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Abstract 
 

This thesis examines several aspects of decision computations which are critical for 
understanding the processes by which decisions are made. It will show that subjects 
engaged covert attention to bias both saccadic and choice processes during simple decision 
making tasks even when these stimuli were novel. This saccadic behaviour was overridden 
when one presented stimulus is relatively more novel than the other implying the existence 
of separate value comparison circuits in the brain which deal with making value based 
decisions about attention and choice respectively. Even when the task was made more 
complex by introducing multiple decision variables this phenomenon of covert attention was 
maintained. This thesis will demonstrate that subjects controlled both the amount and 
manner of information gathering during decisions. This behaviour showed features of a 
confirmation bias. 

Single cell neuronal recordings were performed while subjects executed a multi-
attribute decision making task. ACC neurons represented action values and different 
populations of OFC neurons encoded attribute and attentional values. These neurons did 
not just reflect value (i.e. an input into a decision process) but instead evolved their coding to 
represent final choice thereby implying the existence of a parallel decision making circuit 
which compares value in different frames of reference. Information gathering strategy was 
also computed in the same frames of reference implying the existence of a common value 
comparison system which simultaneously drives both choice and information gathering. At 
the outcome of the decision ACC neurons encoded both categorical reward outcome and 
positive prediction errors. vmPFC neurons encoded prediction errors while OFC and ACC 
neurons encode fictive value when rewards were withheld. Finally frame of reference 
specific computations were observed in LPFC and OFC. The results in this thesis therefore 
provide novel insight into the role of valuation circuitry during value based decision making 
and outcome monitoring. 
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Long Abstract 

 

 The motivation for the work presented in this thesis comes from a need to 

understand both the anatomical specificity and computational generalisability of value 

related computations throughout prefrontal cortex (PFC) during decision making. In this 

thesis inferences about the neuronal circuitry will be made using two tools: 1) behavioural 

dynamics such as reaction times, choice and information gathering behaviour, 2) the firing 

patterns of individual neurons in various parts of the PFC. This thesis will concentrate on 

four subregions of PFC which have all been implicated in various types of cognitive function; 

anterior cingulate cortex (ACC), lateral prefrontal cortex (LPFC), orbitofrontal cortex (OFC) 

and ventromedial prefrontal cortex (vmPFC). 

 Chapter 1 will aim to outline the current state of the neurophysiological evidence 

pertaining to decision making and the PFC. Although neurons throughout the brain respond 

to valuable stimuli, lesion studies in humans and animals imply that the PFC is critical for 

optimal value based decision making. Many neurons in PFC encode stimuli in a ‘common 

value currency’ (particularly in ACC) which may serve to feed into a general value 

comparison system in line with both psychological and some empirical models of decision 

making. However, evidence suggests that many OFC neurons do not indiscriminately 

encode value but instead do so only for specific value properties (i.e. attributes) such as 

reward size, risk or delay (to name but a few). These neurons may be critical when decisions 

are made on the basis of individual attributes rather than the overall values of each option. 

 The link between value and action is critical for converting the abstract decision to a 

definite movement which obtains the chosen goal. A subpopulation of neurons in ACC may 

support this link by multiplexing both value and action computations. Furthermore, ACC has 

been heavily implicated in the integration of physical effort into the decision process. These 
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findings lead to the possibility that decisions may also be resolved through competition 

between available valuable actions. 

 Human studies have revealed that the manner in which people make decisions is 

influenced by attention. Furthermore, vmPFC has been observed to modulate its value 

coding based on the location of current attention. These signals may also have a relevance 

to the decision making process. 

 The existence of value signals that have different ‘frames of reference’ (i.e. attribute 

in OFC, action in ACC and attention in vmPFC) leads to an important juncture in the field. Do 

these signals reflect a mere input into a serial decision system which compares the 

integrated values of various options? Or conversely is there a decision circuit based on 

parallel computations which allows value to be compared in various frames of reference?  

Although evidence from perceptual decision making implies that the latter is more likely, it 

remains unclear because the anatomical specificity and computational characteristics of 

these frame of reference signals remains under-explored. This question is therefore one that 

this thesis will attempt to answer. 

 ACC has been shown to be involved in many other cognitive processes including 

outcome mapping, behavioural flexibility, volatility, error monitoring and conflict. ACC may 

also play critical role in controlling and updating complex behaviour through its coding of 

reward prediction errors during the outcome phases of various tasks. The aforementioned 

findings could be reconciled by considering ACC to be an action-outcome predictor which 

can therefore exert behavioural control. 

 An often ignored aspect of optimal decision making is information gathering. Basic 

human information gathering behaviour appears to depend on the complexity of the decision 

both in terms of its difficulty (i.e. how easy it is to compute the various option values) and the 

number of parameters that need to be considered. As decisions become more complicated 

humans tend to both gather less information and switch from a strategy that gathers 
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information about individual options to one that gathers information about individual 

attributes. This strategy shift seems to be impaired in vmPFC lesion patients implying that 

this region may be important controlling information gathering in decision making. 

 Chapter 2 will lay out the basic anatomical connectivity of the PFC. The pattern of 

connectivity constrains the computation function of each area and individual PFC regions 

show a relative diversity in their connections. Basic sensory input from all sensory modalities 

is concentrated predominantly on OFC (and partially on vmPFC). In contrast ACC and LPFC 

are the major source of efferent connections to the motor system. ACC sends projections 

mainly to motor structures including presupplementary motor area, premotor area and 

primary motor cortex whereas LPFC connects strongly to supplementary eye fields. Limbic 

(and complex visual) inputs from the temporal cortex span the PFC, however some 

connections are region specific. OFC receive preferential connections from the hippocampus 

whereas the parraphippocampal cortex preferentially projects to ACC. Other less region 

specific projections exist from the entorhinal cortex, amygdala and temporal pole. 

 Dopaminergic projections to PFC also show topography with OFC connecting more 

strongly to ventral tegmental area (VTA) and ACC projecting more to Substantia Nigra pars 

compact (SNpc). Furthermore, there is a clear gradient in the number of dopamine receptors 

across the frontal cortex as a whole. The consequence of this is that ACC receives a much 

stronger dopaminergic input than other PFC regions. 

 The connectivity between PFC regions implies a flow of information from basic 

sensory areas to OFC which then relays subsequent computations on to LPFC and ACC 

(potentially though vmPFC in the latter case) which then communicate with motor and 

saccadic regions. Although this framework suggests a serial decision making pathway, little 

is known about circuits within PFC regions which may allow for parallel computations within 

each region. 
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 Chapters 3 and 4 concentrate on characterising various aspects of primate behaviour 

during simple value based decision making. The first of these chapters looks at the link 

between attention and choice by examining the eye movements and the choices of subjects 

as they performed a simple decision making task using stimuli that are either well learnt or 

relatively novel to them. This chapter will show that both the direction of subjects’ initial 

saccades and their final choices are guided by a value comparisons performed using covert 

attention. Both effects show characteristics of learning however there is a clear dissociation 

between initial saccadic and final choice when novel and overlearned stimuli are presented 

simultaneous. Covert attention constantly bias saccades towards novel stimuli but in contrast 

bias final choice away from novel stimuli early on in the session. This implies the existence 

of two at least partially separable valuation systems in the brain; one which guides overt 

attention and another which guides motor (i.e. limb) responses. 

 Subjects were then presented with a more complicated decision making task in the 

experiment discussed in Chapter 4. This involved them making decisions based on two 

separate attributes (probability and magnitude). In order for subjects to be optimal they were 

required to integrate the value of the two attributes to compute the option value of the two 

choices. Value was still seen to influence initial saccade direction however subjects rarely 

overtly gathered all available information before making a choice. However, choice 

behaviour was better explained by assuming that subjects considered all available 

information (covertly) before making decisions. This finding along with the fact that both the 

amount and the location of information gathering were guided by covert attention implies that 

in this task subjects principally perform value comparison through covert attention.  

The second part of this chapter introduces the behavioural results of a variant of the 

multi-attribute decision making task where an element of information gathering was 

introduced. This was done by covering up all four stimuli (two for each option) and 

sequentially presenting one stimulus at a time. The location of the first two observed stimuli 

was manipulated by the experimenter so that subjects could initially be completely informed 
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about one option (‘Option’ trials) or completely informed about one attribute (‘Attribute’ trials). 

After viewing two stimuli subjects were allowed to either immediately make a decision based 

on the current state of evidence or gather as much more information as they wanted before 

responding. Subjects were still value driven in their choices but they were less optimal and 

the amount of information they chose to gather was influenced by the value of previous 

stimuli they had seen. In ‘Option’ trials they exhibited behaviour consistent with the presence 

of a confirmation bias where they would choose to gather information about a particular 

option even though it was clear that this option would be better than the alternative. In 

‘Attribute’ trials their information gathering strategy also portrayed a confirmation bias 

because the location at which they chose to gather the third stimulus was driven by the value 

of the initial stimuli in a way that they would saccade towards the currently more valuable 

side. These results indicate that primate subjects are capable of both gathering information 

based on the current value of the known evidence in a manner biased by a need for 

confirmation and that they are also able to make decisions based on inferences about 

unknown information. 

Chapters 5 and 6 will examine the neuronal correlates of the decision variables 

relevant to the multi-attribute decision making task described in Chapter 4. Specifically the 

former chapter examines neural firing during each sequential cue presentation and around 

the moment of response. At the first cue presentation neurons across all PFC regions 

encoded the generic value of the stimuli (i.e. without discriminating attribute or action 

properties). However, a specific and significant subpopulation of ACC neurons were seen to 

encode action value whereas a subpopulation of OFC neurons were seen to encode 

attribute value. 

The ‘Option’ and ‘Attribute’ trial types provided a means for testing whether value 

computation in PFC regions were modulated by the location of attention. This is because at 

the second cue attention was oriented to the same side at the first cue in ‘Option’ trials 

whereas in ‘Attribute’ trials the second was on the opposite side of the first. It was observed 
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that value coding in OFC was indeed modulated by attention and that this modulation 

stemmed from a change in the sign of value coding of the memory trace of previous cues. 

A projection analysis was used to compare how attentional, action and attribute value 

coding evolved over the course of the trial. OFC attentional value coding neurons were 

observed to reflect attentional choice with the relationship peaking immediately prior to 

response. ACC action value neurons were observed to evolve their coding over subsequent 

cues to no longer reflect action value but instead to reflect the final response. Finally the 

OFC attribute value neurons were observed to reflect attribute value coding at subsequent 

cues but also to reflect attribute specific choice immediately prior to the choice. 

A further important element of task design was the fact that subjects were free to 

decide the location of the third piece of information that they gathered. Therefore it was 

possible to look for neuronal signals that predicted the location of information gathering (at 

the third cue) in each trial type. OFC attentional value neurons were observed to predict 

information gathering in both trial types in the frame of reference of whether information 

would be gathered in the same dimension as the currently attended cue or not. In ‘Attribute’ 

trials ACC action value neurons predicted the location (left or right) of the third saccade and 

in ‘Option’ trials OFC attribute value neurons weakly predicted the attribute to be viewed at 

the third cue. Finally, LPFC spatial position coding neurons were observed to predict the 

spatial location of future information gathering. 

From the results presented in Chapter 5 it can be concluded that frames of reference 

in the PFC are not only region specific but also reflect generalised computations in PFC 

rather than those that are specific to certain situations. Furthermore, the fact that all three 

frames of reference are simultaneously represented and evolve to reflect choice implies that 

these signals do not act as mere inputs into a serial decision making pathway but instead 

take part in a parallel value comparison system. The fact that information gathering signals 
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are also frames by attention, action and attributes implies the existence of a common system 

of valuation which can drive both choice and information gathering. 

Chapter 6 examines the neuronal activity at the moment of feedback onset. Many 

neurons across PFC distinguished whether the outcome was rewarded or not but the 

strength of outcome coding in ACC was proportional to the strength value coding in these 

neurons. In contrast probability preferring neurons in OFC were those that most strongly 

encoded reward/no reward (R/NR) while magnitude preference in LPFC reflected R/NR 

coding. Also LPFC action value coding neurons discriminated outcomes contingent on the 

actions that led to them. ACC value neurons were observed to encode both positive 

probabilistic prediction errors whereas both positive and negative prediction error coding was 

observed in vmPFC. In contrast both ACC and OFC neurons were observed to encode both 

probabilistic and magnitude fictive values when rewards were withheld. These results imply 

dissociable roles of PFC regions in learning where ACC and vmPFC reflect violations of 

expectations which may be critical for overall behavioural control In contrast, OFC neurons 

compute specific learning signals relevant for updating the value of more uncertain stimuli 

while LPFC neurons may be important for monitoring the value of actions. 

The final chapter briefly summarises the salient results of this thesis and attempts to 

fit them into a broader understanding of the field of value based decision making. This thesis 

concludes that functional subdivisions of PFC perform vital, specific and unique value based 

computations during decision making in order to resolve choice, guide information seeking 

and learn about the environment. Through analysis of frames of reference I have shown that 

many of the abovementioned functions of PFC are actually subserved by the same valuation 

circuitry. 
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Chapter 1: The Functional 

Neurophysiology of the Prefrontal 

Cortex 
  

In this chapter I will attempt to outline the current state of the decision making field with a 

particular emphasis on the findings of primate studies into both value and decision making 

computations. I will also briefly discuss two prevalent models of the decision making process 

discussing their similarities, differences and the predictions of their behaviour in example 

decisions. 

 

PFC Lesions Suggest Functional Subdivisions 

 Our modern understanding of the role of the prefrontal cortex in complex behaviours 

and cognitive function can be traced back to the unfortunate case of Phineus Gage. At 

4.30pm on 13th September 1848, Phineus Gage suffered an explosive accident which 

propelled an iron rod upwards through his left maxilla, causing an appalling insult to the 

medial and orbital parts of his frontal lobe. Miraculously, he survived this trauma and his 

recovery over the following days, months and years was carefully documented by Dr John M 

Harlow. Although many of the behavioural changes that Gage is best known for (such as his 

change in personality) were noticed months after his injury (Harlow, 1993), perhaps the most 

telling sign comes from a conversation between patient and doctor just 28 days after the 

accident (Harlow, 1848): 
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“Does not estimate size or money accurately, though he has memory as perfect as 

ever. He would not take $1000 for a few pebbles which he took from an ancient river 

bed where he was at work.” 

 

 In this one sentence Harlow unknowingly provided vital insight into the critical 

function of PFC to estimate value and make decisions. Since then there have been multiple 

descriptions of patients with ventral and medial prefrontal cortex damage, who tend to make 

impulsive, risky and inappropriate decisions (Bechara et al., 1994, Manes et al., 2002, 

Camille et al., 2011a). Such observations have led to a wealth of interest in PFC in an 

attempt to understand the signals and computations that occur during the decision making 

process.  

 Importantly, value-based decision making deficits are typically present in human 

patients only when PFC areas are damaged  (Kennerley and Walton, 2011). Among patients 

with PFC damage, those with damage to OFC, ACC and vmPFC typically show much more 

severe value-based decision making deficits than those with LPFC damage, though LPFC 

damage is arguably more often associated with cognitive and executive function deficits 

(Baxter et al., 2008, Bechara et al., 1998, Fellows, 2006, Fellows and Farah, 2005, Fellows 

and Farah, 2007, Petrides, 2005, Stuss et al., 2001). It should be noted however, that 

damage to PFC is associated with behavioural deficits in value-based, but not perceptual 

decision-making (Fellows and Farah, 2007, Manes et al., 2002). These observations suggest 

that there is functional segregation of decision making related computations across the 

brain, with PFC being particularly important for value-based decisions. 

Indeed there has been a recent move to dissociate the functional subdivisions of 

PFC by the use of focal lesions. There has been a clear dissociation between observed 

deficits after ACC and OFC lesions. Both primate and human subjects with ACC lesions 

show deficits in action based decision making while those with OFC lesions show deficits in 
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stimulus based decision making (Figure 1.1, Rudebeck et al., 2008, Camille et al., 2011b, 

Kennerley et al., 2006). These findings will be discussed in greater detail in later sections. 

ACC lesions also specifically disrupt physical effort based decisions while OFC lesions affect 

decisions made based on delay effort (Rudebeck et al., 2006b). This further supports the 

idea that ACC is specialised to compute value in ‘action space’ whereas OFC does so in the 

abstract ‘stimulus space’. 

 

Figure 1.1: The double dissociation of action and stimulus based decision making between 

ACC and OFC. The frequency of shifting away from a rewarded response in an action and 

stimulus based reversal learning task for controls (CTL), ACC lesion patients (dACC) and 

OFC lesion patients (OFC). From Camille et al. (2011b). 

 

Subjects with OFC lesions show deficits in contingent learning where they are unable 

to correctly assign the value of an outcome to the stimulus which preceded it (Walton et al., 

2010). These subjects also exhibit altered fear responses (Izquierdo et al., 2005, Rudebeck 

et al., 2006a). Even within OFC there appears to be function specialisation. Lesions to 

medial portions affect optimal value comparison but damage to more lateral aspects cause 

deficits in credit-assignment (Noonan et al., 2010). Finally, damage to anterior cingulate 

gyrus (ACCg) causes noticeable deficits in social interest in other individuals (Rudebeck et 

al., 2006a). 
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A Framework for Decision Making Computations 

 In order to understand which regions perform critical computations during decision 

making we must first understand what unique signatures (either within a specific area or 

distributed across many) a decision process would exhibit. In their review Rangel et al. 

(2008) set out a framework for the types of decision computations would expect to see. They 

postulate that that the decision process involves the individual representation of various 

components of the decision (for example the hunger or specific decision variables), the 

integration of these variables in order to compute the value of each option, selecting an 

option/action based on competition between various valuations, evaluating the outcome and 

finally updating the representation, valuation and choice processes in order to optimise 

future decision making behaviour. In his ‘goods based’ model Padoa-Schioppa (2011) takes 

this basic framework and applies anatomical components in order to provide a plausible 

description of where in the brain each decision computation may occur. Although questions 

remain over whether this framework occurs in a serial or parallel manner (to be discussed in 

further detail in later sections) evidence for neuronal correlates of these signals will be 

considered in this chapter. 

 

Encoding of Predictive Reward Signals within PFC 

 In the context of the wealth of lesion data showing decision making deficits, it is no 

surprise that neural correlates of reward, value and decision signals have been recorded 

throughout primate and rodent PFC and basal ganglia. Single neuronal recordings 

performed in 1970s described neurons in the anterior cingulate cortex (ACC) and lateral 

prefrontal cortex (LPFC) which modulated their firing based on whether or not the animal 

received a reward (Niki and Watanabe, 1976, Niki and Watanabe, 1979). Such value based 

signals have also been described in neurophysiological recordings in orbitofrontal cortex 
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(OFC) and ventromedial PFC (vmPFC) (Kennerley and Wallis, 2009a, Monosov and 

Hikosaka, 2012).  

However, value based signals are not solely confined to PFC but have also been 

reported in areas such as the premotor cortex (Roesch and Olson, 2003), temporal areas 

(Baxter and Murray, 2002, Paton et al., 2006), visual cortices (Serences, 2008), parietal 

cortex (Platt and Glimcher, 1999, Foley et al., 2014), subcortical regions (Lau and Glimcher, 

2008, Hikosaka et al., 2006, Kim and Hikosaka, 2013, Yasuda et al., 2012, Cai et al., 2011, 

Schultz et al., 1992) and even in electromyography signals when an animal is given a cue 

indicating the size of an upcoming reward (Roesch and Olson, 2003). This ubiquitous value 

signal may therefore reflect an aspect of motivation, arousal or attention, which can be 

difficult to distinguish from value (Kennerley and Walton, 2011, Roesch and Olson, 2004).  

As described in the Rangel et al (2008) framework above, in order to make a 

decision, one has to represent the characteristics of options on offer. OFC seems to perform 

this function as it is capable of encoding the sensory properties of reward (Rolls and Baylis, 

1994, Bouret and Richmond, 2010). It has been shown that OFC can linearly encode the 

value of rewards for individual decision attributes, including reward size (Kennerley et al., 

2009, O'Neill and Schultz, 2010, Tremblay and Schultz, 1999, Morrison and Salzman, 2011, 

Rolls, 2000), reward probability (Kennerley et al., 2009), risk (O'Neill and Schultz, 2010), 

delay (Roesch et al., 2006), reward type (Hikosaka and Watanabe, 2000, Padoa-Schioppa 

and Assad, 2006) and effort (Kennerley et al., 2009, Kennerley and Wallis, 2009a). Several 

studies have shown that some OFC neurons orthogonally encode these decision attributes 

(O'Neill and Schultz, 2010, Morrison and Salzman, 2009, Roesch et al., 2006, Kennerley et 

al., 2009, Kennerley et al., 2011) although it has been shown that the representation of 

uncertainty and reward is integrated in OFC neurons (Raghuraman and Padoa-Schioppa, 

2014). 
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Though OFC may tend to encode particular decision attributes as described above, 

owning to its strong sensory connections including gustatory input (Carmichael and Price, 

1995b), it may be have an important role in encoding the integrated (i.e. subjective) value of 

options about juice rewards (Padoa-Schioppa and Assad, 2006, Raghuraman and Padoa-

Schioppa, 2014). Although these findings may appear contradictory it is possible that these 

two populations are separate and have different computation roles in decision making. 

Neurons in OFC have been reported to code both pre-decision value computations such as 

‘offer value’ (i.e. the representation of the options available) as well as post-decision signals 

such as ‘chosen value’ (i.e. the chosen option) (see Figure 1.2A and B for examples and 

further description) (Padoa-Schioppa and Assad, 2006). Such offer value coding is mostly 

absent from ACC neurons (Cai and Padoa-Schioppa, 2012). This implies that OFC performs 

critical decision computations, although it remains unclear whether the aforementioned 

finding reflects generalised decision computations or whether it is specific for the paradigm. 

 

Figure 1.2: Pre-decision and post-decision computations in OFC. (A)  The psychometric 

functions (top) and firing rates of three example offer value neurons (bottom).  Each of these 

neurons reflects only the value of one of the juices on offer (i.e. either the value of juice A or 

B) through modulations in their mean firing rate. (B) The psychometric functions (top) and 

mean firing rates of three neurons which encode chosen value at various time points after 

cue presentation (coloured lines). Each neuron does not discriminate which juice was 

chosen but only the value of what was chosen. Adapted from Padoa-Schioppa and Assad 

(2006). 

 



22 
 

Like OFC, LFPC and ACC also encode different decision attributes and interestingly 

there does not seen to be any specialisation of decision attribute encoding within the three 

regions (Kennerley et al., 2009). However, a greater proportion of neurons in ACC tend to 

encode each decision attribute and also more often encode multiple decision attributes 

compared to both OFC and LPFC (Kennerley et al., 2009, Kennerley et al., 2011). This 

suggests that ACC might be integrating information about individual decision attributes into a 

single common value signal (Hosokawa et al., 2013). This is further backed up by the finding 

that ACC neurons can also encode integrated chosen value (Cai and Padoa-Schioppa, 

2012). There is evidence that ACC neurons can also encode integrated information about 

value and other task relevant variables (Hayden and Platt, 2010, Amemori and Graybiel, 

2012). Finally some evidence suggests that, in contrast to OFC, ACC only computes post-

decision variables (Cai and Padoa-Schioppa, 2012), which might suggest that ACC sits 

further downstream in the decision pathway than OFC allowing it to integrate information 

multiple input areas.  

As well as being invariant to the type of value information on offer, it has also been 

shown that neuronal firing in OFC is invariant to the menu on offer (Padoa-Schioppa and 

Assad, 2008, Tremblay and Schultz, 1999). This is to say that OFC neurons will encode 

value when choosing what to drink, but many of the same neurons will also encode value 

when deciding where to go on holiday. Central to this finding is the observation that some 

OFC neurons perform range adaptation based on the context of the choice (Padoa-

Schioppa, 2009, Kobayashi et al., 2010). For example, OFC neurons with use the same 

range of firing to represent £1 to £5 in one context as is used to represent £100 to £1 million 

pounds in another context. Range adaption is important because it allows for maximal 

discrimination between different values on offer (Kennerley and Walton, 2011). However, 

other neurons in OFC do not show range adaption which may be vital in understanding the 

absolute value of options (Kennerley and Walton, 2011, Kobayashi et al., 2010). Range 

adaptation has also been described in ACC, ventral striatum and the dopamine system 
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implying that this functional property of some reward sensitive neurons may be vital for 

effective decision making (Cromwell et al., 2005, Tobler et al., 2005, Sallet et al., 2007). 

Similar to the idea of range adaption, it has been suggested that value sensitive 

neurons exhibit context dependent modulation based on the value of other stimuli presented 

in the environment (i.e., value normalization). This relative valuation mirrors the idea of 

receptive fields in the sensory system and can explain some irregularities in subject choice 

behaviour (Louie et al., 2013). Furthermore, neuronal responses in LIP have been shown to 

exhibit relative value coding in simple saccade tasks (Louie et al., 2011). 

 

Assigning Values to Stimuli Versus Actions 

 Making optimal value based decisions depends on the ability of organisms to learn 

about the environment. Animals and humans with OFC and vmPFC lesions are more erratic 

when presented with subjective choices between foods, suggesting that they are incapable 

of assigning a consistent value to these foods (Baylis and Gaffan, 1991, Camille et al., 

2011a). The same animals also show deficits in a basic stimulus guided decision making 

task suggesting that they are also unable to form a stimulus-outcome association (Baylis and 

Gaffan, 1991).  

Evidence also suggests that this stimulus-outcome learning may be specific to 

subregions of the orbital surface. Lesions to medial parts of OFC (including vmPFC) cause 

deficits in reward-guided decision making but not in learning and updating stimulus-outcome 

associations (Noonan et al., 2010). However, the same study showed primate subjects who 

received damage to more lateral parts of OFC appeared unable to correctly assign credit to 

rewarded outcomes in changeable environments. This implied that neurons in lateral OFC 

were critical for updating stimulus-outcome relationships. Furthermore, in three-arm bandit 

tasks, although OFC lesioned animals are initially capable of tracking the best stimulus 
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(irrespective of its value), when it changes value these subjects show an inability to track the 

new best stimulus (Walton et al., 2010). This effect came about because the OFC-lesioned 

animals were influenced less by recent stimulus-outcome associations than control animals.  

OFC’s function in forming stimulus-outcome relationships is not surprising in the 

context of its strong reciprocal connections to the amygdala, which has also been implicated 

in linking stimuli to outcomes in both lesion and neurophysiological experiments (Baxter and 

Murray, 2002, Carmichael and Price, 1995a, Paton et al., 2006, Hirai et al., 2009, Izquierdo 

et al., 2004, Ghashghaei et al., 2007). Furthermore, lesions to the amygdala cause 

observable changes to the functional properties of OFC neurons, such as attenuating OFC 

sensitivity to value as well as outcomes (Rudebeck et al., 2013a, Schoenbaum et al., 2003). 

Several studies have shown that OFC responses change rapidly to reflect new stimulus-

outcome relationships (Tremblay and Schultz, 2000a, Schoenbaum et al., 1998, O'Doherty 

et al., 2003). 

A natural follow-up question to these observations is; is it actually the amygdala that 

is critical for learning stimulus outcome relationships? The lesion data would suggest not, as 

lesions to OFC cause stimulus-outcome relationships in the amygdala to become inflexible, 

thereby causing reversal learning deficits (Saddoris et al., 2005, Stalnaker et al., 2007). 

Furthermore, in reversal learning tasks, OFC activity can be seen to encode the value of 

positively rewarded stimuli with a faster latency than in amygdala activity, and OFC exerts a 

disproportionate influence on the amygdala after learning compared to before learning 

(Morrison et al., 2011). 

However, a critical finding by Rudebeck et al. (2013b) has shown that OFC grey 

matter tissue may not be critical for supporting reversal learning. These authors compared 

the effects of OFC aspiration versus excitotoxic lesions, where only the latter spares 

damaging the underlying white matter. They found that reversal learning deficits were only 

present in the aspiration lesion group, suggesting that rather than OFC itself, certain white 
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matter pathways which run close to OFC may be critical for updating stimulus-outcome 

relationships (Rudebeck and Murray, 2011, Rudebeck et al., 2013b). Therefore it remains 

ambiguous whether the encoding of stimulus-outcome relationships is an essential function 

of OFC neurons. 

In contrast to OFC’s role in stimulus-outcome associations, ACC has been shown to 

be important in action-outcome associations and damage to this area causes an inability to 

sustain rewarded actions (Ostlund and Balleine, 2005, Kennerley et al., 2006, Rudebeck et 

al., 2008, Hadland et al., 2003). Human lesion experiments have also shown similar results 

with OFC lesion patients relatively less able to form stimulus-outcome associations 

compared to ACC lesion patients whereas ACC lesion patients are slower to learn action-

outcome associations when compared with OFC patients (Camille et al., 2011b). 

Furthermore, neurons both ACC and cingulate motor area have been observed to encode 

action based prediction error signals which are consistent with the learning and updating of 

action-outcome relationships (Shima and Tanji, 1998, Matsumoto et al., 2007). 

 

Value and Actions 

 Action can be driven by decision making processes in two potential ways. Firstly, 

action plans can be generated post-decision once the chosen goal is known by the motor 

system. In this hypothesis the motor system does not actually play any active role in decision 

making but instead simply acts as a conduit for an abstract decision system to act on the 

environment (see Figure 1.4A) (Padoa-Schioppa, 2011). The other explanation is that 

decisions can be made in terms of actions through a competition between pools of neurons 

representing each action and the value associated with it (see Figure 1.4B). Such action 

value coding neurons have been observed in several brain regions including ACC (Hayden 

and Platt, 2010, Matsumoto et al., 2007, Luk and Wallis, 2009, Matsumoto et al., 2003), 

LPFC (Kim et al., 2008), dorsal premotor cortex (PMd) (Pastor-Bernier and Cisek, 2011), the 
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basal ganglia (Lau and Glimcher, 2008) and LIP (Platt and Glimcher, 1999). Of these 

regions, ACC and LFPC are of particular interest to value based decision making for several 

reasons. Firstly, as previously discussed, subjects with ACC lesions show specific deficits in 

action based decision making tasks (Camille et al., 2011b, Rudebeck et al., 2008, Kennerley 

et al., 2006, Hadland et al., 2003). Also neurons in LPFC have been observed to change 

their coding patterns over the course of a decision from action value to choice implying the 

existence of a decision process (Kim et al., 2008). It is possible that other areas take part in 

action selection computations because PMd neurons have been observed to code action 

values which are competitively modulated by other available values and actions thereby 

exhibiting many of the necessary properties of an action selection circuit therefore (Pastor-

Bernier and Cisek, 2011). These finding may support the idea of parallel decision making 

competitions even within the domain of action selection. In contrast to ACC and LPFC, 

neurons in OFC very rarely encode the action value or the final response during the choice 

(Wallis and Miller, 2003, Padoa-Schioppa and Assad, 2006, Cai and Padoa-Schioppa, 

2014). 

 An important aspect of selecting between actions is the computation of the physical 

effort involved for each action. ACC lesions lead to effort averse decision making in rodents 

(Rudebeck et al., 2006b). Furthermore, fMRI studies show that BOLD signal in ACC 

encodes effort discounted value (Prevost et al., 2010, Croxson et al., 2009). 

However, not all decisions are made in terms of actions, and ACC and LPFC both may play 

a role in transforming value signals into response signals in these cases. During decision 

making, ACC neurons have been shown to code not just value but also response and the 

value x response interaction implying a transformation of value to action in this region 

(Kennerley et al., 2009). When subjects are forced to make abstract decisions before 

mapping the decision to an action this effect is also observable in LPFC (Cai and Padoa-

Schioppa, 2014). Both ACC and LPFC are well positioned to facilitate value to action 

computations because of their extensive links to both critical PFC structures such as OFC, 
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and their link to saccadic and limb motor structures (Morecraft and Van Hoesen, 1992, 

Luppino et al., 2003, Matelli et al., 1986, Ongur and Price, 2000). 

 

vmPFC, Internal State and Value Comparison  

There is a relative paucity of electrophysiological data surrounding the function of 

vmPFC. One of the first single neuron reports of vmPFC implicated neurons here in the 

encoding of subjective value with reference to internal state. Its neurons specifically encode 

states such as satiety or fatigue (Bouret and Richmond, 2010) and furthermore the coding of 

value in vmPFC is modulated by current motivation (i.e. internal state) (Abitbol et al., 2015). 

This finding may be explained by vmPFC’s connections to medial hypothalamus, which is 

known to be important for food intake and metabolic balance (Berthoud, 2003, Leibowitz, 

1988, Ongur and Price, 2000).  

Like many regions throughout the brain, vmPFC neurons encode the value of reward 

predictive cues (Monosov and Hikosaka, 2012). vmPFC neurons also appear to exhibit an 

anterior-posterior axis in functional coding, where more anterior neurons (Brodmann’s area 

14) code specifically for appetitive stimuli whereas neurons in posterior portions 

(Brodmann’s area 25) specifically encode the value of aversive stimuli (Monosov and 

Hikosaka, 2012). Related medial-versus lateral anatomical claims about rewards and 

punishers, respectively, have been made about OFC, though the evidence is inconsistent 

(Rich and Wallis, 2014, Morrison and Salzman, 2011, O'Doherty et al., 2003, Hayes and 

Northoff, 2012, Liu et al., 2011, Fujiwara et al., 2008). 

But perhaps most importantly, vmPFC, at least from human studies, has been 

implicated in value comparison processes. Several human studies have demonstrated value 

comparison signals in vmPFC during decision making (Basten et al., 2010, Philiastides et al., 

2010), particularly signals reflecting the difference between the chosen and unchosen value 
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(Chau et al., 2014, Hunt et al., 2012). Such value comparison signals are key component of 

activity measured from plausible biophysical models of decision circuits (Hunt et al., 2012). 

In sequential decision making tasks, vmPFC neurons are observed to compute the 

difference in value between the two options as well as representing chosen value (Strait et 

al., 2014). However, it is unclear whether this value comparison signal occurs in a temporal 

frame of reference (i.e. the first option versus the second option) or in an attentional frame of 

reference (i.e. the option currently attended to versus the unattended option). Data from the 

human fMRI field would lead us to believe that the latter comparison is the more likely. In a 

heavily constrained economic decision making task, Lim et al. (2011) showed that the 

vmPFC BOLD signal correlated positively with the value of the attended item and negatively 

with that of the unattended item, with the inference that attention may be relevant for the 

comparison processes. The importance of attention in learning, valuation and value 

comparison processes will be further explored in Chapters 3-5.  

 

Frames of Reference in PFC 

 At this point I will touch upon a concept that has been implied in several of the results 

that I have discussed above; that is the idea of frames of reference for valuation in the PFC. 

The three well established frames of reference in which value is often associated within PFC 

are that of attribute, actions and attention. The attribute frame of reference is based on the 

observation that some neurons in OFC specifically code for single decision attributes 

(Kennerley et al., 2009, Morrison and Salzman, 2011, O'Neill and Schultz, 2010) (see 

Figure 1.3B for an example neuron with description) and that damage to OFC disrupts 

decision making when a decision attribute (e.g., reward amount or probability) is associated 

with a stimulus (Fellows, 2006, Camille et al., 2011b, Rudebeck et al., 2008). The idea of the 

action reference frame comes from the observations that ACC (Hayden and Platt, 2010, 

Matsumoto et al., 2007) (see Figure 1.3A for an example), LPFC (Kim et al., 2008), basal 
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ganglia (Lau and Glimcher, 2008, Hunt et al., 2014) and parietal cortex (Dorris and Glimcher, 

2004, Platt and Glimcher, 1999) all encode the predictive value of actions. Furthermore, as 

previously discussed, damage to ACC typically produces bigger deficits is action-based 

decision making (Rudebeck et al., 2008, Camille et al., 2011b), though subtle deficits have 

been reported with ACC dysfunction even in stimulus-based decision tasks (Kennerley and 

Walton, 2011, Amiez et al., 2006).  

 

Figure 1.3: Action and attribute value coding neurons. (A) An example action value in ACC. 

Each point indicates the mean firing rate of the neuron for each combination of value and 

direction of saccade required to obtain reward. Adapted from Hayden and Platt (2010) (B) 

An example attribute value neuron in OFC. The left panel indicates the neuron’s firing rate 

modulation to risk information, and the right panel the firing rate to magnitude information. 

This neuron responds only to risk and not to magnitude value. Adapted from O'Neill and 

Schultz (2010). 

 

 Finally, the attentional frame of reference has been described in the human vmPFC 

and ventral striatum BOLD signal (Lim et al., 2011) and suggested in vmPFC neuronal firing 

(Strait et al., 2014). This reference frame implies that value signals are tied to what the 

subject is directly attending to, and recent models of decision-making have integrated this 

idea in the competitive process toward decision formation (Krajbich et al., 2010, Krajbich and 

Rangel, 2011). 
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The idea of frames of reference coding is central to the concept of parallel decision 

making systems (which will be discussed at greater length at a later point in this chapter). By 

representing value in these frames of reference, it may allow decisions to be evaluated in 

parallel and choices potentially determined in individual frames of reference, rather than 

requiring single regions to integrate all relevant information/attributes into an integrated value 

of each option. Furthermore this could provide an explanation as to why very specific value 

based decision making deficits are reported in ACC and OFC lesioned subjects (Rudebeck 

et al., 2008, Camille et al., 2011b). Evidence for frame of reference specific value 

comparison remains relatively unidentified, however a study by Hunt et al. (2014) showed 

that action and stimulus based value comparison was observed in the dorsolateral striatum 

and OFC respectively. They also found changes in the functional coupling between these 

regions and parietal cortex which correlated with behavioural measures of which frame of 

reference was most influencing the choice on each trial. 

 

Serial vs Parallel Value Comparison 

 A prevailing debate surrounding the issue of decision making in the brain revolves 

around whether decisions are made through a single serial pathway or parallel competitions 

across the brain. One of the most influential models of a serial decision process is the ‘goods 

based model’ of Padoa-Schioppa (2011) (Figure 1.4A). This model proposes that decisions 

are made through comparisons of abstract integrated values for various potential options.  

These integrated values arise from the integration of many intrinsic and extrinsic 

factors such as thirst, satiety, effort, risk and commodity (to name but a few). The integration 

and comparison is said to occur in either OFC or vmPFC, based on the evidence that shows 

both abstract coding and integrated value signals in both regions (Padoa-Schioppa and 

Assad, 2006, Plassmann et al., 2007, Kennerley et al., 2009). An important aspect of the 
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model is that only after making a decision in abstract ‘goods’ space can the choice be 

converted into a relevant action (hypothesised to be in either LPFC or ACC) leading to action 

selection. Such a value to action signal has indeed been observed when decisions are made 

in abstract terms (Cai and Padoa-Schioppa, 2014). However this does not sit squarely with 

the evidence that when decisions and actions links are predefined, there is clear evidence of 

motor planning before decisions are completed (Selen et al., 2012). 

 

 

 

Figure 1.4: Serial versus parallel decision making pathways. (A) A schematic representation 

of the ‘goods based model’ of decision making (Padoa-Schioppa, 2011). Each box 

represents a computation performed and each line indicates the direction and the type of 

interaction (i.e. excitatory or inhibitory) between computations.  (B) A schematic 

representation of the ‘decision through consensus model’. The important feature of this 

model is that options are represented in several manners (in this case as options, goals and 

actions) and competitions occur at the level of all of these representations through mutual 

inhibition. Adapted from Cisek (2012). 
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In contrast one of the leading theories relating to the parallel decision making 

hypothesis is the idea of ‘decision making through consensus’ by Cisek (2012) (Figure 

1.4B). This model, unlike the ‘goods based model’ does not dictate a single region of value 

comparison but instead states that this process can occur throughout cortex and subcortical 

regions. Furthermore, central to this hypothesis is the idea that value comparison could 

occur in different frames of references such as those of action, stimulus, internal/goals or 

subjective value (Cisek, 2007a). The representations at any level would compete in decision 

circuits through mutual inhibition. Such a model is theoretically appealing because it 

provides a plausible hypothesis as to how action costs might be integrated into a decision 

process without transforming them into abstract values. This model also allows for both 

habit- and goal-directed influences (commonly associated with the basal ganglia and frontal 

cortex, respectively) to operate simultaneously (Dolan and Dayan, 2013), and provides a 

flexible framework as to how decisions of various forms may be solved (Cisek, 2012). 

Furthermore, such a model of decision making reflects what is known about brain 

architecture, such as parallel information flow through the dorsal and ventral visual streams 

(Ungerleider, 1982). 

 Cisek’s model also goes some way to explaining why decision variables are 

represented in classically sensorimotor regions of the brain (Hernández et al., 2010, 

Roitman and Shadlen, 2002, Thevarajah et al., 2009, Pastor-Bernier and Cisek, 2011). 

Furthermore, several studies have demonstrated that during perceptual decision making, 

although there is a flow of information from sensory areas to frontal regions and then on to 

motor regions, simultaneous comparison signals are observable in many regions of parietal, 

frontal and temporal lobes, implying that there are instead multiple levels of comparison 

(Siegel et al., 2015, Hernández et al., 2010). 

 Importantly, there are several different predictions that the goods based model and 

the decision through consensus model provide that are testable in the context of decision 

making. The first and most obvious of these is that the goods based model stipulates that 
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response and other post-decision signals should only be observable after the decision has 

been made. In contrast, the parallel processing hypothesis predicts that action selection (i.e. 

response selection) should occur simultaneously with abstract goods selection. Next, while 

the goods based model predicts that the only observable value comparison and choice 

signals should be in abstract ‘goods’ space, the decision by consensus hypothesis predicts 

comparisons in multiple frames of reference and corresponding choice signals for each 

frame. Finally the ‘goods based model’ hypothesises that value comparisons only occur in 

one brain region (OFC/vmPFC) (Padoa-Schioppa, 2011). Therefore, every region 

downstream of that (i.e. ACC, LPFC and motor structures) should only reflect post-decision 

computations. Chapter 5 will test, and arguably refute, many of these hypotheses of the 

goods-based model. 

 

Representing Outcomes in PFC 

 In order to understand our world we must be able to learn the value of our 

environment. Central to achieving this is being able to represent outcomes that we 

experience in the context of what choices led to those outcomes. Neurons in ACC, LPFC 

and OFC have been shown to fire in the presence and absence of reward (Kennerley et al., 

2009, Seo et al., 2007, Tremblay and Schultz, 1999, Kennerley et al., 2011). However, 

beyond the simple discrimination of outcomes, neurons in both ACC and OFC have been 

reported to encode reward prediction errors (i.e. when outcomes are better or worse than 

expected) (Kennerley et al., 2011, Sul et al., 2010, Matsumoto et al., 2007, Amiez et al., 

2006, Seo and Lee, 2007). Figure 1.5 shows an ACC positive prediction error coding 

neuron. This neuron responds positively with increasing chosen value during the choice 

epoch (Figure 1.5A), and responds negatively with chosen value at feedback on rewarded 

trials (Figure 1.5B), which reflects positive prediction error coding. 
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Figure 1.5: Positive prediction error coding in ACC. (A) The firing rate of an example ACC 
neuron at stimulus presentation (vertical line) for various chosen values (coloured line) (top 
panel) and the accompanying linear regression of firing rate and value (bottom panel). Red 
dots indicate significant bins and blue non-significant bins. (B) The firing rate of the same 
neuron at feedback onset (vertical line) on rewarded trials for each chosen value (top panel) 
and the accompanying linear regression (bottom). Blue dots indicate significant bins. 
Adapted from Kennerley et al. (2011). 

 

Prediction error coding in ACC and OFC is not unexpected given both regions’ have 

connections with the ventral tegmental area (VTA), a region containing dopamine neurons 

where classical reward prediction errors have been described (Schultz, 1986, Berger et al., 

1988, Williams and Goldman-Rakic, 1993). Neurons in ACC, LPFC and OFC also encode 

the magnitude of a reward given (Rolls, 2000, Kennerley et al., 2009, Watanabe, 1996, 

Roesch et al., 2006). Such a ubiquitous encoding of outcomes in ACC conforms to results 

seen in human EEG studies where “feedback related negativity” over ACC-related 

electrodes has been recorded when subjects are given outcomes indicating monetary losses 

or wins (Wu and Zhou, 2009, Hajcak et al., 2005). Recent thinking has postulated that ACC 
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prediction error coding may reflect the computations of an action-outcome predictor, whose 

function is to control complex behaviour (Alexander and Brown, 2011). 

 As learning is predicated on using outcomes to inform future choices, a natural 

question is the relationship between neuronal activity on current and past choices. At the 

time of choice, OFC chosen value coding is influenced by the recent history of choice offers, 

whereas ACC neurons appear to encode chosen value of the current trial and the amount of 

reward received on the previous trial (Kennerley et al., 2011). This OFC result may be a 

variant of relative or adaptive coding as discussed previously (Tremblay and Schultz, 1999, 

Padoa-Schioppa, 2009). Neurons in ACC also encode previous choices and reward history 

(Seo and Lee, 2007). Reward history coding is seen to be heterogeneous across ACC 

neurons with neurons exhibiting different time constants (Bernacchia et al., 2011).  

In a stimulus-guided strategy task, it has been observed that after the reward 

outcome, neurons in OFC encode the response made by the animal irrespective of whether 

it was rewarded (Tsujimoto et al., 2009). Such a signal may be useful in allowing the brain to 

understand the relationship been actions and outcomes which is critical for dynamic learning 

(Tsujimoto et al., 2012). However such a conclusion remains incongruent with the fact that 

lesions of OFC do not affect the learning of action-outcome associations and the fact that 

OFC itself rarely encode action values before the point of choice (Rudebeck et al., 2008, 

Wallis and Miller, 2003). One possibility is that OFC response selectivity in the Tsujimoto et 

al., 2009 study actually reflects a signal critical for planning the next trial’s choice, since the 

experimental design required a win/stay, lose/switch response strategy dependent on 

whether the current response was rewarded. 
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Behavioural Flexibility and ACC 

As well as its role in encoding upcoming reward, it has been suggested that ACC is 

critical to outcome mapping and behavioural flexibility (Hayden and Platt, 2010, Kerns et al., 

2004). For example, in foraging tasks, neuronal firing in ACC correlates with the relative 

value of foraging compared to exploiting a resource (Hayden et al., 2011). Signals in ACC 

also correlate with volatility (Kolling et al., 2012), behavioural errors (Falkenstein et al., 

2000), the speed-accuracy trade-off (Yeung and Nieuwenhuis, 2009), behavioural switching 

(Quilodran et al., 2008, Johnston et al., 2007) and conflict (van Veen et al., 2001). 

Furthermore, there is clear evidence that ACC neurons (among other regions) encode both 

positive and negative prediction errors in both stimulus based (Kennerley et al., 2011) and 

action based tasks (Matsumoto et al., 2007). Although these cognitive processes seem 

disparate, recent thinking has put forward the idea that the above described processes are 

reconcilable as phenomenon of a generalised action-outcome predictor model (Alexander 

and Brown, 2011). The basic concept of this model revolves around the idea that ACC 

neurons predict the expected outcome of a given action and respond when the expectation 

is not met. This prediction error is then used to update the prediction of the outcome for 

future behaviour. A potentially important implication of this model is that if true, ACC value 

coding during the choice phase of a decision may actually reflect a prediction about an 

outcome, rather than a computation immediately relevant to making choice. 

Another influential unifying idea of ACC function is that of expected value of control. 

In this theory ACC computes the overall value of allocating ‘control’ resources to a given 

problem (Shenhav et al., 2013). This computation may be relevant for deciding which tasks 

or actions to engage in at any given time. 
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Executive Function in LPFC 

 As stated earlier, LPFC is known to encode value; however lesions to this area do 

not cause severe decision making deficits (Kennerley and Walton, 2011, Kobayashi et al., 

2006). This has led to the suggestion that LPFC may be important in guiding attention 

towards behaviourally relevant information rather than the decision process itself (Rushworth 

et al., 1997, Buckley et al., 2009, Funahashi et al., 1989, Lebedev et al., 2004). For example 

in a spatially guided saccade task, it has been shown that ventral parts of LPFC (VLPFC) 

encode both the size of the reward on offer and the spatial location of the saccade required 

to obtain the reward (Kennerley and Wallis, 2009c). In contrast, OFC and ACC do not 

encode spatial information in the same task (Kennerley and Wallis, 2009a). LPFC neurons 

have been observed to encode locations of attention rather than a simple reflection of 

working memory (Lebedev et al., 2004). These two factors are often correlated in working 

memory tasks (for example. Funahashi et al. (1989)). 

LPFC function has been linked to executive control (Mansouri et al., 2009, Miller and 

Cohen, 2001, Tanji and Hoshi, 2008, Tsujimoto et al., 2012). In support of this, neuronal 

firing within LPFC correlates with task relevant rules and task context (White and Wise, 

1999, Hoshi et al., 2000, Asaad et al., 2000, Hoshi et al., 1998), planning (Collins et al., 

1998, Gaffan et al., 2002) and goal selection (Saito et al., 2005). Finally LPFC activation is 

also noted when behavioural adjustments are implemented to maintain optimal behaviour 

(Egner and Hirsch, 2005a, Egner and Hirsch, 2005b, Kerns, 2006). These results imply that 

LPFC enjoys a more general function in cognition, potentially relating to allocating attentional 

resources and control, rather than a specific role in decision making per se. Such control 

functions may nonetheless be critical for decision-making processes, such as in prioritizing 

particular attributes or valuation processes in other brain regions (Hare et al., 2009).  
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Information Gathering Strategies 

 Gathering information is a critical feature of complex decision making. Without 

adequate information decisions are difficult to make, and outcomes are highly uncertain. 

Human information gathering behaviour has been characterised by psychologists and 

economists for several decades. Predominantly this has revolved around describing the 

manner in which humans choose to compare individual pieces of information when 

presented with multi-option and multi-attribute decisions. When the decision space is small 

(i.e. few options and few attributes to consider), subjects tend to look at most available 

information and compare information in terms of options (Payne, 1976, Cook and Swain, 

1993, Lohse and Johnson, 1996). However, as the complexity of the task increases, humans 

shift towards comparing information across individual attributes and also begin to ‘screen’ 

options by using attributes of importance to exclude options (Sundström, 1987). The 

established thought is that this process of screening is a method by which subjects can 

reduce cognitive demand by reducing the total amount of information that needs to be 

considered (Weenig and Maarleveld, 2002, Kerstholt, 1992). This idea is also supported by 

the fact that subjects typically become less accurate and also gather a smaller amount of the 

total available information as task complexity increases (Kerstholt, 1992). Other 

manipulations of task complexity such as increasing decision difficulty have also been 

demonstrated to shift subject information comparison from that of ‘option based’ to ‘attribute 

based’ (Arieli, 2011).  

Neurobiological studies of decision making typically bypass this point by simplifying 

decisions down to one attribute (e.g. Kennerley et al. (2009)) or conversely merge multiple 

attributes into single stimuli (e.g. (Hosokawa et al., 2013)). However, some inferences about 

the brain structures that may support information gathering can be drawn from human 

lesions studies. Patients with vmPFC damage exhibit a pattern of behavioural deficits which 

reflects a change in the way they gather information relative to controls. In a study by Leslie 
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Fellows (2006), three groups of subjects (vmPFC lesion patients, LPFC lesion patients and 

controls) were asked to choose an apartment in which they would like to live. Each subject 

was presented with several potential apartments. Each apartment was associated with a 

variety of decision attributes (e.g. its size, cost and location), however this information was 

initially covered up. Subjects were instructed to uncover any information they wanted, and 

that they were free to choose whenever they felt they had sufficient information. By allowing 

subjects to freely sample information, the authors could investigate whether there were any 

information gathering strategies present in the groups. LPFC lesion and control subjects 

tended to use the well described ‘attribute based’ information gathering strategy, in which 

they preferred to uncover the same attribute information for each apartment before moving 

on to a new attribute to uncover. However, patients with vmPFC damage tended to compare 

‘across options’ by uncovering all attribute information for a single apartment before moving 

on to the next apartment. vmPFC patients also often picked different apartments at the final 

choice, even though vmPFC patients collected the same amount of information as the other 

groups before making their choice. An interpretation of these results could be that vmPFC is 

important in biasing behaviour towards attributes that are more relevant at that particular 

time. However, it should be noted that this result does not necessarily imply that vmPFC is 

critical for guiding information gathering; it is possible that the lesion subjects shifted their 

information gathering strategy in this task because they were unable to compare information 

within attributes due to destruction of attribute specific neurons in OFC. 

 Gambling paradigms have also shown that human vmPFC lesion patients are more 

likely to make risky choices irrespective of the odds of winning (Clark et al., 2008). In the 

context of Fellows’ findings, this risk seeking behaviour could be the result of an inability of 

these patients to bias their behaviour towards the probability attribute of the gamble. 
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Open Questions 

Despite the wealth of neurophysiological findings about value and the PFC, one of 

the great deficits in knowledge is the mechanism of choice. Although plausible biophysical 

models based on neuronal data exist which give a mechanistic account of perceptual 

decision making (Wang, 2008), analogous single neuronal data in support of value-based 

decision mechanisms remains elusive (but see Hunt et al. (2012), Chau et al. (2014), Strait 

et al. (2014)). Arguably, one reason why our understanding of value-based decision 

mechanisms is limited can be traced to classical experimental design approaches in many 

electrophysiological studies. For example, most decision making tasks are designed with a 

choice epoch of a fixed duration (e.g., 1000ms) such that even if subjects make a decision 

quickly, they must wait for the imperative ‘Go’ cue before making a decision (Hosokawa et 

al., 2013, Kennerley et al., 2009, Seo et al., 2007, Cai and Padoa-Schioppa, 2012, Cai and 

Padoa-Schioppa, 2014, Padoa-Schioppa and Assad, 2006). Many human fMRI studies have 

similar methodological constraints due to delays in the hemodynamic response. Such 

constrained tasks (as opposed to allowing subjects to choose freely as soon as they decide) 

make it impossible to determine exactly when the decision was made. Such imposed delays 

may also make it difficult to dissociate decision processes from working memory processes. 

Furthermore, most electrophysiological studies require animals to maintain central fixation 

throughout the choice epoch, which makes it difficult to understand the subject’s information 

gathering strategy and the importance of attention of valuation processes. Therefore a task 

that allows an unconstrained reaction time and eye movements may yield an advance in our 

understanding of decision strategies and dynamics. 

As discussed in this chapter, several studies have observed frame of reference-

specific coding in PFC. However the role of these frames of reference in decision making 

remains unclear because it is unknown whether neuronal computations reflecting these 

reference frames are simply a by-product of the decision making paradigm used, or whether 
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neurons may indeed have preferred reference frames if the task incorporated multiple 

reference frames (Hunt et al., 2014). Furthermore, it is unclear whether these frames of 

reference are simply inputs into a serial decision system which could be congruent with the 

‘goods based model’, or whether PFC circuits compare value in these different reference 

frames. This open question has implications for understanding the debate between serial 

and parallel processing in decision-making because the former model dictates that value 

comparison only occurs in abstract goods space whereas the parallel processing model 

predicts comparison and choice signals in all frames of reference. 

An extremely under-sampled aspect of decision making is information gathering. 

Although human information gathering behaviour is well characterised, little is known about 

how other animals resolve this problem. Furthermore, despite the lesion evidence linking 

vmPFC in information gathering strategies, and the suggestion that vmPFC valuation 

processes may be linked to attention (Lim et al., 2011), it remains unknown how vmPFC and 

other PFC neurons support information gathering processes (Fellows, 2006). Understanding 

this may help us understand whether any link exists between high level cognitive control and 

general decision-making processes in PFC.  

Finally, our understanding remains limited with respect to what information neurons 

compute when outcomes are delivered. Arguably, to learn optimally, one needs to know 

exactly what aspects of a choice outcome (i.e., attributes) deviate from the prediction. 

Although it is known that ACC and OFC neurons compute prediction errors at outcome when 

only reward probability is considered, it is unknown whether these prediction error 

computations are specific to certain attributes of value, or whether they instead reflect the 

difference between the expected and experienced integrated value of the outcome. 

Understanding the relationship between activity at choice and outcome may offer a better 

understanding of the role of PFC in value-guided choice and behavioural control 

mechanisms. 
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Conclusions 

 This review of the decision making literature has shown that there is direct lesion 

evidence that ACC, vmPFC and OFC are critical for the processes necessary for normal 

value-based decisions. The functional segregation between these three regions may reflect 

frame of reference specific decision computations which will be explored in this thesis. 

Furthermore, areas such as vmPFC and LPFC may be vital for supporting decision making 

behaviour through behavioural biasing, information gathering and attentional control.  

 Models of the decision making process are fundamentally centred around the 

concept of serial versus parallel decision making processes. Each model therefore makes 

several unique testable predictions about decision related computations in various parts of 

the brain. This question currently remains relatively open in the context of value guided 

decisions. 
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Chapter 2: The Anatomy of the 

Macaque Prefrontal Cortex 
 

The anatomical connections of the PFC constrain and define the types of 

computations that it is capable of performing during decision making (Passingham et al., 

2002). The PFC makes up the vast majority of the frontal cortex of both humans and 

primates. It consists of a multiple heterogeneous Brodmann’s areas located on the lateral, 

orbital and medial surfaces of the brain and also shows large amounts of variation between 

primates and lower mammals (Paxinos and Mai, 2004, Wise, 2008, Fuster, 2001). 

Brodmann’s areas within PFC are often themselves subdivided into functional areas (Figure 

2.1). This section will provide an overview of the anatomy of the PFC of primates with 

particular attention paid to the intrinsic and extrinsic connections. 

Although the PFC is made up of many Brodmann’s area which all have varying 

patterns of inputs and outputs, these individual divisions are not generally considered when 

electrophysiological and lesion studies are undertaken. Instead, more general areas are 

commonly defined which span across Brodmann’s areas. In keeping with this convention I 

will now define four regions that are relevant to the work in this thesis and describe the 

general pattern of efferent and afferent connections within these regions. The first region that 

I will define is Anterior Cingulate Cortex (ACC) This region encompasses areas within the 

ACC gyrus including Brodmann’s areas 32, 24, 25 and area 9 within dorsal ACC. There is 

some disagreement over the anatomical definition of the dorsal bank of ACC sulcus anterior 

to the genu of the corpus callosum (Carmichael and Price, 1995a, Middleton and Strick, 

2001, Luppino et al., 2003). Personal communication with Brent Vogt leads me to believe 

that this region shares cytoarchitectural properties with area 9. It should be noted that 

posterior portions of the ACC sulcus (24c’ and 24a’b’) may be defined as cingulate motor 

area (CMA). The electrophysiological recordings centre around area 9/24c but I shall 

consider the connections of the entire ACC. Lateral prefrontal cortex (LPFC) includes areas 
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8, 9, 46, 9/46 and 47/12. All electrophysiological recordings will come from area 9/46d and to 

a lesser extent 9/46v. Orbitofrontal cortex (OFC) spans almost the entire orbital surface 

including areas 11, 13, the orbital parts of area 12 and orbital parts of insula cortex. My 

electrophysiological recordings come from areas 11 and 13 between the medial and lateral 

orbital sulci. Finally, I define ventromedial prefrontal cortex (vmPFC) as solely area 14 with 

my recordings coming from the medial and orbital parts. For the purposes of this anatomical 

review I will state the general connections into the above defined regions rather than 

connections within individual Brodmann’s areas. This description will therefore define the 

broad patterns of connectivity in PFC which are critical to decision making. 

 

Figure 2.1: A diagrammatic depiction of the position of Brodmann’s areas in the PFC 
(highlighted blue and orange). Taken from Yeterian et al. (2012). 
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Anatomical Basis of Sensory Input into PFC 

 In order to facilitate value based decision making the PFC must have access to 

various types of sensory modalities such as somatosensory, visual, olfactory, visceral, 

gustatory and auditory information. Tracer studies in primates have shown that these inputs 

enter the PFC in different regions (Carmichael and Price, 1995b). PFC has access to two 

sources of visual information. The inferior temporal cortex projects strongly to lateral OFC 

with lighter projections to the more medial parts. Also, lateral and posterior parts of OFC are 

strongly connected to superior temporal gyrus anterior and posterior (STGa and STGp) 

(Carmichael and Price, 1995b). Neurons in these temporal areas are thought to encode 

complex multimodal characteristics of visual and auditory stimuli implying that these 

connections are the source of the complex visual information to OFC (Bruce et al., 1981, 

Poremba and Mishkin, 2007). 

 Neurons in secondary somatosensory cortex (SII) terminate in the more central parts 

of OFC and originate from two separate clusters within SII (Carmichael and Price, 1995b). 

One of these clusters is known to correspond to the representation of the digits on the 

somatosensory body map within SII (Carmichael and Price, 1995b). Furthermore, primary 

somatosensory cortex (areas 1 and 2) has wide ranging projections within the central parts 

of OFC.  

 Visceral inputs to the PFC come from the parvocellular division of the ventroposterior 

medial nucleus of the thalamus (VPMpc), which in turn receives gustatory input from the 

solitary nucleus (Carmichael and Price, 1995b). These inputs terminate in the most posterior 

(insula) parts of OFC. This posterior part of OFC then projects on to many parts of PFC 

including all parts of OFC and even to more caudal parts of vmPFC (Carmichael and Price, 

1995b). Also, projections from both gustatory cortex (in the insula) and olfactory cortex 

terminate in the central and posterior portions of OFC (Carmichael and Price, 1995b).  
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 In general, ACC and LPFC receive fewer sensory inputs than OFC, however, the 

inputs they do receive tend to be more multisensory in nature from areas such as agranular 

temporal pole and superior temporal sulcus (Kondo et al., 2003, Saleem et al., 2014). 

 In conclusion, OFC receives every type of basic sensory input except auditory input. 

However, it is important to note that sensory inputs are distributed across a large extent of 

the OFC cortex suggesting that information from various sensory modalities needs to be 

integrated within OFC circuits in order to form complex sensory representations of the 

environment. These inputs are also completely unique to OFC implying that it enjoys a 

specific role in the process of value guided decision making although ACC and LPFC also 

receive an amount of multi-sensory information. 

 

Premotor Connections of the PFC 

As the PFC lies directly anterior to the premotor areas of the brain, it is no great 

surprise that connections exist between these regions. Tracer studies have shown that 

ventral parts of LPFC (area 47/12) have strong connections with supplementary eye fields 

(SEF) (Huerta and Kaas, 1990, Gerbella et al., 2010). SEF is then in turn strongly connected 

to frontal eye fields (FEF) which is the principle area concerned with voluntary eye 

movement (Huerta and Kaas, 1990). More spare connections also exist between SEF and 

area 9/46 (Huerta and Kaas, 1990). Weak connections also exist between central and 

posterior portions of ACC and SEF implying two potential PFC inputs into the saccadic 

system (Luppino et al., 2003). Somatotopic connections exist between posterior parts of 

ACC (i.e. CMA) and motor structures including presupplementary motor area (pre-SMA), 

premotor area (PM) and primary motor cortex (Morecraft and Van Hoesen, 1992, Arikuni et 

al., 1994, Hatanaka et al., 2003, Luppino et al., 2003). Direct projections also exist from 

LPFC to premotor cortex (Matelli et al., 1986). 
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All of the connections described above provide a direct pathway by which value 

information can be relayed from PFC to the motor system. However, there are relatively few 

paths by which this information can be relayed for motor output. The two main outputs are 

from ACC and LPFC, both of which can communicate with the saccadic and motor systems 

to one extent or another. Information transferred via LPFC is probably more likely to be 

relevant for eye movements whereas information given to PM is more likely to relate to body 

movement (Carmichael and Price, 1995b, Luppino et al., 2003). The main cortical pathway 

that OFC and vmPFC can influence motor action is therefore through communication with 

ACC or LPFC. 

 

Limbic Connections with the PFC 

 Sources of limbic connections to PFC include the amygdala, hippocampus, temporal 

pole and the entorhinal, perirhinal and parahippocampal cortices. Although these regions are 

considered limbic in nature, many of them can also compute complex visual information 

about the environment. Therefore the connections I will describe in this connection may well 

outline possible pathways for complex sensory information as much as they could be for 

limbic information. Projections from the basal nucleus of the amygdala terminate across the 

entire extent of OFC and the more anterior portions of ACC (area 32 and 24a) (Carmichael 

and Price, 1995a). However, OFC connects preferentially to the medial portion of the basal 

nucleus whereas the anterior ACC connections lie more towards the lateral part of the 

nucleus (Carmichael and Price, 1995a). The divisions of the accessory basal nucleus also 

show differential projections to PFC.  The magnocellular portion projects extensively 

throughout OFC and vmPFC with some minor connections to anterior ACC (Carmichael and 

Price, 1995a). In contrast the parvocellular portion is only seen to project specifically to 

posterior portions of vmPFC and very lateral and posterior parts of OFC (Carmichael and 

Price, 1995a). Finally, the lateral nucleus of the amygdala, periamygdaloid cortex and the 
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anterior cortical nucleus all project almost exclusively to posterior agranular parts of OFC 

(Carmichael and Price, 1995a). Although limbic input spans the entire PFC, many of the 

more selective connections described above terminate exclusively in OFC which suggests 

that OFC may enjoy unique access to certain limbic information from amygdala. This 

conclusion is backed up by simultaneous lesion and electrophysiology which shows a 

specific decrease in OFC value coding when amygdala lesions are administered (Rudebeck 

et al., 2013a). The amygdala has connections with almost every cortical visual area and 

therefore the amygdaloprefrontal connection may be another pathway by which complex 

visual information is relayed to PFC (Carmichael and Price, 1995a). It has also been 

suggested that the function of the connections between the lateral nucleus and the PFC may 

support the integration of ingestion related sensory information which may be critical for the 

valuation of food stuffs (Carmichael and Price, 1995a). The basolateral complex (which 

includes both the basal and lateral nuclei of the amygdala) is known to be important in 

linking and updating the association between stimuli and outcomes which may explain its 

extensive OFC projections (Baxter and Murray, 2002, Saddoris et al., 2005). The amygdala 

may play a role in providing emotional context to the PFC (Barbas et al., 2011).  

In the hippocampus only the rostral subiculum has significant projections to PFC. Its 

projections terminate throughout vmPFC and more medial potions of OFC with no projection 

to ACC (Carmichael and Price, 1995a). These connections have been shown to come 

specifically from CA1 neurons in the hippocampus (Cavada et al., 2000). The hippocampus 

plays a role in memory and it may play a role in integrating spatial information (Thierry et al., 

2000). Connections between PFC and hippocampus are critical for providing contextual 

information which facilitates hippocampal memory function (Preston and Eichenbaum, 

2013).  In contrast to the rostral subiculum, the parahippocampal cortex has been shown to 

project more medially to ACC and posterior vmPFC (Kondo et al., 2005). This part of the 

limbic system is known to deal with spatial memory, which may be important in selecting 

relevant actions which may explain its connections to ACC (Squire et al., 2004). Posterior 
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parahippocampal cortex also sends projections mainly to the medial surface with 

connections with ACC and vmPFC as well to medial OFC (Carmichael and Price, 1995a). 

 Strong reciprocal connections exist between entorhinal cortex and much of OFC, 

vmPFC and parts of ACC (i.e. areas 24a and 24b) (Carmichael and Price, 1995a, Arikuni et 

al., 1994). The entorhinal cortex is known to be an important relay for information from limbic 

areas throughout the brain into the hippocampus and is also thought to play a vital role in 

many aspects of cognition including attention, stimulus conditioning and working memory 

(Coutureau and Di Scala, 2009). In contrast to the entorhinal cortex, the perirhinal cortex has 

relatively few connections to PFC. It only connects to posterior parts of OFC (Kondo et al., 

2005). The perirhinal cortex has been implicated in spatial recognition memory and memory 

consolidation which implies that OFC receives more limbic information pertaining to the 

visual or spatial properties of a stimulus compared to ACC which be relevant for its 

computations in more abstract frames of reference (Suzuki, 1996). Furthermore, the 

connections between OFC and the perirhinal cortex have been implicated in credit 

assignment (Clark et al., 2013, Walton et al., 2010).   

 In conclusion, what is striking about the limbic connectivity to the PFC is that almost 

every PFC area seems to receive input from at least one source. This suggests that the 

limbic system may exert huge influence on the function of the entire PFC although the 

specific influence will almost certainly depend on the origin of limbic input to each area. 

 

Basal Ganglia Connections with PFC 

 Basal ganglia connections are known to be different between various parts of PFC. 

Anterior ACC (area 25) projects predominantly to the medial portion of the head, body and 

tail of the caudate, core of the nucleus accumbens and rostral ventral putamen (Ferry et al., 

2000). Central OFC exhibits a similar pattern of connections. However, more anterior OFC 
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has restricted projections to the medial edge of the caudate and medial ventral striatum 

(Ferry et al., 2000, Haber et al., 1995). Projections from posterior vmPFC terminate 

exclusively in the core and shell of the nucleus accumbens (Nakano et al., 1999). However, 

more dorsal vmPFC/ventral ACC also has light projections to medial caudate as well as the 

strong projections to ventral striatum (Ferry et al., 2000, Kunishio and Haber, 1994, Eblen 

and Graybiel, 1995). More lateral and posterior regions of the lower bank of the cingulate 

sulcus (CMA) exhibit connections with dorsal (sensorimotor) striatum in both the caudate 

and putamen (Kunishio and Haber, 1994, Ferry et al., 2000). Unlike OFC, vmPFC and ACC, 

LPFC does not connect to ventral striatum but instead projects widely to lateral caudate and 

medial putamen (Yeterian and Pandya, 1991, Calzavara et al., 2007). 

 

Figure 2.2: A schematic diagram depicting the three basal ganglia loops pertaining to PFC. 
Abbreviations: lateral orbitofrontal cortex (lOFC), caudate nucleus (CN), globus pallidus 
internal segment (GPi), ventral anterior thalamic nucleus (VA), medial dorsal nucleus of 
thalamus (MD), anterior cingulate cortex (ACC), ventral striatum (VS), ventral pallidum (VP), 
dorsolateral PFC (dlPFC), ventromedial (vm), dorsomedial (dm), dorsolateral (dl), 
rostrolateral (rl), rostrodorsal (rd), posteromedial (pm), magnocellular portion (mc), 
parvocellular portion (pc). Adapted from Alexander et al. (1986). 

 

 In addition to the focal PFC projections to ventral striatum, more diffuse PFC-striatum 

connections have also been described (Haber et al., 2006). These projections often cross 
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functional areas and enter the dorsal striatum (Haber et al., 2006). These projections may 

serve to modulate the strength of the focal topographical signal under certain conditions 

(Haber et al., 2006).  

 The topography of PFC inputs into the basal ganglia has particular importance 

considering that striatal efferants also show topography. Anterograde tracing studies have 

shown that projections from medial ventral striatum terminate at the medial edge of the 

ventral pallidum whereas projections from more central regions (such as the shell of the 

nucleus accumbens) terminate on the border between the ventral pallidum and the bed 

nucleus of the stria terminalis (Haber et al., 1995). This shows that the parallelism of cortical 

processing between the OFC, vmPFC, ACC and LPFC may be maintained throughout basal 

ganglia loops (Haber et al., 1995). PFC is known to have three separate loops that are 

known to pass through the basal ganglia (Figure 2.2). The ‘lateral orbitofrontal’ circuit 

projects to ventromedial caudate which in turn projects to the dorsomedial sector of the 

internal pallidal segment (Alexander et al., 1986). This part of the pallidum then projects to 

the magnocellular portions of both the ventral anterior thalamic nucleus (VAmc) and the 

medial dorsal nucleus (MDmc). Both of these nuclei then project back to lateral OFC to 

complete the loop (Alexander and Crutcher, 1990). The ‘anterior cingulate’ circuit has 

projections from ACC to ventral striatum and then on to rostrolateral internal globus pallidus 

(GPi) and rostrodorsal ventral pallidum (VP) (Alexander and Crutcher, 1990). These parts of 

GPi and VD then project on to posteromedial MD nucleus, which then sends projections 

back to ACC. Finally, the ‘dorsolateral prefrontal’ circuit originates from LPFC, which send 

input into dorsolateral head of the caudate and the rostrocaudal part of the tail of the 

caudate (Alexander and Crutcher, 1990). These parts of the caudate then project on to 

dorsomedial parts of the globus pallidus which then project on to parvocellular portion of the 

ventral anterior thalamic nucleus (VApc). The loop is then completed by projections from 

VApc back to LPFC. The function of loops may be to allow the continuous processing of 
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complex chains of events and may also imply specific functionality within these regions of 

PFC (Haber and Calzavara, 2009).  

An important source of basal ganglia input to the PFC comes from the ventral 

tegmental area (VTA) and the substantia nigra pars compacta (SNpc). The major type of 

neuronal output from both these regions is dopaminergic in nature. In general, a gradient of 

dopaminergic innervation has been observed running from medial (higher innervation) to 

lateral (lower innervation) (Figure 2.3B) (Williams and Goldman-Rakic, 1998).  Dopamine 

has two major receptors on which it acts. These D1 and D2 receptors are thought to have 

functional differences although these remain unclear (Glausier et al., 2009). Comparative 

differences have been noted between the density D1 and D2 receptors in certain parts of 

PFC. ACC contains significantly greater concentrations of D1 receptors compared to D2 

although the functional significance of this is unclear (Richfield et al., 1989).  

Retrograde tracer studies have found that both VTA and SNpc send projections to 

various parts of the PFC (Figure 2.3A) (Porrino and Goldman-Rakic, 1982). LPFC has 

connections with anterior parts of VTA and antero-medial and antero-dorsal SNpc (Porrino 

and Goldman-Rakic, 1982). Injections into OFC all find labelled neurons throughout the VTA 

but not with SNpc (Porrino and Goldman-Rakic, 1982).  ACC receives the largest 

dopaminergic inputs (Porrino and Goldman-Rakic, 1982, Gaspar et al., 1989, Berger et al., 

1988). Projections to anterior ACC originate from more medial regions of VTA whereas 

posterior ACC receives input from lateral parts of VTA (Williams and Goldman-Rakic, 1998, 

Raghanti et al., 2008). Even within ACC there appears to be a sharp transition from higher to 

lower dopamine innervation between areas 24b and 24c (Williams and Goldman-Rakic, 

1998).  
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Figure 2.3: (A) A diagrammatic representation of the topographical arrangement of PFC 
inputs into midbrain. Abbreviations: ventral tegmental area (VTA), red nucleus (RN), 
substantia nigra pars compacta (SNpc), dorsal (d), ventral (v). Taken from Bjorklund and 
Dunnett, (2007). (B) The density of dopamine terminals in the frontal lobe. A density gradient 
can be seen in the   rostral-caudal and the medial-lateral axis. ACC contains a significantly 
higher density of dopamine receptors than OFC or vmPFC. Taken from Williams and 
Goldman-Rakic (1993). 

 

A study by Frankle et a.l (2006) in primates found a sparse projection to VTA and 

SNpc from ACC. Injections into OFC show connections to medial, dorsal SNpc and rostral 

VTA . In contrast, vmPFC is strongly connected to VTA . LPFC send projections mainly to 

medial and dorsal parts of SNpc with very few to VTA . The pattern of connectivity described 

by Frankle et al. appears to be quite similar to the pattern of efferent projections from 

midbrain dopamine to the PFC, suggesting that information transfer is likely to be reciprocal 

and topographical. However, the relative strength of the efferent dopamine-PFC connections 

is not equal. This may have some relevance to the computations performed through these 

reciprocal connections. 

In conclusion, midbrain dopamine projections show strong topography with prefrontal 

organisation. Activity of dopaminergic neurons in VTA and SNpc is known to encode reward 

A B 
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prediction errors that are thought to be important for reward guided behaviour and 

reinforcement learning which are important functions of PFC (Schultz, 1998, Matsumoto and 

Hikosaka, 2009). 

 

Networks in PFC 

It is generally accepted that subregions of PFC can be divided into broad anatomical 

networks which partially transcend the definitions of ACC, OFC and vmPFC that I defined 

previously (Ӧngür D, 2000). Ӧngür and Price (2000) describe the existence of anatomically 

separate ‘medial’ and ‘orbital’ networks based on patterns of cortico-cortical and cortico-

subcortical connections (Figure 2.4).                  

 

Figure 2.4: The structure and layout of the ‘medial’ and ‘orbital’ networks. Taken from Price 
(2007). 
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The so-called ‘orbital network’ consists solely of areas found on the orbital surface of 

the brain: Brodmann’s areas 11m, 11l, 12r, 12m, 12l, 12o, 13a, 13b, 13m, 13l, 14, Iam, Iapm 

and Ial which show a high degree of reciprocal interconnectivity (Figure 2.4) (Carmichael 

and Price, 1996). This network encompasses the entire OFC as previously defined but also 

includes vmPFC. As previously stated, areas within the ‘orbital network’ receive a huge 

amount of sensory input from multiple areas including those dealing with visual, gustatory, 

olfactory, somatosensory and visceral information (Ӧngür D, 2000). It also receives a large 

limbic input from enterhinal and perirhinal cortices and the basal, accessory basal and lateral 

nuclei of the amygdala (Carmichael and Price, 1995a, Ӧngür D, 2000).  

 The ‘medial network’ consists of reciprocal connections between brain areas located 

on both the medial and orbital surfaces: Brodmann’s areas 9, 10m, 10o, 11m, 12o, 13a, 14r, 

14c, 24b, 25, 32 and Iai (Figure 2.4) (Carmichael and Price, 1996). This not only 

encompasses ACC but also vmPFC and parts of OFC. Unlike the ‘orbital network’, it 

receives very few sensory projections, although in general it does receive similar limbic input 

in comparison with the ‘orbital network’ with the exception that is more connected to the 

ventromedial part of the basal nucleus of the amygdala (Ӧngür D, 2000). Whereas the 

‘orbital network’ seems to be a system that predominantly receives input from other areas, 

the ‘medial network’ tends to project outputs to other areas of the brain. It is known to send 

strong projections to the hypothalamus and peri-aqueductal grey (PAG), which are both 

associated with visceral and autonomic function (Ӧngür D, 2000, Keay et al., 1994, Price, 

1999). 

It should be noted that there are several areas of PFC which span both ‘medial’ and 

‘orbital’ networks (Price, 1999). These include areas 11m, 12o and 13a. Areas 12o and 13a 

are both connected to area 24b which may allow the orbital network direct access to one of 

the major motor outputs of the PFC. Another interpretation is that these areas may be the 

main point of reciprocal communication between ACC and OFC and as these two areas 
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have extensive projections to all parts of ACC, OFC and vmPFC providing an ideal interface 

for communication (Carmichael and Price, 1996). 

 Not every region of PFC has access to information from sensory and limbic areas. 

Furthermore, not every region is able to send outputs to motor regions. In order for 

information to be relayed between different areas these areas need to be connected. The 

anatomical ‘medial’ and ‘orbital’ networks provide one potential solution to this problem but 

does not necessarily explain the broad connective properties of PFC regions. It is no 

surprise that the overall connectivity of PFC is extremely complex (Figure 2.5). Statistical 

analysis of the connections between regions of PFC has shown that regions have between 3 

and 13 outputs with the mode number of 8 outputs per region (Averbeck and Seo, 2008). 

The same study also showed that every PFC area was able to access all types of extra-PFC 

information within two connections of its anatomical position suggesting that every PFC 

region has the potential to access information of almost all modalities (Averbeck and Seo, 

2008). 

 Tracer studies indicate that area 13 (in central OFC) has widespread connections 

throughout PFC and most notably, these connections seem to span ‘medial’ and ‘orbital’ 

networks (i.e. physically link ACC and OFC) (Barbas and Pandya, 1989, Price, 2007, 

Carmichael and Price, 1996).  Area 12o, which is the other area thought to be the point of 

connection between the two networks, also shows broad connectivity throughout PFC and 

importantly exhibits strong connections with area 24b (Price, 2007, Barbas and Pandya, 

1989). vmPFC may be well located to act as an interface or conduit for communication 

between ACC and OFC given its anatomical position and connections between the two 

regions. 
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Figure 2.5: A schematic representation of the intrinsic and extrinsic connections of areas in 
the PFC. Common abbreviations are used. Taken from Averbeck and Seo (2008). 

 

Primate-Human Homology 

From an empirical point of view there is strong homology between human and 

macaque brain (Ongur and Price, 2000). Cytoarchitecturally, studies have shown great 

similarities between  human and macaque OFC, although the relative sizes of the two 

structures differ (Wise, 2008). Both human and macaque OFC contains granular 

cytoarchitecture which rodents lack (Wise, 2008). These primate specific parts of OFC are 

found in the more anterior portions of OFC, which as stated above, are the areas which 

receive greater complex visual input and less gustatory and visceral input. These areas are 

also the same areas of OFC and vmPFC that are commonly recorded from in primate 

neurophysiology experiments (for example, Kennerley and Wallis (2009a), Kennerley et al. 
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(2009), O'Neill and Schultz (2010), Padoa-Schioppa and Assad (2006), Strait et al. (2014)). 

The agranular cortex, which is conserved between rats and humans is very posterior in 

humans and macaques (Wise, 2008).  

 

Figure 2.6: A diagrammatic representation of the cytoarchitecture of human, macaque and 

rat prefrontal cortices. The area within the red rectangle denotes the pre-genual part of ACC 

which is disputed in nomenclature. Abbreviations: a, agranular; AC, anterior cingular area; 

AON, anterior olfactory nucleus; cc, corpus callosum; Fr2, second frontal area; I, insula; MO, 

medial orbital area; LO, lateral orbital area; M1, primary motor cortex; Par, parietal cortex; 

Pir, piriform cortex; PL, prelimbic cortex; VO, ventral orbital area; l, lateral; m, medial; o, 

orbital; r, rostral; c, caudal; i, inferior; p, posterior; s, sulcus; v, ventral.  Taken from Wise 

(2008). 
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Much like OFC, the cytoarchitectural properties of the ACC are very similar between 

humans and macaques (Wise, 2008). However, unlike OFC, macaque ACC consists almost 

solely of agranular cortex which is homologous to rodent ACC (Wise, 2008). A comparative 

connectivity study of human and macaque LPFC reported strong homology between the two 

species. The only exception was that the pattern of connections observed in human lateral 

frontal pole (area 10) was more similar to connections seen in macaque LPFC (around the 

principal sulcus) than that of macaque lateral frontal pole (Sallet et al., 2013, Neubert et al., 

2014). A similar study examining the correspondence of areas such as ACC and vmPFC 

also found strong similarities between humans and macaques (Neubert et al., 2015). There 

are also several empirical difference between human and macaque PFC (Ӧngür D, 2000). 

These include disagreements over the similarity of Brodmann’s area 32 (anterior ACC) and 

area 12 (lateral OFC) as classified in the human compared to primates (Ӧngür D, 2000). 

However, these differences have little relevance to the work presented in this thesis. 

Overall, based on the cytoarchitectural and connection studies, it appears that strong 

homologies exist between the human and macaque PFC which in means that the neural 

dynamics of value based decision making in primates is likely to bare close resemblance to 

neural dynamics in humans. 

 

Conclusions 

 The extensive connectivity of the PFC helps explain the flexibility in its function. The 

medial and orbital walls of the PFC (i.e. ACC and OFC) are anatomically separate which is 

no doubt vital in explaining functional differences between regions. In the context of a 

visually guided value based decision making tasks several areas of both networks may be of 

particular importance. Figure 2.7 depicts the important intrinsic and extrinsic connections of 

PFC which may be relevant to decision making.  
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Figure 2.7: A diagrammatic representation of the main intrinsic and extrinsic connections of 

PFC as relevant to decision making. Dark blue arrows indicate sensory connections, 

magenta arrows show limbic connections, dark red arrows depict motor connections, purple 

arrows show dopaminergic input, brown arrows show projections to striatum and black 

arrows show connections between PFC regions.  The thickness of each arrow represents 

the relative at size or importance of each input. General input and output topology is 

represented for OFC, striatum and dopamine. Reciprocal connectivity is depicted within PFC 

but not for regions outside PFC. Abbreviations: Hypth, hypothalamus; ITG, inferior temporal 

cortex. All other abbreviations are the same as previously stated. 

 

Lateral and central parts of OFC receive visual information from both STG and 

inferior temporal cortex. It also has extensive connections with ventral striatum and receives 

dopaminergic input from VTA. Through its connections OFC is then capable of integrating 



61 
 

sensory and limbic information and passing this on either through its medial connections to 

ACC, its lateral connections to LPFC which both can then go on to manipulate the motor 

system in order to effect a decision. Conversely, vmPFC may be integrate information from 

OFC and pass it on to ACC through its reciprocal connections with both regions. vmPFC 

itself has several unique limbic and striatal connections that may convey specific 

computational properties. 
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Chapter 3: Covert and Overt 

Attention During Learning and 

Decision Making  
 

Introduction 

Every day our environment presents us with a rich assortment of visual information, 

some of which is highly relevant to potential future decisions. To make decisions efficiently 

we must quickly orient our eyes towards things that provide us with the most important data 

about upcoming decisions. How such attentional strategies are implemented in the brain is 

an intriguing question. A growing body of thought suggests that these strategies are a type 

of value based decision process which computes relevant visual locations to gather future 

information (Gottlieb, 2012, Jovancevic-Misic and Hayhoe, 2009, Sullivan et al., 2012, 

Brockmole and Henderson, 2005, Anderson, 2013). In this chapter we will explore the 

behaviour of primates performing a simple free gaze value decision task in order to 

characterise the roles of covert and overt attention in primate learning and decision making. 

We will then make inferences about the structure and connectivity between potential 

attention driving circuits and other decision making circuits.  

It has long been known that basic physical visual properties of our environment (e.g., 

brightness) can have a powerful influence on saccadic behaviour (Theeuwes, 1992, 

Nothdurft, 2002, Itti and Koch, 2001, Folk et al., 1992). However, it is also well recognised 

that higher order non-physical properties of our environment (i.e., associations between 

value and stimuli) can also modulate saccadic attention through covert attention in both 

humans and monkeys (Yasuda et al., 2012, Anderson et al., 2011, Anderson and Yantis, 

2012, Kim and Hikosaka, 2013, Milstein and Dorris, 2007).  For example, both primate and 

human studies have found that with increasing exposure, subjects become significantly more 
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efficient at saccading towards valuable stimuli or locations when presented with multiple 

targets (Yasuda et al., 2012, Anderson et al., 2011). Both species are also significantly faster 

to saccade towards more rewarding stimuli during saccade contingent tasks (Milstein and 

Dorris, 2007, Kim and Hikosaka, 2013, Yasuda et al., 2012). Such findings are fascinatingly 

similar to the pattern of behavioural results commonly seen in value based decision making 

experiments where subjects choose more rewarding stimuli and make decisions faster when 

final choices are more valuable (Krajbich et al., 2012, Rudebeck et al., 2008, Philiastides 

and Ratcliff, 2013). From this, we could be tempted to conclude that neural systems that 

guide spatial attention may perform analogous value-based computations to those 

computations performed when choosing which option to eventually select. 

If this is true, the question naturally follows: are the decision circuits that underlie 

value based choice and those underlying saccadic attention one and the same? Potential 

circuits for these dual roles might be frontal (Kennerley et al., 2009, Kennerley and Wallis, 

2009c, Strait et al., 2014, Hayden and Platt, 2010, Padoa-Schioppa and Assad, 2006), 

parietal (Platt and Glimcher, 1999, Rorie et al., 2010, Sugrue et al., 2004) or subcortical (Lau 

and Glimcher, 2008, Kim and Hikosaka, 2013, Yasuda et al., 2012, Cai et al., 2011) areas, 

given neurons in these areas have all been implicated in value-based decision-making and 

exhibit responses correlating with attention and/or eye movements.  

If the same circuit does drive both value guided saccadic attention and choice, we 

can make the straightforward prediction that output dynamics in both systems should be 

strongly correlated. From an anatomical and functional point of view, it seems unlikely that 

one circuit can subserve both behaviours for the following reasons. Firstly, although value 

signals are almost ubiquitous in the brain, lesion studies suggest the prefrontal cortex (PFC) 

may be the critical set of areas for value based decision making (Rudebeck et al., 2008, 

Camille et al., 2011a, Camille et al., 2011b, Fellows, 2006). Yet, although it is generally 

unreported in the literature, value signals in PFC are relatively slow, especially when 

compared to saccade latencies. Typical PFC value coding latencies are approximately 200-
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300ms (Kennerley and Wallis, 2009a) but typical saccade latencies are 150-300ms (Enderle, 

2002). This implies that PFC neurons might not be best suited for biasing saccades based 

on value information. On the other hand the subcortical saccadic network (i.e. Caudate, 

Superior Colliculus (SC), Substantia Nigra pars Reticulata (SNpr)) would be perfectly placed 

for value based computations with its extensive connections and overlap the reward network 

(Munoz, 2002). Yet despite the fact that neurons in areas like SNpr and Caudate encode 

value at fast latencies, these regions may not be critical in value based motor decision 

making (Hikosaka, 2007, Hikosaka et al., 2006, Kim and Hikosaka, 2013). Secondly, and 

more straightforwardly, it is normal for us to gather information with our eyes, but rare to 

directly act upon the world with saccades. The converse is true for our limbs. It therefore 

seems likely that information value will have a stronger bearing on saccades than the reward 

value of approaching or selecting an object, but the opposite may be true for action 

selection. Often information value and reward value will be strongly correlated, although they 

can be separated in certain circumstances (Gottlieb et al., 2014). 

 Whether covert attention (i.e. attending to stimuli in the environment without overtly 

saccading towards them) influences decision making is of particular relevance when 

considering contemporary models of value based choice, which argue that only information 

that is directly fixated or viewed (i.e., through overt saccades) correlates with eventual 

choice (Krajbich et al., 2010, Krajbich et al., 2012, Towal et al., 2013, Krajbich and Rangel, 

2011). However, these attentional models frequently depend on the subject selecting a 

location to fixate at random, and only using overt attention to bias evidence accumulation 

towards making a choice. Yet, if value influenced where saccades were directed, as 

opposed to evidence accumulation proceeding only after an overt saccades, then we would 

be forced to reconsider whether evidence accumulation via covert attention biases decision 

making processes. Equally, because primate economic choice experiments typically require 

central fixation during the choice epoch, the importance of covert attention in evidence 

accumulation and decision-making processes remains largely unknown. 
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In order to better understand how ocular dynamics and covert attention correlate with 

evidence accumulation and value comparison processes, we recorded behavioural and eye 

position data during a binary free saccade decision making paradigm. On each trial, subjects 

chose between differently valued stimuli that were either well learnt or had been learned that 

day. We found that subjects invariably used covert attention to guide their saccades towards 

more valuable stimuli, and did so with increasing accuracy as the value of the stimuli 

became more learned. We will argue that this value guided saccadic decision is largely 

independent from that of the value guided final choice, because of clear differences between 

saccade and choice behaviours in terms of the speed of learning and novelty bonus. Thus, 

when covert attention can be used to evaluate information in the environment choice 

behaviour can become dissociable from overt saccadic behaviour. 
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Methods 

Subjects 

Two adult male rhesus monkeys (Macaca mulatta), M and F, were used as subjects 

in the study. All experimental procedures were approved by the Local Ethical Procedures 

Committee and carried out in accordance with the UK Animals (Scientific Procedures) Act. 

 

Behavioural Protocol 

 Subjects sat in a behavioural testing chair facing a 19” computer monitor placed 

approximately 57cm away from the subjects’ eyes. The height of the screen was adjusted so 

that the centre of the screen aligned with neutral eye level for the subject. An analog joystick 

(APEM Components, UK) was placed in front of the subject out of his line of sight and was 

used to make Left/Right manual responses during the task. Eye position and pupil tracking 

was achieved using an infrared camera (ISCAN ETL-200) sampled at 240Hz. 

The behavioural paradigm was run using the MATLAB based toolbox MonkeyLogic 

(http://www.monkeylogic.net/, Brown University, USA). All joystick and eye position data was 

relayed to MonkeyLogic and used online during the task, and also interpolated and recorded 

by MonkeyLogic at 1000Hz.  

 

Task 

 A representation of a single trial timeline can be found in Figure 3.1B. Subjects 

initiated each trial by returning the joystick to its centre position. At this point a white 

background appeared on the screen with a red centre fixation square (0.5 x 0.5 visual 

degrees in size). Subjects were required to fixate the red square for a continuous 500ms 

(fixation radius of 3 visual degrees) within a 10s time period. If this was not achieved, a short 
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‘timeout’ was given and the trial restarted. Once the fixation period was completed the 

fixation spot disappeared and two isoluminant stimuli (Figure 3.1C, 100 x 100 pixels) were 

presented 6.5 visual degrees to the left and right of the centre. Importantly, once the stimuli 

appeared, subjects were free to saccade to anywhere on (or off) the screen and to choose a 

cue using a left/right joystick response at any time. If subjects did not make a joystick 

response within 5s of stimuli onset, the trial was aborted. Once the response was made, a 

grey square was drawn around the chosen stimulus and a 500ms pre-feedback epoch was 

initiated, after which the unchosen stimulus was removed from the screen and the reward 

was initiated (feedback epoch). Subjects were rewarded with varying volumes of juice 

delivered to the mouth using a precise peristaltic pump (ISMATEC IPC). Subject M worked 

for a 50:50 water:apple juice mixture while Subject F worked for a 50:50 water:mango juice 

mixture.  

 Subjects were presented stimuli from one or more of four stimulus sets (see Figure 

3.1C for an example set). Two sets consisted of cues associated with one of five 

probabilistic outcomes (10%, 30%, 50%, 70%, 90%) and the other two sets were associated 

with one of five magnitudes of reward size (0.14g, 0.33g, 0.51g, 0.71g, 0.90g). For each 

attribute (i.e. probability and magnitude), one stimulus set contained cues which subjects 

were highly ‘Overtrained’ on in previous training sessions (M: ~1500, F: ~3000 total 

exposures to the set). The other set contained ‘Novel’ cues which subjects had only 

experienced that day, where they were given limited exposure to each stimuli’s value during 

the ‘conditioning phase’ (10 forced stimulus-outcome exposures with secondary conditioning 

per stimulus) which immediately preceded the ‘choice phase’ (see Figure 3.1A). Subjects 

could be given trials consisting of both overtrained stimuli (‘Overtrained’ trial), two novel 

stimuli (‘Novel’ trial) or one of each (‘Mixed’ trial) (see Figure 3.1D). Subjects were always 

asked to make choices within a certain attribute (e.g. choosing between probabilities) and 

never between attributes. All trial types were pseudorandomly interleaved. Optimality was 

measured by whether the subjects chose the highest value stimulus.  
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Figure 3.1: Overview of the task design. (A) Subjects began each session with a 
‘conditioning phase’, where they were given 10 forced-choice trials of each of the 10 novel 
stimuli (100 trials in total) in order to learn the value assigned to each stimulus. Secondary 
conditioning (with a pre-learnt stimulus where bar height equalled value; blue bar: 
magnitude, black bar: probability attribute) was used to aid learning in these trials. 40 novel 
choice trials were periodically interleaved between forced-choice trials. (B) Once the 
‘conditioning phase’ was complete, subjects moved to the ‘choice phase’ of the experiment 
where they were presented only with choice trials of various conditions. Subjects were free 
to saccade between the cues and make a manual joystick response to indicate choice at any 
time. (C) Example cue Set. Cues could either predict reward magnitude or probability and 
could either be well known to the subjects (Overtrained) or relatively new (Novel). (D) 
Example trials. On any given trial in the ‘choice phase’, subjects could be presented with two 
overtrained stimuli (Overtrained Trials), two novel stimuli (Novel trials) or one of each (Mixed 
Trials). Subjects were always asked to make choices within an attribute dimension and 
never had to choose between probability and magnitude stimuli. 

 

Behavioural Analysis 

The focus of this chapter is on the relationship between attention, learning and 

decision-making. As such, all analyses were performed on the choice trials (Figure 3.1.B). 
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Equation 3.1 

All analyses were performed using MATLAB (MathWorks, USA). Reaction time was defined 

as the time between cue presentation and initial joystick movement. All eye position analysis 

was performed during this period. Eye position data were pre-processed by removing 

periods of time corresponding to either blinks or off screen gazes. For the purposes of our 

analysis, we collapsed across trials of different attributes for all results shown in this chapter 

because no meaningful differences were observed between attributes.  

In order to decode whether the subject attended to information on the screen, a 16 

square degree area (4 x 4 degrees) was defined around the centre of each cue. If the 

subject’s gaze entered this area he was considered to have viewed or ‘fixated’ the stimulus. 

Time of the first saccade was defined as the time when the X position of the eye first left the 

3 degree centre radius. First cue dwell time was defined as the period of time that the 

subject’s eye position first entered the area around the cue until when it first left.  

In order to avoid perfect separation in some regressions, all data analyses were 

performed using data collapsed across all sessions for a given subject. Logistic regressions 

were performed using Equation 3.1 where YP is the probability of observing an event, b0 is 

the inherent tendency to observe that event irrespective any other variables, bn is the 

weighting coefficient and xn is the regressor: 

 

𝒀𝑷 =  
𝟏

𝟏 + 𝒆−(𝒃𝟎+𝒃𝟏𝒙𝟏+𝒃𝟐𝒙𝟐+⋯+𝒃𝒏𝒙𝒏)
 

 We characterised subject choice behaviour using logistic regression. We regressed 

the probability of left choice against the left-right value difference (collapsed across attribute 

types) for both Overtrained and Novel trials within the same regression. Doing this allowed 

us to compare the size of the beta coefficients for Overtrained and Novel trials using a linear 

hypothesis test. We also used the same regression model described above to test the effect 

of value on the probability of making a left first saccade.  
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Equation 3.2 

In order to test whether subjects became more optimal at making a saccade toward 

the more valuable choice stimulus over the course of the session, we used a modified 

regression model which used saccade direction in the first and last 50 Overtrained and 

Novel trials as the dependent variable. The independent variables were as follows: left-right 

value difference in the first 50 Overtrained trials, left-right value difference in the first 50 

Novel trials, left-right value difference in the last 50 Overtrained trials, left-right value 

difference in the last 50 Novel trials, and two binary terms which coded for Overtrained and 

Novel trials respectively. 

 To assess whether picture novelty influenced subject choice behaviour in Mixed 

trials, we used a regression model where the dependent variable was whether or not the 

novel choice stimulus was selected, and this was regressed against the value of the novel 

stimulus and the value of the overtrained stimulus, as well as a constant term which 

described the subjects’ bias to choose novel stimuli irrespective of value. Finally, changing 

the dependent variable to the probability of saccading to a novel stimulus allowed us to test 

the effect of novelty on initial saccade behaviour. 

 We also used a logistic regression to test whether value influenced the probability of 

subjects making more than one saccade in a trial. The probability of making two saccades 

was the dependent variable and the independent variables were the value of the fixated 

stimulus and the non-fixated stimulus, as well as a constant term. It should be noted that for 

simplicity this regression was not split by trial type.  

All linear regressions were performed using Equation 3.2 where Y is the dependant 

variable, b0 is the constant term and Xn are the regressor and are weighted by coefficients 

bn: 

 

𝒀 = 𝒃𝟎 +  𝒃𝟏𝑿𝟏 + 𝒃𝟐𝑿𝟐 + ⋯ +  𝒃𝒏𝑿𝒏 
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 We tested the effect of value on how long subjects fixated a stimulus (dwell time) 

using linear regression. The dependent variable was dwell time (normalised within each 

session) and the independent variables were the value of the fixated stimulus in Novel trials, 

the value of the fixated stimulus in Overtrained trials, the value of the non-fixated stimulus on 

Novel trials, the value of the non-fixated stimulus on Overtrained trials and a constant term. 

 In order to test whether our ‘Covert’ or ‘Overt’ models of left choice better explained 

subject choice behaviour, we computed model evidence for each model on a session by 

session basis. We achieved this by first estimating model parameters by performing a 

logistic regression of left choice using first the ‘Covert’ model which used the actual left and 

right stimulus values as input, then estimating model parameters of an ‘Overt’ model which 

contained identical regressors with the exception that whenever a stimulus was not overtly 

fixated, its value in the ‘Overt’ model for that trial was set to 3 (i.e. average value). Having 

estimated parameters for both models we then calculated the log likelihood (LL) for each 

model for each session. We then performed a binomial test in order to test whether one of 

the models consistently gave higher log likelihood estimates than the other model. 
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Results 

 

Two macaque monkeys (subjects M and F) were trained to perform a free response 

value based decision making task in which they selected between two Overtrained or Novel 

stimuli, of differing value (see Methods, Figure 3.1B-D). Prior to performing the free 

response task, they completed 100 ‘conditioning trials’ in which they learnt the reward 

probability and reward magnitude predicted by novel stimuli (see Methods). Subject M 

performed 14 sessions completing 9518 choice trials in total, while Subject F performed 20 

sessions completing a total of 11593 choice trials. Trials were pseudorandomly selected 

from one of three conditions; Novel, Overtrained or Mixed (Figure 3.1D). All regression 

analyses were performed using data pooled across all sessions to avoid perfect separation. 

In this first section of results we will only consider behavioural differences between Novel 

and Overtrained trials. Here we collapsed across trials where stimuli reflected reward 

probability and reward magnitude, as both trial types showed similar results. A breakdown of 

subject choice optimality for each attribute and trial condition is shown in Table 3.1 

Trial Condition Subject M Subject F 

Novel Magnitude 91.6% (4.5) 86.1% (10.8) 

Novel Probability 87.2% (3.9) 81.8% (8.5) 

Novel Overall 89.4% (3.2) 83.9% (7.9) 

Overtrained Magnitude 97.1% (1.5) 96.6% (2.9) 

Overtrained Probability 96.2% (2.6) 93.7% (3.7) 

Overtrained Overall 96.6% (1.7) 95.1% (2.4) 

Mixed Magnitude 92.4% (3.1) 89.5% (4.9) 

Mixed Probability 90.5% (4.4) 87.1% (4.7) 

Mixed Overall 91.4% (2.8) 88.3% (3.9) 

 
Table 3.1: Condition trial optimality. A table showing the subjects’ choice optimality (i.e. 
choosing the most valuable stimulus) in different trial conditions. Numbers in brackets 
represent standard errors of the mean (SEM). 
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Choice Behaviour 

Subjects were very good at selecting the more valuable option (Table 3.1, Figure 

3.2). A logistic regression of choice left against left-right value difference found a strong 

value based effect (M: T(Novel)=31.46, T(Overtrained)=27.00, p(Novel)<3x10-217, p(Overtrained)<2x10-160, 

F: T(Novel)=34.53, T(Overtrained)=32.18, p(Novel)<3x10-261, p(Overtrained)<4x10-227). Notably, their 

choices were more sensitive to value in Overtrained trials than in Novel trials (linear 

hypothesis test comparing parameter estimates for Novel vs. Overtrained stimuli, M: p<8x10-

29, F: p<9.2x10-57; difference in slopes in Figure 3.2). However, both subjects showed a 

significant increase in optimality across the session in Novel trials (Pearson’s correlation 

coefficient, M: r = 0.178, p<0.04, F:  r = 0.245, p<6x10-4) but not Overtrained trials 

(Pearson’s correlation coefficient, M: r = 0.039, p>0.5, F:  r = -0.011, p>0.5). This implies that 

subjects continued to learn the value of Novel stimuli throughout the task. 

 

Figure 3.2: Psychometric function of final choice. The probability of choosing the left option 

as a function of the value difference between the left and right stimuli collapsed across all 

Novel (red) and Overtrained (blue) trials. 

 

Value influences the first saccade direction, within 170ms of stimulus onset 

 An important feature of this task was that at cue presentation, subjects were free to 

saccade around the screen and make their choice (via joystick response) at any time within 
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5s of cue presentation. We therefore asked to what degree subjects’ saccades were 

influenced by the value of pictures presented, and to what extent they were correlated with 

subjects’ eventual choice. Importantly, subjects would almost always make a saccade to a 

stimulus prior to responding with the joystick (M and F: >99%) and their first saccades were 

very fast (Figure 3.3, median; M: 138ms, F: 170ms).  

 
Figure 3.3: Distribution of first saccade latencies. A histogram of first saccade latencies for 
each subject showing the median (solid line, M: 138ms, F: 170ms) and the 95% confidence 
interval around the mean (dashed lines). 

 

Surprisingly (given this latency), the direction of this fast first saccade was not 

random but instead was strongly influenced by the value of the presented pictures. A logistic 

regression of saccade direction against left-right value difference found that the direction of 

the first saccades in both trial types were significantly more likely to be towards the more 

valuable stimulus (M: T(Novel)=17.90, T(Overtrained)=30.96, p(Novel)<2x10-71, p(Overtrained)<2x10-210, F: 

T(Novel)=16.77, T(Overtrained)=29.40, p(Novel)<5x10-63, p(Overtrained)<6x10-190) (Figure 3.4). As with 

subjects’ eventual joystick responses (choices), this effect was stronger in Overtrained trials 

than Novel trials (linear hypothesis test comparing parameter estimates for Novel vs. 

Overtrained stimuli, M: p<2x10-61, F: p<2x10-33). 
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Figure 3.4: Psychometric function of first saccade direction. The probability of saccading to 
the left stimulus as a function of the value difference between the left and right stimuli 
collapsed across all Novel (red) and Overtrained (blue) trials. Note that Subject F showed a 
degree of left saccade bias which was particularly strong in Novel trials. 

 

These results imply that subjects were carrying out reliable covert value comparisons 

within 170ms of stimulus onset that guided initial saccade direction. It also suggested that 

subjects’ optimality in this covert value comparison varied depending on how familiar 

subjects were with the stimuli. To further explore this latter finding, we repeated the logistic 

regression using only the first 50 Novel trials of each session and compared the results to a 

regression using only the last 50 Novel trials of each session. This analysis showed that the 

influence of value on saccade direction was significantly greater in the last 50 Novel trials 

than the first 50 (linear hypothesis test of parameter estimates for value difference in first vs. 

last 50 Novel trials, M: p<2x10-4, F: p<3x10-4) (inset Figure 3.5). Furthermore, both subjects 

showed a positive correlation between the probability of saccading to the most valuable 

stimulus in Novel trials and session decile number (Person’s correlation coefficient, M: r = 

0.291, p<6x10-4, F:  r = 0.257, p<3x10-4) (Figure 3.5). The same analysis on Overtrained 

trials found no significant differences between the start and end of the session (linear 

hypothesis test of parameter estimates of first and last 50 Overtrained trials and Pearson’s 

correlation coefficient, p>0.05). From these results we can conclude that initial saccades can 
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be strongly value driven using covert attentional comparisons that span very short periods of 

time, and that the strength of this effect increases with learning the value of the stimuli. 

 

Figure 3.5: Probability of optimal first saccades across the session. Each dot is the mean 
probability of saccading to the most valuable stimulus across sessions for individual decile 
for Novel (red) and Overtrained (blue) trials. Vertical lines show the SEM for each decile. 
Relevantly coloured asterisks denote significant Pearson’s correlation coefficients. Inset: 
Psychometric functions for left saccade probability the first 50 (light) and last 50 (dark) Novel 
trials collapsed across sessions. 

 

With clear influences of value on both initial saccade direction and eventual choice 

behaviour, a natural question to ask is whether a single valuation and comparison system 

drives both of these behaviours or whether two separate systems are used. Figure 3.6 

depicts two possible evidence accumulation systems which consider information about both 

stimulus novelty and saccade direction in the final choice mechanism.   
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Figure 3.6: Empirical models of potential saccadic and motor evidence accumulation 
systems. The Common Evidence Accumulation Model (top) predicts that both visual input 
and novelty information enter a common evidence accumulator which has two evidence 
thresholds; a lower saccadic threshold (blue dashed line) and a higher final decision 
threshold (pink dashed line). Once each threshold is reached then relevant saccade and 
motor plans can be enacted respectively. The Separated Evidence Accumulation Model 
(bottom) predicts that there are separate saccadic and final motor choice evidence 
accumulation systems which both receive the same visual input but only the saccadic 
system receives novelty information. 
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To explore the relationship between saccadic and overt choice behaviour, we first 

calculated the proportion of optimal choices across the experiment (height of bars in Figure 

3.7). We then asked within these optimal choices, what was the proportion of optimal vs non-

optimal initial saccades (shaded area in Figure 3.7 bars)? We reasoned that if a single 

valuation system was employed for both behaviours, the ratio between these two measures 

would stay constant across the session. However, in both subjects we observed the opposite 

result (Figure 3.7, black diamonds). The optimal saccade:optimal choice ratio increased 

significantly across the experiment (Pearson’s correlation coefficient, M: r = 0.32, p<0.0002, 

F: r = 0.16, p<0.02).  

 
Figure 3.7: The ratio of optimal choices and optimal saccades. The total bar size indicates 
overall choice optimality per decile in Novel trials. The red sub-bar indicates the proportion of 
optimal choices that were associated with optimal saccades. Black diamonds indicate the 
ratio of optimal saccades to choice optimality. Asterisks indicate significant correlations 
between the ratio and decile number. 

 

This result shows that the ability to direct saccades toward more valuable information 

takes longer to learn relative to overt choice behaviour. However, another way of viewing 

these effects is to focus on the first decile of a session; here subjects are effectively random 

in their direction of the first saccade, yet despite only 10+ exposures to each stimulus, both 

subjects choose the better stimulus close to 80% of the time, with little further improvement 

across the session. In other words, the very fast (~150ms) covert attentional system is slow 
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to learn to bias saccades toward the optimal stimulus and is still learning in this regard by the 

end of the session (Novel versus Overtrained performance in Figure 3.5). In contrast, 

subjects’ overt choices exhibited little evidence of learning across deciles, implying our 

secondary conditioning protocol (Figure 3.1A) was effective in assigning value to stimuli. 

Given the large differences in optimal saccadic versus choice performance, we infer that 

valuation in these two systems is at least partially dissociable, meaning that optimal choice 

performance can recover from a suboptimal saccade via further information gathering 

mechanisms (see below). Notably, when the analysis was repeated on Overtrained trials 

(where no learning is occurring across the experiment) no significant correlation was found 

(Pearson’s correlation coefficient, p>0.05). 

 

Subsequent saccades reflect the value of non-fixated stimuli 

 Initial saccades tended to be towards more valuable pictures, implying a covert 

comparison process driving saccadic behaviour. In light of this putative process, we asked 

whether it was necessary to overtly attend to both stimuli in order to make an optimal choice. 

There were many trials in which subjects did not saccade to both stimuli: subject M fixated 

both stimuli on 56.2% of trials, and subject F did so on only 33.2% of trials. Both subjects 

tended to view more stimuli on Novel than Overtrained trials (Chi2 test, M: Chi = 108.1, 

p<0.01, F: Chi = 133.4, p<0.01).   

We next asked whether the propensity to make a second saccade was influenced by 

the value of the non-fixated stimulus.  We found the probability of making a second saccade 

(collapsed over trial types) was negatively influenced by the value of the fixated stimulus, but 

crucially, also positively influenced by the value of the non-fixated stimulus (logistic 

regression, M: T(Fixated)=-14.91, T(Non-fixated)=23.57, p(Fixated)<3x10-50, p(Non-fixated)<7.5x10-123,F: 

T(Fixated)=-35.95, T(Non-fixated)=32.13, p(Fixated)<5x10-283, p(Non-fixated)<2x10-226). In other words, both 
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stimuli had significant but opposing influences on whether a second saccade was generated 

(towards the non-fixated stimulus) before a choice was made. 

Perhaps unsurprising, both subjects were significantly more likely to perform a 

second saccade when they initially fixated the less valuable of the two stimuli (binomial test, 

M: p<1x10-15, F: p<1x10-15). This could explain why subjects were more likely to make two 

saccades in Novel trials since they were also more likely to make suboptimal initial 

saccades. Subjects tended to make two saccades when they made errors in their initial 

covert valuation. But rather than execute a suboptimal choice following the suboptimal initial 

saccade, subjects could covertly attend the non-fixated stimulus peri- or post-first saccade, 

and then make a second saccade (if necessary) before making a choice. Analysis of final 

choice reaction time showed that subjects were also significantly slower to respond on two 

saccade trials (One-way ANOVA, M: F stat=750.92, p<1x10-158, F: F stat=280.16, p<1x10-61) 

which could be explained by subjects requiring more time to overcome erroneous initial 

evidence accumulation (reflected by suboptimal saccades) in order to maintain final choice 

optimality.  

In addition, on two saccade trials, a linear regression onto first stimulus dwell time 

revealed a positive influence of fixated stimulus value and a negative influence of non-fixated 

stimulus value in both Overtrained and Novel trials (M: all unsigned T statistics>9.73, all p 

values<2x10-22, F: all unsigned T statistics>7.00, all p values<3x10-12) (Figure 3.8). Further, 

the value of the non-fixated stimulus had a significantly greater influence on dwell time than 

that of the fixated stimulus (linear hypothesis test comparing parameter estimates for fixated 

and non-fixated stimuli, M: p(Novel)<2x10-30, p(Overtrained)<2x10-62, F: p(Novel)<4x10-31, 

p(Overtrained)<2x10-34). It is only possible for non-fixated stimulus value to influence first fixation 

dwell time if subjects covertly processed the value of the non-fixated stimulus. This evidence 

coupled with the influence of value on first saccade optimality, is strongly supportive of the 

idea that direct fixation of stimuli is not necessary for evidence accumulation; covert 

attentional processes are fast and ongoing throughout the decision process. 
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Figure 3.8: A regression of value on first stimulus dwell time on two saccade trials. A linear 
regression of the normalised first stimulus dwell time against fixated stimulus value in Novel 
trials (NFix), fixated stimulus value in Overtrained trials (OFix), non-fixated stimulus value in 
Novel trials (NNon-fix) and non-fixated stimulus value in Overtrained trials (ONon-fix). Asterisks 
indicate significantly different coefficients between trial types based on a linear hypothesis 
test (see text). 

 

 Another hypothesis for how subjects may solve this task is that their saccades may 

be driven by covert attentional processes, but that evidence accumulation for choices varies 

only after a given stimulus is fixated. To test whether this hypothesis better explains choice 

behaviour than covert attention, we directly compared the fits of two different logistic 

regression models to subjects’ choices. In the first (‘Covert’ attention) model we used the 

actual left and right stimulus values for each trial to predict left choice irrespective of whether 

both stimuli were fixated. The second (‘Overt’ attention) model, was identical to the ‘Covert’ 

model with the exception that on any trial where the subject did not saccade to a given 

stimulus, that stimulus value was replaced with the average stimulus value (i.e. a rank of 3 

out of a range of 1-5). We performed this analysis specifically on Overtrained trials in order 

to maximize effects of value on saccade behaviour and to avoid the potential confound of 

learning affecting choice behaviour. We then computed the model evidence for the two 

models for each session.  Across sessions model evidence was greater for the ‘Covert’ 

model compared to the ‘Overt’ model (M: 14/14 sessions, binomial test, p<0.007, F: 15/20 

sessions, binomial test, p<0.03). This result suggests that choice behaviour was better 
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explained by assuming that subjects were using covert information in order to make choices, 

rather than only accumulating evidence based on stimuli that had been overtly fixated. The 

covertly attended value of stimuli thus strongly influences both the probability of saccading 

towards those stimuli, and the probability of choosing them. 

  

Saccades, but not choices, show a novelty bonus 

 Finally, we examined Mixed trials, where one Overtrained stimulus was compared 

against one Novel stimulus. Here, a key difference in behaviour was observed to 

Overtrained-only or Novel-only trials, namely that subjects preferred to make initial saccades 

toward the novel stimulus (Figure 3.9A). A logistic regression of the probability of the first 

saccade being directed toward the novel stimulus revealed a strong effect of both novel and 

overtrained stimulus value on saccade direction (M: T(Novel)=25.49, T(Overtrained)=-26.52, 

p(Novel)<3x10-143, p(Overtrained)<6x10-155, F: T(Novel)=11.61, T(Overtrained)=-16.00, p(Novel)< 4x10-31, 

p(Overtrained)< 2x10-57) (Figure 3.9B). The overtrained stimulus value had a significantly greater 

influence on initial saccades relative to novel stimulus value (linear hypothesis test on the 

parameter estimates for overtrained and novel value, M: p<5x10-30, F: p<2x10-4). Strikingly, 

however, this value based effect was diluted by a strong bias towards saccading to the novel 

stimulus first, irrespective of its value (logistic regression, M: T=17.35, p<2x10-67, F: T=9.23, 

p<3x10-20) (light red bar Figure 3.9B). This ‘novelty bonus’ shows that subjects prefer to 

saccade to novel pictures. If this is the case, do they also prefer to choose novel pictures? 

We found that they did not; a logistic regression of probability of choosing the novel stimulus 

showed that subjects’ choices were both empirically more sensitive to value than subjects’ 

initial saccades, and that the relative novelty bias was negative (i.e. they had a bias to 

choose Overtrained stimuli) (inset Figure 3.9B). Furthermore, examining subjects’ choices 

throughout the session revealed a small bias to choose the overtrained stimulus in the first 

50 Mixed trials of each session (binomial test, M: p<0.004, F: p<2x10-4) and no bias at all by  
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Figure 3.9: Influences of saccade and choice behaviour in mixed trials. (A) Heat maps of the 
probability of saccading to the novel stimulus in Mixed trials as a function of the value of the 
novel and overtrained stimulus. We never presented Mixed stimuli of equal value, hence the 
blue region along the diagonal. (B) Beta coefficients for a regression of novel and 
overtrained stimulus value predicting saccades towards the novel stimulus. Asterisks 
indicate coefficients that are significantly different in terms of unsigned magnitude. Inset: The 
same regression performed on the probability of choosing the novel stimulus at the final 
choice. (C) The mean probability of choosing the novel stimulus across the first and last 50 
trials of a session, collapsed across sessions. Inset: The probability of the initial saccade 
being toward the novel stimulus across the first and last 50 trials of a session, collapsed 
across sessions. Asterisks indicate groups that are significantly different from chance. 
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the last 50 trials (binomial test, p>0.05) (Figure 3.9C). In contrast, an equivalent analysis of 

initial saccade direction revealed a significant bias towards the novel stimulus in both the first 

and last 50 Mixed trial of a session (Figure 5.3C, inset). This dissociation between saccadic 

and final choice behaviour provides further evidence that the two processes are separable 

from one another (see Figure 3.6).  

Finally, both subjects were observed to improve choice optimality across the session 

in Mixed trials (Pearson’s correlation coefficient, M: r = 0.249, p<0.004, F:  r = 0.205, 

p<0.004). Yet surprisingly, subjects showed no decrease in the probability of initial saccades 

being toward the novel stimulus (novelty bias), despite the novel stimuli becoming 

increasingly more familiar as the session advanced (Pearson’s correlation coefficient, M: r = 

-0.106, p>0.2, F:  r = 0.117, p>0.09). This suggests that the subjects’ saccadic novelty bonus 

reflects more of a categorical distinction between the novel and overtrained stimuli on Mixed 

trials, rather than the relative novelty between these stimuli. 

 

 

.
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Discussion 

 
In this chapter we have shown that saccadic eye movements and motor responses of 

primate subjects during value guided decision making are heavily influenced by value and 

novelty through covert attentional processes.  

 

Covert Attention Influences Saccades 

This finding that our subjects’ initial saccades tended to be directed towards move 

valuable stimuli agrees with the findings of Yasuda et al. (2012), who also found this effect 

as well as a strong learning effect which plateaued after approximately 300 trials spread 

across 5 different sessions. Importantly, their task did not require subjects to perform any 

action in order to obtain rewarded outcomes, but instead just allowed them to saccade freely 

around the screen. The current study suggests that given a smaller set of stimuli (but a 

larger ‘value space’) value-driven saccades can be deployed within as few as 15 initial 

exposures to the stimulus-outcome relationship. Results from this study and human saccade 

distractor studies all feed into the idea that non-physical stimulus properties modulate covert 

attention, which in turn drives initial saccade behaviour. The latency of this unconstrained 

value guided saccade in the current study was <170ms, the first report of such value-guided 

latencies that we are aware of in the primate literature.  

Physical properties of stimuli can attract overt attention (Nothdurft, 2002, Theeuwes, 

1992, Itti and Koch, 2001). In this study, we controlled for luminance but not for other 

properties that may influence visual salience such as contrast or colour. Nevertheless, the 

stimulus to value assignment was random and although it is possible that there may be 

some weak relationship between value and visual salience for particular stimulus sets, there 
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would be no systematic relationship between salience and value across the experiment, 

where subjects learned at least 14 different novel stimulus sets. 

 

Covert Attention During Decision Making 

 A particularly appealing hypothesis for why saccadic behaviour is not random is that 

by using covert attention to guide our eyes we can orient our overt attention to relevant 

stimuli in our environment (Gottlieb, 2012, Gottlieb et al., 2014, Anderson, 2013). The results 

of the current study significantly extend this hypothesis by showing multiple influences of 

covert attention on saccadic and choice behaviour. Signatures of covert attention can be 

seen in the probability of optimal initial saccades, the first stimulus dwell time, the probability 

of subsequent saccades and at final choice. This suggests that subjects are likely to use 

covert attention to accumulate evidence during the entire decision making process. Indeed, 

the evidence in the current study suggests that in this task, subjects solve the decision 

largely (if not solely) through covert attention.  

Given the above, if overt saccades to stimuli are not necessary for evidence 

accumulation, why are they present at all? We postulate that the use of covert attention to 

bias overt attention is an inherent property of the attentional system; covert attention may be 

optimal for distinguishing relatively simple features or categorizing stimuli very quickly, 

whereas in more complex naturalistic environments with complex visual features, direct 

fixation of stimuli may be critical for identifying stimulus features or contextualizing stimuli 

within the environment. The fact that monkeys exhibit markers of covert attention is 

unsurprising given neurons are modulated by the value of peripheral cues even when the 

subject is required to maintain central fixation, and thus well before an overt saccade to a 

stimulus is initiated (Kennerley et al., 2009, Padoa-Schioppa and Assad, 2006, Louie et al., 

2011).  
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Such covert evidence accumulation processes are incompatible with the basic 

assumption of attention drift diffusion models (aDDMs), which is that subjects only use overt 

attention to bias the accumulation of evidence (Krajbich et al., 2010, Krajbich et al., 2012). In 

tasks which test these models, subjects show clear deliberative behaviour, where they make 

multiple saccades between stimuli (Krajbich et al., 2010, Krajbich et al., 2012, Krajbich and 

Rangel, 2011, Towal et al., 2013). The fact that our subjects do not regularly overtly attend 

to both stimuli indicates that there is very little deliberation about their choices. There are 

many reasons for this apparent dissociation between primate and human behaviour. 

Perhaps the most obvious reason is that humans in aDDM studies have very little exposure 

to a large set of stimuli (or the task) prior to data collection, whereas in the current study, 

even for novel stimuli, the subjects had approximately 15 exposures before data collection, 

and subjects knew the task design very well. As shown in this study and previous studies, 

subjects become better able to use covert attention with increased stimulus exposure 

(Yasuda et al., 2012), and therefore require diminishing amounts of overt attention to 

perform the task. Another reason why overt attention may be less important in our task 

relative to aDDM studies is that in aDDM studies, subjects are generally presented with 

multi-attribute stimuli (e.g., a picture of a candy bar) and with choices that are relatively 

similar in subjective value. In contrast, our stimuli had a clearly defined value based on a 

single attribute, making choices easier overall and potentially removing the need for long 

deliberation. Many other differences in human and primate task designs may also contribute 

to the behavioural differences we observe, though our results suggest future aDDMs models 

should incorporate covert attentional processes. 

 

Circuits for Saccadic and Motor Value Comparison 

Although further insight into whether saccadic and motor choice is driven by the 

same neural circuits may be achieved by neurophysiological investigation, our current 
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results allow us to make some inferences about this question. Firstly, the speed of saccadic 

behaviour implies the engagement of brain circuits which receive visual information quickly. 

This circuit seems unlikely to be the commonly described decision circuit involving prefrontal 

cortex because, although rarely explicitly described in the literature, many studies seem to 

show a relatively slow encoding of value in prefrontal neurons, on the order of 200-500ms 

post- stimulus onset (based upon single cell examples and population analysis from 

Kennerley et al. (2009), Hayden and Platt (2010), Strait et al. (2014), Roesch and Olson 

(2003)). 

Instead, the subcortical saccadic system - including the Caudate, SNpr and SC - is a 

strong candidate circuit for these covert attentional processes. Firstly, this system lies 

considerably closer to visual system than frontal circuits (Munoz, 2002), and regions directly 

connected to this circuit such as visual cortex respond to visual information well within 

100ms of stimulus onset (Schmolesky et al., 1998, Thorpe and Fabre-Thorpe, 2001). 

Secondly, Substantia Nigra pars Reticulata and the head of the caudate (both critical 

elements in saccadic control circuitry) have been shown to be capable to discriminate the 

value of stimuli with a relatively short latency (Kim and Hikosaka, 2013, Yasuda et al., 2012, 

Hikosaka and Wurtz, 1985, Kori et al., 1995). Given the SC, a main generator of saccades, 

receives visual input from both the retina and visual cortex, in addition to projections from 

other eye-related areas such as lateral intraparietal cortex (LIP), frontal eye field (FEF) and 

SNpr (Hikosaka et al., 2000), this region is ideally positioned to generate fast saccades 

based on simply visual features, as well as slower saccades based on more complex visual 

information including stimulus-reward associations.  

However, saccade latency in itself is not final proof that saccadic and motor evidence 

accumulation are separate, because one could envisage a single drift process with two 

separate evidence bounds, one high (motor choice) and one low (saccadic choice, Figure 

3.6). In this case one would expect to see fast, but potentially suboptimal saccades, yet 

because further evidence is required to reach the choice bound, final choices would be 
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slower and more accurate, in agreement with our results. However, although the concept of 

evidence bounds explain behavioural decision parameters well (Ratcliff, 1976, Ratcliff and 

McKoon, 2008), even in regions such as FEF and LIP which show evidence accumulation 

signals, the firing rate threshold for movement initiation appears static even when the speed-

accuracy trade-off is manipulated (Hanks et al., 2014, Heitz and Schall, 2012). This suggests 

that the drift-diffusion process of evidence accumulation may not map directly to neuronal 

circuits, thereby making a single accumulator with two bounds less physiologically plausible. 

 

Novelty Bonus 

 Our results show a strong saccadic bias towards overtly attending to novel stimuli in 

Mixed trials. Novel stimuli are known to capture both human and monkey attention (Johnston 

et al., 1990, Wilson and Goldman-Rakic, 1994, Goh et al., 2009, Foley et al., 2014). Studies 

have also found that midbrain dopaminergic neurons respond to novel stimuli (Horvitz et al., 

1997) and that dopamine manipulation can perturb novelty responses (Costa et al., 2014). In 

attempting to reconcile this with dopamine’s role in reinforcement learning, Kakade and 

Dayan put forward the idea of novelty bonuses, in which novelty itself can have its own 

inherent value in order to promote exploratory behaviour and reduce uncertainty. Although 

this idea is primarily oriented toward choices, it may be possible to similar inferences about 

saccades. Interestingly, our subjects only seem to assign an inherent value to saccading to 

novel stimuli, not to choosing them. Not only does this provide our clearest evidence for the 

functional separation between saccadic and motor evidence accumulation, it also begs the 

question what do subjects gain from this? One explanation could be that subjects are 

relatively uncertain about novel stimuli due to a lack of experience, therefore subjects could 

reduce uncertainty by directing overt saccades to novel stimuli (Dayan et al., 2000). 

However, if this is true, the subjects are only reducing identity uncertainty, because subjects 

rarely go on to subsequently choose the novel stimulus if it is the least valuable choice. 



90 
 

Similarly, it may be the case that subjects cannot easily discriminate the visual properties 

(and therefore their reward assignment) of novel stimuli in our task without direct foveation. If 

so, exhibiting a preference for fixating novel stimuli may be an optimal strategy for reward-

based visual discrimination. As such, novel stimuli may be more valuable in terms of the 

information about the world that they yield. However, in contrast to the theory which 

hypothesises a rapid extinction of the novelty bonus with repeated exposure (Kakade and 

Dayan, 2002), we found the novelty bonus effects were consistent across the session in 

Mixed trials. This suggests that at least within our task which required value-based choices 

between novel versus overtrained stimuli, our subjects did not experience the novel stimuli 

sufficiently enough to allow covert attentional mechanisms to direct saccades to the optimal, 

rather than novel, stimulus. 

 A final potential explanation for the observed saccadic novelty bias is that the overt 

attentional system is biased towards salient objects in the environment (Gottlieb et al., 

2014).  If this concept holds true then things that are relatively novel may therefore be more 

salient to subjects when compared to relatively over exposed objects (even if these are of 

high value). In support of this idea, recent neurophysiological recordings from LIP (an area 

known to directly influence saccades) have implied that neuronal responses correlate with 

stimulus salience rather than just value (Leathers and Olson, 2012). Furthermore, LIP 

neurons respond to novelty and these responses do not diminish over time (Foley et al., 

2014). It is unclear whether LIP could play such a role in the current study given the 

extremely fast latencies of the saccades, though LIP latencies are typically faster than PFC 

latencies. Finally, the fact that the novelty bonus was only present in saccade behaviour and 

was actually negative in choice behaviour is perhaps the strongest evidence put forward in 

this chapter that the decision circuit governing evidence accumulation to bias saccades is 

separate from the evidence accumulation circuit governing final choice. 

 In conclusion, in this chapter we have presented behavioural findings from a simple 

primate free saccade decision making study which demonstrates that subjects use covert 
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attention to guide both overt attention and choice. The use of covert attention increases with 

increasing familiarity with presented stimuli. However, relative novelty holds a strong 

influence on overt attention even though it does not bias choice. Taken as a whole, these 

results imply the employment of at least partially separable evidence accumulation systems 

for decision-making. The first is a fast, moderately accurate process which is biased by 

novelty and is responsible for orienting attention towards more informative stimuli. The 

second is a slower, more accurate process, which governs the final motor response of 

subjects based on the most valuable information at hand. 
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Chapter 4: Information Gathering 

Behaviour in Multi-attribute 

Decision Making 

 
 

Introduction 
  

 In the previous chapter we showed that the saccadic system exhibits behavioural 

reflections of learning the value of stimuli in the environment and biasing visual attention 

towards more valuable stimuli within relatively few experiences of outcomes. At the same 

time, subjects showed the ability to make choices using information gathered by covert 

attention despite being free to use overt attention if they should so choose. One explanation 

of the latter finding is that the task was very simple and therefore there was very little 

cognitive demand associated with using covert attention. Therefore an obvious follow up 

question is: are these covert information gathering effects still present when the task or 

environment gets more complicated? This is one of several questions that we will try to 

examine in the following chapter. We will also examine how information gathering behaviour 

is influenced by task parameters and make inferences about the cognitive processes which 

govern information gathering using the behavioural results of an information gathering 

paradigm. Firstly we will show that covert attention still plays a large role in decision making 

even in more complex tasks. Secondly, we will demonstrate that by changing the way in 

which information is presented to subjects we can influence decision making behaviour. 

Finally, we will show that subjects choose both the amount of information to gather as well 

as the manner in which to gather it based upon the current state of evidence associated with 

a decision. 
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Gathering information is an important step to making optimal decisions (Furl and 

Averbeck, 2011). But what drives us to gather information? Some have argued that 

information gathering is driven by a need to reduce uncertainty about the environment, 

particularly when faced with novel stimuli (Feldman and Friston, 2010, Kakade and Dayan, 

2002). Others have suggested that it is a process for maximising average reward while 

minimising average effort (Furl and Averbeck, 2011). These ideas are by no means mutually 

exclusive but outright evidence in support of either remains elusive. 

 A simple extension of the latter idea is that subjects bias their attention towards 

information (e.g., stimuli) in the environment which they believe will inform future choice; 

they attend to stimuli which have salience and value properties which are pertinent to the 

decision at hand (Gottlieb et al., 2014). Evidence for this idea comes from many levels. 

Firstly, neurons in the saccadic basal ganglia system (namely Caudate nucleus and 

Substantia Nigra pars Reticulata) encode and retain the value of stimuli over many days 

(Yasuda et al., 2012, Kim and Hikosaka, 2013). These circuits are known to be critical for the 

control of gaze and therefore by extension overt attention (Gottlieb et al., 2014, Yamamoto 

et al., 2012, Hikosaka et al., 2006). Furthermore, regions such as Lateral Intraparietal Area 

(LIP), which are known to directly influence saccades, have neuronal response patterns to 

stimuli consistent with the encoding of salience (Gottlieb et al., 2014, Leathers and Olson, 

2012), and therefore may provide an information signal to saccadic initiators. The presence 

of these computations within brain regions provides a plausible pathway by which attention 

may be guided towards stimuli that are perceived to be important in the environment. 

Furthermore, information can have its own value which may be represented in OFC neurons 

(Blanchard et al., 2015). Importantly, this coding appears to be orthogonal to value coding in 

OFC implying (as expected) that information value is not integrated with decision value when 

choices are made (Blanchard et al., 2015). This is to be expected if one assumes that 

decisions about what information to gather are different from decisions about what to 

eventually choose, as our behavioural data in Chapter 3 might indicate. 
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 One relatively unexplored area of behavioural neuroscience is the question of how 

value information is compared in complex environments. In most decision making studies 

the way in which information is gathered during decision making is irrelevant because 

decision are typically made within a single attribute or multiple attributes are merged into a 

single stimulus (for example Kennerley et al. (2009), Kim et al. (2008), Strait et al. (2014), 

Padoa-Schioppa and Assad (2006)). However, in a natural environment decisions are often 

made between many options which may all have multiple attributes associated with them, 

making the problem of information gathering a pertinent one. The domain of psychology has 

been studying this problem for many decades. When presented with complex multi-attribute 

and multi-alternative choices, human information seeking behaviour is well characterised. As 

the number of attributes and alternatives increase, subjects unsurprisingly tend to gather 

increasingly less of the total available information (Payne, 1976, Cook and Swain, 1993, 

Lohse and Johnson, 1996). Increasing the number of attributes also increases the variability 

in choices among subjects, decreases the optimality of choices and yet increases the 

decision makers confidence in their decision (Slovic and Lichtenstein, 1971, Payne, 1976).  

It has been hypothesised that this task complexity effect may arise from subjects switching 

from linear decision rules to choice heuristics in order to reduce cognitive demand during 

complex decisions (Payne, 1976).  

Furthermore, as task complexity increases, subjects move away from performing 

‘within option’ information comparison towards ‘within attribute’ comparison (Sundström, 

1987). The purpose of these ‘within attribute’ comparisons is to ‘screen’ the large 

dimensional option space based on the attribute(s) of the highest importance, thereby 

reducing the number of options – and the total amount of information - needing 

consideration, thus avoiding the evaluation and integration of large volumes of information 

(Weenig and Maarleveld, 2002, Kerstholt, 1992). When time constraints are added to these 

multi-attribute, multi-alternative problems, this phenomenon of ‘screening’ is observed to 
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increase (Weenig and Maarleveld, 2002). Mathematical descriptions of choice processes 

governed by attribute screening have also been developed (Tversky, 1972).  

However, shifting from ‘within option’ to ‘within attribute’ information comparison may 

not be limited to decision contexts having a large attribute or option space. Arieli (2011) 

presented human subjects with a binary multi-attribute decision making task where they had 

to integrate explicit probability and magnitude information in order to choose the option with 

the highest overall value. When the probabilities and magnitudes were relatively simple (e.g. 

$3000 at 15% against $4000 at 11%) subjects preferred to make ‘within option 

comparisons’. However, when the values became very complex (e.g. $637 at 64.9% versus 

$549 at 73.2%) subjects shifted towards ‘within attribute’ comparisons. Therefore the body of 

the psychology research suggests that ‘within attribute’ information gathering arises from a 

need to reduce computational load when decisions become difficult, such as when option 

values are very similar, or with increasing option or attribute space of the decision context.   

The neural processes that drive information gathering behaviour remain poorly 

understood. A study by Fellows (2006) provides a glimpse into how brain regions support 

information gathering behaviour. Fellows took a group of vmPFC lesion patients, a group of 

LPFC lesions patients and a healthy control group and observed their information gathering 

behaviour during multi-attribute, multi-option decision-making. It was found that although 

controls and LPFC lesion patients adopted a ‘within attribute’ comparison strategy, vmPFC 

lesion patients instead used a ‘within option’ comparison strategy. It was also noted that 

although the vmPFC lesion patients gathered as much information - and took as long to 

decide - as the other groups, they often made a different final choice to the other two groups. 

One interpretation of these findings is that vmPFC is either critical for facilitating information 

gathering processes, or this region plays a critical role in ‘within attribute’ comparisons. 

Therefore given the state of the psychology literature pertaining to multi-attribute 

decision-making, we aimed to characterise the information gathering and choice behaviour 
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of our two monkeys as they performed a multi-attribute decision-making task where we 

manipulated how information was presented to them. The ultimate aim of this task is to 

better understand the kinds of neuronal computations which take place during information 

gathering behaviour (Chapter 5). 
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Methods 

 

The same two male rhesus monkeys (Macaca mulatta, subjects F and M) used in the  single 

attribute decision making experiment (Chapter 3) concurrently performed two variants of a 

multi-attribute decision making task, referred henceforth as the ‘Simultaneous’ and the 

‘Information Gathering’ task. A detailed description of the task structure can be found below. 

Full details of the behavioural protocols (e.g., eye tracking, behavioural acquisition 

equipment, fluid control protocol) can be found in Chapter 3. Typically, subjects would 

perform a 3-4 day sequence of stimulus-outcome learning (‘day 1’, Chapter 3) followed by an 

information gathering experiment (‘days 2-4, Chapter 4). 

 

Task 

The structure and timeline of the task are shown in Figure 4.1. Subjects initiated the 

trial by maintaining saccadic fixation on the centre of the screen and central fixation of the 

joystick for 500ms. Once this was achieved two options were presented on the screen 

(seven visual degrees left and right of centre). Each option consisted of two pre-learned 

picture cues assigned to two different value attributes; probability of reward (10%, 30%, 

50%, 70%, 90%) and magnitude of juice reward (0.15AU, 0.35AU, 0.55AU, 0.75AU, 

0.95AU). The actual reward magnitude was calculated by multiplying the arbitrary unit by the 

maximum available duration for each subject (M: 2500ms, F:2750ms). Each cue was 7 

visual degrees above/below the horizontal centre of the screen. Reward magnitude was 

varied by manipulating the length of time a reward pump was driven. The overall (integrated) 

value of each option was defined as the product of the probability and magnitude cues. In 

‘Simultaneous’ trials (Figure 4.1C), all of the cues were presented at once and subjects 

were free to saccade around the screen and make their choice (by L/R joystick movement) 

within 3000ms of cue onset. If subjects did not respond within this time then a short time out 
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was given and a new trial was initiated. Once a response was made all of the cues were 

uncovered (for 500ms for Subject F and 1000ms for Subject M) following which juice reward 

feedback was given based on the probability and reward magnitude chosen by the subject. 

‘Information Gathering’ trials were identical to ‘Simultaneous’ trials except that stimuli 

were now presented sequentially and under experimenter control. In ‘Information Gathering’ 

trials, all four picture cues were covered up by grey squares with the exception of one which 

was covered by a blue square. The blue square informed the subject of the required location 

for a saccade. Once the subject fixated the blue square, the picture cue replaced the blue 

cue and the subject was required to continuously fixate this location for 300ms. If continuous 

fixation was not achieved within 1200ms the trial was aborted and subjects received a short 

timeout. Once this fixation period was finished, the cue was covered with a grey square, and 

a second blue square was presented at a different location. The position of this blue square 

indicated to the subject the type of trial being experienced. If the blue square was for the 

second cue of the same option, subjects were in an ‘Option’ trial; if the blue square was for 

the same attribute cue of the second option then this was an ‘Attribute’ trial. Selection of trial 

types was pseudorandom. The subject was again required to acquire and maintain fixation 

of the second cue for 300ms before it was also covered up by a grey square. After this point, 

the subjects were now free to either i) choose an option using a joystick movement (left/right) 

based on the value of the currently known information or ii) view one or both of the remaining 

cues (in any order) before making a choice, with the third cue requiring 300ms of 

uninterrupted fixation before the fourth cue could be viewed. Importantly, however, they were 

prevented from viewing any cue that they had already seen. 

‘Option’ and ‘Attribute’ trials were pseudorandomly interleaved during blocks of 50 

trials. Between each of these blocks subjects were presented with a block of 25 

‘Simultaneous’ trials. 
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Figure 4.1: Task structure. (A) An example picture set. (B) A diagrammatic representation of 

the ‘Information Gathering’ task structure. Subjects saccade around the screen in order to 

gather information about two options. The initial two saccades are dictated to the subject but 

after this point subjects are free to gather as much information as they want and to choose at 

any time (see Methods for a more detailed description). (C) A representation of the timeline 

of ‘Simultaneous’ trials. Subjects were free to saccade around the screen and were given up 

to 3000ms to make a choice. 
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Equation 4.1 

Behavioural Analysis 

 All behavioural analyses were performed using self-written scripts in MATLAB 

(MathWorks, USA). The most basic analysis performed was to characterise subject choice 

behaviour using logistic regression. This was achieved by fitting the data to Equation 4.1 

where YP is the probability of observing an event, b0 was the inherent tendency to observe 

that event irrespective of any other variables, bn was the weighting coefficient and xn was the 

regressor:  

𝒀𝑷 =  
𝟏

𝟏+𝒆
−(𝒃𝟎+𝒃𝟏𝒙𝟏+𝒃𝟐𝒙𝟐+⋯+𝒃𝒏𝒙𝒏)

 

 We collapsed the data across all sessions in order to achieve the maximum possible 

power for the regression. Table 4.1 contains a list regressors used to characterise the 

factors that predict subject left choice behaviour in ‘Simultaneous’ trials. 

 

 
Table 4.1: A list of regressors and their interpretations used in the logistic regression of left 
choice probability. 

 

 In order to test whether the direction of the subjects’ first saccade was driven by 

value, we used a regression model which tested the probability of left saccades based on a 

model which used the cue values at each of the four spatial locations, collapsed across 

# Regressor Interpretation # Regressor Interpretation 

1 

Left-Right 

Probability 

Difference 

Value 4 

First Saccade 

Direction (Left-

Right) 

Choice Bias 

2 

Left-Right 

Magnitude 

Difference 

Value 5 Constant 
Left Choice 

Bias 

3 

Orthogonalised 

Left-Right 

Expected Value 

Difference 

Value    
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attribute (see Table 4.2). We also used the same regression model to test the influence of 

spatial position on final choice. 

 

 
Table 4.2: A list of regressors and their interpretations used in the logistic regression of left 
saccade and choice probability based on the value information at each spatial location. 

 

We performed the following linear hypothesis test to work out whether certain specific 

locations had a greater influence on saccades (or choice) than others: 

Top Coding > Bottom Coding = (TL +TR) – (BL + BR) 

 In ‘Information Gathering’ trials, we characterised subject choice behaviour using the 

regression model defined in Table 4.3. We then used linear hypothesis tests to examine 

whether there was a significant different between magnitude and probability regressors or 

trial type regressors. 

 

 

 

 

 

# Regressor Interpretation # Regressor Interpretation 

1 
Top Left 

Value (TL) 
Value 4 

Bottom Right 

Value (BR) 
Value 

2 
Top Right 

Value (TR) 
Value 5 Constant 

Left Saccade 

Bias 

3 
Bottom Left 

Value (BL) 
Value    
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Table 4.3: A list of regressors and their interpretations used in the logistic regression of left 
choice probability on ‘Option’ and ‘Attribute’ trials. 

 

 Next we aimed to characterise whether subjects made immediate choices after 

viewing three cues or whether they chose to gather the last piece of information. Therefore 

in ‘Option’ trials, we used a logistic regression model where the dependant variable was 

whether the choice happened after the third cue and the independent variables were the 

sum of the values of the first two cues and the value of the third cue. In ‘Attribute’ trials the 

independent variable was the absolute difference between the value of the first two cues and 

the value of the third cue. 

 After subjects viewed the first two cues, they were free to saccade to either of the 

remaining two locations. We were therefore interested in whether the subjects’ information 

gathering strategy (i.e., third saccade) was driven by value. A preliminary analysis of third 

saccades revealed stereotypical behaviour on ‘Option’ trials (i.e., Subject M would saccade 

horizontally on the majority of trials: M = 67.7%, while subject F would always make a 

saccade towards the bottom stimulus: F = 100%) thus rendering insufficient variance to run 

# Regressor Interpretation # Regressor Interpretation 

1 

‘Option’ Left-

Right 

Probability 

Difference 

Value 5 

‘Attribute’ Left-

Right Probability 

Difference 

Value 

2 

‘Option’ Left-

Right 

Magnitude 

Difference 

Value 6 

‘Attribute’ Left-

Right Magnitude 

Difference 

Value 

3 

‘Option’ First 

Saccade 

Direction (Left-

Right) 

Choice Bias 7 

‘Attribute’ First 

Saccade 

Direction (Left-

Right) 

Choice Bias 

4 
‘Option’ Trials  

Constant 

Left Choice 

Bias 
8 

‘Attribute’ Trials  

Constant 

Left Choice 

Bias 
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Equation 4.2 

this model. We therefore focussed this analysis only on ‘Attribute’ trials, and performed a 

logistic regression of the probability of making a vertical saccade toward cue three (as 

opposed to a diagonal saccade) against the value of the first and second cues. 

In ‘Simultaneous’ trials we examined whether the number of cues fixated was a 

function of cue value split by relative locations on the screen by using a regression model 

shown in Table 4.4: 

 

 
Table 4.4: A list of regressors and their interpretations used in the linear regression of 
number of cues viewed and the logistic regression of the probability of option type saccades 
during the second saccade. 

 

Finally, for several analyses (e.g., dwell times, reaction times) we used linear 

regression using Equation 4.2 where Y was the dependant variable, b0 was the constant 

term and Xn were the regressor and were weighted by coefficients bn:  

𝒀 = 𝒃𝟎 +  𝒃𝟏𝑿𝟏 + 𝒃𝟐𝑿𝟐 + ⋯ +  𝒃𝒏𝑿𝒏 

 

 Eye position data was pre-processed by removing (and interpolating) data which 

# Regressor Interpretation # Regressor Interpretation 

1 
Value Current 

Fixated Cue 
Value 5 

Option 1 

Orthogonalised 

EV (fixated side) 

Integrated 

Value 

2 

Value Cue 

Vertical to 

Fixation 

Value 6 

Option 2 

Orthogonalised 

EV (non-fixated 

side) 

Integrated 

Value 

3 

Value Cue 

Diagonal to 

Fixation 

Value 7 Constant 
Average Cues 

Viewed 

4 

Value Cue 

Horizontal to 

Fixation 

Value    
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contained eye blinks. In ‘Simultaneous’ trials, we defined a stimulus as ‘viewed’ if the 

subject’s eye position entered an 8 x 8 visual degree area around the centre of each 

stimulus. The direction of saccades was defined using a saccade detection algorithm which 

detected changes in eye position that were faster than 7 degrees/s and lasted longer than 

20ms (Engbert and Kliegl, 2003). 
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Results 

 

 Two subjects, M and F, were trained to perform two variants of a multi-attribute 

decision making task, the ‘Simultaneous’ task and the ‘Information Gathering’ task. The 

‘Information Gathering’ task contained two types of trials; ‘Option’ and ‘Attribute’ which were 

pseudorandomly selected on every trial (Figure 4.1). Subject M performed 7632 

‘Simultaneous trials’, 7187 ‘Option’ trials and 7064 ‘Attribute’ trials over 32 recording 

sessions. Subject F performed 5524 ‘Simultaneous trials’, 4823 ‘Option’ trials and 5040 

‘Attribute’ trials over 25 recording sessions. Choice optimality was defined by whether the 

subject chose the option with the highest expected value (EV: probability value x magnitude 

value) irrespective of whether the subject viewed and fixated all available information. Table 

4.5 shows the choice optimality for each subject across trial types.   

Trial Type Subject M Subject F 

‘Simultaneous’ 85.9% (0.77) 80.7% (0.79) 

‘Option’ 81.8% (0.45) 78.4% (0.62) 

‘Attribute’ 80.2% (0.60) 78.4% (0.65) 

 

Table 4.5: Choice optimality for each subject and trial type. Choices were considered 

optimal if subjects chose the option with the highest EV on a given trial. 

 

 The first part of this chapter will consider only behavioural data from ‘Simultaneous’ 

trials, the results of which will then inform the analytical approach used during the second 

part of the analysis with respect to ‘Information Gathering’ trials. Data were collapsed across 

all recording sessions to provide the maximum available power. 
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Part 1: Simultaneous Trials 

 

Subjects Equally Consider both Magnitude and Probability Information When Making 

Decisions 

 An important aspect of the behavioural task was that in order to choose optimally 

(from the point of view of utility) subjects had to select the option with the highest Expected 

Value (EV), which in our task was defined as the product of reward probability and reward 

magnitude. Empirical analysis of the choice data suggested that both subjects were more 

likely to choice the left option as left EV increased and less likely to choose the left option 

when right EV increased in any given trial (Figure 4.2).  

 

Figure 4.2: Expected value (EV) influences choice. Heat maps of left choice probability 
against left and right EV. Heat indicates the probability of choosing left as left (y-axis) and 
right EV (x-axis) increases. 

 

However, in order to test whether subjects considered both attributes, a logistic 

regression was performed on left choice probability against left-right probability value 

difference and left-right magnitude difference (Table 4.1, Figure 4.3). This analysis indicated 

that both attributes significantly influenced subject choice (M: both T statistics>38.9, both 
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p<2x10-308, F: both T statistics>32.00, both p<2x10-224). Another important finding was the 

small but significant influence of the direction of first saccade on final choice direction 

implying that options that subjects viewed first had a bias on final choices (logistic 

regression, M: T=12.57, p<3x10-36, F: T=15.43, p<1x10-53).  

 

Figure 4.3: Logistic regression of left choice. The regressors used were a constant term for 

left choice bias (L. Bias), left-right probability value difference (Prob. Diff.) and left-right 

magnitude value difference (Mag. Diff.), orthogonalised left-right EV difference (E.V. Diff.) 

and a binary term for a first side choice bias (1st Side). Error bars indicate the standard error 

of the mean (SEM). 

Importantly, subjects weighted each attribute equally as would be expected if they 

calculated the utility of the option (linear hypothesis test of the beta coefficient for probability 

value difference compared against magnitude value difference, p>0.05). A linear regression 

of decision time against chosen-unchosen magnitude and probability value difference 

produced negative beta coefficients (i.e. as either value difference increased, choices 

became faster) but neither regressor had a greater influence (linear regression, M: both 

unsigned T statistics>13.81, both p<2x10-35,F: both unsigned T statistics>5.79, both p<8x10-

9, linear hypothesis test of betas coefficients for chosen-unchosen probability value 

difference compared against chosen-unchosen magnitude value difference, p>0.05).  
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Subjects’ Initial Saccades Are Value Driven 

  By allowing the subjects to freely saccade around the screen during the 

choice phase, it was possible to make some inferences about the processes that occur in 

the brain during decision making. The eye position data allowed us to determine the 

direction of saccades as well as identify the spatial position of each fixation; the latter was 

used to classify whether a particular picture had been overtly “attended”. 

When the cues were initially presented on the screen, we observed that initial 

saccades were of relatively short latency (median M: 146±20ms (1 S.D.), F: 153±30ms) and 

almost always (99%) towards cues on the bottom half of the screen. However, initial 

saccades were approximately evenly distributed between left and right sides of the screen 

(M: 50:50%, F: 47:53%). Were these left vs right saccades just random or was there a 

pattern to them? To test this, we performed a logistic regression of the probability of a left 

initial saccade against cue value at each position on the screen (Figure 4.4A). This analysis 

found that although saccade direction was influenced by value cues presented at all 

positions on the screen (M: all unsigned T statistics>9.15, all p<6x10-20, F: all unsigned T 

statistics>4.85, all p<2x10-6), the influence was stronger for cues presented on the bottom of 

the screen (linear hypothesis test of beta coefficients for left saccade probability for value 

cues presented on the top versus bottom half of the screen, M: T=282.70, p<3x10-62, F: 

T=163.54, p<7x10-37). We repeated this analysis separated by attribute, but the type of 

attribute had no differential influence on saccade direction (linear hypothesis test of beta 

coefficients for left saccade probability for magnitude value cues presented anywhere on the 

screen against those for probability value, M: T=0.066, p=0.83, F: T=0.070, p=0.79). The 

influence of cues presented on the bottom of the screen was surprisingly also present at the 

level of choice, although the effect was weaker (Figure 4.4B) (linear hypothesis test of beta 

coefficients for left choice probability for magnitude and probability cues presented on the 

top half of the screen against those presented on the bottom half, M: T=43.14 p<6x10-11, F: 

T=416.18, p<3x10-308). 
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Figure 4.4: The influence of value and spatial position on saccades and choices. (A) A 

logistic regression of left saccade probability against cue values separated by spatial 

location. Asterisks indicate beta coefficients that are significantly different between value 

regressors on the top (light purple) and bottom (purple) of the screen (linear hypothesis test, 

p<0.05). (B) A logistic regression of left choice against cue values separated by spatial 

location. 

 

We next wanted to explore whether this initial saccade was value driven. We 

identified the position of the first saccade and calculated the probability that this saccade 

was towards the more valuable picture when compared with the corresponding cue of the 
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other option (i.e. the value of the cue directly horizontal to it). Figure 4.5 shows that the 

probability that the initial saccade would be directed towards the more valuable stimulus of 

the (typically bottom) horizontal pair (“saccade optimality”) increased as a function of the 

best available value in that pair. Importantly, saccade optimality was also above chance for 

almost all given values (binomial test, M: all p<0.03, F: all p<6x10-8 except value 2 where 

p=0.33), indicating that subjects weren’t simply tracking only the most valuable stimuli, but 

instead tracking the value of all of the stimuli. The patterns of value-based initial saccades 

imply a covert value comparison process which directs overt attention toward more valuable 

information as a function of the value of that information (c.f., Chapter 3).  

 
Figure 4.5: Probability of optimal saccades for various best available cues. Each bar 
indicates the probability that the subject’s initial saccade was towards the most valuable cue 
of the horizontal cue pair (i.e., top or bottom pair) which were attended (i.e., if the subject’s 
first saccade was towards the bottom left cue, was the value of this cue higher than then 
bottom right cue). The grey bar indicates the average optimality of saccades. Asterisks 
indicate saccade probabilities that are significantly above chance (binomial test, p<0.05). 

 

 

Subsequent Saccades and Choice Utilise Covert Attention  

Surprisingly, subjects rarely overtly saccaded to all available information on a given 

trial (M: 2%, F: <1%) and were mostly likely to fixate only two cues (M: 67%, F: 63%) 
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(Figure 4.6) before making a choice via joystick movement. This begs the question of 

whether the value of the cues presented influenced the number of cues subjects would 

view?. 

 

Figure 4.6: The number of cues viewed in ‘Simultaneous’ trials. The number of cues viewed 

was calculated by a saccade direction algorithm (see Methods).  

Based on the finding that subjects tended to make initial saccades towards the better 

of the two cues on the bottom half of the screen, we hypothesised that the attended side of 

the screen may have a strong influence on future information gathering behaviour. We 

therefore examined the mean number of saccades observed for each possible EV of the first 

attended option (called Option 1) and the unattended option (called Option 2) (Figure 4.7A). 

We also performed a linear regression of the number of cues viewed against cue values at 

each screen position relative to the position of the first fixated cue, which included 

orthogonalised EV terms for Option 1 and Option 2 (Figure 4.7B).  
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Figure 4.7: Subject saccade behaviour is driven by all cues. (A) A heat map of mean 

number of cues viewed as a function of left EV (y-axis) and right EV (x-axis). (B) Beta 

coefficients for the linear regression of mean number of cues viewed against cue values 

separated by relative positions with respect to the first viewed cue.  Option 1(Cue Saccaded) was 

the initially fixated cue, Option 1(Cue Vertical) was the cue directly vertical to the initially fixated 

cue, Option 2(Cue Horizontal) was the cue horizontal to the initial cue and Option 2(Cue Diagonal) was 

the cue diagonal to the initial cue. All of figure properties are the same as Figure 4.4. 
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Both analyses found that there was a strong tendency to saccade to fewer cues as 

the value of first fixated option (i.e., “attended option”) increased, and conversely make more 

saccades when the value of cues of the unattended option increased (linear regression, M: 

all unsigned T-statistics>3.47, all p<6x10-4, F: all unsigned T-statistics>3.73, all p<2x10-4). 

However, on average the cues that made up Option 2 exerted a greater influence on the 

number of pictures viewed than those of Option 1 (linear hypothesis test of the beta 

coefficients for Option 1 cues against Option 2 cues, M: T=4.30, p<0.04, F: T=4.69, p<0.04). 

Neither of the orthogonalised EV regressors were significant (p>0.05) although this is 

unsurprising considering the strong correlation between integrated option value and the 

value of the cues. These results imply that the better the covert value comparison is prior to 

the initial saccade, the less information the subject will need to make a final choice.  

We next investigated whether subjects exhibited any specific patterns or strategies in 

their information gathering behaviour after making their initial saccade to the first cue. We 

therefore classified three types of comparison; option (where subjects make a second 

saccade vertically within the two cues of the same option), attribute (where subjects saccade 

to the horizontally to the same attribute cue of the second option) or diagonal (where they 

saccade diagonally across both options and attributes). This analysis found that subjects 

had an overwhelming tendency to perform option and attribute saccades (M: 56% option, 

36% attribute, F: 45% option, 52% attribute) (Figure 4.8). 
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Figure 4.8: Direction of second saccades. A pie chart showing the proportion of second 

saccades that are made towards the other cue of the same option as the first saccade 

(‘Option’), the same attribute cue of the other option (‘Attribute’) or to the other attribute cue 

of the other option (‘Diagonal’).  

 

We then considered whether there was any pattern to these option and attribute 

saccades. We performed a logistic regression of option saccade probability against the value 

of cue at the three possible relative locations with respect to the first saccaded cue position, 

including orthogonalised EVs for each option (Figure 4.9). This analysis indicated that the 

value of all of the cues influenced whether subjects made ‘option’ or ‘attribute’ type 

saccades. (M: All unsigned T-statistics>4.58, all p<5x10-6, F: All unsigned T-statistics>8.80, 

all p<6x10-16). Again, the value of cues on the Option 2 side had a greater influences on 

future saccade direction than cues on the Option 1 side (linear hypothesis test of the beta 

coefficients for Option 1 cues against Option 2 cues, M T=65.81, p<6x10-16, F: T=43.23, 

p<6x10-11). Subjects tend to make saccades towards the more valuable side. This suggests 

that rather than just randomly saccading around the screen, subjects use covert attention in 

order to plan the direction of future saccades. Furthermore, there is evidence that subjects 

have covertly attended to all of the information on the screen before deployment of the 

second saccade. 
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Figure 4.9: Subject saccade direction is influenced by cue value. (A) A heat map of 
probability of option saccade as a function of left EV (y-axis) and right EV (x-axis). (B) Beta 
coefficients for the linear regression of mean number of cues viewed against cue values 
separated by relative positions with respect to the first viewed cue. All of figure properties 
are the same as Figure 4.7. 

 

These analyses have shown that subjects rarely overtly attend to all available 

information before making a choice, and that saccades are heavily driven by covert 
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attention. We therefore investigated whether the final choice was driven predominantly by 

overt attention (i.e. that subjects only consider the value of overtly attended cues when 

choosing) or by covert attention (i.e. that subjects consider the value of all cues when 

choosing even if they are not overtly fixated). To do this, we performed model comparison of 

two logistic regression models (dependent variable: probability of Left choice), called the 

‘covert’ and ‘overt’ model. Each model contained only one regressor; left versus right EV 

difference. In the ‘covert’ model, the value difference regressor was constructed using the 

probability and magnitude values presented on each trial on the left and right. For the ‘overt’ 

model the same method was used to construct the value difference regressor with the 

exception that on each trial, if the subject did not saccade to one or more of the cues, the 

values of these cues were set to average value (i.e. 3 out of 5). The rationale behind this 

was that if subjects were only using overtly gathered information to make choices then they 

must make inferences about the value of unseen cues. If this was true then the intuitive 

inference they could make would be that the cues were of average value. We then obtained 

the residuals for each model, and compared how well each model predicted left choice. The 

median residuals for the ‘covert’ model was seen to be significantly smaller than that of the 

‘overt’ model (Kruskal-Wallis test, M: Chi2=2.79x103, p<3x10-308, F: Chi2=1.26x103, p<3x10-

276), indicating that behaviour was better explained by assuming that subjects were using 

covert attention to consider all available information rather than assuming that they were 

only using overt attention and inferring the value of unseen cues. 

In conclusion, behaviour in the ‘Simultaneous’ task indicates that subjects integrate 

both probability and magnitude information when executing multi-attribute binary decisions. 

However, primate saccadic systems rapidly utilise covert attention to modulate both initial 

and later saccades based on the value of all cues presented in an attribute non-specific 

manner. Finally, subjects also use covert attention to guide final choice despite this not being 

a constraint of the task. 
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Part 2: Information Gathering Trials 

 

Subjects Sensitivity to Value Varies With Trial Type 

 Because of the clear influence of covert attention during ‘Simultaneous’ trials, it is 

difficult to make conclusions about how subjects may be comparing information during the 

decision making process. In contrast, the sequential yet relatively unconstrained nature of 

the ‘Information Gathering’ task provides the ideal opportunity to assess the relationship 

between value, information comparison and choice.  

In order to examine the extent to which choices are driven by value in ‘Option’ and 

‘Attribute’ trials of the ‘Information Gathering’ Task, we performed a logistic regression of left 

choice probability against left-right probability and left-right magnitude value difference for 

each trial type and the side of the first cue presentation (left/right) (Figure 4.10, Table 4.3). 

Any cue that was not considered to have been seen was given average value (i.e., 3) before 

value difference was computed. This led to the surprising finding that unlike in 

‘Simultaneous’ trials, the beta coefficients for probability value difference were significantly 

different compared to those for magnitude value difference in both ‘Option’ and ‘Attribute’ 

trials (linear hypothesis test of the beta coefficients for probability value difference against 

magnitude value difference, M: absolute T=49.80, p<2x10-12, F: absolute T=4.62, p<0.04). 

Interestingly, this difference was of opposite signs for each subject (i.e. Subject M was more 

sensitive to probability while subject F was more sensitive to magnitude value). The size of 

the coefficients for both probability and magnitude value difference  were significantly 

smaller for ‘Attribute’ trials compared to ‘Option’ trials indicating that subjects were slightly 

less sensitive to value in ‘Attribute’ trials (linear hypothesis test of the beta coefficients for 

probability and magnitude value difference in ‘Option’ trials against those in ‘Attribute’ trials, 

M: T(Probability’)=8.38, T(Magnitude)=9.79, p(Probability)<0.004), p(Magnitude)<0.002, F: T(Probability’)=67.30, 

T(Magnitude)=43.36, p(Probability)<3x10-308), p(Magnitude)<3x10-308). These results suggest that 

presenting information to subjects sequentially exposes attribute biases in subject choice, 
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and forcing subjects to perform initial option comparisons makes them more sensitive to 

value than when they perform initial attribute comparisons.  

 

 Figure 4.10: Trial type affects the influence of value on choice. Logistic regression of left 

choice against left-right probability and magnitude value difference. 1st Side is defined by 

left-right. 

 

Subjects also had a tendency to choose away from the direction of the first saccade 

in ‘Option’ trials (Figure 4.10: logistic regression, M: T=-14.15, p<2x10-45, F: T=-5.24, 

p<2x10-7). Subject F also had the opposite bias in ‘Attribute’ trials, where he tended to 

choose the side of the first presented cue (logistic regression, T=5.70, p<2x10-8). 

 

Subjects Gather Incomplete Information During Information Gathering Trials  

 In both ‘Option’ and ‘Attribute’ trials, subjects rarely attended to all four cues before 

making a decision (M: 8%, F: 5%) (Figure 4.11). However, the number of cues that subjects 

viewed was similar between the two trial types.  
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Figure 4.11: Subjects rarely gather all available information. The Number of Cues Viewed in 

‘Option’ and ‘Attribute’ Trials. 

 

To explore how cue values influenced information gathering behaviour, we examined 

the mean number of cues viewed for each combination of Cue 1 and Cue 2 values 

separated by trial type (Figure 4.12A and Figure 4.13A). We then performed a linear 

regression of the number of pictures viewed against the cue 1 and 2 values (Figure 4.12B 

and Figure 4.13B). Both analyses showed that in ‘Option’ trials (Figure 4.12B), as both cue 

values increased, subjects were likely to view fewer cues in total (M: both unsigned T-

statistics>22.41, p<2x10-107, F: both unsigned T-statistics>15.41, p<3x10-52). Cue 1 also had 

a greater influence on the number of cues viewed than Cue 2 (linear hypothesis test of beta 

coefficients for Cue 1 against those for Cue 2, M: T=195.42, p<8x10-44, F: T=14.87, p<2x10-

4). Interestingly, trials when subjects were initially presented with two low value cues were 
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those when they would view the most cues. This was a form of ‘confirmation bias’, where 

rather than just choosing the other unseen (almost certainly better) option, they preferred to 

first view the cues of that option before choosing it.  

 

Figure 4.12: Information gathering in ‘Option’ trials. (A) A heat map of mean number of cues 

viewed as a function of the value of the first and second cues presented in an ‘Option’ trials. 

(B) A linear regression of cues viewed against the value of the first and second cues. All 

figures properties are the same Figure 4.9. 

 

In contrast, in ‘Attribute’ trials, the two subjects exhibited different behavioural patterns. It 

was the case that as Cue 2 value increased, both subjects viewed more cues (linear 

regression, M: T=12.25, p<4x10-34,F: T=2.46, p<0.008) (Figure 4.13B). However, Subject M 

had a positive influence of Cue 1 value on total viewed cues (linear regression, T=18.41, 

p<6x10-74) whereas Subject F had a negative influence (linear regression, T=-4.96, p<8x10-

7). This suggests that the amount of information Subject M chose to gather was related to 

maximum expectation of reward; i.e. having seen two low value cues in ‘Attribute’ trials he 
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was less motivated to gather more information because the EV of either option would be 

much lower than if he had seen two high value cues initially. On the hand, Subject F seemed 

to implement a strategy where he looked for evidence to choose/reject Option 1; i.e. if Cue 1 

was high in value he needed much less information to confirm a choice of that option than if 

Cue 2 was high in value. This could be interpreted as a confirmation bias towards Option 1.  

 

Figure 4.13: Information gathering in ‘Attribute’ trials. (A) A heat map of mean number of 

cues viewed as a function of the value of the first and second cues presented in ‘Attribute’ 

trials. (B) A linear regression of cues viewed against the value of the first and second cues. 

All figures properties are the same Figure 4.12. 

Subjects Decide To Respond Based on Current Cue Comparisons 

 What drives subjects to terminate information gathering and initiate a response? At 

Cue 2 the examination of the number of cues viewed provided an indirect measure of this. 

However, to answer this question at a more advanced stage in the decision we examined 
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the probability of choosing immediately after viewing three cues based on the values of the 

seen cues. Figure 4.14A shows the probability of immediate choice in ‘Option’ trials as 

function of Option 1 EV (Cue 1 value x Cue 2 value) and Cue 3 value. For Subject M, when 

Option 1 increased in EV he became more likely to choose immediately, but when Cue 3 

value increased, he was more likely to defer his choice until gathering the last piece of 

information. A logistic regression revealed both Option 1 and Cue 3 values significantly 

influenced the probability of immediate choice (T(Option 1)=7.45, T(Cue 3)=-10.94, p(Option 1)<9x10-

86, p(Cue 3)<7x10-28) (Figure 4.14B). For Subject F, only the value of the Cue 3 influenced the 

immediacy of choice (logistic regression, T(Option 1)= 1.19, T(Cue 3)=-4.78, p(Option 1)>0.05, p(Cue 

3)<2x10-6). 

 

Figure 4.14: Probability of choice after Cue 3 in ‘Option’ trials. (A) A heat map of the 

probability of choosing immediately after Cue 3 presentation (as opposed to gathering 

information about a fourth cue) as a function of increasing Option 1 integrated  value (Option 

1 EV) and increasing Cue 3 value. (B) A logistic regression of the probability of immediate 

choice after the third cue against Option 1 EV and Cue 3 value. All figures properties are the 

same Figure 4.9. 
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 For ‘Attribute’ trials, we examined the probability of immediate choice as a function of 

the absolute value difference between Cue 1 and Cue 2 (an indicator of decision difficulty) 

and the value of Cue 3 (Figure 4.14A). When the absolute difference between Cue 1 and 2 

was high, Subject M was more likely to choose immediately. In contrast, only Cue 3 value 

had a positive influence on choice immediacy for Subject F (logistic regression, M: T(Cue 1 vs 

2)=8.74, T(Cue 3)=0.07, p(Cue 1 vs 2)<3x10-18, p(Cue 3)>0.05, F: T(Cue 1 vs 2)=1.72, T(Cue 3)=3.49, p(Cue 1 vs 

2)>0.05, p(Cue 3)<5x10-4) (Figure 4.14B). 

 

 Figure 4.15: Probability of choice after Cue 3 in ‘Attribute’ trials. (A) A heat map of the 

probability of choosing immediately after Cue 3 presentation (as opposed to gathering 

information about a fourth cue) as a function of increasing absolute difference between the 

value of Cue 1 and 2 and increasing Cue 3 value. (B) A logistic regression of the probability 

of immediate choice after the third cue against absolute Cue 1- 2 difference and Cue 3 

value. All figures properties are the same Figure 4.9. 
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Subjects Gather Future Information Based on the Current Value State of Options 

 Having established that both the amount information gathered and the timing of the 

response are related to the value of cues seen by subjects, we next explored whether 

subjects employed any strategy when gathering information. Recall that after seeing two 

cues, subjects were free to saccade to either one of the remaining cues to uncover the 3rd 

piece of information. Therefore, we were interested in whether, in ‘Attribute’ trials, subjects 

seek to gather more information about the first option viewed (i.e., the 3rd saccade being a 

diagonal saccade back to the first option), or more information about the currently attended 

option (i.e., the 3rd saccade being a vertical saccade toward the other piece of information of 

the second option). To answer this question, we looked at the saccade behaviour of subjects 

in ‘Attribute’ trials on occasions when they chose to fixate a third cue (Figure 4.16). We did 

not consider ‘Option’ trials for this analysis because Subject F exhibited no variance in this 

third saccade behaviour and because from a normative point of view there was no benefit to 

choosing the gather one location over another. 

We examined the probability of making a vertical (as opposed to diagonal) 3rd 

saccade as a function of Cue 1 and Cue 2 values. Subject M made vertical saccades on 

53.2% of occasions whereas Subject F did so on 60.1% of occasions. This revealed that as 

Cue 1 value increased, subjects were significantly more likely to saccade diagonally back 

towards Option 1; whereas when Cue 2 value increased, subjects were more likely to make 

vertical saccades (logistic regression, M: T(Cue 1)=-17.00, T(Cue 2)=23.00, p(Cue 1)<9x10-65, p(Cue 

2)=5<10-117, F: T(Cue 1)=-3.80, T(Cue 2)=16.44, p(Cue 1)<2x10-4, p(Cue 2)< 1x10-60). Furthermore, it 

was observed that Cue 2 value had a stronger influence on saccades than Cue 1 value 

(linear hypothesis test of the beta coefficients for Cue 1 value against those for Cue 2 value, 

M: T=17.64, p<3x10-5, F: T=75.24, p<6x10-18). These results indicate that in ‘Attribute’ trials, 

rather than randomly gathering information, subjects gathered information about options that 

currently have the highest value. In other words, subjects gather information about options 

that they currently believe they will choose, indicative of a confirmation bias. 
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Figure 4.16: Information gathering Strategy is value driven. (A) A heat map of the probability 
of making a vertical saccade in ‘Attribute’ trials as a function of the value of the first two 
cues. (B) The beta coefficients of a logistic regression of cue value on saccade direction. All 
of figure properties are the same as Figure 4.13. 

 

In conclusion, the behavioural results obtained during the ‘Information Gathering’ 

task indicate that subjects make value based decisions using incomplete information and 

change their information gathering strategies based on the state of current value information 

in a trial. Their choices are also biased by both attribute and first saccade location. 

Furthermore, manipulating the way in which information is initially present to subjects has a 

profound influence on sensitivity to value. 
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Discussion 

 In the first part of this chapter we presented evidence for the covert value comparison 

during multi-attribute decision making. Unsurprisingly primate subjects are known to be able 

to perform multi-attribute decisions using both covert and overt attention (e.g. Hosokawa et 

al. (2013), Padoa-Schioppa and Assad (2006), Strait et al. (2014)), though rarely are primate 

subjects allowed to freely view information during choice. When they were permitted to freely 

view information their saccades did not seems to reflect information comparison but instead 

provided insight into the extent to which they were using covert attention. One interesting 

and surprising result in our dataset is that when all information is presented to subjects 

simultaneously, they show no biases towards particular attributes but when the information is 

presented sequentially (i.e. ‘information gathering’ trials), both subjects show a slight 

tendency to weight one attribute over the other. This effect may reflect a biasing or heuristic 

behaviour that takes over when task complexity (through adding working memory 

components) increases similar to the ideas put forward by Payne (1976). Subjects also 

appears to show a change in sensitivity to value when information is presented sequentially 

which is borne out by the lower optimality exhibited in ‘Option’ and ‘Attribute’ trials compared 

to ‘Simultaneous’ trials (see Table 4.5). This is no doubt partially down to the use of 

heuristics in solving decisions but could also come about from the fact that the ‘Information 

Gathering’ trials required subjects to retain previously viewed information in working memory 

for several seconds. The implication of these simple observations is that the by manipulating 

the information presentation/gathering process we have caused changes in the way that the 

decision process unfolds. 

 

Covert Attention in Multi-Attribute Decision Making 

 We have shown that subjects utilize covert attention to drive overt fixation at multiple 

points during the choice process, even when the task parameters get more complex (e.g., 
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compared to the task in Chapter 3). When subjects are provided which an unconstrained 

environment in which to gather information towards making a decision we still observed 

strong deployment of covert attention. On ‘Simultaneous’ trials, our subjects seemed to 

decrease their cognitive effort by concentrating their initial covert evaluation and subsequent 

initial value-based saccade towards stimuli presented on the bottom of the screen. As a rule 

this would have still allowed subjects to saccade to the more valuable option more times 

than not. In ‘Simultaneous’ trials, there was also clear evidence of covert attentional 

processes in both the direction of the second saccade, and the total amount of information 

subjects chose to gather. 

 Our results therefore provide further suggests that covert attention is a factor that 

needs to be considered when considering the mechanisms by which subjects make 

decisions in primate decision making paradigms. Although we did not perform a formal test 

of this, the fact that saccade behaviour appears to be more strongly influenced by the value 

of unattended compared to attended stimuli implies that covert attention may play a stronger 

role than overt attention. This is in direct conflict with the well described behaviour in the 

human literature and suggests that the mathematical approximations of evidence 

accumulation and decision making described by attentional drift diffusion models may not 

apply to how primates make simple economic decisions (Krajbich et al., 2010, Krajbich et al., 

2012, Krajbich and Rangel, 2011). 

Again, just as in Chapter 3, this indicates saccadic behaviour does not reflect the way 

in which subjects are comparing information. As previously discussed, the neural circuits that 

likely support these covert valuation and attention processes are likely to lie in subcortical 

structures known to perform value based computations such as Caudate or Substantia Nigra 

(Kim and Hikosaka, 2013, Yasuda et al., 2012). These regions are heavily implicated in the 

control of eye movements (Hikosaka et al., 2014, Beckstead and Frankfurter, 1982, Parent 

et al., 1983). Furthermore, it is unlikely that PFC regions are the ones that drive this fast 

initial saccade because the because the latencies of these initial saccades (approximately 
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150ms) are often faster than the latency of value coding in PFC (Kennerley et al., 2009, 

Strait et al., 2014, Hayden and Platt, 2010, Roesch and Olson, 2003, Hikosaka et al., 2014). 

One finding in the human fMRI literature is that BOLD signal in vmPFC correlates positively 

with the value of what is being attended and negatively with that of what is unattended (Lim 

et al., 2011). Although (as described above) it is unlikely that in ‘Simultaneous’ trials vmPFC 

value comparisons are driving this overt attention, it is possible that this overt value 

comparison is being biased through the control of overt attention by subcortical systems or 

possibly through indirect anatomical connections to vmPFC from subcortical nuclei.  

 

Primate Multi-Attribute Information Gathering Strategies  

 Despite the influence of covert attention on saccade in ‘Simultaneous’ trials, these 

and ‘Information Gathering’ trials may provide some insight into information gathering 

behaviour in primate subjects. Unlike many of the classical multi-attribute decision making 

paradigms, the paradigm in this task was relatively simple with only two options and two 

attributes for subjects to consider. The data of Sundström (1987) suggest that given such a 

small number of attributes to consider, subjects would tend to prefer an option based 

comparison strategy. Furthermore, the data of Arieli (2011) suggests that subjects may be 

more likely to make attribute saccades when the trial was more difficult. However, we found 

that in ‘Simultaneous’ trials there was a similar number of option and attribute based 

saccades overall, and most importantly, the direction of this second saccade was heavily 

dependent on the EVs of the fixated option and the unfixated option. This implies that our 

subjects chose to make their second saccade toward the more valuable side and therefore 

by extension, the side that they would most likely go on to choose. Another important 

implication is that when primate subjects are allowed to gather information in any way they 

choose, they prefer to use covert attention rather than overt saccades. However, the 

discrepancies between our data and these previous studies may be attributable to task 
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differences, perhaps the most important being task difficulty. In the tasks described in the 

psychology literature, human subjects often have to make decisions based on many 

attributes and these decisions often have no ‘right’ answer. In contrast, our experiment only 

required subjects to evaluate and integrate information about two attributes and two options, 

such that there was always one clear objectively optimal choice. Therefore subjects do not 

need to deliberate like human subjects do on multi-attribute decision making paradigms. 

Furthermore, the influence of covert attention on the decision process means that saccades 

themselves have less relevance to the information gathering process. 

 We have demonstrated that by manipulating the manner in which information was 

presented to subjects, we could successfully change their choice behaviour. The fact that 

optimality changes between ‘Option’ and ‘Attribute’ trials suggests that different 

computational processes, and therefore potentially different brain areas, may be used for 

each trial type. Fellows (2006) found that patients with vmPFC lesions gather the same 

amount of information as control subjects, but are less likely to perform attribute based 

comparisons, implying that they may be unable to compare information in this manner. They 

also tended to make different choices compared to controls. We found that subjects 

gathered similar amounts of information having performed initial option and attribute 

comparisons in ‘Information Gathering’ trials. Surprisingly however, unlike the data of 

Fellows (2006), we found that there was very little difference in choices (defined by overall 

optimality) between ‘Option’ and ‘Attribute’ trials. The most likely explanation for this 

discrepancy is that in this paradigm decisions can be solved equally easily through either 

type of information comparison because there is relatively little information to consider. 

 One finding of particular interest in the current study is that in ‘Attribute’ trials, 

subjects choose the direction of their third saccade (and therefore their information gathering 

strategy) based on the value of the previous information. They tended to look towards the 

side of the option that has the highest current value and therefore by extension, the one that 

they are more likely to eventually choose. This reflects features of a confirmation bias which 
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(although is broadly used throughout psychology) is commonly considered to pertain to the 

seeking or interpretation of evidence that supports a current hypothesis, expectation or belief 

(Nickerson, 1998). This result bears a resemblance to the simple rule based reasoning tasks 

used by Wason (1968). In this task subjects were presented with 4 cards (showing a vowel, 

a consonant, an even number and an odd number respectively) and given a rule (in this 

case if a card has a vowel (P) on one side then is has an even number (Q) on the other 

side). They were told to indicate which cards they would turn over to confirm/deny the rule. 

Choosing the vowel (P) and the odd number card (not Q) would allow for the optimal 

resolution of this problem. However, subjects tended choose the vowel card (i.e. the card 

which would confirm the rule) and rarely chose the odd number card (i.e. the card that 

disproves the rule) thereby exhibiting information gathering behaviour which was biased 

towards confirmation of the current hypothesis. Further evidence of a primate confirmation 

bias comes from the fact that in ‘Option’ trials, when subjects are presented with two low 

value initial stimuli, they tend to gather the most information (i.e., all 4 cues) instead of 

immediately choosing the unattended (but most likely more valuable) option. Some evidence 

suggests that confirmation biases are exaggerated when information is presented 

sequentially rather than simultaneously (Jonas et al., 2001). It is difficult to test whether this 

is also true of the current study because of the influence of covert attention which renders 

saccades uninterpretable from an information gathering point of view. However, in all three 

types of trial we observed a tendency for subjects to make saccades towards the more 

valuable options which by extension were more likely to be chosen. 

 Our results suggest that during multi-attribute value-based decision making, primate 

subjects can use covert attention to gather complex multi-attribute information and compute 

EVs which inform not only choices but also saccades during the choice phase. However 

when covert attention cannot be utilised, subjects make decisions about how much 

information to gather and where to gather it based on the currently known information. They 

also exhibit features of confirmation bias in both the amount and the position of future 
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information gathering. Finally, although subjects appear to consider all available information 

in ‘Simultaneous’ trials (presumably using covert attentional valuation processes for 

unattended cues), when the extra cost of time and effort is introduced in sequential 

‘Information Gathering’ trials, subjects prefer to make inferences about some unknown 

information. 
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Chapter 5: Frames of Reference in 

the Prefrontal Cortex 
 

 What processes do organisms use to make decisions? Scientists have tackled this 

question in many different ways: 1) mathematical descriptions of choice behaviour 

(Kahneman D, 1979), 2) mathematical approximations of decision processes (Ratcliff, 1976, 

Krajbich et al., 2010, Louie et al., 2013), 3) plausible biophysical models of decision circuits 

(Wang, 2002), 4) empirical models of decision pathways (Padoa-Schioppa, 2011, Cisek, 

2012). This chapter will concentrate on examining the evidence supporting various empirical 

models of decision making by asking whether inferences can be drawn about the 

arrangement of decision circuits within the brain based on the representation of value in 

different so called frames of reference. We will first briefly outline the current state of 

evidence pertaining to frames of reference specific computations in prefrontal cortex (PFC). 

We will then present a set of neurophysiological findings that support the idea of parallel 

reference frame specific value computations which unify findings from several other 

neurophysiological and lesion studies. Finally we will present evidence that information 

gathering processes are also subject to the same frames of reference implying the existence 

of a common value comparison system for choice and information gathering. 

 

Introduction 

 Understanding the value of objects in our environment is a critical prerequisite to 

making optimal value based decisions. Many neurophysiological studies have found value 

representation across the PFC (Kennerley et al., 2009, Roesch and Olson, 2003, Strait et 

al., 2014, Padoa-Schioppa, 2009, O'Neill and Schultz, 2010, Lim et al., 2011, Blanchard et 

al., 2015). Furthermore, in decision making tasks correlates of ‘chosen value’ (i.e. a post-
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decision signal) have been reported across PFC regions (Kennerley et al., 2009, Padoa-

Schioppa and Assad, 2006, Cai and Padoa-Schioppa, 2012, Cai and Padoa-Schioppa, 

2014). However this abundance of value correlates does not improve our understanding of 

the functional specialisations that exist within PFC based on the lesion evidence. (Bechara 

et al., 1994, Clark et al., 2008, Camille et al., 2011a, Camille et al., 2011b, Rudebeck et al., 

2008, Rudebeck and Murray, 2011, Noonan et al., 2010, Walton et al., 2002). Consequently, 

the natural question is what critical decision making computations do specific regions of PFC 

perform? 

 Recently two divergent ideas surrounding the potential mechanisms and pathways 

involved in value based decision making have attained prominence (Cisek, 2012, Padoa-

Schioppa, 2011). One of these models puts forward the concept of ‘decision making through 

consensus’: the notion that multiple cortical and subcortical areas are able to compute 

and/or compare value representations of various options through mutual inhibition and that 

decisions are reached through a consensus between regions (Cisek, 2012). Central to this 

hypothesis is the idea that different regions may compare options in different so called 

‘frames of reference’ (see Figure 5.1), and that these computations can take place in a 

simultaneous and parallel manner during decision making (Cisek, 2006, Cisek, 2007a, Selen 

et al., 2012). The extensive anatomical connectivity pattern of the PFC suggests that such 

parallel processing could well be possible (see Chapter 2). The other model of prominence is 

called the goods based model. In this model, decisions are made solely through a serial 

pathway where internal and external properties of options are represented in various parts of 

the brain but are integrated to form ‘offer values’ only in OFC/vmPFC (Padoa-Schioppa, 

2011). Comparison is then performed in the abstract ‘goods space’ before the chosen value 

is converted into an action plan in other PFC and premotor areas. The critical difference in 

experimental predictions between the two models are that the ‘goods space model’ predicts 

that comparison signals will only be observed in goods space and in no other frame of 
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reference. In contrast, the ‘decision making through consensus model’ predicts that value 

comparisons may in fact occur in many different frames of reference. 

 

Figure 5.1: Decision making through consensus. A description of the potential processes 

related to making decisions through consensus. Different options can be compared at 

multiple levels (in this case at both the level of the goal and of the action) through mutual 

inhibition between pools of neurons representing the different options. Arrows indicate the 

direction of excitatory connections and line width the activity of these connections in an 

example given trial. Blunt arrows indicate inhibitory connections. Adapted from Cisek (2012). 

 

Evidence for value representation in different frames of reference has been 

presented from various human and animal studies. Firstly, primate lesion experiments have 

demonstrated that damage to dorsal anterior cingulate cortex (ACC) causes selective 
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deficits in action guided decision making whereas damage to orbitofrontal cortex (OFC) 

specifically impairs stimulus guided decisions (Rudebeck et al., 2008, Kennerley et al., 

2006). Similar studies examining human lesion patients have also replicated these findings 

(Camille et al., 2011b). The presence of these deficits heavily implies that ACC and OFC 

must engage in frame of reference specific computations. This is further backed up by the 

fact that the two regions show disparate connectivity patterns with ACC connecting strongly 

to the motor system and OFC receiving more basic sensory input (see Chapter 2 for more 

details). In further support of this inference, neurons in primate ACC have been observed to 

encode action value in various tasks (Hayden and Platt, 2010, Matsumoto et al., 2003, 

Matsumoto et al., 2007).  

If OFC encodes value in a stimulus-based reference frame, this may in fact reflect a 

specific role in coding particular decision attributes. Subpopulations of neurons in OFC have 

been observed to specifically encode some decision relevant attributes such as risk and 

reward size (O'Neill and Schultz, 2010), reward size and delay (Roesch et al., 2006) and 

rewarding and aversive outcomes (Morrison and Salzman, 2009) in largely separate 

populations. Although not all OFC neurons discriminate attribute type (Kennerley et al., 

2009, Padoa-Schioppa and Assad, 2006), this subset of neurons are potentially capable of 

making attribute specific comparisons when subjects are presented with multi-attribute 

decisions, a hypothesis that is supported by some human lesion data (Fellows, 2006, 

Fellows and Farah, 2005).  

 There is also strong evidence for frame of reference specific computations from the 

human imaging literature. Several studies have demonstrated a physical separation of the 

representation of some decision attributes such as risk and value (Wright et al., 2013), 

variance and skewness (Symmonds et al., 2011) or food and money (Levy and Glimcher, 

2011) although there are also many examples of common valuation signals particularly in 

vmPFC (Lim et al., 2013, Lin et al., 2012, Chib et al., 2009). BOLD signal in ACC correlates 

with both the effort and reward for a given action (Croxson et al., 2009, Prevost et al., 2010) 
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which could be interpreted as an action value signal. Perhaps most convincingly, in a multi-

attribute trinary decision making study, Hunt et al. (2014) showed that fMRI BOLD signal in 

intraparietal sulcus (IPS) correlated with the value comparison of the frame of reference 

(action value or stimulus value) that subjects used to make decisions on a trial-by-trial basis. 

IPS also showed specific functional connectivity with OFC and Putamen on trials where the 

stimulus value and action value drove the final choice, respectively. Interestingly, the dorsal 

medial frontal cortex encompassing ACC encoded an integrated value difference signal of 

both stimulus and action value. These results suggest that value is calculated in different 

frames of reference, and that value comparisons in different frames of reference can have 

differential influences on choice in different scenarios (Hunt et al., 2014). 

 Another frame of reference that has been suggested in the human imaging literature 

is that of attention. It has already been demonstrated that attention plays a large role in 

simple human decision making, with attention now incorporated into drift diffusion models of 

decision making (Krajbich et al., 2010, Krajbich et al., 2012, Krajbich and Rangel, 2011, 

Shimojo et al., 2003). An fMRI study by Lim et al. (2011) demonstrated that the BOLD signal 

in vmPFC and ventral striatum correlates positively with value of attended items and 

negatively with unattended items during simple binary choices, suggesting that value 

computations in OFC/vmPFC may be framed by current attention. While it remains to be 

seen whether the level of attention toward an item/option modulates value-coding neurons, it 

is noteworthy that subjects tend to attend more to the item they will choose (Krajbich et al., 

2010). Given ‘chosen value’ coding is a ubiquitous signal in single neurons across the brain 

(Kennerley and Walton, 2011), taken together, these results imply that attention may well 

contribute, or even confound, the interpretation of ‘chosen value’ responses. 

 Despite the suggestive evidence that there may be at least three different valuation 

reference frames used by the brain (attentional, action and stimulus/attribute), three 

important questions remain unanswered: 1) how do these signals evolve throughout the 

decision making process, 2) are they relevant to decisions themselves, 3) are there 
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reference frames simultaneously represented during decision making? These questions are 

important to answer in order to understand whether attribute and action value signals simply 

provide inputs into a general value comparison process or whether frame of reference 

specific competition truly occurs in line with the ‘decision making by consensus’ hypothesis. 

The primate behavioural paradigm presented in this chapter provides a novel insight into 

these questions by providing the subject with three potential frames of reference with which 

to make decisions; general (attentional) value, action value and attribute specific value. Of 

particular importance is the fact that the task employs sequential and discreet information 

gathering events, allowing the representation of all three reference frames to be isolated and 

simultaneously tracked across the decision process. Furthermore, recording neuronal data 

from ACC, OFC and vmPFC (three regions heavily implicated in the aforementioned three 

value reference frames) as well as LPFC – an area implicated in attention and eye 

movements (Kennerley and Wallis, 2009c, Lebedev et al., 2004) - allows us to examine 

whether these frames of reference are specific to different regions. 

 Another vital process in decision making is information gathering. However, very little 

is known about how information gathering behaviour is controlled by the brain. As discussed 

and shown in Chapter 3, covert attention and the brain systems which support it may allow 

subjects to quickly extract salient features of our environment and then bias overt attention 

(saccades) towards the most relevant information (Gottlieb, 2012, Gottlieb et al., 2014, 

Anderson, 2013). Such a mechanism would be perfectly suited to solve a problem such how 

to find a preferred chocolate bar on a supermarket shelf. However, when our environments 

contain stimuli that are too complex or abstract to attend to covertly, for example the dozens 

of different properties displayed in an estate agent’s window front, we may require a higher 

level strategy to optimise our information search. 

 In one of the few studies to examine the neural basis of information gathering, 

Fellows (2006) found that when presented with multiple options, each consisting of multiple 

attributes, patients with vmPFC lesions failed to follow the within-attribute comparison 
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strategy that control patients used, and instead used a within option comparison. This result 

implied that damage to vmPFC somehow prevented these patients either from employing 

the normal information gathering strategy, or disrupted some aspect of the valuation or value 

comparison process for decisions of this complexity.  

 In decision making, information itself has its own inherent value which can either be 

correlated or dissociated from the value of the potential options (Loewenstein, 1994). 

Neurons in OFC are known to encode the informativeness of stimuli, and given subjects 

prefer informative over uninformative cues, such OFC activity might reflect a value signal 

(Blanchard et al., 2015). Interestingly, these neurons are orthogonal to value coding neurons 

in OFC (Blanchard et al., 2015), in contrast to a common value signal for reward and 

information by dopamine neurons (Bromberg-Martin and Hikosaka, 2009). Importantly 

however, in this paradigm the informative cue has no bearing on the choice or information 

gathering behaviour; it simply randomly or fully predicts the outcome (Bromberg-Martin and 

Hikosaka, 2009, Blanchard et al., 2015). Thus, despite some evidence that neurons in the 

brain encode information that may have value to predicting outcomes, neuronal signals 

which reflect the value of information, or reflect future information gathering strategies which 

could influence choice, remain unknown. 

 The results reported in this chapter will test the ideas of frames of reference in a 

unifying paradigm. We will show that value signals are evident throughout PFC, yet they are 

also functionally dissociable. We will demonstrate a subpopulation of OFC neurons uniquely 

compare information in the frame of reference of attention, which is converted over the 

course of the trial to an attentional choice signal as the subjects near a response. A 

subpopulation of ACC neurons encode value in the frame of reference of actions during 

early information gathering, but this action value coding becomes weaker over the trial, and 

instead evolves into a signal encoding the chosen action as the response nears. In contrast, 

another subpopulation of OFC neurons encode value in the frame of reference of attributes 

throughout the entire trial, and also encodes an attribute specific correlate of choice which 
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peaks around the time of the response. Finally, we will present the completely novel finding 

that future information gathering strategies are also coded in the three described frames of 

reference prior to information gathering saccades. These results suggest unique 

contributions of different PFC areas in how determining not only what choice is most 

valuable, but also the process of deciding how to decide.  

 

  



140 
 

Methods 

 

Subjects 

Two adult male rhesus monkeys (Macaca mulatta), M and F, aged 5 and 6 years 

respectively were used as subjects in the study. All experimental procedures were approved 

by the Local Ethical Procedures Committee and carried out in accordance with the UK 

Animals (Scientific Procedures) Act. Fluid was controlled to ensure that subjects received 

their daily allotment of fluid during the course of the testing session. 

 

Behavioural Protocol 

A representation of the task structure is shown in Figure 5.2B. Subjects initiated the 

trial by maintaining saccadic fixation on the centre of the screen and central fixation of the 

joystick for 500ms. Once this was achieved two options were presented on the screen 

(seven visual degrees left and right of centre). Each option consisted of two pre-learned 

picture cues assigned to two different value attributes, probability of reward (10%, 30%, 

50%, 70%, 90%) and magnitude of juice reward (0.15AU, 0.35AU, 0.55AU, 0.75AU, 

0.95AU). An example set can be seen in Figure 5.2A. The actual reward magnitude was 

calculated by multiplying the arbitrary unit by the maximum available duration for each 

subject (M: 2500ms, F:2750ms). Reward magnitude was varied by manipulating the length 

of time a reward pump was driven and the absolute values (i.e. reward time) of each 

stimulus was different between subjects. Each cue was 7 visual degrees above/below the 

horizontal centre and 7 degree left/right of the vertical centre of the screen. 
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Figure 5.2: Task structure. (A) An example picture set. (B) Task design and structure. 

Subjects saccade around the screen to gather information about the two options. The initial 

two saccades are experimentally controlled, but then subjects are free to either gather more 

information (1 or 2 cues), or make a choice at any time (see Methods for further details). 

 

At the start of a trial, all four picture cues were covered up by grey squares with the 

exception of one which was covered by a blue square (Figure 5.2B). The blue square 

informed the subject of the required location for a saccade. Once the subject fixated the blue 
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square, the picture cue replaced the blue cue and the subject was required to continuously 

fixate this location for 300ms. If continuous fixation was not achieved within 1200ms the trial 

was aborted and subjects received a short timeout. Once this fixation period was finished, 

the cue was covered with a grey square, and a second blue square was presented at a 

different location. The position of this blue square indicated to the subject the type of trial 

being experienced. If the blue square was for the second cue of the same option, subjects 

were in an ‘Option’ trial; if the blue square was for the same attribute cue of the second 

option then this was an ‘Attribute’ trial. Selection of trial types was pseudorandom. The 

subject was again required to acquire and maintain fixation of the second cue for 300ms 

before it was also covered up by a grey square. After this point, the subjects were now free 

to either i) choose an option using a joystick movement (left/right) based on the value of the 

currently known information or ii) view one or both of the remaining cues (in any order) 

before making a choice, with the third cue requiring 300ms of uninterrupted fixation before 

the fourth cue could be viewed. Importantly, however, they were prevented from viewing any 

cue that they had already seen. Once a response was made, all of the cues were uncovered 

(for 500ms for Subject F and 1000ms for Subject M) following which juice reward feedback 

was given with the probability and reward magnitude chosen by the subject. 

 ‘Option’ and ‘Attribute’ trials were pseudorandomly interleaved during blocks of 50 

trials. Between each of these blocks subjects were presented with a block of 25 trials where 

all of the picture cues were presented immediately (so called ‘Simultaneous’ trials). Data 

from these trials will not be discussed in this chapter. 

 

Neuronal Recordings 

 Subjects were initially implanted with a titanium headpost in order to achieve head 

restraint (for eye tracking and electrophysiological recordings) before undergoing the 

behavioural protocol. Subjects were then subsequently implanted with bilateral circular 



143 
 

recording chambers (19mm internal diameter) which were located using pre-operative MRI 

and peri-operative stereotactic measurements. Post-operatively, gadolinium attenuated MRI 

imaging and electrophysiological mapping of gyri and sulci was used to confirm accurate 

chamber placement. The centre of each chamber was as follows; Subject M: left: AP 30.5, 

right: AP 33, Subject F: left: AP 34, right: AP 32.5. Craniotomies were then performed inside 

each chamber. 

 During each recording session, neuronal activity was measured using tungsten 

microelectrodes (FHC Instruments, Bowdoin, USA) which were driven through the brain 

using custom-built manual microdrives mounted to a grid. During a typical recording session, 

8-20 electrodes were lowered bilaterally into multiple target regions until well isolated 

neurons were found. Neuronal data was recorded at 40kHz using a Plexon Omniplex system 

(Dallas, USA). Neuronal isolation was done through manual spike sorting using Plexon 

Offline Sorter (Dallas, USA). 

 Neuronal data was recorded from four target regions; ACC, LPFC, OFC, vmPFC. We 

considered ACC to be the entire dorsal bank of the anterior cingulate sulcus from AP 27-37. 

LPFC recordings spanned both dorsal and ventral banks of the principal sulcus but were 

concentrated towards the former. All neurons recorded lateral to the medial orbital sulcus 

and medial to the lateral orbital sulcus were considered OFC. Finally, vmPFC was 

considered to be a continuous region which was ventral of the genu of ACC and medial to 

the medial orbital sulcus. Electrophysiological and depth observations (i.e., gyral and sulcal 

landmarks, white matter zones) obtained from each electrode during the electrode lowering 

process were used to estimate the location of each recorded neuron with reference to 

previously obtained MRI images. The full reconstruction of all recorded neurons is shown in 

Figure 5.3. 
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 Figure 5.3: Approximate locations of neurons recorded from each subject.  Each dot 

represents the location of one neuron. Each location was estimated based on depth of 

penetration, electrophysiological observations during recordings and registration of the 

recording grid to post-operative MRI scans. Numbers correspond to the distance in 

millimetres anterior of the inter-aural line (AP). 

 

Data Analysis 

 All data analysis was performed using MATLAB (Mathworks, USA). In order to 

analyse the data the first step was to separate neuronal firing into four different epochs of 

relevance. These epochs were named Cue 1, Cue 2, Cue 3 and Response. Each ‘Cue’ 

epoch included data 200ms prior to cue onset and 600ms post-onset. The response epoch 

spanned from 900ms prior to response to 300ms after the response. These large windows 

were used in order to maximise the chances of observing task relevant computation 

although when analyses were repeated with shorter windows similar results were seen. 
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 To test whether neurons encoded experimentally relevant variables, multiple linear 

regression was used (Equation 5.1) where Y was the dependent variable and Xn were the 

regressor and were weighted by coefficients βn. Before performing regression, neuronal 

firing rate (FR) was normalised by subtracting the mean trial FR across all trials and dividing 

by the standard deviation in FR across all trials. For each of the cue epochs normalised FR 

was then averaged into 61 200ms time bins with a 10ms slide between adjacent bins. The 

same procedure was implemented for the response epoch with the exception that, due to its 

larger size, FR was averaged into 101 200ms bins. Regression was then performed at each 

time bin.  

𝑌 =  𝛽0 + 𝛽1𝑋1 + ⋯ +  𝛽𝑛𝑋𝑛                 Equation 5.1    

In order to correct for multiple comparisons across time, we performed a permutation 

test for every regressor and neuron.  In order to do this we permuted the trial order of the 

normalised FR matrix (before averaging into time bins) and then performed the same 

regression on this permuted data. This was repeated for 1000 permutations. For each 

permuted regression and each regressor, the maximum and minimum T-statistic observed 

over all time bins was drawn to create a distribution of maximum and minimum T-statistics 

observed from random data. We then took the 97.5th percentile of the maximum T-statistic 

distribution and the 2.5th percentile of the minimum T-statistic distribution as the upper and 

lower significance thresholds respectively. This protocol meant that all regressors and 

neurons had individual threshold T-statistics for significance. Using this permutation method, 

a typical computed upper threshold T-statistic (computed from approximately 400-450 trials) 

was between 2.7 and 3, which was considerably stricter than the typical upper threshold 

computed from a standard T distribution. 

 In order to test our hypotheses pertaining to neuronal coding, we used several 

regression models at various epochs during the task and then used a ‘population code 

projection’ to examine the relationship between computations at each stage of the decision. 
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The regression model we used at Cue 1 can be seen in Table 5.1. We performed linear 

hypothesis tests (i.e. contrasts) for the following combinations of regressors in order to 

compute other task variables (abbreviations to be found in Table 5.1): 

 

 

Table 5.1: A list of regressors and their interpretations used in the multiple linear regression 

of neuronal firing rate aligned to Cue 1 onset. All regressors refer to the properties of Cue 1. 

 

Cue 1 Attentional Value = MTL + MTR + MBL + MBR + PTL + PTR + PBL + PBR 

A neuron which has a positive coefficient for this linear hypothesis test fires more when the 

attended cue increases in value. 

 

Cue 1 Action Value = (MTL + MBL + PTL + PBL) – (MTR + MBR + PTR + PBR) 

# Regressor Interpretation # Regressor Interpretation 

1 
Magnitude Value 

Top Left (MTL) 
Value 7 

Probability Value 

Bottom Left (PBL) 
Value 

2 
Magnitude Value 

Top Right (MTR) 
Value 8 

Probability Value 

Bottom Right (PBR) 
Value 

3 
Magnitude Value 

Bottom Left (MBL) 
Value 9 

Top Left Cue 

Presentation 

Position 

Response 

4 

Magnitude Value 

Bottom Right 

(MBR) 

Value 10 
Top Right Cue 

Presentation 

Position 

Response 

5 
Probability Value 

Top Left (PTL) 
Value 11 

Bottom Left Cue 

Presentation 

Position 

Response 

6 
Probability Value 

Top Right (PTR) 
Value 12 

Bottom Right Cue 

Presentation 

Position 

Response 
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A neuron which has a significant positive coefficient for this hypothesis test fires more as the 

value of stimuli presented on the left increase compared to those on the right. 

 

Cue 1 Attribute Value = (MTL + MTR + MBL + MBR) – (PTL + PTR + PBL + PBR) 

A neuron which has a significant positive coefficient for this hypothesis test fires more as the 

value of the magnitude stimulus increases compared to that of probability stimulus. 

 

Cue 1 Top-Bottom Value = (MTL + MTR + PTL + PTR) – (MBL + MBR+ PBL + PBR) 

A neuron which has a significant positive coefficient for this hypothesis test fires more as the 

value of stimuli presented on the top half of the screen increase compared to those on the 

bottom half. 

 In order to examine attention dependent value computations within PFC we 

constructed regressions models for the Cue 2 and 3 epochs which took into account value 

(of current and previous cues), trial type and third saccade direction (see Table 5.2 and 5.3). 

For the Cue 2 epoch we then performed linear hypothesis tests to compute the following 

variables (all abbreviations can be found in Table 5.2): 
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Table 5.2: A list of regressors and their interpretations used in the multiple linear regression 

of neuronal firing rate aligned to Cue 2 onset.  

 

Cue 1 Option Trials = OptC1Horz + OptC1Diag 

A neuron that encodes a positive coefficient for this linear hypothesis test fires more (at Cue 

2) as the value of the Cue 1 increases on ‘Option’ trials. 

 

Cue 2 Option Trials = OptC2Horz + OptC2Diag 

A neuron that encodes a positive coefficient for this linear hypothesis test fires more as the 

value of Cue 2 increases on ‘Option’ trials. 

 

Cue 1 Attribute Trials = AttC1Horz + AttC1Diag 

A neuron that encodes a positive coefficient for this linear hypothesis test fires more as the 

value of Cue 1 increases in ‘Attribute’ trials. 

# Regressor Interpretation # Regressor Interpretation 

1 

Option Trial Cue 1 

Value Horizontal 3rd 

Saccade 

(OptC1Horz) 

Attentional 

Value 
6 

Attribute Trial Cue 1 

Value Vertical 3rd 

Saccade (AttC1Vert) 

Attentional 

Value 

2 

Option Trial Cue 2 

Value Horizontal 3rd 

Saccade 

(OptC2Horz) 

Attentional 

Value 
7 

Attribute Trial Cue 2 

Value Vertical 3rd 

Saccade 

(AttC2Vert) 

Attentional 

Value 

3 

Option Trial Cue 1 

Value Diagonal 3rd 

Saccade 

(OptC1Diag) 

Attentional 

Value 
8 

Attribute  Trial Cue 1 

Value Diagonal 3rd 

Saccade 

(AttC1Diag) 

Attentional 

Value 

4 

Option Trial Cue 2 

Value Horizontal 3rd 

Saccade 

(OptC2Diag) 

Attentional 

Value 
9 

Attribute  Trial Cue 2 

Value Horizontal 3rd 

Saccade 

(AttC2Diag) 

Attentional 

Value 

5 Left Response Constant 10 Right Response Constant 
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Cue 2 Attribute Trials = AttC2Horz + AttC2Diag 

A neuron that encodes a positive coefficient for this linear hypothesis test fires more as the 

value of Cue 2 increases in ‘Attribute’ trials.  

 We also constructed a similar regression model at Cue 3 which again included all 

current and previous value information, trial type and third saccade direction (see Table 5.3). 

Linear hypothesis tests were performed on the beta coefficients of the following regressors 

to compute other task variables (all abbreviations can be found in Table 5.3): 

 

Table 5.3: A list of regressors and their interpretations used in the multiple linear regression 

of neuronal firing rate aligned to Cue 3 onset.  

 

# Regressor Interpretation # Regressor Interpretation 

1 

Option Trial Cue 1 

Value Horizontal 3rd 

Saccade (OptC1Horz) 

Value 7 

Attribute Trial 

Cue 1 Value 

Vertical 3rd 

Saccade 

(AttC1Vert) 

Value 

2 

Option Trial Cue 2 

Value Horizontal 3rd 

Saccade 

(OptC2Horz) 

Value 8 

Attribute Trial 

Cue 2 Value 

Vertical 3rd 

Saccade 

(AttC2Vert) 

Value 

3 

Option Trial Cue 1 

Value Diagonal 3rd 

Saccade 

(OptC1Diag) 

Value 9 

Attribute  Trial 

Cue 1 Value 

Diagonal 3rd 

Saccade 

(AttC1Diag) 

Value 

4 

Option Trial Cue 2 

Value Horizontal 3rd 

Saccade 

(OptC2Diag) 

Value 10 

Attribute  Trial 

Cue 2 Value 

Horizontal 3rd 

Saccade 

(AttC2Diag) 

Value 

5 

Option Trial Cue 3 

Value Horizontal 3rd 

Saccade 

(OptC3Diag) 

Value 11 

Attribute  Trial 

Cue 3 Value 

Horizontal 3rd 

Saccade 

(AttC3Diag) 

Value 

6 Left Response Constant 12 Right Response Constant 
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Cue 1 Option Trials = OptC1Horz + OptC1Diag 

Cue 2 Option Trials = OptC2Horz + OptC2Diag  

Cue 3 Option Trials = OptC3Horz + OptC3Diag 

Cue 1 Attribute Trials = AttC1Horz + AttC1Diag 

Cue 2 Attribute Trials = AttC2Horz + AttC2Diag  

Cue 3 Attribute Trials = AttC3Horz + AttC3Diag 

Previous Cue Saccaded Side = AttC1Diag + AttC2Horz 

A neuron which encodes this coefficient positively fires more (at Cue 3) as the value of the 

previous cue located on the side of current attention increases in ‘Attribute’ trials. 

 

Previous Cue Unsaccaded Side = AttC2Diag + AttC1Horz 

A neuron which encodes this coefficient positively fires more (at Cue 3) as the value of the 

previous cue located on the side away from current attention increases in ‘Attribute’ trials. 

 

In order to examine whether neuronal firing also correlated with various task 

parameters at Cue 2, we used a simple regression model which encoded only the value of 

the current cue separated by presentation side (L/R) and attribute type (P/M). It also 

contained binary regressors for whether the Cue 2 side was chosen differentially based on 

the current attribute type. A similar binary regressor was included for when the cue was 

unchosen. Other binary regressors that we included were for final response direction 

(left/right), whether the first or second option was chosen and whether the attended stimulus 

was eventually chosen. An accurate description of all regressors entered into this model can 

be found in Table 5.4. We performed linear hypothesis tests on the following regressors to 

examine current action and attribute value (all abbreviations can be found in Table 5.4): 
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Table 5.4: A list of regressors and their interpretations used in the multiple linear regression 

of neuronal firing rate aligned to Cue 2 onset. All regressors refer to the properties of Cue 2. 

 

Current Cue Attentional Value = (PL + PR + ML + MR) 

Current Cue Action Value = (PL + ML) – (PR + MR) 

Current Cue Attribute Value = (PL + PR) – (ML + MR)  

At Cue 3 we used a similar regression model to Cue 2 which encompassed only 

current cue value split by attribute and presentation and again binary regressors for 

response, current cue choice differentially by attribute and previous cue choice (i.e. Cue 2) 

differentially by attribute (see Table 5.5 for a full description of the model).  The same linear 

hypothesis tests were performed as for the Cue 2 epoch regression to compute Current Cue 

Action Value and Current Cue Attribute Value at Cue 3. 

 

 

 

# Regressor Interpretation # Regressor Interpretation 

1 
Probability Value 

Left (PL) 
Value 6 Left-Right Response Response 

2 
Probability Value 

Right (PR) 
Value 7 

Current Cue Side 
Chosen (Probability 
Value – Magnitude 

Value) 

Attribute 
Specific Choice 

3 
Magnitude Value 

(ML) 
Value 8 

Current Cue Side 
Unchosen 

(Probability Value – 
Magnitude Value) 

Attribute 
Specific Choice 

4 
Magnitude Value 

(MR) 
Value 9 Constant Constant 

5 
Choose Option 1 -

2 
Temporal 
Choice 

10 
Choose Attended 

Side 
Attentional 

Choice 
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Table 5.5: A list of regressors and their interpretations used in the multiple linear regression 

of neuronal firing rate aligned to Cue 3 onset. All regressors refer to the properties of Cue 3. 

 

 Finally, we also performed a regression analysis of neuronal data aligned to the 

subjects’ joystick response. In order to perform this analysis, several assumptions were 

made. Because subjects were not forced to view every cue before making a choice, we 

made the assumption that if a cue was not viewed by the time of response, the subject 

inferred the cue’s value as the average value (i.e. a rank of 3 out of 5) and made decisions 

based on this inference. Also, subjects had a tendency to fixate a new picture while already 

making a joystick response, therefore in these cases the last cue that subjects viewed could 

not possibly have influenced choice; therefore, any occasion where final cue acquisition 

occurred <100ms before the joystick response we considered the final cue to not have been 

viewed for the purpose of the regression, thereby assuming it was of average value. The 

regression model included the probability and magnitude values presented in the trial sorted 

by side of presentation and whether each was chosen or unchosen. There were also binary 

# Regressor Interpretation # Regressor Interpretation 

1 
Probability Value 

Left (PL) 
Value 7 

Left-Right 

Response 
Response 

2 
Probability Value 

Right (PR) 
Value 8 

Cue 2 Chosen 

(Probability – 

Magnitude) 

Attribute 

Specific Choice 

3 
Magnitude Value 

(ML) 
Value 9 

Cue 2 Unchosen 

(Probability – 

Magnitude) 

Attribute 

Specific Choice 

4 
Magnitude Value 

(MR) 
Value 10 Constant Constant 

5 

Cue 3 Chosen 

(Probability – 

Magnitude) 

Attribute 

Specific 

Choice 

11 
Choose Attended 

Side 
Attentional 

Choice 

6 
Choose Option 1 

-2 
Temporal 
Choice 
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terms for response direction, for whether the side of the final stimulus was chosen or 

unchosen, for whether subjects were choosing the first or second presented option, for when 

subjects were choosing the side of the final attended cue differentially based on its attribute 

type and finally for when subject did not choose the side of the final attended cue 

differentially based on attribute type. A full description of this model can be found in Table 

5.6. Note that we define (un)chosen value as the sum of the value of the two cues rather 

than the product in order to simplify the analysis. We then performed the following linear 

hypothesis tests to examine other task variables (all abbreviations can be found in Table 

5.6): 

# Regressor Interpretation # Regressor Interpretation 

1 
Chosen Probability 

Value Left (ChPL) 
Value 8 

Unchosen 

Magnitude Right 

(UnMR) 

Value 

2 
Chosen Magnitude 

Value Left (ChML) 
Value 9 

Left Response 

(Lresp) 
Left Response 

3 
Chosen Probability 

Value Right (ChPR) 
Value 10 

Right Response 

(Rresp) 

Right 

Response 

4 
Chosen Magnitude 

Value Right (ChMR) 
Value 11 

Last Attended Side 

Chosen 

Differentially by 

Attribute  

Attribute 

Specific 

Choice 

Correlate 

5 
Unchosen Probability 

Value Left (UnPL) 
Value 12 

Last Attended Side 

Unchosen 

Differentially by 

Attribute 

Attribute 

Specific 

Choice 

Correlate 

6 

Unchosen 

Magnitude Left 

(UnML) 

Value 13 
Last Attended Side 

Chosen - Unchosen 

Attentional 

Choice 

7 
Unchosen Probability 

Right (UnPR) 
Value 14 

Choose Option 1 – 

Choose Option 2 

Stimulus 

Specific 

Choice 

Correlate 

 

Table 5.6: A list of regressors and their interpretations used in the multiple linear regression 

of neuronal firing rate aligned to response.  
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Action Specific Chosen Value = (ChPL +ChML) – (ChPR + ChMR) 

Attribute Specific Chosen Value = (ChPL + ChPR) – (ChML +ChMR) 

Response = Lresp – Rresp 

To determine how much variance in firing rate was accounted for by value, action 

value and attribute value at Cue 1, we calculated the coefficient of partial determination 

(CPD) and then averaged this value across all neurons in each brain area to obtain an 

estimate of the amount of variance explained for each regressor at the population level. The 

CPD for regressor Xi is defined as: 

 

𝐶𝑃𝐷(𝑋𝑖) = {𝑆𝑆𝐸(𝑋 − 𝑖)  −  𝑆𝑆𝐸(𝑋 − 𝑖, 𝑋𝑖)}/𝑆𝑆𝐸(𝑋 − 𝑖)               Equation 5.2 

 

where SSE(X) refers to the sum of squared errors in a regression model that includes a set 

of regressors X, and X-i a set of all the regressors included in the full model except Xi. Binary 

terms for stimulus position were also included and full list of regressors can be found in 

Table 5.7. 

 

# Regressor Interpretation # Regressor Interpretation 

1 Value Value 5 
Top Left Cue 

Presentation 

Position 

Response 

2 
Action Value (Left – 

Right) 
Action Value 6 

Top Right Cue 

Presentation 

Position 

Response 

3 

Attribute Value 

(Probability – 

Magnitude) 

Attribute Value 7 
Bottom Left Cue 

Presentation 

Position 

Response 

4 
Left – Right Side 

Presentation 
Side Response 8 

Bottom Right Cue 

Presentation 

Position 

Response 

 

Table 5.7: A list of regressors and their interpretations used in the CDP of neuronal firing 

rate aligned to Cue 1 presentation. 
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 One of the main objectives of this chapter is to look at the evolution of early value 

signals in various frames of reference across a trial in order to understand how these 

neurons perform frame of reference relevant computations. In order to achieve this goal, we 

used the mean beta coefficients (from 100-500ms post-cue onset) for the ‘attentional value’, 

‘attribute value’ and ‘action value’ regressors at Cue 1 as ‘population value codes’. We then 

regressed each of these fixed population codes against sliding population codes for other 

variables and regressors obtained at time-points during the Cue2, Cue 3 and response 

epochs. This analysis tested whether the strength and direction of the encoding of a 

regressor at Cue 1 was related to the strength and direction of coding of task-related 

variables at other time points. We compared the strength of these ‘sliding projection 

analyses’ (i.e., correlations) between regions every 100ms using linear hypothesis tests (with 

Bonferroni correction for repeated tests across areas), in order to observe whether one or 

more regions had a significantly stronger correlation than others. 

 To test whether any neurons in PFC encoded future information gathering behaviour, 

we used a regression model at Cue 1 which predicted third saccade behaviour in three 

separate frames of reference (Table 5.8). In ‘Option’ trials we used a binary regressor which 

described whether subjects made a horizontal or diagonal third saccade (i.e. in the frame of 

reference of the currently attended attribute but not in an attribute frame of reference). We 

also used a binary co-regressor which described whether the third cue was of probability or 

magnitude type in ‘Option’ trials. In ‘Attribute’ trials, we included a binary regressor which 

described whether subjects made vertical or diagonal saccades (i.e. whether they chose to 

saccade towards or away from the currently attended side) and a second binary co-

regressor which described whether the saccade finished on the left or right side of the 

screen (i.e. in the action frame of reference). We also accounted for attentional, action and 

attribute value coding in the same model. We also used the same regression model at Cue 2 

and Cue 3 to investigate whether neuronal firing predicted third saccade behaviour (i.e. post-
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saccade signals) with the exception that at each of these cues, we also added value 

regressors for previously seen cues along with the currently attended cues. 

# Regressor Interpretation # Regressor Interpretation 

1 
Probability Value 

Left (PL) 
Value 6 

Left-Right 

Response in 

‘Option’ trials 

Response 

2 
Magnitude Value 

Left (ML) 
Value 7 

Magnitude vs 

Probability 

Saccades in 

‘Option’ trials 

Attribute 

Saccade 

3 
Probability Value 

Right (PR) 
Value 8 

Horizontal vs 

Diagonal Saccades 

in ‘Option’ trials 

Attentional 

Saccade 

4 
Magnitude Value 

Right (MR) 
Value 9 

Left vs Right 

Saccades in 

‘Attribute’ trials 

Action 

Saccade 

5 

Left-Right 

Response in 

‘Option’ trials 

Response 10 
Vertical vs 

Diagonal Saccades  

Attentional 

Saccade 

 

Table 5.8: A list of regressors and their interpretations used in the multiple linear regression 
of neuronal firing rate aligned to Cue 1 for predicting third saccade behaviour. 
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Results 

 

 Two adult rhesus macaque monkeys (Subjects M and F) were trained to perform a 

multi-attribute sequential information gathering and decision task (Figure 5.2), in which they 

made manual responses to choose one of two options based on information they acquired 

through saccading to cues on the screen (see Methods). Subject M performed 32 recording 

sessions completing an average of 445 trials per session. Subject F performed an average 

of 394 trials per session over 25 recording sessions. A more comprehensive breakdown of 

behaviour can be found in Chapter 4. During the task we recorded single neuronal activity 

from four regions of PFC; ACC, LPFC, OFC and vmPFC. The total number of neurons 

recorded from each region for each subject can be found in Table 5.9 and the estimated 

locations of each neuron can be seen in Figure 5.3. 

 
ACC LPFC OFC vmPFC 

Subject M 101 49 87 35 

Subject F 97 107 108 125 

Total 198 156 195 160 

 

Table 5.9: The numbers of neurons recorded in each brain area split by subject. 

 

Neurons in PFC Encode Value in Different Frames of Reference at Cue 1 

 A critical feature of the task that subjects performed was that each presented cue 

consisted of three important properties: it’s attentional value (invariant of any action or 
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attribute type), it’s action (i.e. the joystick response required to choose the option pertaining 

to the cue) and it’s attribute (i.e. whether it was of magnitude or probability type).  

In order to understand whether neurons in PFC encoded value in these three 

reference frames, we performed a sliding multiple regression of mean neuronal firing rate at 

Cue 1 presentation against several regressors (see Methods, Table 5.1). We then separated 

neuronal selectivity by area to investigate region specific computations within PFC (Figure 

5.4A). Significant proportions of neurons across all four regions encoded the attentional 

value of Cue 1 (binomial test, all p<8x10-16). However, a significantly smaller proportion of 

vmPFC neurons encoded attentional value compared to all other regions (pairwise Chi2 test, 

all p<0.007). Furthermore, neurons in both ACC and OFC were significantly more likely to 

encode attentional value than LPFC (pairwise Chi2 test, all p<0.003). From these findings we 

concluded that although value coding is particularly strong in ACC and OFC, value 

representations are a ubiquitous signal throughout PFC. 

We then investigated whether any neurons discriminated their value code based on the 

action associated with the cue (i.e. whether they encoded action value). A significant subset 

of ACC and LPFC neurons (approximately 20%) encoded action value (binomial test, all 

p<3x10-7). Both of these populations were significantly greater than OFC and vmPFC, which 

themselves only encoded action value at chance level (pairwise Chi2 test, all p<0.006, 

binomial test for OFC and vmPFC, both p>0.05). Figure 5.4B shows an example ACC 

action value neuron which encodes the value of a cue presented on the left with a positive 

relationship, yet reverses this relationship when the presentation is on the right. It is possible 

that rather than encoding action value, the ACC and LPFC neurons are in fact encoding 

value with reference to various parts of space. If this were true, then this would be 

indistinguishable from action value in the left/right domain. However one might expect to also 

find neurons which differentiated value when cues were presented on the top part of the 

screen compared to the bottom part. Indeed, in LPFC an equally prevalent population of top-
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bottom value neurons were observed (Chi2 test, p>0.05), whereas in ACC this population 

 

Figure 5.4: Frames of reference specific value coding in PFC (A) Percentage of neurons 

encoding attentional value, action value and attribute value at Cue 1. Asterisks indicate 

populations of neurons that are significantly different (Chi2 test). The dashed line indicates 

the 5% chance level. (B) The firing rate of an example action value ACC neuron aligned to 

Cue 1 onset (solid black line) separated by side of presentation and by cue value (coloured 

lines). The plot below represents the beta coefficients for a sliding linear regression of firing 

rate against left and right cue value respectively. Red dots indicate significant coefficients 

(defined by a permutation test) and blue dots coefficients that are non-significant. (C) The 

firing rate of an example attribute value OFC neuron separated by attribute type and cue 

value. All other features are the same as (B). 

 

was significantly smaller than the left-right value population (Chi2 test, p<5.4x10-4). From this 

we conclude that LPFC is likely to encode value differentially based on spatial position 

whereas ACC is more likely to encode value in the frame of reference of actions necessary 

for choice. 
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Next we considered whether neurons encode attribute value (i.e. neurons which 

discriminate value more for one attribute than another). In this case, OFC was found to be 

significantly more likely to do this (Figure 5.4A) (pairwise Chi2, all p<0.009). Figure 5.4C is 

an example of such a neuron. This OFC neuron encoded that value of probability cues 

irrespective of which side of the screen the cue was presented, yet this neuron did not 

encode value of magnitude cues. However, it should be noted that ACC and LPFC also 

contained a small population of attribute value coding neurons which exceeded chance level 

(binomial test, both p<0.02). 

To further examine the action value codes we made a scatter plot of the maximum 

left value encoding (i.e. T-statistic) against maximum right value encoding for neurons in 

each region (Figure 5.5A). If neurons were insensitive to the presentation side of the cue, 

the expected observation would be that all neurons would fall approximately on the equality 

line (dashed line). This was seen to be the case for OFC which also had a significantly 

stronger Person’s correlation coefficient when compared to all other regions (Fisher’s r-to-z 

transformation, z test, all p<0.005). From this we concluded that OFC neurons are 

significantly less likely than other regions to discriminate action value. In contrast many ACC 

neurons did not lie on the equality line and coupled with the fact that many neurons were 

seen to encode value, this suggests a strong influence of action on value computation at 

Cue 1.  

We then repeated this analysis but instead used the maximum probability and 

magnitude value coding in order to probe attribute specific value coding (Figure 5.5B). In 

this analysis, ACC was seen to have a significantly stronger correlation coefficient compared 

to all other regions (Fisher’s r-to-z transformation, z test, all p<2x10-10), indicating that ACC 

is extremely insensitive to attribute specific value, whereas OFC had many neurons which 

fell well off the equality line, indicative of attribute-specific value coding.  
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Figure 5.5: Maximum action and attribute value encoding across regions. (A) Maximum T-

statistics for right and left value encoding after cue presentation for individual neurons. The 

colour of the dot indicates whether the regression model considered the neuron to encode 

either, both and neither left and right value (see figure legend). Diamonds indicate neurons 

that were considered to differentially encode left and right value (i.e. encode action value). 

(B) Maximum T-statistics for probability and magnitude value encoding after cue 

presentation for individual neurons. Colour legends are the same as (A) except for 

probability and magnitude value encoding. (C) A representation of the Person’s correlation 

coefficients that are significantly different using Fisher’s r-to-z transformation (p<0.05). Each 

area was compared with all other areas within each frame of reference (i.e. action or 

attribute) and with itself across frames of reference. 

 

Having observed the differences in correlation coefficients between ACC and OFC 

within a frame of reference, we wanted to test whether the observed decrease in correlation 

was actually specific for the action frame of reference for ACC and the attribute frame of 

reference for OFC. In order to achieve this, we performed a statistical comparison of the 

correlation coefficients observed for each frame of reference for individual regions (Figure 
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5.5C). This test showed that the correlation coefficients were significantly different across 

frames in both ACC and OFC (Fisher’s r-to-z transformation, z test, all p<0.005). One 

weakness of this correlation analysis is that areas that do not strongly encode value may 

also give low correlation coefficients in this analysis. Therefore this test may not be sensitive 

for areas such as LPFC and vmPFC. 

In order to examine how much neuronal variance was explain by attentional value, 

action value and attribute value at the entire population level in each brain area, we 

calculated the coefficient of partial determination (CPD) during the Cue 1 epoch. This 

analysis included the aforementioned variables amongst its regressors (see Table 5.7 for a 

full list of regressors). The CPD analysis found that at its peak, attentional value accounted 

for approximately 3% of the variance in neuronal firing in ACC and OFC (Figure 5.6). On the 

other hand, action and attribute value only accounted for 0.5-1% of variance in ACC and 

OFC, respectively (Figure 5.6). This analysis also revealed the time course and latency of 

the value signals in the three different reference frames. The attentional value signal was 

seen to be relatively fast, occurring as 100ms post-cue 1 onset, while the action and attribute 

signals appeared to be slightly slower, only occurring shortly before 200ms post-cue onset. 

These initial observations imply that early on during the trial, many neurons throughout PFC 

encode attentional value. Furthermore, significant subsets of ACC neurons encode action 

value and a significant subset of OFC neurons encode attribute value. Also, both action and 

attribute value coding occurs later than attentional value coding. 
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 Figure 5.6: The time course of reference frame specific value coding. Mean coefficient of 

partial determination (CPD) across all neurons for value, action value and attribute value 

encoding over time split by region. Thick lines indicate the mean CPD for the population and 

the shaded line the SEM. All data is aligned to the Cue 1 onset (black line). 

 

OFC Compares Value in an Attentional Frame of Reference 

 Having identified populations of neurons throughout PFC that encode the general 

(attentional) value of the first cue, we aimed to track the computations of these neurons over 

the course of the trial. By doing this we hoped to gain insight into whether these neurons 

simply encode the value of attended stimuli, or whether they perform task relevant 

computations (value summations or subtractions) framed by current attention. The first 

course of action was to examine attentional value coding during Cue 2 presentation. This 

period has a critical relevance to any attentional signal because at this point subjects could 

be diverted into either an ‘Option’ or ‘Attribute’ trial. The importance of this is that in ‘Option’ 

trials, the previously seen cue remained on the attended side of the screen, whereas in 

‘Attribute’ trials the first cue was now on the unattended side of the screen (see Figure 5.3 

for example trials). Therefore, if value representation in any region was dependent on the 

attended side (given the task requires a left or right choice), then differential effects should 

be observed between trial types.  

To test this we regressed the mean population code for attentional value at Cue 2 

between 200-500ms post-cue onset against the mean population memory trace code for 
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Cue 1 value at Cue 2 during the same time period for both ‘Option’ and ‘Attribute’ trials. 

Uniquely, for the OFC population, this analysis showed a positive correlation between Cue 1 

and 2 value coding specifically in ‘Option’ trials (indicating the population was encoding the 

Option sum), and a negative correlation between the two Cues in ‘Attribute’ trials (indicating 

the population was encoding the difference in value between Cue 1 and Cue 2), with a 

significant difference between the trial types (Figure 5.7A) (linear regression; T(‘Option’)=2.60, 

T(‘Attribute’)=-3.53, p(‘Option’)=0.01, p(‘Attribute’)<0.0005, linear hypothesis test of coefficients for 

‘Option’ trials compared to ‘Attribute’ trials, T=19.21, p<2x10-5). OFC therefore sums 

information on the attended side but subtracts value information from unattended side. This 

result implies that OFC computes value in the frame of reference of the attended versus the 

unattended side/option. Although this attentional value code is represented at the population 

level, individual examples of attentional coding can be observed in single neurons in OFC 

(Figure 5.7B). This example neuron encodes the option sum value negatively in ‘Option’ 

trials, and encodes value difference negatively (i.e. with a preference for Cue 1) in ‘Attribute’ 

trials. Surprisingly, LPFC also showed a significant negative correlation reflecting a 

difference computation specific to ‘Option’ trials (Figure 5.7A) (linear regression; T=-2.27, 

p<0.03). This LPFC signal on ‘Option’ trials may reflect a signal for future information 

gathering, as large differences between Cue 1 and Cue 2 value on ‘Option’ trials would be 

associated with options of average value; hence further information may be necessary to 

decide which option to choose. Relatedly, such a value difference on ‘Option’ trials may be 

important for signalling which attribute to saccade to at Cue 3 for subsequent value 

comparisons and decision-making. 
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Figure 5.7: Population value computations at Cue 2. (A) The linear regression of the 

population Cue 1 attentional value memory trace for each trial type against Cue 2 attentional 

value population code. Coloured asterisks indicate beta coefficients that are significant 

(p<0.05) and black asterisks indicate coefficients that are considered significantly different 

from one another by a linear hypothesis test (p<0.05). (B) An example OFC neuron in 

‘Option’ trials (top) and ‘Attribute’ trials (bottom). Each diamond indicates the mean firing rate 

at Cue 2 for a given option sum (top) or value difference (bottom). Vertical lines show the 

SEM and the dashed line the fit of the data using least-squares regression. 

 

In order for OFC to compute attentional value difference in ‘Attribute’ trials, the value 

code for Cue 2 must be of opposite sign to the memory code of Cue 1. This begs the 

question: was the Cue 2 value code opposite to the original Cue 1 code or did the Cue 1 

memory trace invert its code when Cue 2 was presented? To test this we performed a 

regression of the mean Cue 1 attentional value code at Cue 1 against the mean Cue 1 

attentional value memory trace at Cue 2 for each trial type (Figure 5.8A and 5.8B). When 

computing the mean code using 200-400ms cue onset, there was a significant negative 

correlation specific to ‘Attribute’ trials, implying a sign flip of the memory trace when attention 

was diverted away from the side of the Cue 1 (Figure 5.8B) (linear regression; T=-2.11, 

p<0.04). When the window was moved forward (100-300ms post cue onset) a significant 
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positive correlation was observed in OFC specifically in ‘Option’ trials, which would be 

expected if these neurons computed attended option value (Figure 5.8A) (linear regression; 

T=2.02, p<0.05). The fact that the two above results present themselves at slightly different 

time windows may imply that computation dynamics in the two trial types occur with different 

temporal profiles.  

 

Figure 5.8: The relationship between Cue 1 attentional coding across cues. (A) Scatter plots 

of attentional value coding of Cue 1 at Cue 1 against the memory value code for Cue 1 at 

Cue 2 on ‘Option’ trials. Dashed lines indicate the least-squares regression slope and 

asterisks indicate significant relationships (p<0.05). (B) The same scatter plots for ‘Attribute’ 

trials. (C) The beta coefficients of a regression of Cue 1 attentional coding against Cue 2 

attentional coding split by trial type. 
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We also performed an identical regression on the Cue 1 attentional value code (i.e. 

at Cue 1) against the Cue 2 attentional value code (at Cue 2) in each type of trial and found 

strong positive correlations in all areas (Figure 5.8C) (linear regression; all T(‘Option’)>6.37, all 

T(‘Attribute’)>7.15, all p(‘Option’)<7x10-10, all p(‘Attribute’)<7x10-12). However, there was a significant 

difference in the Cue1-Cue 2 relationship in OFC when compared between trial types (linear 

hypothesis test of the coefficient for ‘Option’ trials against the coefficient for ‘Attribute’ trials, 

T=18.25, p<3x10-5), implying that the population representation of Cue 2 attentional value 

was weaker in OFC in ‘Option’ trials, although the functional relevance of this remains 

unclear. Therefore, we can conclude that the value of currently attended information is 

always represented in the same manner (if not always as strongly), but the memory 

representations of previous value information is flipped specifically in OFC when attention 

shifts to a different choice option. 

 We then went on to test attentional value computations at Cue 3. In ‘Option’ trials, the 

third cue was invariably presented on the opposite side of the screen to the first and second 

cues, and hence attention was involuntarily forced away from the side of Cues 1 and 2. On 

performing a linear regression of the mean value code at attended Cue 3 against the mean 

unattended code for the memory trace Option 1 value (i.e. Cue 1 + Cue 2) at Cue 3, we 

again found a negative correlation between the attended and unattended value codes in 

OFC (Figure 5.9A) (T=-2.56, p<0.02). Surprisingly, a borderline negative correlation was 

also observed in LPFC (T=-1.86, p=0.067). We then performed a sliding regression of the 

Cue 3 value code against the Option 1 memory trace code at Cue 3 to examine the time 

course of this computation. This analysis showed that in OFC the attentional comparison 

was strongest 100-400ms post-Cue 3 onset (Figure 5.9B). The LPFC negative correlation 

also began at approximately 100ms but was sustained past 500ms post-Cue 3 onset. We 

then repeated this analysis but used Cue 1 and Cue 2 value instead of Option 1 value.  The 

negative correlation was borderline significantly stronger for Cue 1 than Cue 2 in OFC 

(Figure 5.9C) (linear hypothesis test of beta coefficients for Cue 1 against Cue 2; T=3.22, 
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p=0.073).  For LPFC, only the Cue 2 value code correlated with the Cue 3 code (linear 

regression; T=-2.99, p<0.003).   

 

Figure 5.9: Attentional value computations in ‘Option’ trials at Cue 3. (A) A scatter plot of the 

beta coefficients for Option 1 (i.e. the unattended side) value memory coding at Cue 3 

against the attentional value code of Cue 3. All other figure properties are the same as 

Figure 5.8. (B) A sliding linear regression of the Option 1 value memory coding at Cue 3 

against Cue 3 attentional value coding. Thin lines indicate the SEM. (C) The linear 

regression of Cue 3 attention value coding against the Cues 1 and 2 value memory codes. 

All other figure properties are the same as Figure 5.8. 

 

As expected, a sign flip was also observed in the Cue 1 value memory trace at Cue 3 

compared to the original value code at Cue 1 in OFC (Figure 5.10) (linear regression; T=-

2.02, p<0.05). However, surprisingly this flip was not the case with Cue 2 value memory 

trace in OFC,  which remained strongly positively correlated with the original Cue 2 value 
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code (Figure 5.10) (linear regression; T=3.22, p<0.002). This positive Cue 2 effect was also 

observed in vmPFC (linear regression; T=2.71, p<0.008). 

 

 

Figure 5.10: The relationship between the value memory trace and previous attentional 

value codes. The beta coefficients of two separate linear regressions, firstly of Cue 1 

attentional value at Cue 1 against Cue 1 value memory code at Cue 3, and secondly of Cue 

2 attentional value at Cue 2 against Cue 2 value memory code at Cue 3. All other figure 

properties are the same as Figure 5.8. 

 

The third cue in ‘Attribute’ trials presents a complication to the analysis of attentional 

value because subjects were free to choose whether to saccade back to Option 1 (the side 

of Cue 1) or towards Option 2 (the side of Cue 2). This meant that the memory trace codes 

for Cues 1 and 2 at Cue 3 sometimes corresponded to the saccaded option and other times 

to the unsaccaded option. To mitigate this, we added a contrast term into the linear 

regression of firing rate at Cue 3 (see Methods) which accounted for the memory coding of 

the value of the cue (i.e. Cue 1 or 2) on the saccaded side of the screen and another term 

for the memory code for value on the unsaccaded side. We then performed a linear 

regression of the population Cue 3 value code in ‘Attribute’ trials against the value codes for 

the saccaded and unsaccaded Cue and 2 memory traces. For consistency between 

analyses we again took the mean value code from the 200-400ms post-cue onset time 

period. As predicted by the attention hypothesis of OFC, there was a significant difference 

between coefficients for the saccaded and unsaccaded memory traces, with the saccaded 

trace being positive (although non-significant) and the unsaccaded trace significantly 
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negative with a significant difference between the two coefficients (Figure 5.11) (linear 

regression; T(Saccaded)=1.58, T(Unsaccaded)=-3.03, p(Saccaded)=0.11, p(Unsaccaded)=0.003, linear 

hypothesis test of coefficients for the memory trace for the saccaded side cue compared to 

the unsaccaded side , T=10.72, p<0.002). 

 

Figure 5.11: Attentional value computations in ‘Attribute’ trials at Cue 3. The beta 

coefficients for the regression of the Cue 3 attentional value code against the value memory 

traces for previous cues on the currently saccaded and unsaccaded sides. All other figure 

properties are the same as Figure 5.8. 

 

 To summarise these results, at a population level, the value computations between 

current and past information in OFC are clearly framed by the location of current attention 

irrespective of whether the location of the attention is voluntary (as is ‘Attribute’ trials) or 

involuntary (as is ‘Option’ trials). 

 

OFC Value Neurons Represent Choice in an Attentional and Temporal Frame of Reference 

 Having found that value computations in OFC are framed by attention, one might 

expect to find OFC neurons that discriminate whether currently attended cues will go on to 

be chosen or not.  We therefore explored how the representation of value and attentional 

choice (i.e. whether the currently attended side will be chosen) evolved in value coding 

neurons (Figure 5.12). Having found that only OFC neurons represented value with respect 

to attention, we restricted this element of the analysis solely to the OFC value population. 

This analysis revealed that there was a clear decrease in attentional value coding over cue 
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presentations, but at the same time there was a small but clear increase in the 

representation of attentional choice in the attentional value population (i.e., whether the 

attentional value neurons discriminate whether subjects will choose the Option of the 

currently attended Cue), implying an evolution of the coding from value to choice in the 

frame of reference of attention (Figure 5.12, purple square). 

 

Figure 5.12: The evolution of value and choice coding in PFC. (A) The mean absolute T-

statistic for OFC attentional value (purple squares), ACC and LPFC action value (red 

squares, green triangles respectively) and OFC attribute value (blue circles) neurons across 

the Cue 1, Cue 2, Cue 3 and response epochs. At response the regressors shown are 

chosen value (because subjects typically choose the currently attended Option), chosen 

action value, and chosen attribute value respectively (B) The mean absolute T-statistics for 

attentional choice (choose attended vs unattended side) encoding in OFC attentional value 

neurons (purple squares), response (left-right movement) encoding in ACC and LPFC action 

value neurons (red diamonds, green triangles respectively) and attribute specific choice 

(attribute coding when the attended side is chosen) in attribute specific OFC neurons. 

Vertical lines indicate SEM. 

 

Next we asked whether there was a direct relationship between value coding and 

attentional choice coding and if so, was this more prevalent in OFC compared to other 

regions? To test this we performed a projection analysis in which we first identified a 

population code for value coding in each region by computing the average beta coefficient 
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for value for each neuron from Cue 1 onset until 500ms post-onset. We then used linear 

regression to probe the relationship between this attentional value code and the attention 

choice code at Cue 2, Cue 3 and response across time. This analysis found that although 

there were few significant differences between regions at Cue 2, at Cue 3 and response the 

projection correlation was significantly stronger in the OFC than all other areas, and peaked 

200ms prior to the response (Figure 5.13) (linear hypothesis test of the beta coefficients for 

OFC against other regions with Bonferroni correction, p<0.008). This provides further 

evidence for the conclusion that value neurons in OFC have a strong tendency to go on to 

represent attentional choice (i.e., whether the currently attended stimulus of an Option will be 

chosen). 

 

Figure 5.13: The evolution of attentional choice coding in attentional value neurons. The 

sliding regression of the Cue 1 attentional value code in each region against the attentional 

choice code (i.e. whether the currently attended stimulus of an option will be chosen or 

unchosen) at Cue 2 (left), Cue 3 (middle) and Response (right). Symbols indicate 

coefficients between that are significantly different (linear hypothesis test with Bonferroni 

correction). All other figure properties are the same as Figure 5.6. 

 

 Do computations in OFC value neurons truly evolve over time? In order to answer 

this question we performed a multiple linear regression of the Cue 1 OFC population 

attentional value code against both the value and choice codes estimated at Cues 2 and 3. 

Firstly, the value code at Cue 3 was found to be significantly smaller than that of Cue 2 

(linear hypothesis test of coefficients for Cue 2 value against Cue 3 value, T=4.50, p<0.04). 
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Furthermore, the Cue 3 choice code coefficient was significantly greater than that of Cue 2 

(linear hypothesis test of coefficients for Cue 2 choice against Cue 3 choice, T=6.26, 

p<0.02). This result demonstrates that early on in the trial the OFC value neurons tended to 

compute attentional value but as the trial progressed their computations shifted towards 

attentional choice and that this evolution was proportional to the extent to which neurons 

initially encoded value. The implication of the latter is that strong value coding neurons went 

on to become strong attentional choice coders. 

 

Different Action and Attribute Value Codes are Equally Represented in PFC  

 Having surmised that ACC and OFC represent value in action and attribute frames of 

reference we investigated whether specific action or attribute values were comparatively 

over-represented by neurons within these areas. To do this we could not use the contrast 

terms because due to the fact neurons can (and do) encode value either positively or 

negatively, the sign of the contrast terms did not specify which action or attribute a neuron 

preferred.  Therefore we computed attribute preference by subtracting the mean absolute T-

statistic for left value coding against the same for right value coding. Neurons with a positive 

difference in this measure preferred left and those with negative differences preferred right. 

We also repeated this for probability versus magnitude. There was no significant difference 

between the number of neurons that preferred left or right value in ACC (binomial test, 

p>0.05). There was also no significant difference when considering the proportion of 

magnitude and probability value preferring neurons in OFC (Figure 5.5B) (binomial test, 

p>0.05). There was also no significant skew in the strength (i.e. the mean absolute T-

statistic difference) of action or attribute value encoding across all ACC or OFC neurons 

respectively (one sample T-test, p>0.05). When the above tests were repeated specifically 

for neurons that were considered significant for action value coding in ACC and attribute 

value coding in OFC all results were still non-significant (all p>0.05). 
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Finally, it is possible that ACC neurons encode action value ipsilaterally or 

contralaterally to the recorded hemisphere. To test this we examine the number of 

ipsi/contralateral action value preferring neurons. This analysis revealed that there was a 

weak tendency to encode contralateral action value specifically in action value coding 

neurons in ACC (binomial test, p<0.05).  

 

ACC Neurons Encode Action Related Computations 

Are neurons that encode action value at Cue 1 more likely to perform action related 

computations later on in the trial? We attempted to answer this question on two levels. First, 

we looked at how strongly Cue 1 action value neurons encoded action value in other epochs 

(Figure 5.12). We used our first level analysis of action value coding at Cue 1 to restrict this 

analysis solely to ACC and LPFC neurons. ACC action value neurons did represent action 

value at Cue 2 but the representation diminished substantially over the trial to the point 

where the chosen action value was essentially not represented at response (Figure 5.12A). 

In contrast the encoding of the response in the ACC Cue 1 action value population increased 

substantially over the trial (Figure 5.12B). This result suggested that ACC action value 

neurons had a propensity to evolve their neuronal coding to represent final response as the 

trial progressed.  

In LPFC a different pattern was observed. Although action value coding diminished 

progressively across Cues 1-3, at response there was a noticeable increase in coding of 

chosen action value, exceeding that of the ACC action value population (Figure 5.12A). 

Furthermore, unlike ACC, the LPFC action value neurons did not increase their 

representation of response as the trial progressed (Figure 5.12B). This may indicate that the 

LPFC action value population serves a separate function to the ACC population, and may 

represent value in a spatial reference frame (left/right, up/down) and the chosen spatial 
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value at response, rather than computing the value of the action/Option and the final action 

like ACC neurons. 

Next we performed a more advanced analysis which asked whether the strength of 

action value coding was related to the strength of later action computations. This method 

had the added advantage of allowing us to visualise the temporal dynamics of further 

computations of action value which neurons performed. As with the OFC attentional value 

population, we used linear regression to probe the relationship between the mean Cue 1 

action value code and the action value and response codes at Cues 2, 3 and response 

(Figure 5.14). This analysis found a positive correlation between Cue 1 action value and 

Cue 2 action value coding only in ACC and LPFC (Figure 5.14A) (linear hypothesis test of 

coefficients for ACC/LPFC against OFC or vmPFC with Bonferroni correction, p<0.008). 

Surprisingly, however, when the same analysis was applied to Cue 3, the Cue 1 action value 

code in both ACC and LPFC did not correlate with Cue 3 action value (Figure 5.14A), 

showing that action value coding diminished in both regions over time (linear hypothesis test 

of coefficients for ACC/LPFC against OFC or vmPFC with Bonferroni correction, p>0.008).  

 However, as early as Cue 2, ACC Cue 1 action value coding was seen to 

significantly predict final response coding more than any other region (Figure 5.14B) (linear 

hypothesis test of coefficients for ACC against all other regions with Bonferroni correction, 

p<0.008). This correlation was maintained across the Cue 3 and response epochs and 

increased with proximity to the response (Figure 5.14B) (linear hypothesis test of 

coefficients for ACC against all other regions with Bonferroni correction, p<0.008). In 

contrast to ACC, LPFC action value neurons did not correlate with response during other 

cues with the exception of immediately prior to the response, although this effect may be 

extremely weak because it was only significantly different from vmPFC (Figure 5.14B) 

(linear hypothesis test of coefficients for LPFC against vmPFC with Bonferroni correction, 

p<0.008).  
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Figure 5.14: The evolution of action value coding to response. (A) The linear regression of 

the Cue 1 action value against action value coding at Cue 2 and Cue 3 and chosen action 

value coding at response for each area. (B) The linear regression of Cue 1 action value 

against response coding at Cue 2, 3 and response. All other figure properties are the same 

as Figure 5.13. 

 

To summarise, these results show that the firing patterns of certain populations of 

ACC neurons evolve over the course of the trial from the representation of action value to 

that of the final response of the subject. In contrast LPFC neurons cease coding action value 

as the trial progresses but also do not go on to represent final chosen action.  

 

OFC Neurons Encode Attribute Computations 

 Having identified the evolution of action value coding into final response in ACC the 

natural follow up question was to ask whether a similar process can be identified in attribute 

value coding OFC neurons. Again, by looking at the strength of attribute value coding across 
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cues in this predefined OFC population, we were able to show that the strength of the 

attribute representation decreased markedly over the course of a trial (Figure 5.12A).  

  One of the constraints of the behavioural task is that although there is a clear index 

of subject choice in the frame of reference of actions (i.e. the eventual joystick movement); 

there is no similar index for choice in the frame of reference of attribute. Therefore in order to 

study an ‘attribute framed’ choice signal similar (but not analogous) to the ACC response 

signal, we attempted to find a neural correlate of attentional choice that also discriminated 

the attribute type of the cue (i.e. a signal that discriminated attribute type of the currently 

attended cue when it was on the side of the chosen option). We refer to this signal as an 

‘attribute specific choice’ signal. For Cue 2 Subjects M and F chose the attended side on 

48.2% and 48.1% of occasions respectively. At Cue 3 it was 58.3% and 55.6% of occasions 

respectively. On examining the representation of the ‘attribute specific choice’ regressor, 

there appeared to be a small increase in its representation within OFC as the response 

neared (Figure 5.12B).  

We used the same projection analysis described above to test the evolution of the 

OFC the attribute value code. We found that OFC neurons which encoded attribute value at 

Cue 1 also encoded attribute value at Cue 2 significantly more than all other regions (Figure 

5.15A) (linear hypothesis test of the beta coefficients for the OFC attribute code against the 

same coefficients for other regions with Bonferroni correction, p<0.008). However, unlike the 

ACC action value code, the OFC attribute value code was also clearly maintained at Cue 3 

(Figure 5.15A) (linear hypothesis test of the beta coefficients for the OFC attribute code 

against the same coefficients for other regions with Bonferroni correction, p<0.008). Finally, 

when we analysed the Cue 1 attribute value code with respect to the response epoch, we 

found that the Cue 1 attribute value code was strongly positively correlated with the attribute 

specific encoding of the chosen option, implying a maintenance of the attribute value code 

over the course of the trial (Figure 5.15A) (linear hypothesis test of the beta coefficients for 
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the OFC attribute code against the same coefficients for other regions with Bonferroni 

correction, p<0.008). 

 Figure 5.15: The evolution of attribute value coding to ‘attribute specific choice’. (A) The 

linear regression of the mean Cue 1 attribute value code against attribute value coding at 

Cue 2 and Cue 3 and chosen attribute value coding at response for each area. (B) The 

linear regression of Cue 1 attribute value coding against ‘attribute specific choice’ coding (i.e. 

discriminating attribute type of the currently attended cue when it was on the side of the 

chosen Option) at Cue 2, 3 and response. Note that the left most figure comes from data 

aligned to Cue 3 onset but pertains to attribute specific choice coding at Cue 2. All other 

figure properties are the same as Figure 5.13. 

 

When we correlated the Cue 1 attribute code against the ‘attribute specific choice’ 

code at Cue 2, there was no significant difference between areas (linear hypothesis test of 

the beta coefficients for the OFC ‘attribute specific choose Cue 2 side’ code against the 

same coefficients for other regions with Bonferroni correction, p>0.008). However, when this 

same ‘attribute specific choose Cue 2’ regressor was time locked to Cue 3, the correlation 

was seen to be much stronger peaking just prior to the onset of Cue 3 (linear hypothesis test 
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of the beta coefficients for the OFC ‘attribute specific choose Cue 2 side’ code against the 

same coefficients for other regions with Bonferroni correction, p<0.008) (left plot of Figure 

5.15B). In the same regression, an ‘attribute specific choose Cue 3’ signal was also seen 

from the OFC Cue 1 attribute value neurons approximately 400ms post-Cue 3 onset (linear 

hypothesis test of the beta coefficients for the OFC ‘attribute specific choose Cue 3 side’ 

code against the same coefficients for other regions with Bonferroni correction, p<0.008) 

(Figure 5.15B). Next, we correlated the OFC Cue 1 attribute value code against the 

‘attribute specific choose Cue 3’ signal now referenced to the attribute identity of the last cue 

viewed before the response if that attended cue was of the side that was chosen. This 

revealed that the ‘attribute specific choice’ signal in the OFC attribute neurons peaked 

around the response time, which was both positive and significantly different from the other 

regions (Figure 5.15B).  

Finally, in order to further examine the evolution of the attribute value code over the 

trial, we performed a linear regression of the Cue 1 OFC attribute value code against the 

OFC attribute value and ‘attribute specific choice’ codes at Cues 2 and 3. Unsurprisingly, 

there was no significant change in the attribute value codes between the two cues but there 

was a small but significant increase in the ‘attribute specific choice’ coefficients (Figure 5.12; 

linear hypothesis test of coefficients for Cue 2 attribute value against Cue 3 attribute value, 

T=3.07, p>0.05; linear hypothesis test of coefficients for ‘attribute specific choose Cue 2 

side’ against ‘attribute specific choose Cue 3 side’, T=4.04, p<0.04). 

 These analyses suggest that attribute specific OFC neurons identified at Cue 1 

continue to compute attribute specific value at subsequent cues, and also compute an 

‘attribute specific choice signal’ at each cue which peaking immediately prior to response. 

Although we cannot conclude that the latter is an index for subjects choosing based upon 

particular attributes, these results reveal that attribute value neurons in OFC can track 

choice in an attribute frame of reference. 
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Frame of Reference Neurons Also Drive Information Gathering Behaviour 

 One of the unique aspects of the behavioural paradigm is that after viewing two cues, 

subjects were free to choose where to gather a third piece of information, or they could make 

their final choice via a joystick movement. One might therefore expect that PFC regions may 

guide subjects’ information gathering behaviour through computations based on value. Might 

these putative computations also be in different frames of reference? If these signals do 

indeed drive information gathering behaviour, then it is necessary for these computations to 

occur before the third saccade. To explore this idea, we used linear regression of firing rates 

at Cue 1 to ask whether any neurons could decode future information gathering strategy at 

the third cue. We defined the information gathering strategies by attention, action and 

attribute. Therefore, in ‘Option’ trials, we examined whether neurons discriminated whether 

subjects made a third saccade to the same (attended) attribute as Cue 2 (i.e. horizontal in 

direction) or towards the other (unattended) attribute as Cue 2 (i.e. diagonal direction), 

reflecting coding in the attentional frame of reference. It is vital to note that this can be 

considered as a saccade contingent on the currently attended attribute but not attribute 

specific. Also in ‘Option’ trials, we considered whether the direction of the third saccade was 

towards a probability stimulus or a magnitude stimulus (i.e. in the attribute frame of 

reference). In ‘Attribute’ trials, we examined whether neurons encoded third saccades 

towards the same side as Cue 2 or away from the Cue 2 side (i.e. vertical versus diagonal 

saccades respectively) in order to test the attentional frame of reference. Finally, on 

‘Attribute’ trials, we also measured whether the third saccade ended on the left or right hand 

side of the screen (irrespective of where it started) to examine the action frame of reference. 

Importantly, because saccade direction is known to be influenced by value (see Chapter 4), 

we accounted for this by adding co-regressors which could (through contrasts) account for 

attentional, action and attribute value coding.  We repeated this analysis at Cue 2 and Cue 3 

(i.e. after third saccade deployment). 
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 On examining the proportion of neurons in each PFC region that encoded future 

saccades in an attentional frame of reference, we found that even at Cue 1, a significant 

proportion of LPFC neurons did so in both trial types (Figure 5.16, left panel) (binomial test, 

p<0.05). In ‘Attribute’ trials, this proportion in LPFC was significantly greater than in OFC and 

vmPFC neurons (Chi2 test, p<0.05). Furthermore, at Cue 2, the proportion of LPFC neurons 

grew as high as 26% in ‘Attribute’ trials and 24% in ‘Option’ trials, although significant 

populations of OFC and ACC neurons were also observed to encode the future saccade in 

the attentional reference frame in both trial types (Figure 5.16, middle panel) (binomial test, 

all p<0.05). With respect to the attentional saccade in ‘Attribute’ trials, LPFC coding was 

much greater than all other areas (pairwise Chi2 test, p<0.05). Even after the third saccade 

deployment, a significant proportion of ACC, LPFC and OFC still encoded the direction of 

the third saccade in the attentional reference frame in both trials types (Figure 5.16, right 

panel) (binomial test, all p<0.05).  

 

Figure 5.16: The encoding of third saccade behaviour across cues. The proportion of 
neurons that encode attentional saccades in ‘Attribute’ trials (Attn. ‘Att’ Trials), attentional 
saccades in ‘Option’ trials (Attn. ‘Opt.’ Trials), action saccades in ‘Attribute’ trials, attribute 
saccades in ‘Option’ trials. All of figure properties are identical to Figure 5.4A. 

 

 Having found that neurons in PFC predict information gathering strategy framed by 

current attention, the obvious follow up question was to ask whether these were the same 
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neurons that computed attentional value during the trial (as described earlier). To do this we 

performed a population projection of mean Cue 1 attentional value coding against the mean 

attentional saccade population code (for each trial type) at each cue epoch. In ‘Attribute’ 

trials, we observed a significant and specific positive relationship between value coding and 

attentional saccade coding in OFC at the second cue (Figure 5.17A) (linear regression, T= 

3.97, p<0.8x10-5, linear hypothesis test of the beta coefficient for OFC against each other 

regions with Bonferroni correction, all p<0.008). This implies that OFC attentional value 

neurons fire more when future information gathering is towards the side of current attention 

compared to when information is gathered away from the currently attended option. This 

correlation was not present at either Cue 1 or Cue 3, implying that this signal was a phasic 

computation in OFC attentional value neurons immediately prior to the volitional information 

gathering saccade. 

 We next performed a linear regression of the Cue 1 attentional value coding against 

attentional saccade coding in ‘Option’ trials (Figure 5.17B). Again, we found a singularly 

significant relationship in OFC which was not significantly different from any other region 

(linear regression, T= -2.57, p<0.02, linear hypothesis test of the beta coefficient for OFC 

against other regions with Bonferroni correction, p>0.008). Again, like in ‘Attribute’ trials, this 

relationship was positive. Therefore the positive attentional value coding neurons at Cue 1 

respond most when subjects make horizontal saccades, making comparisons within the 

currently attended attribute. Again, repetition of this analysis at Cue 1 and 3 found no 

significant relationship (linear regression, p>0.05).  
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Figure 5.17: OFC value neurons predict future information gathering in the attention frame 
of reference. (A) The linear regression of mean Cue 1 value coding against the coding of 
vertical versus diagonal Cue 3 saccades at each cue in ‘Attribute’ trials. (B) The linear 
regression of mean Cue 1 value coding against the coding of horizontal versus diagonal Cue 
3 saccades at each cue in ‘Option’ trials. Coloured asterisks indicate regions that have 
significant beta coefficients. Black asterisks indicate areas that are significantly different from 
each other (linear hypothesis test with Bonferroni correction). Vertical lines indicate the SEM. 

 

 Taken together, these results suggest that LPFC neurons strongly represent 

information gathering strategies framed by attention immediately prior to saccade 

deployment. However, OFC attentional value neurons multiplex this information gathering 

signal with value and choice computations peaking immediately prior to the saccade. 

 We next considered whether future saccades were also encoded in an action frame 

of reference (i.e. action saccades). We performed this analysis exclusively in ‘Attribute’ trials 

where subjects were free to choose which option they wanted to obtain information about. 

Also, unlike in ‘Option’ trials, the position of the first and second cues in ‘Attribute’ trials did 

not predict the direction of the third saccade. Upon examining the proportion of significant 

neurons that encoded the direction of these forthcoming action saccades at Cue 1, we found 
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that only ACC and LPFC contained a significant proportion of neurons which encoded action 

saccades (Figure 5.16, left panel) (binomial test, both p<0.05). At Cue 2, the proportion of 

ACC and LPFC neurons coding for the action saccade at Cue 3 increased to approximately 

15% and 23% of neurons in these areas, respectively (Figure 5.16, middle panel). LPFC 

neurons encoded action saccades significantly more than all other areas (pairwise Chi2 test, 

all p<0.05). The proportion of LPFC neurons encoding action saccades increased further at 

Cue 3 but diminished in ACC, such that LPFC encoded the direction of the completed action 

saccade significantly more than all other regions (Figure 5.16, right panel) (pairwise Chi2 

test, p<0.05). 

 We next considered the pattern of this action saccade coding by examining the 

number of significant neurons (for all neurons) across time at all three cue epochs (Figure 

5.18). This analysis showed that at Cue 1, most of the ACC saccade direction coding 

occurred around the presentation of the cue, whereas the LPFC coding peaked 

approximately 300-400ms after cue presentation (Figure 5.18, left panel). After Cue 2 

presentation, the saccade direction coding in LPFC rapidly increased and peaked around 

100ms post-cue presentation (Figure 5.18, middle panel), whereas the coding in the ACC 

population increased slowly and generally plateaued soon after the second cue. Both ACC 

and LPFC saccade direction coding was maintained in the time period immediately prior to 

the third saccade (Figure 5.18, right panel). While the ACC representation slowly decreased 

after the saccade, the LPFC representation increased, peaking for a second time 

approximately 200ms post-cue onset (Figure 5.18, right panel). 

 



185 
 

 

Figure 5.18: The proportion of action saccade selective neurons at each cue epoch. 

 

 Are the neurons that encode action saccades the same neurons that encode action 

value in ACC and LPFC? To test this we performed a population projection of the Cue 1 

action value code in each area against action saccade code at each cue on ‘Attribute’ trials 

(Figure 5.19A). Upon doing this analysis we found that ACC Cue 1 action value coding was 

significantly correlated with action saccade coding at Cue 2 (linear regression, p<5x10-8). 

Even though there was no significant relationship in any other region, the ACC effect was 

only significantly greater than vmPFC (linear hypothesis test of the beta coefficient for ACC 

against that of vmPFC with Bonferroni correction, p<0.008). Furthermore, this relationship 

between action value coding and action saccades in ACC was not present either at Cue 1 or 

Cue 3 (linear regression, p>0.05). 
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Figure 5.19: Action and position neurons predict future information gathering strategies. (A) 
The beta coefficients of a linear regression of Cue 1 action value coding against the third 
saccade direction (left-right) in ‘Attribute’ trials as estimated at each cue. (B) The beta 
coefficients of a linear regression of Cue 1 left-right cue position coding against the third 
saccade direction (left-right) in ‘Attribute’ trials as estimated at each cue. All other figure 
properties are the same as Figure 5.17.  

 

Figure 5.20 shows an example of an ACC action value neuron which also encodes 

action saccades. This neuron responds only to the value of cues presented on the left side 

of the screen at Cue 1 within approximately 200ms and not to those on the right side (Figure 

5.20A). However, when the neuron’s firing rates are reorganised by the combinations of 

possible third saccades and final choice, the neuron encodes the direction of the future 

saccade at approximately 450ms post-Cue 1 onset (Figure 5.20B). This is then maintained 

during Cue 2 presentation, but stops encoding the future saccade well before Cue 3 

presentation (and hence before the volitional third saccade). 
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Figure 5.20: An example of an ACC neuron which encodes both action value and action 
Saccades. (A) The neuronal response of this neuron to value split by action at Cue 1 (upper 
panel) and the corresponding beta coefficients for left and right value coding (lower panel). 
(B) The same neurons firing rate at Cue 1, 2 and 3 separated by the combination of third cue 
saccades and final responses (upper panel) and the sliding beta coefficients for action 
saccade (left-right) coding across time (lower panel). All other figure properties the same as 
Figure 5.4B. 
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In order to better understand the temporal profile of this action saccade computation, 

we performed a sliding projection analysis of the mean ACC Cue 1 action value code against 

the action saccade code across time at all three cues (Figure 5.21, solid line). The positive 

relationship between action value and action saccade strategy began approximately 500ms 

after Cue 1 presentation and was then sustained throughout Cue 2 presentation. After the 

third saccade this relationship slowly decreased and was around zero after approximately 

300ms post-Cue 3.  

 
Figure 5.21: Action saccades are mutually represented with final response in ACC action 
value neurons. A sliding linear regression of Cue 1 ACC action value coding against 
‘Attribute’ trials action saccade (solid line) and final response (dashed line) coding at each 
cue. Thin lines indicate the SEM. 

 

Subjects have a tendency to saccade towards what they eventually choose in 

‘Attribute’ trials; therefore were the action saccade codes and final response codes 

simultaneously represented during the trial or was there an evolution of coding from that of 

the saccade to the response after Cue 3? To qualitatively examine this we also performed a 

projection of Cue 1 action value coding in ACC against final response coding specifically in 

‘Attribute’ trials as estimated from the regression models set out in Table 5.8 (Figure 5.21, 

dashed line). At Cue 2 it was clear that both response and action saccades were 

represented by the action value population and after saccade deployment at Cue 3, the 

saccade code died away while the response code was maintained. 
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Surprisingly, the Cue 1 LPFC action value code did not correlate with action saccade 

coding (Figure 5.19A, linear regression, p>0.05). Is it therefore possible that this LPFC 

action saccade population (Figure 5.16, 5.18) constitutes a population of neurons that 

perform a different computation early on in the trial? An obvious candidate computation is 

spatial position coding. Therefore we performed a projection analysis of Cue 1 left-right 

spatial position coding against the action saccade code at each cue (Figure 5.19B). At Cue 

1 both ACC and LPFC populations exhibited a significant negative relationship with the 

action saccade direction (linear regression, both T<-5.21, both p<4x10-7). Both were also 

significantly different from OFC and vmPFC (linear hypothesis tests of beta coefficients for 

ACC and LPFC individually tested against OFC and vmPFC with Bonferroni correction, 

p<0.008). By Cue 2 this correlation became strongly positive in ACC and LPFC, indicating 

that neurons that preferred cues located on the left also fired more when subjects would 

make future saccades towards the left side of the screen. This correlation in LPFC was 

significantly stronger than all other regions (linear regression, both T>6.57, both p<1x10-10, 

linear hypothesis test of beta coefficients for LPFC against those for each other region with 

Bonferroni correction, p<0.008) while the correlation in ACC was significantly stronger than 

OFC and vmPFC (linear hypothesis test of beta coefficients for ACC against those for OFC 

and vmPFC individually with Bonferroni correction, p<0.008). The significant positive 

relationships in ACC and LPFC were then maintained throughout the Cue 3 period, but by 

this time only LPFC was significantly stronger than any region (linear regression, both 

T>2.02, both p<0.05 linear hypothesis test of beta coefficients for LPFC against those for 

vmPFC with Bonferroni correction, p<0.008).  

 We also performed a sliding projection analysis using the left-right position selective 

code to examine the time course of the ACC and LPFC action saccade computations 

(Figure 5.22). This revealed that at Cue 1, the negative correlation between these two 

regressors in the ACC population was present even before cue presentation (although the 

subjects already knew the position of the first cue at this point) (Figure 5.22A), whereas in 
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LPFC the negative correlation began about 50-100ms post-cue presentation (Figure 5.22B). 

It is unclear, however, why this signal would be negative. Both areas showed a flip in the 

sign of the projection coefficient around Cue 2 onset, but again the ACC effect was earlier 

than in LPFC. The positive relationship was then clearly maintained until approximately 

300ms post-Cue 3 onset in both areas. Interestingly, unlike the action value code (Figure 

5.21), neurons that encoded the spatial L-R code at Cue 1 did not represent the final 

response over each cue, implying that these neurons did not represent final choice (Figure 

5.21). These results indicate that non-value neurons in PFC are also able to drive 

information gathering behaviour, in this case, in a spatial frame of reference. 

 

Figure 5.22: Position selective neurons predict future saccade behaviour in ‘Attribute’ trials. 
(A) A linear regression of the Cue 1 left-right spatial selectivity code in ACC against third 
saccade action (left-right) saccade (solid line) and final response (dashed line) coding at 
each cue. (B) The same analysis as (A) using LPFC. All other figure properties are the same 
as Figure 5.21. 

 

 The final question we asked with respect to information gathering was whether 

attribute specific neurons in OFC could also predict attribute specific saccades in ‘Option’ 



191 
 

trials (i.e. predict which attribute the third saccade would be directed towards)? At both Cue 

1 and Cue 2, no area significantly encoded future attribute saccades (Figure 5.16, left and 

middle panels) (binomial test, all p>0.05). However, after the saccade 10% of OFC neurons 

encoded the currently attended attribute type (Figure 5.16, right panel). 

 We next performed a projection analysis of Cue 1 attribute value coding against the 

attribute saccade code at each cue. At Cue 1, LPFC showed a significant negative 

relationship (linear regression, p<0.05). At Cue 2, there was a small but significant positive 

relationship in OFC Cue 1 attribute value coding neurons, which was significantly greater 

than ACC (linear regression, T=1.98, p<0.05, linear hypothesis test of the beta coefficient for 

OFC against ACC, p<0.02). This implies that neurons that fire more for probability value in 

OFC also fire more when a probability stimulus will be viewed at Cue 3 in ‘Option’ trials. At 

Cue 3, this relationship in OFC had attenuated, but a significant positive relationship 

emerged in LPFC (Figure 5.25) (linear regression, T=3.01, p<0.003).  

 

Figure 5.23: OFC attribute value neurons predict attribute saccades in ‘Option’ trials. A 
linear regression of mean Cue 1 attribute value coding against attribute saccade coding (i.e. 
saccades towards probability versus magnitude information) in ‘Option’ trials at each cue. All 
other figure properties are the same as Figure 5.19. 

 

A sliding projection analysis allowed us to empirically inspect the time course of both 

the OFC and LPFC signal (Figure 5.24). The LPFC signal was observed to be weak and 

phasic. It was strongest 200ms after Cue 2 onset and after the third was presented (i.e. post-

saccade) (Figure 5.24A). OFC showed phasic coding of the attribute saccade. The peak 

strength was around 400ms post-cue onset at both the first and second cues (Figure 
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5.24B). In comparison to the action and attention saccade signals, this attribute signal was 

noticeably weaker and was also phasic in nature rather than being maintained across cues. 

 

Figure 5.24: LPFC and OFC attribute value neurons encode future attribute saccades. (A) A 
linear regression of the Cue 1 LPFC attribute value code against Cue 3 attribute (probability-
magnitude) saccade (solid line). (B) The same analysis as (A) using OFC neurons. All other 
figure properties are the same as Figure 5.21. 

 

 In conclusion, we have presented evidence that future saccade behaviour in this task 

can be predicted by neuronal firing patterns in ACC, LPFC and OFC. Exactly like value 

computations, these future saccade signals are differentially framed: by action in ACC, by 

space in LPFC and by attribute and attention in OFC. These results imply that the respective 

valuation reference frames in each region are simultaneously utilized for both valuing 

information and valuing choices. 
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Discussion 

 

 In this chapter we have reported experimental data which demonstrates that value 

and information gathering signals in primate PFC are simultaneously represented in three 

separate frames of reference; attention, action and attribute. Furthermore, we have shown 

that computations within each of these frames of reference reflect value at the earliest 

stages of information gathering, but also evolve to encoding elements of the final choice by 

the end of the decision.  

 

Attentional Value and Choice Coding in OFC 

 In this experiment we observed ubiquitous coding of value (in terms of the value of 

the currently attended stimulus) throughout all four PFC regions much in line with many 

previous neurophysiological studies (for example, Kennerley et al. (2009), Roesch and 

Olson (2003), Strait et al. (2014)). This general coding of attentional value may well reflect a 

representation of subject motivation (Roesch and Olson, 2003, Roesch and Olson, 2004). If 

this were true then one might expect to see a positive correlation between the value memory 

trace of any previous cues and the value code for the current cue in all trial types. Instead it 

was only observed in ‘Option’ trials specifically in OFC. However, it could represent a simple 

and generic value signal that propagates throughout the brain when the environment 

changes.  

It should also be noted that in our experiment, we were able to explicitly isolate both 

overt attention (by requiring fixation of a cue) and covert attention (by covering up all other 

information) at Cues 1-2. This meant we had better control of experimental variables that 

could confound a value signal (chosen vs unchosen offers, value difference calculations, 
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etc.). One obvious explanation for such ubiquitous value coding across the brain is that 

neurons in different brain regions are performing different value computations, but the 

experimental paradigm may not have afforded the control to isolate the specific computation 

or frame of reference in which these neurons were coding value. Whilst attentional value 

coding was nonetheless present across all regions in our dataset, the fact that these value 

signals evolved as the decision process evolved toward a choice emphasises the potential 

difficulty in interpreting previous and future studies where multiple stimuli are presented 

simultaneously and/or when the focus of attention cannot be confidently determined. 

 It is clear from this data set that the OFC value neurons have a unique roll. They are 

the only neurons that consistently compute the value difference of information with respect to 

the location of current attention. This is an almost analogous signal to the vmPFC and 

ventral striatum BOLD signal reported by Lim et al. (2011). The reason for the discrepancy 

between regions in the present study remains unclear. One possible explanation is that the 

BOLD signal is difficult to measure in the human OFC (Weiskopf et al., 2007)  and therefore 

it is unknown whether attention related computations also occur in OFC. Another potential 

explanation for the absence of this signal in vmPFC in our study could be a combination of 

the fact that its neurons were relatively under-sampled compared to OFC and the fact that 

value coding power may be weakened by the fact that vmPFC neurons generally showed 

lower firing rates during the task. As the linear regression is very sensitive to both degrees of 

freedom and variance in the dependant variable, 160 neurons which only had small firing 

rate modulations may not be enough to bring out a small effect in vmPFC. Finally, given that 

resting state MRI has shown that connectivity patterns of human and primate vmPFC show 

strong homologies (Neubert et al., 2015), it is also possible that neuronal firing in vmPFC is 

not directly proportional to the BOLD signal in fMRI. 

A completely novel finding in the current study is the representation of attentional 

choice in OFC at the population level. In their sequential option vmPFC study, Strait et al. 

(2014) report that residual firing in approximately 12% of vmPFC neurons accounted for 
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whether the first or second presented option was to be chosen. This may reflect an 

attentional choice signal, but because the temporal order of stimulus presentation and 

attention are correlated in their task this may actually represent a temporal choice signal. In 

the current behavioural task, subjects have a tendency to gather information about options 

that they go on to choose, but attention and cue order are overall much less correlated than 

in the Strait et al. 2014 study. Based on the work of Lim et al. (2011) one might hypothesise 

that attentional choice signal would be specific to vmPFC/OFC, but surprisingly this was not 

the case, instead ACC and OFC also encoded attentional choice but in the OFC the effect 

was stronger. 

 

Action Value Coding in ACC and LPFC 

 It is of no surprise that neurons in both ACC and LPFC were observed to encode 

action value during the early stages of the decision, as might be predicted from the findings 

of Matsumoto et al. (2007) and Hayden and Platt (2010) who both found neurons in ACC 

which were modulated by value and action. Furthermore, the evolution of the action value 

signal to become a response signal is similar to the results observed by Kim et al. (2008) 

who found that during intertemporal choice, LPFC neurons encoded action value during the 

early phase of the decision and then went on to encode response. ACC neurons have also 

been shown to multiplex value and response coding with the value coding occurring before 

the response (Kennerley et al., 2009). One advance of the current study over these studies 

is that we have shown that the ACC action value neurons are the same neurons that encode 

the response during the choice phase. This result bears a resemblance to that of Cai and 

Padoa-Schioppa (2014), who reported that LPFC neurons encoded the value of the chosen 

item in good space before transforming to represent the response before the subjects 

respond. The major difference between the aforementioned study and the current study is 

that the task of Cai and Padoa-Schioppa study demanded that subjects solve the decision in 
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‘goods space’ because they were not informed of the relevant action until after the stimuli 

were presented. Therefore it is unsurprising that the LPFC neurons encoded the chosen 

value in goods space before evolving to encoding the response. In contrast, in the current 

study, subjects were always aware of the actions contingent to the choice, allowing them to 

solve the task in action space if they chose to. Unlike the two aforementioned studies, the 

current study finds action value and response coding in ACC rather than LPFC. However, 

these tasks required saccade-contingent choices, whereas the current study required a 

joystick movement to indicate choice. Therefore this discrepancy might be expected given 

LPFC’s strong connections to supplementary eye fields (Huerta and Kaas, 1990, Gerbella et 

al., 2010) and cingulate cortex’s connections to limb motor areas (Morecraft and Van 

Hoesen, 1992, Kennerley et al., 2009). Given the clear action value to response 

transformation within ACC, it is no surprise that ACC lesions cause deficits in action based 

decision making as described in humans and primates (Rudebeck et al., 2008, Camille et al., 

2011b, Kennerley et al., 2006, Hadland et al., 2003).  

 Several strands of evidence lead us to the conclusion that LPFC neurons that were 

classified as action value coders at Cue 1 were in fact encoding spatial value. Firstly, unlike 

ACC, a roughly equal proportion of neurons encoded top-bottom value as encoded left-right 

value. Such an encoding scheme has no relevance to solving the task. Secondly, unlike 

ACC neurons, the LPFC action value coders did not go on to encode response or action 

value by the end of the trial. Finally, it is well known that LPFC represents spatial aspects of 

the environment as well as the interaction between space and value (Kennerley and Wallis, 

2009c, Rao et al., 1997). 

 

Attribute Specific Coding in OFC 

 The current study demonstrates the existence of specific neurons in OFC which 

discriminate the value of stimuli based on their attribute type. However, this is a 
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subpopulation of neurons and in fact many neurons in OFC simply encode general 

attentional value. These findings are in some ways very similar to those of Kennerley et al. 

(2009) with the exception that we found that attribute specific neurons are specific to OFC 

whereas Kennerley et al. found no region more likely to demonstrate attribute selectivity. In 

contrast to studies which report that attributes are represented by different populations of 

neurons (O'Neill and Schultz, 2010, Morrison and Salzman, 2011, Roesch et al., 2006), our 

data indicates that there are some OFC neurons which differentially represent probability 

and magnitude values, but at the same time encode both variables (purple dots with orange 

diamonds in Figure 5.5B). In other words, these are neurons which either encode the two 

attributes with opposite firing rate relationships with value, or neurons which encode the 

value of both attribute, but one attribute significantly more than another.  

The existence of OFC attribute value neurons may provide a neurophysiological 

explanation as to why primate and human subjects with OFC lesions struggle to perform 

stimulus based learning and decision making tasks (Rudebeck et al., 2008, Camille et al., 

2011b). These stimulus based decision making tasks usually involve subjects making 

decisions within one attribute and therefore if subjects do not have attribute specific neurons 

it may impair their ability to do this. However, a recent study by Rudebeck et al. (2013b) 

showed that the classically reported OFC lesion finding of impaired stimulus based decision 

making may actually arise from damage to white matter tracts around OFC rather the loss of 

OFC itself (Schmahmann et al., 2007). However, the previously observed deficits in 

reinforcer devaluation were still present when white matter sparing OFC lesions were given 

(Rudebeck et al., 2013b). Although these results might imply that OFC is not necessary for 

stimulus (or attribute) based decision making, Rudebeck and colleagues suggest that there 

may be redundancy within these stimulus/attribute computations where the loss of OFC may 

allow the problem to be solved in areas such as amygdala or ventral striatum. Damage to 

the white matter tract around OFC may therefore give rise to the observed deficits by 

disrupting communication of stimulus specific learning signals to PFC areas. 
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 As stated previously, the current task had no measure of attribute based choice, and 

therefore there is no way to know when subjects were guiding their behaviour based on 

information from one attribute or another. Therefore the ‘attribute specific choice’ signal that 

we defined only represents a correlate of choice and not necessarily causative to choice. 

Furthermore, the signal is quite weak and this could correlate with the fact that behaviourally, 

subjects only a weak attribute bias (see Chapter 4). 

 

Parallel vs Sequential Value Processing in Value Based Decision Making 

 The fact that three separate reference frames are represented in PFC during 

decision making lends strong evidence to the idea that decision making circuitry may be 

organized in a parallel manner which may be consistent with the decision through consensus 

hypothesis. This hypothesis states that values can be represented and compared in different 

frames of reference in multiple regions across the brain and that final decisions come about 

through consensus between areas (Cisek, 2012). In contrast the goods based model of 

decision-making proposes that options are represented and compared as ‘goods’ in 

OFC/vmPFC which are invariant of attribute type (Padoa-Schioppa, 2011). It postulates that 

only after this abstract comparison can actions be selected in order to attain a chosen 

option. This model makes several predictions that are not only clearly different from the 

decision making through consensus hypothesis, but are also directly tested and refuted by 

our study. First of all, as stated earlier, there is clear evidence for attribute and action value 

coding subpopulations in PFC, and these populations also go on to represent choice and 

response respectively. This implies that these subpopulations are not merely providing an 

input into a ‘goods’ valuation process, but are also exhibiting the features of a competitive 

process in biasing the actual choice. Secondly, the ‘goods based’ model stipulates that 

actions are only selected when the decision is already made as has been demonstrated in 

some tasks (Cai and Padoa-Schioppa, 2014). In contrast, in the current study, response 
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codes are seen in ACC as early as 700ms before the response, implying that the coding of 

response ramps over a long timescale rather than just simply after the comparison of goods. 

In contrast, these findings are in agreement with what would be expected of a parallel 

processing framework (Figure 5.1) (Cisek, 2012). 

 

Information Gathering and PFC 

 Neurons in ACC, LPFC and OFC all predict future information gathering behaviour. 

Perhaps most surprisingly, many of these signals are specific to particular frames of 

reference. It is important to note that the regressions used to define these future information 

gathering signals accounted for – and therefore should be independent of – value. 

Therefore, there is no reason to expect that value sensitive neurons should be more likely to 

also be information gathering neurons. However, it is intriguing that in fact, value neurons in 

our study often also encoded information about future saccades. Although these results are 

novel, they share some similarities with results from previous studies. The fact that ACC 

action value neurons also predict the third saccade direction is similar to the finding of 

Hayden and Platt (2010) who described neurons that multiplexed both value and action in 

terms of saccade. The current study suggests that these neurons are capable of multiplexing 

action of different modalities (i.e. saccades as well as limb movements) during the decision 

process. The idea that LPFC spatial neurons can predict the spatial location (i.e. the left or 

right side of the screen) is also in line with the finding that LPFC neurons can code for both 

value (Kennerley et al., 2009), spatial position (Rao et al., 1997) and can also multiplex both 

(Kennerley and Wallis, 2009c). The role of ACC and LPFC in saccade behaviour is also 

plausible from an anatomical point of view given that both areas send direct connections to 

supplementary eye fields (Gerbella et al., 2010, Luppino et al., 2003). 

 Although we defined third saccade behaviour in the frame of reference of attention in 

both ‘Attribute’ and ‘Option’ trials, these signals could also be considered to be abstract 
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strategy signals. It has been demonstrated that LPFC neurons encode strategies and rules 

in various types of tasks (Asaad et al., 2000, White and Wise, 1999, Genovesio et al., 2005). 

This may explain why a large proportion of LPFC neurons in the current study were 

observed to encode the ‘attentional saccade’ but (unlike OFC) did not correlate with value 

coding. 

Fellows (2006) found that patients with vmPFC lesions avoided gathering information 

in an attribute based manner in favour of option based comparisons. In the current study, 

subjects were not given the freedom to choose the initial information gathering strategy but 

we found no evidence that vmPFC encoded information gathering strategies in any of the 

tested frames of reference. One potential explanation for Fellows’ findings is that many of 

the vmPFC lesion patients also had subtotal damage to OFC. These patients would 

therefore have lost the attribute value neurons described in the current study, which we 

observed also drive attribute based information gathering behaviour. Therefore, these 

patients would not be able to perform both present and future attribute comparisons, and 

instead would be forced to compare value and gather information in a different manner, such 

as between options or actions. 

Very few neurophysiological studies have considered the how information gathering 

is represented in the brain. One of the few studies that have is that of Blanchard et al. (2015) 

who found that OFC neurons encode value of choices orthogonally to the value of 

information. This is in contrast to dopamine neurons which appear to encode reward and 

information value with a common signal (Bromberg-Martin and Hikosaka, 2009). The 

findings of our study would suggest that information gathering signals are more similar to the 

behaviour of dopamine neurons although there are several critically difference between the 

abovementioned studies and our study. Firstly, previous studies examine the value of 

information rather than how information is gathered. It was not possible for us to examine 

information value because this was perfectly predicted by the value of previous stimuli in our 

task. By examining information gathering strategies we examined the output of the 
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information gathering decision rather than the input which is information value. Furthermore, 

in their task this information value signal could not be used to drive behaviour other than to 

reduce uncertainty about future outcomes. In contrast in our study the act of information 

gathering was a critical part of the choice process and our information gathering signals also 

had a clear output (i.e. the saccade). Therefore, it is possible that their finding in OFC and 

our finding may reflect different computation signals entirely.   

 In conclusion, the neuronal data presented in this chapter shows the simultaneous 

representation of value computations and choice signals in three separate frames of 

reference, which implies the existence of parallel decision circuitry in PFC. These findings 

unify several ideas about value computations and competition within PFC. We have also 

shown that these frames of reference also extend to the domain of information gathering, 

which suggests that the concept of frames of reference may extend across cognitive 

domains, or that both information and choices/outcomes are valued in a similar way by the 

PFC valuation circuitry. 
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Chapter 6: Outcome and Prediction 
Error in the Prefrontal Cortex 

 

 When we make a decision how do we know whether it is right one or not? One 

method by which one might do this is to consider one’s outcome compared to one’s 

expectation. If the outcome exceeds the expectation then logic dictates that given the same 

situation in the future, one should not only make the same choice but also assign more value 

to the chosen option. However, if the expectation was greater than the actual outcome then 

one must assign lower value to this option when making choices in the future. This chapter 

will examine whether PFC neurons perform such outcome related computations and whether 

such computations are specific to decision attributes (such as probability or reward size) or 

to functional subpopulations of neurons. 

 

Introduction 

 

Tracking the values of our outcomes is an important process in allowing us to adapt 

our behaviour to be as optimal as possible in uncertain environments. It has been 

established in many studies that neurons in ACC, LPFC, OFC and vmPFC can encode 

information about unexpected outcomes as well as the presence or absence of a reward 

(Kennerley and Walton, 2011, Ito et al., 2003, Kennerley and Wallis, 2009b, Strait et al., 

2014, Monosov and Hikosaka, 2012, Quilodran et al., 2008, Seo et al., 2007, Seo and Lee, 

2009, Tremblay and Schultz, 2000b, Roesch and Olson, 2003, Sallet et al., 2007). Neurons 

in ACC, LPFC and OFC have also been shown to encode the amount or type of reward 

given (Hikosaka and Watanabe, 2000, Kennerley and Wallis, 2009b, Rolls et al., 1990). 

Interestingly, although many of these neurons encode outcomes during the feedback phase 
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of the experiment, neurons in ACC, LPFC and vmPFC have been shown to maintain this 

coding into subsequent trials (Seo et al., 2007, Seo and Lee, 2009, Strait et al., 2014). One 

possible function of these sustained outcome signals is to modulate the representation of 

value with respect to the recent history of outcomes or the internal state of the subject. The 

former representations have been reported in OFC where encoding of value on the current 

trial is modulated by the value of the choice on the previous trial (Kennerley et al., 2011), 

whereas vmPFC encodes value in the context of internal states (Abitbol et al., 2015, Bouret 

and Richmond, 2010). 

Another important function of representing one’s outcomes is to learn about the 

current environment. Over and above tracking the outcome of a decision, it is important to 

compute whether outcomes are expected or not. Several studies have shown that ACC 

neurons are responsive to behavioural errors (Totah et al., 2009, Quilodran et al., 2008, Ito 

et al., 2003). Such a signal in its self could be critical for selecting future actions that avoid 

such errors. Furthermore, the encoding of prediction errors (PEs) is central to the idea of 

learning and updating the value of one’s stimuli in the environment. Classically neurons 

midbrain dopamine neurons have been shown to encode these PEs, but extensive neuronal 

data show that ACC and OFC can also encode PEs (Schultz et al., 1997, Matsumoto et al., 

2007, Kennerley et al., 2011, Sul et al., 2010). Furthermore, some have suggested that the 

coding of prediction errors may be a general feature of adaptive neuronal circuits throughout 

the brain (Friston, 2009). Importantly, similar (but not identical) to dopamine neurons, ACC 

neurons also strongly code for the value of stimuli of various modalities before outcomes are 

presented (i.e. a prediction of their value) (Kennerley et al., 2009, Amiez et al., 2006). 

Interestingly, in ACC PEs have been reported in both the value domain (Kennerley et al., 

2011) and the action domain (Matsumoto et al., 2007) although it is unclear whether this is a 

generalised computation that ACC can perform in multiple frames of reference or whether 

specific populations of neurons encode the two different PEs. The role of ACC in 

reinforcement learning has also been demonstrated in several studies (Nee et al., 2011, 



204 
 

Jessup et al., 2010, Silvetti et al., 2013, Brown and Braver, 2005). This may provide a 

functional basis for why PEs are observed within ACC. 

Many human studies have reported error related negativity (ERN) detected on scalp 

electrodes positioned over ACC in a variety of tasks (Silvetti et al., 2014, Van 't Ent and 

Apkarian, 1999, Holroyd et al., 1998, Holroyd and Coles, 2002, Walsh and Anderson, 2012). 

Some evidence suggests that these so called error signals may also reflect uncommon 

results in trials (such as errors in most tasks) therefore reflect a surprise signal (Jessup et 

al., 2010, Brown and Braver, 2005). This negativity has also been shown to correlate with 

PEs in several simple tasks (Silvetti et al., 2014, Nunez Castellar et al., 2010, Talmi et al., 

2013). The ERN has also been shown to come about from both positive PEs (i.e. 

unexpected rewards) and negative PEs (unexpected losses) (Silvetti et al., 2014). The idea 

that ACC is capable of computing PEs is given credence by the fact that it receives strong 

dopaminergic input from the ventral tegmental area (Williams and Goldman-Rakic, 1998, 

Berger et al., 1988, Gaspar et al., 1989). 

Others have also suggested that ACC computes outcomes signals that represent 

both conflict (van Veen et al., 2001), volatility in the environment (Behrens et al., 2007) and 

error likelihood (Brown and Braver, 2005) although it has been postulated that all of these 

effects could rise from ACC acting as an actor-critic reinforcement learning model in which 

PEs are computed (Silvetti et al., 2011). Another unifying idea aimed at explaining this 

diversity of findings revolves around the concept of the ‘expected value of control’ where 

ACC integrates the payoff expected from the exertion of cognitive control and integrates this 

with the cost and amount of control required (Shenhav et al., 2013).  

 The results in this chapter will outline the neuronal correlates of outcome related 

computations in the PFC in our decision making paradigm. We aim to show that neurons in 

all four area of PFC that we record from encode the final outcome of a decision. However, 

we will show that specifically in ACC there is a clear positive relationship between value 
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coding at the choice phase of the trial and reward/no reward (R/NR) coding at the feedback 

phase. An evaluation of R/NR in the action/spatial domain will also be demonstrated in the 

LPFC. We will also show the presence of a double dissociation in R/NR coding in LPFC and 

OFC where the former is driven by neurons that prefer to encode reward magnitude whereas 

the latter is dominated by probability preferring neurons. We will present evidence that ACC 

neurons compute only positive probabilistic PEs whereas neurons in vmPFC encode both 

positive and negative probabilistic PEs. Furthermore, when rewards were omitted both ACC 

and OFC neurons represented the fictive value of these rewards. These results speak to the 

idea that ACC and other PFC regions play an active and complementary role in updating 

and monitoring the values of stimuli in order to optimise reward seeking behaviour.  
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Methods 

 

 The data presented in this chapter comes from a further analysis of the data set 

shown in Chapter 5. Therefore, all information pertaining to the subjects, behavioural 

protocol, task, neuronal recordings and the basic analysis techniques are discussed in detail 

in the Methods section of Chapter 5. In addition to the regression analyses defined in 

Chapter 5, additional regression models relevant to the current chapter will be described 

below. 

During the feedback phase of the task, the grey box around the option chosen by the 

subject reliably changed colour (see Figure 5.3). If the subject received reward the grey box 

changed to a darker shade of grey for the entire time that the reward pump was in operation; 

if the subjects were unrewarded the box changed to a lighter shade of grey for the same 

amount of time that the subjects would have received reward. By having this visual cue 

informing the subjects about the presence or absence of reward we hoped to minimise any 

variance in the neuronal signal that may have come about from variation in the perception of 

reward timing. For analysis we used an epoch that began 200ms before feedback onset and 

ended 600ms post-onset. 

 In examining the response of neurons at the point of feedback, we wanted to ask 

whether neurons in PFC encoded outcome related information which might be relevant for 

guiding future decisions. Therefore at the response epoch we constructed a regression 

model which accounted for the chosen probability value and chosen magnitude value both 

separated by whether the trial was rewarded or unrewarded as well as a binary rewarded-

unrewarded regressor. A detailed outline of this model can be found in Table 6.1. 
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Table 6.1: A list of regressors and their interpretations used in the multiple linear regression 

of neuronal firing rate aligned to Feedback onset. 

  

In order to examine whether neurons multiplexed outcome and action signals at 

feedback we used a similar regression model to the model described in Table 6.1 with the 

exception that we split each regressor down by the response that the subject made on each 

trial (see Table 6.2). We then used a linear hypothesis test to contrast R/NR coding on left 

response trials against outcome coding on right response trials. 

 

 

 

 

 

 

 

 

 

# Regressor Interpretation # Regressor Interpretation 

1 

Chosen 

Probability 

Rewarded Trials 

Value 4 
Chosen Magnitude 

Unrewarded Trials 
Value 

2 

Chosen 

Probability 

Unrewarded Trials 

Value 5 
R/NR (Rewarded-

Unrewarded) 

Categorical 

Reward 

3 

Chosen 

Magnitude 

Rewarded Trials 

Value 6 Constant 
Mean Firing 

Rate 
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Table 6.2: A list of action specific regressors and interpretations used in the multiple linear 
regression of neuronal firing aligned to Feedback onset. 

 

 

  

# Regressor Interpretation # Regressor Interpretation 

1 

Chosen Probability 

Rewarded Trials Left 

Choice 

Value 7 

Chosen Magnitude 

Rewarded Trials 

Right Choice 

Value 

2 

Chosen Probability 

Unrewarded Trials 

Left Choice 

Value 8 

Chosen Magnitude 

Unrewarded Trials 

Right Choice 

Value 

3 

Chosen Magnitude 

Rewarded Trials Left 

Choice 

Value 9 Left Constant Constant 

4 

Chosen Magnitude 

Unrewarded Trials 

Left Choice 

Value 10 Right Constant Constant 

5 
Chosen Probability 
Rewarded Trials 

Right Choice 
Value 11 R/NR  Left Choice 

Categorical 

Reward 

6 
Chosen Probability 
Unrewarded Trials 

Right Choice 
Value 12 R/NR Right Choice 

Categorical 

Reward 



209 
 

Results 

 

Two adult rhesus macaque monkeys (Subjects M and F) were trained to perform the 

same multi-attribute sequential information gathering and decision task as described in the 

previous chapter. As stated in Chapter 5, Subject M performed 32 recording sessions 

completing an average of 445 trials per session. Subject F performed an average of 394 

trials per session over 25 recording sessions.  

 

Neurons in PFC Encode Different Types of Outcome Information 

 If one wants to reflect on the astuteness of a decision the one must be able to 

represent the choice that was made as well as the outcome of the choice. Do PFC neurons 

in this task represent such signals? To test this we performed a linear regression of neuronal 

firing rate aligned to feedback onset against various relevant task parameters. We first 

examined the proportion of neurons that encoded whether reward was given or not at 

feedback. Neurons in all PFC regions significantly encoded rewarded trials (Figure 6.1). 

Encoding in ACC neurons was as high as 80% and was significantly greater than all areas 

(pairwise Chi2 test, p<0.05). Furthermore, approximately 60% of OFC and LPFC neurons 

encoded the rewarded vs unrewarded (R/NR) regressor and both did so significantly more 

than vmPFC (pairwise Chi2 test, p<0.05). We also noted that there was a significant skew 

towards negative coding of R/NR in both the ACC and LPFC populations (binomial test, both 

p<8x10-4). This meant that most neurons in these regions responded when rewards were 

omitted rather than when they were present. These results led us to conclude that many 

ACC, LPFC and OFC neurons encode whether rewards are delivered or not. 
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Figure 6.1: The neuronal coding of outcome parameters during reward feedback. The 
number of neurons in PFC which encoded whether a rewarded was delivered (R/NR), 
chosen probability value on rewarded trials (Prob. Rew.), chosen probability on unrewarded 
trials (Prob. Unrew.), chosen magnitude value on rewarded trials (Mag. Rew.) and chosen 
magnitude value on rewarded trials (Mag. Unrew.). Areas are split by whether neurons code 
these variables with a positive or negative sign. Black asterisks indicate regions that are 
significantly different from each other (Chi2 test, p<0.05) and coloured asterisks indicate 
areas that show a skew in the coding sign of a regressor (binomial test, p<0.05). The dashed 
line indicates the 5% chance level. 

 

Next we examined the profile of the encoding of the reward empirically by examining 

the pattern of coding across time for all neurons (Figure 6.2A). This demonstrated that 

coding in all areas was empirically sustained across the epoch but that even within single 

neurons; the coding in ACC was empirically stronger than other areas. It also appeared that 

ACC neurons tended to become significant earlier than other neurons (comparing the green 

lines and blue dashed lines between different areas). To test this quantitatively we 

performed a one-way ANOVA and multiple comparisons test of the latency of the first 

significant encoding of the R/NR variable for each neuron across regions which indicated 

that ACC coding was indeed significantly faster than all other regions (median latency; ACC: 

200ms, LPFC: 300ms, OFC: 280ms, vmPFC: 350ms, One-way ANOVA, p<4x10-9). 
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Figure 6.2: The temporal profile of value coding at feedback. (A) Heat maps of the absolute 
standardised T-statistics for outcome coding for every neuron in a region sorted by the 
latency of initial coding (green line). The white vertical line indicates the time of feedback 
onset. The median latency of encoding is shown for each region (blue dashed line). The 
same maps are drawn for chosen probability coding on rewarded trials (B), chosen 
probability coding on unrewarded trials (C), chosen magnitude coding on rewarded trials (D), 
chosen magnitude coding on unrewarded trials (E). 
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 Next we asked whether PFC neurons coded for chosen value at outcome. As value 

was separated into probability and magnitude value we examined the coding of these 

separately. We found that neurons in all regions coded for chosen probability value on both 

rewarded and unrewarded trials (Figure 6.1) (binomial test, all p<0.05). However ACC 

encoded both significantly more than all other regions while vmPFC coding was significantly 

smaller than all other regions (pairwise Chi2 test, all p<0.05). No region was observed to 

code probability value on rewarded trials any more than on unrewarded trials (Chi2 test, 

p>0.05).  

We next examined the coding of the chosen magnitude coding on rewarded and 

unrewarded trials. Chosen magnitude coding was significantly more prevalent in ACC and 

significantly less prevalent in vmPFC than all other regions (pairwise Chi2 test, all p<0.05). 

Surprisingly, a significantly greater population of neurons in ACC, LPFC and OFC preferred 

to code the chosen magnitude on rewarded trials compared to unrewarded trials (Chi2 test, 

all p<0.05). This latter result implies that the representation of the chosen magnitude in ACC, 

LPFC and OFC diminishes when this reward magnitude is not delivered.  

We next examined the temporal profile of the representations of the four 

abovementioned variables around the feedback time (Figure 6.2B-E). As expected many 

neurons represented all of the variables before feedback onset. However, a larger subset of 

neurons also showed their first encoding of the chosen values (i.e. one of probability or 

magnitude) after feedback set implying a re-emergence of the value signal at feedback. 

Whilst the above result suggested that chosen magnitude coding could be modulated 

by whether a reward was received, this did not specifically explore the effect of R/NR on 

each neuron. In other words, we wondered whether the same neurons encoded chosen 

probability (or magnitude) on both rewarded and unrewarded trials. To test this, we 

performed a contrast of the chosen probability on rewarded vs unrewarded trials, which 

revealed that all regions did significantly encode them but that the coding was significantly 
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greater in ACC and significantly lower in vmPFC (Figure 6.3A) (binomial test, p<0.05, 

pairwise Chi2 test, <0.05). We performed a similar analysis for chosen magnitude differential 

on rewarded versus unrewarded trials and found similar results (Figure 6.3A) (binomial test, 

p<0.05, pairwise Chi2 test, <0.05). However, 30% of OFC neurons were observed to perform 

this differential computation which was greater than both LPFC and vmPFC (pairwise Chi2 

test, <0.05). Finally, we examined the temporal profile of this differential coding scheme in 

each region (Figure 6.3B and C). This analysis showed that for both attributes the median 

latency of the differential code was relatively slow (more than 200ms in all regions) and that 

there were very few empirical differences between attributes. 

 

Figure 6.3: Differential coding of value based on categorical outcomes. (A) The number of 
neurons which significantly encode value probability value and magnitude value differentially 
based on whether the trial is rewarded or not. (B) Heat maps showing the strength of the 
differential coding of probability value. (C) The same heat maps for magnitude value. All 
other figure properties are the same as Figures 6.1 and 6.2. 
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Relationship Between Cue 1 Value Coding and R/NR Outcome Coding  

Having identified a number of unique outcome-related signals across PFC neurons, 

we next examined whether neurons that encoded these outcome representations were also 

the same neurons that encoded value information when the subjects were forming 

predictions about the value of the upcoming outcome. For these projection analyses, we 

used information about Cue 1 value centred in a 500ms epoch time-locked to Cue 1 onset. 

We performed a projection analysis of the Cue 1 value code (defined in Chapter 5, Methods, 

Table 5.1) against the mean R/NR outcome code at feedback (Figure 6.4A). This indicated 

that there was a significant positive correlation between ACC value coding and outcome 

coding. This effect was significantly stronger than the effect measured in OFC but no other 

region (linear hypothesis test of the beta coefficient for ACC against OFC with Bonferroni 

correction, p<0.008). The interpretation of this is that ACC neurons that respond most 

strongly to value also best discriminate whether the subject received reward or not. We then 

examined the temporal profile of this signal by performing a sliding projection of the Cue 1 

value code against the outcome code (Figure 6.4B). The relationship between these two 

codes in ACC was empirically observable within approximately 100ms after the feedback 

started but it reached its peak at approximately 300ms post onset. Furthermore, this signal 

was at no point significantly greater than LPFC or vmPFC and also only became significantly 

different from OFC at the peak of its coding (i.e. at 300ms post-onset) (linear hypothesis test 

of the beta coefficient ACC against the coefficient for OFC with Bonferroni correction, 

p<0.008). This suggests that neurons which encode value during decision making go on to 

monitor the outcomes of the same decisions. 

 

 

 



215 
 

 
Figure 6.4: The relationship between value coding and outcome coding. (A) The results of a 
linear regression of the mean beta coefficients for value coding against the mean coefficients 
for R/NR coding between the start of the feedback onset and 500ms post-onset. Coloured 
asterisks indicate significant areas (linear regression, p<0.05) and black asterisks indicate 
areas that are significantly different from each other. (B) The sliding regression of mean Cue 
1 value coding against outcome coding at feedback (vertical black line). Thin lines indicate 
SEM. 

 

Although Cue 1 value neurons outside of ACC do not encode R/NR outcomes, are 

attribute specific neurons more likely to respond to whether trials are rewarded or not?  In 

order to answer this question, we had to define a measure of attribute preference. In 

previous analyses (Figure 5.4), we used a contrast of the betas between the two attributes 

at Cue 1 to define differential attribute selectivity. However, the signed betas of these 

contrasts cannot reveal which attribute is more strongly encoded because value information 

itself can be encoded with either a positive or negative relationship with firing rate. 

Therefore, we computed the relative difference in the mean absolute coding strength for Cue 

1 probability and magnitude value across all neurons. Then we computed the 75th percentile 

of the t-stat distribution for the relative coding of probability across all neurons (ΔT(Prob.-

Mag.)=0.57) and all neurons that showed coding above this threshold were those defined as 

probability preferring neurons (see Figure 6.5A, green shaded area). We then correlated the 

relative probability preference for each area against the R/NR code at feedback (Figure 

6.5B). This analysis revealed a significant correlation between the degree of probability 
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preference at Cue 1 and R/NR specifically in OFC neurons (linear regression, T(OFC)=2.86, 

p(OFC)<0.006). This suggests that the more an OFC neuron prefers to code probability value, 

the more it discriminates whether or not a reward is delivered.  

 
Figure 6.5:  Attribute preferences predict outcome coding. (A) A histogram showing the 
distribution of absolute attribute preference across all neurons. The pink area indicates 
neurons that were considered to be magnitude preferring and the green area those that were 
considered to be probability preferring. (B) Scatter plots of mean absolute outcome coding 
against mean absolute Cue 1 probability preference for neurons within each area that pass 
preference criteria (as defined from the distribution shown in (A)). Asterisks indicate 
significant relationships (linear regression, p<0.05). (C) Scatter plots of mean absolute 
outcome coding against mean Cue 1 absolute magnitude coding for each region. 
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We next repeated the above analysis by defining a population of magnitude 

preferring neurons (ΔT(Mag.-Prob.)=0.60) (see Figure 6.5A, pink shaded area). Here, we found 

a significant correlation in LPFC (Figure 6.5C) (linear regression, T(LPFC)=6.25, p(LPFC)<2x10-

6). Therefore, the more these LPFC magnitude preferring neurons preferred magnitude value 

then the more they would discriminate rewarded and unrewarded outcomes. These results 

point to functional subdivision of attribute specific coding in LPFC and OFC in tracking 

whether or not outcomes are obtained. 

 

LPFC Action Value Neurons Multiplex Chosen Action and Outcome 

 Do any neurons in the PFC reflect outcomes contingent on the actions that led to 

them? We first examined whether neurons in any region encoded the decision variables 

discussed above (i.e. R/NR, probability value rewarded and unrewarded or magnitude value 

rewarded and unrewarded) in the domain of the chosen action (Figure 6.6). We found that 

approximately 15% of ACC neuron did encode left-right action R/NR although this was only 

significantly different vmPFC (Chi2 test, p<0.05).  Significant proportions of neurons in ACC, 

LPFC and OFC were observed to encode probability and magnitude values on both chosen 

and unchosen trials (binomial test, p<0.05) but no clear pattern was observed. 
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Figure 6.6: The neuronal coding of the action related outcome parameters during reward 
feedback. All other figure properties are the same as Figure 6.1. 

 

We then performed a population correlation of Cue 1 action value coding against left-

right action R/NR coding at feedback (i.e. a contrast of regressors 11 against 12 in Table 

6.2). We found that there was a significant positive relationship between action value coding 

at Cue 1 and action dependent R/NR coding at outcome specifically in LPFC (Figure 6.7A) 

(linear regression, T=2.81, p<0.006). This means that a neuron that encoded left value 

preferentially over right value at Cue 1 is likely to discriminate the R/NR at feedback more 

when the subject chose left to obtain the outcome compared to occasions when the subject 

chose right. It should however be noted that this LPFC population may reflect spatial value 

computations rather than action value computations (see Chapter 5, Results). Though this 

effect was only present in LPFC, it was not significantly greater than in any other area (linear 

hypothesis test of the beta coefficient for LPFC against other areas with Bonferroni 

correction, p>0.008). 

We then examined the temporal profile of this signal by performing a sliding 

projection analysis of mean Cue 1 action value coding against the action specific R/NR code 
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across the cue epoch (Figure 6.7B). This analysis showed that in comparison to the strong 

action-independent Cue 1 – R/NR projection found in ACC neurons (Figure 6.4), the LPFC 

action-specific Cue 1 – R/NR effect was empirically much smaller and slower. The 

relationship was only seen to come about after approximately 400ms of feedback onset but 

was maintained beyond the end of the epoch.  

 

Figure 6.7: LPFC action/spatial value neurons code for action specific outcomes. (A) Scatter 
plots of the mean Cue 1 action value code against the mean action specific R/NR code at 
Feedback. Asterisks indicate significant correlations (linear regression, p<0.05) (B) A sliding 
projection analysis of the mean Cue 1 action value code against the action specific R/NR 
code across the Feedback epoch. Thin lines indicate SEM. 

 

 Figure 6.8 depicts an example LPFC neuron. Although this neuron has a very low 

firing rate at cue presentation and does not significantly encode the value of stimuli 

presented either on the left or the right sides of the screen, the left-right contrast term is 

considered significant (most likely because the neuron has a tendency to code left value 

negatively and right value positively) (Figure 6.8A). During the feedback epoch this neuron 

clearly differentiates the chosen action even before feedback onset (Figure 6.8B). However 



220 
 

after feedback onset the neuron increases its firing rate if the subject was not rewarded. This 

is particularly pronounced on occasions when the subject made a left choice and was 

unrewarded. 

 

Figure 6.8: An example LPFC action specific outcome coding neuron. (A) The firing rate of 
the neuron at Cue 1 separated by value and cue presentation side. The corresponding beta 
coefficients are shown in the lower panels. (B) The firing rate of the same neuron at 
Feedback based on the chosen action and the outcome (top) and its corresponding beta 
coefficients (bottom).  

 

Encoding of Probabilistic Reward Prediction Errors and Value Information at Outcome  

The feedback period is an opportunity for the subject to update his estimation of 

value. Prediction errors are the product of such a computation. Although prediction errors 

(PE) have been previously reported in PFC neurons (Kennerley et al., 2011), one advantage 

of our current dataset is the multi-attribute aspect of the choices. Indeed, a critical element of 

learning is to update specifically what information, in this case, decision attributes, violated 

expectations (i.e. PE). Because neurons can encode value information both during 

prediction and during outcomes, it can be difficult to assess whether an outcome signal 
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reflects value or PE. However, since positive/negative PEs are defined as 1/0-value, 

respectively, if a neuron codes value at choice (e.g., fires the highest for the high probability 

stimulus), for its outcome activity to reflect a PE signal it would have to fire the most for the 

low probability stimulus, a signature evident in both dopamine and some PFC neurons 

(Kennerley et al., 2011, Tobler et al., 2005). Therefore, we classified PE signals as neurons 

that encoded value at both choice (i.e., Cue 1) and outcome, but with opposing signed 

regression coefficients. We define neurons with the same signed regression coefficients at 

choice and outcome as value coding outcome neurons.  

We first sought characterise the number of PE coding neurons in each region. We 

found that approximately 20% of ACC and 10% of OFC neurons encoded positive PEs 

(Figure 6.9). However, ACC was observed to be significantly greater than all other regions 

(pairwise Chi2 test, <0.05). Negative PE encode was empirically smaller in both ACC and 

OFC although ACC was still significantly greater than LPFC and vmPFC (pairwise Chi2 test, 

<0.05). Finally, only 5% of ACC neurons encoded both positive and negative PEs. This was 

only significantly different from the LPFC population (Chi2 test, p<0.01). From this simple 

analysis was conclude that ACC (and to some extent OFC) neurons appear to preferentially 

compute various types of PE at outcome. 

 

Figure 6.9: The neuronal coding of prediction errors at feedback. All other figure properties 
are the same as Figure 6.1. 
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We examined the relationship between Cue 1 value coding and chosen probability 

coding on rewarded trials using a projection analysis. There was a significant negative 

relationship between Cue 1 value coding in ACC and chosen probability in rewarded trials 

(Figure 6.10A) (linear regression, T=-2.01, p<0.03). This implies that neurons ACC neurons 

 

 
Figure 6.10: The coding of probabilistic prediction errors at feedback. (A) Scatter plots 
showing the relationship between mean Cue 1 value coding and mean probability value 
coding at feedback on rewarded trials. (B) The same scatter plots for unrewarded trials. (C) 
The sliding projection of mean value coding and probability coding on rewarded trials 
(maroon) and probability coding on unrewarded trials (dark green) over time. All other figure 
properties are the same as Figure 6.7. 
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that respond more (i.e. positively) to value at the choice then respond more when a low 

probability choice leads to a reward than a high probability choice (i.e. an unexpected reward 

over an expected reward). This is consistent with the encoding of a positive PE signal. We 

also noted a significant negative relationship in vmPFC neurons, but a positive relationship 

in OFC neurons (Figure 6.10A) (T(OFC)=2.45, T(vmPFC)=-2.57, p(OFC)<0.02, p(vmPFC)<0.02). This 

suggests that vmPFC may also encode positive PE, while OFC encodes only value 

information at outcome. 

 

Figure 6.11 shows an example ACC neuron which encodes positive PEs. This 

neuron responds to value at Cue 1 with a firing rate that increases with increasing value 

(Figure 6.11A). This value coding was significant from approximately 100ms post-cue onset 

and was maintained over the entire epoch. In the feedback epoch, the same neuron 

encodes the value of the chosen probability stimulus with a positive relationship up until 

feedback is initiated; at this point the coefficient for value coding can be seen to flip in sign 

so that it now encodes the chosen probability with a negative relationship to value 

approximately 300ms after feedback begins (Figure 6.11B, right column), the key signature 

of a positive PE. However, on rewarded trials, the neuron does not show the same sign flip 

of regression coefficients, and instead maintains the positively signed representation of 

chosen probability value until 450ms post-feedback onset (Figure 6.11B, right column). This 

indicates that on unrewarded trials, this neuron encodes that value of the outcome not 

received, or foregone value. 
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Figure 6.11: An example ACC positive prediction error neuron. (A) The average firing rate of 
the neuron split by the value of Cue 1 (top panel) and the corresponding coefficients for the 
linear regression of value onto firing rate (bottom panel). Red dots indicate significant bins in 
the regression and blue dots non-significant bins. (B) The firing rate of the same neuron at 
feedback split by the value of the chosen probability stimulus and the whether the trial was 
rewarded (left) or unrewarded (right) along corresponding beta coefficients (bottom panels). 

 

Figure 6.12 shows an example vmPFC positive PE coding neuron. At Cue 1 

presentation, this neuron codes for value positively at an approximate latency of 400ms 

(which is very slow when compared to the above ACC example neuron). At feedback the 

neuron does not maintain a representation of the chosen probability before feedback onset. 

However, specifically on rewarded trials this neuron negatively encodes chosen probability 

at a latency of 450ms, in other words, a positive PE signal. In contrast, on unrewarded trials 

there is no reactivation of the value representation implying a specific positive PE 

computation. 
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Figure 6.12: An example vmPFC positive prediction error neuron. (A) The average firing 
rate of the neuron split by the value of Cue 1 (top panel) and the corresponding coefficients 
for the linear regression of value onto firing rate (bottom panel). (B) The firing rate of the 
same neuron at feedback split by the value of the chosen probability stimulus and the 
whether the trial was rewarded (left) or unrewarded (right) along corresponding beta 
coefficients (bottom panels). All other figure properties are the same as Figure 6.11. 

 

To examine whether PFC neurons had neural signatures resembling negative 

prediction errors, we performed a projection analysis of Cue 1 value onto chosen probability 

coding at outcome on unrewarded trials. Unlike on rewarded trials, ACC showed a significant 

positive relationship between Cue 1 value coding and probability value on unrewarded trials 

(Fig. 6.10B; linear regression, p<0.05). In other words, if an ACC neuron encodes value 

positively at choice then it will respond more to unrewarded high probability choices 

compared to unrewarded low probability choices. This is the opposite, and significantly 

different, to the neuronal response to rewarded trials (linear hypothesis test of the beta 

coefficient for ACC in rewarded trials against the corresponding coefficient in unrewarded 

trials, T=9.16, p<0.003), and indicates that on unrewarded trials ACC neurons encode how 

valuable the outcome would have been had it been rewarded, a type of fictive or foregone 

value signal. Thus, ACC only encodes positive PEs. OFC also exhibited a strong positive 
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correlation between value coding and unrewarded probability coding (linear regression, 

p<2x1013). This positive correlation in OFC on unrewarded trials was much stronger than its 

positive relationship in rewarded trials (linear hypothesis test of the OFC beta coefficient for 

probability value on unrewarded trials against the same coefficient on rewarded trials, 

T=16.96, p<5x10-4), and this positive correlation in OFC on unrewarded trials was 

significantly stronger than all other regions (linear hypothesis test of the beta coefficients for 

OFC individually tested against the coefficients for all other regions with Bonferroni 

correction, p<0.008). OFC therefore also encodes fictive value when the trial is unrewarded. 

LPFC showed a similar positive correlation in this projection, though it did not reach 

significance (linear regression, p>0.05). vmPFC on the other hand, was the only region to 

exhibit a trend towards a negative correlation between the Cue 1 value coding and 

probability value on unrewarded trials, the classical signature of a negative PE. While this 

correlation did not quite reach significance (Figure 6.10B; linear regression, p<0.15), it also 

did not significantly differ from the correlation on rewarded trials (linear hypothesis test of the 

beta coefficient for vmPFC in rewarded trials against the corresponding coefficient in 

unrewarded trials, T=0.66, p>0.05), implying the vmPFC population encoded both positive 

PE and negative PE similarly. Taken together, these results suggest both OFC and ACC 

may encode similar information about foregone outcomes while vmPFC may encode general 

PEs.     

 Figure 6.10C shows how the PE projection evolved across the outcome epoch. We 

used a sliding projection of mean value coding against probability coding in rewarded and 

unrewarded trials. The positive PE signal (i.e., a negative correlation in the projection) in 

both ACC and vmPFC on rewarded trials was very clearly visible as early as 150ms post-

feedback onset and peaked at approximately 300ms post-onset indicating a strong signal 

with a fast latency (Figure 6.10C). On unrewarded trials, only vmPFC exhibited a negative 

correlation in the projection indicative of negative PE coding. In contrast, the strong positive 

correlation on unrewarded trials indicative of encoding foregone value was particularly robust 
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in OFC, with the correlation increasing dramatically beginning 100ms post-feedback onset 

and peaking approximately 450ms post-onset (Figure 6.10C). 

Figure 6.13 depicts two classes of PE neurons, both in ACC. Figure 6.13A shows a 

neuron which responds negatively to value at Cue 1. When the subject is given a reward, 

this neuron does not encode the value of the chosen probability stimulus. However, when a 

reward is omitted, the neuron strongly represents probability value positively if the trial is 

unrewarded. Therefore, this neuron specifically encodes negative PE.  Figure 6.13C also 

shows a neuron which responds negatively to value at Cue 1. However, at response this 

same neuron positively encodes the value of the chosen probability stimulus (irrespective of 

whether the trial is rewarded or not) (Figure 6.13B).  This neuron therefore shows a sign flip 

in coding at response which is indicative of the coding of both positive and negative PEs at 

feedback. 
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Figure 6.13: Example ACC prediction error coding neurons. The firing rates of each neuron 
at Cue 1 split by value (irrespective of attribute) (A and C). The firing rates of the same 
neurons at feedback split by the value of the chosen probability stimulus and whether the 
trial was rewarded (left column) or unrewarded (right column) (B and D). All other figure 
properties are the same as Figure 6.11. 
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The relationship between reward prediction and reward magnitude at outcome 

 Having demonstrated that ACC and vmPFC neurons encode PEs in the domain of 

probabilistic information we next considered whether these regions also computed PEs with 

respect to magnitude information. Our first step was to probe the relationship between initial 

value coding (i.e. at Cue 1) and magnitude coding at feedback during rewarded and 

unrewarded trials. Using the same projection analysis as outlined previously, we found a 

significant positive correlation between value coding and magnitude coding on rewarded 

trials only in OFC (Figure 6.14A) (linear regression, both T(OFC)=3.78, p(OFC)<2x10-4). There 

was also a borderline significantly negative relationship on rewarded trials in vmPFC 

(T(vmPFC)=-1.94, p=0.0504), which was similar to the negative relationship observed for 

probability coding on rewarded trials. On unrewarded trials, both ACC and OFC had a 

significant positive correlation (Figure 6.14B) (linear regression, both T>2.98, both p<0.003). 

None of the reward magnitude projections in any of the areas differed between rewarded 

and unrewarded trials (linear hypothesis test of the beta coefficient for magnitude coding in 

rewarded trials against that for unrewarded trials, p>0.05).  
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Figure 6.14: The coding of reward magnitude expectation at feedback. (A) Scatter plots 
showing the relationship between mean Cue 1 value coding and mean chosen magnitude 
value coding at feedback on rewarded trials. (B) The same scatter plots for unrewarded 
trials. (C) The sliding projection of mean value coding and magnitude coding on rewarded 
trials (maroon) and probability coding on unrewarded trials (dark green) over time. All other 
figure properties are the same as Figure 6.10. 

 

 Figure 6.14C shows the temporal evolution of the reward magnitude projection 

across the outcome epoch, using the same sliding projection analysis as outlined earlier for 

probability coding. In ACC this analysis revealed that approximately 200-500ms after 

feedback onset there was a qualitative difference between the two trial types, attributed to a 

quenching of the magnitude projection on rewarded trials (Figure 6.14C). In fact when the 

mean signal projection was constrained only to this time period there was a significant 

difference between reward and no reward (linear hypothesis test of the beta coefficient for 
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ACC in rewarded trials against unrewarded trials, p<0.04). This implies that when the subject 

is aware that an outcome will be rewarded, the ACC population stops encoding reward 

information. In contrast, when the subject is made aware that they will not receive a reward, 

the ACC population continues to encode the foregone reward magnitude. The OFC 

population exhibited positive projections on both rewarded and unrewarded trials which 

indicates that this region encodes the chosen reward magnitude at feedback irrespective of 

whether this is an experienced or foregone reward.  

 Having found that outcome coding in LPFC is modulated by action, one might expect 

that positive and negative prediction error codes are also frames by action. We therefore 

repeated the probability and magnitude (rewarded and unrewarded) value projection 

analyses outline above instead using the action specific contrasts defined from the 

regression model laid out in Table 6.2. However, we found that there was no significant 

correlation between Cue 1 action value coding and the coding of chosen probability 

contingent on the chosen action on either rewarded or unrewarded trials (linear regression, 

all p>0.05). This was also true in the magnitude domain (linear regression, p>0.05).   
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Discussion 

 

R/NR Coding in PFC 

 We have shown that many neurons in ACC, LPFC, OFC and vmPFC discriminate 

whether or not a reward is delivered following a choice. This finding is in agreement with 

many studies that have also reported outcome related coding in these regions (Kennerley et 

al., 2011, Monosov and Hikosaka, 2012, Ito et al., 2003, Quilodran et al., 2008, Seo et al., 

2007, Seo and Lee, 2007). In agreement with Kennerley et al. (2011) we found that ACC 

neurons were the single largest outcome sensitive population. However, unlike Kennerley et 

al. (2011) who found no skew in the coding pattern of R/NR, we found that this population 

was significantly skewed towards negative coding. 

 ACC has been implicated in monitoring behavioural errors in several human tasks 

(Critchley et al., 2005, Paulus et al., 2002, Holroyd et al., 2004). The ACC effect in the 

current study does not necessarily reflect errors in optimal choice because there only a weak 

correlation between selecting the best option and getting a rewarded outcome. Furthermore, 

the feedback period is not the point at which subjects would become aware of whether they 

made an error in selecting the best option, instead this would have been immediately after 

the response was made when all of the stimuli were uncovered allowing the subject to 

compare what he chosen against the unchosen option. Some studies define errors as 

failures to inhibit unwanted actions (Stemmer et al., 2004, Critchley et al., 2005). Although it 

is possible that there may be occasions when subjects choose suboptimally because they 

fail to inhibit a response bias, analysis of the choice behaviour (Chapter 4) shows that 

behaviour is strongly driven by value and that these types of errors are relatively uncommon. 

Based on these factors, it is therefore unlikely that the ACC neurons in this study were 

encoding behavioural errors, and instead likely coding information about the outcome 

received based on the choice that was made. 
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 In this study we defined outcome coding as a differential response to a rewarded and 

unrewarded outcomes (R/NR). A study by Seo et al. (2007) where they analysed coding of 

wins and losses (which are slightly different to the definitions used in this study) the authors 

found that different populations of neurons in LPFC and ACC coded for wins as compared to 

losses. The method of analysis in this study does not necessarily conflict with this finding 

because a neuron that only responds to a reward (or no reward) can also appear to be 

significant for the differential (contrast) term if the strength of this coding is strong enough. 

Seo and Lee (2007) also found that the coding of a gain in ACC correlated with the mean 

value of the trial (called assets in their paradigm) but the same was not true for losses. 

However, this analysis was performed at feedback whereas our study shows that ACC 

neurons that encode value during the decision phase are specifically modulated later in the 

trial by outcomes. 

 The fact that OFC probability preferring neurons are more likely to represent the 

outcome is unsurprising as the outcome is critical for updating the value of the probability 

stimuli and should have no bearing on the value of magnitude stimuli. Lesion studies have 

shown that damage to parts of OFC can lead to deficits in credit assignment (Noonan et al., 

2010). One possible explanation for this could be that lesions to OFC cause a loss in 

probability specific value neurons, or neurons which differentiate whether choices are 

rewarded, both of which are capable of tracking outcomes. Interestingly, in a previous study 

that compared outcome coding across PFC neurons for different decision attributes, OFC 

neurons were most sensitive to whether or not a choice was rewarded compared to the 

magnitude of the reward or the physical cost incurred to obtain the reward (Kennerley and 

Wallis, 2009b). We also found a positive correlation between LFPC magnitude value 

preference at Cue 1 and R/NR coding. This implies that the more an LPFC neuron prefers 

encoding magnitude over probability information at choice, the more they will differentiate 

whether or not that choice is rewarded at feedback. 
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 Finally, the current study found that action value LPFC neurons at Cue 1 also encode 

R/NR contingent on the action performed to achieve the outcome. Neurons is SEF show a 

similar pattern of action specific outcome coding (Uchida et al., 2007). However, this finding 

is novel in the literature for LPFC, although it has been previously shown that LPFC neurons 

represent previous actions (several trials into the past) and current outcomes simultaneously 

during feedback (Barraclough et al., 2004). Such a signal may therefore be critical for 

specifically tracking the value of actions. It should be noted that the action outcome signal 

may still reflect a spatial value signal. This is because when feedback is provided, visual 

feedback is presented informing the subject as to whether he is being given reward or not. It 

is therefore possible that these LPFC neurons are actually responding to whether or not 

reward is presented on their preferred side of the screen. 

 

Prediction Error Coding in PFC 

 This study has shown that two separate PFC regions compute PEs at feedback. The 

ACC population strongly encode positive PEs but show no coding of negative PEs. In 

contrast, vmPFC neurons encoded both positive PE and negative PE with similar negative 

relationships between Cue 1 value coding and the probability coding at outcome, though the 

negative PE coding on unrewarded trials did not quite reach significance. Several studies 

have shown that ACC neurons can encode either positive or negative PE (Matsumoto et al., 

2007, Silvetti et al., 2014, Kennerley et al., 2011). However, Kennerley et al. (2011) found 

that ACC had a predilection for positive PE coding, consistent with our current ACC findings. 

Matsumoto et al. (2007) found that ACC neurons encoded prediction errors during motor 

learning, however, the computations themselves were not action specific which is in 

agreement with the current study. It should be noted that all regions contained some 

neurons that computed both types of PE. However, at the population level it was only ACC 

and vmPFC that encoded various forms of PE.  
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 The finding that ACC neurons encode both positive PEs is consistent with the 

contemporary ERN data from the human EEG field (Silvetti et al., 2014). The ERN is seen to 

occur 100-200ms post-feedback onset which is the approximately timing of the PE signal in 

this study. This result is therefore a potential link between the small scale neuronal 

computations measured in primate studies and the large scale signals seen in EEG studies. 

However, one discrepancy is that in the current study the PE signal was observed to last 

beyond 700ms whereas the ERN seems to have a much shorter latency (approximately 

300ms). The ERN may therefore reflect a shorter process such as synaptic activity rather 

than directly measuring neuronal firing. Dopamine neurons are known to encode predictions 

about the value of stimuli as well as both positive and negative PEs in a common value 

currency (Tobler et al., 2005). Like ACC, dopamine neurons have also been shown to prefer 

to code for positive PEs (Bayer and Glimcher, 2005). Given the strong anatomical 

connections between ACC and VTA it is no surprise that ACC and dopamine computations 

share some similarities (Williams and Goldman-Rakic, 1998). 

Prediction error signals have not been reported in vmPFC in previous studies. In fact 

Monosov and Hikosaka (2012) found no evidence of PE coding in vmPFC neurons in their 

study. However, there are two important considerations to bear in mind. First, this study 

used a simple pavlovian task which lacked any choice component, thus the outcome 

information could only be used to update expectations rather than adapt future choice 

behaviour. Second, the authors did find that anterior parts of vmPFC were more responsive 

to value and outcome compared to more posterior portions. In the current study we recorded 

from this anterior portion (Brodmann’s area 14) and also found value and outcome selective 

neurons. Again the use of a projection analysis may explain why we were able to detect a 

PE signal. It should however be noted that the positive PE signal in vmPFC was the weakest 

of the significant PE projection signals reported here. However, it was also not significantly 

different to the signal measured on unrewarded trials, suggesting vmPFC may code 

deviations from expectations on both rewarded and unrewarded outcomes. Therefore, 
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vmPFC may share more similarities with the dopamine signal than ACC. As with most 

vmPFC signals reported throughout this thesis, the vmPFC PE signals were much weaker 

than other value-related computations in ACC and OFC. 

 Studies have shown that some OFC neurons encode both positive and negative PEs 

(Sul et al., 2010, Kennerley et al., 2011, Noonan et al., 2011), though this encoding appears 

to quantitatively less prevalent in OFC compared to ACC (Kennerley et al., 2011). We found 

that few OFC neurons compute PEs and that these signals are not represented at all on the 

population level. Instead, of all the PFC areas sampled, arguably OFC exhibited the 

strongest positive correlation between prediction (i.e., Cue 1) and outcome coding, implying 

one of the key representations in OFC is to encode the value of outcomes, rather than their 

deviations from expectations. 

We found in OFC that the Cue 1-outcome probability projection was significantly 

more positive on unrewarded than rewarded trials. ACC also exhibited a positive Cue 1-

outcome probability projection on unrewarded trials. This implies that when outcomes are 

not rewarded, rather than coding negative PEs, neurons in both ACC and OFC encode 

information about the reward probability in a similar way as those neurons encoded Cue 1 

value. Neural signatures of fictive or hypothetical outcomes (i.e., outcomes for choice not 

made) have been observed in ACC, OFC and LPFC (Abe et al., 2011, Hayden et al., 2009). 

Our results reflect value coding for choices made, but not experienced, or fictive value. Such 

fictive value signals are known to influence decision making behaviour (Chiu et al., 2008, 

Montague et al., 2006, Kim et al., 2015, McClure et al., 2003). Data from the current study 

provides evidence of a subtly different form of fictive value to that which is commonly 

reported in the neurophysiology literature. Whereas most studies show that PFC regions 

encode the value of options that should have been chosen at the moment of feedback (Abe 

and Lee, 2011, Hayden et al., 2011) we have shown that ACC and OFC neurons compute 

the value of the chosen option when it is not rewarded. Fictive reward encoding is difficult to 

separate from motivational coding. Such signals are observed across the frontal cortex 
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(Roesch and Olson, 2003). However the fact that value coding is seen to remerge at 

outcome and the fact that value coding changes based on whether the outcome is rewarded 

or not implies that this is unlikely to be a mere motivational signal.  

 

Functional Subdivision of Prediction Error Coding  

 One of the major advantages of considering the outcome period in this behavioural 

paradigm is that outcome signals can be decomposed into ones that relate to the 

probabilistic and the reward size aspects of the choice. In this study we have shown that 

OFC neurons do not encode reward magnitude PEs but instead represent the chosen 

magnitude value at feedback onset on both rewarded and unrewarded trials. ACC neurons 

represent the chosen magnitude only when it is not delivered. Both these results on 

unrewarded trials are consistent with ACC and OFC neuronal populations encoding 

information about the reward magnitude in a similar way as those neurons encoded Cue 1 

value; such foregone value coding about reward magnitude is remarkably similar to the 

foregone probability value discussed above. 

The fact that we did not find negative projections between Cue 1 value and reward 

magnitude at outcomes may have been expected. From the point of view of learning it 

seems more optimal to code prediction errors solely for probability stimuli because unlike 

magnitude stimuli they are harder to learn the value of and have high variance in outcomes. 

Furthermore, there is very little variance associated with the outcomes of the magnitude 

stimuli because they were clearly separated in size and also have visual feedback 

associated with them in order to make their exact timing as clear as possible for the 

subjects. Such signals may be critical for ongoing credit assignment for probability stimuli 

during task (Noonan et al., 2011, Noonan et al., 2010). 

In conclusion this chapter has presented evidence that specific subsets of ACC, 

LPFC and OFC neurons encode reward outcomes. ACC and vmPFC compute various types 
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of PE while OFC and ACC also represent fictive value. These complementary signals may 

be critical facilitating adaptive behaviour during decision making. 
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Chapter 7: Discussion 
 

 This thesis used both behaviour and single neuron physiology to make inferences 

about the layout and computations of decision making circuits which guide both overt 

attention and final choice. The main findings were as follows: 1) covert attentional systems 

use value guided decision making processes to bias overt attention, 2) neurons in PFC 

represent and compare values in different references frames consistent with a parallel 

decision making system, 3) future information gathering is also represented in the same 

reference frames in PFC, 4) there is functional specialisation within PFC regions reflecting 

different roles they play in optimising behaviour. 

 

Covert Attention and Decision Making 

 This thesis examined the influence of covert attention in two separate but similar 

behavioural paradigms presented in Chapters 3 and 4. In both experiments subjects used 

covert attention to both decide where to make their first saccade and to decide what to 

eventually choose. The important difference between the two tasks was the fact the multi-

attribute task was more complex to solve because subjects had to consider more 

information. However, despite this added complexity covert attentional behaviour was mostly 

unchanged. The use of covert attention may have several empirical benefits to subjects in 

solving the types of task presented in this thesis. Firstly, it drives overt attention towards 

more valuable options which may help overt attentional to bias subjects to choose these 

options (Krajbich et al., 2012) thereby increasing the probability of making optimal decisions. 

Secondly, covert attention almost certainly reduces the time required to sample available 

information overtly since overt saccades most likely require more planning and execution 
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time than shifting covert attention. Therefore the use of covert attention may increase 

subjects’ reward rates.  

 Several behavioural differences between covert control of overt attention and final 

choice were observed in both experiments. Chief among these is the fact that novelty 

differentially influences saccades and choice. One potential inference of this finding is that 

these two value guided systems are separable. If this is true then this implies that neuronal 

circuitry in several regions of the brain is configured to resolve value comparison problems. 

This is not surprising given the fact that recordings from multiple regions during perceptual 

decision making have shown comparison signals (Siegel et al., 2015, Hernández et al., 

2010) and also fits with the idea of parallel value comparison (Cisek, 2012). 

 Because the experiments presented in Chapter 3 and 4 are entirely behavioural it is 

impossible to state for certain that basal ganglia circuits do indeed perform this fast latency 

value comparison driven covert attention. However, as stated in Chapter 3, given the 

anatomical and neurophysiological information known about caudate and Substantia Nigra 

par reticulata this inference appears to be safe. The obvious follow up question to ask is 

whether the basal ganglia circuit interacts with the prefrontal circuit that most likely drives 

final choice? From an anatomical point of view is it plausible because loops exist between 

caudate PFC regions including OFC and LPFC (Alexander et al., 1986). However, without 

neurophysiological recording this remains an unsupported hypothesis. 

 

 Frames of Reference in the PFC 

 In Chapter 5, the finding was reported that different subpopulations of neurons 

encode value in specific frames of reference is not surprising and is in fact a confirmation of 

several previous studies which have individually each individually reported single frames of 

reference in single areas in different tasks (Hayden and Platt, 2010, Roesch et al., 2006, 
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O'Neill and Schultz, 2010, Matsumoto et al., 2007). However the major advance in this study 

is that we have shown that these frames of references are simultaneously represented in 

specific populations of PFC neurons. This finding along with the fact that future information 

gathering signals are also represented in the same reference frame implies that frames of 

reference represent either a more general feature of cognitive functions that can be driven 

by value or a common value comparison system for choices and information gathering in 

PFC. 

 fMRI BOLD activity in human vmPFC has been seen to correlate strongly with value 

in decision related computations in a huge number of studies (Bartra et al., 2013) and has 

also been named as part of the ‘default mode network’ of the brain (Laird et al., 2011). 

Therefore given the relatively strong signal measured in humans it is surprising that neuronal 

recordings from this region have shown relatively few computations occurring in vmPFC and 

also that any computations vmPFC does perform do not appear to be region specific and are 

also far weaker than other PFC regions. Furthermore, given the demonstration of attentional 

value computations in the vmPFC BOLD signal in the study of Lim et al. (2011) it is 

surprising that we find attentional value computations specifically in primate OFC. There are 

several possible explanations for this finding. Firstly, the BOLD signal in fMRI only a proxy 

for neuronal activity and can be modulated by several physiological factors including large 

veins several centimetres downstream of the actual activity (Kim and Ogawa, 2012, Arthurs 

and Boniface, 2002). Although it is possible that this vmPFC BOLD signal is therefore not 

accurately reflecting the exact location or amount of activity related to decisions this is 

unlikely to account for the mismatch between fMRI and the current study. Another potential 

answer to this question comes from the fact that BOLD signal from OFC is difficult to obtain 

because of signal dropout caused by the air sinuses of the cranium (Weiskopf et al., 2007). 

Therefore it is possible that the OFC activity may in actual fact be more modulated by 

attention than it appears. This mismatch in vmPFC may come about from fundamental 

differences in the task designs between humans and primates. Whereas humans are often 
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given little training and exposures to stimuli before tasks are initiated, primates are often 

heavily overtrained on both the task structure and the stimuli. Despite the fact that subject in 

this study were relatively less trained on the stimuli compared to other decision making task 

(for example Kennerley et al. (2009)) they  still received more exposure than humans. This 

may lead to changes in the circuitry which deal with the resolving the decision thereby 

causing vmPFC to become inactive during the decision phase. Finally it is possible that 

human and primate vmPFC are fundamentally different in the computations that they 

perform. However, the fact that resting state MRI has shown connective homology between 

the two species (Neubert et al., 2015) indicates that this interpretation is unlikely. 

 What is the point of these frames of reference? The only frame of reference that 

could be considered suitable for solving all decisions is that of ‘good’. However, as outlined 

in Cisek (2012) it is clear that some decisions (such as those intimately tied to actions) are 

more intuitively made in frames of reference other than ‘goods’. Therefore, by representing 

many frames of reference it may allow PFC to be flexible enough to support all possible 

types of value based decisions an animal might face. 

 

Parallel Value Comparison in the PFC 

 In the current study value coding in all three frames of a reference evolve over time 

to reflect that of choice (each in different ways). This implies that these reference frame 

specific computations do not simply reflect inputs into a common value comparison but 

instead reflect the simultaneous value comparison in line with a parallel computations 

predicted by the ‘decision making through consensus’ idea (Cisek, 2007b). It should be 

noted that in the current study we only present explicit evidence of value comparison in the 

frame of reference of attention, the evolution of all of the signals from value to choice heavily 

suggests some form of competitive process (Machens et al., 2005, Wang, 2008). The idea of 
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parallel value comparison is an appealing concept when considering how flexible behaviour 

might be achieved. This is because this model allows for the value of actions to constantly 

be compared (even while value comparison occurs in other frames of reference) until a 

decision is reached by consensus (Cisek, 2012). In the real world this would allow deciders 

to delay decisions for a long as possible when flexible behaviour is required. In contrast in 

the ‘goods based model’ the decider would have to make their abstract decision slightly 

earlier in order to have enough time to convert the decision to an action. 

 Real world decisions can have several outputs such as limb movements, saccades 

or even speech. Although it is conceivable that a single abstract decision making circuit 

could make decisions and then map to all of these output systems it is tempting to imagine 

that if the cortical areas associate with these outputs contained decision making circuitry 

then many different types (in terms of the required outputs) of decision could be solved more 

efficiently.   

 Furthermore, the task presented in the current study has several plausible ways in 

which the decision could be resolved. These include performing an abstract comparison of 

the available option values, comparing the values of available actions and making decisions 

based on flexible biases towards certain attributes. Although we have no way of measuring 

how subjects resolve each decision the parallel computation hypothesis provides a clear 

framework for how all methods may be flexibly employed by subjects if they choose to. 

 

Learning From Outcomes in PFC 

 As discussed in Chapter 1 many studies have demonstrated that PFC neurons 

respond to the presence or absence of a reward and this has been essentially replicated in 

the current study. However, this study has taken this finding one step further by showing that 

specifically in ACC, the neurons that discriminate outcomes are neurons that code value 
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during the choice phase of a decision.  The design of the task used in Chapter 6 has the 

added advantage that choices are made based on two attributes. Therefore, it is possible to 

make inferences about whether information outcome related computations are specific to 

certain attributes or based on a ‘common currency’. ACC neurons encode only positive 

prediction errors (at the population level). This conclusion is further strengthened by the 

comparison to OFC and vmPFC which are both only encode probabilistic prediction errors. 

One completely novel finding is that vmPFC neuron may encode both positive and negative 

prediction errors (although our data only shows a trend towards the latter). Therefore, 

vmPFC neurons may show more similarities to the responses of midbrain dopamine neurons 

than ACC neurons. It has been suggested that vmPFC is less involved with stimulus learning 

than more lateral parts of OFC (Noonan et al., 2010) therefore it is more likely that both ACC 

and vmPFC signals may reflect an aspect of behavioural control where predictions about the 

environment and outcomes are continually monitored (Alexander and Brown, 2011). 

 The task used in the current study should in theory involve little learning because the 

subjects are exposed to the same stimuli in the paradigm described in Chapter 3 on the day 

preceding data acquisition. Optimality in choices between stimuli of a specific attribute is 

observed to be high in the results described in Chapter 3. As might be expected, subjects 

are slightly more optimal at magnitude choices than probabilistic choices. Because the 

probabilistic outcomes are associated with a relatively higher degree of uncertainty it is 

perhaps unsurprising that PFC neurons encode prediction errors about these stimuli. 

Importantly, we found that probability value preferring neurons in OFC were more likely to 

encode whether reward was given or not. OFC is thought to be critical for learning and 

updating stimulus-outcome relationships and therefore these neurons pay be particularly 

relevant for updating the value of probability stimuli over the course of the session. (Noonan 

et al., 2010, O'Doherty et al., 2003, Tremblay and Schultz, 2000a, Schoenbaum et al., 1998, 

Camille et al., 2011b, Rudebeck et al., 2008). 
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 Another particularly novel aspect of the results presented in this thesis is that many 

of the outcome monitoring and potential learning signals are specific to frames of reference. 

This might be expected because outcomes can be monitored in different frames of 

reference; the abstract outcome it’s (irrespective of what occurs to bring it about), the action 

made to achieve the outcome and the specific properties of the chosen outcome. It therefore 

follows that frame of reference specific value neurons should monitor outcomes in the same 

frames of reference in order to optimise their future computations. 

 

Final Thoughts: An Integrated View of PFC Computations 
During Value Based Decision Making 

 

 Given the large breath of both neuronal and behavioural findings reported in this 

thesis it is prudent to give a brief summary of the both signals and how they integrate into 

the wider field of decision making. Figure 7.1 provides a basic overview of computations that 

each region performs in the tasks presented in this thesis. It also sets these results out in the 

context of a simplified anatomical framework. What is striking about this set of results is the 

clear implication that there are various decision systems in the brain and that even through 

their anatomical connections they exhibit a clear degree of parallelism. At the level of coarse 

anatomical regions this parallelism stems from the fact that many regions can 

simultaneously receive varying degrees of basic sensory, complex sensory or limbic inputs 

which are all useful for making value based computations. Furthermore, many of these 

regions widely interconnect with each other and also have connections to various motor and 

saccadic systems. 
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Figure 7.1: A summary of the important computations inferred in this thesis. A simplified 
outline of the main results of this thesis in the context of the simplified relevant anatomical 
connections. The thickness of the lines indicates both the strength and importance of the 
connections. For areas that have specific value subpopulations computations have been 
attributed to the relevant population. The extra-frontal systems and inputs shown are each 
composed of multiple regions and inputs and this figure does not attempt to make reference 
to connective differences between these regions and PFC. For example, the ‘saccadic 
system’ refers to all regions that perform saccadic control and therefore information from 
ACC, LPFC and Basal ganglia may well be passed on to different structures. Abbreviations: 
SNpr, Substantia Nigra pars reticulata; SC, Superior Colliculus. All other abbreviations are 
the same as previously stated. 

 

It is also possible to use the data presented in this thesis in the context of the wider 

decision making literature to form a broad summary of the computations that take place 
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during simple multi-attribute value based decision making. When decision information is 

presented it is represented in an attribute specific manner in OFC neurons. These attribute 

specific neurons then feed into other neurons which integrate attributes to encode option 

values (in the frame of reference of attention) but importantly they also undergo a 

competitive value comparison process (most likely through mutual inhibition). The option 

value population pools also undergo competitive processes and also feed information into 

the action system which compares the value of the two available actions (taking into account 

effort). Attribute and attention level comparisons can interact and furthermore attention and 

action level comparisons can interact. Decisions are resolved through a consensus between 

competitive processes which results in a movement. These frames of reference specific 

computations are used for information gathering. The chosen value from the decision 

process is then represented for the purposes of prediction. When outcomes are presented 

some neurons may represent action-contingent outcome computations for the monitoring of 

actions. ACC and vmPFC neurons represent various forms of prediction errors which are 

used for behavioural monitoring and probability preferring OFC neurons represent whether 

reward is delivered which can be used for updating the value of the internal representations 

of probabilistic value stimuli. Therefore, to conclude, this thesis provides evidence of multiple 

types of decision related computations which add to our understanding of the cognitive and 

mechanistic processes that drive value based decision making.  
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Figure 7.2: The computations and processes involved in multi-attribute decision making. 
Solid lines indicate mechanistic interactions between pools of neurons representing various 
decision properties (boxes) during decision making based on the findings of this thesis and 
the literature as a whole. Dashed lines indicate the non-mechanistic evolution of 
computations for other decision related processes. 
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Appendix 

 

This section contains a supplementary analysis performed on the behavioural 

data for ‘Information Gathering’ trials presented in Chapter 4. The results of this 

analysis were used to set parameters for exclusion of viewed information for all other 

analyses presented in Part 2 of Chapter 4. 

 

Information Requires Time in Order to Influence Choice in Information Gathering Trials 

Because of the clear influence of covert attention during ‘Simultaneous’ trials, it is 

difficult to make conclusions about how subjects may be comparing information during the 

decision making process. In contrast, the sequential yet relatively unconstrained nature of 

the ‘Information Gathering’ task provides the ideal opportunity to assess the relationship 

between value, information comparison and choice. However, one disadvantage of this 

freedom in subject information gathering behaviour is that subjects may habitually continue 

to gather information while moving the joystick to respond. If this were to be the case then 

the last cue that was viewed by the subject would have no influence on his choice.  

In order to scrutinise whether subjects tended to gather their final piece of information 

while moving the joystick we computed the difference in time between when the joystick was 

initially moved and when the final cue was fixated. This revealed that on a large minority of 

occasions (M: 31.8%, F: 42.3%), subjects actually fixated to a new cue having already 

started to move the joystick. Furthermore, when this is considered alongside the finding that 

the overwhelming majority of joystick movements lasted less than 150ms (M: 96.0%, F: 

85.5%), there is strong evidence to suggest that information obtained peri-movement is 

unlikely to influence choice. 
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 In order to test this hypothesis quantitatively, we used model comparison of six 

logistic regression models. The dependent variable used in the regression was probability of 

left choice and the independent variable was always left-right EV difference which was 

computed using actual values of the cues fixated and the average value (i.e. 3 out of 5) for 

any cue not fixated. The way in which each model differed was as follows: before computing 

the EV difference for each trial, the last fixation to joystick movement time was considered. 

In one model, if the last fixation occurred after joystick movement, this cue was considered 

as unseen cue, and the average value was assigned to it. Four of the models used the same 

correction but changed the threshold to also include any cue viewed for <100ms, <200ms, 

<250ms and <300ms after movement initiation respectively. The final model had no 

correction. We found that the model with the 250ms and 300ms thresholds gave empirically 

larger parameter estimates and a significantly better explanation of trial-by-trial choice 

behaviour compared to the other four models (Kruskal-Wallis test with multiple comparison 

test, M: Chi2=403.7, p<5x10-85, F: Chi2=305.7, p<6x10-66), however neither was significantly 

better than the other in the multiple comparison test. This suggests that information 

presented to subjects requires approximately 250ms to exert an influence on decision 

processes that are already in motion. Based on this result, we have also disregarded (i.e., 

replaced its value with an average value of 3) any ‘cue four’ fixated for <250ms in any 

analysis of this task in Chapter 4. It should be noted that this analysis cannot account for 

whether subjects actually represent the value of the last cue but instead heavily underweight 

it in their final decisions. 
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