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ABSTRACT. Regression discontinuity designs (RD designs) are used as a method for causal infer-
ence from observational data, where the decision to apply an intervention is made according to a
‘decision rule’ that is linked to some continuous variable. Such designs are being increasingly devel-
oped in medicine. The local average treatment effect (LATE) has been established as an estimator
of the intervention effect in an RD design, particularly where a design’s ‘decision rule’ is not adhered
to strictly. Estimating the variance of the LATE is not necessarily straightforward. We consider
three approaches to the estimation of the LATE: two-stage least squares, likelihood-based and a
Bayesian approach. We compare these under a variety of simulated RD designs and a real example
concerning the prescription of statins based on cardiovascular disease risk score.

Key words: causal inference, local average treatment effect, regression discontinuity design,
two-stage least squares

1. Introduction

Regression discontinuity designs (RD designs) have been developed as a method for causal
inference in a variety of observational data settings (Berk & Leeuw, 1999; van der Klaauw,
2002, 2008; Lee, 2008). Such designs are quasi-experimental and rely on the exploitation of sit-
uations where an intervention is assigned to subjects according to a pre-specified rule (known as
an intervention threshold) linked to a continuous variable (known as an assignment variable).
A key idea behind an RD design is that subjects with similar assignment variable values might
be considered as ‘exchangeable’. Under this assumption, we consider subjects whose assign-
ment variables lie ‘just above’ the threshold to be similar to subjects whose assignment variable
values lie ‘just below’ the threshold. A suitable comparison of outcomes between these two
groups of subjects may be appropriate for an assessment of the causal effect of the intervention
on some outcome variable of interest.

For example, consider a medical context in which an oral drug is prescribed with the aim of
reducing a patient’s blood pressure. Furthermore, the drug is prescribed only to those patients
whose systolic blood pressure exceeds 140 mmHg. Here, the intervention is the oral drug for
which a prescription is made according to a pre-specified intervention threshold that is whether
or not a patient’s systolic blood pressure exceeds 140 mmHg. The systolic blood pressure is
compared directly with the threshold and, as such, is the assignment variable. The outcome
variable is the blood pressure measurement at some later point in time, after the decision of
whether or not to prescribe the oral drug has been taken. The causal effect that we would like
to measure is the effect of the oral drug on systolic blood pressure.

In many scenarios, an intervention threshold may not be adhered to strictly, resulting in
some subjects receiving (or not receiving) the intervention contrary to what would be indicated
by their assignment variable. This is known as a ‘fuzzy RD design’, and the estimation of the
causal effect of the intervention must account for this ‘fuzziness’ present in the observed data.
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Typically, a local average treatment effect (LATE) estimator (Imbens & Angrist, 1994; Hahn
et al., 2001) is used to provide an estimate of this effect.

Suppose that Y denotes the continuous outcome of interest andZ 2 ¹0; 1º, T 2 ¹0; 1º denote
binary indicators of threshold attainment and intervention respectively, such that

Z D

´
1 if a subject attains the threshold;
0 otherwise.

T D

´
1 if a subject receives the intervention;
0 otherwise.

Then, the LATE at the threshold is defined as

LATE D
E.Y jZ D 1/ � E.Y jZ D 0/

P.T D 1jZ D 1/ � P.T D 1jZ D 0/
: (1)

It can be shown that the LATE gives an unbiased estimate of the intervention effect (see Hahn
et al., 2001, and Section A of the Supporting Information for this paper), under certain assump-
tions, within a fuzzy RD design. If the intervention threshold rule is adhered to strictly, then
the RD design is termed ‘sharp’, and the causal effect of the intervention on Y is recovered
from the average treatment effect at the threshold (ATE) with

ATE D E.Y jZ D 1/ � E.Y jZ D 0/:

In an RD design, the threshold indicator, Z, can be seen as a special case of a binary instru-
mental variable (Angrist et al., 1996; Didelez et al., 2010). As such, the threshold might be
considered as an instrumental variable for the intervention and the LATE (1) used to iden-
tify the causal effect of the intervention at the threshold in a population of compliers, that is,
those individuals who are able to receive the intervention when their assignment variable moves
from a point below the intervention threshold to a point above the intervention threshold. Fur-
thermore, the LATE (1) is only valid within a population whose assignment variable values lie
within a region close enough to the threshold for individuals to be considered exchangeable.

In econometrics, both the ATE and the LATE are typically estimated using a two-stage
least squares regression approach (Imbens & Angrist, 1994; Angrist & Imbens, 1995; Imbens
& Lemieux, 2008). Using two-stage least squares for estimation of the LATE can be advan-
tageous, in that an unbiased estimator for the LATE is recovered and estimation may be
performed relatively easily using standard statistical software. However, other approaches
for the estimation of the LATE in an RD design can be taken. Two such approaches are
maximum likelihood-based or Bayesian estimation methods. Each of these methods relies
on the specification and fitting of appropriate models for the numerator and denominator
of the LATE.

With a maximum likelihood-based approach, it is well known that the estimation of the
LATE variance is not necessarily straightforward (Imbens & Lemieux, 2008). As a result, the
two-stage least squares approach has often been preferred, especially because an approximation
for the variance of the LATE can be computed relatively easily. With a Bayesian approach,
estimation of the LATE variance can be less problematic (Koo, 1997; Geneletti et al., 2015).

In this work, we aim to outline and compare these three approaches with LATE estimation
(two-stage least squares, maximum likelihood and Bayesian) within a fuzzy RD design. We
focus on the fuzzy RD design because fuzziness is almost always present in observational data,
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especially in medical studies, making the fuzzy RD design more widely used. In a sharp RD
design, the use of the ATE at the threshold makes treatment effect estimation more straightfor-
ward. In particular, we examine and compare estimation of the variance of the LATE for these
three approaches.

This paper is organized as follows: in Section 2, we describe the RD design. In Section 3,
we outline the three approaches to estimation of the LATE. In Section 4, a simulation study is
presented in which the estimation methods described in Section 3 are performed under a variety
of RD designs. Section 5 contains an example using real data on the prescription of statins in
UK primary care according to the risk of cardiovascular disease (CVD). A discussion of results
and conclusions is provided in Section 6.

2. The regression discontinuity design

An RD design can be used as a method to estimate the causal effect of a particular inter-
vention using an observational dataset. In a population of N 2 N subjects, we assume that
information exists concerning the allocation of subjects to the intervention according to the
subject-specific value of a continuous ‘assignment variable’. The assignment variable is com-
pared with a pre-specified intervention ‘threshold’ whereby a subject receives the intervention
if his or her assignment variable is greater than or equal to the intervention threshold value and
does not receive the intervention if his or her assignment variable is less than the intervention
threshold value.

The RD design uses the intervention threshold, and the assumption is made that subjects
whose assignment variable values lie ‘just above’ or ‘just below’ the intervention threshold
belong to the same population. As such, one might assume that the populations ‘just above’
and ‘just below’ the threshold are balanced with respect to unobserved confounders, allowing
the causal effect of the intervention on the outcome of interest to be estimated. The RD design
was first developed during the 1960s (Thistlethwaite & Campbell, 1960) and has been used
extensively in economics (van der Klaauw, 2002, 2008; Jacob & Lefgren, 2004; Cellini et al.,
2010; Anderson & Magruder, 2012). More recently, some researchers have begun to consider
the use of the RD design to assess intervention effects in medicine (Linden et al., 2006; Rutter,
2009; Bor et al., 2014; O’Keeffe et al., 2014; Smith et al., 2015; Moscoe et al., 2015).

There are two common forms of RD design. When the intervention rule (the threshold) is
adhered to strictly, the design is known as sharp. In this scenario, all subjects whose assignment
variable value lies at or above the threshold receive the intervention, and those whose assign-
ment variable value lies below the threshold value do not receive the intervention. However,
intervention thresholds are not always adhered to, in which case the RD design is known as
fuzzy. In a fuzzy design, for some subjects, intervention assignment might be contrary to that
indicated by the value of their assignment variable. Figure 1 shows example plots of an assign-
ment variable (continuous from 0 to 1) against a hypothetical continuous outcome for sharp
and fuzzy RD designs.

The left-hand plot shows a sharp design, and the right-hand plot shows a fuzzy design,
and in each case, the intervention threshold occurs where the assignment variable = 0.5. An
obvious discontinuity in the outcome variable exists at the intervention threshold. As noted pre-
viously, an assumption is made that subjects whose assignment variable values lie close to the
intervention threshold are considered as coming from the same population. The notion of an
assignment variable ‘lying close’ to the threshold is quantified by the choice of a pre-specified
bandwidth, h, such that only those subjects whose assignment variable values lie within a dis-
tance h of the intervention threshold are included in an RD design. We now define the variables
of interest formally with the index i 2 ¹1; : : : ; N º denoting the subject.
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Fig. 1. Example sharp and fuzzy RD design plots. The dashed vertical line represents the intervention
threshold. ‘Untreated’ labels subjects who do not receive the intervention; ‘Treated’ labels subjects who
receive the intervention.

2.1. Definitions and notation

Throughout, we assume that the assignment variable takes values in Œ0; 1� although this
assumption may be relaxed, without loss of generality, as long as the assignment variable is
continuously distributed. We suppose that x0 2 Œ0; 1� represents the pre-specified intervention
threshold value and define the following variables:

Xi 2 Œ0; 1� W a continuous assignment variable.

Zi D

´
0 if Xi < x0

1 if Xi � x0
a threshold indicator;

Ti D

´
0 if the i th subject does not receive the intervention;
1 if the i th subject receives the intervention;

Yi 2 R W a continuous outcome variable.

Furthermore, let h 2 .0; 1� denote the RD design bandwidth such that a subject’s data are
included in the design if Xi 2 .x0 � h; x0 C h/.

As discussed in Section 1, we consider the LATE (1) as an estimator for the causal effect of
the intervention at the threshold for fuzzy RD designs. It is the estimation of the LATE and its
variance within a fuzzy RD design to which we give attention in this paper.

3. Estimation of the LATE in a fuzzy regression discontinuity design

We outline the three approaches to the estimation of the LATE and its variance: two-stage
least squares, maximum likelihood and Bayesian. The notation introduced in Section 2 is used
together with the notation .ti ; xi ; yi ; ´i / as the observed counterparts of .Ti ; Xi ; Yi ; Zi /, and,
furthermore, we make the assumption that the outcome variable, Yi , is normally distributed
for each subject, a common assumption made when using an RD design with a continuous
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outcome variable. We note that the assumption of a normally distributed outcome variable
is not a necessary condition for an RD design. Many applications of the RD design have
used ordinary least squares for estimation purposes, particularly in econometrics, which can
be more desirable than a maximum likelihood-based approach if the assumption of a normally
distributed outcome variable is not appropriate.

We consider a subpopulation of n < N 2 N subjects to be included in our RD design and
consider two subsets of subjects

A D ¹i jZi D 1 \Xi 2 Œx0; x0 C h/º
B D ¹i jZi D 0 \Xi 2 .x0 � h; x0/º

such that ¹1; : : : ; nº D A [ B. Essentially, A denotes the set of subjects whose assignment
variables lie above the intervention threshold, and B is the set of subjects whose assignment
variables lie below the intervention threshold. In each case, we consider only those subjects
whose assignment variables lie within a distance h of the threshold (i.e. those for whom Xi 2

.x0 � h; x0 C h/). We define na D jAj and nb D jBj to be the number of subjects above and
below the threshold, respectively, whose data we consider for an RD design analysis. Given the
threshold value x0, we define the ‘centred assignment variable’ as

Xci D Xi � x0

with observed counterpart xc
i

. The use of a centred assignment variable shifts the threshold
to zero and allows the LATE numerator to be defined using intercept parameters from linear
models. Throughout, we denote the LATE at the threshold by the parameter �.

3.1. Two-stage least squares approach

As noted previously, the two-stage least squares approach to the estimation of the LATE is
often employed in RD designs (van der Klaauw, 2002; Imbens & Lemieux, 2008; Hoekstra,
2009). The approach is simple, relies on few assumptions concerning the variables defined in an
RD design (i.e. the assignment variable, intervention indicator and outcome variable) and can
be easily implemented using standard statistical software (Imbens & Lemieux, 2008).

In the two-stage least squares approach, we fit two linear models. First, we regress Ti on ´i
and xc

i
using a model of the form

Ti D ˛0 C ˛1´i C ˛2.1 � ´i /x
c
i C ˛3´ix

c
i C !1i (2)

with !1i .i 2 ¹1; : : : ; nº/ denoting independent mean zero error terms. The model (2) is fitted
using least squares, and the vector of fitted values Ot D

�
Oti ; : : : ; Otn

�>
is extracted. These fitted

values are used as explanatory variables in a linear model for the outcome Yi , of the form

Yi D �0 C �1 Oti C �2.1 � Oti /x
c
i C �3 Otix

c
i C !2i

with !2i independent mean zero error terms. To fit these models, we define the following design
matrices:

LZ D

0
BB@
1 ´1 .1 � ´1/x1 ´1x1
:::
:::

:::
:::

1 ´n .1 � ´n/xn ´nxn

1
CCA
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and

LX D

0
BB@
1 Ot1 .1 � Ot1/x

c
1
Ot1x

c
1

:::
:::

:::
:::

1 Otn .1 � Otn/x
c
n
Otnx

c
n

1
CCA : (3)

We write the models in matrix form as

T D LZ˛C!1

Y D LX� C!2

with!1 and!2 assumed independent. The least squares estimates of ˛ D .˛0; ˛1; ˛2; ˛3/> are

Ǫ D
�
LZ> LZ

��1
LZ>T

and so the corresponding fitted values .Ot1; : : : ; Otn/> are given by

.Ot1; : : : ; Otn/
> D LZ

�
LZ> LZ

��1
LZ>T:

In addition, the least squares estimates of O� D .�0; �1; �2; �3/> are

O� D
�
LX> LX

��1
LX>Y: (4)

The intervention effect estimate at the threshold is given by O�1, and the variance–covariance
matrix of O� is

Var. O�/ D Var.Y/
�
LX> LX

��1
D �2

�
LX> LX

��1
:

So the LATE variance might be given by

Var. O�1/ D
�
�2
�
LX> LX

��1�
22

: (5)

That is, the .2; 2/ element of the variance–covariance matrix for � because O�1 denotes the
LATE at the threshold in this model. Typically, � might be estimated using the residual sum of
squares from the fitted model

O�2 D
1

n � 4
kY � LX O�k2;

with a denominator of n � 4 because � contains four parameters. A standard estimate of the
variance of the LATE would be given by

Varstd. O�/ D

�
O�2
�
LX> LX

��1�
22

(6)

where O� D O�1. However, it is known that this approach will lead to a loss in efficiency in the
estimate of the LATE variance from two-stage least squares (Baltagi, 2011). To reduce the loss
in efficiency, it is suggested that the residual sum of squares from the fitted model (kY� LX O�k2)
is adjusted by replacing the fitted Oti values in the design matrix (3) with the actual values ti . We
define the adjusted design matrix:
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QX D

0
BB@
1 t1 .1 � t1/x

c
1
t1x

c
1

:::
:::

:::
:::

1 tn .1 � tn/x
c
n tnx

c
n

1
CCA (7)

and the adjusted estimate of �2 is given by

Q�2 D
1

n � 4
kY � QX O�k2: (8)

The adjusted variance estimate of the LATE, under two-stage least squares estimation, is
given by

Varadj. O�/ D

�
Q�2
�
LX> LX

��1�
22

: (9)

With this method, the estimate for �2 has been artificially adjusted, and, consequently, com-
parison with the estimate of �2 used in Varstd. O�/ (or with the estimates used in maximum
likelihood and Bayesian approaches) is not straightforward.

Hence, we have a method for the unbiased estimation of the LATE, together with two meth-
ods for variance estimation (Varstd. O�/ and Varadj. O�/) using a two-stage least squares approach.
We now consider a maximum likelihood-based approach to the estimation of the LATE.

3.2. Maximum likelihood-based approach

Unlike the two-stage least squares approach to estimation of the LATE, the maximum
likelihood-based approach relies directly on distributional assumptions of both the outcomes
Y1; : : : ; Yn and binary treatment variables T1; : : : ; Tn. Under the assumption that each Yi

is, independently, normally distributed, we construct the following normal linear models for
Y1; : : : ; Yn:

Yi D ˇ0a C ˇ1ax
c
i C �i for i 2 A

Yi D ˇ0b C ˇ1bx
c
i C �i for i 2 B

(10)

with �i � N .0; �2/ independently for i 2 ¹1; : : : ; N º. We note that, at the threshold (i.e. where
xc
i
D 0),

E .Yi jZi D 1/ � E .Yi jZi D 0/ D ˇ0a � ˇ0b

D ˇ:

Next, we consider a model for Ti .i 2 ¹1; : : : ; nº/. Conditional on Zi and Xc
i

, the probability
of treatment receipt is modelled as

P
�
Ti D 1 j Zi D 1;X

c
i

�
D �0a C �1ax

c
i if i 2 A;

P
�
Ti D 1 j Zi D 0;X

c
i

�
D �0b C �1bx

c
i if i 2 B.

Then, at the threshold, we have

E .T jZ D 1/ � E .T jZ D 0/ D �0a � �0b D �

and the LATE at the threshold is written

LATE D � D
ˇ

�
:
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We consider separate maximum likelihood estimation of ˇ and � . The maximum likelihood
estimators for .ˇ0a; ˇ0b/> and .�0a; �0b/>, denoted . Ǒ0a; Ǒ0b/> and . O�0a; O�0b/>, respec-
tively, can be easily obtained (with their explicit form given in Section B of the Supporting
Information for this paper). Using the invariance property for maximum likelihood estima-
tors, the maximum likelihood estimators for the LATE numerator and denominator (at the
threshold) are written

Ǒ D Ǒ0a � Ǒ0b I

O� D O�0a � O�0b

and the maximum likelihood estimator for the LATE is

O� D
Ǒ

O�
:

We see that the maximum likelihood estimator for the LATE is formed as a ratio of two other
estimators. As such, computation of the variance of the LATE maximum likelihood estimator
is not straightforward. Using a Taylor series approximation, with a full derivation provided in
Section B of the Supporting Information, we form the following estimate for the variance of
the LATE maximum likelihood estimator:

Var. O�/ D
O�2

O�2

 X
i2A

a2i C
X
i2B

b2i

!
C
Ǒ2

O�4

 
O�2a

X
i2A

a2i C
O�2b

X
i2B

b2i

!

�
2 Ǒ

O�3

 
O	a
X
i2A

a2i C O	b
X
i2B

b2i

! (11)

with

ai D
1

na
C

1P
i2A

�
xc
ia
� Nxca

�2
��
Nxca
�2
� Nxcax

c
i

�
I

bi D
1

nb
C

1P
i2B

�
xc
ib
� Nxc

b

�2
��
Nxcb
�2
� Nxcbx

c
i

�
I

s2a D
1

na � 2

X
i2A

.yi � Oyi /
2 I

s2b D
1

nb � 2

X
i2B

.yi � Oyi /
2 I

O�2 D
.na � 2/s

2
a C .nb � 2/ s

2
b

na C nb � 4
I

O�2a D
1

na � 2

X
i2A

�
ti � Oti

�2
I

O�2b D
1

nb � 2

X
i2B

�
ti � Oti

�2
I

O	a D
1

na � 1

X
i2A

.yi � Oyi /
�
ti � Oti

�
I

O	b D
1

nb � 1

X
i2B

.yi � Oyi /
�
ti � Oti

�
:
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We note that Nxc
j

denotes the sample mean of the assignment-centred variable values above the
threshold .j D a/ or below the threshold (j D b). In addition, Oyi and Oti denote the fitted
values of the outcome variable and intervention indicator, for the i th subject. We now consider
the Bayesian approach to estimation of the LATE at the threshold.

3.3. Bayesian approach

In a Bayesian framework, we consider the linear models (10) specified for the outcomes
Yi ; : : : ; Yn and place prior distributions on the model parameters .ˇ0a; ˇ1a; ˇ0b ; ˇ1b ; �2/>.
Typically, we choose the prior distribution of each linear parameter .ˇ0a; ˇ1a; ˇ0b ; ˇ1b/ to be
normal, whilst a probability distribution with support on a subset of .0;1/, such as the inverse
gamma distribution or appropriate continuous uniform distribution, can be defined as the prior
distribution for �2. For the intervention variables, we assume that Ti � Bin.1; pai / for i 2 A
and Ti � Bin.1; pbi / for i 2 B with

log
�

pai

1 � pai

	
D �0 C �1x

c
i

log
�

pbi

1 � pbi

	
D �2 C �3x

c
i

and normal priors placed on �0; �1; �2 and �3.
The Bayesian models are fitted using Markov chain Monte Carlo methods, easily applied

using standard statistical software. The LATE at the threshold is estimated through computa-
tion of the posterior distribution of

� D
ˇ0a � ˇ0b

�0a � �0b
;

where

�0a D
exp.�0/

1C exp.�0/
I

�0b D
exp.�2/

1C exp.�2/
:

Because the probability distribution of � is estimated or derived, information on uncertainty
surrounding �, including an estimate of Var.�/, can be easily obtained.

With a few exceptions (for example, Koo, 1997; Lee & Card, 2008; Geneletti et al., 2015),
Bayesian methods have not been used extensively in RD designs. In many cases, a Bayesian
approach is appealing. Firstly, prior information regarding the likely values of parameters used
in the construction of the LATE can be incorporated into the modelling. For example, previous
studies or research may have given insight on appropriate values of ˇ0a and ˇ0b , together
with possible information on the level of fuzziness that might be expected in the design, which
could be incorporated into the choice of prior distributions (Geneletti et al., 2015). This may
be particularly relevant where information about the efficacy of a treatment is known from a
randomized trial conducted on a small population. Such information could be used in a prior
distribution for an RD design analysis where the aim might be to assess the efficacy of the same
treatment in a larger, more general, population from observational data. In addition, a Bayesian
approach could allow for more flexible modelling assumptions than either the two-stage least
squares or maximum likelihood-based methods.
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In the next section, we introduce a simulation study in which the three methods of LATE
estimation are compared.

4. Simulation study

We aim for the simulated data to be representative of data that might be observed in a fuzzy
RD design. Suppose that we wish to simulate M 2 N datasets, each of which contains data
from N 2 N subjects. The simulation algorithm is defined as follows:

1. Simulate N assignment variables X D .X1; : : : ; XN /
> where each Xi is drawn at ran-

dom from a standard uniform distribution (U.0; 1/). The threshold is set at 0.5 with the
chosen bandwidth denoted h 2 .0; 1�. We denote vector of centred assignment variables:

Xc D .X1 � 0:5; : : : ; XN � 0:5/>:

2. Define the threshold indicator:

Zi D

´
0 if Xc

i
< 0

1 if Xc
i
� 0

and the sets

A D
®
i jZi D 1 \X

c
i 2 Œ0; h/

¯
I

B D
®
i jZi D 0 \X

c
i 2 .�h; 0/

¯
:

3. Draw the intervention indicators Ti .i 2 ¹1; : : : ; N º/ randomly as follows:

Ti �

´
Bin.1; 1 � p/ if i 2 A
Bin.1; p/ if i 2 B

for a chosen ‘probability of non-adherence’ p. Here, the term ‘probability of non-
adherence’ refers to the probability that the intervention rule is not followed for a given
subject.

4. Draw the outcome Yi .i 2 ¹1; : : : ; N º/ randomly as follows, conditional on Xc
i
D xc

i
:

Yi �

´
N .5C 0:4xc

i
; 1/ if Ti D 0

N .3C 0:3xc
i
; 1/ if Ti D 1:

5. Repeat the aforementioned steps M times, thereby creating M simulated datasets.

Within each of these M datasets, the intervention effect at the threshold has size �2. Figure 2
shows an example plot of xc against y for a simulated dataset where N D 1000.

Using each dataset, we estimated both the LATE and its variance, using the methods
described in Section 3. We term these variance estimation methods 2SLS (two-stage least
squares), MLE (maximum likelihood estimation) and BAYES (Bayesian estimation) with the
corresponding LATE estimates denoted O�2SLS, O�MLE and O�BAYES, respectively. For the two-
stage least squares approach, we define O
std

2SLS to be the ‘standard’ method of variance estimation
using two-stage least squares (6) and O
adj

2SLS to be the ‘adjusted’ method of variance estimation
using a two-stage least squares approach (9). We define O
MLE to be the LATE variance estimate
using the MLE method and O
BAYES to be that using the Bayesian approach. For the Bayesian
analysis, vague priors were assumed for �2, ˇ0a, ˇ0b , ˇ1a, ˇ1b , �0, �1, �2 and �3 (details given
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Fig. 2. Example plot of a simulated dataset whereN D 1000. The discontinuity in outcome variable at the
threshold can be clearly observed. Red icons (marked ‘Untreated’) indicate subjects who do not receive the
intervention, and blue icons (marked ‘Treated’) indicate subjects who receive the intervention. The dashed
vertical line represents the intervention threshold.

in Section C of the Supporting Information). We chose vague priors so that we would be able
to ascertain the performance of the Bayesian method where prior influence was not too strong.
However, we recognize that, in many scenarios, less vague prior distributions could be specified
for parameters of interest (for example, Geneletti et al., 2015).

As a comparison, we calculated the sample variance of the M point estimates of � in the
frequentist and two-stage least squares scenarios and denote these estimates as V. O�MLE/ and
V. O�2SLS/, respectively. We chose varying dataset sizes of N D 250; 500; 1000 and 5000, for each
of the two non-adherence probabilities (p D 0:1 or 0:2), and repeated the simulation process
M D 200 times for each dataset size and adherence probability. The choice of treatment effect
size of �2 at the threshold was based loosely on a possible treatment effect for statins on low-
density lipoprotein (LDL) cholesterol level and is similar to that chosen in Geneletti et al.
(2015). Results where the non-adherence probability is 0.1 are given in Table 1, and those where
the non-adherence probability is 0.2 are given in Table 2.

Examining Table 1, where the non-adherence probability is 0.1, we see that the two-stage
least squares and maximum likelihood methods for LATE estimation estimate the interven-
tion effect (�2) in an unbiased manner for larger sample sizes (N D 500; 1000 and 5000)
and are mostly accurate and unbiased for the smallest sample size (N D 250). The Bayesian
method is mostly unbiased for the largest sample size but is a little less accurate where
N D 250; 500 or 1000. This is an apparent drawback of the Bayesian approach and may be
directly related to the vague prior beliefs used and a lack of data, particularly for small band-
widths and/or small sample sizes. In such scenarios, the use of stronger prior beliefs would be
recommended, if appropriate.

In general, with the exception of the 0.05 bandwidth and a sample size of 250, the maxi-
mum likelihood-based method for the variance estimation ( O
MLE) has produced LATE variance
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Table 1. Two-stage least squares estimates ( O�2SLS), maximum likelihood estimates ( O�MLE) and Bayesian
estimates ( O�BAYES) of the LATE, together with corresponding variance estimates from the simulated datasets
with a variety of chosen RD design bandwidths and dataset sizes

h O�2SLS
O�MLE

O�BAYES O�std
2SLS O�

adj
2SLS O�MLE O�BAYES V( O�MLE) V( O�2SLS)

Sample size = 5000, non-adherence probability = 0.1

0.05 �2:00 �2:00 �2:01 0.0316 0.0130 0.0131 0.0191 0.0155 0.0153
0.10 �2:00 �2:00 �2:00 0.0156 0.0064 0.0064 0.0167 0.0058 0.0058
0.15 �2:00 �2:00 �2:01 0.0103 0.0042 0.0042 0.0137 0.0041 0.0041
0.20 �2:00 �2:00 �2:01 0.0077 0.0032 0.0032 0.0113 0.0031 0.0031
0.25 �2:00 �2:00 �2:01 0.0061 0.0025 0.0025 0.0094 0.0023 0.0023

Sample size = 1000, non-adherence probability = 0.1

0.05 �2:00 �2:00 �2:03 0.1727 0.0729 0.0775 0.0741 0.0683 0.0662
0.10 �2:00 �2:00 �2:02 0.0807 0.0334 0.0343 0.0552 0.0294 0.0288
0.15 �2:00 �2:00 �2:01 0.0532 0.0219 0.0225 0.0514 0.0261 0.0261
0.20 �2:00 �2:00 �2:01 0.0395 0.0162 0.0165 0.0465 0.0194 0.0193
0.25 �2:00 �2:00 �2:02 0.0314 0.0128 0.0130 0.0421 0.0146 0.0145

Sample size = 500, non-adherence probability = 0.1

0.05 �1:99 �1:99 �2:07 0.4251 0.1948 0.2274 0.1541 0.1712 0.1498
0.10 �2:00 �1:99 �2:04 0.1751 0.0755 0.0802 0.0965 0.0715 0.0692
0.15 �2:00 �2:00 �2:04 0.1104 0.0462 0.0479 0.0888 0.0471 0.0461
0.20 �2:00 �2:00 �2:02 0.0811 0.0340 0.0349 0.0826 0.0370 0.0363
0.25 �2:00 �2:00 �2:03 0.0640 0.0268 0.0274 0.0764 0.0299 0.0296

Sample size = 250, non-adherence probability = 0.1

0.05 �1:98 �1:96 �2:13 2.4527 25.2280 50.0041 6.3297 0.9389 0.6909
0.10 �1:96 �1:96 �2:08 0.4048 0.2020 0.2171 0.1880 0.1715 0.1684
0.15 �1:99 �1:99 �2:06 0.2360 0.1007 0.1104 0.1528 0.0992 0.0977
0.20 �2:01 �2:00 �2:06 0.1746 0.0734 0.0776 0.1443 0.0769 0.0757
0.25 �2:01 �2:01 �2:07 0.1351 0.0560 0.0583 0.1392 0.0611 0.0584

The non-adherence probability is set at 0.1. V. O�MLE/ denotes the sample variance of the maximum
likelihood estimates, and V. O�2SLS/ denotes the sample variance of the two-stage least square estimates.
LATE, local average treatment effect; RD, regression discontinuity.

estimates that lie close to the sample variance value of the calculated LATE estimates across the
200 samples, for each bandwidth and each sample size, suggesting that this method provides an
accurate approximation for the LATE variance where the number of data points included in the
analysis permits. The adjusted two-stage least squares approach (9) ( O
adj

2SLS) also estimates the
LATE variance fairly accurately, with the exception of the 0.05 bandwidth and a sample size
of 250, when comparing O
adj

2SLS and V. O�2SLS/. Conversely, the two-stage least squares standard
approach (6) ( O
std

2SLS) consistently overestimates the LATE variance.
We see that the variance estimates using the Bayesian approach tend to be larger than

those calculated using either the maximum likelihood method or the two-stage least squares
approach, except for some smaller bandwidths where the sample size is large, implying that the
Bayesian approach to LATE estimation results in a less precise estimate of the LATE at the
threshold. The inclusion of information from stronger prior knowledge/assumptions may help
to alleviate this when using a Bayesian approach with real data.

Where N D 250 and the bandwidth is 0.05, all methods yielded large estimates of the LATE
variance at the threshold. With such small datasets and a bandwidth of 0.05, implying that
only a small fraction of the data are actually used in the corresponding RD design analysis,
it is likely that na C nb will be particularly small and this may result in estimation and/or
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Table 2. Two-stage least squares estimates ( O�2SLS), maximum likelihood estimates ( O�MLE) and Bayesian
estimates ( O�BAYES) of the LATE, together with corresponding variance estimates from the simulated datasets
with a variety of chosen RD design bandwidths and dataset sizes

h O�2SLS
O�MLE

O�BAYES O�std
2SLS O�

adj
2SLS O�MLE O�BAYES V( O�MLE) V( O�2SLS)

Sample size = 5000, non-adherence probability = 0.2

0.05 �2:00 �2:00 �1:99 0.0851 0.0244 0.0248 0.0499 0.0240 0.0239
0.10 �2:01 �2:01 �2:00 0.0415 0.0117 0.0118 0.0455 0.0122 0.0123
0.15 �2:01 �2:01 �2:00 0.0272 0.0076 0.0077 0.0392 0.0084 0.0083
0.20 �2:01 �2:01 �2:01 0.0205 0.0058 0.0058 0.0325 0.0062 0.0062
0.25 �2:01 �2:01 �2:00 0.0163 0.0046 0.0046 0.0270 0.0050 0.0050

Sample size = 1000, non-adherence probability = 0.2

0.05 �1:97 �1:96 �1:95 0.7070 0.3314 0.4726 0.2008 0.2318 0.1860
0.10 �1:98 �1:97 �1:96 0.2366 0.0732 0.0769 0.1419 0.0759 0.0721
0.15 �1:99 �1:99 �1:97 0.1479 0.0437 0.0452 0.1361 0.0464 0.0457
0.20 �1:99 �1:99 �1:97 0.1078 0.0315 0.0321 0.1282 0.0347 0.0339
0.25 �2:00 �2:00 �1:98 0.0846 0.0245 0.0249 0.1171 0.0268 0.0268

Sample size = 500, non-adherence probability = 0.2

0.05 �2:12 �1:99 �1:92 2.8039 19.6660 398.6478 0.4603 0.8190 0.7911
0.10 �1:98 �1:98 �1:97 0.4996 0.1693 0.1997 0.2328 0.1608 0.1455
0.15 �2:01 �2:00 �1:98 0.2935 0.0888 0.0959 0.2175 0.0826 0.0767
0.20 �2:02 �2:01 �1:98 0.2190 0.0655 0.0678 0.2129 0.0613 0.0598
0.25 �2:02 �2:02 �1:99 0.1707 0.0505 0.0519 0.2031 0.0498 0.0481

Sample size = 250, non-adherence probability = 0.2

0.05 �2:02 �2:05 �1:93 7.0890 63.3852 412.9690 104.0435 5.3853 2.6314
0.10 �2:19 �2:17 �1:94 2.9853 99.5390 545.0271 0.5564 2.2327 3.2587
0.15 �2:01 �2:01 �1:96 0.6987 0.2678 0.9292 0.3597 0.2184 0.1650
0.20 �1:97 �1:98 �1:97 0.5690 0.3189 0.3365 0.3470 0.1703 0.1528
0.25 �2:00 �2:00 �1:98 0.3622 0.1194 0.1259 0.4500 0.0966 0.0914

The non-adherence probability is set at 0.2. V. O�MLE/ denotes the sample variance of the maximum
likelihood estimates, and V. O�2SLS/ denotes the sample variance of the two-stage least square estimates.
LATE, local average treatment effect; RD, regression discontinuity.

convergence problems. Notably, there were a small minority of simulated datasets for which the
LATE estimate differed substantially from �2 and the corresponding estimated variance was
large for both the two-stage least squares and maximum likelihood approaches.

The results for the larger non-adherence probability of p D 0:2 (Table 2) generally show
a similar pattern to those where the non-adherence probability is 0.1. However, we note that
the biases in the estimates of the LATE and the variance estimates are larger, for all methods,
compared with those where the non-adherence probability is 0.1. We would expect this because
the RD design is less precise as the fuzziness of the data increases.

In general, O
MLE and V. O�MLE/ are similar, and O
adj
2SLS and V. O�2SLS/ are similar for most

bandwidths and dataset sizes and for each of the chosen non-adherence probabilities. This sug-
gests that the likelihood-based approach taken to LATE variance estimation accurately reflects
the uncertainty in estimate of the LATE and that, when adopting a two-stage least squares
approach, it is advisable to use the adjusted method for variance estimation at the threshold.
The Bayesian approach to variance estimation performed reasonably well for larger dataset
sizes, but there was less certainty concerning the estimates for smaller datasets, particularly
where the chosen bandwidth is also small. We now present an RD design analysis involving
real data on the prescription of statins in UK primary care.
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5. Example: prescription of statins in UK primary care

In the UK, the National Institute for Health and Care Excellence has issued guidelines that
statins, a class of cholesterol-lowering drugs, should be routinely prescribed, for the primary
prevention of CVD, to adults aged under 75 whose 10-year risk of experiencing a cardiovascu-
lar event (i.e. a stroke or myocardial infarction) exceeds 20% (NICE, 2008). Typically, 10-year
risk is calculated using an appropriate risk score function (for example, the Framingham risk
score; Wilson et al., 1998). We consider a subset of patients from a large source of UK primary
care data: The Health Improvement Network (THIN) (www.epic-uk.org). The dataset consists
of anonymized patient data collected at over 500 UK GP (General practitioner-family doctor)
practices. Of particular interest in this example are records pertaining to the prescription of
statins to patients who are yet to experience a cardiovascular event.

We consider 10-year risk score to be the assignment variable, and the intervention threshold
is defined to be a 10-year risk score greater than or equal to 20%. The ‘intervention’ is a statin
prescription, and, because statins are prescribed to reduce LDL cholesterol, the outcome vari-
able is the LDL cholesterol level in millimoles per litre (mmol/L). We use a subset of THIN
data consisting of 1000 non-diabetic male patients who were non-smokers for whom risk scores
were calculated between January 2007 and December 2008. Amongst these 1000 patients, there
were 506 statin prescriptions during the period of observation.

Figure 3 shows a scatter plot of the 10-year CVD risk score and the first recorded LDL
cholesterol level measurement at least 1 month after risk score calculation for the 1000 men in
the THIN data subset. Patients who received statins and those who did not are indicated by
different coloured symbols. We see that there is some visual evidence of a discontinuity at the
intervention threshold (a 10-year CVD risk score of 20%), although there is obvious fuzziness
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Fig. 3. Scatter plot showing 10-year cardiovascular disease (CVD) risk score versus low-density lipoprotein
(LDL) cholesterol level for The Health Improvement Network data subset. Patients who received statins are
denoted ‘Treated’, and those who did not receive statins are denoted ‘Untreated’. The threshold (10-year
CVD risk score of 20%) is marked by a vertical dashed line.
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in the data around this threshold. Nonetheless, this suggests that a fuzzy RD design could
be applicable for these data, and we consider LATE estimation at the threshold as described
in Section 4.

In this example, we define

Yi D LDL cholesterol level (mmol/L)I

Xci D .10-year CVD risk score/ � 0:2I

and

Zi D

´
0 if Xc

i
< 0;

1 if Xc
i
� 0.

Ti D

´
0 if i th patient does not receive statins;
1 if i th patient does receive statins.

We consider the evaluation of the LATE at the statin intervention threshold (xc
i
D 0:2). As

in Section 4, we considered five bandwidths (0.05, 0.1, 0.15, 0.2 and 0.25) for the RD design,
and we used the same estimation methods for both the LATE and its variance, although with
slightly different Bayesian priors (outlined in Section D of the Supporting Information). The
empirical non-adherence probabilities below and above the threshold were (0.26, 0.21, 0.18,
0.18, 0.18) and (0.35, 0.30, 0.28, 0.28, 0.28), respectively, for bandwidths (0.05, 0.10, 0.15, 0.20,
0.25). Table 3 shows the results of the RD analysis.

Examining Table 3, we see that the two-stage least squares and maximum likelihood methods
yield similar intervention effect estimates for bandwidths 0.1 to 0.25. For bandwidth 0.05, the
two-stage least squares and maximum likelihood estimates differ more substantially, but we
note that the corresponding variance estimates are also very large, which might be expected
given the small bandwidth. For other bandwidths, O
adj

2SLS and O
MLE are similar, which may be
expected given the results seen in the simulation study.

The Bayesian estimates of the LATE ( O�BAYES) are lower than both the likelihood-based
and two-stage least squares estimates across all bandwidths. In addition, the Bayesian vari-
ance estimate is notably smaller than the other variance estimates for bandwidths 0.05 and
0.10 but larger than the other variance estimates for bandwidths 0.15 to 0.25. The choice of
prior distributions may have contributed to the discrepancy between the Bayesian approach
and the other non-Bayesian approaches to LATE estimation at the threshold. Furthermore,
we note that the empirical non-compliance probabilities above and below the threshold in this

Table 3. Two-stage least squares estimates ( O�2SLS), maximum likelihood estimates ( O�MLE) and
Bayesian estimates ( O�BAYES) of the LATE for the effect of statins on LDL cholesterol level,
together with corresponding variance estimates with a variety of chosen RD design bandwidths

Bandwidth (h) O�2SLS
O�MLE

O�BAYES O�std
2SLS O�

adj
2SLS O�MLE O�BAYES

0.05 �3:66 �3:23 �1:70 1.4908 3.5536 3.8357 0.1921
0.10 �2:53 �2:50 �1:68 0.3384 0.4237 0.4150 0.1812
0.15 �2:11 �2:09 �1:75 0.1641 0.1733 0.1685 0.1829
0.20 �1:98 �1:99 �1:72 0.1187 0.1210 0.1216 0.1677
0.25 �2:00 �2:02 �1:74 0.1157 0.1187 0.1193 0.1312

The data used were taken from the THIN database.
LATE, local average treatment effect; RD, regression discontinuity; THIN, The Health
Improvement Network.
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example are higher than those used in the simulation studies of Section 4. Overall, though, all
three methods indicated that the prescription of statins results in a reduction in LDL cholesterol
level, which we would expect clinically.

6. Discussion

It has been shown that the LATE can be used to accurately estimate an intervention effect in
an RD design at the intervention threshold. In essence, the LATE appears to be a relatively
simple estimator, composed as a ratio of expectations from two linear models. In each of these
models (for the numerator and for the denominator), a likelihood-based approach may be taken
for parameter estimation. This approach is fairly standard, but estimating the variance of the
derived maximum likelihood estimator is less straightforward.

In this work, we have compared two-stage least squares, likelihood-based and Bayesian
methods for estimating the LATE and its variance within a fuzzy RD design. We have shown
that the maximum likelihood-based method appears to accurately capture the variability in the
LATE for a variety of RD design scenarios. Although a two-stage least squares approach is
often seen, at first sight, as an appropriate method for estimation in an RD design, we have
shown that, whilst this approach yields a similar LATE estimate as that obtained using max-
imum likelihood methods, the standard variance estimate obtained using a two-stage least
squares approach is not always desirable and should be adjusted to ensure that the true variabil-
ity of the LATE at the threshold is estimated. Using two-stage least squares and adopting the
standard approach to variance estimation resulted in an over-estimation of the LATE variance.

The maximum likelihood-based approach is best used where the outcome of interest is
assumed to be normally distributed. For non-normal outcomes, the maximum likelihood-based
approach may not be desirable, especially for small sample sizes or small bandwidths. In such
scenarios, we would recommend either that a suitable transformation to a normally distributed
outcome would be applicable, use of the central limit theorem be considered, or that the two-
stage least squares method be employed but with the adjusted method used to estimate the
variance of the LATE at the threshold. The use of an approach where the variance estimation is
overly conservative could be problematic if the results from an RD analysis were to be used to
determine treatment allocation or perhaps for sample size calculations. It would be important
to be mindful of this and perhaps consider the use of the maximum likelihood or the two-stage
least squares approach with the adjusted variance method in these scenarios.

An advantage of the other approaches over the Bayesian approach is that each requires less
computation time and does not require prior beliefs to be specified, which may not always be
appropriate in an RD design. In addition, with the maximum likelihood approach, we may
exploit distributional assumptions in a more flexible manner using large-sample properties of
the maximum likelihood estimators derived. For smaller datasets and smaller bandwidths, the
Bayesian approach can be problematic.

Another, alternative, method for calculating the LATE variance, with either the two-stage
least squares or maximum likelihood approaches, is bootstrapping. We note that this may
sometimes be more computationally intensive than the two-stage least squares and maximum
likelihood methods presented in this paper, although not prohibitively so, but could provide
a useful method for the checking of a chosen variance estimation method under a variety of
possible modelling assumptions.

We note that this work has considered RD designs where the outcome of interest is
continuous. At present, methodology concerning RD designs for non-continuous outcomes
(e.g. binary, count data and time-to-event data) is under-developed, and the extension of this
work to non-continuous outcomes is an ongoing research area (for example, Bor et al., 2014).
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To summarize, we have considered three approaches to estimation of the LATE within a
typical RD design on a continuous outcome and associated methods for the estimation of
the LATE variance, demonstrating the methods considered using both simulated and applied
examples. We saw that two-stage least squares approach is appropriate for unbiased estimation
of the LATE but some properties of the standard variance estimator from the two-stage least
squares approach were less desirable in some cases. The likelihood-based approach derived
in Section 3 produced an unbiased estimator for the LATE and appeared to yield efficient
estimates of the LATE variance that captured the true variability of the LATE estimator. The
Bayesian approach tended to provide similar estimates of the LATE to the two-stage least
squares and likelihood-based methods, although perhaps not for small design bandwidths, but
represents an alternative approach in which available prior information can be incorporated
into an RD design.

We are hopeful that RD designs will be used more widely in medicine, especially with
the increasing use of electronic observational healthcare data. We recommend that, with
an increase in the use of this methodology, due care is taken to ensure that the variability
surrounding important estimators, such as the LATE, is estimated accurately.
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