events that could occur when sequences z

i:

, ⇣

i:

are

sampled. We will augment the state space of z
i,:

, ⇣

i,:

with the symbol ? and we will

denote the event that sequence i joins a singleton block at location ` by ⇣
i`

= ?. In

that case, the component assignment for that block will be a component that already

exists in !̃�i, (the k-th component, say) which we will denote by z

i`

= k � 1, or that

sequence is in cluster by itself which we will denote by z

i`

= ?. Conditioning on the set

‘rest’ = {x,R�i
:

, (⇣
i

0
:

)
i

0 6=i

, !̃

�i
,↵

0

,↵, b,�

:

, �

:

, ✓

:,:

, r

:

}, the distribution of z
i,:

, ⇣

i,:

is given

in the following display. Note that since R, and ⇣ are are completely determined by z

and y (and vise versa), conditioning on R�i
:

, (⇣
i

0
:

)
i

0 6=i

is equivalent to conditioning on

all of the variables R�i
:

and (⇣
i

0
:

)
i

0 6=i

.

Pr(z
i,:

, ⇣

i,:

|‘rest’) =J

1

(z
i1

, ⇣

i1

)
LY

`=2

8
><

>:

r

`�1J`(zi`, ⇣i`) if ⇣
i`

6= 0,'
`⇣i`

= z

i`

,

1� r

`�1 if ⇣
i`

= 0, 1  z

i`

 K

�i
,

0 otherwise.

·
LY

`=1

⇤(x
i`

|z
i`

, x,R�i
`

). (3.11)

Where J

`

(z
i`

, ⇣

i`

) =
1

#R

�i
`

+ ↵

·

8
>>>><

>>>>:

#⇣ ⇣

i`

= ⇣ 2 R�i
`

,

↵!̃

z

, ⇣

i`

= ?, z

i`

= z 2 Z�i,
↵!̃?, ⇣

i`

= z

i`

= ?,

0 otherwise.

(3.12)

Here J

`

(z, ⇣) it is the prior distribution over (z
i`

, ⇣

i`

) given that sequence i ‘jumps’

immediately before location `. The marginalized likelihood ⇤(x
i`

|z
i`

, x,R�i
`

) is found

by restricting equation (3.10) to i: let n

�i
1`k

= #{i0 : z
i

0
`

= k, i

0 6= i, x

i

0
`

= 1} and let

n

�i
0`k

= #{i0 : z
i

0
`

= k, i 6= i, x

i

0
`

= 0} denote the counts of the number of times each

allele is observed for the cluster k at location ` among sequences other than the i-th

sequence. If x
i`

is unobserved (i.e., x
i`

= ‘?’) then ⇤(x
i`

|z
i`

= k, x,R�i
`

) = 1 for all k.

If x 6= ‘?’ (i.e., x 2 {1, 0}) and 1  k  K then:

⇤(x
i`

|z
i`

= k, x,R�i
`

) =
1

�

`

+ n

�i
1`k

+ n

�i
0`k

(
�

`

�

`

+ n

�i
1`k

if x
i`

= 1,

�

`

(1� �
`

) + n

�i
0`k

if x
i`

= 0.
(3.13)

Finally, if z
i`

= ? and x 2 {1, 0} then ⇤(x
i`

= x|z
i`

= ?, x,R�i
`

) = �

x

`

(1� �
`

)1�x.

We now present a Gibbs update for the i-th sequence based on the distribution in

equation (3.11) for z

i,:

, ⇣

i,:

conditioned on the variables ‘rest’. First, in Step 1 we will

conduct forwards-filtering/backwards-sampling on z

i

, ⇣

i

with the augmented state space

described in this section. Then, in Step 2, for all ` with z

i`

= ? or ⇣
i`

= ?, we assign
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new clusters through a retrospective stick breaking construction.

Step 1: forwards-filtering/backwards-sampling

The forwards messages will be used in the forwards-filtering/backwards-sampling algo-

rithm and the backwards messages will be used to compute marginal probabilities of

an allele for imputation of missing data. Since i is fixed, for the rest of the specification

of Step 1 the subscript i will be suppressed to make the notation more compact (so

for example, by z

`

we will mean z

i`

). A glossary of symbols for the BNPPHASE model is

provided at the end of this Chapter.

The messages are defined as follows:

mf

1

(z
1

, ⇣

1

) = Pr(x
1

, z

1

, ⇣

1

|‘rest’),
For 1 < `  L, mf

`

(z
`

, ⇣

`

) = Pr(x
1

. . . x

`

, z

`

, ⇣

`

|‘rest’),
For 1  ` < L, mb

`

(z
`

, ⇣

`

) = Pr(x
`+1

. . . x

L

|z
`

, ⇣

`

, ‘rest’),

mb

L

(z
L

, ⇣

L

) = 1. (3.14)

Here the set of variables referred to as ‘rest’ is the same as that given in the paragraph

before equation (3.11). For each of these messages, if ` > 1 the support of (z
`

, ⇣

`

) is

given by the union of the following three sets:

{(z, ⇣) : z 2 {1, . . . ,K�i,?}, ⇣ = 0}, (3.15)

{(z, ⇣) : ⇣ 2 R�i
`

, z = '

`⇣

}, (3.16)

{(z, ⇣) : ⇣ = ?, z 2 {1, . . . ,K�i,?}}. (3.17)

These three sets describe the three possible types of allowable cluster assignments

described in section 3.2.5.1. These three sets represent the events that (3.15): individual

i does not ‘jump’, (3.16): individual i ‘jumps’ to a cluster in R�i, and (3.17): individual

i ‘jumps’ to a new cluster by itself. The probabilities of settings of (z, ⇣) that lie outside

of this support are zero. We will refer to the union of these three sets by sup(`). Note

that if ` = 1, sup(`) is given by the union of sets (3.16) and (3.17) only.

For the backwards messages, if we condition on z

`

then ⇣
`

and x

`+1

, . . . , x

L

are inde-

pendent, and so for a fixed z the messages mb

`

(z, ⇣) all have the same value for each

⇣ : (z, ⇣) 2 sup(`) and therefore we will refer to this value by mb

`

(z). Further, we

will often find it useful to sum the forwards messages over the possible values of their
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parameters and so we will introduce the following shorthand notation:

mf

`

=
X

(z,⇣)2sup(`)

mf

`

(z, ⇣), (3.18)

and for a fixed z with 0  z  K

�i
,mf

`

(z) =
X

(z0,⇣)2sup(`),

z

0
=z

mf

`

(z0, ⇣). (3.19)

The forwards messages in display (3.14) can be computed recursively as follows:

mf

1

(z
1

, ⇣

1

) = L(x
1

|z
1

)P
1

(z
1

, ⇣

1

),

and for 1 < `  L, mf

`

(z
`

, ⇣

`

) = L(x
`

|z
`

) ·
(

(1� r

`�1) ·mf

`�1(z`) if ⇣
`

= 0,

r

`�1 ·mf

`�1 · P`(z`, ⇣`) otherwise.

(3.20)

The probability P

`

(z
`

, ⇣

`

) is Pr(z
`

, ⇣

`

|‘rest’, ⇣
`

6= 0) as in equation (3.12). In a similar

way, the backwards messages can also be computed recursively as follows:

mb

`

(z
`

) = (1�r
`

)L(x
`+1

|z
`

)mb

`+1

(z
`

)+r

`

X

(z,⇣)2sup(`+1)

L(x
`+1

|z)P
`+1

(z, ⇣)mb

`+1

(z). (3.21)

After computing the forwards messages, the cluster assignments for the i-th sequence

can be sampled through a backwards-sampling algorithm. By Bayes rule, the Markov

property of the cluster assignments and the definition of the forwards messages, the

probabilities are as follows:

Pr(x, z
L

, ⇣

L

|‘rest’) / mf

L

(z
L

, ⇣

L

)

Pr(x, z
`

, ⇣

`

|z
`+1

, ⇣

`+1

, ‘rest’) / Pr(x
1

, . . . , x

`

, z

`

, ⇣

`

|‘rest’) Pr(z
`+1

, ⇣

`+1

|z
`

, ⇣

`

, ‘rest’),

/ mf

`

(z
`

, ⇣

`

) ·
(
�(z

`

= z

`+1

) if ⇣
`+1

= 0,

1 otherwise.
(3.22)

In equation (3.22), the domain of z
`

, ⇣

`

is always restricted to sup(`). Step 1 of the

Gibbs update for z
i

, ⇣

i

is thus given by sampling z

`

, ⇣

`

, recursively in descending order

(` = L, . . . , 1) using the probabilities given in equation (3.22).

Step 2: retrospective stick breaking

We now provide a retrospective stick breaking scheme to select the components for the

singleton blocks which were sampled in Step 1 but whose assigned components were

not in !̃

�i. That is, we will now sample the values z

i`

for all of the locations ` such

that after Step 1, z
i`

= ?. We will refer to such ` by the set S?={` : z
i`

=?}. For a

given setting of z
i,:

, ⇣

i,:

sampled using the backwards-sampling from Step 1, S? is found

deterministically. Applying Step 1 followed by Step 2 yields a full Gibbs update for

z

i,:

, ⇣

i,:

.
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By the definition of the symbol ? from section 3.2.5.1, the variables z

i`

: ` 2 S?

should only be assigned to components of the DP ! that none of the other block in

R�i
:

are assigned to. It is, however, possible for more than one z

i`

: ` 2 S? to be

assigned to the same component. For each ` 2 S?, z

i`

marginally follows the law

Pr(z
i`

|‘rest’, z
i`

62 !

�i). Since i is fixed, for a fixed location ` there is at most one

z

i`

that needs to be sampled for `, and so the allele counts n�i
1tk

, n

�i
0tk

are conditionally

independent (given ‘rest’) of the random variables z
it

0 : `0 6= `. Further, because ⇣
i`

6= 0

for all ` 2 S?, the z
i`

: ` 2 S? are independent conditioned on the weights !̃. Combining

these two observations, it is clear that the variables z

i`

: ` 2 S? are sampled i.i.d.

directly from the prior, but conditioned on the event that z
i`

62 R�i. This can be done

by using the stick breaking construction in equation (2.3) to instantiate components

of ! that are not in !̃�i (we will refer to these components by !̃?1

, !̃?2

, . . .) and then

sampling z

i`

: ` 2 S? from the GEM distribution ! restricted to these new components.

This can be done e�ciently by sampling a uniform variate u
`

i.i.d. for each ` 2 S? and

then setting z

i`

to the smallest k such that:

P
k

k

0
=1

!̃?k

0

!̃?
> u

`

(3.23)

With this scheme, !̃?1

, !̃?2

, . . . can be sampled in sequence, stopping as soon as equa-

tion (3.23) is satisfied for all ` 2 S?. Step 2 is made explicit in the following algorithm,

which should be performed immediately after sampling z

i,:

, ⇣

i,:

according to Step 1. The

Algorithm 3.1 Retrospective stick breaking for the BNPPHASE model

1. Set S?  {` : z
i`

= ?}.
2. Set !0?,:

 () and set K 0?  0.
3. For each ` 2 S?:

(a) Set R
`

 R�i
`

[ {{i}} and set ⇣
i`

 {i}.
(b) Draw u ⇠ Uniform(0, 1).
(c) While k

⇤ = min{1  k  K

0
? :
P

k

k

0
=1

!̃?k

0
> u} does not exist:

i. Set K 0?  K? + 1.
ii. Draw ⌫ ⇠ Beta(1,↵).

iii. Set !0?,K

0
?
 ⌫

⇣
1�PK

0
?�1

k=1

!

0
?k

⌘
.

(d) Set z
i`

 k

⇤.
4. Set !̃?,:

 () and set K?  0.
5. For k0 = 1 to K

0
?:

(a) If there exists ` 2 S? such that z
i`

= k

0:
(b) Set S  {` 2 S? : z

i`

= k

0}.
(c) If #S > 0:

i. Set K?  K? + 1.
ii. Set z

i`

 K

�i +K? for each ` 2 S.
iii. Set !̃?,K?  !̃? · !0?,k

0 .
iv. Set S?  S? \ S.

6. Set !̃  ((!̃�i
k

)K
�i

k=1

, (!̃?,k

)K?
k=1

) and set K  K

�i +K?.
7. Set K  K +K?
8. Set !̃?  1�PK

k=1

!̃

k

.
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concatenation of Step 1 and Step 2 provides a full Gibbs update for the latent cluster

assignment of the i-th sequence. The details of Step 2 are provided in Algorithm 3.1.

If, for a fixed i, the allele x
i`

is unobserved at some fixed location ` (i.e., x
i`

= ‘?’), then

we can use the messages defined in this section to compute the marginal probability

E[Pr(x
i`

) = x, (x
i

0
`

0)
i

0
`

0 6=it

|‘rest’] where x = 0 or 1. Here, we will use both the forward

and backward messages calculated in Step 1 to marginalize over all possible latent

state assignments of sequence i at location `. Using the definition of the messages, the

Markov property for the sequences z

i:

, ⇣

i:

and the likelihood from equation (3.13) we

have:

E
zi,⇣i [Pr(xi` = x, (x

i

0
`

0)
i

0
`

0 6=it

|‘rest’]
/

X

(z,⇣)2sup(`)

Pr(x
i`

=x|z
i`

=z, ‘rest’)Pr(x
i`

=x, (x
i

0
`

0)
i

0
`

0 6=it,`

0`, zi`=z, ⇣

i`

=⇣|‘rest’)

·Pr((x
i

0
`

0)
`

0
>`

|z
i`

=z, ⇣

i`

=⇣, ‘rest’),

=
X

(z,⇣)2sup(`)

L(x
i`

=x|z
i`

)mf

`

(z, ⇣)mb

`

(z, ⇣). (3.24)

This expression can be used to impute missing alleles in a set of partially observed

genetic sequences.

3.2.5.2 Gibbs updates for HDP parameters !̃ and '

We will now derive MCMC updates for the component weights !̃ of the K distinct

components appearing in ('
`a

)
a2R`) and !̃?. We will use a Gibbs sampling scheme

based on the definition of the Dirichlet process in definition (2.2). Conditioned on '
ta

for all `, R
`

and ↵
0

(which we will refer to as ‘rest’) the distribution of !̃
1

, . . . , !̃

K

, !̃?

is given by the Dirichlet distribution which can be readily sampled.

�
(!̃

k

)K
k=1

, !̃?
� |',↵

0

⇠Dirichlet((#{(`, a) : 1  `  L, a 2 R
`

,'

ta

=k})K
k=1

,↵

0

).

(3.25)

We update the component assignment of a block a 2 R
`

using Gibbs sampling by

examining equation (3.2). We find that the entries that depend on the assignment '
ta

for 1  `  L and a 2 R
`

are given for each sequence i such that i 2 a by examining the

extent of that sequence. In particular, for each i, and for each `0 > `, the component

assignment '
ta

only depends on ⇣
i`

, z

i`

and x

i`

if sequence i does not jump between `

and `0. We define this set to be E = {(i, `0) : `0 > `, i 2 a, ⇣

i⌧

= 0 8 `0 � ⌧ > `}. With

this definition, conditioned on the variables x, R
`

, !̃, �,�, '
ta

0 for a

0 6= a (which we

will refer to as ‘rest’) the joint distribution of '
ta

is as follows:

Pr('
ta

= z|‘rest’) / !̃
z

⇤(x|z
it

0 = z 8 (i, `0) 2 E). (3.26)
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The likelihood term in equation (3.26) is found through (3.10). Note that equation

(3.26) does not factorize over E because ✓ is marginalized. This likelihood term, for a

fixed ` and a 2 R
`

is as follows:

⇤(x|z
it

0 =z 8 (i, `0) 2 E)/
LY

`

0
=`

�(�
`

�

`

+ n

E

1t

0 + n

�E
1t

0
k

)�(�
`

(1� �
`

) + n

E

0t

0 + n

�E
0t

0
k

)

�(�
`

�

`

+ n

�E
1t

0
z

)�(�
`

(1� �
`

) + n

�E
0t

0
z

)
.

(3.27)

Here n

E

1t

0 = #{(i, `) 2 E : x
it

0 = 1} and n

E

0t

0 = #{(i, `0) 2 E : x
i`

= 0} are the allele

counts for the sequences in a that do not jump between ` and `

0. Similarly, n�E
1t

0
z

=

#{i : (i, `0) 62 E, z

it

0 = z, x

it

0 = 1} and n

�E
1t

0
z

= #{i : (i, `0) 62 E, z

it

0 = z, x

it

0 = 1} are

the allele counts for the sequences in cluster z 2 {1, . . . ,K,?} at `0 that are not in a

or that jump between ` and `

0. Note that if z = ?, n�E
1t

0? = n

�E
0t

0? = 0 for all `0, E.

With these definitions, (3.26) can be computed for each ` and a 2 R
`

providing Gibbs

updates for '
ta

. In this update, if z = ? is sampled then a new component is added

to !̃ and alternatively if '
ta

was the only component assignment with '
ta

= z and '
ta

is sampled such that z 6= ? then a component is removed from !̃.

3.2.5.3 Slice sampling for parameters ↵
0

,↵, �

`

,�

`

, b and r

`

Slice sampling provides e�cient updates for random variables with distributions known

only up to a normalizing constant without requiring a choice of proposal distribution or

step size. We will update the latent variables ↵,↵
0

, �

`

,�

`

, b and r

`

using slice sampling.

The unnormalized probability density functions of these variables are given in this

section. In order to specify a slice sampler, we only need to know the target conditional

distribution up to a normalizing constant. In this section, we provide such unnormalized

conditional distributions for these latent variables. For more detail on slice sampling,

we refer to Neal (2003).

Conditional distributions for ↵
0

and ↵

These distributions follow from the priors in equations (3.4), (3.3) and the CRP

marginals for R
`

and the definition of the DP (Pitman, 2006).

Pr(↵
0

|R,',K) / Pr(↵
0

)↵K

0

�(↵
0

)

,
�

0

@
↵

0

+
X

`,k

#{a 2 R
`

: '
ta

= k}
1

A
, (3.28)

Pr(↵|R) / Pr(↵)
LY

`=1

↵

#R`�(↵)

�(↵+#R

`

)
. (3.29)
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Conditional distributions for �
`

,�

`

, b and r

`

By Bayes’ rule the unnormalized conditional distributions for �
`

,�

`

and b can be read o↵

from the conditional likelihood in equation (3.10) and the priors (3.5), (3.6), (3.7) thus

providing slice sampling updates. Finally, a slice sampling update for r
`

is provided by

the following conditional distribution:

For 1  ` < L, Pr(r
`

|R
`

) / Pr(r
`

)r
#R`+1

`

(1� r

`

)N�#R`+1
. (3.30)

Here Pr(r
`

) is the prior on r

`

from equation (3.9).

3.2.6 Summary

The methodology developed in this section is similar to that of the beam sampling

for HDP-HMMs (Van Gael et al., 2008). Both of these procedures use forwards-

filtering/backwards-sampling to provide updates for entire rows of state assignments.

However, in the beam sampler, an additional auxiliary variable (u) is introduced rep-

resenting a lower bound on the cluster weights. The beam sampler then provides an

auxiliary scheme in which the cluster weights (which are denoted here by !̃), the clus-

ter assignments (denoted here by ⇣, z) and the lower bound on the cluster weights (u)

are alternately resampled. Unlike the general homogeneous situation examined by the

beam sampler, the structure of the dependence in the BNPPHASE model allows exact

Gibbs updates without introducing the lower bound u. This provides better mixing for

the MCMC algorithm.

These inference methods also strictly improve upon the sticky-HMM methods originally

proposed in Fox et al. (2011) wherein only Gibbs updates for the state assignments

at a single location were considered. In other work, split/merge updates have been

derived for sticky-HMMs and related models (Michael et al., 2012). It is likely that

incorporation of that type of update for the BNPPHASE model would be beneficial.

To conclude this section, in summary we have provided a full MCMC algorithm for

BNPPHASE through an auxiliary Gibbs update for the latent cluster assignment of a fixed

sequence along with slice sampling updates for the parameters. The MCMC algorithm

we have provided is a collapsed sampler that operates directly on the dynamic-clustering

of the sequences. Imputation of missing data from partially observed genetic sequence

data can be done by simulating the posterior distribution of the BNPPHASE model using

this MCMC algorithm, and marginalizing the allele emissions at the missing entries.
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3.3 Relationship to the FastPHASE model

3.3.1 Finite truncations of the BNPPHASE model

Suppose that there are at most K clusters at each location. Then, the prior induced

by BNPPHASE on clustering reduces to the following finite form:

Pr(x, y, z,!
1

, . . . ,!

K

) = Pr(!
1

, . . . ,!

K

)
Y

i

!

1,zi1

Y

i,`>1

8
><

>:

r

`�1!`,zi` yi,`�1 = 1,

1� r

`�1 y

i, �̀1=0,z
i`

=z

i, �̀1,

0 otherwise.

This is a Bayesian version of fastPHASE (Scheet and Stephens, 2006) with a Bayesian

prior Pr(!
1

, . . . ,!

K

) on !
1

, . . . ,!

K

. The BNPPHASE model is an extension of this equa-

tion in which K !1.

3.3.2 Non-reversibility of fastPHASE and related models

The fastPHASE and BNPPHASE models involve latent location-dependent parameters.

Conditioned on these parameters, the models are not reversible. In particular, if we

reverse the order of both the parameters and the data (by the transformation ` 7! L�`),
then the posterior distribution of the data will be di↵erent. Furthermore, the marginal

distribution of the partition of the items of the BNPPHASE model for ` > 1 is not given

by the CRP. Both of these remarks originate from ‘sticky’ nature of the process wherein

sequences only leave the cluster they are in independently with rate r.

These remarks can be illustrated through the following example. Suppose that L = 2,

and that the atomic weights of the Dirichlet processes G

1

6= G

2

are given by ⇡
1k

and

⇡

2k

and the locations of the atoms for both processes given by  

1

, 

2

, . . .. Then, as

r ! 0, the probability that a sequence is assigned to the k-th cluster at location ` = 2

(i.e., that z
i2

= k) converges to ⇡
1k

. On the other hand, this probability converges to

⇡

2k

as r ! 1. We see from this illustration that the prior for the cluster assignment of

the i-th sequence at the `-th location is a↵ected by the parameters to the left of ` (but

not to the right), yielding non-reversibility.

The particular form for the marginal probability that the i-th sequence is in cluster k at

location ` is given by a mixture of the Dirichlet processes G
1

, . . . , G

`

. The weight of G
`

0

in this mixture for `0  ` is given by the probability that the i-th sequence transitions

at `0 but does not transition at any of the steps between `0 and `. Thus, the mixture

is (1 � r)`G
1

+
P

`

`

0
=2

(1 � r)`�`
0
rG

`

0 . Since Dirichlet processes are not closed under

mixtures, these mixtures are not Dirichlet processes and so the induced clustering of

the sequences at ` is not a CRP.
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Figure 3.8: Simulated ‘toy’ data using the identity-by-descent paradigm. The
first 5 datasets from the 100 simulated datasets with K = 9 are shown. x-axis
indicates marker position on the chromosome and y-axis indicates the sequence
identity. The sequences are sorted in lexigraphical order (black indicates the major
allele). Since mutations are placed on theK = 9 founders, ancestral recombination
can be seen clearly from the patterns in the data.

3.4 Experiments

We conducted three experiments in which we compared the BNPPHASE model (pre-

sented in this Chapter), fastPHASE and various other baselines. In our first experi-

ment, we examined the performance of the fastPHASE model on simulated data. We

conducted imputation on held out data from simulated population bottlenecks. We

simulated 700 datasets using an identity by descent paradigm. In this paradigm, we

simulated the ARG backwards in time for 500 lineages until the lineages coalesced into

a fixed number K lineages. We assumed that the time of coalescence at K lineages

was the bottleneck time. We varied K from 4 to 10 (for a total of 7 di↵erent con-

ditions for K) and generated 100 datasets for each setting of K. Then, rather than

placing mutations according to the infinite sites model described in section 1.2.2 (i.e.,

by placing mutations at points chosen with intensity given by the total tree length of

the genealogies) we instead placed L =100 mutations at the time of coalescence into

K lineages. In this way, we constructed ‘toy’ datasets in which the founder e↵ect was

amplified through an identity-by-descent. This paradigm creates a characteristic form

of structure in the data in which the dynamic-clustering is obvious. Examples of this

data are given in Figure 3.8. For each dataset, we held out 50% of entries uniformly at

random from all pairs of individuals and locations and then imputed the held out data

using BNPPHASE and fastPHASE.
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In another examination of simulated data, we generated data from the prior of the

BNPPHASE model, and recorded the runtime of posterior simulation conditioned on

this data. The parameters used for generating the data were as follows: ↵

0mean

=

10.0, ↵
0var

= 1.0, ↵
mean

= 1.0, ↵
var

= 1.0 and r

min

= 10�5. In this runtime ex-

periment, we varied the number of individuals between 100 and 900 and varied the

number of sites between 100 and 900. For the trials in which the number of individuals

were varied, we fixed the number of sites at 200 (and visa versa for the trials in which

the number of sites were varied). For each combination of sites and individuals, we

conducted 10 trials of 200 MCMC iterations each, and recorded the runtime of each

trial.

In our second experiment, we used parameters from Li and Durbin (2011) to simulate

data designed to model the out-of-Africa bottleneck in humans. We simulated 500

phased genetic sequences on 20 independent chromosome regions. Each region was on

average 3.0 ⇥ 105 base pairs long. There were on average 2099.3 biallelic markers in

each region. We recorded the time to most recent common ancestor (TMRCA) of each

biallelic marker under the simulation and conducted inference of the latent clustering

structure of the fully observed bottleneck data using fastPHASE and BNPPHASE. We

then regressed the TMRCA against the number of clusters that each model used per

marker. The number of clusters used by the fastPHASE model was computed by taking

the maximum likelihood (ML) cluster assignments for each genetic sequence using the

approximate posterior found by the EM algorithm for fastPHASE (Scheet and Stephens,

2006).

In our third and final experiment, we examined a collection of datasets consisting

of 20 intervals chosen randomly from the non-pseudoautosomal region of the male X

chromosome. Each dataset consisted of 500 consecutive SNPs (an average length of

around 105 basepairs) from 524 male X chromosomes from the Thousand Genomes

Project (The 1000 Genomes Project Consortium, 2010). Due to limitations in the

fastPHASE software, only 524 of the 525 male X chromosomes could be used, and so

we randomly removed one of the chromosomes for each interval. We held out nested

sets of between 10% and 90% of the entries uniformly at random and we examined

the accuracy of predicting those entries using imputation based on fastPHASE and

BNPPHASE. In order to avoid degeneracy, in cases where all minor alleles were held

out for a single marker, that marker was discarded from analysis.

3.4.1 MCMC initialization, burn-in, iteration, restarts and schedules

The procedure we used for simulating the posterior of the BNPPHASE model with MCMC

were the same in all three experiment, except for the runtime experiment, and were

as follows. First, we initialized the chain using a scheme in which one sequence of the

chain was initialized at a time conditioned on previously initialized sequences. This
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initialization method was similar to the product of approximate conditionals method

in Li and Stephens (2003). Next, we performed 10 initial iterations in which only the

parameters (but not the latent state assignments and jump indicators) were resampled.

Subsequently, 50 MCMC iterations were performed consisting of full sweeps over the

parameters and Gibbs updates for the latent state assignments and jump indicators

of each sequence. In these iterations, the parameters were updated 10 times for each

single update of the latent state assignments and jump indicators. The first 20 of these

iterations were discarded as burn-in. This procedure was repeated 25 times, each time

with an independent initialization (random restarts), yielding 750 iterations which were

averaged to produce posterior predictions.

We chose the number of iterations to use by looking at trace plots of the likelihood

and accuracy. These traces plateaued at 50 iterations, after which a reasonable mode

was found. Other methods in genotype imputation use similar numbers of iterations.

Default parameters for IMPUTE2, SHAPEIT and BEAGLE are 40, 35 and 10 iterations

respectively (including burn-in). SHAPEIT has been run with this small number of

iterations to produce reference haplotypes for the Thousand Genomes Project. The

small number of iterations required for HMM methods in genetic imputation suggest

that for haplotype models the posterior is quite peaked over its’ mode.

For the second imputation experiment on male X chromosome data, in addition to

conducting the MCMC procedure described above, we also did a grid-search over the

latent parameters. For the grid-search, the MCMC procedure was modified by replac-

ing the step wherein the parameter are updated with a step that only updated the

parameters that were not involved in the grid-search. The grid-search was done over

the parameters ↵
0

,↵, b and �.

3.5 Results

In this section we report the results of the three experiments described above. For the

first and last experiments, we show imputation results and we explore the posterior

distributions of the BNPPHASE model for the X chromosome data. For the second ex-

periment, we show the results of regressing the TMRCA against the number of clusters.

3.5.1 Results I: simulated data

3.5.1.1 Imputation of bottleneck with identity-by-descent

In Figure 3.9, we show the results of BNPPHASE on the simulated population bottleneck

data from the first experiment. Figure 3.9(left) shows the imputation accuracy of

BNPPHASE compared to fastPHASE with the number of components fixed at K = 5, 7

or 9. As the number of components in the fastPHASE model increases, the capacity
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Figure 3.9: Imputation on simulated identity-by-descent data. Left: imputation
accuracy versus number of genetic founders for simulated population bottleneck
data. Right: expected number of states under posterior of BNPPHASE model.

of the model increases. Since large capacity is not required to model a small number

of genetic founders, all models with enough capacity perform roughly the same for

for K = 4 genetic founders. When the number of genetic founders increases beyond

the number of components in the fastPHASE model, the accuracy decreases by an

amount roughly proportional to the di↵erence between the number of genetic founders

and the number of components of fastPHASE. The baseline accuracy on the genetic

imputation task for the simulated data (found by predicting the major allele at all held

out locations) was 84.35%. While the ability of BNPPHASE to recover of the true number

of components is unsurprising, this experiment gives strong evidence that our inference

method is correctly specified.

Figure 3.9(right) shows the expected number of latent clusters found as a function

of the number of genetic founders in the simulated bottleneck data. We see a direct

correlation (1:1) between the number of latent clusters and the number of genetic

founders. Note that for real datasets we would not necessarily expect these numbers to

coincide directly because in some cases the prior induced by BNPPHASE might prefer

to model contiguous haplotype blocks as a single longer haplotype.

3.5.1.2 Examination of runtime

In Figure 3.10 we show the runtime of the BNPPHASE model on simulated data drawn

from the BNPPHASE prior. The linear dependence of runtime on both the number of

individuals (Figure 3.10 left) and the number of sites (Figure 3.10 right) is clear from

this figure.

3.5.2 Results II: TMRCA regression on the out-of-Africa bottleneck

We found a strong negative correlation between the number of clusters used per marker

and the TMRCA for both the BNPPHASE model and fastPHASE. In Figure 3.11 (top,
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Figure 3.10: Scalability of BNPPHASE. Runtime required for 200 iterations of
BNPPHASE as Left: number of individuals or Right: number of sites is varied.
Red dotted line indicates linear fit, solid blue line indicates mean over 10 trials,
blue dotted line indicates standard deviation (shaded region is within one standard
deviation of mean). Linear trend in both the number of individuals and the number
of sites is clear.

Method BNPPHASE FP FP200 MAF
RMSE 0.2724 0.2855 0.3063 0.3215

Table 3.1: RMSE for regression of TMRCA against # of clusters for BNPPHASE model,
fastPHASE with default parameters (FP) or K=200 clusters (FP200), and also against
the minor allele frequency (MAF).

bottom) we regress the TMRCA against the number of clusters used per marker. When

we ran fastPHASE with default settings, fastPHASE would almost always choose to use

20 clusters in the ML cluster assignment. When we increased the number of clusters to

200 (but otherwise left the parameters of fastPHASE with their default settings) large

numbers of clusters were still used (as can be seen in Figure 3.11). BNPPHASE often

used fewer clusters than fastPHASE. Visual inspection of the data suggests that fewer

clusters (on the order of the numbers used by BNPPHASE) are often more reasonable

representations of the data. As a control, we regressed the TMRCA against the minor

allele frequency and in this case we also found a negative correlation. The residual root

mean squared errors of the regression were smallest in the BNPPHASE model (Table 3.1).

3.5.3 Results III: imputation of male X chromosome data

In Figure 3.12 we show an example region of the male X chromosome used in the

imputation experiment on data from the Thousand Genomes Project. Figure 3.12

(top left) shows the pattern of minor alleles in this example region. In Figure 3.12 (top

right), a single sample from an MCMC chain for the BNPPHASE posterior is displayed. By

comparing this sample with Figure 3.12 (top left), it is clear that the clustering structure
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Figure 3.11: Regression of TMRCA against number of clusters. Points indicate
number of clusters used at marker (x-axis) vs TMRCA of marker (y-axis). Con-
tours show level lines of Gaussian kernel density estimation. Dotted line shows
regression. Top: clusters found by fastPHASE with 200 components (FP200).
Bottom: clusters found by BNPPHASE model.
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found by BNPPHASE is capturing the haplotype structure of the data. Figures 3.12

(bottom left, right) show the posterior distribution of the jump rate and the number

of states, respectively. The spikes in the posterior of the jump rate are aligned with

change points in the haplotype structure, indicating that recombination hot spots are

accurately recovered by the BNPPHASE model.

Imputation results for the 20 regions of the male X chromosomes from the Thousand

Genomes Project is shown in Figure 3.13. The BNPPHASE model consistently outper-

formed fastPHASE run with 10 components (the FP10 condition).1 For 30%, 50% and

90% hold out conditions, the performance of BNPPHASE and FP20 is quite similar. The

BNPPHASE model tended to do better than other methods in the larger hold out condi-

tions. BEAGLE performed well on small hold out conditions, but poorly on large hold

out conditions.

We considered two conditions for sampling the parameters of the BNPPHASE model:

a fixed condition in which the parameters were fixed to set values, and an unfixed

condition in which hyperpriors were placed on the parameters. To find the parameter

values in the fixed condition, we perform a grid-search over ↵,↵
0

,� and � and ran

MCMC chains without updating these parameters. We chose the parameters that

maximize the imputation accuracy for a fixed dataset, and used those parameters for all

other datasets. In the second condition (unfixed), MCMC was done for the full model,

with slice sampling for ↵,↵
0

,� and �. The average accuracy of the fixed condition for

the parameter values that maximized the grid-search was 0.99167 whereas the average

accuracy of the unfixed condition was 0.99187. Although small, this di↵erence was

found to be significant under a sign test (p = 0.04). Since imputation is used as a

preprocessing technique in genome wide association studies, even small di↵erences in

imputation accuracy could improve the quality of GWAS results.

3.6 Discussion

We found that the specifics of the hierarchical likelihood used in the BNPPHASE model

were quite important. In experiments which are not shown in this paper we looked

at two other likelihoods in addition to the one described in equation (3.10). The two

additional likelihoods were a uniform Bernoulli likelihoods and a discrete likelihood.

For the uniform Bernoulli likelihood we placed a uniform prior on ✓

tk

and for the

hierarchical deterministic likelihood we replaced the beta prior on ✓
tk

with a Bernoulli

prior with mean �
t

(so that at a given marker, each cluster always emitted either the

major or the minor allele for every genetic sequence in that cluster). When experiment

II was repeated with each of these two additional priors, the BNPPHASE model yielded

1fastPHASE was run with the default number of iterations and restarts, along with the ‘-.1m’ com-

mand line flag, which prevented fastPHASE from throwing out sites in the conditions with more than

half the observations missing.
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Figure 3.12: Top left: Example region of male X chromosomes from the Thou-
sand Genomes Project. x-axis indicates chromosome position, y-axis indicates in-
dividual identity. Black pixels indicate minor alleles. Individuals are presented in
sorted order to emphasize haplotype structure (all models we discuss are exchange-
able and invariant to order of individuals). Top right: Latent cluster assignment of
sample from BNPPHASE model posterior. Color indicates cluster identity. Bottom
left, right: Posterior distributions for jump rate r and number of states averaged
over 20 MCMC samples, shaded region indicates sample standard deviation.
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Figure 3.13: Imputation accuracy for X chromosomes from the Thousand
Genomes Project (The 1000 Genomes Project Consortium, 2010). Data from
Phase I release v3, acquired on 17/5/2012. Beagle’s performance for large held
out conditions is low, thus y-axis is truncated to emphasize di↵erences between
methods over the whole domain.
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Figure 3.14: Number of unique haplotypes and TMRCA along chromosome.
Red plot indicates number of unique haplotypes appearing in sample in window
extending 50 markers to both sides of each marker. Blue plot indicates TMRCA
in units of 4N0.

worse imputation performance and sometimes failed to capture much of the haplotype

structure, especially in datasets with low minor allele frequencies.

3.6.1 Intuition for TMRCA regression results

We were surprised to see that the correlation between the number of clusters used by

fastPHASE or BNPPHASE and the TMRCA was negative. This could be explained by

the nature of population bottlenecks. When mutation rate is low, genetic variation is

influenced more strongly by genetic drift. In this case, as TMRCA increases the number

of fixed alleles increases, leading to fewer observed haplotypes in the modern population.

Bottlenecks involve exponentially expanding populations and so the total number of

new mutations in the ancient population is low relative to the modern population. In

Figure 3.14, we explored this hypothesis by counting the number of unique patterns of

alleles in a simulated bottleneck from experiment I. We found that this empirical count

was also negatively correlated with TMRCA (the Pearson correlation coe�cient was

�0.7274).

3.7 Conclusion

We presented a new Bayesian nonparametric model for genetic sequence data

(BNPPHASE). This model is based on a Bayesian nonparametric generalization of the

fastPHASE model, and captures similar aspects of the genetic process such as non-

homogeneous structures. These nonhomogeneous structures often occur in population

bottleneck data. The BNPPHASE model defines distributions directly on the space of par-

titions and avoids the label switching problem. We showed that the BNPPHASE model

provides imputation performance competitive with the state-of-the-art. For simulated

population bottleneck data, we showed that it provides better regression against the
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TMRCA than the related fastPHASE model and also regression based on minor allele

frequencies.
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Glossary of symbols for BNPPHASE model

a Block of partition R
`

b Prior mean of the mass of the allele emission probability for location `

�

`

Mean allele emission probability for location `

�

`

Mass of allele emission probability for location `

⇣

i`

Block assignment of i-th individual at `-th location

✓

`k

Allele emission probability for component k at location `

K Number of unique components among ('
`a

)
`a

, a 2 R
`

K

�i Number of unique components among ('
`a

)
`a

, a 2 R�i
`

↵

0

Concentration parameter for DP

↵ Concentration parameter for CRP

mf

`

(z, ⇣) Forwards message

mb

`

(z, ⇣) Backwards message

N Number of individuals

r

`

Probability of a sequence ‘jumping’ after location `

R�i
`

Partition of R�i
`

induced by R
`

R
`

Partition of R
`

R

�i
`

Set R
`

with i removed

R

`

Set of individuals that ‘jump’ after location `

S? Set of locations where an individual ‘jumps’ to a singleton cluster

T Number of markers

x

i`

Allele observed for individual i at location `

y

i`

Indicates if individual i ‘jumps’ after location `

z

i`

Cluster assignment of i-th individual at `-th location

'

`a

Component assignment of a block a of a partition R
`

!

�i Unique elements among {!
zi0` : i

0 6= i, 1  `  L}
!? Mass of DP components other than !

1

, . . . ,!

K

(!? = 1�PK

k=1

!

k

)

! Mass of Dirichlet process components

? Symbol representing new block or cluster



Chapter 4

The discrete

fragmentation-coagulation

processes

4.1 Introduction

We will now present the discrete fragmentation-coagulation process (DFCP) for genetic

sequence data (Elliott and Teh, 2012). This model uses the fragmentation and coag-

ulation operators defined in section 2.4 to form a dynamic-partition of the observed

genetic sequences. The DFCP model is defined through a discrete Markov chain as fol-

lows: starting with the partition R
`

of the set of sequences at the `-th chromosome

location, we first fragment each cluster in R
`

into smaller clusters, forming a finer par-

tition Q
`

. Then we coagulate the clusters in Q
`

to form a coarser partition R
`+1

of

the sequences at the `+1-st chromosome location. This process is repeated at every

chromosome location to produce a dynamic-clustering.

Through fragmentation and coagulation events, the DFCP models the block-like, mosaic

structure of haplotypes in genetic sequence data (Daly et al., 2001). This structure

arises due to recombination and gene conversion occurring in the ancestry of the ob-

served genetic sequences (we refer to section 1.2.1 for more detail). Locally, these

prototypical haplotype segments are shared by a cluster of sequences: each sequence in

the cluster is described well by a haplotype that is specific to the cluster’s location on

the chromosome. An example of such a structure found by a fragmentation-coagulation

process is shown in Figure 4.1.

As mentioned in section 1.3.2.2, the DFCP is related to the continuous fragmentation-

coagulation process (CFCP) which we also derived as a model for genetic sequence data

(Teh et al., 2011). In the CFCP, the dynamic-clustering is defined through a latent

partition valued Markov jump process in which the blocks of the partition transition
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Figure 4.1: Mosaic structure found by the fragmentation-coagulation process.
Sequences are obtained from phased trios in the CEU population in HapMap,
from base pair positions 32790152 to 32795548 on Chromosome 6 (NCBI Build 36
coordinates). Each SNP sequence corresponds to a trajectory, from left to right,
through the structure, passing through a number of segments. Each segment con-
sists of a sequence of alleles, while dotted lines correspond to transitions between
segments

through fragmentation events (in which one block splits into two) and coagulation

events (in which two blocks merge into one). The CFCP is an infinite limit of the DFCP:

as the rate of the DFCP and the distance on the chromosome between chromosome

locations ` and `+1 both go to zero, the DFCP converges to the CFCP.

Although inference algorithms for both the DFCP and CFCP scale linearly in the number

of sequences and the number of genetic markers, since the CFCP is a Markov jump

process, the computational overhead needed to model the arbitrary number of latent

events located between two consecutive markers might preclude scalability to large

datasets. Further, because the fragmentation and coagulation events in the CFCP are

binary (one block splits in two, or two blocks merge to one), the CFCP must use more

events than the DFCP in order to model complex latent structures.

We conducted two experiments in which we compared the DFCP and the CFCP to other

methods and demonstrated their state-of-the-art imputation accuracy. Our experi-

ments also suggest that the DFCP is more scalable than the CFCP and that MCMC

based on the DFCP mixes faster than the uniformization derived for the CFCP. In our

first experiment, we compared the imputation accuracy of the CFCP and DFCP and sev-

eral other methods on the same X chromosome data that we used in Chapter 3 (these

data are from The 1000 Genomes Project Consortium, 2010). In our second experiment,

we generated simulated data from the coalescent with recombination. To examine the

scalability of the DFCP and CFCP methods, we varied the number of simulated sequences

in the population. We found that the DFCP was more scalable.
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In the remainder of this section, we will give some intuition about how the DFCP ap-

proximates the genetic process and then we will describe the relationship of the DFCP to

other popular models in genetics such as IMPUTE and SHAPEIT (Marchini et al., 2007;

Delaneau et al., 2012). Then, we will give a mathematical formulation of the DFCP

through a generative process. We conclude this section with a formal construction of

the CFCP as a limit of the DFCP.

In section 4.2, we derive inference for the DFCP based on forwards-filtering/backwards-

sampling and slice sampling. We will also provide inference algorithms for unphased

genotype imputation and suggest several approaches for phasing data using the DFCP.

We will derive asymptotics related to the expected length of haplotypes in the DFCP

model. In sections 4.3 and 4.4 we describe in more detail the experiments we conducted

and discuss the results of those experiments. Finally, in section 4.6 we give some

concluding remarks about the advantages of the DFCP model.

4.1.1 Relation to the genetic process

The DFCP is an approximation of the sequentially Markov coalescent (McVean and

Cardin, 2005) described in section 1.2.1. A complete description of the ancestry of

a set of homologous genetic sequences can be approximated by a genealogy-valued

Markov process (McVean and Cardin, 2005). The DFCP further approximates these

genealogies with a dynamic-clustering in which individuals that are close together in

the tree distance implied by the genealogies are in the same cluster.

As noted in section 1.2.1, many models in statistical genetics are based on this Markov

dynamic-clustering approximation of the ancestry. By inducing a latent haplotype

chart, the DFCPmodel is quite similar in style to the SHAPEIT/SHAPEIT2 algorithms (De-

laneau et al., 2012, 2013). Being both e�cient and accurate, the SHAPEIT2 model is

currently viewed as the cutting edge of genotype phasing algorithms.

The SHAPEIT2 algorithm is a discrete HMM method in which the forwards/backwards

algorithm is used to update the latent state assignments of two unphased diploid se-

quences (say, sequence i). The clusters are formed by examining all of the sequences

other than sequence i and forming a chart similar to the diagram in Figure 4.1. The

chart in SHAPEIT2 is formed by dividing the chromosome into segments such that in

every segment, there are exactly K distinct haplotypes appearing among the sequences

(here, K is a user defined parameter). These segments are used as the the state as-

signment of the i-th sequence (i.e., these segments are the states of the HMM). At the

interface between adjacent segments, the HMM transition rule is found by an empir-

ical count. For each pair of segments at the interface, the probability of transiting is

proportional to the number of sequences other than i-th sequence that have made the

same transition between the pair of segments at that interface.

The DFCP model also forms charts wherein the segments in the charts are clusters in
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the CRP, and through the nature of the ‘rich-gets-richer’ property of the CRP, the

probability of a transition between segments is correlated with the number of other

sequences that have made the same transition. However, instead of dividing the chro-

mosome and forming segments between all the points in the division, the DFCP allows

the boundaries of segments to overlap. Further, rather than being fixed at K, the

number of segments at a given location is learned by the DFCP. These features of the

DFCP are made mathematically explicit in the next sections.

4.1.2 Definition of the DFCP through fragmentation and coagulation

Let R = {1, . . . , N} be the indices of N phased genetic sequences typed at L biallelic

locations (we refer to section 1.1 for more information about this sort of data type).

We will now define the DFCP as a dynamic-clustering on R. The DFCP is parameterized

by a concentration ↵ > 0 and rates (d
`

)L�1
`=1

with d

`

2 [0, 1). Under the DFCP, the

marginal distribution of the partition R
`

is CRP(R,↵, 0) and so ↵ controls the number

of clusters that are found at each location (with the expected number of clusters in

the prior being O(↵ logN). The rate parameter d
`

controls the strength of dependence

between R
`

and R
`+1

, with d

`

= 0 implying that R
`

= R
`+1

, and d

`

! 1 implying

independence.

Given ↵ and (d
`

)L�1
`=1

, the DFCP is described by the following Markov chain. First we

draw a partition R
1

⇠ CRP(R,↵, 0). This CRP describes the clustering of R at loca-

tion ` = 1. Subsequently, we drawQ
`

|R
`

from Frag(R
`

, 0, d
`

), which fragments each of

the clusters inR
`

into smaller clusters inQ
`

, and thenR
`+1

|Q
`

fromCoag(Q
`

,↵/d

`

, 0),

which coagulates clusters in Q
`

into larger clusters in R
`+1

.

Each R
`

has CRP(R,↵, 0) as its invariant marginal distribution and each Q
`

is

marginally distributed as CRP(R,↵, d

`

). This can be seen by applying Theorem 1

from Chapter 2. (The following substitution of notation must be made to see the result

from Theorem 1: d
1

 0, d
2

 d

`

, ↵ ↵/d

`

.)

Fragmentation and coagulation operators are defined in section 2.4 in terms of CRPs

which are projective and exchangeable, and so the latent Markov chain for the DFCP is

projective and exchangeable in R as well. Projectivity and exchangeability are desirable

properties for Bayesian nonparametric models because they imply that the marginal

distribution of a given data item does not depend on the total number of other data

items or on the order in which the other data items are indexed. In genetics, this

captures the fact that usually only a small subset of a population is observed.

Theorem 1 also shows that conditioned on R
`+1

, Q
`

has the distribution

Frag(R
`+1

, 0, d
`

) while R
`

|Q
`

has the distribution Coag(Q
`

,↵/d

`

, 0). This means

that the Markov chain defining the DFCP is reversible (in contrast, fastPHASE, BNPPHASE

and IMPUTE2 are all non-reversible, as is explored in section 3.3.2). Chromosome repli-

cation is directional and so statistics for genetic processes along the chromosome are not
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reversible. But the strength of this e↵ect on SNP data is not currently known and many

genetic models such as the coalescent with recombination (Hudson, 2002) assume re-

versibility for simplicity. The non-reversibility displayed by models such as fastPHASE

is an artifact of their construction rather than an attempt to capture non-reversible

aspects of genetic sequences.

4.1.3 Relation to the CFCP

The continuous version of the fragmentation-coagulation process (Teh et al., 2011),

which we refer to as the CFCP, is a partition valued Markov jump process (MJP). (The

‘time’ variable for this MJP is the chromosome location, viewed as a continuous vari-

able.) The CFCP is a pure jump process and can be defined in terms of its rates for

various jump events. There are two types of events in the CFCP: binary fragmenta-

tion events, in which a single cluster a is split into two clusters b and c at a rate of

d�(#c)�(#b)/�(#a), and binary coagulation events in which two clusters b and cmerge

to form one cluster a at a rate of d/↵. (The coagulation probability is independent of

the sizes of a, b and c.)

As was shown in (Teh et al., 2011) the CFCP can be realized as a continuous limit of the

DFCP. Consider a DFCP with concentration ↵ and constant rate parameter d
"

. Then as

" ! 0 the probability that the coagulation and fragmentation operations at a specific

time step ` induce no change in the partition structure R
`

approaches 1. Conversely,

the probability that these operations are the binary events given above scales as O("),

while all other events scale as larger powers of ". If we rescale the time steps by ` 7! "`,

then d 7! "d and the expected number of binary events over a finite interval approaches

" times the rates given above and the expected number of all other events goes to zero,

yielding the CFCP. This is shown by taking the following limits. For fragmentation, we

have from equation (2.9):

Pr(Frag(R, 0, "d) = Q|R) (4.1)

=
("d)#Q�#R

�(1� "d)#Q

Y

a2R

�(#F

a

)

�(#a)

Y

b2Q
�(#b� "d) (4.2)

"! 0

=

8
><

>:

1 +O("2) if Q = R,

"d

�(a)�(b)

�(c)

+O("2) if #Q�#R = 1 and Q = R� c [ {a, b},
O("2) if #Q�#R > 1.

(4.3)

In this limit, to arrive at equation (4.3) we have used that �(X + "d) = �(X) +O(")
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for X > 0 as "! 0. For coagulation, we have from equation (2.10):

Pr(Coag(Q,↵/("d), 0) = R|Q) (4.4)

=
(↵/("d))#R�(↵/("d))

�(↵/("d) + #Q)

Y

a2R
�(#C

a

) (4.5)

=
("d/↵)#Q�#R

1 · (1 + ✏d/↵) · . . . · (1 + ✏d/↵(#Q� 1))

Y

a2R
�(#C

a

) (4.6)

"! 0

=

8
><

>:

1 +O("2) if Q = R,

"d/↵+O("2) if #Q�#R = 1 and Q = R� c [ {a, b},
O("2) if #Q�#R > 1.

(4.7)

To derive equation (4.6) we have used that �(X)/�(X + J) = 1/X · 1/(X + 1) · . . . ·
1/(X + J � 1) for X > 0 and J 2 N and we have multiplied the top and bottom of the

fraction by (✏d/↵)#Q.

In the CFCP fragmentation and coagulation events are binary: they involve either one

cluster fragmenting into two new clusters, or two clusters coagulating into one new clus-

ter. However, for the DFCP the fragmentation and coagulation operators can describe

more complicated haplotype structures without introducing more latent events. For

example one cluster splitting into three clusters (as happens to the second haplotype

from the top of Figure 4.1 after the 10th SNP) can be described by the DFCP using just

one fragmentation operator. The order of the latent events introduced by the CFCP

required does not matter, adding unnecessary local modes to its posterior.

4.2 Methods

We will now derive a Gibbs sampler for posterior simulation in the DFCP by making use

of the exchangeability of the process. Each iteration of the sampler updates the trajec-

tory of cluster assignments of one sequence i through the partition structure. To arrive

at the updates, we will consider the conditional distribution of the i-th trajectory given

all of the others, which can be shown to be a Markov chain. Coupled with the determin-

istic likelihood terms, we then use a backwards-filtering/forwards-sampling algorithm

to obtain a new trajectory for sequence i. In this section, we derive the conditional

distribution of trajectory i using the definition of fragmentation and coagulation and

also the posterior distributions of the parameters d
`

,↵ which we will update using slice

sampling (Neal, 2003).

4.2.1 Likelihood model and parameter priors

We used a discrete likelihood in which the same observation is emitted for each se-

quence in a cluster. The likelihood model was specified as follows. Given the sequence
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of partitions (R
`

)L
`=1

, we model the observations in each cluster at each location ` in-

dependently. For each cluster a 2 R
`

at location ` and for each sequence i, let a
i`

2 R
`

be the cluster in R
`

containing i. Let ✓
`a

be the emission of cluster a at location `.

Since SNP data has binary labels, ✓
`a

2 {0, 1} is a Bernoulli random variable. Let the

mean of ✓
`a

be �
`

(this is the latent allele frequency at location `). We assume that

conditioned on the partitions and the parameters, the observations x
i`

are independent,

and determined by the cluster parameter ✓
`a

. Thus the probability Pr(✓
`a

= 1|�
`

) = �

`

and the probability Pr(x
i`

|a
i`

= a, ✓

`a

) = �(x
i`

= ✓

`a

) where � is an indicator function

(i.e., it is one if x
i`

= ✓

`a

and zero otherwise).

We place a beta prior on �

`

with mean parameter 1/2 and mass parameter �
`

. The

mass parameters are themselves marginally independent and we place on them an

uninformative log-uniform prior over a range: p(�
`

) / �

�1
`

, �
`

� �

min

. Since this

distribution is heavy tailed, the �
`

variables will have more mass near 0 and 1 than

they would have if �
`

were fixed, adding sparsity to the latent allele frequencies. This

phenomenon is empirically observed in SNP data. The parameters �
`

will be integrated

out during inference.

We also place an uninformative log-uniform prior on the rates d
`

over a range: p(d
`

) /
d

�1
`

, d
`

� d

min

. Note that the prior gives more mass to values of d
`

close to d

min

which

we set close to zero; we expect the partitions of consecutive locations to be relatively

similar so that the mosaic haplotype structure can be formed. Finally, we place a log-

normal prior on ↵ with mean m and variance v: log↵ ⇠ N (m, v),↵ > 0. The graphical

model for this generative process is shown in Figure 4.2(Top), and it is summarized in

equation (4.8).
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⇢1 ⇢2 ⇢T�1

⇡1 ⇡2 · · · ⇡T

xi1 xi2 · · · xiT

✓1a ✓2a · · · ✓Ta

�1 �2 · · · �T

8 1  i  n

8 a 2 ⇡1 8 a 2 ⇡2 8 a 2 ⇡T

R
1

⇠ CRP(R,↵, 0),

Q
`

|R
`

⇠ Frag(R
`

, 0, d
`

),

R
`+1

|Q
`

⇠ Coag(Q
`

,↵/d

`

, 0),

log↵ ⇠ N (m, v),

log d
`

⇠ Uniform(logR
min

, 0),

x

i`

|a
i`

= ✓

tai` , ✓`a|�` ⇠ Bernoulli(�
`

),

�

`

|�
`

⇠ Beta(
�

`

2
,

�

`

2
),

log �
`

⇠ Uniform(log �
min

, 0). (4.8)

Figure 4.2: Top: Plate diagram for the discrete fragmentation-coagulation pro-
cess. For brevity hyperparameters are not shown. T denotes number of markers.
Bottom: Generative process for genetic sequences (xi`)Ni=1.
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4.2.2 Joint probability distribution for DFCP

The full probability for the dynamic-clustering prior on the partitions R
1

, . . . ,R
L

,

Q
1

, . . . ,Q
L�1 induced by the DFCP is given by the following equation:

Pr(R,Q|↵, d) =
0

@↵
#R1�(↵)

�(↵+N)

Y

a2R1

�(#a)

1

A

·
0

@
L�2Y

`=1

d

#Q`�#R`
`

�(1� d

`

)#Q`

Y

a2R`

�(#F

a

)

�(#a)

Y

b2Q`

�(#b� d

`

)

1

A

·
0

@
L�1Y

`=1

(↵/d
`

)#R`+1�(↵/d
`

)

�(↵/d
`

+#Q
`

)

Y

a2R`+1

�(#C

a

)

1

A
,

=
↵

PL
`=1 #R`�(↵)

�(↵+N)

0

@
L�1Y

`=2

Y

a2R`

�(#C

a

)�(#F

a

)

�(#a)

1

A

0

@
Y

a2R1

�(#F

a

)

1

A

·
0

@
Y

a2RL

�(#C

a

)

1

A
L�1Y

`=1

�(↵/d
`

)d
#Q`�#R`+1�#R`

`

�(↵/d
`

+#R
`

)�(1� d

`

)#Q`

Y

b2Q`

�(#b� d

`

).

(4.9)

In the first equality listed in (4.9), the bracketed expressions correspond to the prob-

abilities arising from the initial CRP, the L � 1 fragmentation operations and the L

coagulation operations respectively. The exchangeability and reversibility of the pro-

cess follows from this equation. Also, from this equation, we can derive the posterior

probabilities for ↵ and d

`

conditioned on R and Q using Bayes’ rule.

Pr(↵|R,Q, d) / ↵

PL
`=1 #R`�(↵)

�(↵+N)

L�1Y

`=1

�(↵/d
`

)

�(↵/d
`

+#Q
`

)
,

Pr(d
`

|R,Q,↵) / �(↵/d
`

)d
#Q`�#R`+1�R`

`

�(↵/d
`

+#Q
`

)�(1� d

`

)#Q`

Y

b2Q`

�(#b� d

`

). (4.10)

4.2.3 Gibbs update for latent block assignment of sequence i

We will use the same notation that we used in Chapter 3 to define projections of

partitions and events involving the cluster assignment of an individual sequence. In

particular, we will fix sequence i and for a partition R of [N ] we will denote by R�i
the partition of [N ]� {i} (i.e., the set 1, 2, . . . , i� 1, i+ 1, . . . , N) induced by R. That

is, we remove sequence i from the block of R in which it resides, and if removing

sequence i from that block yields the empty set then we also remove the empty set

and thereby form a partition of [N ] � {i}. By exchangeability, we imagine that the

partition structure were built sequentially and that sequence i was the last sequence to

be added to it. Thus, we need notation to describe which blocks sequence i joins as it
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is added to the partition structure. We will denote by a

`

the assignment of sequence i

at location `. If sequence i joins a cluster a that already exists in R�i we will denote

this event by a

`

= a. But if a new cluster is created for sequence i (i.e., if sequence i

will be in the block {i} in R) then we denote this event by a

`

= ?. Similarly, for Q we

will denote the assignment of sequence i in Q
`

by b

`

and write b

`

= b or b
`

= ? for the

cases where b

`

joins a cluster b 2 Q�i
`

or a new cluster being created for sequence i in

Q
`

. We now use the conditional distributions derived in section 2.4.2 to arrive at the

following conditional equations:

Pr(a
1

= a|R�i
1

) =

(
#a/(N � 1 + ↵) if a 2 R�i

1

,

↵/(N � 1 + ↵) if a = ?.

Pr(b
`

= b|a
`

= a,R�i
`

,Q�i
`

) =

8
>>>><

>>>>:

(#b� d

`

)/#a if a 2 R�i
`

, b 2 F

`

(a),

d

`

#F

`

(a)/#a if a 2 R�i
`

, b = ?,

1 if a = b = ?,

0 otherwise.

Pr(a
`+1

= a|b
`

= b,R�i
`+1

,Q�i
`

) =

8
>>>><

>>>>:

d

`

#C

`

(a)/(↵+ d

`

#Q�i
`

) if a 2 R�i
`+1

, b = ?,

↵/(↵+ d

`

#Q�i
`

) if a = b = ?,

1 if a 2 R�i
`+1

, b 2 C

`

(a),

0 otherwise.

(4.11)

Here, F
`

(a) is the set of blocks b 2 Q
`

into which the block a 2 R
`

fragments, and

C

`

(a) is the set of blocks in Q
`

that coagulate to form the block a 2 R
`+1

. As in Elliott

and Teh (2012) we define the following messages for ` = 1, . . . , L� 1:

m

`

C

(a) = Pr(x
i,(`+1):L

|a
`

= a,R�i
`:L

,Q�i
`:(L�1)),

m

`

F

(b) = Pr(x
i,(`+1):L

|b
`

= b,R�i
`:L

,Q�i
`:(L�1)).

These messages can be computed recursively as follows:

m

`

F (b) =
X

a2⇡�i
`+1[{?}

m

`+1

C (a)⇤(x
i,(`+1)

|a)
| {z }

Likelihood.

Pr(a
`+1

= a|b
`

= b,⇡

�i
`+1

, ⇢

�i
`

)
| {z }
Coagulation probabilities from (2.13).

. (4.12)

m

`

C(a) =
X

b2⇢�i
` [{?}

m

`

F (b) Pr(b
`

= b|a
`

= a,⇡

�i
`

, ⇢

�i
`

)
| {z }

Fragmentation probabilities from (2.12).

. (4.13)

Here ⇤(x|a) is the likelihood term induced by the discrete likelihood defined in Sec-

tion 4.2.2. In particular, in the event that a 6= ?, the i-th sequence joins a nonempty

cluster a 2 R
`

. Since this cluster will emit the same allele for every sequence in it,

the allele emitted by sequence i at ` is determined and ⇤(x|a) = �(x
i`

= ✓

a`

), where

� is the Dirac delta function. On the other hand, if a = ?, then ⇤(x|a) is found by
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marginalizing the �
`

parameter in the beta/Bernoulli hierarchy for ✓ at `, and:

⇤(x
i`

= 1|?) =
�

`

/2 + n

1`

�

`

+ n

1`

+ n

0`

, ⇤(x
i`

= 0|?) =
�

`

/2 + n

0`

�

`

+ n

1`

+ n

0`

. (4.14)

Here n

1`

= #{a 2 R�i
`

|✓
a`

} is the number of clusters in R�i
`

that emit the major allele

and n

0`

is the number of clusters in R�i
`

that emit the minor allele.

As the fragmentation and coagulation conditional probabilities are only supported for

clusters a, b such that b ✓ a, these sums can be expanded so that only non-zero terms

are summed over. Noting this restriction on the support and substituting (4.11) into

(4.12) and (4.13) yields the following. For ` = `, . . . , L� 1:

m

`

F

(b) =Pr(x
i,(`+1):L

|b
`

= b,R�i
`:L

,Q�i
`:(L�1)),

=
X

a2R�i
`+1[{?}

Pr(x
i,(`+2):L

|a
`+1

=a,R�i
(`+1):L

,Q�i
(`+1):(L�1)) (4.15)

· Pr(x
i,(`+1)

|a
`+1

=a) Pr(a
`+1

=a|b
`

=b,R�i
`+1

,Q�i
`

),

=
X

a2R�i
`+1[{?}

m

`+1

C

(a)⇤(x
i,(`+1)

|a
`

= a) Pr(a
`+1

= a|b
`

= b,R�i
`+1

,Q�i
`

),

=

8
><

>:

1

↵+d`#Q�i
`

(m`+1

C

(?)⇤(x
i,(`+1)

|?)↵+
X

a2R�i
`+1

m

`+1

C

(a)⇤(x
i,(`+1)

|a)d
`

#C

`

(a)) if b=?,

m

`+1

C

(a)⇤(x
i,(`+1)

|a), where a 2 R�i
`+1

unique, s.t. b 2 C

`

(a) if b 2 Q�i
`

.

m

`

C

(a) =Pr(x
i,(`+1):L

|a
`

= a,R�i
`:L

,Q�i
`:(L�1)),

=
X

b2Q�i
` [{?}

Pr(x
i,(`+1):L

|b
`

= b,R�i
`:L

,Q�i
`:(L�1)) Pr(b` = b|a

`

= a,R�i
`

,Q�i
`

),

=
X

b2Q�i
` [{?}

m

`

F

(b) Pr(b
`

= b|a
`

= a,R�i
`

,Q�i
`

),

=

8
>><

>>:

1

#a

0

@
m

`

F

(?)d
`

#F

`

(a) +
X

b2F`(a)

m

`

F

(b)(#b� d

`

)

1

A if a 2 R�i
`

,

m

`

F

(?) if a = ?.

(4.16)

To sample from the posterior distribution of the trajectory for sequence i conditioned

on the other trajectories and the data, we use the Markov property for the chain
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a

1

, b

1

, . . . , b

L�1, aL and the definition of the messages. Starting at location 1, we have:

Pr(a
1

= a|x
i

,⇡

�i
1:L

, ⇢

�i
1:(L�1))

/Pr(a
1

= a|⇡�i
1

) Pr(x
i1

|a
1

= a) Pr(x
i,2:L

|a
1

= a,⇡

�i
1:L

, ⇢

�i
1:(L�1)),

= Pr(a
1

= a|⇡�i
1

)
| {z }

CRP probabilities (2.11).

⇤(x
1

|a
1

)| {z }
Likelihood from (4.14).

m

1

C(a). (4.17)

For subsequent b
`

and a

`+1

for locations ` = 1, . . . , L� 1,

Pr(b
`

= b|a
`

= a, x

i

,⇡

�i
1:L

, ⇢

�i
1:(L�1))

/Pr(b
`

= b|a
`

= a,⇡

�i
`

, ⇢

�i
`

) Pr(x
i,(`+1):L

|b
`

= b,⇡

�i
`:L

, ⇢

�i
`:(L�1)),

= Pr(b
`

= b|a
`

= a,⇡

�i
`

, ⇢

�i
`

)
| {z }

Fragmentation probabilities from (2.12).

m

`

F (b). (4.18)

Pr(a
`

= a|b
`�1 = b, x

i

,⇡

�i
1:L

, ⇢

�i
1:(L�1))

/Pr(a
`

= a|b
`�1 = b,⇡

�i
`

, ⇢

�i
`�1) Pr(x

i`

|a
`

= a) Pr(x
i,(`+1):L

|a
`

= a,⇡

�i
`:L

, ⇢

�i
`:(L�1)),

=Pr(a
`

= a|b
`�1 = b,⇡

�i
`

, ⇢

�i
`�1)| {z }

Coagulation probability from (2.13).

⇤(x
i`

|a)| {z }
Likelihood from (4.14).

m

`

C(a). (4.19)

The complexity of this update is O(KT ) where K is the expected number of clusters in

the posterior. This complexity class is the same as for the CFCP and other related HMM

methods such as fastPHASE. But there is no exact Gibbs update for the trajectories in

the CFCP. Instead the CFCP sampler relies on uniformization (Rao and Teh, 2011).

4.2.4 Slice sampling for parameters ↵, d
`

, and �
`

We use slice sampling (Neal, 2003) to update the ↵ and d

`

parameters conditioned on

the partition structure and also the likelihood parameters. To this end, we must derive

unnormalized versions of the parameters. We use Bayes’ rule, equation (4.9) and the

identity [a]N
b

= b

N�(a/b+N)/�(a/b), and then the posterior probabilities of ↵ and d

`

given the partitions R
1:L

and Q
1:(L�1) are as follows:

Pr(↵|R,Q, d) / Pr(↵) Pr(R
1

|↵, d
1

) Pr(Q
1

|R
1

,↵, d

1

) · · ·Pr(R
L

|Q
L�1,↵, dL�1),

/ Pr(↵)
�(↵)

�(↵+N)
↵

�L+
PL

`=1 #R`

L�1Y

`=1

�(↵/d
`

)

�(↵/d
`

+#Q
`

)
. (4.20)

Pr(d
`

|R,Q,↵) / Pr(d
`

) Pr(Q
`

|R
`

,↵, d

`

) Pr(R
`+1

|Q
`

,↵, d

`

),

/ Pr(d
`

)d
#Q`�#R`�#R`+1+1

`

�(↵/d
`

)�(1� d

`

)�#Q`

�(#Q
`

+ ↵/d

`

)

Y

b2Q`

�(#b� d

`

).

(4.21)
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The conditional distribution for �
`

is given by the definition of the likelihood in sec-

tion 4.2.2. We we can derive this update for �
`

with �
`

marginalized, using the following

equation:

Pr(�
`

|x,R
`

) = Pr(�
`

)
�(�

`

)�(�/2 + n

1`

)�(�/2 + n

0`

)

�(�/2)2�(� + n

1`

+ n

0`

)
(4.22)

Here Pr(�
`

) is the log uniform prior from equation (4.8) and n

1`

, n

0`

are the number

of clusters at location ` that emit the major or minor allele respectively, as in equa-

tion (4.14).

This concludes the specification of MCMC simulation of the DFCP posterior for phased

genetic sequence data.

4.2.5 Genotype imputation for unphased data

We will now derive an MCMC algorithm for genetic imputation for unphased data

using the DFCP model. As in the case considered in the previous section, we use mes-

sage passing to specify a Gibbs update for the latent clustering of the diploid pair

of chromosomes for each individual conditioned on the dynamic clusterings of all the

other individuals. The allele emission at a missing location can then be predicted by

collecting MCMC samples and then marginalizing the cluster assignments of the pair

of cluster assignments for the diploid sequence of an individual.

A genotype is a sequence of unordered alleles and so the Gibbs steps we will derive

update the latent cluster assignments of both of the sequences representing the pair of

haplotypes comprising a given chromosome for a given diploid individual. Consequently,

we also produce an update for the relative ordering (i.e., the phase) of alleles at each

pair of consecutive locations for which that individual is heterozygous.

As in Chapter 2, we denote the cluster assignments of the coagulated states of a se-

quence by a

`

2 R
`

and of the fragmented states by b

`

2 Q
`

. So, R
`

is the partition

induced by the clustering of the sequences at location ` and Q
`

is the clustering at

location ` found by fragmenting R
`

. Since we are considering diploid sequences here,

we will write a

i`

= (a(1)
i`

, a

(2)

i`

) for the clustering assignment of the two sequences that

comprise the i-th diploid individual. Thus a

(1)

i`

and a

(2)

i`

are blocks of the partition

R
`

representing the cluster assignments of the first two sequences comprising the i-th

diploid pair at location `. The notation (b(1)
i`

, b

(2)

ut

) is defined in an analogous way.

Because we are considering a Gibbs update for the two sequences comprising the i-

th diploid individual, by R�i
`

(and likewise by Q�i
`

) we mean the partition of all of

the sequences except the two sequences comprising the i-th diploid individual. So, if

there are N individuals, then R
`

will be a partition of 2n sequences and R�i
`

will be a

partition of 2n � 2 sequences. Finally, the notation for the cases where the sequences

are in clusters by themselves are handled as follows. If a(1) is in a cluster by itself, we
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will write a

(1) = ?(1) (likewise for a(2) = ?(2), b(1) = ?(1) and b

(2) = ?(2)). If a(1) and

a

(2) are both in the same cluster, but no other sequence is in that cluster, we will write

a

(1) = a

(2) = ?. Thus, by (a(1), a(2)) = (?(1)

,?(2)) we mean that a

(1) and a

(2) are in

separate clusters, each of size 1 and by (a(1), a(2)) = (?,?) we mean that a(1) and a

(2)

are in the same cluster, a cluster of size 2 (i.e., one that is not in R�i).
The joint distributions for the cluster assignment of b(1)

i`

and b

(2)

i`

under fragmentation

and the joint distribution for the cluster assignment of a(1)
i`

, a

(2)

i`

under coagulation are

given in the following display. For brevity, we suppress the location subscripts (` or

`+ 1) on the right hand side of the equations.
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Pr
⇣
b

(1)

i`

= b

(1)

, b

(2)

i`

= b

(2)|a(1)
i`

= a

(1)

, a

(2)

i`

= a

(2)

,R�i
`

,Q�i
`

⌘

=

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

#b�d
#a

· #b+1�d
#a+1

if a(1) = a

(2) = a 2 R�i, b(1) = b

(2) = b 2 F (a),
#b

(1)�d
#a

· #b

(2)�d
#a+1

if a(1) = a

(2) = a 2 R�i, b(1) 6= b

(2)

, and b

(1)

, b

(2) 2 F (a),
d#F (a)

#a

· #b

(2)�d
#a+1

if a(1) = a

(2) = a 2 R�i, b(1) = ?(1)

, b

(2) 2 F (a),
d#F (a)

#a

· d(#F (a)+1)

#a+1

if a(1) = a

(2) = a 2 R�i, b(1) = ?(1)

, b

(2) = ?(2)

,

d#F (a)

#a

· 1�d
#a+1

if a(1) = a

(2) = a 2 R�i, b(1) = ?, b

(2) = ?,

#b

(1)�d
#a

(1) · #b

(2)�d
#a

(2) if a(1), a(2) 2 R�i, a(1) 6= a

(2)

, b

(1) 2 F (a(1)), b(2) 2 F (a(2)),
#b

(1)�d
#a

(1) · d#F (a

(2)
)

#a

(2) if a(1), a(2) 2 R�i, a(1) 6= a

(2)

, b

(1) 2 F (a(1)), b(2) = ?(2)

,

d#F (a

(1)
)

#a

(1) · d#F (a

(2)
)

#a

(2) if a(1), a(2) 2 R�i, a(1) 6= a

(2)

, b

(1) = ?(1)

, b

(2) = ?(2)

,

d#F (a

1
)

#a

(1) if a(1) 2 R�i, a(2) = ?(2)

, b

(1) 2 F (a(1)), b(2) = ?(2)

,

1�d
#a

(1) if a(1) 2 R�i, a(2) = ?(2)

, b

(1) = ?(1)

, b

(2) = ?(2)

,

1 if a(1) = ?(1)

, a

(2) = ?(2)

, b

(1) = ?(1)

, b

(2) = ?(2)

,

1� d if a(1) = a

(2) = ?, b

(1) = b

(2) = ?,

d if a(1) = a

(2) = ?, b

(1) = ?(1)

, b

(2) = ?(2)

,

0 otherwise.

(4.23)
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⇣
a

(1)

i,`+1

= a

(1)

, a

(2)

i,`+1

= a

(2)|b(1)
i`

= b

(1)

, b

(2)

i`

= b

(2)

,R�i
`+1

,Q�i
`

⌘

=

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

d#C(a)

↵+d#Q�i
`

· d(#C(a)+1)

↵+d(#Q�i
` +1)

if b(1) = ?(1)

, b

(2) = ?(2)

, a

(1) = a

(2) = a 2 R�i
`+1

,

d#C(a

(1)
)

↵+d#Q�i
`

· d#C(a

(2)
)

↵+d(#Q�i
` +1)

if b(1) = ?(1)

, b

(2) = ?(2)

, a

(1)

, a

(2) 2 R�i
`+1

, a

(1) 6= a

(2)

,

d#C(a)

↵+d#Q�i
`

· ↵

↵+d(#Q�i
` +1)

if b(1) = ?(1)

, b

(2) = ?(2)

, a

(1) 2 R�i
`+1

, a

(2) = ?(2)

,

↵

↵+d#Q�i
`

· R

↵+d(#Q�i
` +1)

if b(1) = ?(1)

, b

(2) = ?(2)

, a

(1) = a

(2) = ?,

↵

↵+d#Q�i
`

· ↵

↵+d(#Q�i
` +1)

if b(1) = ?(1)

, b

(2) = ?(2)

, a

(1) = ?(1)

, a

(2) = ?(2)

,

↵

↵+d#Q�i
`

if b(1) = b

(2) = ?, a

(1) = a

(2) = ?,

d#C(a)

↵+d#Q�i
`

if b(1) = b

(2) = ?, a

(1) = a

(2) = a 2 R�i
`+1

,

↵

↵+d#Q�i
`

if b(1)=?(1)

, b

(2) 2 C(a(2)), where a

(1)=?(1)

, a

(2)2R�i
`+1

,

d#C(a

(1)
)

↵+d#Q�i
`

if b(1)=?(1)

, b

(2) 2 C(a(2)), where a

(1)=?(1)

, a

(2)2R�i
`+1

,

1 if b(1) 2 C(a(1)), b(2) 2 C(a(2)), where a

(1)

, a

(2) 2 R�i
`+1

,

0 otherwise.

(4.24)

In the above piecewise functions, for the cases that the conditions are symmetric in

a

(1) and a

(2) or b(1) and b

(2), only one of the possible identical conditions are listed for

brevity. For example, the condition b

(1) = ?(1)

, b

(2) 2 C(a(2)), where a

(1) = ?(1)

, a

(2) 2
R�i
`+1

is identical to the condition b

(1) 2 C(a(1)), b(2) = ?(2)

, where a

(1) 2 R�i
`+1

, a

(2) =

?(2)

, except with a

(1) and a

(2) reversed and b

(1) and b

(2) reversed. This second condition
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does not appear in the piecewise function as it can be inferred by the probability listed

for the first condition. (Here, as before C(a) is the set of blocks that coagulate to form

a and F (a) is the set of blocks that a fragments into).

In order to link the genotype of an individual to a likelihood, we must define an ordering

of the alleles at heterozygous locations. We do this by introducing a latent variable

⌘

is

. The value ⌘
is

is defined for each heterozygous location s for individual i and it

indicates whether the minor allele is emitted from the cluster a

(1)

s

or from the cluster

a

(2)

s

. The prior on ⌘
is

by symmetry is Pr(⌘
is

= 1) = 1/2.

The likelihood is based on a Bernoulli model with deterministic output. So:

⇤(x
i`

|✓
`

, a

(1)

i`

, a

(2)

i`

, ⌘) =

8
>><

>>:

1 if ⌘ = 1 and ✓
`,a

(1)
i`

= x

(1)

i`

, ✓

`,a

(2)
i`

= x

(2)

i`

,

1 if ⌘ = 0 and ✓
`,a

(1)
i`

= x

(2)

i`

, ✓

`,a

(2)
i`

= x

(1)

i`

,

0 otherwise.

(4.25)

Thus, the messages for genotype imputation with unphased data are defined as follows:

m

`

C(a
(1)

, a

(2)) = Pr(x
i,`+1:L

|a(1)
i`

= a

(1)

, a

(2)

i`

= a

(2)

,R�i
`:L

,Q�i
`:L

) (4.26)

m

`

F (b
(1)

, b

(2)

, ⌘) = Pr(x
i,`+1:L

|b(1)
i`

= b

(1)

, b

(2)

i`

= b

(2)

, ⌘

i`

= ⌘,R�i
`:L

,Q�i
`:L

) (4.27)

The domain of (a(1), a(2)) is (R�i
`

[ {?(1)} ⇥ R�i
`

[ {?(2)}) [ {(?,?)}. There are

two possibilities for the domain of (b(1), b(2), ⌘). First, if x
i`

is heterozygous, then the

domain of (b(1), b(2), ⌘) is ((Q�i
`

[ {?(1)} ⇥ Q�i
`

[ {?(2)}) [ {(?,?)}) ⇥ {0, 1} if x

i`

is heterozygous. Otherwise, if x
i`

is homozygous then the domain of (b(1), b(2), ⌘) is

((Q�i
`

[ {?(1)} ⇥ Q�i
`

[ {?(2)}) [ {?,?}. Note that ⌘ only appears in the messages

for m`

F and not m`

C because the phase only a↵ects the probability of the data through

the clustering R
`

(and not through C
`

). By their definition, these messages can be

computed recursively as follows:

m

`

F

(b(1),b(2),⌘)=
1

2

X

(a

(1)
,a

(2)
)

m

`

C

(a(1),a(2))

Likelihood from (4.25).z }| {
⇤(x

i,`+1

|✓
`+1

,a

(1)

,a

(2)

,⌘),

· Pr(a(1)
i,̀ +1

=a

(1)

,a

(2)

i,̀ +1

=a

(2)|b(1)
i`

=b

(1)

,b

(2)

i`

=b

(2)

,R�i
`+1

,Q�i
`

)
| {z }

Coagulation probabilities from (4.24).

(4.28)

m

`

C

(a(1),a(2))=
X

(b

(1)
,b

(2)
,⌘)

m

`

F

(b(1),b(2),⌘) Pr(b(1)
i`

=b

(1)

,b

(2)

i`

=b

(2)|a(1)
i`

=a

(1)

,a

(2)

i`

=a

(2)

,R�i
`

,Q�i
`

)
| {z }

Fragmentation probabilities from (4.23).

.

(4.29)

These messages can be further expanded over their support using equations (4.23)

and (4.24). By using the fact that the fragmentation and coagulation probabilities

in equations (4.23) and (4.24) are zero over much of the support, the summations

in (4.29) can be restricted to a subset of the support, adding e�ciency to the message
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computations. Due to their complexity, the expanded forms are not provided here.

4.2.6 Phasing

Phasing algorithms are often designed to minimize the switch error of the proposed

phasing of the sequence of genotypes (Scheet and Stephens, 2006). The switch error

of a proposed phasing is defined to be the minimum number of crossovers required to

map the proposed phasing onto the true pair of sequences. Each state in the chain

of MCMC states in a posterior simulation of the DFCP induces a proposed phasing.

In Scheet and Stephens (2006), the authors propose a phasing by taking each pair of

consecutive heterozygous sites and choosing the phase between those two sites based

on the most frequent phase occurring in the chain of MCMC states. We can adopt this

method by using the messages derived in section 4.2.5.

We note that this method of choosing the most frequent phase from the MCMC corre-

sponds to choosing the estimate for the phase that minimizes the Bayes risk. Suppose

that ⌘ is a random object with density p(⌘), and L(⌘, ⌘0) is a loss function. The Bayes

risk (Lehmann and Casella, 1998) of the estimate ⌘0 is the expected loss E
p

(L(⌘, ⌘0)).

In our case, L(⌘, ⌘0) is the switch error between the true phasing (⌘) and the proposed

phasing (⌘0). The switch error, L(⌘, ⌘0) is defined as the sum of Kronecker delta func-

tions, one for each pair of consecutive heterozygous sites, which measures whether or

not the minor alleles for consecutive heterozygous sites are on the same chromosomes

in the phasings ⌘ and ⌘

0. Since expected value is linear, E
p

(L(⌘, ⌘0)) splits over each

of the Kronecker delta functions. Minimizing E
p

(L(⌘, ⌘0)) thus reduces to minimizing

the Kronecker delta functions at each pair, which is equivalent to setting the phase of

⌘

0 to the empirical median estimate of ⌘ from the samples produced by the MCMC.

This means that to phase genetic sequence data using equations (4.28) and (4.29),

we can run MCMC using those messages, and then after discarding burn-in, we set

⌘

`

= argmax
⌘

0 #{t : ⌘(t)
`

= ⌘

0}, where ⌘(t)
`

are the values of the phase over MCMC

samples indexed by t.

4.2.7 The length of a haplotype

In this section, we study the expected length of haplotypes in the DFCP model. Under

the genetic assumptions from section 1.2.1, we expect the recombination rate and the

mutation rate to both a↵ect the length of haplotypes. As we increase the number of

individuals observed we would also expect the length of the haplotypes in the sample to

decrease. This is because of the following phenomenon: as we observe more individuals

we will tend to observe more mutations that occur with low frequency; these are known

as rare variants. For the mutation models discussed in section 1.2.2, the amount of

variation is proportional to the total tree size of the genealogies (this is discussed in

section 1.2.2).
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In order to understand the distribution of the length of haplotypes in the DFCP model,

we will study the probability that a haplotype extends for just one more site (call this

probability p). We will find that this probability p can be computed exactly. If the

extension of a haplotype for just one more site were independent of the length of the

haplotype, then haplotype lengths would be distributed as a negative binomial with

rate p and 1 failure. However, due to statistical dependence between the partition

structure and the haplotype length, the haplotype length is not simply the number of

independent successful extensions before the first failure to extend (i.e., the mean of a

negative binomial). Despite this, we will provide empirical estimates of this quantity

and compare them to an approximation of the haplotype length in which we assume

that the haplotype length is distributed as a negative binomial.

A haplotype in the DFCP is defined as latent block a of the partitions R
`

,Q
`

that

does not fragment into other blocks and does not coagulates with other blocks for

some number of steps. The length of the haplotype is simply the number of steps

in which no fragmentation nor coagulation events involving the block a occur. We

will now compute the probability p(a) that a the block a 2 R
`

does not experience

fragmentation or coagulation in the transitions R
`

! Q
`

! R
`+1

. This quantity is a

function of the DFCP parameters ↵ and d (we will assume d

`

= d is constant). We will

also find that we must marginalize the partition Q
`

in order to arrive at p(a).

Let a be a block in a partition R
`

for a DFCP on the index set R = {1, . . . , N}. Suppose
that the size of a is m (so, #a = m). The value of p(a) is found as follows:

1. We will first consider fragmentation. Since Q|R, d ⇠ Frag(R, 0, d), the proba-

bility that a does not fragment is given by:

�(m� d)

�(1� d)�(m)
. (4.30)

This is found by considering the CRP(a, 0, d) for the fragmentation applied to

block a of R. For no fragmentation to occur, each item of a must be added to the

same block of that CRP. The first item must create a new block (an event that

occurs with probability 1). The second item has two choices: start a new block

with probability d, or join the same block as the first item with probability 1�d.

Suppose that all previous items joined the same block as the first item. In this

case, a subsequent item i > 2 would have the same two choices: start a new block

with probability d, or join the same block as the first item with probability i� d.

Thus, the probability that the i-th item joins the same block as the first item is

(i� 1� d)/(i� 1). The product of these probabilities yields the equation (4.30)

which is listed above.

2. For coagulation, suppose that R|Q,↵, d ⇠ Coag(Q,↵/d, 0). By exchangeability

of the CRP we suppose that the block a is the last item to be added to the process

CRP(Q,↵/d, 0) that describes the coagulation. By the sequential construction
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of the CRP, the probability that block a is placed in a cluster by itself is given

by:

↵/d

↵/d+#Q� 1
. (4.31)

The value of p(a) conditioned onQ is given by the product of equations (4.30) and (4.31)

(this is therefore the probability that no fragmentation occurs and that no coagulation

occurs):

p(a,Q) =
↵�(m� d)

(↵+ d(#Q� 1))�(1� d)�(m)
(4.32)

We will now marginalize over #Q to find the expected value of p(a). By the definition

of the DFCP, in the prior Q is distributed as CRP(R,↵, d). But since the block a does

not fragment in the fragmentation step R ! Q, we must condition on the event that

Q has a block of size m (i.e., we need the distribution of Q|a 2 Q). According to the

sequential scheme for the two parameter version of the CRP given after equation (2.7),

the induced distribution of the random partition Q \ {a} on the set R \ a has law

CRP(R \ a,↵+ d, d). (Here ‘\’ denotes the set minus operation.) The addition of d to

the concentration parameter can be seen by normalizing the events of the sequential

scheme conditioned on the event that no subsequent items join the first cluster of the

CRP (this is similar to the concept of exponential tilting for Dirichlet processes).

The distribution of the number of blocks in the two parameter version of the CRP is

given in (Pitman, 2006) as follows. If A ⇠ CRP({1, . . . , N},↵, d), then:

Pr(#A = k) =
[↵+ d]k�1

d

S

�1,�d
N,k

[↵+ 1]N�1
1

. (4.33)

Here [x]m
1

= x(x + 1) . . . (x +m � 1) is Kramp’s symbol (for m 2 N) and S

�1,�d
N,k

is a

generalized Stirling number of the first kind (Toscano, 1939). In particular:

S

�1,�d
N,k

= the coe�cient of ⇠N in
N !

k!

0

@
1X

j=1

[1� d]j�1�d
⇠

j

j!

1

A
k

. (4.34)

Thus, after making the substitution into equation (4.33) for the concentration param-

eter ↵+ d, discount parameter d and size #(R� a) = N �m, the value of p(a) is given

by the following equation:

p(a) = EQ[p(a,Q)] =
N�mX

k=1

↵�(m� d)dk�1�(↵+ d+ 1)�(↵/d+ k + 1)S�1,�d
N�m,k

(↵+ d(k � 1))�(1� d)�(m)�(↵/d+ 2)�(↵+ d+N)
.

(4.35)

Here we have used the following identity for Kramp’s symbol: [x]N
d

= d

N�(x/d +
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N)/�(x/d), when d > 0, and N 2 Z
+

. We compute the numerical value of (4.35) for

various settings of ↵, d and N and also simulate from the DFCP prior with the same

settings, in order to provide an empirical estimate of this distribution. The computation

of the numerical values was done using MATHEMATICA 10 and the code used is provided

in Algorithm 4.1. To find the empirical estimate, we simulate from the DFCP prior for

one step and fix a cluster with a given size and record whether or not it experiences

a fragmentation or coagulation event for that step. The results of these computations

and simulations are given in Figure 4.3.

Algorithm 4.1 Computation of expected haplotype lengths for the DFCP model,
MATHEMATICA 10 code. Input: Concentration parameter a, rate parameter d, size n.
Output: Enumeration of expected lengths of haplotypes of sizes m = 1, . . . , n for DFCP
prior with concentration ↵ and discount d on n individuals.
GeneralizedStirlingS1[A_, B_, N_, K_] :=

Sum[

StirlingS1[N, j] *

StirlingS2[j, K] *

A^(N - j) *

B^(j - K),

{j, K, N}];

PADK[A_, D_, K_, N_] :=

D^(K - 1)*Gamma[A + 1]/Gamma[A/D + 1]*

Gamma[A/D + K]/Gamma[A + N]*

GeneralizedStirlingS1[-1, -D, N, K];

NOEVENT[A_, D_, K_, N_, M_] :=

A*Gamma[M - D]/(

(A + D*(K - 1))*

Gamma[1 - D]*

Gamma[M]);

PMQ[A_, D_, K_, N_, M_] :=

NOEVENT[A, D, K, N, M]*PADK[A + D, D, K, N - M];

PM[A_, D_, N_, M_] :=

Sum[PMQ[A, D, k, N, M], {k, 1, N - M}];

LM[A_, D_, N_, M_] := PM[A, D, N, M]/(1 - PM[A, D, N, M]);

# Modify these lines to specify input

a := 1.0;

d := 0.1;

n := 10;

# Output stored in ‘Result’

Result := Table[{m, LM[a, d, n, m]}, {m, 1, n - 1}];

If we condition on the event that a haplotype of size m extends one step to the right
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Figure 4.3: Probability of extending a haplotype. y-axis indicates probability
of haplotypes extending and x-axis indicates number of individuals sharing the
haplotype. Blue line indicates the actual probability. Green line indicates mean
empirical estimate from DFCP prior simulation. Error bars indicate the standard
error of the mean. Conditions are listed in plot titles.
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Figure 4.4: Approximation for haplotype lengths. y-axis indicates length of hap-
lotypes and x-axis indicates number of individuals sharing the haplotype. Blue
line indicates approximation of haplotype length. Green line indicates mean em-
pirical estimate from DFCP prior simulation. Error bars indicate the standard error
of the mean. Conditions are listed in the title. y-axis indicates number of sites a
haplotype extends beyond the first site, so an expected value of 0.65 indicates a
haplotype length of 1.65.

of a location ` without fragmenting or coagulating, then through equation (4.31), we

get information about Q. To compute the probability that the haplotype will extend

one more step to the right (i.e., a total of two steps from the first position in which the

haplotype is observed), we must form a summation over all possible values ofm. Rather

than carrying though with that analysis here, we will instead make the assumption

that the extension events are independent. Under this assumption, the number of

extensions to the right of ` is given by a negative binomial random variable with rate

p(a) (and one failure) and so the expected haplotype length is approximated by L1(a) =

p(a)/(1� p(a)). In Figure 4.4, we compute this quantity and plot it against empirical

estimates for the haplotype lengths found through simulating the DFCP posterior. From

Figure 4.3 and Figure 4.4, we see that for low values of the concentration parameter ↵,

the expected haplotype length for haplotypes shared by relatively large and relatively

small numbers of individuals tend to be longer. The expected haplotype lengths for
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haplotypes shared by roughly half the population tend to be shorter. We also see that

the qualitative behavior is mostly captured: under the assumption of independence

for the haplotype extension probabilities and approximating these probabilities with

L1(a), the haplotype lengths are correctly estimated within an order of a magnitude

(i.e., roughly within 1/10).

In Figure 4.3 and Figure 4.4, we simulated 1,000 draws from the DFCP, and computed

the empirical probability of a haplotype extending just one more site, conditioned on

the size of the haplotype. In these figures, the green lines correspond to the empirical

probabilities of each haplotype extending just one more site. We computed these em-

pirical probabilities by conditioning on each of the 1,000 draws. Therefore, since large

haplotypes with many individuals are rarer, in our simulations we observed fewer sam-

ples with large haplotypes. This lead to a larger standard error for the right hand sides

of Figure 4.3(upper right, lower right) and also Figure 4.4(upper right, lower right):

fewer samples were observed for large haplotype sizes in these conditions, and therefore

the variance in the simulation is larger. In fact, for Figure 4.3(upper right), only one

sample was observed for N = 10 among the 1,000 simulated samples. We note that

the e↵ect of simulation variance for these estimates could be made uniform over N

by running more simulations, and discarding simulations until 100 samples remain for

each setting of N . We leave such extensive exploration of these simulations for future

work.

We note that for many conditions in these simulations, the probability of a haplotype

extending to a particular length exhibits a ‘u’-type shape (this is observed for Figure 4.3

upper right and Figure 4.4 upper left, lower left). This is related to two competing

pressures on the haplotype length. On one hand, haplotypes lengths are encouraged

to be short because many events cause them to end. On the other hand, (since long

haplotypes include more sites), haplotype lengths are more likely to be observed among

the haplotypes that we simulate. Therefore, many haplotypes are exhibited with either

short or long lengths, explaining the ‘u’-type shape. The increased probability of large

haplotypes is related to the waiting paradox: because more individuals are involved in

large haplotypes, they are more likely to be observed.

In the above analyses, we note that the way in which we define haplotypes for the DFCP

model is perhaps too conservative. Suppose a partition R
`

experiences a nontrivial

fragmentation into the finer partition Q
`

, and then Q
`

coagulates into a partition

R
`+1

, with the same configuration as the partition R
`

(i.e., R
`

= R
`+1

). Under the

above analysis, the position ` would be considered as the right-most endpoint of a

haplotype containing fragmented blocks of R
`

. However, as can be seen by the plate

diagram (4.8), the likelihood of observed data is not a↵ected by fragmentations that

are immediately reversed by coagulations, and so it is not necessarily correct to include

them in the computations of haplotype lengths. In future work, we will extend this

analysis to a setting in which Q
`

is marginalized, and so haplotype endpoints are only



Experiments 104

reported for R
`

6= R
`+1

.

4.3 Experiments

To examine the accuracy and scalability of the DFCP we conducted an allele imputation

experiment on SNP data from the Thousand Genomes project1 (The 1000 Genomes

Project Consortium, 2010). We also compared the runtime of the samplers for the DFCP

and CFCP on data simulated from the coalescent with recombination model (Hudson,

2002). In this section, we describe the setup of these experiments and in section 4.4 we

present the results.

For the allele imputation experiment, we considered SNPs from 524 male X chromo-

somes. We chose 20 intervals uniformly at random, each containing 500 consecutive

SNPs. In five conditions we held out nested sets of between 10% and 90% of the alle-

les uniformly over all pairs of sites and individuals, and used fastPHASE (Scheet and

Stephens, 2006), BEAGLE (Browning and Browning, 2009), CFCP (Teh et al., 2011) and

the DFCP to predict the held out alleles. For these datasets the mean at-chance accuracy

which would be found by always predicting the major alleles was 93.44%. We note that

this missing-at-random is not a realistic assumption for genetic data, which often has

a structured missingness induced by a study/reference paradigm. Missing-at-random

is however a good measure for model fit.

We used the most recent versions of BEAGLE and fastPHASE software available to us.

We implemented the DFCP with many of the same libraries and programming techniques

as the CFCP and both versions were optimized. In each missing data condition, the CFCP

and DFCP were run with five random restarts and 46 MCMC iterations per restart (26 of

which were discarded for burn-in and thinning). We computed accuracies for the DFCP

and CFCP by thresholding the empirical marginal probabilities of the held out alleles at

0.5. We matched the priors on the hyper parameters and the likelihood specification of

the two models and we initialized the samplers using a sequential Monte Carlo method

in which one sequence was added to the model at a time, conditioned on all other

previously added sequences.

The posterior distributions of the concentration parameter µ for the two methods are

di↵erent. In order to match the expected number of clusters in the posterior, we also

conducted allele imputation in the 50% missing data condition with µ fixed at 10.0

for both models. We simulated 500 MCMC iterations with no random restarts. We

then computed the accuracy of the samples by predicting held out alleles based on the

cluster assignments of the sample.

In our second experiment we simulated datasets from the coalescent with recombi-

nation model consisting of between 10,000 and 50,000 sequences using the software

1
March 2012 v3 release of the Thousand Genomes Project.
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Figure 4.5: Allele imputation for X chromosomes from the Thousand Genomes
project. Left: Accuracy for prediction of held out alleles for continuous (CFCP)
and discrete (DFCP) versions of fragmentation-coagulation process and for popular
methods BEAGLE and fastPHASE. 90% missing data condition truncates BEAGLE
accuracies to emphasize other conditions. Right: Runtime versus accuracy for 500
MCMC iterations for DFCP and CFCP in 50% missing data condition. Points are
averaged over 20 datasets and 25 consecutive samples.

ms (Hudson, 2002). We conducted posterior MCMC simulation in both models and

compared the computation time required per iteration. We performed all MCMC simu-

lations using the same computer system and without computing unnecessary marginal

statistics.

In our third experiment, we explored the accuracy of the CFCP model in a

study/reference paradigm using two sources of data. The first source of data was

unphased data from the SeattleSNPs Project (National Heart, Lung, and Blood Insti-

tute Program for Genomic Applications, 2011). This project provides unphased SNP

sequences for 320 genes from 47 individuals. The genes had between 13 and 416 SNPs.

There were 47 individuals in the study. The second source of data was the phased male

X chromosomes from the Thousand Genomes Project in a study/reference paradigm.

We examined the same 20 intervals that were used in the first experiment. For both

of the data sources, we chose q% of the sequences chosen to be in the study panel,

and p% of the sites chosen to be typed only in the reference panel. We held out

p% of the sites in the q% study sequences. This setup mimics the common situation

in which experimenters have access to a densely typed reference panel. More detail

about study/reference paradigms is given in section 1.1. We varied p% in the range

10%, . . . , 50% and we also varied q% in the same range, leading to 25 conditions. The

inference we used for the CFCP is based on uniformization for MJPs (Rao and Teh,

2011). Details of the inference and the parameter settings we used for the MCMC in

these experiments are explained further in Teh et al. (2011).
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Figure 4.6: Runtimes per iteration per sequence of DFCP and CFCP on simulated
datasets consisting of large numbers of sequences. Lines indicate mean. Shaded
region indicates standard deviation.

4.4 Results

The accuracy of the DFCP in the first allele imputation experiment was comparable

to that of the CFCP and fastPHASE in all missing data conditions Figure 4.5(left).

For the 70% and 90% missing data conditions, BEAGLE performed poorly (its median

accuracy for this condition was 93.90% and mean at chance accuracy for all conditions

was 93.44%). In Figure 4.5(right) we compare the accuracy and runtime for the 50%

missing data condition. This figure shows that the runtime required for each iteration

is lower for the DFCP than for the CFCP, and the sequential Monte Carlo initialization

is better (i.e., closer to a posterior mode) for the DFCP. No di↵erence in mixing time is

suggested by the figure. As an aside, we estimated the Shannon entropy in these samples

and found that the DFCP had slightly more entropy per sample than the CFCP. (The

di↵erence was small but statistically significant under a sign test.) This could indicate

that the DFCP has better mixing. Improved mixing in the DFCP is also suggested by the

observation that the accuracy for the DFCP plateaus after fewer iterations.

For the second experiment, we plotted the runtime per iteration of both models against

the number of sequences in the simulated dataset (Figure 4.6). The DFCP was approx-

imately 2.5 times faster than the CFCP for the condition with 50,000 sequences. In

both models, most of the computation time was spent calculating the messages in the

backwards-filtering step. The CFCP has an arbitrary number of latent events between

consecutive observations and it is likely that the runtime improvement shown by the
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DFCP is due to the reduction in the number of required message calculations in the

DFCP.

4.5 Discussion

The DFCP and CFCP induce di↵erent joint distributions on the partitions at adjacent

locations. The CFCP is a Markov jump process with an arbitrary number of latent

binary events wherein a single cluster is split into two clusters, or two clusters are

merged into one. The DFCP however can model any partition structure with one pair of

fragmentation and coagulation operations. Exact Gibbs updates for the partitions are

possible in the DFCP whereas sampling in the CFCP uses uniformization (Rao and Teh,

2011).

In future work we will explore better calling and calibration methods to improve im-

putation accuracies. Another avenue of future research is to understand how other

genetic processes can be incorporated into the fragmentation-coagulation framework,

including population admixture and gene conversion. Although haplotype structure

is a local property, the Markov assumption does not hold in real genetic data. This

could be reflected through hierarchical FCP models or adaptation of other dependent

nonparametric models such as the spatially normalized Gamma process (Rao and Teh,

2009).

4.6 Conclusion

In this Chapter we have presented a discrete fragmentation-coagulation process. The

DFCP is a partition-valued Markov chain, where partitions change along the chromosome

by a fragmentation operation followed by a coagulation operation. The DFCP is designed

to model the mosaic haplotype structure observed in genetic sequences.

We derived message passing for the DFCP based on the conditional distributions for

the fragmentation and coagulation operators defined in Chapter 2. Through message

passing, e�cient forwards-filtering/backwards-sampling updates can be derived for the

block assignment of each sequence in the DFCP. We also extended the message passing

to handle unphased genotypes and we showed that the method of minimizing switch

error in phasing from Scheet and Stephens (2006) is equivalent to minimizing Bayes

risk.

We applied the DFCP to an allele prediction task on data from the Thousand Genomes

Project yielding accuracies comparable to state-of-the-art methods and runtime require-

ments that were shorter than the runtime requirements of the continuous fragmentation-

coagulation process (Teh et al., 2011). Although the asymptotic computation cost of
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inference in the DFCP is the same as for the CFCP, we have found that the runtime

requirements were shorter for the DFCP than for the CFCP.



Chapter 5

The Wright-Fisher partition

valued processes

5.1 Introduction

In this Chapter, we present a new Bayesian nonparametric model for dynamic partitions

in which the clusters of the partitions shrink and grow according to balanced rates.

The model is Markov, exchangeable, and reversible and its marginals are given by the

CRP distribution on partitions. Our model is based on a continuous version of the

Wright-Fisher di↵usion for a countable set of species (Donnelly and Kurtz, 1996). We

use our model as a prior on dynamic partitions and we conduct posterior inference

using the particle Gibbs (PG) variant of particle MCMC (Andrieu et al., 2010). The

PG is implemented through a probabilistic program (Wood et al., 2014; Paige and

Wood, 2014). Particle Gibbs is applicable to our model even though the conditional

distributions of the cluster assignments in our model are not Markov (this is shown

in section 5.2). In previous Chapters, we have applied models of dynamic-clustering

to genetic data. To demonstrate the versatility of these models and illustrate their

application in a problem domain other than genetics, in this Chapter we will apply our

model to voting data from the Canadian House of Commons.

Our model, which we refer to as the WFP (for Wright-Fisher partition valued di↵usion

process) is described by a Markov jump process (MJP) that takes values in the set of

partitions of N items. MJPs are characterized by their initial distribution and their

transition rates. The initial partition of the WFP is drawn from the CRP (Pitman, 2006)

distribution with concentration parameter ↵. With constant rate rN(N � 1 + ↵), the

process transitions by choosing an element at random, removing it from the partition,

and then adding it back again according to the CRP marginal probabilities. A sample

from the WFP prior is shown in Figure 5.1.

To model data with an WFP prior, we assume that covariates and observations associated
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with the N data items are available at points along a one dimensional axis. The WFP

specifies a latent clustering structure R
t

at each point t. For each observation, if the

observation occurs at the point t0, then the clustering structure R
t

0 parameterizes the

likelihood function of that observation. In particular, we assume that there is a latent

parameter ✓
t

0
a

associated with each cluster a 2 R
t

0 . Further, we assume that the

observation for the i-th data item at the point t

0 is drawn from f

✓t0a where a is the

cluster that i belongs to at t

0, and f

✓

is a distribution function parameterized by ✓,

representing the likelihood of the data.

In our experiments, we will be interested in modelling votes. Suppose that N members

of parliament (MPs) vote on motions. The clusters of R
t

represent similarity in voting

patterns (i.e., political parties or political blocs within parties). We apply this model

to predicting the votes of MPs and also to discovering political blocs.

In the remainder of this section we discuss the relation of the WFP to the Wright-

Fisher model and other models in genetics. We describe the WFP and the likelihood

models we will use in our experiments through a generative process. We describe the

relation of the WFP to other recent work in Bayesian nonparametrics and survey the

relationship between dynamic partitions and distant dependent processes. In section 5.2

we describe the construction of the WFP through a sequential process and we prove its

statistical properties. In section 5.3 we apply this inference method to model voting

data from the Canadian House of Commons. We show that the WFP, using only data

from voting behavior, can be used to detect changes in the party allegiances of members

of parliament. We also show that it can be used to predict voting behavior.

5.1.1 Relation to work in genetics

The Wright-Fisher model is usually thought of as a discrete coalescent model for a

constant population of N individuals (Fisher, 1930; Wright, 1931). In the Wright-

Fisher model, each successive generation chooses one individual (or two individual

sequences, in the case of a diploid model) from the previous generation and inherits

all material from that individual. The Wright-Fisher model has been extended to

continuous di↵usion models with mutations (Dawson and Hochberg, 1982), and we use

this extension as a basis for the inference defined directly on the space of partitions.

In genetics the Wright-Fisher model is used as a model for K species (for example, to

model the proportions of the population sizes of K species in an ecosystem). The WFP

can be viewed as a version of the Wright-Fisher model defined directly on the space of

partitions of a set. The resulting dynamic-clustering can be used as a clustering of ge-

netic sequences along the chromosome. Like the fastPHASE and BNPPHASE models, the

WFP provides a location varying clustering in which the proportions of the clusters, and

the tendency of individuals to join each of the clusters, is a function of the chromosome

location. Unlike the fastPHASE and BNPPHASE models, the WFP is a reversible process.
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Figure 5.1: A sample from the WFP prior with N =100 items and concentration
↵ = 2.0. x-axis represents time. Clusters are identified by color and random
(uniform [0,1]) y-axis position. Size of clusters (i.e., number of elements in the
cluster) indicated by extent of cluster on y-axis. (Extent of the cluster along the
y-axis is proportional to the number of elements in the cluster.) Reversibility and
stationarity can be seen through the balanced nature of this plot.

Di↵usion models based on the Wright-Fisher model have been extended to the case of

infinite species (K =1). This has been done through the Fleming-Viot process (Flem-

ing and Viot, 1979), and the Moral model (Moran, 1962) which are di↵usions defined

on the infinite simplex. A construction of the Fleming-Viot process based on finite

Wright-Fisher models has also been developed (Donnelly and Kurtz, 1996) and the

relation of the WFP to this work is a subject for future research.

5.2 Methods

In this section, we will provide a generative process for the WFP model and describe

its properties (including exchangeability and reversibility). We will then explain how

to model voting data using the WFP. Finally, we will describe the particle Gibbs and

probabilistic programming methods we used to do posterior inference on the WFP.

5.2.1 Generative process for the Wright-Fisher partition valued dif-

fusion

The CRP (see Chapter 2) with concentration parameter ↵ can be described by the

following sequential scheme, in which the items R = {1, . . . , N} are enumerated in any

fixed order:

1. The first item joins a cluster by itself.

2. For each i > 1, the i-th item joins a cluster by itself with probability ↵/(i�1+↵)

or for each 1  j < i, joins the cluster containing j with probability 1/(i�1+↵).
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The formulation of the CRP given above is equivalent to the sequential scheme from

Chapter 2: the probability of arriving at a partition R through the sequential scheme is

the same as the probability of drawing R from the set of all partitions of R according to

the law given in equation (2.4). Consequently, the CRP is exchangeable: its distribution

is invariant to the order in which the items are added to the partition.

We will now present a hierarchical generative process for the WFP based on the CRP

distribution on partitions from Chapter 2 and its marginals. We assume that a scaling

parameter r > 0 and a concentration parameter ↵ are fixed.

1. Draw event times t

1

, t

2

, . . . from a Poisson process with rate rN(N � 1 + ↵) on

the positive real line.

2. For each event k = 1, 2, . . .:

(a) Draw E

k

i.i.d. from the set {(i, j) : 1  i  j  N} with probability:

Pr(E
k

= (i, j)) =

(
1/(N(N � 1 + ↵)) if i 6= j,

↵/(N(N � 1 + ↵)) if i = j.

3. Draw R
0

⇠ CRP({1, . . . , N},↵).
4. Let R

t

be constant on the interval [0, t
1

)

5. For each event k = 1, 2, . . .:

(a) Let (i
k

, j

k

) = E

k

.

(b) Form the induced distribution R�ik
tk�.

i. If i
k

= j

k

then form R
tk by adding i

k

to its own cluster in R�ik
tk�.

ii. Otherwise, form R
tk by adding i

k

to the cluster in R�ik
tk� containing j

k

.

(c) Let R
t

be constant on the interval [t
k

, t

k+1

).

Here R
t� denotes the value lim

t

0!t�Rt

. Because the transitions of R
t

occur on a

discrete set with probability 1, R
t� exists for all t > 0.

Intuitively, this process transitions by choosing an element i 2 R
t� at a constant

rate and removing it to form the induced partition R�i
t

on {1, . . . , N} \ {i} and then

adding i back into R�i
t

according to the probabilities of the sequential CRP scheme

in equation (2.4), forming R
t

. We note that in order to model situations in which

more than one item changes clusters between observations occurring at times t

1

and

t

2

, multiple events (one for each item) must occur between times t
1

and t

2

.

Theorem 2. The partition valued process R
t

is a) a Markov jump process, b) ex-

changeable, c) stationary with CRP marginals, and d) reversible.
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Proof. a) The transitions of R
t

can only occur at the event times t
1

, t

2

, . . .. Since these

are the points of a Poisson process with bounded rate, with probability 1 the set of

event times intersecting any bounded set is finite. Therefore, R
t

is a Markov jump

process.

b) R
0

is exchangeable and Pr(E
k

= (i, j)) = Pr(E
k

= (�i,�j)) for all permutations �

and all k�1. Therefore, R
t

is exchangeable.

c) We prove stationarity by using induction on k. Suppose that R
tk is marginally

CRP distributed for all t 2 [0, t
k

). By the induction hypothesis, R
tk� is marginally

CRP distributed. Suppose that the t

k

� th event is given by E

k

= (i, j). By the

projectivity of the CRP, and because R�i
tk� = R�i

tk
, R�i

tk� is also marginally CRP

distributed on {1, . . . , N} \ {i}. According to step 2 and step 5 of the generative

process above, item i joins its own cluster in R�i
tk

with probability ↵/(N�1+↵) and
joins the cluster containing j with probability 1/(N�1+↵). This is the conditional

probability of the CRP, and so R
tk is CRP distributed.

d) Let R
t

be restricted to t 2 [0, T ]. Define R 
t

= R
T�t and E

 
k

= (j, i) for each

E

k

= (i, j). By c), R
T

is marginally CRP distributed. Further, E
k

and E

 
k

have

the same law. Therefore, the law of R 
t

is given by the above enumeration, and

this proves reversibility.

Not all of the events produced by this generative process lead to transitions in the

partition valued process R
t

. If item i is in its own cluster in R
tk� and if E

k

= (i, i),

then R
tk� = R

t

. Similarly, if item i and j are in cluster a 2 R
tk� and E

k

= (i, j)

for i 6= j, then R
tk� = R

t

. Further, more than one event can lead to the same

transition in R
t

: if i and j are both in their own cluster in R
tk� then both events

E

k

= (i, j) and E

k

= (j, i) would lead to the same partition R
tk . (Namely, the partition

(R
tk� \ {{i, j}}) [ {{i}, {j}}.) We will denote the transition kernel of the MJP R

t

by

⌧(·, ·). The values of this kernel are provided in Figure 5.3. This description of ⌧ will

marginalize these redundant events.

5.2.2 Likelihoods for voting data

In the above subsection, we described the WFP as a prior for dynamic partitions. We will

now present a model for voting data wherein the WFP is used as a prior on the political

similarity for N members of parliament voting on motions occurring during a session

of parliament. Each member of parliament is identified with an integer in {1, . . . , N}.
An WFP R

t

is assumed to be drawn for the duration of the parliament [0, T ] where T is

the time of dissolution of the parliament. For a motion occurring at time v 2 [0, T ], for

each cluster a 2 R
v

, all of the members of parliament identified with the elements of

a vote in a similar way. The WFP R
t

thus describes the changes in political similarity
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among the N members of parliament. Let y
ig

2 {0, 1} be the vote of the i-th member

of parliament on the g-th motion (0 means ‘nay’ and 1 means ‘yea’). We will place a

beta/Bernoulli prior on the votes, and so the model (which we will refer to as the WFP

for voting or WFPV) is described by the following hierarchical generative process:

1. Draw R
t

from a WFP on N members of parliament for t 2 [0, T ].

2. Draw the motion times v
1

, . . . , v

G

from a Poisson process on [0, T ] with rate � > 0.

3. For each motion g = 1, . . . , G:

(a) For each cluster a 2 R
vg , draw ✓

vga|mg

⇠ Beta(m
g

,m

g

).

i. For each member of parliament i 2 a, draw her or his vote y

i`

|✓
`:

⇠
Bernoulli(✓

`a

).

Here m
g

is a mass parameter describing how polarizing the g-th motion is (i.e., if m
g

is

large members of a bloc will tend to vote together). In our experiments, we will fix m

g

at a value close to the empirical estimate (i.e., the value that gives the empirical voting

frequencies the highest probability). This is done to simplify the MCMC inference. We

note that in order to take a more Bayesian approach, we could instead place a prior on

m

g

as is done in Chapter 3.

5.2.3 Relation to time-varying generalized urn schemes

The WFP is related to generalized Polya urn schemes for time varying Dirichlet process

mixtures (Caron et al., 2007). In Caron et al. (2007), a discrete sequence of partitions

of a collection of data items are considered. As in the WFP, the partitions are modified

by removing some of the items at random at each step of the sequence, and then adding

new items according to a CRP. However, unlike the WFP, the items in Caron et al. (2007)

are not identified between partitions. In Caron et al. (2007), the items removed from

the partitions at a given are not added again to the process, and instead new items that

have not yet been considered are added to the partition at each step. This di↵erence

allows the WFP to describe a truly dynamic partitioning: at each point t, the same N

items are clustered. For distinct points t
1

, t

2

, the resulting partitions could di↵er (the

dependence between the partitions at t
1

and t

2

decreases with the scaling parameter r,

with r > 0 implying that the two partitions are equal). The WFP formulation is useful

for describing situations in which clustering changes in time, for example with changes

in the political allegiances of members of parliament.

The WFP is also similar to the continuous fragmentation-coagulation process (CFCP)

from Teh et al. (2011). Both the WFP and the CFCP define partition valued Markov

processes. The partitions of the CFCP transition through the splitting and merging of

clusters (according to the fragmentation and coagulation operators defined in Chap-

ter 2), whereas the partitions of the WFP transition through the shrinking and growing
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of clusters. Generally, the CFCP provides stronger constraints on the transitions of the

clusters and so the WFP provides more e�cient inference for noisy data or gradually

changing data.

5.2.4 Probabilistic programming and inference

It is hard to specify the conditional distribution of the trajectory of a single item i

through the dynamic clustering defined by the WFP. This is because an event E

k

that

involves an item j ‘jumping’ to the cluster containing i can result in complicated changes

to the partition structure at times t

0
> t: the changes to the clustering caused by an

event occurring at t0 > t for which an item j

0 6= j ‘jumps’ to i are determined in part by

E

k

(j, i). Consequently, inference based on a conditional forwards-filtering/backwards-

sampling (Früwirth-Schnatter, 1994) algorithm (such as those we derived in Chapters 3

and 4) cannot be derived without including the large space of all possible partitions in

the support of the messages. We will therefore use a particle Gibbs (Andrieu et al.,

2010) based method for inference. We will implement this through an e�cient proba-

bilistic program.

Probabilistic programming languages provide inference for Bayesian models based on

their generative processes (Mansinghka et al., 2014; Wood et al., 2014; Goodman et al.,

2012; Wingate et al., 2011). By providing general methods for MCMC inference, prob-

abilistic programming languages are similar to frameworks such as BUGS (Thomas et al.,

1992) and Infer.NET (Minka et al., 2014). But unlike probabilistic programming lan-

guages, BUGS and Infer.NET have strong parametric requirements on the form of the

generative process (for example, they cannot provide Dirichlet process priors). On

the other hand, by operating on the stack-trace of a program (i.e., the list of ma-

chine instructions that specify the output of the program), probabilistic programming

languages can provide inference for any model for which a generative process can be

implemented in code, regardless of the parametric form.

We will use the Anglican probabilistic programming language (Wood et al., 2014),

which implements particle MCMC (PMCMC) inference through particle Gibbs (PG).

In PG, a particle filter is run with an inexact proposal, targeting the desired posterior.

The lineages of the particles and the retained particle sets are then treated as random

variables. A Gibbs sampler is run, targeting the distribution induced by the lineages

of the particles and the retained particle sets. Viewed as an auxiliary Gibbs method,

the restriction of this chain to the particles arriving at the last step of the filter form

an MCMC chain targeting the desired posterior.

More formally, imagine we have a target distribution p(x
0:L

) and a factorization

p(x
0:L

) = p(x
0:0

)
Q

L

`=1

p

`

(x
`:`

|x
0:`�1) and proposal distributions q

0

(x
0:0

), . . . , q
L

(x
L:L

).

In particle Gibbs, S particles x

0,0

0:0

, . . . , x

0,S

0:0

are drawn i.i.d. according to the distri-

bution q

0

(·). Then, the weights w

s

0

= p(x0,s
0:0

)/q(x0,s
0:0

) are computed and normalized
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(ws

0

 w

s

0

/

P
S

s

0
=0

w

s

0
0

).

Subsequently, for each 0 < `  L, the indices of the parents of the next generation of

particles A

s

`�1 are drawn from the distribution A

s

`�1 ⇠
P

S

s

0
=0

w

s

0
`�1�t(·). (Here �

t

(·) is

the Dirac delta function centered at s.) Given these indices, the next generation of par-

ticles is described as follows: X`,s

`:`

⇠ q

`

(·), X`,s

0:`�1  X

`�1,As
`�1

0:`�1 and the weights are com-

puted and normalized as follows: ws

`

= p(X`,s

0:`

|X`,s

0:`�1)/q(X
`,s

`:`

), ws

`

 w

s

`

/

P
S

s

0
=0

w

s

0
`

.

After arriving at the particles Xs

0:L

and the weights ws

L

, the distribution
P

S

0

w

s

L

�

XL(·)
is a sequential Monte Carlo (SMC) approximation for X

0:L

. In PG, the weights and

ancestor indicators (ws

`

and A

s

`�1) are now treated as latent variables and resampled

using Gibbs updates. PG confers benefits over SMC such as faster mixing and reduced

estimator variance (Andrieu et al., 2010).

In the Anglican probabilistic programming language, the distributions p
`

and q

`

, and

the Gibbs updates for A
`

are automatically formed given a generative process such as

the generative process for the WFP in section 5.2.1. The proposals q

`

are given by the

prior distribution. While this update is not e�cient on big data, it is reasonable for the

sizes of data used in this Chapter. We will assume that the concentration parameter ↵

is fixed.

In our application, X
0:0

= R
0

is the partition R
0

at time zero (the third step of the

generative process in section 5.2.1) and X

`:`

= (E
`

(i
`

, j

`

), t
`

) describes the draws t
k

and

E

k

(` = k) from the first and second step, respectively, of the generative process in

section 5.2.1. The partition R
t

is thus induced by the particle X

0:`

for all values of t

such that 0  t  T

0 =
P

`

`

0
=1

t

`

0 . In particular, for t = 0, R
0

= X

0:0

. For 0 < t  T

0,

let ` = min
`

0{`0 : t
1

+ . . . + t

`

0 � t}. Then, form R
t

by taking R
0

and performing the

‘copying’ operations E
1

(i
1

, j

1

), . . . , E
`

0(i
`

0
, j

`

0).

The proposals q

`

(·) are formed from the prior distribution (i.e., proposals from the

prior): q

0

(X
0:0

) is the density of the CRP partition with concentration ↵: q

0

(X
0:0

) =

CRP(X
0:0

|↵). The proposals q
`

(X
`:`

) for ` > 0 are such that the probability density of

(E
`

(i
`

, j

`

), t
`

) is:

q

`

(X
`:`

) = Exp(t
`

|rN(N � 1 + ↵)) ·
(

1/(N(N � 1 + ↵)) if i
`

6= j

`

,

↵/(N(N � 1 + ↵)) if i
`

= j

`

.

Here Exp(·|�) is the density of the exponential distribution with rate �. The proba-

bilities for the weight computation incorporate the joint distribution of the dynamic

partition and the observed voting data, and are given as follows:

p

0

(X
0:0

) = q(X
0:0

), (5.1)

p

`

(X
0:`

|X
0:`�1) = q(X

`:`

) ·
Y

g:

P`�1
`0=0

t`0<vg
P`

`0=0 t`0

⇤(y
:g

|R
vg ,mg

) (5.2)
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t t t t t1 2 3 4 5

Figure 5.2: Probability for partitions sampled according to the partition valued
process Rt. Events occur at times t1, . . . , t5. The probabilities for the events and
holding times are given by the cases shown in Figure 5.3

Here, as in the generative process for the voting data in section 5.2.2, v
g

is the time

of the g-th motion and y

:g

is an N -dimensional 0/1-vector describing the votes of the

N MPs for the g-th motion. The partition R

vg is the partition induced by the particle

X

0:`

at the time of the g-th vote (v
g

). The product in (5.2) includes all votes that occur

between the time of the `-th and `+1-th change in the partition structure of the MPs.

The likelihood ⇤(y
:g

|R
vg ,mg

) describes the probability of observing the votes of the

MPs for the g-th motion, given the partition structure at the time of that motion:

⇤(y
:g

|R
vg ,mg

) =
Y

a2Rvg

�(m
g

+ n

1ga

)�(m
g

+ n

0ga

)/�(2m
g

+ n

1ga

+ n

0ga

) (5.3)

Here n

1ga

and n

0ga

are the numbers of MPs in block a of the partition R
t

that vote

‘yea’ or respectively ‘nay’ for the g-th motion. This likelihood integrates out the

vote-emission probabilities ✓
g:

. For more detail on probabilistic programming in the

Anglican language, and inference in PG, we refer to to Wood et al. (2014) and Andrieu

et al. (2010).

5.2.5 Describing R
t

as a partition valued process

The hierarchical generative construction in section 5.2.1 describes R
t

through a two

step process. First, transition times and the events E
k

are drawn. Second, R
0

is drawn

and conditioned on E

k

and R
0

, the partitions R
t

are determined for t > 0. As noted

in section 5.2.1, the events E
k

could be redundant. For every pair of distinct partitions

R�, and R, we will now consider all events E that could lead to a transition from

R
t� = R� to R

t

= R. We sum the rates of those events to find the transition rate

⌧(R�,R). In this way, R
t

can be described as an MJP with transition rate matrix

⌧(·, ·). (The columns and rows of this matrix correspond to each possible partition

of {1, . . . , N}.) There are 5 possible cases for the partitions R�,R. The function ⌧

assigns zero rate to all pairs of distinct partitions R�,R that are not covered by these

cases (i.e., for such pairs there is no single event E from the generative process that can

realize that transition). The cases are listed in Figure 5.3, and a diagram showing an
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example of the WFP model viewed as partition valued transitions is given in Figure 5.2.

The cases and rates in Figure 5.3 are found by considering the rates of the events

E

1

, E

2

, . . . from the hierarchical generative process for R
t

from section 5.2.1. We will

verify case 1 of this derivation. Suppose that {i, j} 2 R
t

(i 6= j). There are two

possibilities for E
k

that could both lead to the transition described in case 1: E
k

= (i, i)

and E

k

= (j, j). Therefore, the rate ⌧(R�
t

,R
t

) for the pairs of partitions described by

case 1 is 2r↵. The 4 other cases can be verified in a similar way.

If R
t

= R, then the total rate of transition from R is found by summing the rates for

all the cases:

⌧(R�, ·) = r↵(N �#{i : {i} 2 R�}) + 2r
X

{a,b}✓R�

#a#b. (5.4)

Here, N � #{i : {i} 2 R�} is the number of singleton clusters in R� and the sum
P

{a,b}✓R� is over all distinct (unordered) pairs of clusters a, b in R�.

5.3 Experiments

5.3.1 Experiment I: bloc discovery

We conducted an experiment on voting data from the 38th parliament of the Canadian

House of Commons1. This parliament lasted from October 2004 until November 2005

and involved 307 members of parliament. A total of 190 motions were voted on by

the members of parliament. In May 2005 (around the 34th week of the parliament)

Belinda Stronach, the member of parliament from the Newmarket–Aurora riding, left

the Conservative party and joined the Liberal party. We simulated the posterior dis-

tribution of the WFPV process conditioned on the voting data. We examine the cluster

assignment of Belinda Stronach over the duration of the process.

5.3.2 Experiment II: vote prediction

We considered votes for which there was more than 20% disagreement among members

of parliament and split that voting data evenly into a testing set and a training set (a

missing-at-random condition). We filtered votes with less than 20% disagreement as

these votes were often on procedural motions which did not contain much information

about party a�liation. We simulated the WFPV posterior conditioned on the training

set and looked at the accuracy of the WFPV’s predictive likelihood on testing set. We

simulated the WFPV process conditioned on the votes in the training set, and predicted

the held out votes in the testing set using the WFPV likelihood.

1
Retrieved from http://www.parl.gc.ca/HouseChamberBusiness/ on June 1st, 2014.
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Case 1: Let a = {i, j} 2 R�. If R is formed from R� by removing a and from
R� and adding the singleton clusters {i} and {j} then ⌧

n

(R�,R) = 2r↵.

Case 2: Let a 6= b 2 R� be distinct singleton clusters a = {i}, b = {j}. If R is
formed from R� by removing a, b from R� and adding a[ b = {i, j} then
⌧

n

(R�,R) = 2r.

Case 3: Let a, b 2 R� be such that #a> 1. For each i 2 a, if R is formed from
R� by removing a and b from R� and adding a \ {i} and b [ {i} then
⌧

n

(R�,R) = r#b.

Case 4: Let a, b 2 R� be such that a is the singleton cluster a={i}, and #b>1.
If R is formed from R� by removing a, b from R� and adding a[b then
⌧

n

(R�,R)=r#b.

Case 5: Let a 2 R� be such that #a > 2. For each i 2 a, if R is formed from
R� by removing a from R� and adding clusters a � {i} and {i} then
⌧

n

(R�,R) = r↵.

Figure 5.3: Cases for transitions arising from the description of Rt as a partition
valued-MJP with transition kernel ⌧(·, ·).

We compared the accuracy of the predictions of the WFPV with a baseline given by

probabilistic matrix factorization (Salakhutdinov and Mnih, 2007), a popular model in

collaborate filtering. The probabilistic matrix factorization model is as follows: each

member of parliament i, is associated with a D⇥1 dimensional latent random vector u
i

.

Each motion is also associated with a D⇥ 1 dimensional latent random vector v
j

. The

probability that the i-th member of parliament votes ‘yea’ for the j-th motion is given
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by the inner product uT
i

v

j

, passed through a link function. A Bayesian prior is placed

on u

i

and v

j

: in the prior, each of the u

i

vectors are drawn iid from a Gaussian with

mean 0 and variance �
u

and each of the v

j

vectors are drawn iid from a Gaussian with

mean 0 and variance �
v

. We conducted MAP inference for this probabilistic matrix

factorization using alternating least squares (Zhou et al., 2008). The implementation

we used was provided by the GraphLab software package (Wu et al., 2011).

In both experiments, we performed inference using particle Gibbs. We used 200 par-

ticles and 100 sweeps per iteration. The parameter settings we used for the WFPV

likelihood were r = 20.0 (in units of weeks�1), ↵ = 1.5 and m

`

= 0.005. These settings

were chosen to match our intuition about how large the political caucuses found by the

WFPV should be, and the empirical frequency of agreement found within the votes of a

political caucus.

5.4 Results

In Figure 5.4, we show the results of the first experiment. The bands indicate the

clusters found by the WFPV for Belinda Stronach, Stephen Harper (the leader of the

Conservative party) and Paul Martin (the leader of the Liberal party and the Prime

Minister of Canada at the time of the 38th parliament). From this figure, we can see

that the WFPV discovers the changed party allegiance of Belinda Stronach around the

34th week of parliament. In contrast, the cluster containing Stephen Harper remains

exclusively Conservative throughout the course of the process.

To better visualize the voting data and understand the WFPV, in Figure 5.5 we show

the proportion of each party among the members of parliament that voted in the same

way as Belinda Stronach. In this visualization, for each motion, we examine all MPs

that voted in the same way as Belinda Stronach. The y-axis indicates which week the

motion occurred in. The x-axis indicates the ratio of MPs from each party that voted

the same way as Belinda Stronach. For example, in the first motions of week 0, all of

the MPs that voted the same way as Belinda Stronach were Liberal. In contrast, in the

motions in the last week, almost all of the MPs that voted the same way as Belinda

Stronach were Conservative. In this visualization (which depends on knowing the party

memberships of all of the members), we can clearly see Belinda Stronach changing party

allegiance. The white strip indicates a period where Belinda Stronach did not vote on

any motions. We note that the WFPV was not confounded by this e↵ect: the time

at which most MPs voting the same way as Belinda Stronach switches from Liberal

to Conservative roughly corresponds to the time at which Belinda Stronach changes

clusters in 5.4. Further, to the right of this figure we see that the Bloc Québécois, the

NDP and the Liberals all voted together. This explains the mixed party allegiances of

the members of Paul Martin’s cluster in Figure 5.4.
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Method CF5 PARTY CF1 WFPV baseline
Accuracy (%) 98.0 96.7 90.6 81.9 62.5

Table 5.1: Percent correct for vote predictions. CF5 and CF1 indicate collaborative
filtering with 5 and 1 dimensions,respectively. PARTY indicates predicting votes based
on party allegiances of training set data.

Figure 5.4: Composition of the clusters found by WFP model. Each band gives
proportion of each party among the allegiances of all members of the cluster con-
taining the member of interest (indicated by the y-label) over the course of the
parliament. From top to bottom, members of interest are Stephen Harper, Belinda
Stronach and Paul Martin. Colors indicate the four main political parties (blue
for Conservatives, red for Liberals, orange for NDP/NPD and light blue for Bloc
Québécois).

We show the accuracies for vote prediction in the second experiment in Table 5.1. The

accuracy of the WFPV model was 81.9%, which was below the accuracies of collaborative

filtering (CF) with 5 latent components. The baseline accuracy found by predicting

the most common vote in the training set for each motion was 62.5%.

We found that a collaborative filtering (Salakhutdinov and Mnih, 2007) provided the

best accuracy, which is unsurprising consider the success of spatial models in predicting

role call votes (Poole and Rosenthal, 1985). By examining Figure 5.4 we see that the

WFPV finds large-scale blocks which cross party lines. (The Liberals, NDP/NPD and

Bloc Québécois were not a coalition, but they did vote similarly on many motions.)

Based on the data in Figure 5.5 it is clear that the accuracies of the WFPV could be

improved if it were to find exact party lines. (The clusters found by the WFPV cannot

model the jagged structures in the real data presented in Figure 5.5.)

It is possible that hyperpriors on the concentrations, rates and emission model would

improve the accuracy. To that end, particle Gibbs ancestral sampling would be appro-

priate and would be an interesting direction of future work (Lindsten et al., 2012).

5.5 Discussion

The accuracy of the WFP model in the vote imputation task was much lower than that

of collaborative filtering (CF) based methods. Further, we found that the clustering

found by the WFPmodel was not sensitive to the hyperparameters of the model. In many
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Figure 5.5: Band for the bipartition found by clustering members of parliament
into two clusters: those who vote in the same way as Belinda Stronach and those
who vote in the opposite way. White indicates periods for which Belinda Stronach
did not cast votes. Columns and colors are the same as those defined in previous
figure.

cases, the PG produced degenerate particles (i.e., the retained set often contained only

one particle). We could possibly solve these problems by using ancestral resampling for

particle Gibbs. Another possible solution could be the use of Metropolis Hastings with

a proposal induced by a Markov assumption for the conditional cluster assignment of

a sequence.

The possible non-mixing of the WFP notwithstanding, it is unlikely that any HMM

model will do better in vote prediction than CF. But CF does not depend on temporal

ordering and combines information from past and future times to predict a vote at a

specific time. On the other hand, the only information from past and future times that

an HMM uses is conveyed through the HMM state, which is relatively low-dimensional.

So, while WFPV did not display significant imputation accuracy, that does not mean

that it is a bad model for these time series data. If a clustering were defined based on

the CF, it would only capture global e↵ects.

For example, if an MP votes against the party line consistently 10% of the time, the

WFPVmight still place it in the party’s cluster. But, if an MP votes against the party line

only for the last 10% of the duration of the process, the WFPV would be more inclined to

reflect this in the clustering (i.e., the MP would switch clusters). By ignoring temporal

ordering, the CF makes no distinction at all between these two cases. Thus, the WFPV

confers additional insight by capturing this temporal structure. In future work, we will

consider combining the WFPV with a CF model, in a similar way to how the CRP is

combined with a CF in Sutskever et al. (2009).

Inference based on Markov approximations of the conditional sequence are also possible.

Leaving probabilistic programming, we could instead derive an MH update for the state

assignment of a sequence in which the proposal distribution is defined using a Markov

approximation (this MCMCM kernel would target the true posterior distribution).

5.6 Conclusions

We have presented inference for a new partition valued Markov jump process (the WFP)

based on a countable version of the Wright-Fisher di↵usion model. It is exchangeable,

reversible and its marginals are given by the CRP. The WFP does not have Markovian

marginals, and therefore cannot be approached by inference based on dynamic program-
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ming. Instead, we used particle Gibbs to simulate the WFP posterior. We implemented

the particle Gibbs using the Anglican probabilistic programming language.

We attached a likelihood to the WFP model to describe voting behavior of members of

parliament (yielding the WFPV). We applied the WFPV to data from the 38th Canadian

parliament and found that the posterior clusters found could be used to detect the

change in party allegiances of one of the members of parliament. This was done without

using any covariates associated with the members of parliament (such as their parties)

or the votes (such as the texts of bills).



Chapter 6

Conclusions and future work

6.1 Conclusions

Bayesian nonparametric statistics were first developed in the late 70s to provide prior

distributions which have both arbitrarily large support and also tractable posteriors.

Recently, the development of the nonparametric hierarchical Dirichlet process (Teh

et al., 2006) has allowed a wide variety of classical statistical tools (such as HMMs) to

make use of Bayesian nonparametric priors. This has lead to a resurgence of interest in

Bayesian nonparametric models, and much insight into the latent structure of the data

to which these models have been applied. Methodologically, the models presented in

this thesis are some of the most sophisticated applications of Bayesian nonparametrics

to genetics that has been derived to date. Further, we have made available the code for

the BNPPHASE model, and have provided a detailed description of these methods which

are of interest to the broader bioinformatics and population genetics community.

We have presented three new Bayesian nonparametric clustering models (BNPPHASE,

DFCP and WFP). The BNPPHASE and DFCP models are motivated by the genetic process

and have similarities to many popular models currently used in statistical genetics. We

explored these models through applications to various sources of data such as simulated

bottlenecks, X chromosomes from The Thousand Genomes Project, SNP data from the

HapMap Project and also SNP data from the SeattleSNPs project. We showed that

genotype imputation accuracy for our nonparametric models was often better than that

of the related parametric models, and we were able to interpret the latent variables of

the BNPPHASE model as founders in population bottlenecks or as rescaled versions of

the time to most recent common ancestor. To illustrate the versatility of Bayesian

nonparametric models, we also applied the WFP model to predict votes and to uncover

political blocs in data from the Canadian House of Parliament.

We also discussed theoretical properties of these models: we derived expected values

for the lengths of haplotypes under the DFCP model and we computed the conditional
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distributions of fragmentation and coagulation operators.

6.2 Future work

The experiments and analysis discussed in this thesis present several avenues for future

work. We derived equations for phasing using the DFCP, but these equations can be

simplified using a study/reference paradigm. The reference panels could be used as a

source of phased data to build a ‘sca↵old’ of haplotypes. This could be done by running

the DFCP model on the reference paradigm, and choosing a representative sample from

the MCMC. Unphased data could then be registered to this sca↵old by assuming that

the unphased diploid sequences are independent conditioned on the sca↵old, and also

supposing that the diploid sequences never form new haplotypes, and instead must

always join the haplotypes that already exist in the sca↵old. The resulting messages

would be quite simple, and the phasing of all the diploid sequences could be done in

parallel.

For the WFP model, we found that the imputation accuracy was lower than that of linear

methods such as collaborate filtering. However, collaborative filtering cannot capture

changes to the block structure of sequences over time (or over chromosome location).

To that end, we plan to examine a mixture between a collaborative filter and the WFP

model in order to model changes in block structure and also produce high-accuracy

predictions (as was done in Sutskever et al. 2009 for static clustering).
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