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Abstract

Collaborative Filtering (CF) is a technique to generate personalised recommendations for a user from a

collection of correlated preferences in the past. In general, the effectiveness of CF greatly depends on the

amount of available information about the target user and the target item. The cold-start problem, which

describes the difficulty of making recommendations when the users or the items are new, remains a great

challenge for CF. Traditionally, this problem is tackled by resorting to an additional interview process

to establish the user (item) profile before making any recommendations. During this process the user’s

information need is not addressed. In this thesis, however, we argue that recommendations would be

preferably provided right from the beginning. And the goal of solving the cold-start problem should be

maximising the overall recommendation utility during all interactions with the recommender system. In

other words, we should not distinguish between the information-gathering and recommendation-making

phases, but seamlessly integrate them together. This mechanism naturally addresses the cold-start prob-

lem as any user (item) can immediately receive sequential recommendations without providing extra

information beforehand.

This thesis solves the cold-start problem in an interactive setting by focusing on four interconnec-

ted aspects. First, we consider a continuous sequential recommendation process with CF and relate it

to the exploitation-exploration (EE) trade-off. By employing probabilistic matrix factorization, we ob-

tain a structured decision space and are thus able to leverage several EE algorithms, such as Thompson

sampling and upper confidence bounds, to select items. Second, we extend the sequential recommend-

ation process to a batch mode where multiple recommendations are made at each interaction stage. We

specifically discuss the case of two consecutive interaction stages, and model it with the partially observ-

able Markov decision process (POMDP) to obtain its exact theoretical solution. Through an in-depth

analysis of the POMDP value iteration solution, we identify that an exact solution can be abstracted as

selecting users (items) that are not only highly relevant to the target according to the initial-stage inform-

ation, but also highly correlated with other potential users (items) for the next stage. Third, we consider

the intra-stage recommendation optimisation and focus on the problem of personalised item diversifica-

tion. We reformulate the latent factor models using the mean-variance analysis from the portfolio theory

in economics. The resulting portfolio ranking algorithm naturally captures the user’s interest range and

the uncertainty of the user preference by employing the variance of the learned user latent factors, lead-

ing to a diversified item list adapted to the individual user. And, finally, we relate the diversification

algorithm back to the interactive process by considering inter-stage joint portfolio diversification, where

the recommendations are optimised jointly with the user’s past preference records.
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Notation

The following notations are used throughout this thesis. In addition to their definitions here, they are also

described in their first occurrences in each chapter. For the reader’s convenience, we describe chapter-

specific notations separately in Table 3.1, Table 4.1, Table 5.1 and Table 6.1 for Chapters 3-6.

Notation Description

X A matrix (a bold upper-case letter)

x A vector (a bold italic lower-case letter)

X A random vector (a bold italic upper-case letter)

|X| Determinant of X

XT Transpose of X

diag[X] A vector composed of the diagonal elements of X

diag[x] A diagonal matrix with its diagonal elements as x

Dg[X] A diagonal matrix with the diagonal elements of X

p(·) Density function

E[·] Expectation

Var[·],Cov[·] Variance, covariance matrix

N (µ,Σ) Multivariate Gaussian distribution with mean µ and covariance matrix Σ∑
,
∏

Sum, product

Cnk The number of k-combinations from a given set of n elements

I[·] Indicator function

I Identity matrix

∅ Empty set

ξ A random noise with zero mean



Chapter 1

Introduction

For approximately the last two decades, information retrieval has fundamentally transformed the way in

which people seek and work with information. Roughly speaking, there are two types of information

retrieval (IR) systems [3]. On one hand, we have ad hoc information retrieval, e.g., web search [4], which

deals with a relatively fixed collection of information items (webpages, documents, images, product

descriptions etc.) and explicit user information requests. On the other hand, there are information

filtering systems, such as recommender systems [5, 6], to address the situation where the information

is actively filtered for users based on their preferences and implicit behavioural data without explicit

personal need. Nevertheless, in either case, the fundamental problem remains the same, which is how to

compute and find the match between the information items and information requests [7].

The task of recommender systems in general can be illustrated as in Figure 1.1. In this graph,

red and blue blocks represent the previously expressed preferences by the users. The blank blocks are

unknown preferences that need to be predicted by the system. There are mainly two ways to make the

preference prediction. One way is to make use of the demographic information of users and the content

information of items, such as the gender, age and location of users, and the genre, release date and tags

of items; this is referred to as content-based recommendation [8]. The other way purely relies on the

collective rating information between users and items without any forms of content information; this

is referred to as Collaborative Filtering (CF) [9]. The intuition behind CF is the real-world “word of

mouth” phenomenon: users who had similar taste in the past are likely to have similar preferences in the

future, and likewise for the items. The name “collaborative filtering” was coined in 1992 in a pioneer

work on an automatic electronic mail filtering system called Tapestry [10], one of the first recommender

systems. The term “collaborative” suggests the collective usage of the information involving multiple

users and items in such systems, instead of explicit collaboration between the system and the users [5].

CF was popularised through the Netflix competitions which started in 2006*, in which it has played

a central role to provide efficient and accurate recommendation models [11]. Compared to a content-

based recommender system, CF is not limited to the availability of the content information, and it can

also overcome the over-specification problem that is usually suffered by a content-based recommender

system [8].

*http://www.netflixprize.com/
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Figure 1.1: A schematic illustration of the task of a recommender system. Positive and negative preferences are
shown in red and blue respectively. Blank blocks are unknown preferences which are to be predicted
by the system. The shaded areas represent the situations when new users and new items join the system
with no preference information available yet. How to predict the related preference values is referred to
as the cold-start problem.

Despite its many advantages, a major problem for CF is that the quality of recommendations largely

depends on whether there is sufficient rating information on the users and items [12]. Especially, when

new users or new items just join the system and there is no rating information about them yet, it is difficult

to initiate recommendations by CF. This is referred to as the cold-start problem [13]. In Figure 1.1, we

have used shaded areas to highlight these users and items as well as the associated preferences to predict.

To make recommendations for these users/items, the preferences within the entire shaded area need to

be predicted, whereas no existing preferences about them can be used to support this process.

Many efforts have been made to solve the cold-start problem. Especially, much work has been done

on utilising additional information about the users and items. In [14, 15], sources such as age and gender

of a user and genres and tags of an item are incorporated into their rating prediction model. In [16],

social information, such as twitter following relationship, is used to make recommendations. However,

such content-based information is not always available, requiring pure CF-based algorithms for solving

cold-start problems.

Within the scope of CF, an additional process is usually introduced to solve the cold-start problem,

e.g., an interview process [17, 18] to first learn the user profile, and then to make recommendations

based on the established profile. Usually the objective is to learn the user profile as much as possible

through the initial stage, rather than to satisfy the user’s information need at the same time [19]. In

this thesis, we argue that, a more integrated view should not ignore the user’s information need even at

the earliest stage; we should take into account the user’s information need throughout the whole process.

Also, recommendations would preferably be provided right from the outset and user interests acquired by

employing a less intrusive method that gradually learns the user profile. Therefore, we focus on a more
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Figure 1.2: Examples of the interactive recommendation interface. Left: Pandora. Right: StumbleUpon. This
interface promotes recommendation-oriented interactions. The service itself is to provide recommend-
ations to the user, and the user can only interact with the items (music in Pandora and webpages in
StumbleUpon) provided by the service.

integrated view of the cold-start problem which does not distinguish between the information-gathering

and the recommendation-making phases, but continuously learn/detect the user profile while trying to

satisfy the user at the same time.

Recently a type of interaction-based Web service interface has emerged. This interface enables pure

recommendation-oriented interactions, which means that, all the services are comprised of direct user

interactions with the recommender system over time. In such systems, there is no need (and in many

systems, no way) for users to actively search for content. Instead, information items, such as webpages

(StumbleUpon.com), songs (Pandora.com), ask and answer (Jelly.co) or dating matches (goTinder.com),

are sequentially recommended to individual users, while feedback on recommended items is continu-

ously observed (see Figure 1.2). Then the feedback collected during interactions can be utilised to

improve the recommendation quality for the users.

We refer to this interface as the Interactive Recommender Interface. We argue that the interactive

recommendation interface itself has suggested a more natural way to solve cold-start problems, i.e.,,

to use an interactive recommendation process and learn the user’s profile through her feedback on the

recommended items. Meanwhile, it also makes the recommendation problem more challenging, because

the recommendations are expected to be made right from the beginning rather than after a warming-

up phase. Therefore, the recommended item(s) provided during each interaction stage need(s) to be

informative for both the new user and the system. This way, the system can update gradually to establish

the user’s profile while satisfying the user’s information need throughout the entire interactive process.

1.1 Research Problems

This thesis focuses on the cold-start problem and proposes to solve it through an interactive recommend-

ation process (see Figure 1.3) with the integrated objective of maximising the user satisfaction over a



1.1. Research Problems 16

Figure 1.3: The interactive recommendation process. The system recommends item(s) to the user, then the user
gives feedback on the recommended item to the system, based on which the system refines its model of
the user and improves its recommendation quality.

period of time. To achieve this objective, we identify the following associated research problems:

1. Sequential Recommendation. The sequential recommendation process is the simplest form of

the interactive recommendation process, where the system sequentially provides one item at each

interactive round. The research problem of this process is how to decide the item to show to

the user at each interaction in order to achieve maximal total ratings collected over T timesteps.

For this process, a successful solution should balance between the two interconnected aspects,

recommending and learning, in delivering each item during the process. It requires us model not

only the recommended item’s potential utility for the user, but also the potential information to be

gained from the user’s feedback on it. For the former, we need to establish a preference prediction

model, and for the latter, we need to model the uncertainty in the prediction model.

2. Sequential Batch Recommendation. The above interactive recommendation process requires

the users to actively provide feedback on the recommended items, and the system needs to update

whenever a new rating is received, which can be computationally expensive for practical applica-

tions. Meanwhile, this process is also impractical for solving the item cold-start problem. Unlike

users, cold-start items cannot actively obtain feedback from users; on the contrary, we need to wait

for the users to give feedback on them. As users differ in their response times, waiting for one

user’s response before targeting to another is impractical. These concerns suggest us to integrate

a batch solution into the sequential recommendation, i.e., to adopt a sequential batch process. The

research problem is how to select the batch of recommendations (a batch of items for a cold-start

user, or a batch of users for a cold-start item) in each interactive round.

3. Item Combination and Diversification. With a sequential batch recommendation process where

multiple items are recommended at each interaction, the top-N recommendation diversification

problem naturally emerges. The probability ranking principle (PRP) asserts that the optimal rank-

ing of a list of recommended items should be in order of decreasing probability of relevance to the

user [20], which is, however, based on the assumption that the recommended items are independ-

ent of each other [20]. Diversification, on the other hand, addresses the correlations between items
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and suggests that a more diverse item combination may promote novel content exploration and

discovery [21] and finally lead to better user experience. Achieving the optimally ranked list thus

requires us to balance between accuracy-based criteria such as relevance and the diversification

need of the user.

4. Diversification over Multiple Interactions. When we consider the recommendation process as

a temporal process, the problem emerges of whether the diversification of items should be con-

sidered alone or jointly with respect to the feedback received previously. It is therefore interesting

to investigate the effect of diversifying the combined item list summarising the user’s past interests

and the potential interests in the future.

1.2 Approaches
This thesis aims to address the cold-start CF problem in an interactive setting. We propose to approach

the problem from the above-mentioned angles and provide theoretical understanding on each of them.

We start with the sequential recommendation process by proposing an interactive CF framework and

relate it to the multi-armed bandit problem [22, 23]. Then, in order to address multiple items at each

interaction, we extend the framework by formulating it into a partially observable Markov decision

process (POMDP) [24] to search for the exact solution and its implications. After that, we focus on the

item diversification problem and relate it to the portfolio retrieval [25]. Finally, we consider joint item

diversification with a case study in venture finance.

1.2.1 Interactive CF

We first propose an interactive CF (ICF) framework that aims to study CF in an interactive setting.

According to the framework, the recommender system sequentially recommends items to the target user

and iteratively updates the user model with the received feedback. The goal is to maximise the overall

recommendation accuracy over a period of time. This mechanism naturally addresses the cold-start

problem as any user can immediately receive sequential recommendations without providing ratings

beforehand.

The integrated goal of maximising the overall recommendation performance over a period of

time covers both the learning and recommending aspects, and is closely related to the Exploitation-

Exploration (EE) problems [22, 23, 26]. EE problems describe the dilemma of whether, for each in-

teraction, we should try to satisfy the user’s interest with the best-guessed item according to current

knowledge or whether we should try some sub-optimal yet discriminative items to gain more knowledge

about the user. EE problems have been intensively studied in the machine learning and statistics com-

munities, with multi-armed bandits as the generic setting. There are mainly two types of approaches.

One type assumes no correlations between individual arms, such as probability-based methods including

ε-greedy [22], epoch-greedy [27], Exp3 and Exp4 [28], and index-based methods including Gittins Index

[23] and upper confidence bounds [29, 22]. The other type, the contextual bandit, assumes that the re-

ward of “pulling an arm” is based on both the arm and the context, which share a common feature space.

The concept of the contextual bandit has been applied to personalised news article recommendation [26],
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where the context is defined as content features (texts) of the news articles and the browsing contexts of

the users.

However, it is unclear as to how to model the interaction in pure CF settings where there is no con-

tent data to represent users and items and the only observations are ratings. In order to naturally integrate

with existing CF approaches, we address the ICF problem under the popular matrix factorization frame-

work, which has been proven to be effective in various recommendation competitions [30]. Specifically,

we utilise the probabilistic matrix factorization (PMF) [31], investigating into the probabilistic model of

the user-item ratings. The reason of using PMF is due to its capability of modelling both the expectation

and the uncertainty of the user/item feature vectors, which further indicate the extents of exploitation

and exploration respectively. According to PMF, the uncertainty of a predicted rating comes from both

the related user feature vector and the related item feature vector. To consider both uncertainties, we

adopt empirical algorithm Thompson sampling [32] which samples user/item feature vectors from their

distributions. With sampled feature vectors, both the expectation and uncertainty of each recommend-

ation choice are addressed during the decision process. Then, we assume the item feature vectors are

well-learnt and thus the item-side uncertainties could be disregarded. The problem then falls into a linear

form in the item feature vectors, and thus can be solved by various linear bandit algorithms [29], includ-

ing a variation of ε-greedy algorithm, linear confidence bound and generalized linear upper confidence

bound.

1.2.2 Two-Stage CF

The above interactive recommendation process can be impractical for solving an item cold-start prob-

lem because ratings on the new item cannot be actively obtained. Rather, we need to wait for the users

to respond, and the response times may differ. Also, updating the system whenever new feedback is

registered can also be expensive. These concerns motivate us to combine a sequential interactive recom-

mendation process with a batch approach – to recommend a batch of items (for a cold-start user) or a

batch of users (for a cold-start item) at each interaction stage.

On the other hand, we can also view the cold-start problem as a resource allocation problem. In a

short period of time, the number of recommendations (either for a new item or to a new user) is usually

much smaller than the size of the available pool. As such, only a small portion can be selected due to the

limited resources. For example, advertisements of a new fresh item can only be sent to a limited number

of users, and a new user can only rate a limited number of items when joining a new web service. It is

important to utilise the limited recommendation resources wisely.

We thus propose a simple yet practical two-stage interaction process for solving the cold-start prob-

lem (See Figure 1.4). During the initial stage, we use a portion of recommendation allocations to estimate

the new item’s (user’s) model (with also considerations on its utility). After that, in the second stage, we

use the remaining recommendation allocations. The goal, again, is to maximise the total feedback from

the two stages (the overall recommendation quality). Note that though this process is also two-stage, it

is fundamentally different from the traditional two-stage approaches for cold-start problems where the

recommendation objective is placed onto only the second stage [33, 34, 35, 17, 36]. We impose the
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(a) A cold-start item

(b) A cold-start user

Figure 1.4: Schematic figures of the two-stage recommendation process for (a) a cold-start item; and (b) a cold-start
user. The total N resources are allocated in two stages. At the initial stage, m users (items) are selected,
with their feedback used to update the profile of the new item (user). Then another n users (items)
are selected in the second stage to exploit the updated profile. The target is to maximise the overall
feedback over two stages.

objective onto the whole process, and thus the initial stage involves both learning and recommending.

We formulate the problem with POMDP and provide its exact solution. A POMDP models a

Markov decision process where the true state of the system is partially unobservable [24]. In the scenario

of item cold-start recommendation, we define the true state of the system as each user’s genuine (poten-

tial) preference regarding the new item, which is unknown for unobserved users. As such, we can use

POMDP to describe the decision process by defining the following (known as the POMDP tuple) [24]:

(i) the states (the continuous space of all possible preferences from the users), (ii) the actions (recom-

mendations), (iii) the observations (the ratings received from targeted users), (iv) the reward function (the

expected total rating), (v) the state-transition function (how the system updates its models of unobserved

users), and (vi) the observation function (the probabilistic model that generates the observed ratings).

We base the POMDP on both a correlated-user (CU) model and a PMF model; the former can be

seen as a probabilistic representation of the memory-based CF, and the latter is a typical latent factor

model for CF. In both cases, we argue that the user-user correlation plays an central role in the decision

process as it determines how the feedback from selected users can update the expected feedback from

others; it is directly modelled through the multivariate Gaussian distribution in the CU model, and can

be easily inferred from the latent feature vectors in PMF. The update of system’s belief from one set of

users to the other can be well-captured by the POMDP formulation which enables us to find an exact

solution to the two-stage recommendation process.

However, an exact value iteration solution of the POMDP is intractable and is PSPACE-complete
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[37], as it requires us to iterate through all possible selections and observations. However, as we closely

analyse each term of the exact solution from the perspective of correlation between users, we reveal an

important insight: the users chosen in the initial stage should be those not only highly relevant according

to the initial-stage information, but also able to potentially guide us to find users with high expected

values in the next stage. This ability of guidance can be further abstracted as a strong correlation between

the initial-stage users and potential second-stage users, no matter positive or negative. With this insight,

we propose the approximation method guided EE to ease the computational complexity brought by the

exact solution.

The proposed process and its solution are also applicable to other scenarios. For example, in IR,

when a query is registered, the system shows two subsequent pages to the user such that the second-

stage results can be refined [38, 39]. And, in online display advertising, for a new campaign, in order

to understand which users should be targeted, the advertiser can spend some budget to show the ads to

different users and collect their feedback (i.e., ad click or conversion). Then after the warming-up stage,

we can leverage the users’ feedback and refine the target user groups for higher advertising performance

[40].

1.2.3 Diversification

When multiple items are concerned, the correlation between them should also be taken into account.

This leads us to consider the item diversification problem. The rationale behind promoting result diver-

sification has been explored by the researchers of both IR and recommender systems. For example, in

text retrieval, some regard diversifying the search results as a way of reducing redundancy and improv-

ing information novelty in the results [41], as in the work on sub-topic retrieval [42]. Others consider

it as the means of managing uncertainty and risk in the ranked list [43, 25]. In parallel to text retrieval

and Web search, diversification of the recommendation results has further recently been identified as a

critical factor that significantly influences end-user satisfaction [44, 45, 21, 46].

In the past, diversification of recommended items was usually achieved in an explicit manner. For

example, a similarity measure is usually introduced first, then the diversification is increased by redu-

cing the in-list similarity [46, 47]. The balance between diversity and other criteria such as relevance,

however, has not been systematically discussed [41, 48, 25]. In other words, the previously proposed

methods have focused on the question “how to diversify”, but failed to answer “when to diversify”. More

specifically, the diversification need of different users may be different and thus the level of diversific-

ation should be adaptive. A recent study in web search has found that different queries could benefit

from different diversification strategies [49, 50]. In recommendation, it is even more useful to make the

diversification adaptive to individual users’ tastes.

The usefulness of adaptive diversification has two aspects. First, user tastes have different scope

and coverage of the underlying topics/factors, indicated by the rated items. Some users’ tastes are more

specific to a few topical areas, while others are more diversified across various topics. To see this,

consider the following examples where users are required to provide two rated movies to describe their

movie tastes and use them as the ground for recommendation. Suppose a user was in favor of the two
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Figure 1.5: Comparisons of the variances in latent factors for different users. The latent factors are obtained by
PureSVD with latent dimensionality 5 [1] on the MovieLens 1M dataset [2]. Left: The variance of
each latent user factor for users who rated 2 movies with the same or different genres. Users who
rate 2 movies of the different genres tend to have higher variances in their latent factors. Right: The
relationship between the average variance of latent user factors against the number of movies that the
user rated. Users who have fewer numbers of ratings tend to have higher average variances in their
latent factors.

movies “Underworld” and “Eclipse”. For this user, we may provide a recommendation list containing

less diversified items as it is likely that the user’s taste is more concentrated on a few specific topical areas

(likely to prefer Fantasy/Thriller kind movies). By contrast, if the user liked “The Social Network” and

“Taken”, then a more diversified recommendation would fit the user’s taste better, implied by the fact that

the preferred two movies are in quite different genres. These examples suggest that the diversification

level should rely on the underlying topic distribution and the individual user’s taste. This is similar to

the notions of exhaustivity and specificity discussed in [51].

Second, a target user’s “true” taste is hidden and can be inferred only from the rated items (the user

profile). Thus, our understanding of the target user’s taste varies and depends on the ambiguity of the

provided user profile. For a cold-start user with no or only a small number of items, the information is

not enough to infer the user’s exact taste, so a more diversified recommendation list would be a safer bet.

Also, a diversified recommendation list can help to clear the ambiguity of the user profile, which will

further assist the system’s knowledge about the user.

The above two considerations can be further illustrated in Figure 1.5 which shows our intuition by

employing a latent factor model on a movie rating data set. The uncertainty of learned user tastes is

measured by their variances (the exact definition can be found later in Chapter 5). First, we can see that

variances of latent user factors are obviously higher for the users who rated two movies with different

genres than for those who rated two movies within the same genre. Second, we can also see that the

average variance of latent user factors decreases as the user rates more items, indicating a reduction of

uncertainty in the user profile with more collected information. It should however be noted that more

ratings in a profile may not necessarily give us more information about the user preference. It also

depends on what items the user has rated – some ratings are more informative than others [35].

Taking the above aspects into account, we propose the latent factor portfolio (LFP) framework to

address adaptive diversification which connects the latent factor models [52, 9, 53, 31, 54] with portfolio
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Figure 1.6: Mean and variance comparison between the PMF recommendations and groundtruths of VCs’ invest-
ments. Left: percentage of PMF/groundtruths to have higher mean for individual users. Right: percent-
age of PMF/groundtruths to have lower variance for individual users.

retrieval [25]. We use latent factor models because they are a more general form of MF models and

have been widely used for CF due to their accuracy and scalability. The goal of LFP is to optimise the

trade-off of the expected return and uncertainty, modelled as the variance. In the proposed framework,

the coverage of a user’s preferences is modelled by the distribution of latent factors and the uncertainty

is represented by using the variances of latent factors. Our derivation then shows that the distribution

and the uncertainty of latent factors in a user profile determine the final uncertainty of the ranked list.

The diversification level should finally reflect the distribution and the variance (uncertainty) of latent

factors in a user profile that has been given. The proposed solution incorporates the concept of portfolio

optimisation from finance, which integrates the goals of maximising expected return and reducing un-

certainty into a unified optimisation problem. It provides a systematic way of achieving diversification

in a personalised way. Combining the latent factor models and portfolio retrieval enables us to gain a

clear understanding of the adaptive diversification, which otherwise would not be derived from either

approach independently.

1.2.4 Risk-Hedging

To relate item diversification back to the temporal recommendation process, we investigate the effect

of diversification over time. Inspired by the investment practices in finance, we argue that it could be

beneficial if the recommended items are chosen jointly with the users’ past preference records, instead

of being optimised alone. Our motivation comes from the concept of “hedging” commonly practised by

investors in their investment activities. Investors may choose an investment that can offset the potential

risk of any adverse price movements in the investments that they are already holding. As a case study,

we consider venture capital investment recommendation using the dataset obtained from CrunchBase,

a repository of startup companies, individuals and investors focusing on US high-tech sectors†. In this

case, we aim to enhance the recommendation quality by recommending startups that, to some extent,

incorporate compensating features to those in the user’s investment history.

Figure 1.6 further illustrates our motivation. This figure shows the statistics of the mean/variance

comparison between the following two portfolios for each user: (i) the joint portfolio that contains
†https://www.crunchbase.com/
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previously-selected items by each user and the top-N recommendations suggested by PMF (without

diversification) to her; and (ii) the joint portfolio that contains previously-selected items by each user

and the groundtruths in the test set (i.e., all the groundtruths for each user). The mean and variance

are calculated based on the PMF model, and the same number of PMF recommendations are made

to match the number of groundtruths in order to make the comparison. We can see that for 76.3%

users the recommendations made by PMF have higher mean values, whereas in 83.5% cases the users’

groundtruths have lower variances. This figure suggests that, first, promoting items with the highest

expected returns may fail to produce the most desirable result; and, second, it may be possible to estimate

the investor’s actual risk appetite according to the probabilistic model PMF, which connects the abstract

risk obtained by CF with the actual risk from a financial perspective.

We propose a joint portfolio optimisation process based on the probabilistic model PMF, which

optimises the overall diversification of the items comprising both the user’s previous rating records and

the proposed recommendations. Similar to LFP, this optimisation process involves both the goals of

maximising the expected return and reducing risk. In other words, the utility of a recommendation list

is a combination of the expected return and the risk factor. In order to determine the optimal recom-

mendations, we need to first find the maximal utility to be brought by a candidate recommendation list.

This requires us to conduct weight optimisation for the joint portfolio. Next, by iterating through all

candidate recommendation lists, we can further determine the optimal list. As iterating through all pos-

sible combinations of items is infeasible in practice, we further propose several approximate solutions.

These include an index-based ranking solution, sampling, sequential selection, weight-based ranking,

and filtering.

The case study is conducted on a financial dataset, but similar arguments can be made in a traditional

recommendation scenario. When we optimise the joint portfolio over time, we may catch the temporal

dynamic change in the user’s taste [45]. Thus, we could consistently avoid the over-specification of

recommended items over time.

The relationship between the four aspects is shown in Figure 1.7. These aspects can be consolidated

into two factors: the number of stages involved in the process (the x-axis in the figure) and the number

of items to recommend at each stage (the y-axis in the figure). First, we propose ICF as a sequential

recommendation process in which one item is recommended during each stage. Then, in the two-stage

CF, we extend this process to include two stages, each involving a batch of recommendations. After

that, we focus on the intra-stage recommendation by considering diversification. Finally, we consider

risk-hedging diversification which relates the diversification back to the interactive process.

1.3 Contributions
The contribution of this thesis is to build a number of algorithms following the sub-objectives introduced

above. These algorithms are presented throughout the following publications which form the main part

of this thesis:

• Yue Shi, Xiaoxue Zhao, Jun Wang, Martha Larson, and Alan Hanjalic. “Adaptive diversification
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Figure 1.7: The histogram of the four interconnected aspects discussed in this thesis.

of recommendation results via latent factor portfolio.” Proceedings of the 35th International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2012.

• Xiaoxue Zhao, Weinan Zhang, and Jun Wang. “Interactive collaborative filtering.” Proceedings

of the 22nd ACM International Conference on Information & Knowledge Management (CIKM),

2013. (Nominated as the best student paper candidate.)

• Xiaoxue Zhao, Weinan Zhang, and Jun Wang. “Risk-hedged venture capital investment recom-
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1.4 Structure

The rest of the thesis is organised as follows:

In Chapter 2, we give the background of the research domain. We specifically focus on the liter-

ature on CF, cold-start problems, the PRP principle in IR, relevance feedback, EE problems, POMDP,

diversification and relevant economic concepts that are addressed in this thesis.

In Chapter 3, we focus on the first research problem, sequential interactive recommendation, and

propose the Interactive Collaborative Filtering framework. We first formulate the objective function

that is to achieve the maximal overall performance over a period of time. Next, we provide the PMF

model to obtain the distributions of the user and item feature vectors. Then we employ Thompson

sampling to address the uncertainties of both the user and the item models. After that, we assume that

the uncertainty in ratings comes only from the cold-start user model, and connect our model to a series

of UCB algorithms. In the experiment part, we compare our proposed EE algorithms to several baseline

methods including SVD, ε-greedy, active learning and interview methods. We conduct our experiments

on cold-start users as well as warm-start users with drifting tastes.

In Chapter 4, we address the second research problem, sequential batch recommendation, and pro-

pose the Two-Stage Collaborative Filtering process. We first formulate the two-stage recommendation

with a POMDP framework. We then derive the exact solutions by value iteration for both the CU model

and the PMF model, along with discussing on the link between them. After that, we present our theor-

etical conclusion on how to choose the users in the initial stage: they should be not only highly relevant

according to the initial-stage information, but also highly correlated to potential second-stage users. With

this finding, we propose the approximation method guided EE (GEE) for both the CU and the PMF mod-

els. In the experiment part, we compare the proposed algorithm with several baselines including greedy,

active learning and UCB algorithms, on both a synthetic dataset and a real dataset.

In Chapter 5, we investigate the third research problem, recommendation result diversification, and

propose the Item Portfolio Diversification which introduces portfolio theory into the diversification of

recommendation lists. We start with deriving the variance (covariance) of (between) the rating estima-

tions, as a function of the user and item latent factors. Then, we formulate the optimal ranking function

by introducing the trade-off factor to balance the return and uncertainty. A sequential selection algorithm

is then proposed which determines the selection and ranking of the items in the recommendation list. In

the experiment part that follows, we focus on discovering the relations between the accuracy and di-

versity and on how the diversity level is adaptively achieved according to each user’s personal need.

In Chapter 6, we discuss the fourth research problem concerning diversification over time. We

propose a Risk-Hedging Diversification framework which jointly optimises a portfolio comprised of

the proposed recommendations and the previous user rating records. We first give a brief introduction

of the background of the investment screening process and the CrunchBase dataset that we use in the

experiments. Then, we formulate the problem by decomposing it into two steps, and propose solutions

for each of them. Then we propose several approximate solutions. In the experiment part, we conduct a

thorough empirical analysis of the effect of parameters and a series of performance comparisons between
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the proposed method and several baselines.

In Chapter 7, we sum up the conclusions and present several directions for future research.



Chapter 2

Related Work

Because this thesis seeks solutions within collaborative filtering (CF), it falls into the scope of the CF re-

search. Due to the unique formulation of the cold-start problem in this thesis, we also touch on the topics

of multi-armed bandit, decision theory, exploitation-exploration and diversification. Consequently, we

first focus on CF and cold-start problems; then we provide a brief overview of several issues related to

the methods proposed in this thesis.

2.1 Collaborative Filtering
CF aims to utilise preferences previously expressed by users in regard to items to infer possible future

preferences [55]. The preferences can be explicitly-expressed ratings such as scores or “like”s and

“dislike”s, or implicit user behavioural information such as clicking, viewing and purchasing, etc. CF

exclusively relies on the preference matrix (see Figure 1.1) instead of any content-based information

(e.g., the topic, tags, release date, title of an item, or the location, gender, age, nationality of a user).

The idea behind CF is that users who had similar preferences in the past are likely to have similar

preferences in the future; and that the more similar the users were in the past, the more likely they

would agree with each other in the future. It heuristically implements the real-world “word of mouth”

phenomenon. Similarly, the items who shared similar users in the past would also attract the similar

group of users in the future. It is argued that, compared to content-based methods, CF can catch more

subtle relations and has a higher potential for serendipity [55].

CF can be achieved by mainly three approaches [11]: memory-based approaches such as

neighbourhood-based CF (user-based and item-based) [2, 56], model-based CF [30, 57, 57, 58], and

hybrid methods [59] that combine the memory-based and model-based approaches together.

2.1.1 Memory-Based CF

Memory-based CF examplifies the “word-of-mouth” heuristic directly. As the term itself suggests, it

keeps a complete record of the user-item preferences. From the rating data the similarity between users

or items is calculated for making recommendations. These methods are widely applied to many recom-

mender systems such as movies [55, 60], news [61], online shopping [62], etc.

Typical examples of memory-based CF are neighbourhood-based CF, which include mainly two

types: user-based CF and item-based CF. For user-based CF, the prediction of a potential user-item
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preference score is calculated as the weighted summation of the preferences expressed by the user’s

neighbours, the users similar to the target user, weighted by the similarity [2, 63, 55, 64]. Let us denote

the user as u, item as i, and the rating to predict as ru,i, then the basic form of a user-based CF can be

written as

r̂u,i =

∑
v∈Nei(u) sim(u, v)× rv,i∑

v∈Nei(u) sim(u, v)
, (2.1)

where r̂u,i is the predicted rating, Nei(u) represents u’s neighbours who have rated i, sim(u, v) is the

similarity between user u and v, and rv,i is the known preference expressed by u’s neighbour v. The

denominator is used to limit the prediction to the desired range. The similarity measure can be cosine

similarity or Pearson correlation. For the latter, the estimation function is usually altered as

r̂u,i = ru +

∑
v∈Nei(u) sim(u, v)× (rv,i − rv)∑

v∈Nei(u) sim(u, v)
, (2.2)

where the ratings by neighbours are centred by their averages. In some practices, the rating scores are

also normalised by their standard deviations, which is referred to as the Z-score normalisation [65].

Item-based CF is largely symmetric to user-based CF, aside from the fact that sometimes the

weighted average is taken for all available neighbours (i.e., all the items that have been rated by the

same user) instead of for the most similar ones [56, 56, 64].

Elements in memory-based CF include the similarity measure, the neighbourhood selection and the

normalisation of ratings. Discussions have concerned the choices of similarity measures, including the

use of cosine similarity and Pearson correlation as mentioned above [64, 55], and adjusted cosine sim-

ilarity for item-based CF [66]. These measures are mainly correlation-based, and the difference mainly

lies in whether the rating bias is considered in the user/item ratings. Other similarity measures include

mean-square difference [67], Spearman rank correlation [68], frequency-based Pearson correlation [63]

spectral clustering techniques [69] and entropy [70]. An empirical comparison of different similar-

ity measures can be found in [65]. Concerning neighbourhood selection, there are mainly two popular

neighbour selection methods for the user-based CF: the k-nearest neighbours strategy [71] and threshold-

based neighbour selection [72]. In regard to rating normalisation, the deviation from the mean rating and

the Z-score normalisation are usually adopted for the mean and the spread of ratings [65, 73]. Empirical

comparisons can be found in [2, 74]. Though mainly a heuristic method, in [75] the authors provided a

probabilistic framework to explain memory-based CF, and we will further discuss the theoretical basis

of memory-based CF in Chapter 4.

It is argued that the choice between a user-based and an item-based CF largely depends on the

ratio of user-item numbers in the system. If the system has much more users than items, the item-item

similarities can be more reliable than the user-user similarities, and thus an item-based recommender

system is more suitable, and vice versa [62, 55]. Even though customarily either a user-based or an item-

based CF system is used, researchers have also unified the two perspectives by integrating the predictions

from similar users and similar items together [76].
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Memory-based CF has many advantages. Foremost, it is intuitive and thus explainable [64].

Second, fewer parameters are needed to tune it [77]. However, memory-based CF usually suffers from

aspects of scalability [11, 62] and sparseness of the rating data [78, 79]. These can be eased by adopting

a model-based method.

2.1.2 Model-Based CF

While memory-based approaches make rating predictions based on the entire collection of previous rat-

ings, model-based methods first abstract the rating information into a model which is then used to predict

future preferences. A number of approaches can be adopted to build the model, such as machine learning

[80], clustering [81, 82, 83], data mining [84, 85], Bayesian network [86, 87], and dimension reduction

methods [30, 88]. For example, in a Bayesian Network approach, each node in the network is repres-

ented by an item and the state is the preference value for each item. The algorithm then searches over

different network structures and dependencies which are used for further predictions [63]. In clustering-

based models [81, 82, 83], users are first grouped into clusters, and the user’s preference to different

items is conditionally independent given the class of the user. In [89], the authors proposed a restricted

Boltzmann machine to model the user’s ratings of movies, with binary hidden units and softmax visible

units.

A number of methods can be further categorised as latent factor models, in which the users and

items are represented by a small number of “latent factors” and the preference prediction is then calcu-

lated based on the latent factors. For example, latent semantic models (aspect models) proposed by Hof-

mann [90] introduce a latent class variable associated to each observation, and the preference between

the user-item pair is conditionally independent given the aspect. Later, Hofmann proposed a probab-

ilistic latent semantic model for CF [91] which models the observed user ratings as a mixture of user

communities where users participate probabilistically in one or more groups. Based on aspect models,

in [92], the authors proposed a three-way aspect model to address the effect of content information. In

[93], a generative latent variable model is proposed which models each user as a mixture of user attitudes

distributed by Dirichlet allocation.

2.1.3 Matrix Factorization

This thesis mainly adopts matrix factorization (MF) [30] which is probably the most widely adopted lat-

ent factor model. MF first decomposes the user-item preference matrix, projects the users and items onto

a lower dimension space, and then calculates the user-item preferences as the inner products between the

user and item factors in the latent space [30]. Supposing we have the user and item vectors as pu and qi

respectively, we can estimate the rating score as

r̂u,i = pTuqi. (2.3)

The MF method for CF is sometimes alternatively referred to as SVD (singular vector decompos-

ition) because SVD serves as one of the basic processes to obtain the user/item factors [30], as shown

in Eq. (2.4). Supposing that the user-item rating matrix R consists of M users and N items, the rating
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matrix R can be decomposed into three low-rank matrices, UM×K , SK×K and VK×K :

R ≈ USVT , (2.4)

P = (US1/2)T ,Q = S1/2VT . (2.5)

Then, the latent factors of users can be denoted as P, and the latent factors of items can be denoted

as Q, as shown in Eq. (2.5). Each column vector in P (e.g., pu for user u) or Q (e.g., qi for item

i) represents the corresponding user or item. We refer to the direct matrix decomposition method as

pureSVD [52, 94] to differentiate it from a stochastic gradient descent version described below (which

is, however, also widely referred to as SVD within the CF research community). Although PureSVD

is the most basic latent factor model, its recommendation performance for top-N tasks is competitive

according to a recent empirical study [52].

Due to the sparseness of the data, some early work suggested to first fill in the sparse preference

matrix with imputations and then apply matrix factorization methods [88], but recent work has proved

that focusing only on the observed elements in the matrix directly can produce better results [95, 57, 96,

97]. Stochastic gradient descent and alternating least squares (ALS) [57] are two popular approaches

to obtain the desired user and item vectors. Both approaches incorporate a regularised term to avoid

overfitting

min
p(·),q(·)

∑
observed ru,i

(ru,i − pTuqi)2 + λ(||pu||2 + ||qi||2), (2.6)

where ||pu||2 and ||qi||2 denote the Euclidean length of the vectors pu and qi respectively and λ is a

regularisation parameter. In stochastic gradient descent [98], the user and item latent features are first

initialised with random vectors. Then, in each training round, the algorithm loops through all available

ratings in the training set, and, for each rating, calculates the prediction error

eu,i = ru,i − pTuqi, (2.7)

and updates the concerned feature vectors pu and qi with the following modifications

pu ← pu + γ(eu,iqi − λpu), (2.8)

qi ← qi + γ(eu,ipu − λqi), (2.9)

where γ controls the magnitude of the modification rate to the opposite direction of the gradient.

The above update rule is obtained because the partial derivatives of the objective function Eq. (2.6)

can be written as

p′u = −2 (eu,iqi − λpu) , (2.10)

q′i = −2 (eu,ipu − λqi) , (2.11)
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and thus the approximate solution of pu and qi are modified by moving towards the opposite direction of

the gradient. The above process is thus repeated several rounds on the training set and can be terminated

by cross-validation on the test set.

The ALS method alternates between fixing the user feature vectors to obtain the least-squares solu-

tion of the item feature vectors, and fixing the item feature vectors to obtain the least-squares solution of

the user feature vectors according to Eq. (2.6) until convergence. We will further discuss ALS in regard

to probabilistic matrix factorization (PMF) in Chapter 3.

It is worth mentioning that the quadratic form of the objective function with regularisation as shown

in Eq. (2.6) is widely used in MF and has many variations, adding flexibility and elaboration to the model.

A popular variation is to add bias terms for the user (bu) and the item (bi), plus a global bias term (bg),

to catch the deviations of user u and item i from the average, and the average of all ratings respectively:

r̂u,i = bg + bu + bi + pTuqi. (2.12)

The corresponding optimisation objective thus becomes

min
p(·),q(·),b(·)

∑
observed ru,i

(ru,i − bu − bi − bg − pTuqi)2 + λ(||pu||2 + ||qi||2 + b2u + b2i ), (2.13)

which is optimised through learning additional bias features, and hence adds to additional flexibility in

the model [30].

Another variation is to modify the objective function to adapt to the task of implicit rating matrix

decomposition. In [99], the authors proposed the following optimisation objective

min
p(·),q(·)

∑
observed ru,i

cu,i(ru,i − pTuqi)2 + λ(||pu||2 + ||qi||2), (2.14)

in which case ru,i is a binary preference showing whether (ru,i = 1) or not (ru,i = 0) the user has

indicated any interest in the item (through behavioural indicators such as purchasing, listening and clicks,

etc.). cu,i is the confidence level to modify the weight of this implicit feedback in the model optimisation.

In addition, probabilistic latent semantic analysis [100] and latent Dirichlet allocation [58] are also

among famous approaches for conducting MF, but they are less related to this thesis.

2.2 Cold-Start Problems for CF
When no or very few ratings are available to infer the interest/property of a new user/item, it is difficult

to initiate accurate recommendations. It is referred to as the cold-start problem [13], a major challenge

for CF. It is the extreme form of data sparseness which is a main factor limiting the effectiveness of CF

models. Former approaches usually handled cold-start problems by employing additional information,

such as demographic information of a new user (for the user cold-start problems) [101, 102] and content

information for a new item (for the item cold-start problems) [103]. However, fewer work has tackled

the cold-start problems fully within the scope of CF which relies exclusively on the rating information.
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In CF, the prediction of ratings depends entirely on the collected ratings about the related user and

item, which at their introduction stage are totally unknown. Thus, solving cold-start problems within CF

is even more challenging (see the complete blank parts to the right and bottom in Figure 1.1.). Usually

efforts are made either on solving a new user problem or a new item problem, referred to as as the user

cold-start [104, 13] or the item cold-start [8] problem respectively.

2.2.1 User Cold-Start Problems

There is comparatively more literature on user cold-start problems than on item cold-start problems

within the scope of CF, due to the fact that a new user can actively participate in the process to assist

the system to learn. A common method used is to adopt an additional “interview” stage prior to the

recommendation stage in order to collect sufficient information to initiate the first recommendations

[105] . The interview questions may ask the user to provide additional information (e.g. favorite genre)

or to rate a set of informative items. For the latter, the items used in the interview can be selected on a

static-basis, such as by popularity, entropy or coverage [105, 106]. The interview phase can also be more

intelligent, such as decision-tree based methods [105, 17, 36]. In decision-tree based methods, the new

user encounters the first question at the top node; and, depending on the answer to the question (such

as “like”, “dislike” and “unknown”), the system provides further questions. Some work has discussed

the case of showing multiple interview problems at once, to avoid the extremely overloaded “unknown”

branch for the user [36].

Active Learning

Active learning (AL) methods form an important branch for designing the interview questions [107, 35,

33, 108]. They are also referred to as optimal design by statisticians [109]. AL presents a limited number

of items (usually much smaller than the total number of available items) to the target user for review, and

then learns the user’s preferences on the remaining items based on her feedback on them. Because the

number of items to review is limited, the user model’s accuracy largely depends on the training points

selected [107, 109]. The objective of active learning is usually represented by a statistical measure on

the prediction, such as achieving minimal mean squared error in the model estimation (A-optimality

criterion) [34], minimal 2-norm of the inverse of the information matrix (E-optimality criterion) [33] or

minimal determinant of resulting covariance matrix of the system (D-optimality criterion) [33]. Achiev-

ing the global statistical measure is usually equivalent to maximising the information gain in the learning

stage [35, 110].

Usually two targets for the interview process are considered. First, the interview process should be

adequate, so that after receiving the feedback, the user profile should be sufficiently learnt for providing

sound recommendations. Second, the interview process should also be kept minimal, so that the user will

not be bored during the process and quit in the middle. Therefore, it usually emphasises on maximising

the information gain during the learning stage [105]. With this target, the learning efficiency, rather than

the user’s information need is emphasised. In this thesis, instead, we use a unified goal that takes into

account the user’s information need from the beginning, leading to algorithms that can automatically

balance between the learning and the recommending goals. This objective will be elaborated throughout
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Table 2.1: A summary of previous studies on cold-start problems within the scope of CF.

User Cold-start Item cold-start

Active Learning

D-optimality [33]

A-optimality [34]
E-optimality [33]

Model entropy minimisation [35]

Rating prediction divergence minimisation [33]

Decision Trees
Functional matrix factorization [17]

Adaptive bootstrapping [36]

Others
Popularity-based [105] Popularity-based [105]

Coverage [105] Coverage [105]

this thesis.

2.2.2 Item Cold-Start Problems

Content information is usually employed for tackling the item cold-start problem so that items with

similar content information to the user’s previously liked items are recommended [8]. [103] proposed

a content-based hybrid approach to integrate content information about item domains into CF. [111]

modelled the user’s votes on different items with Boltzmann machines that use content-based parameter

tying. In [112], the author suggested that users who share item preferences also share similar taxonomic

preferences and thus used the item taxonomy information to assist the inference of the users preferences.

In [113], the authors proposed a feature-based regression method that leverages all available information

on users and items to address both the item and user cold-start problems. This can also extend to the

problem of predicting preferences between new items and new users.

Active learning has also been employed to find informative users for the recommender system

to learn about a new item [34]. This work falls in the “A-optimality” criterion for optimal design as

mentioned before. Similarly, we argue that in order to maximise the overall performance right from the

introduction of a new item, the learning stage and the recommendation stage should not be separated.

This argument will be elaborated in Chapter 4.

A brief summary of previous studies on cold-start problems is shown in Table 2.1.

2.3 Other Related Issues

2.3.1 Probability Ranking Principle in CF

Originating from information retrieval [114], the probabilistic ranking principle (PRP) has been also

related to CF [20]. PRP implies documents to be ranked in descending order by their probabilities of

relevance can produce optimal performance under the “independent document” assumption [115].

This thesis will show that PRP is not optimal as the correlations between users play an important

role in making recommendation decisions, updating the system, and optimisation in terms of diversi-

fication. First, according to PRP, in the user (item) cold-start problem scenario, supposing the rating is

proportional to the relevance probability, the list of items (users) to recommend should be ranked accord-
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ing to the prior information on them, e.g., the average ratings they have received (rated). However, under

the interactive collaborative filtering (ICF) framework proposed in this thesis, such ranking strategy is

not optimal as it does not consider the learning capacity of the system inherit in recommending these

items (users). We argue in this thesis that the correlations between items (users) play an important role

for the system to update, and thus a more comprehensive representation of item-item (user-user) rela-

tions should be adopted. Second, concerning the diversification problem, the item-item correlations play

a central role in optimising a list of items according to the portfolio theory from economics.

Therefore, this thesis especially considers the cases where the correlations should be considered

and thus the PRP principle does not apply.

2.3.2 Relevance Feedback in IR

The process of refined item selection and user group targeting is related to the concept of relevance

feedback in IR [116, 117, 118]. Relevance feedback is used to involve the user into the retrieval process.

It takes the feedback from a given query and uses it as the information to improve retrieval performance

in the future. The procedures starts when the user issues a query, after which the system first shows some

retrieval results; then the user marks some retrieved items to be relevant, with which the system refines

the retrieval results. This process usually repeats for one or two iterations.

Similar to relevance feedback, the interactive recommendation process (Figure 1.3) proposed in this

thesis also designs a feedback loop to refine the recommendation result over interactions. However, the

interactive recommendation process differs from that of relevance feedback in the following aspects.

First, the procedure of relevance feedback mentioned above is usually limited to only one or two

iterations [39]. It is because in IR, a query is input by the user only when the user is searching the

information explicitly. As such, the user usually only interacts with the system a few times until locating

the desired result. Conversely, recommender systems continuously provide information filtering services

without users expressing their information need explicitly, and they collect feedback over time to keep

improving recommendation quality.

Second, for relevance feedback, the objective is to locate the relevant search result as soon as pos-

sible, whereas for interactive recommendation process the target is to satisfy the user’s information need

during the whole interactive process. Therefore, the evaluations are essentially different. For relevance

feedback, it is straightforward to use a time-based evaluation to evaluate the effectiveness of the relev-

ance feedback, such as how soon the system can provide a relevant document for the user. However, in

the interactive recommendation process and the cold-start scenarios, the overall recommendation utility

over all interactions should be used for evaluating the system because the task is to continuously provide

useful information items over time.

The essential difference lies in the functions of an IR system and a recommender system. While an

IR system’s main goal is to find the result as soon as possible, while a recommender system is required

to actively filter the information for the user without explicit queries.
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2.3.3 Exploitation-Exploration Problems

The trade-off between exploitation and exploration is referred to as the exploitation-exploration (EE)

problem. EE problems are related to this thesis because in order to maximise the overall utility over

a series of recommendation-feedback iterations, the recommended items should, on one hand, match

the user’s information need with the current knowledge (exploitation), and, on the other hand, be useful

for the system to improve its knowledge about the user (exploration). Similarly, in the item cold-start

problem scenario, the users to target to in the first stage should be both relevant to the target (exploitation)

as well as useful for learning the target’s properties (exploration).

The EE problem has been intensively studied in the literature of multi-armed bandit (MAB) prob-

lems [119, 27, 29]. In MAB, the agent needs to decide which slot machine among a series to play at each

time step, in order to maximise the sum of rewards earned through a sequence of pulls [120, 29]. Gittins

has provided an optimal index-based solution, referred to as Gittins index [23]. However, calculating the

index is intractable in practice and researchers have endeavoured to find approximate solutions instead.

ε-greedy [121] is one of the simplest algorithms. It chooses the arm according to the greedy

strategy* with probability 1 − ε and chooses a random arm otherwise. ε-greedy is proven to be able

to achieve linear regret bound (Õ(T )) if ε is a constant [121]. In Softmax methods, each arm is picked

with a probability that is proportional to its expectation, and thus arms with higher expectations are

picked with higher probabilities [122]. A variation of Softmax method, referred to as the Boltzmann

exploration, chooses the arm with the following probability [123]

pi(t+ 1) =
eµ̂i(t)/τ∑
j eµ̂j(t)/τ

, (2.15)

where pi(t + 1) denotes the probability of choosing i at the next time step t + 1, µ̂i(t) is the expected

return of i calculated at time t, and τ is a temperature parameter which controls the randomness of the

choice [121].

Upper confidence bounds (UCB) form an important and popular category of approximate solutions

for EE. In UCB, usually an “arm index” is defined as an combination of an expectation term (the ex-

ploitation component) and an uncertainty term (the exploration component), and then the arm with the

largest index is selected in each round. For example, UCB1 [28] suggests to first pull each arm once,

and then choose the arm according to

iUCB1(t+ 1) = arg max
i

µ̂i(t) +

√
2 ln (t)

ni(t)
, (2.16)

where ni(t) denotes the number of times that i has been played until the current step. The term
√

2 ln (t)
ni(t)

here acts as the estimation of uncertainty in the expectation estimation µ̂i(t), which indicates of how well

*The greedy strategy is to choose the arm at time t + 1 with the highest value of expectation summarised until the current
time step:

igreedy(t+ 1) = arg max
i

µ̂i(t),

where µ̂i(t) denotes the expectation of the reward by pulling arm i, calculated with information until time step t.
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the expectation is estimated. Auer et al. have proven that UCB1 can achieve a logarithmic regret bound

(O(lnT )). UCB1 assumes no preliminary knowledge about the reward distributions and the results hold

even when the arms are dependent to each other. Auer et al. also proposed UCB-normal, which makes

use of the Chernoff-Hoeffding bounds to compute the index [22], for the special case that the bandit

rewards are normally distributed.

In addition, epoch-greedy method was proposed for the case that the total time T is unknown [27].

In epoch-greedy, exploitation and exploration take place alternatively in each epoch in order to minimise

the regret and a regret of Õ(T 2/3) is achieved.

Contextual Bandit

For the above-mentioned approaches, when the number of arms is getting large, exploration becomes

more difficult. On the other hand, in real-world problems, there is usually a structure underlying the

arms that can be made use of. In the contextual bandit model, the structure is modelled by a common

feature space for the arms and the context information [124]. A more general linear setting is discussed

in [125]. Assuming the expected reward as a linear function, [29] proposed the LinRel algorithm with a

regret of Õ(
√
T ).

A special case is where rewards can be modelled as a Gaussian process, based on which GP-UCB

[126] emerged. GP-UCB models the arms to follow a multivariate Gaussian distribution. Observations

about some of them will update the distribution which remains to be multivariate Gaussian. The decision

is made based on the linear combination of the expectation and the standard deviation of the reward of

each arm. The regret bound is O(
√
T ).

Contextual bandit algorithms are most related to this thesis because, in our proposed scenarios, each

available item to recommend corresponds to one arm. Therefore the total number of arms can be very

large in number, making it different to use any of the MAB algorithms without assuming structure among

them. Moreover, by using CF techniques, the structure (dependency) of (between) rewards (ratings) of

different recommended items can be modelled. Actually, contextual bandit has already been applied

for news article recommendation [26] and online advertising [127]. In both cases, a context (feature) is

revealed at each timestep, and an arm (either a piece of news or advertisement) is selected based on the

context. The context can be, for example, the user’s demography or location information and the item’s

textual description.

In this thesis, however, we consider a domain-free scenario for the cold-start problem. Therefore,

we need to derive a sensible representation for the correlated arms (items) with only the collaborative

rating information without the help of content-based information. More discussions can be found in

Chapter 3.

2.3.4 (Partially Observable) Markov Decision Processes

A Markov Decision Process (MDP) models discrete time stochastic control, where the agent makes

decisions based on the state of the system, which then partly determine the resulting state of the sys-

tem whereas the resulting states is also partly random [24]. A MDP can be described as a tuple

< S,A, T ran,Reward > where S is the set of states, A is the set of actions, Tran is the state-
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transition function describing the probability of the ending state s′ given the starting state s and action

a (T (s, a, s′) = p(s′|a, s)), and Reward is the reward function that gives the expected immediate re-

ward when the agent takes action a at state s (R(s,a)). The target of an MDP is to maximise the total

expected reward gained over a period of time. Exact solutions for an MDP include value iteration [128],

which works from the terminal states and propagates the value estimation backwards, and policy itera-

tion [129], which continuously improves the policy until convergence. Approximate solutions include

determination-based approaches [130], sampling-based methods [131], heuristic search [132] and di-

mensionality reduction approaches [133].

MDPs are useful for studying a wide range of optimisation problems solved via dynamic pro-

gramming and reinforcement learning, such as Robot navigation [134, 135], language dialog strategy

design [136, 137], dynamic power management [138], and so on. In the scope of recommender systems,

there is fewer work related to MDPs, which, to the best of our knowledge, includes only three papers

[139, 140, 141]. [139] seeks to predict the user’s next action (accepting a recommendation or selecting

a non-recommended item) based on the state defined as the sequence of the user selections in the past,

and the system action is to decide which item to recommend next. [140] and [141], on the other hand,

consider a case study of a query tightening process which assists the user in building a personalised travel

plan through her conversation with the recommender. In [140] and [141], the possible user actions, such

as add a product to the cart, modify the current query, etc., are defined as the state space, and the system

action includes showing the query, executing the current query and adding a product to cart.

In many real-world cases, the state of the system is unobservable and has to be inferred from the

observations upon actions, which leads to the partially observable Markov decision process (POMDP)

[24]. A POMDP can be easily transformed into a MDP by defining the belief state, which transforms

the POMDP’s true states into the probabilistic distributions of them [24]. POMDPs have been applied

to decision support systems for preference elicitation by sequential query selection [142, 143]. We

argue that for a recommender system, as the true preferences from users are only partially known for

the observed users (users who have rated the item), it naturally forms a POMDP problem, and we can

formulate the recommendation problem using POMDP to seek its exact solution. We will discuss this

further in Chapter 4.

2.3.5 Ranking and Diversification

Both the conventional recommendation scenario and the interactive recommendation scenario encounter

the ranking problem of items if the system provides several items in a list. For example, the PRP principle

suggests that top-N relevant items should be shown to the user to achieve optimised ranking [62, 20, 144],

but this is based on the assumption of independent items in the list. Traditionally, research for recom-

mender systems has focused on improving the accuracy of the rating estimation for all the unknown

ratings. However, in a ranking scenario, the top-ranked items and their order are the most important

factors and thus accuracy-based algorithms can be insufficient [145, 146], leading to the learning to rank

techniques [147] tailored for recommender system scenarios. The related recommendation problem usu-

ally referred to as top-N recommendation [56, 148, 46, 149].
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One important factor of top-N recommendation is to provide a diversified item list to satisfy the

user’s information need. Diversity is realised as one of the most important aspects for the recommend-

ation quality [45, 21, 46, 47]. It is the key factor to help users explore new interests that they might

not discover by themselves and thus enhance user experience. Ziegler et al. proposed a re-ranking al-

gorithm for topic diversification [46] which explicitly introduces an intra-list similarity metric based on

content-based features of the items. Then the topic diversification is improved by reducing the in-list

similarity [46]. According to their studies, diversity of a recommendation list may hamper precision to

some degree, but will improve user satisfaction as a whole. Zhang and Hunley formalised the intra-list

topic diversification problem by addressing a multi-objective optimisation problem on diversity and pref-

erence similarity, in which a relevant list is first provided and the items are re-arranged according to the

distance with the user’s profile [47]. On the other hand, in [45], Lathia et al. discussed the diversification

of recommended items as a temporal process so that the system delivers novel items with respect to the

recommendations made in the past. They provided a hybrid algorithm that can offer dynamic recom-

mendations, and they also discovered the negative correlation between user profile length and the degree

of recommendation diversity. The issue of evaluating the novelty and the diversity of recommendations

has also been raised [21]. Meanwhile, diversification of search results has been extensively studied in the

information retrieval community [41, 48, 150, 50], resulting in a fruitful set of diversification methods

and evaluation measures. We encounter the diversification problem when multiple items are shown at

one interaction interface; and, as such, the ranking of items is highly related to our proposed scenario

[144].

2.3.6 Relevant Economic Concepts

Economic theory has been proven to be useful for information retrieval [151]. For example, portfolio

theory [152] has been applied to optimise a list of retrieved results [25]. The basic idea behind the portfo-

lio theory is to control the overall uncertainly inevitable in the estimations. By adopting portfolio theory,

the list of retrieved documents can be diversified such that the overall risk is reduced. The efficient fron-

tier concept was also introduced in [25], and the trade-off between accuracy and diversity was discussed.

In addition, Wang et al. adopted portfolio theory for multimedia fusion [153] to address the uncertainty

and correlation among different modalities in existing fusion methods. Marc et al. proposed a dynamical

information retrieval model with a portfolio-armed bandit machine approach [154]. Recent increasing

attention on exploiting economic principles in for IR [155] may also fall under the same direction.

2.4 Summary
This section aimed to provide an overview of the related areas in recommender system and their con-

nections to this thesis. We first reviewed CF techniques, especially memory-based CF and MF methods,

which will form the building blocks of our proposed algorithms. Then we discussed previous work

on cold-start problems and concluded that mainly it either used supplementary content-based informa-

tion or adopted interview processes before starting recommendation. After that, we discussed several

interconnected issues that emerge in this thesis, including the PRP principle in recommender systems,
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relevance feedback in IR, the EE trade-off, (PO)MDP processes, diversification of a recommendation

list and related economic concepts.

From the literature review, we concluded that until now most work has addressed the cold-start

problem by adopting a pre-recommendation stage (these methods have been summarised in Table 2.1).

We argue that this strategy has neglected the user’s information need at the initial stage. On the con-

trary, we propose an interactive recommendation mechanism and define the target to be maximising the

overall satisfaction during a period of time. This goal combines both the exploitation aspect in which

recommended items should be of the user’s interest right away and the exploration aspect where the

recommended items should also be useful for learning the user’s profile. As such, we reviewed existing

techniques for EE problems including approximate solutions such as upper confidence bound methods

for MAB and solutions to (PO)MDP. When multiple items are recommended in each round, item di-

versification is naturally concerned. We then reviewed several related economic concepts including the

portfolio theory for conducting item diversification. In addition, we also compared our proposed frame-

work with relevance feedback in IR. And, last but not least, all of the discussions in this thesis are based

on the fact that ratings are correlated, which is the basis for the system to update through interactions.

This is a chief difference from the PRP principle for recommender systems.



Chapter 3

Interactive Collaborative Filtering

In this chapter, we introduce the interactive collaborative filtering (ICF) framework which we use to

tackle the user cold-start problem. ICF aims to incorporate an interactive mechanism into the collab-

orative filtering (CF) process. While users receive sequential recommendations, the recommendation

predictions are constantly refined using up-to-date feedback on the recommended items. We formulate

the objective of this new type of recommendation mechanism as maximising the overall feedback over

a period of time. This goal naturally leads to the trade-off between the two interconnected aspects: (i)

learning about the user, and (ii) recommending informative items to her. As such, there is no need to use

an additional per-recommendation “interview” procedure to learn about the cold-start user, as commonly

adopted in previous work [110, 17]. In addition, with the interactive mechanism, the system can also

discover interesting items for individual users when and if the user’s personal preferences and contexts

evolve over time.

We start from the objective function of ICF. Then we derive the probabilistic distributions of the

user and item latent factors with the probabilistic matrix factorization (PMF) model. Based on the prob-

abilistic model, we leverage several exploitation-exploration algorithms to obtain several sub-optimal

decision policies, including the empirical Thompson sampling and upper confidence bound algorithms

(UCB). We conduct experiments on both cold-start users and warm-start users with drifting tastes. Res-

ults show significant improvements of our methods over several strong baselines for the MovieLens,

EachMovie and Netflix datasets.

3.1 Objective Function
Suppose the system has N items and M users in record (for the reader’s convenience, we also provide a

detailed notation list in Table 3.1). The ratings between them are recorded in the preference matrix R in

which each element ru,i is the observed rating from the user u to the item i. Without loss of generality, we

consider the following process in discrete timesteps. Suppose the target user is now denoted simply by u.

At each timestep t ∈ [1, 2, . . . , T ], the system delivers (recommends) an item to the target user. The user

will then give feedback in the form of ratings, or “like”s and “dislike”s, or ignore the recommendation

(“unknown”s). In either way, we denote the feedback as ru,i(t), the rating collected by the system from

user u in regard to the recommended item i(t) at timestep t. In other words, ru,i(t) is the “reward”
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Table 3.1: Summary of key notations in Chapter 3.

Notation Description

N,M The number of items, the number of users

K The dimension of the latent space for user/item feature vectors

R The preference matrix

t ∈ [1, T ] Discrete timestep. One item is recommended at each t

i(t) The index of the item delivered to the user at time t

σ2
0 The variance of the observation noise in the PMF

σ2
p, σ

2
q The prior variance of the user, item feature vectors for the PMF

λp λp = σ2
0/σ

2
p

pu, qi User u’s feature vector, item i’s feature vector

νi,Ψi The mean and covariance matrix of item i’s feature vector

µu,t,Σu,t The mean and covariance matrix of user u’s feature vector calculated at time t

Du,t The observation matrix for user u at time t, with each row being a recommen-
ded item’s feature vector

ru,t Observed ratings from the recommended items until t

α, c, ε Exploration rate for LinUCB, GLM-UCB and ε-greedy respectively

collected by the system from this target user. After receiving the feedback, the system updates its model

and decides on which item to recommend next.

To formulate the decision process, let us denote H(t) as the available information at t the system

has for the target user

H(t) = {i(1), ru,i(1), . . . , i(t− 1), ru,i(t−1)} .

The item is selected according to a strategy π, which is defined as a function from the current

information to the selected item
i(t) ≡ π(H(t)) .

The optimal strategy should maximise the cumulated expected reward during T timesteps,

i∗(·) = arg max
i(·)

T∑
t=1

E[ru,i(t)], (3.1)

where i(·) = {i(1), i(2), . . . , i(T )} and i(t) is the item selected at timestep t. Because of the nature

of recommender systems, here we use reward rather then regret to express the objective function, and

maximising cumulative reward is equivalent to minimising cumulative regret. Here we consider the

quality of recommendations at different timesteps as equally important, and summarise the user’s overall

satisfaction over a given period T . In our experiments, we show that a higher level of exploration is

required to achieve a longer-term cumulative reward.

This objective falls into the ambit of the multi-armed bandit problem, where we regard each item

as an arm of the bandit. The next questions are how to estimate the reward and how to optimise the

objective function. Using the latent factor model [156], the rating is estimated as the product of user
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and item feature vectors of dimension K: pu and qi where pu = (pu,1, pu,2, . . . , pu,K)T and qi =

(qi,1, qi,2, . . . , qi,K)T . This is widely used in many CF algorithms:

ru,i = pTuqi + ξ, (3.2)

where ξ ∼ N (0, σ2
0) is the observation noise. The objective function is then re-formulated as follows:

i∗(·) = arg max
i(·)

T∑
t=1

Epu,qi(t) [pTuqi(t)|t] . (3.3)

The question now is how to optimise the objective function.

3.2 Item Selection via Sampling
Both pu and qi are random variables following certain distributions p(pu, qi|t). A heuristic solution of

Eq. (3.3) is to sample an item based on its probability of being optimal [32],

p (i(t) = i) =

∫
I
[
E(ru,i|pu, qi) = max

j
E(ru,j |pu, qj)

]
· p(pu, qi|t)dqidpu, (3.4)

where I is the indicator function [32]; it is 1 when the equality holds (i.e., when item i has the highest

expected rating given pu and qi); otherwise 0. Thus, integrating pu and qi out gives the probability of

being optimal at t for item i. The integration is usually computationally expensive [32], but in practice, no

need to compute explicitly. Here, we leverage a sampling method, Thompson sampling, to approximate

the integration in Eq. (3.4). A nice property of Thompson sampling is that the integration is circumvented

by sampling both the user and item feature vectors together from their distributions (considering the

uncertainty from both aspects) and picking the item that leads to the largest expectation of the reward:

i∗(t)ts = arg max
i

E(ru,i|p̃u, q̃i), (3.5)

where p̃u and q̃i are the sampled user and item feature vectors, which will be described in the next

section.

3.2.1 Distributions of User and Item Feature Vectors
In this section, we adopt the PMF model [31] to build the distributions for the user and the item feature

vectors, which are then used to generate the samples. According to PMF, the conditional probability

distribution of the rating given the user and item feature vectors follows a Gaussian distribution

p(ru,i|pTuqi, σ2
0) = N (ru,i|pTuqi, σ2

0) . (3.6)

We denote P (Q) as the user (item) feature vector matrix, where each row vector represents a

user (item) feature vector (P = [p1,p2, . . . ,pM ]T , Q = [q1, q2, . . . , qN ]T ). The distribution of the

preference matrix R given P and Q is then the joint probability, i.e.,

p(R|P,Q, σ2
0) =

M∏
u=1

N∏
i=1

[N (ru,i|pTuqi, σ2
0)]δu,i ,
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where δu,i = 1 if user u rated item i and δu,i = 0 otherwise.

Similar to the PMF model [31], we define the prior distributions of the user and the item feature

vectors as Gaussian with prior variances σ2
p and σ2

q

p(pu|σ2
p) = N (pu|0, σ2

pI), (3.7)

p(qi|σ2
q ) = N (qi|0, σ2

qI) . (3.8)

By observing the rating matrix R, we can obtain the posterior distributions for the user and the

item feature vectors [31]. Here we focus on the conditional distribution of the user (item) feature vec-

tors, given the current item (user) feature vectors to implement Markov chain Monte Carlo and Gibbs

Sampling (MCMC-Gibbs):

p(P|R,Q, σ2
0 , σ

2
p) ∝ p(R|P,Q, σ2

0 , σ
2
p) · p(P|Q, σ2

0 , σ
2
p)

∝
M∏
u=1

N (pu|0, σ2
pI)

N∏
i=1

[N (ru,i|pTuqi, σ2
0)]δu,i

∝
M∏
u=1

exp

− 1

2σ2
0

(σ2
0

σ2
p

pTupu +
∑
δu,i=1

(ru,i − pTuqi)2
)

∝
M∏
u=1

exp

− 1

2σ2
0

(
pTu (

∑
δu,i=1

qiq
T
i +

σ2
0

σ2
p

I)pu − 2
∑
δu,i=1

ru,iq
T
i pu

).
This means that, for each user, its feature vector follows a multivariate Gaussian distribution given

the feature vectors of the items rated by the user:

p(pu|R,Q, σ2
0 , σ

2
p) = N (pu|µu,Σu), (3.9)

µu = (DT
uDu + λpI)−1DT

uru, (3.10)

Σu = (DT
uDu + λpI)−1σ2

0 . (3.11)

Here, Du is the observation matrix for the user, with each row being the feature vector of an item

rated by the user, sampled from its posterior; ru denotes the vector of corresponding ratings to these

items from the user; and λp = σ2
0/σ

2
p.

Similarly, the posterior distribution for the item feature vector, qi, conditioned on the sampled user

feature vectors, can be obtained as

p(qi|R,P, σ2
0 , σ

2
q ) = N (qi|νi,Ψi), (3.12)

νi = (BT
i Bi + λqI)−1BT

i ri, (3.13)

Ψi = (BT
i Bi + λqI)−1σ2

0 , (3.14)

where Bi is the observation matrix with each row being a sampled user feature vector.

The distributions converge by alternatively sampling the item and the user feature vectors according
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Algorithm 3.1: Thompson sampling
Require: parameters for the item feature vector distributions Θ = {(ν1,Ψ1), . . . , (νN ,ΨN )}, σ0, λp

Initialization: A← λpI
b← 0
for t = 1, 2, 3, ..., T do

Estimate µu,t = A−1b
Estimate Σu,t = A−1σ2

0

Sample p̃u,t from N (pu,t|µu,t,Σu,t)
Sample q̃i from N (qi|νi,Ψi)for {i ∈ {1, 2, . . . , N}}
Select the arm i∗(t) = arg maxi p̃

T
u q̃i

Receive the reward ru,i∗(t)
Update A← A + q̃i∗(t)q̃

T
i∗(t)

Update b← b+ ru,i∗(t)q̃i∗(t)
end for

to the conditional distributions for them. Then, both the expected user and the expected item feature

vectors (µu and νi) and their uncertainties (Σu and Ψi) are obtained.

3.2.2 Thompson Sampling

Thompson sampling can be implemented according to the distributions while they are updated online

whenever new ratings are collected by the system. However, in the ICF scenario, the distribution of the

target user’s feature vector is much more sensitive to her feedback on the items. On the item side, since

each item has usually collected relatively sufficient ratings, it is not necessary to retrain its feature vector

immediately after receiving any rating from the target user, and we choose to periodically retrain them.

Therefore, we simply use the notation q̃i to express a sampled item feature vector from the presently

calculated item feature vector distribution. For the target user, its observation matrix grows each time,

and its distribution can be described similarly conditioned on the observations:

p̃u,t ∼ N (pu,t|µu,t,Σu,t), (3.15)

where

µu,t = (DT
u,tDu,t + λpI)−1DT

u,tru,t, (3.16)

Σu,t = (DT
u,tDu,t + λpI)−1σ2

0 , (3.17)

Similarly, Du,t is the observation matrix with each row being the recommended item’s feature

vector; Σu,t is the uncertainty of the user feature vector at time t; and ru,t is the column vector that

contains all the observations until time t.

From Eq. (3.5), the Thompson sampling method with the PMF modeling suggests to choose the

item with the highest value of the inner product of the sampled values, and Eq. (3.5) can be approximated

as:

i∗(t)ts = arg max
i

p̃Tu,tq̃i, (3.18)

where p̃u,t is sampled from the estimated distribution in Eq. (3.15). This algorithm is described in

Algorithm 3.1.
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Algorithm 3.2: Linear UCB
Require: MAP solution of item feature vectors Q = {ν1, . . . ,νN}, σ0, λp, and α ∈ R+

Initialization: A← λpI
b← 0
for t = 1, 2, 3, ..., T do

Estimate µu,t = A−1b
Estimate Σu,t = A−1σ2

0

Choose the item
i∗(t) = arg max

i

(
(µu,t)

Tνi + α||νi||2,Σu,t

)
Receive the reward ru,i∗(t)
Update A← A + νi∗(t)ν

T
i∗(t)

Update b← b+ ru,i∗(t)νi∗(t)
end for

Thompson sampling enables exploration through the “width” of the distributions of the inner

product of the user and the item feature vectors. The “width” further comes from both the uncertainties of

the user and the item feature vectors. By this approach described above, the uncertainties of the user and

the item feature vectors are considered on the same footing. However, considering ICF as a user-centric

scenario (Figure 1.3), the obtained knowledge on the target user side may be much more important than

that on the item side, especially when items have collected many ratings and thus are always already

well-learnt. Therefore, in the following part, we adopt a biased view so that the item feature vectors

are assumed to be well-learnt as the maximum a posteriori (MAP) solution νi from the distributions

obtained by PMF, and only the user feature vector distributions are maintained for the sampling process.

3.3 Item Selection via Confidence Bound
With the item feature vectors known and fixed, the reward in Eq. (3.2) tends to be a linear form with

the item feature vectors as coefficients, and, the essence of the EE is to approach the user feature vector.

Therefore, such a problem falls into the framework of linear bandits [29]. Linear upper confidence

bound algorithm, and its variations are widely used for such problems. In this way, we take the MAP

estimation of the item feature vectors νi as the representatives of the items and assume them to be fixed.

In the following, linear and generalised linear UCB algorithms are presented for our problem re-

spectively. A variation of ε-greedy algorithm is also provided for comparison.

3.3.1 Linear UCB

As mentioned above, assuming the item feature vectors as fixed, the reward function reduces to be linear

in the item feature vectors, and the objective function in Eq. (3.1) is further written as

i∗(·) = arg max
i(·)

T∑
t=1

E[ru,i(t)] = arg max
i(·)

T∑
t=1

Epu [pTu |t]νi(t), (3.19)

where Epu [pu|t] can be estimated according to Eq. (3.16).

The expected user feature vector can be obtained according to Eq. (3.16). Now the uncertainty of the

reward can be obtained as the estimated variance of the inner product of the user and item feature vectors
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Algorithm 3.3: GLM-UCB
Require: MAP solution of item feature vectors Q = {ν1, . . . ,νN}, σ0, λp, and c ∈ R+

Initialization: A← λpI
for t = 1, 2, 3, . . . , T do

Estimate p̂u,t by Eq. (3.25)
Estimate Σu,t = A−1σ2

0

Choose the item
i∗(t) = arg max

i

(
g(p̂Tu,tνi) + c

√
log t||νi||2,Σu,t

)
Receive the reward ru,i∗(t)
Update A← A + νi∗(t)ν

T
i∗(t)

end for

pTuνi, which comes from the uncertainty of the estimation in the user feature vector. The estimated

variance is the 2-norm based on Σu,t (according to Eq. (3.17), but note that here the observation matrix

is made up of the posterior feature vectors of the items):

||νi||2,Σu,t ≡
√
νTi Σu,tνi . (3.20)

According to [157], with the item feature vectors known and fixed, the expectation of the reward by

choosing item i is bounded in the interval Θi,t with a probability at least 1− ζ

Θi,t =
[
(µu,t)

Tνi − α||νi||2,Σu,t
, (µu,t)

Tνi + α||νi||2,Σu,t

]
(3.21)

where α = 1 +
√

ln (2/ζ)/2. The bounded interval motivates an UCB bandit algorithm, i.e., at each

timestep, to choose the item with the highest upper confidence bound:

i∗(t)l = arg max
i

(
(µu,t)

Tνi + α||νi||2,Σu,t

)
. (3.22)

This algorithm is given in Algorithm 3.2. This algorithm is proven to have a very tight regret bound

of Õ(
√
T ) [26].

As defined in Eq. (3.17), matrix Σu,t is a regularised fisher information matrix, measuring how

much “information” is known about the user feature vector from the previously recommended items,

given that the item feature vectors are known already. This means that, to recommend an item that

maximises ||νi||2,Σu,t is to recommend an item that has been the least represented (understood) by the

perviously recommended items.

3.3.2 Generalised Linear UCB

The problem can be also linked to the generalised linear bandit problem in [125], which gives a

general solution generalised linear model bandit-upper confidence bound (GLM-UCB) if we assume the

reward takes the following form

ru,i(t) = g
(
pTuqi(t)

)
+ ξ, (3.23)
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where g is a monotonically increasing function which takes a linear or nonlinear form. Here we give two

options of function g: a linear form suggested in Eq. (3.2), and a sigmoid form

g(pTuqi) =
1

1 + e−puT qi
. (3.24)

Similar to the derivations in LinUCB, here the item feature vector qi is approximated by the MAP

solution νi. On the other hand, we need to estimate the user feature vector according to the generalised

linear model, which here we denote as p̂u,t (note that here the solution p̂u,t is no longer the MAP solution

in Eq. (3.16) due to the nonlinear function g). In general, according to [125], the quasi-likelihood

estimator p̂u,t of Eq. (3.23) is the solution of

t−1∑
τ=1

(
ru,i(τ) − g(p̂Tu,tνi(τ))

)
νi(τ) = 0 . (3.25)

Specifically, for a sigmoid form, it is estimated as

t−1∑
τ=1

(
ru,i(τ) −

1

1 + e−p̂
T
u,tνi(τ)

)
νi(τ) = 0 . (3.26)

For a linear form, the estimate is the same as the MAP estimation of the user feature vectors Eq.

(3.16).

The GLM-UCB algorithm follows a similar process as linear UCB, i.e., first p̂u,t is estimated, and

the choice of the item is based on the estimated p̂u,t but with the exploration part added which is 2-norm

based on Σu,t (Eq. (3.20)) multiplied by a factor c
√

log t [125]

i∗(t)gl = arg max
i

(
g(p̂Tu,tνi) + c

√
log t||νi||2,Σu,t

)
. (3.27)

The GLM-UCB algorithm is illustrated in Algorithm 3.3. Note that the exploration term α is time-

dependent:

α = α(t) = c
√

log t, (3.28)

where c is a constant with respect to t [125]. With term c
√

log t, the decreasing trend of ||νi||2,Σu,t
is

weakened so that the exploration level is maintained to some extent. Using the conclusion from [125],

GLM-UCB has a regret bound of Õ(
√
T ).*

Just like the other index-based EE algorithms [29], these algorithms have a low computational

complexity, which is O(T 3 +K2N).

*The detailed form of the bound is looser than that of LinUCB but it is more general.
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Algorithm 3.4: Linear ε-greedy
Require: MAP solution of item feature vectors Q = {ν1, . . . ,νN}, λp and ε ∈ [0, 1]

Initialization: A← λpI
b← 0
for t = 1, 2, 3, ..., T do

Estimate µu,t = A−1b
With probability 1− ε choose the item

i∗(t) = arg max
i

(
(µu,t)

Tνi
)

Otherwise choose an item randomly
Receive the reward ru,i∗(t)
Update A← A + νi∗(t)ν

T
i∗(t)

Update b← b+ ru,i∗(t)νi∗(t)
end for

3.3.3 Linear ε-greedy

The linear ε-greedy algorithm is based on the greedy strategy under our setting, which can be described

as

i∗(t)g = arg max
i

(µu,t)
Tνi . (3.29)

where µu,t and νi are the MAP solutions for the PMF model. For simplicity, we simply refer to this

strategy as greedy PMF, or simply PMF.

This greedy strategy is the myopic strategy that always picks the item leading to the highest expected

reward based on current knowledge. Linear ε-greedy that we adopt here is the naive algorithm which

chooses the greedy strategy with probability 1 − ε and explores into random items with probability ε.

The algorithm is described in Algorithm 3.4.

For the above algorithms, two factors contribute to the selection of the item: the exploitation factor

suggested by the greedy algorithm Eq. (3.29) and the exploration factor which is controlled by para-

meters α, c and ε respectively. For each of the three algorithms, the larger the parameter is, the more

emphasis is put onto the exploration effort accordingly.

3.4 Experiments

In this part, we show the results for three experiments. First, we test the performance of the proposed

EE algorithms on cold-start users. We interactively provide recommendations to these users using both

EE algorithms and myopic algorithms to compare the results. Then, we conduct experiments on warm-

start users with interest changes, in order to test the proposed algorithms effectiveness of adapting the

users’ taste drifts. Finally, we use the proposed algorithms in a top-n recommendation scenario to

test their ranking performances. Among these three experiments, the first one is directly related to

the formulations in this chapter. We include the other two (warm-start with taste-drifting and ranking

scenarios) in addition to the cold-start experiment to show the flexibility of our proposed algorithms.
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3.4.1 Datasets

We base our experiments on three popular datasets MovieLens 100K, EachMovie and Netflix. The basic

information of these three datasets is summarised in Table 3.2.

The MovieLens 100K dataset was collected by the GroupLens Research Project at the University

of Minnesota [60]. The data was collected through the MovieLens website (http://movielens.

umn.edu) during the seven-month period from 19 Sep 1997 through 22 Apr 1998. Users with less than

20 ratings were removed from this dataset. Aside from the rating information between users and items,

this dataset also includes the date/time when the ratings were registered, the demographic information

of the users and the genre information of the items.

The EachMovie dataset was collected by the DEC Systems Research Center (currently HP/Compaq

Research) via its EachMovie recommendation service during an eighteen-month period [158]. Similar

to MovieLens, this dataset also includes the date/time information, the demographic information of

the users and the genre information of the items. We choose the above two datasets because they are

quite popular among the research community of recommender systems and both of them contain genre

information of movies that we need for experiments in Section 3.4.5 and 3.5.

The Netflix dataset was constructed to support participants in the Netflix Prize (http://www.

netflixprize.com). It was collected between Oct 1998 and Dec 2005. Only the user ID, item

ID, and the value/date of the rating are included for each rating, whereas no demographic information

or genre information is provided for the users or the items. Compared with the other two datasets, this

dataset covers the longest period and has the largest size. We use Netflix to test the performance of our

algorithms in a larger scale.

Due to the interactive nature of our problem, an online experiment with true interactions from users

would be ideal, but it is not always possible [26]. Instead, we follow an unbiased offline evaluation

scheme for contextual-bandit algorithms according to [159]. In our setting, we assume that the ratings

recorded in the datasets are users’ instinctive actions, not biased by the recommendations provided by

the system. In this way, the records can be treated as unbiased to represent the feedback in an interactive

setting [17].

In order to better compare the results between the three datasets, we normalise the ratings of each of

them into the common range [−1, 1]. Then we split the data into two user-disjoint sets: the training users

and their ratings are used to train the parameters for the item distributions, as required in Thompson

Sampling, and to obtain the MAP solutions of the item feature vectors, as required in UCB-based al-

gorithms (Section 3.2.1). The item feature vector information is maintained as unchanged during the

test phase when the test users go through the interactive recommendation process during T timesteps be-

cause the collected ratings from the target user have trivial effect on the item feature vector distributions.

According to the purpose (whether to test the performance on cold-start users, or on warm-start users),

we select test users based on different criteria, detailed in Section 3.4.4 and Section 3.4.5 respectively.

3.4.2 Compared Algorithms

The baselines include:

http://movielens.umn.edu
http://movielens.umn.edu
http://www.netflixprize.com
http://www.netflixprize.com
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Table 3.2: Characteristics of the datasets (MovieLens 100K, EachMovie and Netflix).

Dataset MovieLens EachMovie Netflix

ratings (all integral) 1 – 5 0 – 5 1 – 5

#users 943 72,916 480,189

#items 1,683 1,648 17,770

#ratings per user 106.04 38.56 209.25

#ratings per item 59.42 1706.30 5654.50

total #ratings 100,000 2,811,983 100,480,507

Popularity-based (Pop). The recommender system picks the most popular items to recommend to

the target user.

Greedy PMF (PMF). This algorithm is built upon the MAP solution obtained from PMF. We regard

it as the myopic algorithm in ICF because it is exploitation only. For each target user, the system needs

to retrain the PMF model after each interaction.

Active Learning (AL). Active learning methods have been proposed for the cold-start problem

[35]. The idea is to minimise the uncertainty in the model, so that the item with the highest uncertainty

is selected to reduce uncertainty [107]. Here we adapt the active learning method to the interactive

recommendation process, such that, in each interaction, the item with the highest uncertainty is selected

according to the up-to-date knowledge.

Interview Process (Interview). In this process, in the each of the first 5 timesteps, the target

user is provided with the most discriminative item at each timestep (as in the active learning process

above). From timestep 6, the system shifts to the greedy strategy. This process is to mimic the shift in an

interview process from a learning period to a recommending period after a few interview questions. Here

we set the number of interview questions to be 5 according to [36] as it is argued that a depth beyond

that can bring little accuracy gain.

Our proposed algorithms include the following:

Thompson Sampling (TS). This is Algorithm 3.1.

Linear UCB (LinUCB). This is Algorithm 3.2. α is used to tune this model.

Generalised Linear UCB (GLM). This is Algorithm 3.3. We set function g as a linear function,

i.e., GLM-Lin, and a sigmoid function, i.e., GLM-Sig. c is used to tune this model.

Linear ε-greedy (ε-greedy). This is Algorithm 3.4. A tuning parameter ε is used to control the

balance between exploitation and exploration.

In addition, we add a constraint for all the algorithms that the same item should not be repeatedly

recommended as suggested in most previous ranking-oriented recommendation settings [144, 160].

3.4.3 Evaluation Measures

Three evaluation metrics are used to test the performance of the ICF tasks.

Cumulative Hit@T . A straightforward evaluation measure is the number of the positive ratings

collected during the total T interactions

hit@T =
1

#users

∑
users

T∑
t=1

θhit . (3.30)
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For both datasets, we define θhit = 1 if the rating is 4 or above, and 0 otherwise, similar to the

definition of positive ratings in previous work [161].

Cumulative Recall@T . We can also check the recall during T timesteps of the interactions:

recall@T =
1

#users

∑
users

T∑
t=1

θhit

#preferences
. (3.31)

Cumulative NDCG@n@T . For the case that multiple items are shown in one interaction, the

ranking of the item listed is also important: it is more useful to have the highly relevant items appear

earlier in the ranking list. We use the normalised discounted cumulative gain (NDCG@n) as the ranking

measure

NDCG@n =
1

IDCG@n

n∑
j=1

2rj − 1

log2(j + 1)
, (3.32)

where rj is the real rating of the item shown at ranking position j. IDCG@n is the score of a perfect

ranking algorithm, and thus normalises the score such that 0 ≤ NDCG@n ≤ 1. Similar to the cumulative

hit and recall, here the cumulative NDCG@n@T takes the sum over T timesteps and average over all

test users

NDCG@n@T =
1

#users

∑
users

T∑
t=1

NDCG@n. (3.33)

3.4.4 Cold-Start Cases

Test User Selection
In order to test the system’s performance on cold-start users, we first select users with sufficient numbers

of recorded ratings in order to test the performance. Here we randomly select 200 users with more

than 120 ratings as the test users in order to obtain averaged result of them. We study up to T =

120 interactions to sufficiently cover the cold-start period. Then the parameters of item feature vector

distributions are trained without these user’s ratings according to Section 3.2.1.

Performance Comparison
To do this experiment, we apply each algorithm to obtain the corresponding item to recommend to the

users at each timestep, update the user vectors according to Eq. (3.15) and repeat T steps. Optimally-

tuned parameters have been adopted for each T = 10, 20, 40, 80, 120. Performances of proposed al-

gorithms and the baselines for cold-start users are compared and summarised in Table 3.3. The best-

performing algorithm is shown in boldface with ∗ marking significant improvements by Wilcoxon

signed-rank test. We chose the very conservative Wilcoxon signed-rank test as it calculates the dif-

ferences between paired observations and can be used for both Gaussian and non-Gaussian data [162].

The row of improvement shows the increases brought by the best-performing algorithm compared to the

greedy PMF strategy.
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The observations can be summarised into the following points: (i) TS generally works better than

the PMF or the ε-greedy algorithm. In most cases, TS also exceeds other baseline algorithms (ac-

cording to cumulative hit). This means that the exploration by considering the uncertainties of the user

and the items according to their probability distributions, is more promising than randomly conducting

explorations. Nevertheless, TS fails to outperform the LinUCB or GLM algorithms. (ii) In almost all

cases, LinUCB, GLM-Lin and GLM-Sig perform better than the baselines. In MovieLens and Netflix,

the three algorithms have close performances; whereas in EachMovie, GLM-Lin outperforms all the

baselines. The increase by the proposed EE algorithms compared to PMF is up to 7.7% on MovieLens,

24.7% on Eachmovie, and 24.4% on Netflix (according to the cumulative hit). All of the improvements

(except one) are statistically significant. (iii) Among all the proposed EE algorithms, linear ε-greedy

performs worst, but still better than PMF. This suggests that adding some level of exploration can al-

ways improve the pure exploitation strategy. (iv) PMF outperforms the popularity-based strategy Pop.

(v) The Interview strategy performs better than the active learning strategy AL in the long run, because

it shifts to exploitation after learning the user profile (5 timesteps). For all the three datasets, however,

the Interview strategy is not as good as the algorithms which are proposed based on the ICF framework.

(vi) Also note that the improvements by our algorithms on EachMovie and Netflix appear to be higher

than on MovieLens. One explanation could be that MovieLens has been preprocessed: all the users with

fewer than 20 ratings (which can be a large number of users) have been removed, and removing them

(and simultaneously their ratings) can lead to less popular items being removed as well (when there is

no rating left for them). Since more popular rather than less popular items remain in the dataset, it is less

beneficial to explore, and eventually results in less significant improvements achieved on MovieLens.

There are two possible reasons that the UCB-based algorithms LinUCB, GLM-Lin and GLM-Sig

outperform TS. First, the user uncertainties may play a much more important role in the ICF scenario.

Consideration on item-side uncertainties may be helpful for learning the item feature vectors in the long

run, but in this user-centric system, it may hamper the user experience. Second, compared with the

UCB-based algorithms which explicitly pursue the highest possible performance for each item as their

exploration strategy, TS involves considerations on both the positive and negative possible performances

for each item. In addition, the sampling process itself imports the exploration instability. However, the

UCB-based algorithms are built on the assumption that the item feature vectors are well-learnt. In the

case of very limited available data and thus underestimated item feature vectors, it may be necessary to

consider the uncertainty of item feature vectors. We leave this problem as our future work.

Impact of Trade-off Parameters

The algorithm-dependent parameters α, c, ε are used to balance between exploitation and exploration.

Here we focus on the cumulative hit as the measure of performance, and investigate how the performance

depends on these parameters, with respect to two horizons T = 20 and T = 120, shown in Figure 3.1.

We show the impact of α for LinUCB as the representative of the UCB-based algorithms while other

cases display similar trends.

We observe that when either α or ε (for either the case of T = 20 or T = 120) increases, the
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Figure 3.1: Cumulative hit against parameter tuning (α for LinUCB and ε for ε-greedy) on EachMovie.

performance first increases, and then falls down. The peak performance corresponds to the optimal

parameter which for T = 20 is smaller than that for T = 120. This is intuitively correct because more

exploration is needed when a longer period is targeted. In practice, to choose T , we can make use of the

statistics from the system record, such as the activity distribution of users within a certain period of time

after the user’s registration.

3.4.5 Warm-Start Cases with Taste Drift

Test User Selection

Through this experiment, we aim to answer the question of whether the algorithms are also applicable

on warm-start users to follow up their interests throughout the interactions, especially when their tastes

Table 3.4: Performance comparison on warm-start users with taste drift on MovieLens and EachMovie.

Dataset MovieLens 100K EachMovie

Measure Cumulative Hit Cumulative Hit

T 60 80 100 120 60 80 100 120

Pop 16.025 18.420 20.490 22.775 19.526 20.437 21.416 22.447

PMF 18.620 21.290 24.060 25.980 19.447 22.453 25.458 28.353

TS 19.095 21.780 24.620 26.515 20.047 22.879 25.832 28.968

ε-greedy 18.995 21.72 24.535 26.480 19.984 22.904 25.974 28.805

LinUCB 20.005 22.875 25.775 27.780 20.205 23.137 26.221 29.247

GLM-Lin 19.895 22.905 25.665 27.775 22.853 25.916 28.863 31.711

GLM-Sig 20.000 22.835 25.760 27.790 20.437 23.358 26.279 29.284

Improvement 7.4% 7.6%* 7.1% 7.0% 17.5%* 15.4%* 13.4%* 11.8%*

Measure Cumulative Recall Cumulative Recall

T 60 80 100 120 60 80 100 120

Pop 0.245 0.286 0.321 0.358 0.126 0.148 0.169 0.189

PMF 0.267 0.311 0.351 0.379 0.126 0.148 0.169 0.189

TS 0.272 0.314 0.360 0.388 0.129 0.149 0.170 0.192

ε-greedy 0.273 0.317 0.363 0.391 0.13 0.15 0.172 0.191

LinUCB 0.291 0.341 0.389 0.422 0.132 0.155 0.178 0.199

GLM-Lin 0.291 0.342 0.388 0.424 0.156 0.180 0.204 0.223

GLM-Sig 0.291 0.341 0.388 0.421 0.138 0.161 0.182 0.201

Improvement 9.0% 10.0%* 10.8% 11.9% 23.8%* 21.6%* 20.7%* 18.0%*



3.4. Experiments 55

Table 3.5: Performance comparison for multiple-item recommendations by cumulative NDCG.

Dataset MovieLens EachMovie Netflix

Measure NDCG@3 NDCG@5 NDCG@3 NDCG@5 NDCG@3 NDCG@5

T 20 40 10 20 20 40 10 20 20 40 10 20

Pop 4.876 8.669 2.666 4.633 3.864 5.588 1.752 2.913 5.29 9.165 2.687 4.693

PMF 6.099 9.832 3.361 5.345 5.043 8.083 2.651 4.379 7.465 12.733 3.983 6.837

TS 6.195 9.912 3.393 5.452 5.167 8.320 2.678 4.431 7.962 13.887 4.237 7.363

ε-greedy 6.080 9.845 3.352 5.333 5.181 8.482 2.689 4.509 7.591 13.009 4.006 6.87

LinUCB 6.391 10.250 3.419 5.519 4.996 8.381 2.689 4.466 8.113 14.085 4.221 7.376

GLM-Lin 6.369 10.253 3.427 5.472 5.367 8.862 2.815 4.719 7.834 13.569 4.145 7.265

GLM-Sig 6.363 10.236 3.424 5.432 5.156 8.375 2.718 4.494 8.081 14.094 4.199 7.353

Improvement 4.8% 4.3% 2.0%* 3.3%* 6.4% 9.6% 6.2%* 7.7%* 8.7%* 10.7%* 6.4%* 7.9%*

are changing over time. To do this, we first divide the rating records of the users (whose ratings are more

than 120) into two periods (set 1 and set 2). Then, we employ the genre information of the items as an

indication of the user interest. That is, we calculate the cosine similarity between the genre vectors of

the two periods. We choose the users with the smallest cosine similarity as an indication that they have

significant interest drifts across the two time periods. All the other users with their ratings compose the

training set. We only conduct experiments on the MovieLens and EachMovie datasets, as there is no

movie genre information for the Netflix dataset.

Adaptability to Taste Drift

In order to test how the system can catch the users’ taste drift, we conduct the empirical experiment as

follows: for each user, in the first period with 60 interactions, we use set 1 as the groundtruth of the

test users; and then, from the 61st interaction, the groundtruth is changed from set 1 to set 2 to simulate

the process of the user’s taste drift. Table 3.4 presents the results of our proposed algorithms compared

to the baselines on the datasets, respectively. Because we focus on the performance when the user has

changed the interest, only the results for T ≥ 60 are shown.

From the results, it can be seen that the proposed algorithms outperform the baselines for both

datasets. When compared with PMF, the improvement is up to 7.6% on the MovieLens dataset, and

17.5% on the EachMovie dataset. Among the proposed algorithms, LinUCB, GLM-Lin and GLM-Sig

perform better than TS, which are similar to the results for the cold-start experiments.

3.4.6 Top-N Ranking Performance

We also conduct an experiment with multiple item slots at each interaction. The ranking-aware measure

nNDCG is used to test the performance. The test users are the same as the ones in the cold-start setting.

The only difference is that the number of interactions is reduced since the number of recommended items

at each interaction increases. The results are shown in Table 3.5.

A similar trend is shown compared to the case of one item at each timestep: on MovieLens, either

LinUCB or GLM-Lin performs the best, and on EachMovie, GLM-Lin always performs best. The results

indicate that the algorithms still outperform the baselines in the multiple item setting. In addition, the

performance on the NDCG measure suggests that our proposed algorithms are also capable regarding
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Table 3.6: A case study of cold-start user #454 on Movielens. User feedback R: L-Like, D-Dislike, U-Unknown.
Movie Genre Abbreviation: Ac-Action, Ad-Adventure, An-Animation, C-Comedy, CC-Children’s Com-
edy, D-Drama, R-Romance, S-Scientific Fiction, T-Thriller, W-War.

T R Movies recommended by PMF Genres R Movies recommended by LinUCB Genres

1 L Star Wars (1977) Ac,Ad,R,S,W L Star Wars (1977) Ac,Ad,R,S,W

2 L Raiders of the Lost Ark (1981) Ac,Ad L Raiders of the Lost Ark (1981) Ac,Ad

3 L Fargo (1996) C,D,T U The Godfather (1972) Ac,C,D

4 D The Silence of the Lambs (1991) D,T D The Silence of the Lambs (1991) D,T

5 D Dante’s Peak (1997) Ac,T D Return of the Jedi (1983) Ac,Ad,R,S,W

6 U Kika (1993) D D The Empire Strikes Back (1980) Ac,Ad,D,R,S,W

7 U A Very Brady Sequel (1996) C L Air Force One (1997) Ac,T

8 U Boomerang (1992) C,R U Liar Liar (1997) C

9 U Black Sheep (1996) C U Twelve Monkeys (1995) D,S

10 L The Saint (1997) Ac,R,T L Contact (1997) D,S

11 U Kiss the Girls (1997) C,D,T D Toy Story (1995) An,CC

12 U Batman (1989) Ac,Ad,C,D L Braveheart (1995) Ac,D,W

13 U Matilda (1996) CC L Titanic (1997) Ac,D,R

14 D Rock, The (1996) Ac,Ad,T L Schindler’s List (1993) D,W

15 D The Usual Suspects (1995) C,T L The Shawshank Redemption (1994) D

the CF ranking problems.

3.5 Case Studies
In order to better illustrate why the proposed algorithms outperform PMF, we present two case studies

for a cold-start user and a taste-drift user respectively.

A Cold-start User Case
In Table 3.6, we present the first 15 sequentially recommended movies to a typical user #454 on

Movielens, by PMF and LinUCB, and the corresponding feedback. From the results we can see that

(i) LinUCB earns more “like” feedback and less “dislike” and “unknown” feedback. (ii) After the first

three “likes”, PMF keeps recommending action, crime and thriller movies, which is somewhat myopic.

(iii) For LinUCB, after receiving the positive and negative feedback on action, war, thriller, and sci-

ence fiction movies, it tries different genres such as drama, comedy and animation. After the next five

interactions, LinUCB discovers the other interest in drama movies.

A Warm-start User with Taste Drift
In Figure 3.2, we show a typical taste-drift case of user #833 on Movielens. Specifically, 7 typical movie

genres (out of 18) are involved here. The black bars show the user’s taste drift by calculating the per-

centage difference of the normalised distributions on each genre between two time periods as in Section

3.4.5. The blue and orange bars show the percentage difference on each genre of the recommended items

by LinUCB and PMF respectively. We see that LinUCB captures the user’s taste drift in a way better

than PMF: (i) for these genres, LinUCB captures the drift direction. For example, the user’s interest in

Comedy movies decreases (-4.3%†) between the two periods. LinUCB also recommends fewer (-3.2%)
†The percentage measures the change of the proportion of Comedy movies the user watched between the two periods.
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Figure 3.2: A case study on handling taste drift. Black, blue and orange histograms denote the changes in the genre
distributions of items in the user groundtruth, recommended by LinUCB and recommended by greedy
PMF respectively. LinUCB can partly catch the drift by adapting to the new genre distribution, but the
greedy PMF approach cannot effectively reflect the taste drift in its recommendations.

Comedy movies, but PMF recommends more (+1.1%) Action movies to the user. (ii) For most genres,

LinUCB to some extent captures the drift degree, e.g., the user has a 0.8% interest decrease on Romance

movies and LinUCB also recommend 1.1% fewer Romance movies, but PMF dramatically decreases

this type of movies by 4.4%.

3.6 Concluding Remarks
In this chapter, we introduced the ICF framework to solve the user cold-start problem. In this framework,

two objectives, satisfying the user’s information need and collecting the user’s profile, are considered as

an integrated goal of maximising the overall recommendation performance over a period of time.

Within the ICF framework, the PMF model is leveraged to capture the distributions of user and item

feature vectors. Based on that, Thompson sampling and several EE algorithms are employed to balance

between the exploitation and exploration aspects of the ICF problem. We conducted experiments in

three situations: when a cold-start user joins the system, when a warm-start user’s taste drifts, and when

multiple items are recommended during each interaction. Throughout the experiments, we demonstrated

that our proposed algorithms outperformed several strong baselines including the greedy PMF algorithm,

the active learning approach and the interview process.

We theoretically focused on the case when only one item is recommended at each interaction. We

also empirically addressed the case with multiple items at each interaction. However, to comprehensively

consider multiple items, we need to have a more strict theoretical formulation of it, which leads to the

research in the next chapter.



Chapter 4

Two-Stage Collaborative Filtering

In the previous chapter, we discussed the Interactive Collaborative Filtering (ICF) framework with a

focus on the user cold-start problem. We defined the goal of the ICF framework as achieving maximal

overall return over a period of time. We specifically considered the case where one item is recommended

during each interaction with the user. Then, we related the problem to the multi-armed bandit problem,

and solved it with various exploitation-exploration (EE) algorithms based on the matrix factorization

(MF) model of collaborative filtering (CF).

In this chapter, we consider a two-stage recommendation process to address multiple recommend-

ations during each interaction. The two-stage recommendation process can be used to tackle both user

and item cold-start problems (see Figure 1.4). In the initial stage, we use a portion of recommenda-

tion allocations to estimate the new item’s (user’s) model (while also considering the new item (user)’s

information need). After that, in the second stage, we use the remaining resources to make recommend-

ations. Similar to ICF, the goal of this process is to maximise the overall feedback collected from the

two stages. We focus on the item cold-start scenario in this chapter because the benefits of using a batch

solution are more pronounced in this scenario as explained in Section 1.2.2. As the users and items can

be modelled symmetrically [163, 30], the analysis can be easily applied to a user cold-start problem.

We first formulate the two-stage recommendation process into a partially observable Markov de-

cision process (POMDP) to obtain its exact solution. Then, through an in-depth analysis of the POMDP

value iteration solution, we identify that an exact solution can be abstracted as selecting resources that

are not only highly relevant to the target according to the initial-stage information, but also highly correl-

ated, either positively or negatively, with other potential resources for the next stage. With this finding,

we propose an approximate solution to ease the intractability of the exact solution. Our initial results

on synthetic data and the MovieLens 100K dataset confirm the performance gains and our theoretical

analysis.

4.1 The Two-Stage Model
In this section, we formulate CF into the POMDP framework, which will lead us to the exact solution of

our problem. A POMDP models a Markov decision process where the true current state of the system is

partially unobservable [24]. In the scenario of the item cold-start recommendation, the true state is each
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Table 4.1: Summary of key notations in Chapter 4.

Notation Description

U The entire user set

t ∈ {1, 2} The stage (timestep) of the process

m,n The number of users to select at the initial stage and the second stage respect-
ively

u,v The users to choose in the initial stage and second stage respectively

\u The users not selected in the initial stage, \u = U\u

R The preferences (a random vector) of all users over the item under consideration

Ru,Rv R partitioned by u and v respectively

ru, rv Feedback from u and v respectively

θ(t),Φ(t),C(t) The mean, covariance matrix, correlation matrix ofR at time t (CU model)

ρ
(t)
i,j Correlation between u and v at t

P The matrix with each row as a user vector (MF model)

q The target item’s feature vector (MF model)

ν(t),Ψ(t) The mean and covariance matrix of the item vector at time t (MF model)

T The sampling number

user’s genuine (potential) preference as to the new item, which is unknown for the users having not rated

it. To model the decision process, we start with a correlated-user (CU) model as a probabilistic descrip-

tion of the memory-based models in CF [2, 56] and formulate it with POMDP. Then, we decompose the

user-item rating matrix to gain its formulation in the domain of MF. We provide, for each model, the

exact solution on how to select users optimally in order to collect maximal overall feedback from the

users over two stages.

4.1.1 Correlated-User Model with POMDP

The CU model with POMDP (CU-POMDP) is depicted in Figure 4.1. Let us denote the available user

pool as U . For each new item that joins the system, the recommendation system should make the fol-

lowing decisions: in the initial stage, choose an initial m users to start with, collect their feedback, and

update the system’s belief state; and in the second stage, choose another n users to exploit the informa-

tion gained from the initial stage. N = m+ n is the total number of users that the item is to be targeted

to. For the reader’s convenience, we provide a list of key notations used in this chapter in Table 4.1. We

consider only one cold-start item, but the scenario is similar if multiple cold-start items are present.

Our goal is to find the optimal policy that can maximise the expected total ratings over two stages.

To capture the relations between users’ preferences, we model the preferences of all users, denoted by

R, to follow a multivariate Gaussian distribution

p(t)(R) ∼ N (θ(t),Φ(t)), t ∈ {1, 2} (4.1)
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Figure 4.1: The two-stage CU-POMDP as illustrated by an influence diagram, with respect to the correlated-user
model. Circular nodes are random variables and square nodes are the recommendation decision, and
the rhombus nodes are the utility at each stage.

with its mean and covariance matrix as θ(t) and Φ(t). The distribution above is the system’s belief over

the true state R at each stage t, referred to as the belief state according to POMDP. By recommending

the item to users and receiving their feedback, the belief state evolves from p(1)(R) to p(2)(R). Our

problem is a POMDP because the true preferencesR are unknown (or only partially known), but can be

modelled through a distribution.

This model is non-trivial because it has utilised all user-user correlations via a multivariate Gaussian

model. To obtain the belief state for the initial stage, we can impose an i.i.d. assumption on the users’

preferences on different items. As such, θ(1) can be estimated by the users’ mean ratings, and Φ(1)

can be estimated by the user-user covariances on previously co-rated items. To emphasise the role of

user-user correlation, in the following, we also make use of the following representation

Φ(1) = Dg[Φ(1)]1/2C(1)Dg[Φ(1)]1/2

= diag[φ(1)]C(1)diag[φ(1)] (4.2)

where Dg(Φ(1)) denotes the diagonal matrix with the same diagonal elements of Φ(1), φ(1) denotes the

vector formed by the users’ standard deviations of ratings (φ(1) = diag[Dg1/2(Φ(1))]), and C(1) is the

correlation matrix whose element ρ(1)u,v is the correlation between user u and user v.

A policy π is defined to make the decision at each stage on the basis of the available information:

u = π(θ(1),Φ(1),U), and (4.3)

v = π(θ(2),Φ(2),U\u), (4.4)

where we use vectors u and v to denote the user selection decisions for the two stages respectively

(|u| = m and |v| = n). Similar to the last chapter, here we use the same constraint that the target

item should not be recommended repeatedly to the same user. Therefore, the available user pool will

be the remaining users U\u for the second stage. The total expected ratings collected at each stage is
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the element-wise summation of the expected rating vector of each selection, which we refer to as reward

U
(t)
π

U (1)
π = E(1)[1TRu], (4.5)

U (2)
π = E(2)[1TRv]. (4.6)

We use Ru (Rv) to denote the random vector R partitioned by user selections u (v). We will use

the same partition rule throughout this chapter.

The objective is to find a policy of selecting users such that the expected total reward of the two

stages are maximised

π∗ = arg max
π

(
U (1)
π + U (2)

π

)
. (4.7)

Belief Update

Let us consider the problem in a reverse order. Suppose the system has already recommended the item

to m users in the initial stage and received feedback ru. Given the feedback, the system can update

its belief state on the remaining users U\u (simplified as \u) by the conditional multivariate Gaussian

distribution, conditioned on the observations

p(2)(R\u) ∼ N (θ
(2)
\u ,Φ

(2)
\u,\u), where (4.8)

θ
(2)
\u = θ

(1)
\u + Φ

(1)
\u,u[Φ(1)

u,u]−1(ru − θ(1)u ) (4.9)

Φ
(2)
\u,\u = Φ

(1)
\u,\u −Φ

(1)
\u,u[Φ(1)

u,u]−1Φ
(1)
u,\u. (4.10)

To gain insight with the view of correlated users, we reformulate the update functions with the

correlation matrix C(1) as follows. According to Eq. (4.2), we obtain

[Φ(1)
u,u]−1 = diag[φ(1)

u ]−1[C(1)
u,u]−1diag[φ(1)

u ]−1, and (4.11)

[Φ
(1)
\u,u] = diag[φ

(1)
\u]C

(1)
\u,udiag[φ(1)

u ]. (4.12)

Substituting Eqs. (4.12) and (4.11) into (4.9) we further get

θ
(2)
\u = θ

(1)
\u + diag[φ

(1)
\u]C

(1)
\u,u[C(1)

u,u]−1diag[φ(1)
u ]−1(ru − θ(1)u ) (4.13)

Particularly, if we assume equal rating variance for all users, and disregard the correlations among

u such that C
(1)
u,u becomes an identity matrix, then Eq. (4.13) reduces to a weighted summation of

the observed ratings centred by their prior expectations ru − θ(1)u , with the weights as the correlations

between unobserved users and observed users

θ
(2)
\u = θ

(1)
\u + C

(1)
\u,u(ru − θ(1)u ). (4.14)
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Eq. (4.14) looks very familiar to us because it simulates the popular memory-based (user-based)

CF algorithm (see Eq. (2.2) in Chapter 2), which takes the neighbours’ ratings regarding the target item,

centres them by the mean ratings of the neighbours, and estimates the target user’s preference regarding

this item as their weighted summation [2], where Pearson correlation is commonly used to calculate the

weights [107]. We thus see the user-based recommendation heuristic as an approximation of our CU

model.

From the above formula we can see that: (i) by observing users u in the initial stage, the expect-

ations of unobserved users are also updated; (ii) the covariances (correlations) between observed and

unobserved users act as the bridge through which feedback from selected users can update our belief

regarding other users.

Exact Solution
To obtain the exact solution, consider V ∗(θ(t),Φ(t), T ) which is the maximally achievable expected

total future reward with current information θ(t), Φ(t) and remaining steps (T = 1, 2). With the updated

belief according to Eq. (4.8) already given, the optimal expected reward for the second stage is simply a

greedy approach:

V ∗CU(θ(2),Φ(2), 1) = max
π

U (2)
π

= max
v⊂U\u

E(2)[1TRv]

= max
v⊂U\u

1Tθ(2)v . (4.15)

By working backwards the total maximal expected reward for two stages can be obtained as

V ∗CU(θ(1),Φ(1), 2) = max
π

(U (1)
π + U (2)

π )

= max
u⊂U

(
E(1)[1TRu + V ∗CU(θ(2),Φ(2), 1)]

)
(4.16)

= max
u⊂U

(
E(1)[1TRu] +

∫
p(1)(Ru = ru)V ∗CU(θ(2),Φ(2), 1)dru

)
.

Substituting Eqs. (4.15) and (4.9) into (4.16) we reach the exact solution obtained by value iteration:

V ∗CU(θ(1),Φ(1), 2) = max
u⊂U

{ exploitation︷ ︸︸ ︷
1Tθ(1)u +∫

p(1)(Ru = ru) max
v⊂U\u

[
1T
(
θ(1)v + Φ(1)

v,u[Φ(1)
u,u]−1(ru − θ(1)u )

)]
dru︸ ︷︷ ︸

exploration

}
. (4.17)

Eq. (4.17) suggests that the merit of choosing users u at the initial stage lies in two components:

• Exploitation. It is the immediate expected reward, denoted by 1Tθ
(1)
u , determined by the prior

information on the users.

• Exploration. The exploration component shows how the feedback from users u can lead the

system to find optimal selections with updated knowledge. Consider that the feedback deviates
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from the prior information such that (ru − θ(1)u ) 6= 0, the updated belief state will then lead us

to find users which bring “extra” returns via the term Φ
(1)
v,u[Φ

(1)
u,u]−1(ru − θ(1)u ). No matter the

deviation is positive or negative, we can always benefit from it by selecting corresponding optimal

users in the second stage. As mentions above, this term relates to correlations between the users of

the two stages. The larger the correlations are, the more the system can gain from the discrepancy

between the observations and the prior information.

4.1.2 Matrix Factorization Model with POMDP

To gain insights from the formulation of latent factor models, consider MF with POMDP (MF-POMDP).

For this purpose, we use the probabilistic model R = Pq + ξ such that P = (p1,p2, . . . ,p|U|)
T is a

|U| ×K matrix containing the users’ information, q is a K-dimensional item vector, and ξ is a random

variable with zero mean and variance σ2
0 . If we assume fixed user vectors P and unknown item vector q

(see Chapter 3), CU-POMDP is translated to a decision process under the belief state of the unobservable

item vector (see Figure 4.2)

p(t)(q) ∼ N (ν(t),Ψ(t)), (4.18)

where ν(1) and Ψ(1) are the mean and covariance matrix of the item vector. The belief state over the

item vector then determines the belief over the preferences of users

p(t)(R) ∼ N (Pν(t),PΨ(t)PT + σ2
0I). (4.19)

By observing users u with feedback ru the belief state can be updated according to the Bayes rule

p(2)(q) ∼ N (ν(2),Ψ(2)), where (4.20)

ν(2) = ν(1) + Ψ(1)PT
u(PuΨ(1)PT

u + σ2
0I)−1(ru −Puν

(1)), (4.21)

Ψ(2) = [(Ψ(1))−1 + PT
uPu/σ

2
0 ]−1. (4.22)

Thus,

E(2)(R\u|ru) = P\uν
(2) (4.23)

= P\uν
(1) + P\uΨ(1)PT

u(PuΨ(1)PT
u + σ2

0I)−1(ru −Puν
(1)).

Comparing Eq. (4.23) with Eq. (4.9) we find a nice alignment between the two models. Actually,

by dimension reduction the covariance between user u’s and user v’s ratings can be translated as

Φ(1)
u,v = pTuΨ(1)pv, (4.24)

when σ2
0 is very small compared to the covariance between the two users’s true preferences (σ2

0 <<

pTuΨ(1)pv). Eq. (4.24) has converted the statistical property (the covariance of preferences between the



4.1. The Two-Stage Model 64

Figure 4.2: The two-stage MF-POMDP as illustrated by an influence diagram, with respect to the matrix factoriza-
tion model.

two users) into the function of the feature vectors of the two users.

By the same token, we write the optimal value function for the MF-POMDP as

V ∗MF(ν(1),Ψ(1), 2) = max
u⊂U

{
1TPuν

(1)+∫
p(1)(Ru = ru) max

v⊂U\u

[
1T
(

Pvν
(1)+ (4.25)

PvΨ
(1)PT

u[PuΨ(1)PT
u + σ2

0I]−1(ru −Puν
(1))

)
dru

]}
.

4.1.3 A Toy Example

Let us look at a simple three-user case and its analytical solution. In this example, one user is selected

in each stage. We base this example on the CU model so that the effect of user-user correlation can be

illustrated more straightforwardly.

Suppose

θ(1) =


θ
(1)
1

θ
(1)
2

θ
(1)
3


, Φ(1) =


Φ

(1)
1,1 Φ

(1)
1,2 Φ

(1)
1,3

Φ
(1)
2,1 Φ

(1)
2,2 Φ

(1)
2,3

Φ
(1)
3,1 Φ

(1)
3,2 Φ

(1)
3,3


.

Without loss of generality, we assume Φ
(1)
1,3 > Φ

(1)
1,2 > Φ

(1)
2,3 (and ignore the case with equal covari-

ance for now). Suppose user 1 is selected in the initial stage with the observation as r1, the update for

the second and the third users are,

θ
(2)
2 (r1) = θ

(1)
2 + Φ

(1)
2,1(Φ

(1)
1,1)−1(r1 − θ(1)1 ),

θ
(2)
3 (r1) = θ

(1)
3 + Φ

(1)
3,1(Φ

(1)
1,1)−1(r1 − θ(1)1 ).
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By introducing z1 = (r1 − θ(1)1 )/
√

Φ
(1)
1,1, the above updates become

θ
(2)
2 (z1) = θ

(1)
2 + Φ

(1)
2,1(Φ

(1)
1,1)−1/2z1,

θ
(2)
3 (z1) = θ

(1)
3 + Φ

(1)
3,1(Φ

(1)
1,1)−1/2z1.

We can see that both θ(2)2 and θ(2)3 are linear in z1. The turning point between choosing user 2 and

user 3 is obtained when the above two are equal to each other, which is at

d1 =
θ
(1)
2 − θ

(1)
3

Φ
(1)
3,1 − Φ

(1)
2,1

√
Φ

(1)
1,1.

Since Φ
(1)
3,1 > Φ

(1)
2,1, if z1 > d1, user 3 should be selected whereas if z1 < d1 user 2 should be

selected in the second stage. Thus, the optimal reward when choosing user 1 at the initial stage is

V ∗u=1(θ(1),Φ(1), 2) =

θ
(1)
1 +

∫
p(1)(r1) · max

v=2,3

(
θ(1)v + Φ

(1)
v,1(Φ

(1)
1,1)−1(r1 − θ(1)1 )

)
dr1

=θ
(1)
1 +

∫ d1

−∞
p(1)(z1)

[
θ
(1)
2 + Φ

(1)
2,1(Φ

(1)
1,1)−1/2z1

]
dz1

+

∫ ∞
d1

p(1)(z1)
[
θ
(1)
3 + Φ

(1)
3,1(Φ

(1)
1,1)−1/2z1

]
dz1

=θ
(1)
1 + 1/2(θ

(1)
2 + θ

(1)
3 ) + 1/2(θ

(1)
2 − θ

(1)
3 )erf(

d1√
2

)

− 1√
2π

Φ
(1)
2,1 − Φ

(1)
3,1√

Φ
(1)
1,1

e−
d21
2 .

Similarly,

V ∗u=2(θ(1),Φ(1), 2) =

θ
(1)
2 +

∫
p(1)(r2) · max

v=3,1

(
θ(1)v + Φ

(1)
v,2(Φ

(1)
2,2)−1(r2 − θ(1)2 )

)
dr2

=θ
(1)
2 +

∫ d2

−∞
p(1)(z2)

[
θ
(1)
3 + Φ

(1)
3,2(Φ

(1)
2,2)−1/2z2

]
dz2

+

∫ ∞
d2

p(1)(z2)
[
θ
(1)
1 + Φ

(1)
1,2(Φ

(1)
2,2)−1/2z2

]
dz2

= θ
(1)
2 + 1/2(θ

(1)
3 + θ

(1)
1 ) + 1/2(θ

(1)
3 − θ

(1)
1 )erf(

d2√
2

)

− 1√
2π

Φ
(1)
3,2 − Φ

(1)
1,2√

Φ
(1)
2,2

e−
d22
2 ,
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V ∗u=3(θ(1),Φ(1), 2) =

θ
(1)
3 +

∫
p(1)(r3) · max

v=1,2

(
θ(1)v + Φ

(1)
v,3(Φ

(1)
3,3)−1(r3 − θ(1)3 )

)
dr3

=θ
(1)
3 +

∫ d3

−∞
p(1)(z3)

[
θ
(1)
2 + Φ

(1)
2,3(Φ

(1)
3,3)−1/2z3

]
dz3

+

∫ ∞
d3

p(1)(z3)
[
θ
(1)
1 + Φ

(1)
1,3(Φ

(1)
3,3)−1/2z3

]
dz3

= θ
(1)
3 + 1/2(θ

(1)
1 + θ

(1)
2 ) + 1/2(θ

(1)
2 − θ

(1)
1 )erf(

d3√
2

)

− 1√
2π

Φ
(1)
2,3 − Φ

(1)
1,3√

Φ
(1)
3,3

e−
d23
2 ,

where

d2 =
θ
(1)
3 − θ

(1)
1

Φ
(1)
1,2 − Φ

(1)
3,2

√
Φ

(1)
2,2, d3 =

θ
(1)
2 − θ

(1)
1

Φ
(1)
1,3 − Φ

(1)
2,3

√
Φ

(1)
3,3.

Note that the above formula are not rotational symmetric due to the asymmetry caused by Φ
(1)
1,3 >

Φ
(1)
1,2 > Φ

(1)
2,3.

To illustrate the results, let us look at a numerical example according to the above solutions. Sup-
pose

θ(1) =


3.2

2.5

3.5


, Φ(1) =


1.6 0.25 1.6

0.25 3.2 0.20

1.6 0.20 3.5


.

The correlation matrix is thus

C(1) =


1 0.11 0.68

0.11 1 0.06

0.68 0.06 1


.

When user 1 is selected at the initial stage:

θ
(2)
2 (r1) = θ

(1)
2 + Φ

(1)
2,1(Φ

(1)
1,1)−1(r1 − θ(1)1 )

= 2.5 + 0.25× (1.6)−1(r1 − 3.2),

θ
(2)
3 (r1) = θ

(1)
3 + Φ

(1)
3,1(Φ

(1)
1,1)−1(r1 − θ(1)1 )

= 3.5 + 1.6× (1.6)−1(r1 − 3.2).

Therefore, when r1 < 2.01 we should choose user 2 in the second stage whilst when r1 > 2.01 we

should choose user 3 (when r1 = 2.01 choosing either will give the same expected reward in the second

stage). The corresponding value function is
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V ∗u=1(θ(1),Φ(1), 2)

= θ
(1)
1 +

∫
p(1)(r1) · max

j=2,3

(
θ(1)v + Φ

(1)
j,1(Φ

(1)
1,1)−1(r1 − θ(1)1 )

)
dr1

= 3.2 +

∫ 2.01

−∞
p(1)(r1)(2.5 + 0.25× (1.6)−1(r1 − 3.2))dr1

+

∫ +∞

2.01

p(1)(r1)(3.5 + 1.60× (1.6)−1(r1 − 3.2))dr1

≈ 6.80.

Similarly, we can obtain the value functions for choosing user 2 and 3 at the initial stage

V ∗u=2(θ(1),Φ(1), 2) ≈ 5.7,

V ∗u=3(θ(1),Φ(1), 2) ≈ 6.77.

And thus obtain the final value function

V ∗(θ(1),Φ(1), 2) = max(6.80, 5.7, 6.77) = 6.80.

We can see that the value function favours the first user at the first step, even though the prior

information about the users favours the third user over the first user. Due to the fact that user 1 is highly

correlated to user 3, and is more correlated with user 2 than user 3 is, choosing user 1 at the initial stage

will enable the system to judge better in the second stage which results in a higher total expected reward

over the two stages.

4.1.4 Computational Complexity

The exact solution of a finite-horizon POMDP has been proven to be PSPACE-complete [37]. In our

case, the decision space at the initial stage is C |U|m . For each decision, the m-dimensional observation

space will be divided into C |U|−mn regions, each region corresponds to a (possibly) different optimal

user combination to choose for the second stage. That is, the exact solution suggested by the value

iteration algorithm requires going through all the possible decisions and all possible observations, which

is intractable.

4.2 Approximation
To ease the intractability of the exact solution, we propose an approximation solution here, named guided

exploitation-exploration (GEE). We provide its form for both the CU model and the MF model below.

4.2.1 Approximation for CU-POMDP

From Section 4.1.1, we have seen that the merit of selecting a group of users lies both in the immediate

reward term (the exploitation part of Eq. (4.17)) and in how it can guide the system to find promising

users in the next stage through the system update (the exploration part of Eq. (4.17)). However, when
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Algorithm 4.1: CU-GEE by Sampling

Require: Prior mean ratings θ(1), covariance matrix Φ(1), GEE parameter λ, available users U
Initialise u∗ ← ∅
for t = 1 . . . T do

Sample ut (|ut| = m) from U
Calculate V CU-GEE

ut according to Eq. (4.29)
if V CU-GEE

ut is the largest so far then
Update u∗ ← ut

end if
end for

the decision of the initial stage is made, the system’s belief state update is unknown before receiving any

observations. To investigate the influence of selecting users u only (before making any observations), let

us consider the conditional distribution of unselected users \u over the selection of users u, p(R\u|u).

Note that this conditional distribution is different from Eq. (4.8) because it is the distribution conditioned

on the action u instead of the observations, as at the initial-decision stage these observations are still

unknown.

Because the observations are not made yet, the expected feedback conditioned on the selection

remains unchanged

E[R\u|u] = θ
(1)
\u . (4.26)

However, its covariance changes according to the choice of u:

Cov[R\u|u] = Cov
[
θ(1)u + Φ

(1)
\u,u(Φ(1)

u,u)−1(Ru − θ(1)u )
]

= Φ
(1)
\u,u(Φ(1)

u,u)−1 Cov(Ru)(Φ(1)
u,u)−1Φ

(1)
u,\u

= Φ
(1)
\u,u(Φ(1)

u,u)−1Φ
(1)
u,\u, (4.27)

where the last step is due to Cov(Ru) = Φ
(1)
u,u.

Therefore, with the initial-stage users as u, the expected returns at the second stage by choosing

users v are bounded by the interval Θu,v:

Θu,v =

[
1T
(
θ(1)v − λ · diag

[
Dg−

1
2 (Cov(Rv|u))

])
,

1T
(
θ(1)v + λ · diag

[
Dg−

1
2 (Cov(Rv|u))

])]
(4.28)

with the probability at least (1− 2e−λ
2/2)n [164]*.

The GEE algorithm therefore optimistically assumes the highest return could be achieved within

this interval [157]. And thus we choose the users u which can achieve the highest total ratings under this

*To be more exact, the conditional vectorR\u|u is bounded in an ellipsoid. This form is obtained with an approximation of
considering only the diagonal elements of Cov(R\u|u).
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Algorithm 4.2: CU-GEE-I by Sampling

Require: Prior mean ratings θ(1), correlation matrix C(1), GEE parameter λ′, available users U
Initialise u∗ ← ∅
for t = 1 . . . T do

Sample ut (|ut| = m) from U
Calculate V CU-GEE-I

ut according to Eq. (4.32)
if V CU-GEE-I

ut is the largest so far then
Update u∗ ← ut

end if
end for

assumption

πCU-GEE(θ(1),Φ(1),U)

= arg max
u⊂U

{
1Tθ(1)u + max

v⊂U\u
1T
(
θ(1)v +

λ · diag
[

Dg−
1
2

(
Φ(1)
v,u(Φ(1)

u,u)−1Φ(1)
u,v

)])}
. (4.29)

This algorithm suggests that, in order to determine the users for stage one, we first calculate the

immediate reward based on the prior information. Then we calculate the optimistic reward when acting

optimally in the second stage. We call GEE guided as the initial-stage decision is optimistically guided

by pseudo optimal user selections in the next stage. By inspecting into the next stage, we utilise the cor-

relation between users of the two stages, which will be explained further in Section 4.2.1. To implement

this algorithm, we can adopt a sampling-based method depicted in Algorithm 4.1.

Independent Intra-Stage User Assumption

To align our algorithm with the popular memory-based CF, we adopt the correlation function Eq. (4.2)

and reformulate Eq. (4.29) as follows:

Φ(1)
v,u(Φ(1)

u,u)−1Φ(1)
u,v

=
[
diag(φ(1)

v )C(1)
v,udiag(φ(1)

u )
][

diag−1(φ(1)
u )(C(1)

u,u)−1diag−1(φ(1)
u )
][

diag(φ(1)
u )C(1)

u,vdiag(φ(1)
v )
]

=diag(φ(1)
v )C(1)

v,u(C(1)
u,u)−1C(1)

u,vdiag(φ(1)
v ). (4.30)

Eq. (4.29) thus becomes

πCU-GEE′(θ
(1),φ(1),C(1),U)

= arg max
u⊂U

{
1Tθ(1)u + max

v⊂U\u
1T
(
θ(1)v +

λ · diag
[

Dg−
1
2

(
diag(φ(1)

v )C(1)
v,u(C(1)

u,u)−1C(1)
u,vdiag(φ(1)

v )
)]}

. (4.31)

The term of (C
(1)
u,u)−1 in the above equation suggests us to diversify the items in the initial stage.

Here in order to catch the more important relation between the two stages, we assume the initial-stage
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Algorithm 4.3: MF-GEE by Sampling

Require: Prior mean ν(1) and covariance matrix Ψ(1) of the target item feature vector, GEE parameter
λ, available users U
Initialise u∗ ← ∅
for t = 1 . . . T do

Sample ut (|ut| = m) from U
Calculate V MF-GEE

ut according to Eq. (4.34)
if V MF-GEE

ut is the largest so far then
Update u∗ ← ut

end if
end for

users u are independent of each other, which suggests an already-diversified user list. We will in-

tensively discuss the diversification problem in the next two Chapters. In addition to the independent

assumption, we also impose an equal variance assumption, i.e., all the users have the same variance φ′2

(so diag(φ
(1)
v ) = φ′I). With the two assumptions, Eq. (4.31) can be further approximated to

πCU-GEE-I(θ
(1),C(1),U)

= arg max
u⊂U

 m∑
α=1

θ(1)uα + max
v⊂U\u

n∑
β=1

θ(1)vβ + λ′

√√√√ m∑
α=1

(ρ
(1)
uα,vβ )2

 , (4.32)

where λ′ = λφ′, and ρ(1)uα,vβ is just the correlation between uα and vβ according to the prior informa-

tion. The effect of inter-stage user-user correlations is shown clearly in the above formula. According

to Eq. (4.32), given the user selection at the initial stage u, we can foresee the optimistic return in

the next stage through highly expected values (via θ(1)vβ ) and also highly correlated users (via the term√∑m
α=1(ρ

(1)
uα,vβ )2). Identifying these users then guides the system to determine the user selection u∗.

The sampling method for this algorithm is illustrated in Algorithm 4.2.

4.2.2 Approximation for MF-POMDP

With the MF model, the conditional covariance matrix ofR\u given the user selection u is written as

Cov(R\u|u) = P\uΨ(1)PT
u(PuΨ(1)PT

u + σ2
0I)−1PuΨ(1)PT

\u. (4.33)

Following the same reasoning as in Section 4.2.1, we give the formulation for the matrix factoriza-

tion model

πMF-GEE(ν(1),Ψ(1),U)

= arg max
u⊂U

{
1TPuν

(1) + max
v⊂U\u

1T
(

Pvν
(1) + λ· (4.34)

diag
[

Dg−
1
2

(
PvΨ

(1)PT
u(PuΨ(1)PT

u + σ2
0I)−1PuΨ(1)PT

v

)])}

The corresponding algorithm is shown in Algorithm 4.3.
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Algorithm 4.4: MF-GEE-I by Sampling

Require: Prior mean ν(1) and the diagonal element of the covariance matrix ψ(1) of the target item
feature vector, GEE parameter λ, available users U
Initialise u∗ ← ∅
for t = 1 . . . T do

Sample ut (|ut| = m) from U
Calculate V MF-GEE-I

ut according to Eq. (4.35)
if V MF-GEE-I

ut is the largest so far then
Update u∗ ← ut

end if
end for

Independent Intra-Stage User Assumption

With the MF model, in addition to the independent intra-stage user assumption which turns PuΨ(1)PT
u

into a diagonal matrix, we may also assume independent latent dimensions such that the prior covariance

matrix is diagonal: Ψ(1) = diag2[ψ(1)], where ψ(1) are the standard deviations of latent dimensions.

Eq. (4.34) can be further simplified as:

πMF-GEE-I(ν
(1),ψ(1),U) = arg max

u⊂U

{ m∑
α=1

pTuαν
(1)+

max
v⊂U\u

n∑
β=1

(
pTvβν

(1) + λ

√√√√ m∑
α=1

(pTvβdiag2[ψ(1)]puα)2

pTuαdiag2[ψ(1)]puα + σ2
0

)}
. (4.35)

The corresponding algorithm is shown in Algorithm 4.4.

Particularly, when assuming ψ(1) = ψ(1)1, i.e., equal prior standard deviation (variance) along

different dimensions, we gain the form

πMF-GEE-II(ν
(1), ψ(1),U) = arg max

u⊂U

{ m∑
α=1

pTuαν
(1)+

max
v⊂U\u

n∑
β=1

(
pTvβν

(1) + λ

√√√√ m∑
α=1

((ψ(1))2pTvβpuα)2

(ψ(1))2pTuαpuα + σ2
0

)}
. (4.36)

Actually, with such a spherical prior variance, Eq. (4.24) becomes Φ
(1)
u,v = (ψ(1))2pTupv , i.e., the

covariance between u and v is proportional to the inner product of the user latent factors. Actually,

with a spherical prior variance, the correlation between user u and v, ρu,v , is proportional to pTupv ,

corresponding to the MF obtained by a regularised linear regression estimation [107].

4.3 Comparisons to Other EE Methods
4.3.1 Comparison to Active Learning

As mentioned in Chapter 2, active learning (AL) methods have been adopted to handle cold-start prob-

lems in recommender systems [107, 35, 33, 108], which are also referred to as optimal design by statisti-

cians [109]. AL uses a limited number of items (usually much smaller than the total number of available

items) to present to the target user to review, and then learns the user’s profile based on the users’ feed-
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back on these items. The criterion for selection is usually represented by a statistical measure such as

achieving minimal mean squared error in the model estimation (A-optimality criterion) [34], minimal

2-norm of the inverse of the information matrix (E-optimality criterion) [33] or minimal determinant of

resulting covariance matrix of the system (D-optimality criterion) [33]. This objective differs from our

objective function, and thus leads to significant differences from our approach.

There are two main differences between AL and our GEE approach. First, AL techniques such as

D-Optimal design [33], A-Optimal design [34] and their applications to the cold-start item problem have

divided exploration and exploitation into two separate stages. In the exploration stage, a small number of

training points are selected for the system to learn, and in the exploitation stage the gained information is

fully exploited. However, the returns (or regrets) collected from the exploration stage are not considered.

In other words, The objective is imposed onto only the exploitation stage, and thus the trade-off between

exploration and exploitation is not modeled [107]. For example, in [34], a budget has been imposed on

the number of users to select at the experimental stage, and these users’ returns are excluded from the

objective function.

Second, the goal of AL is usually measured statistically using a global criterion. The criterion

can be, for example, (to minimise) the mean square error of the estimates [34], or, (to maximise) the

differential Shannon information [33]. However, from Eqs. (4.17) and (4.25) and from the example,

we can see that the exact solution is achieved by prioritising the learning process towards the promising

users of the next stage. Therefore, it is not necessary to achieve a global optimum. On the contrary, GEE

captures this feature and make decisions guided by potential users of the second stage.

4.3.2 Comparison to UCB methods
The EE problem has been intensively studied in the literature of multi-armed bandit problems, where

an agent decides dynamically which arm to choose at each step bearing the objective to maximise the

total reward collected during a period of time [29]. Gittins has provided an optimal solution under the

condition that only one arm at a time can evolve [23], but this is intractable in practice. UCB seeks a

bounded regret instead of optimality and is used to balance the exploitation and exploration in practice

[29, 22, 126, 157]. In UCB, usually a decision is made based on both the expectation and uncertainty of

the return of individual choices at each step. In Chapter 3, we proposed several UCB-based algorithms

for a multiple-stage interactive recommendation process. And recently GP-UCB algorithms have also

been applied to solve the user cold-start problems interactively in recommender systems [165].

Our approach differs from UCB approaches in the following ways. First, UCB-based approaches

seek to limit the regret within a bound, but they do not model how the specific selection within the bound

can influence the outcome. In other words, EE achieved by UCB is not guided by the potential rewarding

choice of the following stage, but is rather to limit the regret of the current stage. Second, UCB-based

approaches are usually achieved in a long-term and interactive process, and may not be suitable for the

two-stage process. Conversely, our algorithms are derived directly from the exact solutions of POMDP.

They have directly considered the effect that choosing the initial-stage users has on the potential returns

from the second stage.
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Table 4.2: Total reward compared using synthetic data.

Algorithm N = 10 N = 20 N = 30 N = 40

Greedy 19.084 38.919 52.517 60.55

AL 18.953 37.719 52.655 62.537

UCB 19.568 39.903 54.632 63.959

GEE 21.238 43.151 59.315 69.198

Improvement 8.5% 8.1% 8.6% 8.2%

4.4 Experiment
In this section, we compare our proposed approximate solutions with several baseline methods. To

understand the model further and verify our theoretical analysis, we first present the results on synthetic

data, and then on a real dataset.

4.4.1 Synthetic Data Experiment

Synthetic Data Generation
First, we define a 5-dimensional latent space and randomly generate a multivariate Gaussian distribution

as the prior information of the cold-start item. In detail, each dimension of the multivariate Gaussian

mean vector is generated randomly according to N (0, 0.1), and each dimension’s standard deviation

is generated according to N (0, 1). Then we generate 50 cold-start items according to this randomly-

generated distribution. Second, we generate 100 users’ vectors according to N (0, I) as the available

user pool for the 50 cold-start items to target to. Their real ratings are then produced according to Eq.

(4.19) with the noise’s standard deviation as 0.5. As such, we can obtain a 100 × 50 rating matrix

as the groundtruth. The true prior information is then provided for each compared algorithm to perform

recommendations. Finally, the above process is repeated for a total of 30 times, each time with a different

prior information of the cold-start items. The results are then averaged over the different trials.

Compared Methods
We compare our proposed GEE algorithm to the following algorithms. (i) Greedy. Greedy method

chooses the initial-stage users with the highest expected feedback. (ii) Active learning (AL). AL method

chooses the users to minimise the uncertainty in the model, so that the users with the highest variances are

chosen [35, 107]. (iii) Upper confidence bound (UCB). UCB method chooses the initial-stage users with

the highest values calculated as the linear combination of the expected reward and the standard deviation

[126]. All the algorithms select the second-stage users greedily after the system’s state is updated with

observations.

Results
The results are shown in Figure 4.3, with the evaluation measure as the total reward gained from the two

stages. The result of the original GEE algorithm (Eq. (4.34)) is shown and we emphasise that the result

of the GEE algorithm with the intra-stage independence assumption produces similar results.

From this figure, we can make the following observations. (i) For all the algorithms, the perform-

ance improves as m increases. This shows that by separating the recommendation process into two
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Figure 4.3: Total reward comparison of different algorithms on the synthetic data. The x-axis is m/N , the ratio of
users to choose at the initial stage, and the y-axis is the total reward of both stages.

stages the performance can be greatly improved over a PRP-like once-for-all batch solution. (ii) For all

the algorithms, the total reward increases more sharply than it drops after the performance peak. This

phenomenon indicates that a small portion of allocation of users in the initial stage can significantly

improve the overall performance. Note that in our synthetic data generation, we have used K=5, and the

peak is also around m = 5. Therefore, the dimension of the latent factor model may be an indicator of

the allocation ratio. The best result gained with optimal parameters of each algorithm is shown in Table

4.2.

4.4.2 Experiments on the MovieLens Dataset
Experiment setup

As our study is a theoretical one, we use a relatively small research-based dataset MovieLens 100K,

which has been described in Chapter 3. To conduct the experiment, we first divide the dataset into the

training set and test set. For the sake of simulating cold-start item recommendations, we first randomly

choose 200 items with sufficient numbers of ratings (at least 50) as the test cold-start items, and use

their ratings as the groundtruth in the test dataset. The ratings between users and the remaining items

are used to train the model. Similar to the synthetic data experiment, we compare our algorithms with

Greedy, AL and UCB. After observing the feedback, the system updates according to the user-based
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(d) N = 80

Figure 4.4: Total reward comparison of different algorithms on the MovieLens 100K data. The x-axis is m/N , the
ratio of users to choose at the initial stage, and the y-axis is the total reward of both stages.

CF model suggested by Eq. (4.14). The results are evaluated by using both the total reward, and the

total hit number – the total number of ratings equal or above 4 of the two stages (similar to the hit@2

as defined in the last chapter). To be consistent with what the user-based CF model suggests, we use the

independent intra-user assumption for the GEE algorithm used.

Results

The results are shown in Figure 4.4, and Tables 4.3 and 4.4 withN = 10, 20, 40 and 80 respectively. Both

the total reward and the total hit number measures are compared. Here the total hit number is defined as

the total number of ratings collected which are 4 or above. We can see significant improvements over

all four cases with the implementation of our algorithm. Similar to the synthetic experiment results,

all algorithms show a peaking manner as m increases. From Tables 4.3 and 4.4 we can see that the

improvements evaluated by using the total reward are even higher than the total hit number, which may

be the result of targeting directly to the optimal reward in our objective function.

There is an apparent difference between the shapes of curves shown in Figure 4.4 and in Figure 4.3.

We refer this different to the following two possible causes. (i) In a real recommendation system, the rat-

ings’ distributions may deviate from Gaussian which is used as the generative function for the synthetic
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Table 4.3: Total reward compared on MovieLens.

Algorithm N = 10 N = 20 N = 40 N = 80

Greedy 4.255 8.95 20.75 45.26

AL 4.705 9.91 21.715 41.665

UCB 5.38 10.2 21.715 45.26

GEE 12.125 19.48 31.05 60.97

Improvement 125.4% 91.0% 43.0% 34.7%

Table 4.4: Total hit number compared on MovieLens.

Algorithm N = 10 N = 20 N = 40 N = 80

Greedy 0.845 1.745 4.045 8.73

AL 0.875 1.905 4.155 7.815

UCB 1.015 1.955 4.155 8.73

GEE 2.245 3.245 5.325 10.225

Improvement 121.2% 66.0% 28.2% 17.1%

test. However, even with a non-Gaussian dataset, the conclusion derived from our algorithm should still

hold. (ii) In the experiments on MovieLens 100k, correlations between users are calculated based on the

co-rated items between users. Since our algorithm considers both stages when selecting the initial-stage

users, it automatically prefers those that have (either positive or negative) correlations with the potential

second-stage users, to those whose ratings are not sufficient to make a correlation estimation. Thus this

process naturally filters out those users who do not have sufficient ratings to have concurrent ratings with

others. This may be the reason why the results continuously grow until the initial stage ratio gets very

large in all panels of Figure 4.4, and yet, it reinforces our conclusion that we should choose the users

with not only high expected ratings but also high correlations (positive or negative) with potential users

to be selected in the second stage.

4.5 Concluding Remarks

In this chapter, we presented a two-stage CF process to address cold-start problems, with an item cold-

start problem as a working example. We formulated the problem using a CU model and a PMF model,

using POMDP in search of the exact solution for each. We found from analysing the exact solutions

that the users to choose at the initial stage should be not only of high expected values, but also highly

correlated with potential users in the next stage – a property that can guide the system to find promising

users in the next stage. We proposed the approximate algorithm GEE based on this finding. And we

conducted initial experiments using GEE and compared the results with several baseline algorithms on

both a synthetic and a real dataset, which confirmed the effectiveness of our algorithm.

Since the algorithm is derived from approximating the exact solution based on a Gaussian model,

the experimental results on the real dataset appear to be different from the synthetic data. However, the

GEE algorithm prevails in both cases. This means that our conclusion – the users to choose in the initial
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stage should be of both high expected value and high correlations with potential second-stage users holds

regardless of the Gaussianity of data.

In the approximations, we especially focused on the inter-stage user correlations while assuming

the intra-stage users are independent of each other (4.32). This assumption leads to significant simpli-

fications of the GEE algorithms. In the next chapter, we will intensively discuss the effect of intra-stage

correlations in regard to the diversification problem.



Chapter 5

Item Portfolio Diversification

In the previous two chapters, when considering multiple recommendations in one interaction step, we

disregarded the correlations between the recommendations, resulting in several index-based algorithms

in Chapter 3 (e.g., LinUCB, GLM-Lin and GLM-Sig), and several approximations (the proposed GEE

algorithms) of the exact solution in Chapter 4. In this chapter, we specifically study the effect of correl-

ations between items when multiple items are concerned.

When we consider correlations of items in a list, the diversification problem naturally emerges.

We argue that the diversification level in a recommendation list should be adapted to the target user’s

individual situations and needs. For example, different users may have different ranges of interests – the

preference of a highly focused user might include only few topics, whereas that of the user with broad

interests may encompass a wide range of topics. Thus, the recommended items should be diversified

according to the interest range of the target user. Also, the uncertainty of the estimated user preference

model may vary significantly between users: different users may have provided different number of

ratings – some have provided very few, such as cold-start users, whereas some have provide many. As a

result, the recommended items should be diversified at a higher degree for the former, and a lower degree

for the latter due to the different levels of risks in their user models. In general, the diversification should

be tailored to each individual user’s need.

In this chapter, we theoretically study the adaptive diversification problem. We start with com-

monly used latent factor models and reformulate them using the mean-variance analysis from the port-

folio theory. The resulting latent factor portfolio (LFP) model captures the user’s interest range and the

uncertainty of the user preference by employing the distribution and variance of the learned user latent

factors, respectively. Our mathematical derivation reveals that the need for diversification is not only

due to the system’s risk-aversion preference (non-adaptive), but, most importantly, due the target user’s

situation (adaptive). Our experiments confirm the theoretical insights and show that LFP succeeds in

improving latent factor models by adaptively introducing recommendation diversity to fit the individual

users’ needs.

Though focused on the item diversification problem, due to the symmetric property of latent factor

models, the arguments and methods in this chapter can be easily adapted to a user diversification scenario.
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5.1 Uncertainty in Latent Factors

Similar to previous chapters, we adopt a latent factor model here, in which the rating ru,i from user u to

item i can be expressed as the inner product of their latent factor vectors,

ru,i = pTuqi + ξ (5.1)

where ξ is a noise factor with zero mean, qi = (qi,1, qi,2, . . . , qi,K)T denotes the latent factor vector

of the item, with each component qi,k as the extent to which the i-th item possesses the k-th latent

factor, and pu = (pu,1, pu,2, . . . , pu,K)T similarly denotes the latent factor vector of the user, with each

component pu,k as the extent that user u is interested in the k-th latent factor. K is the number of

latent factors that are employed in the model (the dimension of the user/item vector). For the reader’s

convenience, the key notations related to this chapter are summarised in Table 5.1.

Assuming that the representation of items is independent from individual users and that the latent

item factors can be learned beforehand, in practice, we can regard the latent item factors as constants.

Similar to the arguments in Chapter 3 and Chapter 4, we focus on the uncertainty of the target user

factors (yet, the uncertainty of the item factors can be analogically derived). The expected value of a

rating ru,i is thus expressed as:

E(ru,i) = qTi E(pu). (5.2)

We also derive the variance of rating ru,i and the covariance between rating ru,i and ru,i′ as follows:

Var(ru,i) = E[ru,i − E(ru,i)]
2

= E[qTi (pu − E[pu])]2

= E[qTi (pu − E[pu]) (pu − E[pu])
T
qi]

=

K∑
k=1

q2i,kσ
2
u,k, (5.3)

Cov(ru,i, ru,i′) = E[(ru,i − E(ru,i)) (ru,i′ − E(ru,i′))]

= E[qTi (pu − E[pu]) (pu − E[pu])
T
qi′ ]

=

K∑
k=1

qi,kqi′,kσ
2
u,k, (5.4)

where σ2
u,k is the variance of the k-th latent factor of user u, i.e.,

σ2
u,k = E[pu,k − E(pu,k)]2. (5.5)

The variance of each rating in terms of latent factors represents the uncertainty. Note that in the

derivation of Eq. (5.3) and (5.4) we make use of the property that the user’s interest in different lat-

ent factors are uncorrelated, i.e., E[(pu,k − E(pu,k))(pu,l − E(pu,l))] = 0, k 6= l, which makes pu’s
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Table 5.1: Summary of key notations in Chapter 5.

Notation Description

K The dimension of the latent space

N The size of the recommendation list

pu, qi User u’s latent factor vector, item i’s latent factor

σ2
u,k The variance of the user u’s kth latent factor

Iu The set of items rated by user u

j(n) The rank function that returns the item index at position n

j = (j(1), j(2), . . . , j(N)) The recommendation list

P (j) The recommendation portfolio based on j

wn The weight of the recommendation at position n

Ru,P (j) The overall relevance of the recommendation list with respect to P (j)

U [Ru,P (j)] u’s utility over the portfolio P (j)

Un[Ru,P (j)] u’s utility over the top n positions of the portfolio P (j)

b The risk-reward trade-off parameter (system-level)

covariance matrix (pu − E[pu]) (pu − E[pu])
T a diagonal matrix diag[σ2

u,1, σ
2
u,2, . . . , σ

2
u,K ].

This property is a common assumption in latent factor models, in which each latent factor represents

one aspect independent of all the others. We have two insights from the above formulation in Eqs. (5.3)

and (5.4). First, as seen in Eq. (5.3), the variance (uncertainty) of the user preference score (the rating) is

associated with the variance in the latent factors, indicating that taking into account the uncertainty in the

latent factors could contribute to the modelling of the user preference. Second, as seen in Eq. (5.4), the

covariance (proportionate to the correlation) between a user’s preferences of two items is also associated

to the variance of the latent factors, indicating that it is feasible to exploit the uncertainty of latent factors

to regulate the recommended items in order to satisfy the user’s demand of the diversity and coverage of

recommended items.

Ideally, the variance of a latent user factor, e.g., σ2
u,k, is estimated from a number of observations

of pu,k, which means that we need to sample the rated items from user u multiple times. However, this

estimation could be infeasible in practice, since (1) multiple observations of user profiles are typically

unavailable, thus requiring heuristic sampling strategy, and (2) it requires training the model multiple

times according to different observations of user profiles, thus inflating the computational cost. We

may also first model the user latent factors according to PMF to obtain the estimated variance from a

probabilistic model. However, in order to address a wider category of latent factor models which may

lack a probabilistic representation, we propose a heuristic calculation for the variance of each latent user

factor, based on the latent factors of the items that have been rated by the user, as shown below:

σ2
u,k =

1

|Iu|
∑
i∈Iu

(pu,k − qi,k)2 (5.6)

where Iu represents the set of items rated by user u, and |Iu| denotes its cardinality. Note that this
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approximation satisfies our basic assumptions about the properties of the uncertainty. In the case that

a user prefers two or more similar items, i.e., the items may be probably represented by some similar

latent factors, the estimated variance with respect to those latent factors could be low. Conversely, if two

rated items are quite different, i.e., the items may be probably represented by far different latent factors,

the correspondent variance of the latent user factor could be high.

5.2 Latent Factor Portfolio Ranking
We will use vector j to denote the recommendation list. In our top-N recommendation task, we further

denote j = (j(1), j(2), . . . , j(N)) where we have introduced a rank function j(n) that returns the item

index of the n-th item in the ranking list.

With weighting coefficients assigned to different ranking positions, denoted by wn for position n,

we define the list of recommendation items as a recommendation portfolio P (j):

P (j) = {(j(1), w1), (j(2), w2), . . . , (j(N), wN )}. (5.7)

wn is a monotonically decreasing function of the ranking position. The most common function for wn

is wn = 1/2n−1 [166], which is also used here.

We can then express the overall relevance (the user’s preference over the ranked list) of the recom-

mendation portfolio based on latent factors as below:

Ru,P (j) =

N∑
n=1

wnru,j(n) =

N∑
n=1

wn

K∑
k=1

qj(n),kpu,k, (5.8)

where Ru,P (j) denotes the overall relevance of the recommended list for user u.

5.2.1 From Factor Level to Rank Level

Taking into account Eqs. (5.2)∼ (5.4), we obtain the expected value of the relevance of the ranked list as

E[Ru,P (j)] =

N∑
n=1

wn

K∑
k=1

qj(n),kE(pu,k) (5.9)

and the variance of the ranked list as:

Var[Ru,P (j)] =

N∑
n=1

w2
n

K∑
k=1

q2j(n),kσ
2
u,k +

N∑
n=1

N∑
m=1
m6=n

wnwm

K∑
k=1

qj(n),kqj(m),kσ
2
u,k (5.10)

where, for the purpose of readability, we skip the detailed derivation from the topic variance to the rank

list variance (see Appendix A to this Chapter). Note that the uncertainty of the recommendation list

is represented by the variance in terms of latent factors. There are two insights from the two terms in

Eq. (5.10).

The first term indicates that the uncertainty of a recommendation list is also top-biased. In other

words, if the variance of a latent user factor, e.g., σ2
u,k, is given, then the latent factor of top-ranked items
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would have a larger influence on the uncertainty of the recommendation list than that of low-ranked

items. In this sense, in order to reduce the uncertainty of the recommendation list, we need to rank an

item relatively higher if its latent factor, e.g., qj(n),k, is large and the variance of the corresponding latent

user factor, i.e., σ2
u,k, is low.

The second term indicates that the relative rank positions of any two items in the recommendation

list influence the overall uncertainty. For example, if the variance of a latent user factor is large and

the user has shown interest in an item whose corresponding latent factor is also large, then ranking

another item with also a large corresponding latent factor at the higher position leads to larger uncertainty.

Conversely, if the variance of a latent user factor is small, then ranking the two items higher would not

lead to a large increase of the overall uncertainty. Note that the variances of all the latent user factors

need to be taken into account for an aggregated impact on the overall uncertainty. In summary, it is

evident that by exploiting the uncertainty of the latent factors, recommendation diversification can be

attained adaptively.

5.2.2 Sequential Ranking

Following the portfolio theory of information retrieval (IR), we can attain an optimal recommendation

list by taking into account the trade-off between the mean relevance of the recommended items and the

corresponding variance. As a result, the utility function is expressed as:

U [Ru,P (j)] = E[Ru,P (j)]− bVar[Ru,P (j)] (5.11)

in which b is a risk-reward trade-off parameter. As we shall see later, parameter b is a system level

parameter and does not contribute to the adaptive adjustment of the diversification level. Instead, the

diversification level in the ranked list will automatically be adjusted according to the uncertainty of the

user factors and their distributions (in other words, it relies on how much we understand the target user

from the provided ratings). By maximising this utility function, an optimal ranking can be achieved,

which attains an optimal mean-variance balance. Here, we adopt the sequential ranking algorithm as

used in [167] to solve the optimisation problem in Eq. 5.11. To do this, first we define the utility function

of the top n positions as Un. And then we can obtain the final item ranking rule at rank n as:

j∗(n) = arg max
j(n)

{∆Un(Ru,P (j))}

= arg max
j(n)

{Un(Ru,P (j))− Un−1(Ru,P (j))} (5.12)

= arg max
j(n)

{ K∑
k=1

(
qj(n),kpu,k − bwnσ2

u,kq
2
j(n),k − 2bσ2

u,k

n−1∑
m=1

wmqj(n),kqj(m),k

)}
.

Here, again, for readability, we leave the exact derivation to Appendix B to this Chapter. We have also

dropped wn from Appendix B since it is a constant for rank n.
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Two Levels of Diversification

We call the above formulation latent factor portfolio ranking, since both the mean and the variance are

defined based on latent factors of users and items, as indicated by the summation over the factor space k.

The most important characteristic of LFP is the introduction of the variances of the latent factors σ2
u,k,

which introduces the adaptation. Combining σ2
u,k and b, topic diversity in the ranked list is adjusted in

two levels:

• At the system level, the need for diversification is due to the risk-averse behaviour of the system,

and it is adjusted at parameter b. As shown in [25], the risk-averse behaviour is query (user

profile)-independent and related to the utility of the system, defined by the used IR metric.

• At the user profile level, the need for diversification is related to the level of absolute certainty

about the latent topics that the target user is interested in. The uncertainty is represented by the

variances σ2
u,k of the latent factors in the formula. Combined with b, it adaptively balances the

mean and reward trade-off in the user profile level, thus adapting the topic diversification to each

individual user’s needs.

Comparison to Previous Work

From Eq. (5.12), we observe that: on one hand, compared to the latent factor models (e.g., [100]

and [30]), LFP ranks an item at position n based on not only its rating predictions, i.e., the first term

in Eq. (5.12), but also its uncertainty in terms of the latent item factors, i.e., the second term, and the

correlation between this item and the items ranked before it, i.e., the third term. Therefore, we can regard

LFP as a general extension of latent factor models by introducing the trade-off with respect to the uncer-

tainty of recommended items. Note that in our derivation we only consider the uncertainty coming from

user latent factors. One could also consider the randomness of both the user factors and items factors

simultaneously; however, that is not the focus of this work, and we have therefore left its discussions to

future work.

It is also of interest to specifically compare the formula in Eq. (5.12) to other adaptive diversification

methods in text retrieval. In [49], the diversification trade-off of an unseen query was obtained by

mapping it to the known queries whose optimal diversification level is known a priori. By contrast, our

method is fully unsupervised and the diversification level is naturally adapted to the latent topics that

the target user is interested in and also to how many of them we have already obtained in the ranked

list. As shown by the first term of Eq. (5.12), an item is promoted if it has the same topic as the user’s.

However its rank score will be penalised if the same topic has already appeared in the lower ranks (see

the product qj(n),kqj(m),k in the third term). In [50], an intent-aware search result diversification method

was proposed, where essentially the study was focused on the first term in our formula. In that approach,

query aspect intents are classified into two categories (factors); informational and navigational, and a

machine learning algorithm is used to rank documents with respect to the categories.

The other branch of research related to our work exploits portfolio theory for various information

retrieval and recommendation tasks. The importance of such approaches has recently been underlined in
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a talk by Resnick [168], who projects the usefulness and the necessity of portfolio theory in personalised

systems. The application of portfolio theory in information retrieval and recommendation was first

proposed by Wang et al. [167, 25]. Recent increasing attention to exploiting principles in economics for

IR [155] may also fall under the same direction.

In the original portfolio retrieval formulation, the uncertainty about the overall relevance of a ranked

list is linked to the co-variances between individual documents (relevancies) [167, 25]. However, as

they are conditioned on a given query or user profile, exactly, how to obtain such a co-variance matrix

remains an open question. In practice, the covariance between two relevance scores is approximated by

the covariance between their document term occurrences or user ratings. Computationally, this approach

is expensive because every document or item pair needs to be considered. In this chapter, we solve this

issue by providing a better explanation of the correlation: document or items are correlated because of

their underlying topics and latent factors. As shown in Eq. (5.12), LFP ranks items by taking into account

item correlations based on their latent factors/topics, i.e., the products between item factors, which are

not exploited in the original model. For example, when ranking a movie in position n, LFP (in the case

of b > 0) would prefer a movie with a genre (assumed to be represented by a latent factor) that was not

contained in the movies ranked before position n, in order to maximise Eq. (5.12). In this sense, we can

regard LFP as a general extension of the original retrieval model, where when K = 1, LFP returns to the

original retrieval model in [25].

5.3 Experimental Evaluation
In this section we present a series of experiments to evaluate the proposed adaptive diversification

method. We specifically focus on the following aspects: (1) As discussed, user tastes have different

scope and coverage, reflected by their rated items: some are more specific, while others have wider

interests. The question is whether our method could adapt the diversification level to the taste of each

user. (2) The number of rated items provided by users varies. As a result, we have different accuracy and

uncertainty about the users’ “true” taste. We intend to investigate whether our method could adjust the

diversification level of the ranked list to this uncertainty. (3) If we consider the overall recommendation

quality as an aggregated effect from both the relevance and the diversity, whether LFP could improve the

overall recommendation quality.

5.4 Configurations

5.4.1 Dataset

The publicly available dataset MovieLens 1M is used in our experimental evaluation. The data set

contains 1M ratings (scale 1–5) from about 6K users on about 3.7K movies items. We use this dataset

instead of a larger dataset Netflix because Netflix does not have genre information. The data sparseness

is 95.5%. Each user in the dataset has at least 20 ratings. In addition, the genre information of movies is

provided. There are in total 18 genres, and the average number of genres per movies is 1.62. Note that our

focus in this chapter is not on the performance comparison against the state-of-the-art baselines, but on

investigating how the proposed method could diversify recommendation results for different types of user

profiles (tastes). The choice of a moderate size dataset enables an efficient exploration of experimental
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results under various settings.

We randomly separate users into two subsets, i.e., a training set containing 80% of the users, and

a test set containing 20% of the users. For each user in the test set, we randomly select different user

profile lengths (UPL), i.e., the number of rated items, together with the ratings in the training set for

training the latent factor models, and use the remaining user rated items as the basis for evaluation.

5.4.2 Evaluation Metrics

In our experiments, we adopt Mean Average Precision (MAP) to measure the effectiveness of the ranked

recommendation list. The average precision (AP) of a size-N list for the corresponding user is defined as

AP =

∑N
n=1 P@n

N
, (5.13)

where precision at n, P@n, is defined as the ratio of relevant items at rank n.

And MAP is its average over all users

MAP =
1

#users

∑
users

AP. (5.14)

In order to calculate MAP, we set the relevance threshold as rating 4. In other words, we regard

items with ratings equal to or larger than 4 as relevant.

For the investigation of the trade-off (and combination) of the relevance and the diversity in Sec-

tion 5.5.4, we utilise αNDCG, which summarises both the diversity and the quality of a ranked list [48].

We use movie genres as “nuggets” in calculating αNDCG. The exact definition of αNDCG is expressed

below:

αNDCG@N =
αDCG@N

αIDCG@N
(5.15)

in which

αDCG@N =

N∑
n=1

∑L
l=1 J

u
nl(1− α)β

u
l,n−1

log2(1 + n)
(5.16)

Junl is an indicator function that is equal to ru,j(n) (the rating of the n-th movie in the list for user u), if

the n-th movie in the recommendation list of user u contains genre l, otherwise 0. βul,n−1 denotes the

number of movies ranked up to position n − 1 that contain genre l in the recommendation list for user

u. Therefore, with more movies ranked up to position n− 1 that have already contained genre l, the less

is (1 − α)β
u
l,n−1 , meaning that recurrence of the same genre is punished. α is a constant set to control

the magnitude of the penalty for the redundancy of the recommended items. The value of α can be

within the range [0, 1], in which the higher value indicates the larger penalty. In our experiments, we use

α = 0.5 as a moderate choice for measuring diversity. αIDCG@N denotes the highest possible value of

αDCG@N in the case that the top N recommendation list contains “ideally” diversified relevant items.

Thus, αNDCG is normalised to be [0,1]. Note that αNDCG depends on both the movie ratings and
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genres, representing a suitable metric for our purpose of evaluating the trade-off between the relevance

and the diversity. Since we particularly focus on the top-ranked items in recommender systems, we use

N = 5 in the experiments.

To solely measure the recommendation diversity in a ranked list, we also introduce a simple di-

versity measure called DNG@N . This measures the number of genres in the top-N ranked list. The

number is discounted according to the position of the corresponding movie in order to consider the rank

bias. Specifically, we define DNG@N as:

DNG@N =

N∑
n=1

wnG(n) (5.17)

in which G(n) denotes the number of genres that the n-th movie has and that are not included in the top

n− 1 movies. wn is a discount factor that is set as wn = 1/2n−1. Similar to αNDCG, we focus on the

evaluation with N = 5. The reported DNG is an average across all the test users.

5.4.3 User Latent Factor Models

There are various ways of obtaining latent factors in Eq. (5.1), either by non-probabilistic approaches

[30, 53, 57, 1] or from a probabilistic viewpoint [31, 100]. In our experiment, we choose a basic latent

factor model from each of the two categories: PureSVD and PMF. The details of PureSVD have been

introduced in Chapter 2. As for PMF, we use a variation of it which estimates the latent factor of users

and items according to the following objective function:

P,Q = arg min
P,Q

1

2

∑
u

∑
i

δu,i
(
ru,i − g(pTuqi)

)2
+
λp
2

∑
u

‖pu‖2F +
λq
2

∑
i

‖qi‖2F , (5.18)

where δu,i is an indicator function equal to 1 when the rating ru,i is available and 0 otherwise. || · ||2F
denotes the Frobenius norm. The latent factors of users and items are learned from the user-item ratings

(normalised to [0, 1]), and the magnitude of latent factors are penalised in order to alleviate overfitting.

We introduce g(x), a logistic function, i.e., g(x) = 1/(1 + e−x), which serves to bound the range of the

inner product of latent factors. A simplification is usually made to set λ = λp = λq , which is also used

here. In the following, we will use PureSVD or PMF to denote the latent factor model only, and use

PureSVD+LFP and PMF+LFP to denote the corresponding LFP methods achieved based on the latent

factor model.

5.5 Results and Analysis

5.5.1 System-Level Diversity

As discussed, our LFP model implies that the need for diversification in a ranked list comes from two

levels. Our first experiment is to investigate the system level diversity, which is controlled by the para-

meter b in Eq. (5.12). In our experiment, we use the training set to train the latent factor models, and

for each user in the test set, we randomly select 2 rated items, i.e., User Profile Length (UPL=2), as user
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(a) PureSVD+LFP

(b) PMF+LFP

Figure 5.1: The system level diversity: the impact of parameter b on DNG@5 and MAP. (a) When PureSVD is the
used for obtaining the latent factors. (b) When PMF is the used for obtaining the latent factors.

profiles, and use the remaining rated items as ground truth. By varying the value of parameter b in LFP,

we evaluate its influence on the recommendation performance of different latent factor models, which is

shown in Figure 5.1. As can be seen, for both PureSVD+LFP and PMF+LFP, the diversity measure

DNG@5 generally increases as the value of b in LFP increases, while MAP decreases. Note that the

baseline latent factor models are equivalent to the case when we set b = 0. The figures show that a pos-

itive value of b could contribute to diversifying the recommendation results, and that the magnitude of

diversification is controlled by its value. However, a positive value of b could reduce the MAP, indicating

that it may degrade the end-user satisfaction when the results are over-diversified. This observation is

consistent with the study in text retrieval in [25]. Because the parameter is a constant across target users,

it serves to adjust the diversity of recommendation in a system level, and its optimal value depends on

the used evaluation metrics (in other words, the utility of the recommendation system).

5.5.2 Adaptive Diversity: the Number of Rated Items

We have discussed at the beginning of this chapter that the observed numbers of rating items are different

across users. As illustrated in Figure 1.5, the number of user rated items influences the uncertainty of the

learned latent user factors – the more information we have about the user, the less uncertain our model
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(a) PureSVD vs. PureSVD+LFP

(b) PMF vs. PMF+LFP

Figure 5.2: The diversity that depends on the target user profiles: the number of rated items. (a) Comparison
between PureSVD and PureSVD+LFP. (b) Comparison between PMF and PMF+LFP.

is about her hidden taste. In the following experiment, we evaluate the impact of the model uncertainty

on the diversity of recommended items, where the model uncertainty is indicated by the number of rated

items provided in the user profile. We generate the user profile length (UPL) from 1 to 15, and randomly

select the rated items as user profile items. As in our dataset, each user has at least rated 20 items. Setting

UPL up to 15, we ensure that there are at least 5 rated items per user used for testing. The results are

shown in Figure 5.2.

From the figures, we observe that the LFP models PureSVD+LFP and PMF+LFP succeed in con-

sistently increasing the diversity of recommendation results for their basic models PureSVD and PMF.

Note that the increases are all statistically significant according to the Wilcoxon signed rank significance

test with p < 0.01. This indicates that LFP could effectively capture the uncertainty of latent factors and

use it to diversify recommendation results.

In addition, the diversity achieved by both our LFP models PureSVD+LFP and PMF+LFP and

the basic latent factor models PureSVD and PMF, generally increases as the users rate more items. At

a first glimpse, the result seems to contradict the understanding that adding ratings in the user profile

would reduce the uncertainty of the user model and thus the need for diversifying the results. A closer

look, however, suggests that this is intuitively correct because when there are few rated items known
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Table 5.2: The diversity adapted to the target user profiles: the range of interests.

UPL=2 UPL=3

Focused Broad Focused Broad

PureSVD 3.148 3.419 3.174 3.386

PureSVD+LFP 3.293 3.641 3.304 3.608

p-value 0.096 0.000∗ 0.026 0.000∗

PMF 3.353 3.400 3.373 3.432

PMF+LFP 3.415 3.494 3.449 3.570

p-value 0.335 0.006∗ 0.411 0.002∗

from the users, the recommended items could be strongly biased toward the few known items, and thus

less diversified, whereas when more rated items are known from the users, the recommended items could

be more likely to cover different aspects of user interest, and are thus more diversified.

Finally and most importantly, we also observe that the increase of diversity introduced by LFP

generally decreases as the number of user-rated items increases. As shown, the diversity increase brought

by PureSVD+LFP compared to PureSVD tends to be constant as the UPL increases, and the diversity

increase achieved by PMF+LFP compared to PMP+LFP tends to be smaller as the UPL increases.

When the UPL is small, LFP automatically provides a relatively larger increase of diversity against the

basic latent factor models. In other words, when the users rated only a few items, such as a cold-start

user, the basic latent factor models tend to recommend items based on highly uncertain latent factors.

LFP addresses the risk of the basic latent factor models by providing more diversified results.

5.5.3 Adaptive Diversity: the Range of Interests

We now focus on the evaluation by considering the users with different ranges of interests. To make our

study focused and controlled, we are particularly interested in two types of user profiles: the users who

rated movies with the same genre (denoted as the “Focused” type), and the users who rated movies with

non-overlapped genres (denoted as the “Broad” type). The first type of user profiles represents a typical

situation in which the target user has a specific range of interests and as a result, the diversification is

less required, while the second type represents the opposite situation in which diversification is more

desired. Also as demonstrated in the previous section, LFP could be most beneficial for diversifying

recommendation results for the users who only rated a limited number of items. For this reason, we fix

UPL (User Profile Length) to 2 and 3 in this investigation. For each UPL, we classify a user into the

“Focused” type if all her rated items contain the same genre, and into the “Broad” type if all rated items

contain genres different from each other.

The results are shown in Table 5.2, from which we draw two observations. First, for both the

basic latent factor models PureSVD and PMF, diversity of the “Focused” type is lower than that of the

“Broad” type for most of the cases. This result is in accordance with our understanding, as discussed

in Section 1.2.3, that the commonality of the items in the user profile has a significant impact on the
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Table 5.3: Example recommendation results for the two different types of user profiles. We refer “Ac” to Action,
“Ad” to Adventure, “C” to Comedy, “D” to Drama, “H” to Horror, “R” to Romance, “SF” to Sci-Fi, “T”
to Thriller, and “W” to War. PureSVD+LFP is used.

(a) An example of a focused user profile.

Type Focused

Profile
Chariots of Fire (D)

Erin Brockovich (D)

Rank PureSVD PureSVD+LFP

1 Second Best(D) Second Best(D)

2 Saving Private Ryan(Ac,D,W) North by Northwest(D,T)

3 North by Northwest(D,T) The Truman Show(D)

4 The Truman Show(D) Saving Private Ryan(Ac,D,W)

5 Jakob the Liar(D) Jakob the Liar(D)

DNG@5 2.25 1.75

(b) An example of a broad user profile.

Type Broad

Profile
American Pie (C)

The Blair Witch Project (H)

Rank PureSVD PureSVD+LFP

1 Big Daddy(C) Big Daddy(C)

2 Bowfinger(C) The Mask of Zorro(Ac,Ad,R)

3 Parasite(H,SF) Baby Geniuses(C)

4 Baby Geniuses(C) Parasite(H,SF)

5 The Mask of Zorro(Ac,Ad,R) Bowfinger(C)

DNG@5 1.69 2.75

user need for diversification. In the case of the “Focused” type of user profiles, the latent user factors

are learned from the items that have the same or similar topics (in this case genres), and thus the latent

factors of those movies could be similar. As a result, the uncertainty and variance of the latent user

factors could be low, and those latent user factors would promote recommending movies with the same

or similar genres as the movies that the user has already watched, i.e., a less diversified recommendation.

By contrast, a more diversified recommendation would be promoted to the “Broad” type of user profiles.

Second, we observe that for both UPL=2 and UPL=3, either PureSVD+LFP or PMF+LFP has

achieved a significant increase of diversity for the “Broad” type of user profiles, while introducing a

slight change of diversity for the “Focused” type. This result indicates that LFP could effectively exploit

the distribution of latent user factors to adaptively determine the level of diversification. This is further

illustrated by the example in Table 5.3. We clearly see that LFP automatically adjusts the diversity of

recommendations according to the different range of interests learned from the user profiles.

5.5.4 Combining Relevance and Diversity

Our final experiment investigates how LFP can benefit the end-user satisfaction by considering both the

relevance and diversity of recommended items. We test the recommendation performance in terms of



5.5. Results and Analysis 91

Table 5.4: Relevance (measured by MAP) vs. diversity (measured by DNG@n and αNDCG@n).

(a) Relevance vs. diversity (PureSVD).

MAP DNG@5 αNDCG@5

UPL=2

PureSVD 0.749 3.483 0.845

PureSVD+LFP (b = −1) 0.751 3.341 0.833

PureSVD+LFP (b = 1) 0.738 3.645 0.858

UPL=5

PureSVD 0.764 3.533 0.854

PureSVD+LFP (b = −1) 0.772 3.417 0.841

PureSVD+LFP (b = 1) 0.741 3.683 0.866

UPL=10

PureSVD 0.769 3.555 0.857

PureSVD+LFP (b = −1) 0.774 3.456 0.845

PureSVD+LFP (b = 1) 0.745 3.706 0.870

(b) Relevance vs. diversity (PMF).

MAP DNG@5 αNDCG@5

UPL=2

PMF 0.787 3.412 0.846

PMF+LFP (b = −1) 0.791 3.361 0.839

PMF+LFP (b = 1) 0.758 3.500 0.864

UPL=5

PMF 0.807 3.515 0.863

PMF+LFP (b = −1) 0.814 3.415 0.851

PMF+LFP (b = 1) 0.763 3.611 0.874

UPL=10

PMF 0.818 3.538 0.865

PMF+LFP (b = −1) 0.826 3.462 0.855

PMF+LFP (b = 1) 0.774 3.610 0.872

relevance, as measured by MAP, and the performance in terms of diversity, as measured by DNG@5, un-

der two different settings of parameter b in LFP, i.e., b = −1 and 1. Note that as shown in Section 5.5.1,

a positive value of b tends to increase the recommendation diversity, while decreasing the recommend-

ation relevance. Opposite results can be observed in the case of a negative value of b used in LFP. The

results are shown in Table 5.4. We first observe that LFP could improve the relevance of recommenda-

tions for the users who are risk-loving. When b = −1, MAP is improved by both PureSVD+LFP and

PMF+LFP. This result indicates that in the case where LFP increases the variance (thus similarity) of

the latent item factors among the recommended items, it could contribute to improving the relevance of

the recommendation. The empirical result is also consistent with the statistical mean-variance analysis of

MAP conducted in [153]. Second, LFP could attain a trade-off between the recommendation relevance

and the diversity. As can be seen, when b = 1, both PureSVD+LFP and PMF+LFP achieve diversified

recommendation results shown in the improved DNG@5, while degrading the relevance performance

as measured by MAP. But as a whole, αNDCG is substantially improved, indicating that the degraded
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relevance could payoff for the overall quality of the recommendation that takes into account both the

relevance and the diversity. Although here αNDCG could only serve as an approximation of the end-

user satisfaction for the recommended items, the results are evident in that we can use LFP to adjust the

trade-off between the relevance and the diversity of recommendations from latent factor models.

5.6 Concluding Remarks
In this chapter, we proposed a new recommendation framework LFP specially for adaptively diversifying

multiple recommendation results for individual users. We exploited the variance of the latent user factors

to capture the range of user interests and uncertainty of the user profiles, and to use them as the basis for

indicating users’ needs for diversity. Through our experiments, we demonstrated LFP’s effectiveness for

adapting result diversification to the users’ needs without accessing explicit item properties. In addition,

we also showed that LFP is capable of effectively adjusting the trade-offs between the relevance and

the diversity of recommended items, and thus could further contribute to the overall recommendation

quality.

From the analysis, especially, in Section 5.5.2, we have demonstrated that the diversification need in

regard to a user with only a few rated items is especially high. This situation aligns with our discussions

that a diversified recommendation list for a cold-start user could be especially beneficial. The results

presented in this Chapter can be easily adapted to an item cold-start situation by swapping the user and

item latent factors in all the presented equations. In addition, in the item cold-start scenario, we should

assume the users’ latent factors are fixed and model the target item’s latent factors with distributions.

The results will be a diversified user list adapted to the item’s specific characteristics.

Chapter Appendices

A. Topical vs. Rank Variances

We present the detailed derivation of Var(Ru,P (j)) in Eq. (5.10) below. Let us start with

Var[Ru,P (j)] = E[Ru,P (j) − E(Ru,P (j))]
2.

Taking into account Eq. (5.8), we have:

Var[Ru,P (j)] =E[

N∑
n=1

wn

K∑
k=1

qj(n),kpu,k −
N∑
n=1

wn

K∑
k=1

qj(n),kE(pu,k)]2

=E[

N∑
n=1

wn

K∑
k=1

qj(n),k (pu,k − E(pu,k))]2

=E[

N∑
n=1

w2
n

K∑
k=1

K∑
l=1

qj(n),kqj(n),l(pu,k − E(qu,k))(pu,l − E(pu,l))

+

N∑
n=1

N∑
m=1
m6=n

wnwm ×
K∑
k=1

K∑
l=1

qj(n),kqj(m),l(pu,k − E(pu,k))(pu,l − E(pu,l))].
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Using the property as in Eq. (5.5), we obtain:

Var[Ru,P (j)] =

N∑
n=1

w2
n

K∑
k=1

q2j(n),kE[(pu,k − E(pu,k))2]

+

N∑
n=1

N∑
m=1
m 6=n

wnwm

K∑
k=1

qj(n),kqj(m),kE[(pu,k − E(pu,k))2].

The Eq. (5.10) is obtained as above by with the definition of σ2
u,k.

B. Sequential Ranking

The detailed derivation of ∆Un(Ru,P (j)) in Eq. (5.12) is given below.

∆Un(Ru,P (j))

=Un(Ru,P (j))− Un−1(Ru,P (j))

=
n∑

m=1
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Combining the last two terms, we have:

∆Un(Ru,P (j)) =wn
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Note that in above m and l are interchangeable. Thus, we have:
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Swapping the summation order over space m and k in the last term, we obtain Eq. (5.12):

∆Un(Ru,P (j)) =wn

K∑
k=1

(
qj(n),kpu,k − bwnσ2

u,kq
2
j(n),k − 2bσ2

u,k
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wmqj(n),kqj(m),k

)
.



Chapter 6

Risk-Hedging Diversification

In the previous chapter, we focused on the diversification problem and proposed latent factor portfolio

to achieve adaptive diversification in personal recommendation. This chapter aims to relate the portfolio

recommendation back to the temporal recommendation process. We argue that the recommended items

could be decided jointly with the past preference records of the users, instead of being optimised alone.

This argument is demonstrated by means of the risk-hedging joint portfolio diversification algorithms

proposed in this chapter.

Since the algorithm proposed in this chapter is motivated by the concept from finance, we adopt a

new dataset for our analysis – CrunchBase*, an online platform that records the investment activities of

individuals and investors in regard to startups in the US high-tech sectors. The problem is to generate

recommendations of promising investment opportunities tailored to the information need of individual

venture capital firms, who may have different approaches for making investment decisions according

to their financial situations, investment styles and investment expectations. This problem, on one hand,

is similar to a traditional recommendation problem as the dataset also comprises two components: the

venture capital firms and the startups, together with the recorded investment behaviours (such as invest-

ment amount and date), making it possible for us to explore the patterns of the investment behaviours

using techniques such as collaborative filtering (CF). As such, we can view the proposed recommender

system as a novel quantitative solution for the venture finance screening process. On the other hand,

however, the dataset of venture finance investment also presents some unique properties when compared

to a traditional movie/music rating dataset, such as its sparseness and its unique categorical distribution.

With the above considerations, in this chapter, we first provide a brief introduction to the venture

capital investment screening process and the characteristics of the considered dataset. Then, we propose

the joint portfolio recommendation solution, followed by experimental evaluations.

6.1 Venture Finance Background
Venture finance refers to the financing of private companies through the use of venture capital, a form of

private equity, a medium to long-term form of finance provided in return for an equity stake in potentially

high growth companies. VC has five main characteristics [169]: is a financial intermediary; invests only

*http://www.crunchbase.com/, the details of the dataset will be described in Section 6.3
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in private companies; takes an active role in monitoring and helping portfolio companies; primary goal

is to maximise financial return by exiting investments through sale or an initial public offering (IPO);

invests to fund the internal growth of companies.

Early-stage investment is typified by venture capital firms (VCs) who deploy capital towards high-

risk ventures. It is a key driving force of technological innovation and is vitally important to the wider

economy, especially in high-growth and hi-tech industries, such as life sciences, clean-tech and informa-

tion technology. Traditionally, investment opportunities are either referred or identified through manual

technology scans [170]. The main stages of an investor’s decision making process involve deal origin-

ation, screening, evaluation, structuring and post investment activities. These stages align with those

identified by other research into VC investment [171]. In recent years the traditional venture financing

landscape has also shown signs of evolving. Some commentators [172] depict an industry “trifurcating”

with (i) top-tier firms, e.g., Sequoia Capital, (ii) incubators and accelerators, e.g., Y Combinator, and, fi-

nally, (iii) firms that are taking a more quantitative approach to funding, e.g., Correlation Ventures. There

is potentially a fourth factor in the emergence of entirely new funding sources such as “crowdfunding”

which generally operate through online platforms, e.g., AngelList. Shifts towards more quantitative and

data driven approaches along with new opportunities for online private investment provide additional

impetus and scope for applying data mining and intelligent recommendations to this domain [173].

6.2 Recommendation for Venture Finance
Whilst there have been some applications of recommender systems to the broader domain of finance,

including microfinance [174], there has seemingly been few previous academic research in applying

such techniques directly to venture finance. To our knowledge, our work in [173] is the first and the only

one that has studied CF on venture finance recommendation. However, in [173], we only showed some

empirical results of a direct application of recommendation algorithms to venture finance, lacking a more

sophisticated consideration or adjustment of recommendation methods to the unique domain, where

the risk is a major concern. It is worth mentioning that [175] also considered risk in recommendation

optimisation for a P2P lending investment recommendation problem. However, the authors failed to

address the correlations between investments or to analyse the investors’ risk-averse levels, making it

significantly different from our method.

The domain of investment recommendation shows some special features compared with traditional

applications of recommender systems (e.g., for movies and music). First, modeling and controlling risk

for an investment portfolio is more essential for making investment recommendations. However, existing

work on recommender system applications in venture finance has largely disregarded the risk factor,

such as [173], only the similarity between new investment opportunities and VCs’ holding investments

were explored. Promoting similar opportunities may be attractive to the VCs at the first sight, but such

similarity-based methods fail to catch VCs’ underlying main investment intention, which is to examine

how well the new investment will fit into the current investment portfolio to hedge the risk and increase

the return [176].

Second, recommending jointly-diversified items can be especially beneficial in the investment re-
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Table 6.1: Summary of key notations in Chapter 6.

Notation Description

u The VC (user) under consideration

n The size of the recommendation list

i The startups (items) that have been invested by u

j The startups to recommend to u, |j| = n

I, Iu, Ic The entire available startup set, the available startup set to recommend to u
(Iu = I\i), the candidate startup set for u

J(j) The joint portfolio based on the startup set i and j

wi, wj The corresponding weights of i and j in the portfolio respectively

Ru,J(j) The overall relevance of the joint portfolio J(j) to u

U [Ru,J(j)] u’s utility over the joint portfolio J(j)

b u’s risk-averse level

pu, qi The feature vector of VC u, the feature vector of startup i, calculated as the
MAP solution of the PMF model

N The size of the candidate startup set, |Ic| = N

T The sampling number

Jg The joint portfolio based on i and the candidate startup set Ic

commendation problem. It is because a VC’s decision on further investments does not necessarily indic-

ate terminations of previous holding investments, but adding them into the existing portfolio. This re-

quires us to diversify the joint investment portfolio including both the VCs’ holding investments and po-

tential future ones, instead of diversifying the recommendation list alone as commonly studied [177, 47].

Finally, the CrunchBase dataset is much sparser than the traditional rating-based recommendation

dataset (see detailed dataset description in the next section), because each VC usually only invests in

a small number of investments. Meanwhile, a VC usually only focuses on a few industry categories,

therefore, it is infeasible to employ a topic diversification method [46, 178] to explicitly diversify the

items.

6.3 The CrunchBase Dataset
CrunchBase is a repository of startup companies, individual partners, and financial institutes focusing

on the US high-tech sectors [179]. With its self-description as a “free database of technology compan-

ies, people and investors that anyone can edit”, CrunchBase maintains the investment events between

investors (including financial institutes and individual partners) and investment opportunities (usually

startup companies) associated with the total amount of raised funding† and time. According to [173],

financial organisations and individual partners are significantly different in their investment behaviours.

Thus in search of consistent properties, in this work we focus on only the financial organisations. We

†It is the total raised money in one round for a startup instead of indicated for each funding party. Therefore we choose not to
use the funding amount information in this work.
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crawled the CrunchBase data from its official API‡ in May 2014. In total, we collected 62,926 invest-

ment events between 7,706 VCs and 18,026 startups from 1987 to 2014. We publicise the dataset online

for research use§.

By comparing the statistics between CrunchBase and the MovieLens 1M dataset, we have identified

several unique characteristics. First, as shown in Figure 6.1, VCs in the CrunchBase dataset tend to invest

in a small number of industry categories, whereas users in the MovieLens dataset tend to rate a variety

of movies, which often span more than 15 different genres. The reasons could be that, on one hand,

VCs’ investment numbers in CrunchBase are generally much lower than the user rating numbers in

MovieLens, due to the severe sparsity of the CrunchBase dataset (detailed below); on the other hand,

VCs may be cautious in investing in unfamiliar industry categories to avoid risk.

Second, the CrunchBase dataset is much sparser than conventional recommendation data. The

rating ratio of the MovieLens 1M dataset is about 4.46%, and it is 1.17% for another well-known movie-

rating dataset Netflix. These ratios are already very low, but the observed investment ratio of CrunchBase

is even lower: only 0.045%, about 1/97 of MovieLens 1M’s and 1/25 of Netflix’s. Such sparsity is

reasonable since private investment activity is not as commonplace as simply watching movies. Also,

the final investment decision will require the consent of both the company and VCs and usually involves

a lengthy due diligence process [180].

We argue that, the venture capital investment recommendation problem can especially benefit from

joint portfolio diversification, due to its following characteristics revealed by the CrunchBase data:

• From Figure 1.6, VCs tend to invest in opportunities with risk concerns rather than pure recom-

mendations based on similarity.

• VCs usually cannot make extremely large numbers of investments. For each new investment

opportunity, the VC may consider how it can fit into its holding portfolio. This requires us to

optimise the portfolio including both the invested startups and those to be recommended together.

• VCs normally focus on a small number of industry categories, unlike the wide range of genres in

users’ movie watching behaviours. This suggests that we cannot simply use a topic-diversification

method commonly used for recommendation list diversification [46].

6.4 Methodology

6.4.1 Problem Formulation

Let us denote a VC (venture capital firm) as u and the available startup (investment opportunity) pool

as I. For the reader’s convenience, we list key notations of this chapter in Table 6.1. Suppose that VC

u has already invested in m startups from the pool, and the recommender system is to seek another n

startups from the pool for this VC to invest in. Without loss of generality, we denote the m holding

investments (startups that the VC has already invested in) as i = (i1, i2, . . . , im), and denote the startups

‡CrunchBase API: http://developer.crunchbase.com
§http://www0.cs.ucl.ac.uk/staff/w.zhang/cb.html

http://developer.crunchbase.com
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Figure 6.1: The category/genre distributions of the CrunchBase and the MovieLens datasets.

to recommend as j = (j1, j2, . . . , jn) where j ⊂ I\i. We will also refer to the available startup set for

VC u as Iu ( Iu = I\i) in the following.

Since for user u, i is known and fixed, we simply use J(j) to denote the joint portfolio (without

explicitly showing the involvement of i in this notation), which is a linear combination of the m + n

items (m invested startups i and n recommendations j) with normalised weights:

J(j) = {(i1, wi1), . . . (im, wim), (j1, wj1), . . . (jn, wjn)} (6.1)

where
∑m
α=1 wiα +

∑n
β=1 wjβ = 1. Here the weights stand for the estimated importance of each startup

in the portfolio and will finally determine the ranking of the recommendation list [177].

We further denote VC u’s overall preference on the joint portfolio J(j) as Ru,J(j), which is a

weighted linear combination of the preferences on its component, as will be discussed later. According

to probabilistic matrix factorization (PMF), Ru,J(j) can be modelled as a random variable [31]. The

utility function U [Ru,J(j)] based on the random variable Ru,J(j) is defined as a trade-off between the

expected reward E[Ru,J(j)] and the associated risk. The risk is usually defined as the variance of the

reward Var[Ru,J(j)] [152, 25, 177]. In the risk-averse case, it is subtracted from the expected reward

E[Ru,J(j)] to form the utility function.

The objective function is thus to find n startups (with rankings) to recommend to u so that u’s utility

over the joint portfolio is optimised:

j∗ = arg max
j︸ ︷︷ ︸

startup selection

[
max
wi,wj

(
E[Ru,J(j)]− bVar[Ru,J(j)]

)]
︸ ︷︷ ︸

portfolio optimisation

. (6.2)

Here we have already used vectorswi andwj to denote the weight vector of startups i and startups

j respectively. Different from Chapter 5 where the weights for corresponding ranking positions are

predefined and fixed, here in the investment scenario, the weights should be modifiable, which further

determine the ranking of the n recommended startups. b is the VC’s risk-averse level. A higher b means

that the VC is more risk-averse and more willing to sacrifice the expected reward to hedge the risk. It

can be optimised globally (for all the VCs) or personally (adapted for each individual VC) from the data.

We will show in the experiment section how b is determined and calibrated from the data.



6.4. Methodology 100

We can see that there are two sub-problems in the objective function:

• Portfolio optimisation: given a candidate recommendation set of startups j, to find the optimally

allocated weights to maximise the utility of the joint portfolio J(j). This part is discussed in

Section 6.4.2.

• Startup selection and ranking: given a pool of available startups Iu, to select a subset j ⊆ Iu

(|j| = n) to form the joint portfolio J(j). This part is discussed in Section 6.4.3.

6.4.2 Portfolio Optimisation

We first focus on the portfolio optimisation problem:

max
wi,wj

U [Ru,J(j)] = max
wi,wj

E[Ru,J(j)]− bVar[Ru,J(j)]. (6.3)

To further simplify the notations, we will usew as the concatenation (wi,wj) in the following. We

will also denote the startups contained in the joint portfolio asκwhich is a concatenation (i, j). A startup

in the joint portfolio is thus denoted by a single symbol κ (κ ∈ κ). Now, the optimisation problem is

simplified as maxw E[Ru,J(j)]− bVar[Ru,J(j)]. Here we allow flexible weightswi of existing startups

in the portfolio optimisation process as we assume the VC can adjust their importance and priorities.

Portfolio-Level Preference

As mentioned before, we associate weights as the importance of startups in the portfolio. We also define

the ranking order of startups by the importance (weight) order among all recommended items. Now that

the problem is translated into a ranking problem, and thus we adopt a generalised definition of weight

which can be either positive or negative [177]. An advantage of this treatment also lies in its analytical

solution for weight optimisation.

As mentioned before, a VC u’s preference on a portfolio is a random variable Ru,J(j), which is a

linear combination of the preference random variables of individual startups denoted by ru,κ:

Ru,J(j) =
∑
κ

wκru,κ = wTr, (6.4)

where r is the vector representation of the VC’s preferences of startups in the portfolio. By denoting the

mean and variance of the preference ru,κ as µu,κ and σ2
u,κ, the expectation and variance of Ru,J(j) are

calculated as:

E[Ru,J(j)] =
∑
κ

wκE[ru,κ] = wTµ, (6.5)

Var[Ru,J(j)] =
∑
κ

∑
κ′

wκwκ′ Cov(κ, κ′) = wTΣw. (6.6)

Here we have used µ to denote the vector of the preference expectations, and Σ to denote the

covariance matrix whose (κ, κ′)-th element is given by the covariance Cov(κ, κ′) = σu,κρκ,κ′σu,κ′ ,
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where ρκ,κ′ is the correlation between startup κ and κ′ [152, 25] and can be estimated via industry

category overlap [173] or latent factor vector cosine [177].

We follow [177] and use the PMF model discussed in Chapter 3 to obtain the probabilistic repres-

entations of the VC-startup preferences. Assuming that uncertainty in the preference originates from the

uncertainty of the user latent factor estimation similar to Chapter 3, we can estimate the expectation and

variance of ru,κ as follows:

µu,κ = E[pu]Tqκ, (6.7)

σ2
u,κ = qTκ Cov[pu]qκ. (6.8)

Here pu and qκ can be estimated by the maximum a posteriori (MAP) solution of p(ru,i|pu, qi, σ2
0) =

N (ru,i|pTuqi, σ2
0) (see Chapter 3).

Portfolio Weight Optimisation

Integrating Eqs. (6.5) and (6.6) into Eq. (6.3), we translate the portfolio optimisation problem into the

portfolio weight optimisation problem:

max
w
wTµ− bwTΣw, (6.9)

which is a standard quadratic optimisation problem. In the case that w can take any value in Rm+n, the

analytic solution can be written as [177]

wM =

∣∣∣∣∣∣∣∣∣
1 1TΣ−1µ

µp µTΣ−1µ

∣∣∣∣∣∣∣∣∣Σ
−11 +

∣∣∣∣∣∣∣∣∣
1TΣ−11 1

µTΣ−11 µp

∣∣∣∣∣∣∣∣∣Σ
−1µ

∣∣∣∣∣∣∣∣∣
1TΣ−11 1TΣ−1µ

µTΣ−11 µTΣ−1µ

∣∣∣∣∣∣∣∣∣

, (6.10)

where

µp =
1− bθ2

2bθ1
, (6.11)

and

θ1 =
(xµ− y1)TΣ−1(xµ− y1)

(xz − y2)2
,

θ2 =
2(xµ− y1)TΣ−1(z1− yµ)

(xz − y2)2
, (6.12)

(6.13)
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Algorithm 6.1: Sampling-based Startup Selection (Sampling)
Require: VC u, current invested startups i1, . . . , im, candidate startup set Ic, risk-averse parameter b,

recommendation size n, utility function U , sampling number T
Initialise j∗ ← ∅
for t = 1 . . . T do

Sample jt = (j1, j2, . . . , jn) from Ic
Build joint portfolio J(jt) based on the joint set (i1, . . . , im, j1, j2, . . . , jn) via Eq. (6.1)
Calculate the maximum utility U [Ru,J(jt)] via Eq. (6.3)
if U [Ru,J(jt)] is the largest utility so far then

Update j∗ ← jt
end if

end for
return Rank list j∗

where x = 1TΣ−11, y = 1TΣ−1µ = µTΣ−11, and z = µTΣ−1µ.

Without loss of generality we assume an optimised portfolio is ranked according to the item weight

such that

wi1 > wi2 > · · · > wim , and wj1 > wj2 > · · · > wjn ,

i.e., elements in i and j are ranked by their importance.

6.4.3 Startup Selection and Ranking

In Section 6.4.2, we discussed the model to estimate the maximum investment utility U [Ru,J(j)] given

the recommended startups j. In this section, we discuss the algorithms to efficiently find the optimal

recommendation set j from a large candidate corpus Iu.

Considering the fact that the possible startup combination space is extremely large (C |I
u|

n ), we need

to first reduce the candidate set by pre-selecting a size-N candidate startup set Ic ⊆ Iu (|Ic| = N ) with

the highest expected preferences µu,κ estimated from PMF (Eq. (6.7)). Then within the candidate set Ic

we determine the final ranked list of startups j. All of our proposed algorithms share the procedure of

first choosing the size-N candidate set and then determining the final size-n ranked recommendations.

With the candidate set Ic we propose the following 5 different algorithms to find the optimal selec-

tions and their ranking.

Startup Selection by Sampling

A straightforward solution is to use a sampling method to approximate the optimal solution, which

greatly reduces the computational cost. The details are presented in Algorithm 6.1. By sampling n-sized

startup combinations among the N candidates for T times and picking the combination with the highest

utility, we can get a globally 1/T best combination in expectation. As T → C
|Ic|
n , the performance

of the sampling-based method will converge to the globally optimal solution, i.e., the portfolio J(j∗)

leading to the highest utility U [Ru,J(j∗)].

Startup Selection by Individual Score Ranking

This is a simple ranking algorithm that ranks the startup utility by considering individual startups joining

the current portfolio. We denote the joint portfolio including one candidate startup j as J(j), and the
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Algorithm 6.2: Individual Startup Selection (Idv)
Require: VC u, current invested startups i1, . . . , im, candidate startup set Ic, risk-averse parameter b,

recommendation size n, utility function U
for each candidate startup j in Ic do

Build joint portfolio J(j) based on the joint set (i1, . . . , im, j) via Eq. (6.1)
Calculate the maximum utility U [Ru,J(j)] via Eq. (6.3)

end for
return Rank list j∗ of n startups with highest U [Ru,J(j)]

Algorithm 6.3: Sequential Startup Selection (Seq)
Require: VC u, current invested startups i1, . . . , im, candidate startup set Ic, risk-averse parameter b,

recommendation size n, utility function U
Initialise startup set j∗ ← ∅
for l = 1 . . . n do

Select the optimal startup j∗l in Ic such that

j∗l = arg max
jl∈Ic

U [Ru,J(j∗,jl)]

where the joint portfolio J(j∗, jl) is built based on startups {i1, . . . , im, j∗1 , j∗2 , . . . , j∗l−1, jl} via
Eq. (6.1)
j∗ ← j∗ ∪ {j∗l }
Ic ← Ic\j∗l

end for
return Rank list j∗ with the selection order

maximum utility U [Ru,J(j)] with j will act as the ranking score of j. Based on the score of each

candidate startup, we can rank them and choose the top-n startups with the highest scores. This procedure

is given in Algorithm 6.2.

As we can see, Algorithm 6.2 is quite straightforward: selecting each startup based on the utility it

brings. However, this algorithm fails to consider the correlation among the n recommended startups.

Sequential Startup Selection

Similar to Chapter 5, we select the startups incrementally to approximate the optimal solution with a

large computational cost reduced. For each iteration, in a greedy fashion, we select one startup which

can bring the highest increase in the utility function when being added into the current portfolio. This

procedure is described in Algorithm 6.3.

Sequential methods have been adopted also in webpage ranking [25]. Though it is a greedy method,

it has shown high efficiency and good empirical performances.

Startup Selection by Weight Ranking

With the candidate startup set Ic, we can build a portfolio Jg with all the candidate startups Ic and the

invested startups i. Then we can apply the portfolio optimisation according to Eq. (6.3) to obtain the

optimal weights for all the candidates. We rank their weights and select the top n. This algorithm is

illustrated in Algorithm 6.4.

This algorithm takes into account the relationship between each pair of candidate startups in Ic.

However, by selecting the top n candidates with the highest portfolio weights, the resulting portfolio is
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Algorithm 6.4: Weight-based Startup Selection (Weight)
Require: VC u, current invested startups i1, . . . , im, candidate startup set Ic, risk-averse parameter b,

recommendation size n, utility function U
Build the portfolio Jg based on the joint set g = {i1, . . . , im} ∪ Ic via Eq. (6.1)
Calculate the optimal weights wg via Eq. (6.3)
Sort the candidate startups by their weight in wg
return Rank list j∗ of n startups with highest weights

Algorithm 6.5: Filtering-based Startup Selection (Filtering)
Require: VC u, current invested startups i1, . . . , im, candidate startup set Ic, risk-averse parameter b,

recommendation size n, utility function U
while |Ic| > n do

Build joint portfolio Jg based on the joint startup set g = {i1, . . . , im} ∪ Ic via Eq. (6.1)
Obtain the optimal weights wg via Eq. (6.3)
Obtain jf with the lowest weight in wg
Update Ic ← Ic\jf

end while
return Rank list of startups in Ic by the optimal weights

already different from the global portfolio Jg . In other words, the top n candidates are selected based on

a globally learnt weight ranking rather than being a direct optimisation on the joint portfolio with only

these n candidates added, which is a discrepancy.

Startup Selection by Weight Filtering

Here we implement a backward sequential method shown in Algorithm 6.5. In each iteration, we build

the global portfolio Jg based on the invested startups and the startups in the candidate set, optimise the

portfolio to obtain the optimal weights according to Eq. (6.3), and remove the candidate startup with the

lowest weight from the candidate startup set. This process iterates until the resulting candidate startup

set shrinks to the size of n. Similar to the weight ranking algorithm, the weight filtering algorithm is also

based on the weights obtained by optimising the portfolio constructed by the overall startup set rather

than the selected subset, and thus suffers from the same discrepancy as the weight ranking algorithm.

6.4.4 Adaptive Risk-Averse Level

With different industry category focuses and investment strategies, different VCs may have different risk-

averse levels, represented as the parameter b in our model Eq. (6.2). All the above discussed algorithms

take b as a model parameter, yet b can also be learnt for each VC and thus the portfolio can be optimised

in a personalised manner.

In order to adaptively learn this parameter for each VC, we conduct a cross validation on the training

data, tune the parameter bu for each VC u, and pick its optimal value for each VC which maximises the

startup ranking evaluation measure (e.g., NDCG) on the validation data. Then the learnt bu for VC u is

used in the test phase.
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Figure 6.2: The recommendation precision compared between PMF, the portfolio-based algorithm denoted by Port-
folio and the adaptive portfolio-based algorithm denoted by Portfolio-A, when n = 1. k = 25 is used in
(a) and 5 = 50 in (b) for training the PMF model.

6.5 Experiments

After describing the experiment setup in Section 6.5.1, we present the experimental results in three parts.

(i) In Section 6.5.2, we focus on the case of recommending the next startup, i.e., n = 1. With only one

startup to be recommended, the correlation between the recommended startup and the existing portfolio

plays the key role in the decision process. (ii) In Section 6.5.3, we study the cases where multiple

recommendations are made, i.e., n = 3, 5, 10. In these cases, not only the correlation between each

of the new items and the existing investments, but also correlations among the recommended ones are

important. (iii) In Section 6.5.4, we further perform a statistical data analysis on the optimal risk-averse

level b among the VCs.

6.5.1 Experimental Setup

Data Processing

As described in Section 6.3, we base our experiments on the CrunchBase dataset that we collected. We

first divide the CrunchBase dataset into training set and test set with 2:1 ratio for each VC according to

investment time. Splitting this way, the total investment number is 69,422 in the training set and 24,138

in the test set.

We label a recorded investment from a VC to a startup as 1, i.e., a positive observation. Since it is a

one-class training data [181], we follow [181] to perform a user-oriented negative item sampling process,

i.e., for each VC, we sample the same number of negative data points as its observed positive points and

label them with 0. We train the PMF model to obtain the latent factors for the VCs and startups as well

as the probabilistic representation of the VC latent factors (as discussed in Section 6.4.2). Note that our

focus is not on the performance comparison against the state-of-the-art recommendation methods, but

on investigating how the proposed portfolio-based algorithms can improve the recommendation results.

The choice of PMF enables a coherent view of the effectiveness of the proposed method as it enables

pure model-based mean/variance/covariance estimation for building portfolios.
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Figure 6.3: Performance against (a) risk-averse level b and (b) candidate set size N , when n = 1. The computation
time is calculated as per test VC.

Compared Algorithms

Three types of state-of-the-art algorithms are compared: the conventional recommendation algorithms,

portfolio-based algorithms and adaptive-b portfolio-based algorithms. As described in Section 6.4.3, we

always first determine a candidate item set Ic obtained as the top-N items from PMF, before applying

any item selection and ranking algorithm.

Random sampling (Random). As a baseline, we compare our results with randomly-chosen n

startups from the candidate set.

PMF. PMF method directly gives the top-n startup determined by the MAP estimation obtained

from the PMF.

Portfolio-based methods. These methods include Sampling, Sequential Selection (Seq), Indi-

vidual Score Ranking (Idv), Weight Ranking (Weight), and Weight Filtering (Filtering). Details of each

algorithm are described in Section 6.4.3.

Adaptive-b portfolio-based methods. These methods adopt a personalised risk-averse level b for

each VC, as described in Section 6.4.4. We denote them with ‘-A’ following the algorithm’s name.

Evaluation Measures

As the task falls into the category of top-N recommendation based on implicit data, we use the sim-

ilar evaluation method described in Chapter 3 to evaluate the recommendation performances with the

following ranking evaluation measures: Precision (P@n), Normalised Discounted Cumulative Gain

(NDCG@n) [166], and Mean Reciprocal Rank (MRR@n) [182]. For each algorithm, we calculate

the recommendation performances (with respect to these three measures) in regard to each test VC, then

average for all test VCs to get the average performances.

6.5.2 Next Startup Recommendation

In this subsection, we focus on the case of n = 1, i.e., only one startup is recommended for each test

VC. In this case, Sampling, Idv, and Seq are essentially the same, denoted as Portfolio. We compare

Portfolio and its adaptive-b version Portfolio-A with the baseline algorithm PMF. As P@1, NDCG@1

and MRR@1 provide exactly the same result in the case n = 1, we only use P@1 as the measure here.

Figure 6.2 shows the result comparison between PMF, Portfolio and the adaptive-b version
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Table 6.2: Performance comparison by different algorithms. The improvement(-A) is calculated from the best
Portfolio(-A) algorithm over PMF for each measure. (All numbers except percentages are in the unit
of 0.001.)

n @3 @5 @10
XXXXXXXXRec

Measure
P NDCG MRR P NDCG MRR P NDCG MRR

Random 0.746 0.849 1.662 0.665 0.646 1.452 0.659 0.647 1.859

PMF 0.853 0.829 1.492 0.895 0.87 1.939 0.703 0.748 2.288

Sampling 1.492 1.729 3.41 1.279 1.235 3.218 0.959 0.955 3.177

Seq 1.279 1.429 2.771 1.151 1.126 2.931 0.831 0.871 2.931

Idv 1.279 1.239 2.451 1.151 1.105 2.771 0.959 0.987 2.937

Weight 1.066 1.279 2.558 0.767 0.946 2.558 0.703 0.741 2.835

Filtering 1.066 1.35 2.771 0.895 0.927 2.398 0.767 0.781 2.394

Improvement 74.9% 108.6% 128.6% 42.9% 42.0% 66.0% 36.4% 32.0% 38.9%

Sampling-A 5.968 6.126 11.509 5.243 5.395 12.479 3.964 4.112 12.293

Seq-A 1.705 1.879 3.73 1.662 1.74 3.986 1.087 1.299 4.276

Idv-A 1.705 1.768 3.41 1.662 1.616 3.89 1.087 1.304 4.452

Weight-A 1.066 1.279 2.558 0.767 1.008 2.685 0.703 0.786 2.92

Filtering-A 1.705 1.807 3.41 1.407 1.391 3.325 1.023 1.163 3.773

Improvement-A 599.6% 639.0% 671.4% 485.8% 520.1% 543.6% 463.9% 449.7% 437.3%

Portfolio-A, for different latent space dimensions (k = 25 and k = 50). The candidate size N and

the risk-averse level b are both tuned to optimal to obtain the Portfolio performance.

From Figure 6.2, we have the following observations. (i) For both cases (k = 25 and k = 50),

Portfolio and Portfolio-A perform significantly better than PMF. (ii) Comparing between k = 25 and

k = 50, the performance of PMF keeps unchanged, whilst the performance improvements by Portfolio

and Portfolio-A are even higher when k = 50. (iii) In the case of k = 50, Portfolio is outperformed

by Portfolio-A. These facts show the effectiveness of our proposed algorithms over PMF, indicating

that recommendations with risk concerns are superior in catching the VCs’ investment behaviour, and

different VCs have different risk-averse levels. We will extend these discussions in Section 6.5.4.

In Figure 6.3, we show the effect of parameters b and candidate size N . From Figure 6.3(a), we

can see that the performance peaks when the global risk-averse level b = 1. The global b reflects the

overall risk-averse level for all test VCs, and the peak value indicates that a certain risk-averse level

optimally catches the VCs’ overall investment behaviour and leads to the best recommendation result. In

Figure 6.3(b), we show the effect of tuning the candidate size N with the corresponding computational

time shown as a reference. We can see that when the candidate set gets larger, the performance first

increases and then drops to a lower level. It indicates that though an increasing candidate size N adds

more options for the algorithm to choose, an oversized candidate set may also mislead the algorithm

due to overfitted estimation of latent factors from PMF. The computation time increases linearly as the

candidate set enlarges, so one may find a trade-off between the candidate size N and the computation

speed as desired.
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Figure 6.4: Performance against risk-averse level b, evaluated by (a) NDCG@n, and (b) MRR@n.

6.5.3 Next Top-n Startup Recommendation

Here we present the results for multiple item recommendations. In this task, ranking measures NDCG@n

and MRR@n are also used in addition to P@n. In Table 6.2, we compare the results between baseline al-

gorithms Random and PMF, portfolio-based algorithms and adaptive-b portfolio-based algorithms. All

the (hyper-)parameters are optimised with cross-validation. Because of the severe sparsity of the dataset,

the numbers are all very small, nevertheless, the comparison of numbers and the improvements are still

meaningful. From this table, we can make the following observations. (i) All the proposed algorithms

have great improvements over the results of PMF for all three measures (with a few exceptions for

Weight and Filtering), showing the effectiveness of our algorithms in a multiple item recommendation

task generally. (ii) Among the (non-adaptive) portfolio-based methods, Sampling, Seq and Idv perform

better than Filtering or Weight. This fact indicates that top-down algorithms like Filtering and Weight,

which filter out items according to the direct portfolio optimisation weight for the overall joint portfo-

lio (invested startups plus all the candidate startups), do not work as well as the group-selection-based

Sampling, or the bottom-up Seq and Simple. This is due to the discrepancy between the weights learnt

by a global optimisation and the weights learnt directly for the chosen group, as mentioned in Section

6.4.3. (iii) Adaptive-b portfolio-based algorithms perform better than non-adaptive ones, showing that

each VC’s risk-averse level is indeed different, so by adaptively fitting the VC’s own risk-averse level,

the performance can be further improved. (iv) Sampling(-A) outperforms all other algorithms. Again

we ascribe its superior performances to its group-selection nature, as according to Eq. (6.2), a group

selection method can achieve the best results. The other methods Seq(-A), Idv(-A), Weight(-A) and

Filtering(-A) are further approximations than Sampling to approach the exact solution. (iv) Among the

two baselines, PMF performs better than Random, indicating the effectiveness of the PMF model to

catch the latent factors of VCs and startups.

Parameter Tuning

In Figure 6.4 we present the influence of b evaluated by NDCG and MRR, with different n = 3, 5, 10.

From Figure 6.4, we can see that for each n and each measure, the performance has a peak around b = 1,

which is consistent with the case of P@1 in Section 6.5.2. Furthermore, comparing different top-n tasks,

as n increases, NDCG@n decreases whilst MRR@n increases. This can be explained by the sparsity of
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(a) n = 3 (b) n = 10

Figure 6.5: Impact of candidate size N on performance and computational time when (a) n = 3 and (b) n = 10.
The computation time is calculated as per test VC.
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Figure 6.6: Impact of sampling number T on the performance of (a) Sampling and (b) Sampling-A. The compu-
tation time is calculated as per test VC.

the dataset. When only a small number of recommendations are made (e.g., 3), only a smaller number of

VCs are provided with the correct recommendations within the recommendation list. Whereas when the

number of recommendations is enlarged (e.g., 10), more users are provided with correct recommendation

within the longer recommendation list. According to the definition of MRR [182], only the first correct

recommendation counts. Thus, the result of MRR always increases with n in this case. On the other

hand, NDCG considers the whole ranking list in a discounted manner, and, due to the sparseness of the

dataset, it naturally decreases as n increases.

In Figure 6.5, we plot the influence of the candidate size N for the algorithm Seq, when n = 3 and

n = 10. We can see that the performance first increases as the candidate size gets larger, then slightly

drops after peaking around N = 70. This result may be due to the overfitting of PMF as mentioned

before. Meanwhile, we plot the computation time for each N accordingly. We can see the computation

time increases linearly with the candidate size N . Similar to the case when n = 1, we may trade off

some performance for the computation speed by choosing a smaller candidate set than optimal.

In Figure 6.6, we plot the influence of the sampling number T in Algorithm 6.1 on the performances

for both the non-adaptive and the adaptive-b cases. We can see that the performance peaks around

T = 120 for both cases. The decrease of performance after the peak in Figure 6.6(b) may also be caused

by the overfitting of the PMF model. Again, for the sampling method, we may also seek a trade-off
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(a) b distribution (b) Correlation

Figure 6.7: Data analysis on the personalised b. (a) Distribution of personalised b. (b) Correlation between VC’s
investment number and b for majority VCs.

between the ranking performance and efficiency by tuning the sampling number T .

6.5.4 Risk-Averse Level Analysis

In Figure 6.7(a), we plot the distribution of b optimised for individual VCs. We can see that VCs gen-

erally form two clusters: a risk-sensitive group whose risk-averse levels b are larger than 0.1 and a

risk-neutral group whose risk-averse levels are much smaller. We also have interesting findings on the

relationship between the number of investments made by a VC and its optimal risk-averse level b, shown

in Figure 6.7(b). Here we applied a log-scale on the investment number, because the VCs’ investment

activity distribution is power-law [173]. We can find that on the log-log plot, there is a slight negative

correlation between the two: companies holding a large number of investments tend to be more risk-

neutral, whilst companies with smaller investment scales tend to have higher risk-averse levels (more

risk-sensitive). By inspecting company names, we can find some of the largest VCs in the world, such

as Start-Up Chile, Sequoia Capital and Accel Partners, fall in the category of the risk-neutral group,

whereas smaller VCs, such as Allegro Venture Partners, are more risk-averse. These companies are

tagged on Figure 6.7(b) for reference. These observations coincide with the intuition that the fewer

investments held by a VC, the more careful it should be in making new investments, whereas, for a VC

with a great number of investments, the risk may have already been diversified in its holding portfolio,

and thus there is less risk concerns in making new investments compared to smaller VCs.

6.6 Concluding Remarks
In this chapter, we proposed a portfolio optimisation framework to solve the information filtering prob-

lem in venture finance, specifically by optimising the joint portfolio of VC’s holding investments and

potential investment opportunities. We exploited the variance defined on latent factors using a probabil-

istic matrix factorisation model, and optimised the joint portfolio towards a trade-off between expected

preference and uncertainty. We divided the problem into two connected sub-problems including an item

selection problem and a portfolio optimisation problem, and proposed five different algorithms to solve

it. Through the experiments, we demonstrated significant improvement by using our portfolio-based al-

gorithms and adaptive-b portfolio-based algorithms, compared with a direct PMF approach. In addition,
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we discussed the influence of the risk-averse level b, and conducted a data analysis over the distribution

of risk-averse levels among the VCs.

Though we have shown significant improvements by our method, the analysis was based on a

dataset related to finance. Further analysis is to be carried in traditional recommendation scenarios. We

leave this part to future work.



Chapter 7

Conclusions and Future Plan

This thesis presented an interactive recommendation process for solving cold-start problems, in which

the two goals – learning and recommendation – are integrated in order to maximise the overall per-

formance during a period of time. The consequence of such integration is an exploitation-exploration

trade-off: during each interaction stage, the recommendations serve as both the information source for

the system to learn about the new user (item) and the information source to satisfy the need of the user

(item). We therefore need to choose the recommendations intelligently to balance between the two. We

formulated the problem using the multi-armed bandit and POMDP, and discussed both the situation of

single-item and that of multiple-item recommendations at each interaction stage. The case of multiple

item recommendations further leads to discussions on item diversification and risk-aware recommenda-

tion problems. Further, in this section, we discuss several possible future directions of research following

this thesis.

7.1 Thesis Contributions
We formulated the proposed objective and discussed several related interconnected aspects based on

the framework in this thesis, including the exploitation-exploration trade-off, resource allocation, and

diversification.

In Chapter 3, we studied a sequential interactive recommendation process, in which one item is

shown in each interaction round. We related the exploitation-exploration trade-off in this scenario with a

multi-armed bandit problem in which a large number of arms are present. The presence of a large number

of available items first required us to find a low-dimensional feature space. We utilised alternative least

squares to conduct PMF in order to obtain the probabilistic representation of the feature vectors. Next,

we used Thompson sampling to achieve EE by using sampled feature vectors (through their probabilistic

distributions) in the decision making process. Then, we assumed that the corresponding uncertainties of

ratings come entirely from the users, leading to a series of linear-bandit algorithms. In empirical studies,

we demonstrated that the developed algorithms lead to significant performance improvements over sev-

eral strong baselines for dealing cold-start problems, including interview processes, active learning and

greedy selection. In addition, we showed that the proposed exploitation-exploration algorithms can also

automatically adapt to users’ taste drifts during the interactions.
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In Chapter 4, we extended the interactive recommendation process to consider multiple recommend-

ations in each interaction for two consecutive stages. We used the item cold-start scenario as a working

example. With the proposed setting, the cold-start recommendation problem was transformed into a re-

source allocation problem. We argued that in order to achieve an optimised overall performance over two

stages, we should not focus exclusively on exploration at the first stage. Instead, the users allocated to the

first stage should also contribute to the overall utility. We formulated the problem with POMDP to obtain

its exact solution. Both a multivariate Gaussian model and a matrix factorization model were used. We

found that, the initial-stage users should have high expected returns according to the prior information;

and, at the same time, they should also be highly correlated with potential selections in the next stage.

The second aspect enables the system to best utilise the deviated feedback from prior information in the

second stage, and so led to a guided EE process. Based on this point, we then proposed an approximate

algorithm GEE, which adopts the following process: first, the pseudo-selections of the second stage are

determined optimistically, and then the initial-stage users are determined. The effectiveness of the pro-

posed algorithms was confirmed through both simulated experiments and experiments on the MovieLens

dataset.

In Chapter 5, we focused intensively on the item diversification. Our argument was that the diversi-

fication of items should be achieved with regard to risk-awareness during the recommendation process.

The risk refers to the uncertainty in predicting user-item preferences and originates from the uncertainty

in learnt latent feature vectors of users. We defined the uncertainty of a user latent factor as a function

of the number and range of the items rated by the users in the past. Either a fewer number of available

ratings, or a wider variety of rated items can lead to a higher level of uncertainty in one or multiple com-

ponents of the user’s latent feature factors, and eventually result in a higher risk in the rating prediction

of items. As the risk in predicting different items can be correlated, reducing the risk using a portfo-

lio of items was possible. We utilised the concept of portfolio theory from economics and proposed a

portfolio diversification ranking algorithm. Our algorithm LFP captured two levels of diversification: the

system-level diversity tuned by an external parameter and the personal-level diversity adjusted adaptively

according to the latent feature vectors. Through our experiments, we demonstrated the effectiveness of

LFP for adapting result diversification to the users’ needs without accessing to explicit item properties. In

addition, we also showed that LFP is capable of effectively adjusting the trade-off between the relevance

and the diversity of recommended items, and thus could further contribute to the overall recommendation

quality.

In Chapter 6, we related the diversification algorithm proposed in Chapter 5 back to the interactive

recommendation process considering the case of the venture capital investment opportunity recommend-

ation with the CrunchBase dataset. We proposed a joint portfolio optimisation process, arguing that op-

timising the future recommendations together with the user’s past (holding) investments can lead to an

offset of the risk inherited in the user’s holding portfolio. We divided the problem into two connected

sub-problems including an item selection problem and a portfolio optimisation problem, and proposed

five different algorithms to solve it. Through the experiments, we demonstrated significant improvement
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by using our algorithms, compared to a direct PMF approach. In addition, we discussed the influence of

the risk-averse level, and conducted a data analysis over the distribution of risk-averse levels among the

users.

Bringing the above aspects together, we can see that uncertainty plays an important part for both

EE and diversification aspects. In EE, uncertainty in prediction requires us to explore and enables us

to learn from feedback, and, in diversification, uncertainty in feature vectors requires us to diversify the

recommendations in a list.

7.2 Future Work
There are various directions into which the work described in this thesis can be extended. We have

identified three potential topics. The first regards the cold-start problem, the second focuses on the role

of “uncertainty”, and the third is concerned with the goal of the interactive recommendation process

discussed in the thesis.

Preference Prediction between New Users and New Items

Existing work has utilised content information in assisting the recommendation process where both the

users and items are new. For example, in [113] the authors studied the prediction task between new users

and new items. They, however, used the user demographic information and item content features, and

thus fell out of the scope of CF. To our knowledge, there has been no previous CF focused research to

discuss the prediction problem between new users and new items.

This problem could be potentially tackled using an interactive process similar to that described in

this thesis. In Chapter 3, we have discussed Thompson Sampling which may be useful to solve this spe-

cial case within the ICF framework. In Thompson Sampling, both the users and items are represented

by probability distributions and thus, if we assign prior distributions to both the new items and the new

users we could use Thompson Sampling directly. There are also other potential methods, for example,

we could alternate between a new user problem and a new item problem, i.e., alternate between a re-

commendation algorithm for cold-start users and a recommendation algorithm for cold-start items. A

more theoretical solution could be established using POMDP with a full probabilistic description of all

the users and items (including cold-start ones) for an exact solution.

Unifying EE and Diversification

In this thesis, we have discussed the role of correlations between users/items for both the interactive

recommendation task and the diversification problem. In Chapter 4, we intensively focused on the cor-

relations between the users of the two stages, while in Chapter 5 and Chapter 6 we focused on the

correlations of the users recommended at the same time. The two different aspects, however, can be re-

lated to each other which we did not discuss. On one hand, in the EE task, the goal of achieving maximal

utility over a period of time naturally requires both exploitation and exploration of each recommendation

stage, and (if multiple items are included in each stage) the diversification of items (see Section 4.2.1 in

Chapter 4); however, on the other hand, portfolio theory achieves diversification with the explicit goal of

balancing between the utility and the uncertainty (see Eq. 5.11) which differs from the maximal utility
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goal. The question is, whether these two goals are the same, and, if not, whether it is possible to address

them both within one goal. This problem may be answered by formulating the exact solution to carefully

analyse the diversification aspect inherit in the EE task and compare it to the diversification achieved by

the portfolio theory.

Goal-Driven Exploitation-Exploration
The above-mentioned problem also leads us to consider a goal-driven EE problem, where the goal is to

explicitly target to an evaluation metric other than the utility itself. For example, by setting the goal as

maximising the overall utility while minimising the overall risk, we can explicitly bring diversity of items

into the process. This will be beneficial for both the learning process and for serendipity considerations.

We can also use goals such as the collective NDCG or collective MRR over stages to promote ranking

in each recommendation list.

As seen in Chapter 4, by integrating the goal into the POMDP framework, the exact solution can

be obtained using value iteration. The Thompson Sampling method mentioned in Chapter 3 can also be

utilised to obtain an approximate solution to the problem. As the goal differs from that of a multi-armed

bandit, index-based MAB methods may not be directly applicable.
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