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Abstract

This paper studies innovation tournaments in which an organizer seeks solutions to an innovation-related

problem from a number of agents. Agents exert effort to improve their solutions but face uncertainty about

their solution performance. The organizer is interested in obtaining multiple solutions - agents whose solutions

contribute to the organizer’s utility are called contributors. Motivated by mixed policies observed in practice,

where some tournaments are open and others restrict entry, we study when it is optimal for the organizer

to conduct an open tournament or to restrict entry. Our analysis shows that whether an open tournament

is optimal is tied to: (1) the variance of uncertainty as compared to the impact of effort; (2) the number of

contributors, and (3) the skewness of the uncertainty distribution. Our results help explain mixed policies

about restricting entry observed in practice as well as recent empirical and experimental findings.

Key words : Contest, Crowdsourcing, Incentive, Online Platforms, Technology, Uncertainty

History : Received: April 2018; Accepted: November 2020 by Jürgen Mihm, after 2 revisions.

1. Introduction

As organizations increasingly look beyond their boundaries towards outsourcing research and devel-

opment activities, innovation tournaments have emerged as one popular and cost-effective tool. In

an innovation tournament, an organizer elicits solutions to a problem from a group of agents, but

awards only the best solutions. One of the key decisions in the design of an innovation tournament

is how many agents to let in (Boudreau et al. 2011). More agents in a tournament allow the orga-

nizer to tap into a more diverse set of solutions. However, more agents in a tournament also affect

agents’ incentives to exert effort towards improving their solutions by reducing their chances of

winning an award. Thus, the organizer should carefully choose between an open tournament where

any agent can freely participate or a restricted-entry tournament where only a subset of agents can

participate. In this paper, we aim to understand why open tournaments are prevalent in practice

and to also provide insights into when open tournaments are undesirable.

* Corresponding Author.
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We encounter many open innovation tournaments in practice. For instance, since 2012, Samsung

has organized several open tournaments, called the Samsung Smart App Challenge, soliciting inno-

vative applications for its online app store. At the crowdsourcing platform InnoCentive, organizers

run open ideation and reduction-to-practice (RTP) challenges that seek innovative ideas and inno-

vative solutions with working prototypes, respectively. Similar open tournaments are organized at

crowdsourcing platforms Tongal and TopCoder in several categories such as concept projects and

coding challenges. For instance, in the Arcelik Exploratory Testing Challenge, agents compete by

identifying issues in Arcelik’s website (Topcoder 2020). At the opposite end of the spectrum, there

are also quite a few innovation tournaments with restricted entry. For instance, it is not uncommon

in architectural design tournaments to restrict the number of participants (e.g., RAIC 2019). As a

starting point of understanding these mixed policies observed in practice, we focus on two dimen-

sions in which innovation tournaments differ: the uncertainty faced by agents that participate in a

tournament and the estimated number of solutions utilized by the tournament organizer.

In innovation tournaments, agents face uncertainty about the quality of their solution due to

the stochastic nature of the innovation process. This uncertainty is associated with the specific

problem at hand and has two important properties: variance and skewness. First, the variance of

agents’ uncertainty can differ across tournaments. For instance, InnoCentive RTP challenges that

seek innovative solutions (e.g., developing 3D-printable robots for bomb squads) may entail larger

uncertainty than a Topcoder coding challenge such as the Arcelik Exploratory Testing Challenge.

Second, beyond variance, skewness and tail properties of uncertainty distribution also vary across

tournaments. It may be reasonable to expect most tournaments to feature symmetric (e.g., uniform

as in Mihm and Schlapp 2019 or normal as in Hu and Wang 2019) or right-skewed (e.g., Gumbel as

in Terwiesch and Xu 2008) distributions. Yet, in some tournaments, a left-skewed distribution for

the solution uncertainty may be suitable. According to Dahan and Mendelson (2001), a left-skewed

(Weibull-type) distribution is suitable when there are “predictably finite bounds on the upside

profit potential of a new product ... Such might be the case for a product that serves a small market,

upgrades an existing user base, conforms to a fixed-price contract, or is capacity-constrained”(page

110). For instance, in the Arcelik Exploratory Testing Challenge, the upside potential for developed

solutions is limited by the severity of issues a user can encounter in Arcelik’s website.1

The second dimension in which innovation tournaments differ is the estimated number of solu-

tions that a tournament organizer will utilize. We refer to agents whose solutions contribute to the

organizer’s utility as contributors. Some tournaments, given the nature of the problem at hand,

1 It is worth noting that not all coding challenges feature small variance or limited upside potential. For instance, in
a bug-hunt challenge where very serious issues (e.g., security vulnerabilities) can be revealed, the upside potential
can be high and the quality of solutions could be highly variable.
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can have only a single contributor. For instance, this is the case for an architectural design contest

where only a single design will be adopted. Other tournaments may feature multiple contributors.

For instance, an organizer that runs an InnoCentive ideation challenge or a Tongal concept project

may utilize or further develop multiple viable ideas or concepts instead of only the best one. The

Samsung Smart App Challenge sought many useful applications to contribute to Samsung’s objec-

tive of enriching its app marketplace. Our interview with Samsung revealed that the organizer of

the Samsung Smart App Challenge 2013 estimated that 150 apps (among hundreds of submissions)

could be uploaded to Samsung App marketplace. While the organizer in some tournaments may

end up utilizing a different number of solutions than estimated, in some tournaments, the number of

contributors has to be determined at the beginning of the tournament and cannot be changed. For

instance, in Tongal concept projects, organizers often commit to receiving the intellectual property

rights of a fixed number of concepts (see, e.g., Tongal 2020). Importantly, an organizer designs its

tournament based on the expected number of contributors estimated before the tournament begins

rather than the actual number of solutions used at the end. It is worth noting that the organizer

does not necessarily pay all contributors. For instance, in ideation challenges, organizers usually

have perpetual rights to use or further develop any submitted idea, but they award only the best

idea(s). Similarly, in the Samsung Smart App Challenge 2013, although practitioners estimated

150 contributors, only the best few apps were given awards.

Our paper develops a model that is sufficiently general to capture the two key features of tour-

naments described above. In particular, we model agents’ uncertainty with a general class of distri-

butions that have log-concave or increasing density functions (e.g., normal, uniform, exponential,

Weibull, and Gumbel distributions). This allows us to characterize the impact of variance and

skewness in agents’ uncertainty on the design of an optimal innovation tournament. In addition,

we assume that the organizer’s ex-ante utility depends explicitly on the best K submitted solu-

tions, where K can be any number between one and the total number of participants. It turns out

that the difference between a tournament with a single contributor and a tournament with many

contributors plays an important role in a tournament’s design.

Our analysis shows that whether an open tournament is optimal is closely tied to: (1) the

variance of uncertainty as compared to the impact of effort (in short, uncertainty-effort ratio); (2)

the number of contributors, and (3) the skewness of uncertainty distribution. (Table 1 provides a

typology of tournaments that should be open or feature restricted entry.) First, we show that an

open tournament is optimal if an innovation problem involves a sufficiently large uncertainty-effort

ratio. The intuition is as follows. More participants in the tournament can reduce agents’ incentives

to exert effort, yet they can help the organizer benefit from having a more diverse set of solutions

from participants. For a sufficiently large uncertainty-effort ratio, the positive impact of having a
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Table 1 Settings where open or restricted-entry tournaments are optimal.

Low uncertainty-effort ratio and
symmetric or right-skewed distribution

High uncertainty-effort ratio or
left-skewed distribution

Small
number of

contributors

Restrict
(e.g., architectural design tournaments)

Open
(e.g., InnoCentive RTP challenges)

Large
number of

contributors

Open
(e.g., Samsung Smart App Challenge)

Open
(e.g., Arcelik Exploratory Testing

Challenge)

diverse set of solutions outweighs the potentially negative incentive effect. Therefore, an organizer

seeking solutions with a high uncertainty-effort ratio (e.g., innovative solutions) may benefit from

an open tournament. Our result provides a plausible explanation for why a wide range of innovation

tournaments featuring large uncertainty (e.g. InnoCentive RTP challenge) are open.

A tournament features a relatively low uncertainty-effort ratio when it involves low uncertainty

(e.g., as in Arcelik Exploratory Testing Challenge) or the agents’ effort plays a substantial role

in their solution performance (e.g., app design or architectural design). For such a tournament,

the benefit of having a diverse set of solutions is not large enough to offset a potentially negative

incentive effect. In this case, our results indicate that there are two cases where an open tournament

can still be optimal. The first case is when the organizer aims to utilize many solutions. For instance,

the Samsung Smart App Challenge has a large number of estimated contributors and it is an open

tournament. The second case where an open tournament can be optimal is when more participants

encourage agents to exert more effort. We find that agents can increase effort with more participants

when their uncertainty features a left-skewed distribution, as opposed to the prior literature that

has argued that agents always reduce effort with more participants since increased competition

lowers agents’ probability of winning an award. In fact, we find that the driver behind how agents

change their effort with more participants is a marginal change of the winning probability with

additional effort rather than the winning probability itself. As the number of participants increases,

the marginal change of an agent’s winning probability may increase because additional effort helps

the agent gain an edge against more competitors. Thus, more participants can encourage agents to

exert higher efforts under left-skewed distributions. This result not only helps explain why some

Topcoder coding challenges with small uncertainty-effort ratios are open, but also is consistent

with observations in the laboratory experiments conducted by List et al. (2020).

While explaining the frequent use of open tournaments in practice, our paper also shows when

it is optimal to restrict entry. Specifically, restricting entry is optimal in tournaments with a

low uncertainty-effort ratio, a symmetric or right-skewed distribution, and a small number of

contributors. This result may offer a plausible explanation for why architectural design contests
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often restrict entry. When taken together, our results can help explain mixed policies in practice

that cannot be explained by the results in the prior literature. For instance, our results may

help explain why some tournaments with low uncertainty-effort ratios are open (e.g., Samsung

Smart App Challenge) whereas others choose restricted entry (e.g., architectural design contests).

Our result also provides theoretical support for the empirical finding of Boudreau et al. (2011)

which implies that a free-entry open tournament should be encouraged when problems are highly

uncertain but restricted entry can be optimal when problems feature low uncertainty.

Previous work has provided mixed answers to when a tournament should be open. (We review

the prior studies that are concerned with our research question, while referring readers to Ales et al.

(2019) and Chen et al. (2020) for a comprehensive review of the literature on tournaments.2) Taylor

(1995) and Fullerton and McAfee (1999) argue that an open tournament is never optimal because

more intense competition hinders agents’ incentives to exert effort. Terwiesch and Xu (2008) reach

the same conclusion when the organizer aims to maximize the performance of the average solution.

However, by assuming that the output uncertainty is sufficiently large, they conclude that an open

tournament is always optimal if the organizer wants to maximize the performance of the best

solution, because the organizer can benefit from a more diverse set of solutions.

Our contribution is to sharpen these mixed results in the prior literature and help explain mixed

policies in practice by showing when an open tournament is optimal and when it is not. To achieve

this goal, we consider a general log-concave distribution for the solution uncertainty instead of a

specific distribution (e.g., Gumbel in Terwiesch and Xu 2008 or uniform in Mihm and Schlapp

2019) and a general number of contributors as opposed to focusing on the best solution (e.g., Taylor

1995, Mihm and Schlapp 2019) or all submitted solutions (e.g., Green and Stokey 1983, Kalra

and Shi 2001). (Erat and Krishnan (2012) also consider a case where the organizer is interested

in the best two solutions.) Our general model not only takes prior models as special cases, but

also characterizes the role of contributors in an organizer’s decision to hold an open tournament.

As the closest study to ours, Terwiesch and Xu (2008) consider a weighted combination of the

performance of the best solution and the average performance of all solutions, while noting that the

explicit approach of considering the best K submitted solutions might be intractable. We conduct a

tractable analysis of the explicit approach, and show that it leads to qualitatively different results.

Our results show that whether an open tournament is optimal is more subtle than what prior

studies show because it depends on the number of contributors as well as the variance and skewness

of uncertainty.

2 Broadly speaking, innovation tournaments can be used as a tool to outsource some or all stages of product develop-
ment. We refer the reader to Krishnan and Ulrich (2001), Kalkanci et al. (2019), and Rahmani and Ramachandran
(2020) for a detailed review of the broader product-development literature. Also, for recent developments in empirical
research on crowdsourcing, we refer the reader to Hwang et al. (2019), Aggarwal et al. (2020) and references therein.
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2. Model

Consider an innovation tournament in which a tournament organizer elicits solutions to an

innovation-related problem from a set of agents. A tournament proceeds in the following sequence.

By anticipating the number of solutions to utilize at the end of the tournament, the organizer

announces whether the tournament is open to anyone who wishes to participate, and how par-

ticipants of the tournament will be compensated. Then agents decide whether to participate in

the tournament, and if they do, they exert effort to develop their solutions, and submit them to

the organizer. Finally, the organizer evaluates the submitted solutions and compensates agents

accordingly. Below, we formalize the model.

Agents. There are N (≥ 3) agents who can potentially participate in the tournament. Let N

(∈ {2,3, ...,N}) be the number of agents who participate. Each participating agent i (∈ {1,2, ...,N})

develops a solution to the problem posed by the organizer, and generates an output yi ∈ Y ⊆

R∪{−∞,∞}. The output yi can be interpreted as the quality of a solution or its monetary benefit

to the tournament organizer. The output yi is determined by two components: (i) agent i’s effort

and (ii) a stochastic output shock. We elaborate on each of these components next.

Each agent can enhance the output by exerting effort ei ∈R+. Effort ei leads to a deterministic

improvement of the agent’s output by r(ei), where r is a strictly concave, increasing, and twice

continuously differentiable function. An agent who exerts effort ei incurs cost ψ(ei), where ψ is a

convex, increasing, and twice continuously differentiable function of effort with ψ(0) = 0. The cost

of effort may represent the monetary investment required to exert effort ei or the disutility that

agent i incurs from this effort. For ease of illustration, we use the following forms for r and ψ in

the main body while extending our results to general r and ψ throughout the Online Appendix.

Assumption 1. Suppose that r(e) = γ + θ log(e), and ψ(e) = ceb for c, θ > 0 and b≥ 1.

The effort function coefficient θ captures the impact of effort on an agent’s output. The larger the

value of θ, the larger is the impact of a unit effort on output. The parameter b captures how fast

the cost of effort is increasing, so we interpret it as a measure of difficulty in improving the output.

In Assumption 1, we utilize the logarithmic effort function r to make our results comparable with

Terwiesch and Xu (2008) who use a special case of the setting in Assumption 1 where b = 1. The

power function form that we use for the cost function ψ is also common in the literature (e.g.,

Mihm and Schlapp 2019, Korpeoglu et al. 2020, Candoğan et al. 2020).

In addition to effort, each agent i’s output is subject to a stochastic output shock ξ̃i due to

uncertainty involved in innovation and evaluation processes. Following the literature, we assume

that ξ̃i’s are independent and identically distributed (i.i.d.) random variables with E[ξ̃i] = 0. We
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consider a general class of distributions with log-concave or increasing density functions (e.g.,

normal, uniform, exponential, logistic, Weibull, and Gumbel distributions). Thus, the output shock

ξ̃i (∈ Ξ) has a density function h where either log(h) is concave or h is increasing; a cumulative

distribution H with Ξ = [s, s]. We make the following definitions related to the output shock ξ̃i.

Let ξ̃N
(j) be a random variable with cumulative distribution HN

(j) and density hN
(j) that represents the

j-th highest value among N i.i.d. output shocks. Since ξ̃N
(j) corresponds to the (N − j +1)-st order

statistic among N random variables, we have hN
(j)(s) = N !

(j−1)!(N−j)!
(1−H (s))j−1

H (s)N−j
h (s). To

measure the variance of uncertainty for a general distribution H, we use the notion of a scale

transformation (e.g., Rothschild and Stiglitz 1970).

Definition 1. Two distribution functions Ĥ(∙) and H(∙) differ by a scale transformation if there

exists parameter α such that Ĥ(s) = H(s/α) (with density ĥ(s) = h(s/α)/α) for all s∈Ξ.

The scale transformation of the output shock ξ̃i with scale parameter α preserves the mean of zero

while multiplying its variance by α2. Thus, the variance of uncertainty is captured by α.

Given agent i’s effort ei and output shock ξ̃i, agent i’s output is determined as

y(ei, ξ̃i) = r(ei)+ ξ̃i. (1)

The utility of agent i, Ua(ei, xi) :R2
+ →R, is defined over the agent’s effort ei and the monetary

compensation xi that the agent receives from the organizer. The utility of the agent takes the

following form: Ua(ei, xi) = xi −ψ(ei). We refer to the agent who produces the best output as the

winner of the tournament. As is common in the literature (e.g., Taylor 1995, Fullerton and McAfee

1999, Terwiesch and Xu 2008, Körpeoğlu et al. 2018, Hu and Wang 2019, Candoğan et al. 2020),

we focus on “winner-takes-all” tournaments in which the organizer gives an award A (> 0) only

the winner of the tournament. It turns out that when the output shock ξ̃i follows a log-concave or

increasing density function, the winner-takes-all award scheme is optimal (Ales et al. 2017). Thus,

each agent i receives xi = A if the agent wins the tournament, or xi = 0 otherwise. In §EC.3 of the

Online Appendix, we extend our results to the case in which the organizer offers multiple awards.

The Organizer. The organizer’s utility Ûo(Y,A) is defined over the output vector Y =

(y1, y2, ..., yN) and the award A. We consider the case where the organizer benefits from K best out-

puts (where 1 ≤K ≤N), and refer to those agents who produce the K best outputs as contributors.

Formally, we have the following definition:

Definition 2. Let Y (K) = {y(1)[Y ], . . . , y(K)[Y ]} where y(j)[Y ] represents the j-th highest output

in Y - for ease of notation, we use y(j) in short for any j = 1,2, ..,K. The organizer’s utility has K

contributors if for all Y ∈YN ,

(i) There exists a continuously differentiable function Uo so that Ûo(Y,A) = Uo(Y (K),A);
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(ii) For all j = 1,2, . . . ,K , ∂Uo(Y (K),A)

∂y(j)
> 0.

In §3, we use the following linear utility function for the organizer with K contributors:

Uo(Y (K),A) = E[
K∑

j=1

y(j)]−A, ∀ Y ∈Y . (2)

We consider a more general utility function in §EC.2 of the Online Appendix. We note that Ales

et al. (2017) also use a K contributor setup in their model, while focusing on deriving an optimal

award scheme. That paper does not study when it is optimal to hold an open tournament as we

do in this paper. Our model as well as theirs takes K given exogenously. In practice, the organizer

should have an estimated value of K (e.g., K=150 in Samsung Smart App Challenge described in

§1) before conducting a tournament because K affects its optimal decision on tournament rules.

Our model thus allows us to isolate the impact of K on the organizer’s and agents’ decisions, while

generalizing several prior papers that assume K = 1 or N (see §1). In §4, we also discuss alternative

models in which the organizer determines K endogenously ex-ante or ex-post.

The organizer chooses the number of agents who participate N (where K ≤ N ≤ N) and the

award A that maximize its utility. A tournament where the organizer allows entry of all agents

who can potentially participate (i.e., chooses N = N) is called an open tournament.

We consider a static model where N agents simultaneously participate in the tournament and N

is common knowledge. This modeling approach is common in the tournament literature and seems

suitable for tournaments at platforms such as InnoCentive for two reasons. First, our interview with

a business development manager at InnoCentive reveals that each agent at platforms is notified

by e-mail when a new tournament is posted, so the number of participants becomes stable within

a short period of time. Thus, it may be reasonable to assume that all agents participate at once.

Second, at platforms, the number of participants N is shared with agents, so agents have a fairly

good idea about N .

The Equilibrium. As is standard in the tournament literature, we focus on a symmetric pure-

strategy Nash equilibrium. Let e∗ denote the agent’s equilibrium effort, and P N [ei, e
∗] denote the

probability that agent i is the winner of the tournament when agent i exerts effort ei and all other

(N − 1) agents exert the equilibrium effort e∗. We can compute this probability as

P N [ei, e
∗] =

∫

s∈Ξ

H(s + r(ei)− r(e∗))N−1h(s)ds. (3)

Each agent i’s problem is to choose effort ei that maximizes the agent’s expected award AP N [ei, e
∗]

less the agent’s cost of exerting effort ei, ψ(ei), by solving

max
ei∈R+

A

∫

s∈Ξ

H (r (ei)− r(e∗)+ s)N−1
h (s)ds−ψ(ei). (4)
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In Lemmas EC.1-3 of the Online Appendix, we show the existence of a unique symmetric pure-

strategy Nash equilibrium effort e∗ that solves (4) under specified conditions on the effort function

r, cost function ψ, and output shock ξ̃i. Throughout the paper, we assume that at least one of these

conditions is satisfied for all N up to N . Under these conditions, the agent’s equilibrium effort e∗

satisfies the following first-order condition of (4) evaluated at ei = e∗:

ψ′(e∗)
r′(e∗)

= AIN where IN ≡
∫

s∈Ξ

(N − 1)H (s)N−2
h (s)2 ds. (5)

The IN term in (5) is related to the marginal impact of additional effort on the winning probability.

The left-hand side of (5) is increasing in e∗ because (ψ′(e∗)/r′(e∗))′ = ψ′′(e∗)

r′(e∗)
− ψ′(e∗)r′′(e∗)

(r′(e∗))2
> 0, so e∗

is increasing IN . The dependence of e∗ on IN is important as it indicates the possibility that e∗

increases with the number of participants N . We will expand on this observation in our analysis

in §3 after we present our main result related to when an open tournament is optimal.

In equilibrium, ei = e∗, so each agent’s probability of winning is 1/N , and each agent i’s utility

from the tournament is Ua = A
N

− ψ(e∗). Consistent with the innovation contest literature, we

assume that each agent has zero outside option. Then, under the assumption that an e∗ that solves

(4) exists, agents obtain higher utility by exerting effort e∗ than they do by exerting zero effort

(which is equivalent to not participating), so agents always find it beneficial to participate with

effort e∗ (i.e., Ua ≥ 0).

When each agent exerts effort e∗, the j-th highest output can be written as y(j) = r(e∗) + ξ̃N
(j).

Therefore, the organizer chooses N (where K ≤N ≤N) and A that maximize its expected utility

Uo = Kr (e∗) + E

[
K∑

j=1

ξ̃N
(j)

]

−A. (6)

3. Analysis

Our primary goal is to determine when the organizer benefits from an open tournament (i.e.,

choose N = N) as opposed to restricting entry of participants (i.e., choose N < N). To answer

this question, we examine how the number of participants (N) affects the organizer’s utility: Uo =

Kr (e∗,N ) + E[
∑K

j=1 ξ̃N
(j)]−A∗, where A∗ is the optimal award and superscript N in e∗,N denotes

the number of participants. When Uo is maximized under N = N , it is optimal for the organizer

to choose an open tournament. The first term in Uo, Kr (e∗,N ), increases (resp., decreases) with

N if the agent’s equilibrium effort e∗,N increases (resp., decreases) with N . The second term in

Uo, E[
∑K

j=1 ξ̃N
(j)], represents the expected value of the best K outcomes from N i.i.d. random

variables. It is easy to see that this term increases with N for any K; in other words, a more

diverse set of solutions increases the expected value of the best K outputs. The last term in Uo,

A∗, does not depend on N under Assumption 1 (which is relaxed throughout the Online Appendix

including Corollary EC.5 that extends Theorem 1). Therefore, whether an open tournament is
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optimal depends on how the first two terms change with N . Theorem 1 captures this tradeoff and

characterizes when an open tournament is optimal. All proofs are presented in the Appendix.

Theorem 1. Consider a scale transformation of the output shock ξ̃i with scale parameter α > 0.

(a) For any number of contributors K and any number of potential participants N , there exists

αK such that Uo is maximized at N = N if and only if α≥ αK , where αK is non-decreasing in the

effort function coefficient θ.

(b) αK is non-increasing in the number of contributors K and the cost function parameter b.

(c) If IN in (5) is increasing in N up to some N∗ (≥N), then αK = 0.

Theorem 1 shows that whether an open tournament is optimal depends on output uncertainty

(α), the number of contributors (K), cost function parameter b, the effort function coefficient θ,

and how the equilibrium effort e∗ changes with N . Theorem 1(a) shows that an open tournament is

optimal if and only if α is above threshold αK which decreases with the effort coefficient θ.3 Figure

1(a) illustrates the underlying mechanisms of Theorem 1(a) under fixed θ. In the setting of this

figure, additional participants lead to a reduction in the equilibrium effort e∗,N , and hence Kr(e∗,N )

in the organizer’s utility Uo decreases with N , whereas E[
∑K

j=1 ξ̃N
(j)] in Uo increases with N . Thus,

it is not obvious how Uo changes with N . Figure 1(a) displays that a larger output uncertainty (α)

raises (
∑K

j=1 E[ξ̂N+1
(j) ]−

∑K

j=1 E[ξ̂N
(j)]), which captures the contribution of an additional participant

to the organizer’s utility from having a more diverse set of solutions. This is intuitive. On the other

hand, a larger output uncertainty α does not change |Kr(e∗,N+1)−Kr(e∗,N )|, which captures the

negative impact of an additional participant on the organizer’s utility due to agents’ reduced effort.

Although the latter result might also appear intuitive, it is not necessarily true for a general effort

function r. Nevertheless, Corollary EC.5 in the Online Appendix shows that when the variance

of the output shock is sufficiently large for any general distribution, the benefit of having a more

diverse set of solutions dominates the potentially negative incentive effect as well as its impact on

the optimal award. Thus, the benefit of having a more diverse set of solutions from a larger number

of participants dominates its potentially negative incentive effect, only when α is sufficiently large

(relative to θ since αK decreases in θ).

Theorem 1(a) has important implications for both tournament theory and practice. Prior liter-

ature in economics has shown that when the organizer wants to maximize the best output (i.e.,

K = 1), an open tournament is never optimal (e.g., Taylor 1995, Fullerton and McAfee 1999)

because a larger number of participants has a negative incentive effect on agents’ effort. Terwiesch

and Xu (2008) argue that an open tournament is always optimal because the benefit of having

3 Theorem 1(a) is derived under the organizer’s objective of maximizing the best K outputs (see §2). While this
objective is suitable for innovation tournaments, there are other types of tournaments in which the organizer is purely
interested in the agents’ effort (e.g., Tullock 1980).
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Figure 1 (a) The impact of an additional participant on the contributors’ total effort (i.e., Kr(e∗,N+1) −

Kr(e∗,N+1)) and shock (i.e., E[
∑K

j=1 ξ̂N+1
(j) −

∑K
j=1 ξ̂N

(j)]) as a function of scale parameter α; (b) Mini-

mum scale parameter αK for an open tournament. Parameters used: ξ̃i v Normal(0,1); ξ̂i = αξ̃i; N = 10;

r(e) = log(e) and ψ(e) = e.

a more diverse set of solutions outweighs the negative incentive effect. They derive this result

under the assumption that the output shock follows a Gumbel distribution with a sufficiently large

scale parameter μ. Our result sharpens existing theories by showing that the benefit of having a

diverse set of solutions outweighs the potentially negative incentive effect if and only if the vari-

ance of the output shock (captured by α) relative to the impact of effort (captured by θ), i.e., the

“uncertainty-effort ratio,” is sufficiently large. Our result is corroborated with empirical evidence,

and seems consistent with practice. Specifically, Boudreau et al. (2011), who empirically analyze

9,661 software tournaments at Topcoder, conclude that free entry should be encouraged in contests

for which problems are highly uncertain. In practice, this may be the case when a tournament

features large uncertainty (e.g., InnoCentive RTP challenges).

Theorem 1(b) states that the threshold on the level of uncertainty over which an open tournament

is optimal (i.e., αK) decreases as the organizer anticipates utilizing a larger number of solutions

(i.e., larger K). This result suggests that even when a tournament features a low uncertainty-effort

ratio, an open tournament may still be optimal if the number of contributors K is sufficiently

large; see Figure 1(b). Our result provides a plausible explanation to some industry examples. For

example, the Samsung Smart App Challenge was conducted as an open tournament because a large

number of contributors were anticipated. On the other hand, an architectural design tournament

often features restricted entry. Although the latter tournament may involve a similar uncertainty-

effort ratio to the former tournament, it seeks a single contributor, so an open tournament is less

desirable. Theorem 1(b) further shows the threshold on the level of uncertainty over which an open

tournament is optimal (i.e., αK) decreases as the cost function parameter b increases. This shows

that an open tournament is more desirable in settings where the agent’s cost of effort increases
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faster; for instance, when seeking solutions to difficult problems, improving solution quality requires

a significant increase in the agent’s cost of effort.

We note that our finding related to the number of contributors K contrasts sharply with the result

in the literature. To capture cases where the organizer aims to utilize multiple solutions, Terwiesch

and Xu (2008) consider a weighted combination of the performance of the best solution and the

average performance of all solutions, while noting on page 1534 that “[i]t seems plausible that the

seeker might be interested in the best K submitted solutions. These cases lead to qualitatively

similar results, yet are analytically intractable.” We complement Terwiesch and Xu (2008) by

modeling the organizer’s utility as an explicit function of “the best K submitted solutions” and

still conducting a tractable analysis of this model. We show that a larger number of contributors

reinforces the diversity effect and increases the value of an open tournament. This is qualitatively

different from the result of Terwiesch and Xu (2008) that an open tournament is less likely to

be optimal when the organizer’s weight on the best solution decreases, or equivalently, when the

weight on the average solution increases. A primary reason for these seemingly opposite results is

that their model approximates “the best K submitted solutions” because the average performance

is computed by averaging the performance of all solutions including poor solutions (which do not

belong to the best K submitted solutions).

Theorem 1(c) shows that an open tournament is optimal when IN in (5) is increasing in N

(which means e∗ is increasing in N as discussed below (5)) up to some N∗ (≥N). In this case, more

participants to the tournament not only provide a more diverse set of solutions to the organizer, but

also induce higher effort from participants. Thus, an organizer can benefit from an open tournament

even when the output uncertainty is so low that there is little diversity among agents’ solutions.

This is also true when the organizer’s objective is to maximize the average output of all agents,

where the impact of diversity disappears completely.

Corollary 1. Suppose that IN in (5) is increasing in N up to some N∗ (≥N). When the orga-

nizer maximizes the average output of all agents, an open tournament is optimal.

Our results also have implications about when it is optimal to restrict entry to a tournament.

Specifically, Theorem 1 shows that there are two conditions for restricting entry. First, the threshold

αK should be positive. This is guaranteed when IN in (5) is decreasing in N for all N (≤ N).

Second, the uncertainty-effort ratio and the number of contributors should be sufficiently small

(i.e., α < αK). In this case, as Theorem 1 formally shows and Figure 1 illustrates, the organizer

may choose to restrict entry. The following corollary formally presents the two conditions for the

optimality of restricted entry.4

4 When the organizer restricts entry (i.e., N < N), there exist multiple equilibria where N agents participate and
(N −N) agents do not. The analysis of any of these equilibria yields the same insights, because the organizer’s utility
is the same under any of these equilibria.
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Corollary 2. Suppose that IN in (5) is decreasing for all N (≤N). Then, αK > 0, and for any

scale transformation of the output shock ξ̃i with scale parameter α ∈ (0, αK), restricted entry is

optimal.

We next analyze how the equilibrium effort e∗ changes with the number of participants N . This

analysis will help us better understand the conditions given in Theorem 1(c), Corollary 1, and

Corollary 2. As discussed earlier below (5), whether e∗,N increases or decreases with N depends

on whether IN defined in (5) increases or decreases with N . How IN changes with N depends on

the distribution of agent’s uncertainty. For instance, when the output shock ξ̃i follows a Gumbel

distribution with mean 0 and scale parameter μ, IN = N−1
μN2 is decreasing in N , and so is e∗. In

contrast, when ξ̃i follows a Weibull distribution with mean 0, shape parameter β = 1, and scale

parameter μ (i.e., h(s) = 1
μ

exp
{
−(μ−s

μ
)
}

as in the literature on extreme-value distributions and

new product development (e.g., Dahan and Mendelson 2001)), IN = N−1
μN

as well as e∗ is increasing

in N .5 This example illustrates a counter-intuitive result that more participants can induce larger

effort from agents. The reason is as follows. From (4), the agent’s marginal benefit of increasing

effort is A ∂P N [ei,e
∗]

∂ei

∣
∣
∣
ei=e∗

= Ar′(e∗)IN . For any given award A, this increases with ∂P N [ei,e
∗]

∂ei

∣
∣
∣
ei=e∗

=

r′(e∗)IN , which represents the marginal impact of additional effort on the winning probability.

When IN+1 > IN (i.e., IN increases with N), ∂P N+1[ei,e
∗]

∂ei

∣
∣
∣
ei=e∗

> ∂P N [ei,e
∗]

∂ei

∣
∣
∣
ei=e∗

, implying that one

unit of effort increases the winning probability more when there are (N +1) participants than when

there are N participants; consequently, agents exert larger effort with (N + 1) participants than

with N participants. Thus, although more participants always lower the probability of winning for

agents under any distribution of the output shock ξ̃i, more participants do not always lead agents

to reduce their effort.6

Building on this observation, Proposition 1(a) presents a necessary and sufficient condition on

the output shock ξ̃i under which more participants induce (weakly) lower effort, and Proposition

1(b) presents sufficient conditions under which more participants induce higher effort.

Proposition 1. (a) The equilibrium effort e∗ is non-increasing for any N ≥ 2 if and only if the

density h(s) of the output shock ξ̃i satisfies
∫

s∈Ξ

(1−H(s))H(s)h′(s)ds≤ 0. (7)

When the inequality in (7) is satisfied strictly, e∗ is decreasing for any N ≥ 2.

5 The Weibull distribution has an alternative version with a density function h(s) = (β/μ)(s/μ)β−1exp{−(s/μ)β}.
Under this alternative Weibull distribution, IN is decreasing in N .

6 When the organizer maximizes the average output and the shock ξ̃i follows a Gumbel distribution, Terwiesch and
Xu (2008) show that an open tournament is always suboptimal (i.e., restricted entry is always optimal). Corollary 1
together with Proposition 1 indicates that this result may not hold under a general distribution of ξ̃i.
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(b) e∗ as a function of N

Figure 2 The density function h(s) and the equilibrium effort e∗ when the output shock ξ̃i follows a Weibull

distribution with mean 0, scale parameter 1, and shape parameter 1.1. Parameters used: θ = b = c = 1.

(b) e∗ is increasing up to some N∗ if E[(h′/h)(ξ̃N∗

(1) )]≥ 0 (where N∗ =∞ if h is increasing) or if h

is a symmetric function of some density function hr with respect to y-axis (i.e., h(s)≡ hr(−s) for

all s) where hr satisfies (7) strictly.

Condition (7) is satisfied by any symmetric log-concave density (e.g., normal, logistic) as well as

Gumbel and exponential densities (see Remark EC.2 in the Online Appendix). This implies that

when agents have roughly symmetric or right-skewed distributions for output uncertainty, they

tend to decrease effort with more participants.

Whenever the necessary and sufficient condition given in (7) is violated, the equilibrium effort

e∗ is increasing in N up to some N∗. Proposition 1(b) shows that this condition is violated by any

density with E[(h′/h)(ξ̃N
(1))]≥ 0 or any density h(s) of which the symmetric function with respect

to y-axis, h(−s), satisfies (7) strictly. For example, when the output shock has an increasing density

function such as the Weibull distribution in the above example (which satisfies the former condition

for any N) or a left-skewed density function as in Figure 2 (which satisfies the latter condition),

agents’ uncertainty is likely to contribute a positive value to their solutions, so the equilibrium

effort e∗ may increase with more participants. The intuition is as follows. The equilibrium effort

e∗ depends on the marginal impact of effort on winning an award, and more participants have

two opposing effects on the marginal impact of effort. When the number of participants increases,

additional effort gives the agent an edge against more competitors, pushing the marginal impact

of effort up; yet the overall probability of winning decreases, pulling the marginal impact of effort

down. When the agent’s uncertainty is likely to contribute a positive value to the agent’s solution,

the agent is likely to receive a favorable output, so more participants decrease the agent’s probability

of winning slowly. Thus, the agent increases effort to gain an edge against more competitors, and

in this case, by Theorem 1, an open tournament is optimal for the organizer.

Our results indicate that when agents’ output uncertainty is likely to contribute a positive value

to their solutions, more participants may induce agents to increase effort. We may examine the
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problem in a tournament to see if the output uncertainty has this property or not. For instance,

as discussed in §1, a left-skewed density function such as the Weibull distribution is suitable for

modeling innovation processes where the upside potential for a solution is limited (Dahan and

Mendelson 2001). In practice, this property can be satisfied by Topcoder coding challenges such as

the Arcelik Exploratory Testing Challenge where the upside potential of agents’ output is limited.

Our result may offer a plausible explanation for why such Topcoder coding challenges are open

tournaments.

Our findings not only help explain some open tournaments in practice, but also are supported by

experimental results. Specifically, List et al. (2020) observed that participants increased their effort

level when the number of participants in a tournament increased from 2 to 4, and participants knew

that they had a high probability of receiving a good draw. List et al. (2020) interpret skewness

of the density function as an indicator for agents’ beliefs of good outcomes in their experiment.

This insight is in line with our findings. (For a detailed review of other experimental studies, we

refer the reader to Dechenaux et al. (2015).) List et al. (2020) also have an analytical result under

a linear effort function and an output shock with a monotonic density function over a symmetric

finite support. They show that when the density function has a positive (resp., negative) slope in

the entire support, more participants induce higher (resp., lower) effort from agents. (Gerchak and

He (2003) also show the same analytical result. They further show that when the density function

is symmetric, more participants induce lower effort from agents.) Our Proposition 1 generalizes

their analysis to a general class of distributions, and highlights how the outcomes observed in their

experiments are not anomalies but the outcome of rational decision-making.

4. Conclusion

In this paper, we study tournaments in which a tournament organizer seeks solutions to an

innovation-related problem from a group of agents. The organizer faces a key tradeoff concerning

the number of participants to admit in a tournament. Running an open tournament, which allows

anyone who wishes to participate to do so, increases the diversity of solutions, but might also

induce agents to reduce their effort. Possibly for that reason, we observe mixed policies in practice,

where some tournaments are open and others restrict entry.

Our modeling approach is quite general allowing for a general class of distributions (with either

a log-concave or increasing density function) to describe the uncertainty faced by participants. We

also allow the utility of the organizer to depend on a general number of contributors. The generality

of our model is key as our main finding highlights the importance of the level of uncertainty relative

to the impact of effort (i.e., uncertainty-effort ratio), the skewness of uncertainty, and the number

of contributors in determining whether to run an open tournament. Specifically, we find that a
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tournament should be open when an innovation problem involves a large uncertainty-effort ratio,

when the tournament features a small uncertainty-effort ratio but many contributors, or when

agents increase effort with more participants in the tournament. We show that agents may increase

effort with more participants when they face a high likelihood that their uncertainty contributes a

positive value to their solutions (i.e., their uncertainty has a left-skewed distribution). We further

show that restricted entry is optimal when a tournament features a low uncertainty-effort ratio, a

small number of contributors, and a symmetric or right-skewed distribution of uncertainty. This

result may help explain why some tournaments restrict entry in practice. Taken together, our

results have a clear implication for practitioners: in designing a tournament, organizers should take

into account the level and type of agents’ uncertainty and the number of contributors.

Our paper may lead to several interesting future research directions. First, our paper considers

the number of contributors as exogenous, and as a future research avenue, one may consider a

different case in which the number of contributors is determined endogenously either before or after

the tournament. In one approach, the organizer determines the optimal number of contributors

ex-ante before conducting a tournament. This approach can be handled by extending our current

model: The organizer can choose ex-ante the optimal value of contributors that results in the

highest expected utility. As an alternative approach, the organizer may choose a rule about how

to select contributors before conducting a tournament, and determine the number of contributors

ex-post after collecting all solutions. Second, while our paper focuses on when it is optimal for the

organizer to run an open tournament or to restrict entry, one may extend it further by examining

specific approaches to restricting entry. For example, the organizer may (i) restrict the number of

participants to a certain number and accept participants in a first-come-first-served basis, (ii) invite

only a certain group of agents to participate, (iii) restrict participants to a certain geographical

region, or (iv) apply some preselection mechanism with possibly a noisy performance threshold.

The first three approaches can be directly captured in our current model and analysis; the fourth

one may require a different model and analysis, so we leave it for future research. Third, while

our paper assumes homogenous agents to tease out the impact of output uncertainty on agents’

effort and the organizer’s incentive to hold an open tournament, there are some papers in the

literature that analyze the impact of agents’ heterogeneity by assuming that heterogeneous agents

produce deterministic outputs (e.g., Körpeoğlu and Cho 2018). Recently, Ales et al. (2019) develop

a framework that integrates both agent heterogeneity and uncertainty into a general form. Yet,

characterizing equilibrium in such a general model remains challenging and such an endeavor can

be an important future research direction.
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Appendix. Proofs

Proof of Theorem 1. (a) To prove that an open tournament is optimal, we show that for any

finite N and D (> N), there exists a scale transformation such that the organizer’s utility with D

participants is higher than that with N participants. Thus, we need

UD−N
o ≡

(

Kr(e∗,D)+
K∑

j=1

E[ξ̃D
(j)]−A∗,D

)

−

(

Kr(e∗,N )+
K∑

j=1

E[ξ̃N
(j)]−A∗,N

)

≥ 0, (8)

where e∗,N is the equilibrium effort when there are N participants and the winner award is optimally

chosen as A∗,N . Under Assumption 1, for any number of participants N , we can show that A∗,N = Kθ
b

and e∗,N =
(

Kθ2IN
cb2

) 1
b
. Thus, for some scale transformation ξ̂i = αξ̃i of the output shock ξ̃i with

scale parameter α, (8) can be written as

UD−N
o (α) =

Kθ

b
log
(

ID

IN

)

+ α
K∑

j=1

E[ξ̃D
(j) − ξ̃N

(j)]≥ 0, (9)

which is satisfied if α ≥ Kθ
b

log (IN/ID)/
∑K

j=1 E[ξ̃D
(j) − ξ̃N

(j)]. Thus, the organizer’s utility is maxi-

mized at N = N if and only if α≥ αK , where

αK ≡max

{
Kθ

b
max

N∈{K,K+1,...,N}

{

log (IN/IN )/
K∑

j=1

E[ξ̃N
(j) − ξ̃N

(j)]
}

,0

}

. (10)

(b) From (10), we see that αK is non-decreasing in θ and non-increasing in b. To show that αK

is non-increasing in K, it suffices to prove that for any scale parameter α such that an open

tournament is optimal for K (< N) contributors, an open tournament is also optimal for (K + 1)

contributors. Suppose that an open tournament is optimal for K contributors and for some scale

transformation ξ̂i = αξ̃i of the output shock ξ̃i. Then, from (9), we obtain that for all N < N ,

UN−N
o [K] =

Kθ

b
log
(

IN

IN

)

+
K∑

j=1

E[ξ̂N
(j) − ξ̂N

(j)]≥ 0, (11)

where UN−N
o [K] is the difference in the organizer’s utility with K contributors when the number

of participants increases from N to N . Furthermore, for K +1 contributors,

UN−N
o [K +1] =

(K +1) θ

b
log

(
IN

IN

)

+
K+1∑

j=1

E[ξ̂N
(j) − ξ̂N

(j)] =
θ

b
log

(
IN

IN

)

+ E[ξ̂N
(K+1) − ξ̂N

(K+1)] + UN−N
o [K].

By Lemma EC.4 in the Online Appendix, E[ξ̂N
(K+1) − ξ̂N

(K+1)] > E[ξ̂N
(j) − ξ̂N

(j)] for any j < K +1; so,

E[ξ̂N
(K+1) − ξ̂N

(K+1)] >
1
K

K∑

j=1

E[ξ̂N
(j) − ξ̂N

(j)]≥−
θ

b
log
(

IN

IN

)

, (12)

where the last inequality follows from (11). The combination of (11) and (12) yields the desired

result that UN−N
o [K +1] > 0 for any N .

(c) Suppose IN is increasing in N up to some N∗ (≥N). Then log (IN/IN)≤ 0 for all N ∈ {K,K +

1, ...,N}. We also have E[ξ̂N
(j) − ξ̂N

(j)] > 0. Thus, from (10), αK = 0.
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Proof of Corollary 1. A sufficient condition for an open tournament to be optimal is that the

organizer’s utility, which can be written as Uo = (1/N)
∑N

i=1 yi −A = r(e∗,N )−A, is increasing in

N up to N . Under the stated assumptions on r and ψ, for any number of participants N (< N),

it is easy to show that the optimal award is A∗,N = θ and the equilibrium effort is e∗,N = θ2IN
c

. If

the organizer maximizes the average output of all agents, the change in the organizer utility when

the number of participants increases from N to N +1 can be written as U (N+1)−N
o ≡ θ log

(
IN+1

IN

)
.

By definition of N∗, for all N < N ∗, IN+1 > IN , and hence U (N+1)−N
o > 0. Thus, since N ≤N∗, an

open tournament is optimal.

Proof of Proposition 1. Recall from §3 that equilibrium effort e∗ satisfies ψ′(e∗)

r′(e∗)
= AIN , and that

e∗ is decreasing (resp., increasing) in N if IN is decreasing (resp., increasing) in N .

(a) Suppose that (7) holds. We will show that IN+1 ≤ IN for any N ≥ 2. Applying integration by

parts on (7) yields the following difference equation:

IN+1 − IN =
∫ s

s

(1−H (s))H (s)N−1
h′ (s)ds, ∀N ≥ 2. (13)

Since both H(s) and (1−H(s)) are positive, (13) implies that when h(s) is decreasing, constant or

increasing, IN is decreasing, constant or increasing in N , respectively. (This also proves the result

about increasing density h(s) in part (b).) Thus, we will prove part (a) when h is non-monotonic

and log-concave, which implies that there exists s0 ∈ (s, s), such that h′ ≥ 0 for s < s0, and h′ ≤ 0

for s > s0 (i.e., h is unimodal; see, e.g., Cule et al. 2010). When N ≥ 2,

IN+1 − IN =
∫ s0

s

(1−H (s))H (s)N−1
h′ (s)ds +

∫ s

s0

(1−H (s))H (s)N−1
h′ (s)ds

≤
∫ s0

s

(1−H (s))H(s)H (s0)
N−2

h′ (s)ds +
∫ s

s0

(1−H (s))H(s)H (s0)
N−2

h′ (s)ds

= H (s0)
N−2

∫ s

s

(1−H (s))H(s)h′ (s)ds≤ 0,

where the first inequality holds because density h is unimodal and non-monotonic, and the last

inequality holds from (7).

Suppose that the effort e∗ is non-increasing for any N ≥ 2. Then, (13) is non-positive for all

N ≥ 2. The right-hand side of (13) is the same as the left-hand side of (7) for N = 2, so (7) holds.

(b) Suppose that E[(h′/h)(ξ̃N∗

(j) )] > 0 for some N∗. Note that when h(s) is increasing,

E[(h′/h)(ξ̃N∗

(j) )] > 0 is always satisfied so N∗ = +∞. In this case, as we prove in part (a), e∗ is

increasing. Suppose h is log-concave. Using integration by parts, we can write IN as follows:

IN =
∫ s

s

(N − 1)H(s)N−2h(s)2ds = H(s)N−1h(s)
∣
∣s
s
−
∫ s

s

H(s)N−1h′(s)ds

= lim
s→s

h(s)−
1
N

∫ s

s

NH(s)N−1h(s)
h′(s)
h(s)

ds = lim
s→s

h(s)−
1
N

E

[
h′

h
(ξ̃N

(1))
]

.
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Then, for any N , we can write the following difference equation:

IN+1 − IN =
1
N

E

[
h′

h
(ξ̃N

(1))
]

−
1

N +1
E

[
h′

h
(ξ̃N+1

(1) )
]

. (14)

Note that (h′/h) is decreasing because h is log-concave. Thus, because ξ̃N+1
(1) first-order stochasti-

cally dominates ξ̃N
(1) and not vice versa, by Theorem 1.A.3 of Shaked and Shanthikumar (2007),

E
[

h′

h
(ξ̃N

(1))
]
> E

[
h′

h
(ξ̃N+1

(1) )
]
. Then, from (14), whenever E

[
h′

h
(ξ̃N+1

(j) )
]
≥ 0, we have IN+1 > IN . Sim-

ilarly, when E
[

h′

h
(ξ̃N∗

(j) )
]
≥ 0, we have E

[
h′

h
(ξ̃2

(j))
]

> E
[

h′

h
(ξ̃3

(j))
]

> ∙ ∙ ∙ > E
[

h′

h
(ξ̃N∗

(j) )
]
≥ 0, which

implies from (14) that IN∗ > IN∗−1 > ∙ ∙ ∙> I2. Therefore, e∗ is increasing up to N∗.

Let the density function hr be the symmetric function of h with respect to y-axis; i.e., hr(s) =

h(−s) for all s. Let H(s) and Hr(s) be the corresponding distribution functions and Ξ = [s, s] and

Ξr = [sr, sr] be the supports for h(s) and hr(s), respectively. By definition, we have 1 −H(−s) =

Hr(s), −h′(−s) = h′
r(s), s =−sr, and s =−sr. Suppose that hr satisfies (7) strictly; i.e.,

∫ sr

sr

(1−Hr(s))Hr(s)h′
r(s)ds < 0. (15)

Using symmetry of hr and h, (15) can be written as:
∫ sr

sr

−H(−s)(1−H(−s))h′(−s)ds < 0. (16)

Making a change of variables as t =−s, and noting that ds =−dt, (16) becomes
∫ −sr

−sr

H(t)(1−H(t))h′(t)dt =−
∫ −sr

−sr

H(t)(1−H(t))h′(t)dt < 0. (17)

Thus, h(s) violates (7) because (17) can be rewritten as
∫ s

s
(1−H(t))H(t)h′(t)dt > 0. Because the

left-hand side of (7) equals I3 − I2, IN as well as e∗ is increasing up to some N∗ ≥ 3.
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Online Appendix

EC.1. Existence of Equilibrium

In this section, we prove the concavity of the agent’s utility function and the existence of a pure

strategy Nash equilibrium in two lemmas.

Lemma EC.1. Suppose that the output shock ξ̃i is transformed to ξ̂i = αξ̃i via a scale transforma-

tion with α > 0. For all N ∈ {2, ...,N}, ceteris paribus, when −r′′/(r′)2, ψ′′, and α are sufficiently

large, agent’s utility function Ua(ei) = AP N [ei, e
∗]−ψ(ei) is concave in agent’s effort ei.

Proof. Take an arbitrary N . We will show sufficient conditions for concavity of Ua(ei) using its

second derivative, U ′′
a (ei) = A∂2P N [ei,e

∗]

∂e2
i

−ψ′′(ei). After a scale transformation of the output shock

to ξ̂i = αξ̃i with α, P N [ei, e
∗] =

∫
s∈Ξ

H
(
s + r(ei)−r(e∗)

α

)N−1

h(s)ds = E
[
HN−1

(1)

(
ξ̃i + r(ei)−r(e∗)

α

)]
. The

derivative of P N [ei, e
∗] with respect to ei is ∂P N [ei,e

∗]

∂ei
= r′(ei)

α
E
[
hN−1

(1)

(
ξ̃i + r(ei)−r(e∗)

α

)]
. Then, the

second derivative of P N [ei, e
∗] with respect to ei is (where r∗ = r (e∗))

∂2P N [ei, e
∗]

∂e2
i

=

(
r′(ei)

α

)2

E

[(
hN−1

(1)

)′
(

ξ̃i +
r(ei)− r∗

α

)]

+
r′′(ei)

α
E

[

hN−1
(1)

(

ξ̃i +
r(ei)− r∗

α

)]

. (EC.1)

Noting that U ′′
a (ei) = A∂2P N [ei,e

∗]

∂e2
i

−ψ′′(ei), where ψ′′(ei)≥ 0 due to convexity of ψ, there are three

sufficient conditions that make U ′′
a < 0. First, as α gets large, both expectation terms in (EC.1)

converge, and E
[
hN−1

(1)

(
ξ̃i + r(ei)−r∗

α

)]
converges to a positive constant. Furthermore, when r is

strictly concave, (r′(ei)/α)2 (> 0) approaches 0 faster than r′′(ei)/α (< 0). Thus, for sufficiently

large α, U ′′
a as well as ∂2P N [ei, e

∗]/∂e2
i becomes negative, and hence Ua becomes concave. (Note

that Lazaer and Rosen (1981) also mention this condition as a sufficient condition for the existence

of equilibrium in their footnote 2.) Second, P N [ei, e
∗] is concave when −r′′/ (r′)2 is sufficiently

large. Third, regardless of ∂2P N [ei, e
∗]/∂e2

i , the utility Ua is concave for sufficiently convex ψ(ei),

i.e., when ψ′′(ei) is sufficiently large.

Remark EC.1. Although it is not possible to represent the above sufficient conditions as a closed-

form function of exogenous parameters in our general model, it is possible to do so for specific

cases of output shock ξ̃i. For instance, when ξ̃i follows a Gumbel distribution with scale parameter

μ under general effort function r and cost function ψ, the condition r′′ + (r′)2/μ ≤ 0 (which is

guaranteed under the conditions in Lemma EC.1) is sufficient for the existence of equilibrium for

all N . This condition is satisfied, for example, when r(e) = θ log(e) and ψ(e) = ce as in Terwiesch

and Xu (2008) or when r(e) = 1−θ exp(−e) (i.e., constant absolute risk-aversion (CARA) function)

and ψ(e) = ceb (b > 1) under μ≥ θ.

The following lemma proves the existence of equilibrium.
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Lemma EC.2. Suppose that either lime→0 r′(e) = +∞ or lime→0 ψ′(e) = 0. Suppose also that Ua(ei)

is pseudo-concave in ei and lime→+∞ ψ′(e) = +∞. Then there exists e∗ that solves (4), and e∗

satisfies (5). Furthermore, the solution to (4) is the unique symmetric Nash equilibrium.

Proof. From Theorem 1.2 of Fudenberg and Tirole (1991), a pure strategy Nash equilibrium exists

if each agent i’s action set (i.e., set of possible effort levels) is non-empty, convex, and compact

subset of the Euclidean space, and the agent’s utility Ua is quasi-concave in effort ei. Recall that

Ua(ei) = AP N [ei, e
∗]−ψ(ei). Because agent’s expected payment AP N [ei, e

∗] is bounded by A but

agent’s cost of effort is unbounded, there exists e such that Ua(ei) < 0 for all ei > e. Because

Ua(0) = 0, without loss of optimality, each agent i’s action set can be restricted to [0, e], which is

non-empty, convex, and compact. Because Ua is pseudo-concave, it is also quasi-concave. Therefore,

a pure strategy Nash equilibrium exists. To show that there exists e∗ that solves (4) and satisfies

(5), we take the first-order conditions of the agent’s problem evaluated at ei = e∗,

Ar′(ei)E
[
hN−1

(1)

(
ξ̃i + r(ei)− r (e∗)

)]
−ψ′(ei)

∣
∣
∣
ei=e∗

= Ar′(e∗)E
[
hN−1

(1) (ξ̃i)
]
−ψ′∗) = 0, (EC.2)

which is sufficient for optimality due to pseudo-concavity of Ua. Therefore, if a solution to (EC.2)

exists, then it is a pure strategy Nash equilibrium. Let Ω(e) = Ar′(e)E
[
hN−1

(1) (ξ̃i)
]
−ψ′(e). Clearly

Ω(e) is continuous in e because r′ and and ψ′ are continuous. Furthermore, lime∗→0 Ω(e) > 0 because,

by assumption, either lime→0 r′(e) = +∞ or lime→0 ψ′(e) = 0. Also, lime∗→+∞ Ω(e) < 0 because, by

assumption, lime→+∞ ψ′(e) = +∞. Thus, the Intermediate Value Theorem dictates that there exists

e∗ such that Ω(e∗) = 0. Furthermore, because Ω′(e) < 0, only a unique e∗ can satisfy Ω(e∗) = 0.

Therefore, e∗ that solves (4) is the unique symmetric Nash equilibrium.

EC.2. Extension to General Utility Function Form

In this section, we consider the following general utility function for the organizer: Uo = uo

(
Y (K)

)
−

ψo(A), where Y (K) = (y(1), y(2)..., y(K)), ψo is an increasing, continuously differentiable, and convex

(including linear) function, and uo is a non-decreasing, continuous, and almost everywhere differen-

tiable function that satisfies ∂uo(Y (K))

∂y(j)
> 0 when y(j) > 0 for j = 1,2, . . . ,K .7 This utility function not

only generalizes the utility function defined in §2, but also includes the following three interesting

and commonly-used forms:

(1) Product complementarity: Product complementarity models in economics (e.g., Constant

Elasticity of Substitution (CES) form uo(Y (K)) = (
∑K

j=1 ω(j)y
ρ
(j))

1
ρ for ω(j), ρ > 0) and market-

ing/operations (e.g., CES form with ρ = 1 in Desai et al. 2001) are useful when the outputs of

contributors complement each other. For example, this model may be used to analyze innovative

7 In case when the organizer cares only about agents’ outputs that contribute positive utility to the organizer, one
may use a utility function that is defined over RK

+ and let uo(Y
K) = uo

(
max{y(1),0},max{y(2),0}, ...,max

{
y(K),0

})
.

As long as uo satisfies the same assumptions as mentioned above, the results continue to hold.
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ideas on how to produce, ship, and store vaccines for neglected tropical diseases in Grand Challenges

Explorations (a tournament which solicit innovative solutions to fight global health challenges).

(2) Additive-separable risk aversion: Additively separable risk-aversion models in economics

(e.g., Constant Relative Risk Aversion (CRRA) form uo

(
Y (K)

)
=
∑K

j=1 ω(j)

y1−a
(j)

1−a
for ω(j) > 0, a ∈

(0,1)) can be used when the organizer is risk-averse and the outputs of contributors are non-

monetary and non-complementary. In this model, CRRA parameter a determines the organizer’s

level of risk aversion with respect to the output of each contributor. When a is large, the organizer

is highly risk-averse against the adverse outcome of each contributor.

(3) Portfolio management: Portfolio management models in finance (e.g., uo

(
Y (K)

)
=

(∑K

j=1 ω(j)y(j)

)a

for ω(j) > 0, a∈ (0,1] in Müller and Stoyan 2002) may be appropriate for the situa-

tion in which the organizer maximizes total value from the outputs of contributors having different

weight ω(j) for different rank j = 1,2, ...,K; for example, top rankers may receive better marketing

and financial support in commercializing innovative product ideas from Staples Invention Quest

(a tournament in which ordinary people submit innovative ideas for office products). This model

with a small parameter a signals a high level of risk aversion on the overall outcome of projects.

Such a model may be suitable when the tournament’s outcome entails significant downside risk.

We examine the results in §3 under the general utility function Uo. Note from (4) that the agent’s

equilibrium effort e∗ does not depend on a specific form of Uo, so Proposition 1 continues to hold.

We next extend Theorem 1 to the general Uo. We make the following two assumptions:

Assumption EC.1. uo is homogenous of degree d; i.e., for any Y (K) and α > 0, αduo

(
Y (K)

)
=

uo

(
αY (K)

)
.

Assumption EC.2. For any σ > 0, limα→∞ r

((
r′

ψ′

)−1

(σα)
)

/α = r0 ∈R.

Assumption EC.1 is satisfied by all of the special cases of Uo discussed above. Assumption EC.2

concerns the agent’s effort function r and cost function ψ, and it requires that r((r′/ψ′)−1) does

not diverge to negative infinity faster than linearly. The assumption is trivially satisfied when r is

bounded from below. It is also satisfied by the setting in Assumption 1.

Corollary EC.1. Suppose that Assumptions EC.1 and EC.2 hold. For any fixed award A, any

general utility function Uo, and any distribution H of output shock ξ̃i, there exists α such that under

a scale transformation of ξ̃i with α≥ α, an open tournament with unrestricted entry is optimal.

Proof. Let yN
(j) = r(e∗,N ) + ξ̃N

(j), where e∗,N is the equilibrium effort when there are N participants

and the winner award is A. To prove that an open tournament is optimal, we will show that for

any finite N and D (> N), there exists a scale transformation such that the organizer’s utility with

D participants is higher than that with N participants. Thus, we want to show

UD−N
o ≡E

[
uo

(
yD

(1), . . . , y
D
(K)

)
−ψo(A)

]
−E

[
uo

(
yN

(1), . . . , y
N
(K)

)
−ψo(A)

]
≥ 0. (EC.3)
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We will show that there exists a scale transformation αξ̃i (α > 1) of the output shock ξ̃i for which

condition (EC.3) is satisfied. After the scale transformation and simplifications, (EC.3) becomes

UD−N
o (α)≡E

[
uo

(
r(e∗,D)+ αξ̃D

(1), ..., r(e
∗,D)+ αξ̃D

(K)

)]
−E

[
uo

(
r(e∗,N )+ αξ̃N

(1), ..., r(e
∗,N)+ αξ̃N

(K)

)]
.

uo is homogenous of degree d by Assumption EC.1. Thus, if we divide both sides by αd, take the

limit as α approaches infinity, and note that limα→∞ r(e∗,N )/α = limα→∞ r

((
r′

ψ′

)−1 (
α

AIN

))

/α =

r0 ∈R for all N by Assumption EC.2, we obtain the following relationship:

lim
α→∞

UD−N
o (α)/αd = E

[
uo

(
r0 + ξ̃D

(1), ..., r0 + ξ̃D
(K)

)]
−E

[
uo

(
r0 + ξ̃N

(1), ..., r0 + ξ̃N
(K)

)]
. (EC.4)

Let ≤st denote the first order stochastic dominance. By definition of order statistics, we have

ξ̃N
(j) ≤st ξ̃D

(j) =⇒ ξ̃N
(j) + r0 ≤st ξ̃D

(j) + r0.

Since the output shock has a continuous density function and uo is non-decreasing (and increasing

for y(j) > 0), (EC.4) is positive by Theorem 6.B.19 of Shaked and Shanthikumar (2007) (assuming

that E[uo(r0 + ξ̃N
(1), ..., r0 + ξ̃N

(K))] ∈ R for all N). By continuity of uo, there exists α such that

UD−N
o (α)/αd > 0 for all α > α. Thus, we can use the steps in the proof of Theorem 1 to show that

an open tournament with unrestricted entry is optimal for any α > α.

EC.3. Extension to Multiple Awards

In this section, we generalize our results to a case in which the organizer offers multiple awards.

Let A(j) be the award given for the j-th highest output where A =
∑N

j=1 A(j). Suppose that the

organizer offers an award scheme with a set of L ≥ 1 awards, A(N) =
(
A(1), ...,A(N)

)
, such that

A(1) ≥ ... ≥ A(L) > 0 and AL+1 = ... = AN = 0. Let P N
(j)[ei, e

∗] be the probability that the output of

agent i is the j-th highest output when agent i exerts effort ei and all other (N − 1) agents exert

the equilibrium effort e∗. We can compute this probability as

P N
(j)[ei, e

∗] =
∫

s∈Ξ

(
N − 1
j − 1

)

H(s + r(ei)− r(e∗))N−j(1−H(s + r(ei)− r(e∗)))j−1h(s)ds. (EC.5)

We start by characterizing the agent’s equilibrium effort under the general award scheme. The

following lemma generalizes (5).

Lemma EC.3. The equilibrium effort e∗ under multiple awards is the unique solution of

ψ′(e∗)
r′(e∗)

=
N−1∑

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]
. (EC.6)

Proof. Under (A(1),...,A(N)), the agent’s maximizes Ua = maxe∈R+

∑N

j=1 P N
(j)[e, e

∗]A(j) −ψ(e). Sub-

stituting e = e∗ into the first-order condition of the agent’s problem yields

ψ′(e∗) =
N∑

j=1

A(j)

∂P N
(j)

∂e
[e∗], (EC.7)
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where
∂P N

(j)

∂e
[e∗] is the partial derivative of P N

(j)[ei, e
∗] with respect to ei evaluated at ei = e∗. It is

not difficult to show:
∂P N

(1)

∂e
[e∗] = r′(e∗)E

[
h(ξ̃N−1

(1) )
]
,

∂P N
(j)

∂e
[e∗] = r′(e∗)

(
E
[
h(ξ̃N−1

(j) )
]
−E

[
h(ξ̃N−1

(j−1))
])

for j ∈ {2, ...,N − 1}, and
∂P N

(N)

∂e
[e∗] =−r′(e∗)E[h(ξ̃N−1

(N−1))]. Thus, (EC.7) can be written as ψ′(e∗) =
∑N−1

j=1

[
A(j) −A(j+1)

]
r′(e∗)E

[
h(ξ̃N−1

(j) )
]
. Therefore, the equilibrium effort satisfies (EC.6).

The corollary below generalizes our Proposition 1 to multiple awards and generalizes Proposition

1 of List et al. (2020) to a general award scheme.

Corollary EC.2. (a) Proposition 1 extends to the case with multiple awards where A(1) = A1

and A(j) = A2 (A1 > A2) for all j > 1.

(b) For a general set of awards
(
A(1), ...,A(N)

)
, such that A(1) ≥ ... ≥ A(L) > 0 and AL+1 = ... =

AN = 0, when the density h(s) of the output shock ξ̃i is increasing, decreasing, and constant in s,

the equilibrium effort e∗ is increasing, decreasing, and constant in N , respectively.

Proof. (a) Suppose that A(1) = A1 and A(j) = A2 (A1 > A2) for all j > 1. Then by Lemma EC.3,
ψ′(e∗)

r′(e∗)
= (A1 −A2)E

[
h(ξ̃N−1

(j) )
]
= (A1 −A2)IN . Thus, Proposition 1 holds.

(b) For a general set of awards
(
A(1), ...,A(N)

)
, such that A(1) ≥ ... ≥ A(L) > 0 and AL+1 = ... =

AN = 0, when h is increasing, by Theorem 1.A.3 of Shaked and Shanthikumar (2007), E
[
h(ξ̃N

(j))
]

>

E
[
h(ξ̃N−1

(j) )
]

because ξ̃N
(j) first order stochastically dominates ξ̃N−1

(j) (and not vice versa). Thus,

ψ′(e∗,N+1)
r′(e∗,N+1)

=
N∑

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N

(j))
]
=

L∑

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N

(j))
]

>
L∑

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]
=

N∑

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]

=
ψ′(e∗,N )
r′(e∗,N )

Since ψ′

r′
is increasing, e∗,N+1 ≥ e∗,N . When h is decreasing (resp., constant), by Theorem 1.A.3

of Shaked and Shanthikumar (2007), E
[
h(ξ̃N

(j))
]

< E
[
h(ξ̃N−1

(j) )
]

(resp., E
[
h(ξ̃N

(j))
]

= E
[
h(ξ̃N−1

(j) )
]
).

Therefore, the result follows in a similar way as above.

Second, in the following corollary, we show that an open tournament is optimal if the output

shock ξ̃i is sufficiently spread out, generalizing Theorem 1(a) and Corollary EC.1.

Corollary EC.3. Suppose that Uo takes the general form given in §EC.2. For any fixed set of

awards
(
A(1), ...,A(N)

)
, such that A(1) ≥ ...≥A(L) > 0 and AL+1 = ... = AN = 0, Theorem 1(a) holds.

Proof. As in Theorem 1 and Corollary EC.1, we want to show

UD−N
o ≡E

[
K∑

j=1

uo,(j)

(
r(e∗,D) + ξ̃D

(j)

)
−ψo(

N∑

j=1

A(j))

]

−E

[
K∑

j=1

uo,(j)

(
r(e∗,N ) + ξ̃N

(j)

)
−ψo(

N∑

j=1

A(j))

]

≥ 0, (EC.8)

where e∗,N is the equilibrium effort when there are N participants and the set of awards is

A(1), ...,A(N). Under the same set of awards, a sufficient condition for (EC.8) to hold is

δ(j) ≡E
[
uo,(j)

(
r(e∗,D)+ ξ̃D

(j)

)]
−E

[
uo,(j)

(
r(e∗,N )+ ξ̃N

(j)

)]
≥ 0 for all j. (EC.9)
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We will show that there exists a scale transformation under which Condition (EC.9) is satisfied.

Consider a scale transformation of the output shock to ξ̂i = αξ̃i. After the scale transformation,

δ(j) (α) ≡ E

[
K∑

j=1

uo,(j)

(
r(e∗,D)+ αξ̃D

(j)

)
]

−E

[
K∑

j=1

uo,(j)

(
r(e∗,N )+ αξ̃N

(j)

)
]

= f(j)(α)
(

E

[

ûo,(j)

(
r(e∗,D)

α
+ ξ̃D

(j)

)]

−E

[

ûo,(j)

((
r(e∗,N )

α
−

r(e∗,D)
α

)

+
r(e∗,D)

α
+ ξ̃N

(j)

)])

.

By Assumption EC.1,

lim
α→∞

δ(j) (α)
f(j)(α)

= lim
α→∞

(

E

[

ûo,(j)

(
r(e∗,D)

α
+ ξ̃D

(j)

)]

−E

[

ûo,(j)

((
r(e∗,N )

α
−

r(e∗,D)
α

)

+
r(e∗,D)

α
+ ξ̃N

(j)

)])

=
(

E

[

ûo,(j)

(

lim
α→∞

r(e∗,D)
α

+ ξ̃D
(j)

)]

−E

[

ûo,(j)

(

lim
α→∞

r(e∗,D)
α

+ ξ̃N
(j)

)])

,

Let ≤st denote the first order stochastic dominance. By definition of order statistics, we have

ξ̃N
(j) ≤st ξ̃D

(j) =⇒ ξ̃N
(j) + lim

α→∞

r(e∗,D)
α

≤st ξ̃D
(j) + lim

α→∞

r(e∗,D)
α

,

because limα→∞
r(e∗,D)

α
= limα→∞

r

((
r′

ψ′

)−1(
α/
∑N−1

j=1 [A(j)−A(j+1)]E
[
h(ξ̃N−1

(j)
)
]))

α
∈ R by Assumption

EC.2. Since the output shock has a continuous density function and uo,(j) is strictly increasing,

lim
α→∞

δ(j) (α)
f(j)(α)

= E

[

ûo,(j)

(

lim
α→∞

r(e∗,D)
α

+ ξ̃D
(j)

)]

−E

[

ûo,(j)

(

lim
α→∞

r(e∗,D)
α

+ ξ̃N
(j)

)]

> 0,

by Theorem 1.A.3 of Shaked and Shanthikumar (2007). By continuity of uo,(j), and hence δ(j) (α),

there exists α such that
δ(j)(α)

α
d(j)

> 0 for all α > α and j ∈ {1, ...,N}. Therefore, an open tournament

is optimal for any α > α.

Finally, in the following corollary, we extend Theorem 1(b) to multiple awards.

Corollary EC.4. For any fixed set of awards
(
A(1), ...,A(N)

)
, such that A(1) ≥ ...≥A(L) > 0 and

AL+1 = ... = AN = 0, Theorem 1(b) holds.

Proof. We prove that whenever unrestricted entry is optimal for K (< N) contributors, it is also

optimal for K + 1 contributors. For any number of participants N (< N), from Lemma EC.3,

we have that e∗,N =
(

θ
cb

∑L

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]) 1

b
, where A(L+1) = 0. Suppose that unre-

stricted entry is optimal for K contributors and for some scale transformation ξ̂i = αξ̃i of the output

shock ξ̃i. Then, adjusting (9), we obtain that for all N < N ,

UN−N
o [K] =

Kθ

b
log





∑L

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]

∑L

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]



+
K∑

j=1

E[ξ̂N
(j) − ξ̂N

(j)]≥ 0, (EC.10)

where UN−N
o [K] is the difference in Uo with K contributors when the number of participants

increases from N to N . Furthermore, for K +1 contributors,

UN−N
o [K +1] =

(K +1) θ

b
log





∑L

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]

∑L

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]



+
K+1∑

j=1

E[ξ̂N
(j) − ξ̂N

(j)]
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=
θ

b
log





∑L

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]

∑L

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]



+ E[ξ̂N
(K+1) − ξ̂N

(K+1)] + UN−N
o [K].

By Lemma EC.4 in the Online Appendix, E[ξ̂N
(K+1) − ξ̂N

(K+1)] > E[ξ̂N
(j) − ξ̂N

(j)] for any j < K +1. So,

E[ξ̂N
(K+1) − ξ̂N

(K+1)] >
1
K

K∑

j=1

E[ξ̂N
(j) − ξ̂N

(j)]≥−
θ

b
log





∑L

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]

∑L

j=1

[
A(j) −A(j+1)

]
E
[
h(ξ̃N−1

(j) )
]



 , (EC.11)

where the last inequality follows from (EC.10). The combination of (EC.10) and (EC.11) yields

the desired result that UN−N
o [K +1] > 0 for any N .

EC.4. Additional Results

Remark EC.2. When h is symmetric around 0, (1−H(s)) = H(−s), H(s)(1−H(s)) = H(−s)(1−

H(−s)) and h′(s) =−h′(s). So, H(s)(1−H(s))h′(s)+H(−s)(1−H(−s))h′(−s) = 0 for any s∈Ξ.

Thus, condition (7) is satisfied as an equality, so the equilibrium effort is always non-increasing

under symmetric log-concave density functions such as Normal and Logistic densities. For instance,

under Normal distribution, IN does not change when N increases from 2 to 3 and is decreasing for

any N ≥ 3. For densities with a single peak or increasing failure rate, IN can increase or decrease

with N . For instence, under Gumbel with mean 0 and scale parameter μ, and exponential with

parameter λ, the left-hand side of (7) is − 1
36μ

and −λ
6
, respectively. Thus, they both satisfy (7)

so IN is decreasing in N . For reversed Gumbel with mean 0 and scale parameter μ and reversed

Weibull with mean 0, shape parameter 1, and scale parameter μ, the left-hand side of (7) is 1
36μ

and 1
6μ

, respectively. Thus, they both violate (7), so IN is increasing up to some N∗ ≥ 3.

We will next present three lemmas that we use for the proof of Theorem 1 under general effort

function r and cost function ψ.

Lemma EC.4. Suppose that the density h is log-concave. Then E[ξ̃N+1
(j) ] − E[ξ̃N

(j)] < E[ξ̃N+1
(j+1)] −

E[ξ̃N
(j+1)] for all j ∈ {1, ...,N − 1}.

Proof. Let δN
(j) ≡E[ξ̃N

(j)]−E[ξ̃N
(j+1)]. We want to show that δN

(j) > δN+1
(j) for all j. From Galton (1902),

δN
(j) =

(
N
j

)∫ s

s

H(s)N−j(1−H(s))jds.

Rewriting this equation in terms of density of the j-th highest output shock, hN
(j)(s), and integrating

it by parts, we obtain the following relationship:

δN
(j) =

1
j

∫ s

s

hN
(j)(s)

(1−H(s))
h(s)

ds =
1
j
HN

(j)(s)
(1−H(s))

h(s)
|ss −

1
j

∫ s

s

HN
(j)(s)

(
(1−H(s))

h(s)

)′

ds.

Using the equation above, we can derive δN+1
(j) − δN

(j) as

δN+1
(j) −δN

(j) = E[ξ̃N+1
(j) ]−E[ξ̃N

(j)]−(E[ξ̃N+1
(j+1)]−E[ξ̃N

(j+1)]) =
∫ s

s

[HN
(j)(s)−HN+1

(j) (s)]
(

(1−H(s))
h(s)

)′

ds < 0;
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because HN+1
(j) (s)≤HN

(j)(s) for all s (and < for a measurable subset of Ξ), and log-concavity implies

that
(

(1−H(s))

h(s)

)′
< 0 for all s (see Bergstrom and Bagnoli 2005, Theorem 4).

Lemma EC.5. If h is log-concave, then NIN = NE
[
h(ξ̃N−1

(1) )
]

is increasing in N .

Proof. We will prove that (N +1) IN+1 > NIN for all N . First, we have

NIN =
∫ s

s

N (N − 1)H(s)N−2 (1−H(s))
h(s)2

1−H(s)
ds =

∫ s

s

hN
(2)(s)λ(s)ds,

where λ(s) = h(s)

1−H(s)
. Using integration by parts, after simplifications,

(N +1) IN+1 −NIN =−
∫ s

s

(HN+1
(2) (s)−HN

(2)(s))λ
′(s)ds. (EC.12)

Note that HN+1
(2) (s) − HN

(2)(s) ≤ 0 for all s (and < for a measurable subset of Ξ) because ξ̃N+1
(2)

first-order stochastically dominates ξ̃N
(2). Moreover, log-concavity implies that λ′(s) > 0 for all s.

Thus, (N +1) IN+1 > NIN .

Lemma EC.6. Suppose that r′(g(x))g′(x) is decreasing in x, and that the output shock ξ̃i is trans-

formed to ξ̂i = αξ̃i via a scale transformation with α > 0. Then, limα→+∞
A∗

α
= 0.

Proof. Let g =
(

ψ′

r′

)−1

. Under a scale transformation of ξ̂im = αξ̃im, IN is converted to ÎN = IN/α.

Note that the award A∗[α] satisfies

r′
(

g

(
A∗[α]IN

α

))

g′

(
A∗[α]IN

α

)
IN

α
− 1 = 0. (EC.13)

Because r′(g(x))g′(x) is decreasing in x, and IN/α is decreasing in α, in order for A to sat-

isfy (EC.13), A∗[α]/α should be decreasing with α. Since A∗[α]/α is decreasing in α, and

A∗[α] ≥ 0, A∗[α]/α converges. Furthermore, because limα→+∞
IN
α

= 0, to satisfy (EC.13), we need

limα→+∞
A∗[α]

α
= 0.

The following corollary shows that an open tournament is optimal under high uncertainty without

imposing Assumption 1.

Corollary EC.5. For any distribution H of output shock ξ̃i, there exists α such that under a

scale transformation of ξ̃i with α ≥ α, an open tournament with unrestricted entry is optimal for

any number of contributors K.

Proof. To prove that an open tournament is optimal, we will show that for any finite N and D

(> N), there exists a scale transformation such that the organizer’s utility with D participants is

higher than that with N participants. We want to show

UD−N
o ≡

(

Kr(e∗,D)+
K∑

j=1

E[ξ̃D
(j)]−A∗,D

)

−

(

Kr(e∗,N )+
K∑

j=1

E[ξ̃N
(j)]−A∗,N

)

≥ 0, (EC.14)

where e∗,N is the equilibrium effort when there are N participants and the winner award is optimally

chosen as A∗,N . Notice from (5) that when there are D participants, and the organizer pays IN A∗,N

ID
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to the winner, the equilibrium effort e∗,D is the same as e∗,N . Also, due to optimality of (e∗,D,A∗,D),

when there are D participants, (e∗,D,A∗,D) yields a weakly greater utility to the organizer than

(e∗,N , IN A∗,N

ID
). Thus,

UD−N
o ≥

K∑

j=1

E[ξ̃D
(j) − ξ̃N

(j)]−
INA∗,N

ID

+ A∗,N ≥KE[ξ̃D
(1) − ξ̃N

(1)] + A∗,N ID − IN

ID

, (EC.15)

where the last inequality follows from Lemma EC.4. As a final step, consider a scale transformation

ξ̂i = αξ̃i of the output shock ξ̃i, which implies E[ξ̂N
(1)] = αE[ξ̃N

(1)]. From Lemma EC.5, we have

DID ≥NIN , so

UD−N
o ≥KαE[ξ̃D

(1) − ξ̃N
(1)] + A∗,N [α]

N −D

N
. (EC.16)

Since E[ξ̃D
(1) − ξ̃N

(1)] > 0 for all N < D, and limα→+∞
A∗,N [α]

α
= 0 by Lemma EC.6, as α increases,

(EC.16) becomes positive. Thus, for any D and N , there exists a sufficiently large α such that

UD−N
o > 0. This result implies that for sufficiently large α, the organizer’s utility increases with N

for any N < N . Thus, there exists α such that an open tournament is optimal for any α > α.
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