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Sensing the internal dynamics of individual nuclear spins or clusters of nuclear spins has recently
become possible by observing the coherence decay of a nearby electronic spin: the weak magnetic noise is
amplified by a periodic, multipulse decoupling sequence. However, it remains challenging to robustly infer
underlying atomic-scale structure from decoherence traces in all but the simplest cases. We introduce
Floquet spectroscopy as a versatile paradigm for analysis of these experiments and argue that it offers a
number of general advantages. In particular, this technique generalizes to more complex situations, offering
physical insight in regimes of many-body dynamics, strong coupling, and pulses of finite duration. As there
is no requirement for resonant driving, the proposed spectroscopic approach permits physical interpretation
of striking, but overlooked, coherence decay features in terms of the form of the avoided crossings of the
underlying quasienergy eigenspectrum. This is exemplified by a set of “diamond-shaped” features arising
for transverse-field scans in the case of single-spin sensing by nitrogen-vacancy centers in diamond. We
also investigate applications for donors in silicon, showing that the resulting tunable interaction strengths
offer highly promising future sensors.
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I. INTRODUCTION

There is enormous interest in the rapidly advancing
field of detection and imaging at the single-spin level
[1–4], mainly with nitrogen-vacancy (NV) color centers
but also other defects in diamond [5,6], not only as a
source of versatile qubits for quantum information [7–10]
and entanglement generation [11], but principally because
they underpin a new generation of quantum sensors, for
magnetometry and atomic-scale characterization of the envi-
ronment [12–18]. In the widely studied case of dynamical-
decoupling quantum sensing, a sequence of pulsesmodulates
the coherent evolution of the sensor and, in some cases, sharp
“dips” in coherence allow one to detect, and infer useful
characteristics of, nearby single spins or small spin clusters.
Complexities in the environment being studied mean that the
single isolated sharp dip is found in a restricted subset of
the data and motivates the development of more general
or alternative methods of analysis. In particular, many
decoupling sequences are temporally periodic.
In this case, Floquet’s theorem provides a canonical form

for the solution of periodically driven systems and has

found wide applicability in various branches of quantum
physics since 1965 [19], especially in light-matter inter-
actions with continuous driving and multiphoton atomic
physics. Floquet’s theorem can be applied to any periodic
quantum Hamiltonian for which Ĥðtþ τtotÞ ¼ ĤðtÞ. In
practical implementations, instead of analyzing the eigen-
states of the static Hamiltonian, which are appropriate only
in the perturbative limit of weak driving, one employs
instead the eigenspectrum of the one-period time-evolution
propagator. Floquet theory is also employed in the analysis
of nuclear magnetic resonance (NMR) spectra and related
fields [20], where applications are essentially limited to
resonant and continuous driving.
But this approach has not been considered for analysis of

coherence behaviors in this new generation ofmultipulse spin
sensing experiments. We argue that the Floquet spectroscopy
method proposed is better adapted to regimes of strong
quantum entanglement between the sensor and detected spin
systems than signal processing methods applied to classical
ac signals, or geometric approaches based on two-state
systems. In this work, we find that Floquet theory can
augment current methods of analysis in several ways:
(1) Floquet theory is equally applicable to off resonant

as to resonant driving. The understanding of spin-
sensing data is often cast in signal processing
terms: the multipulse sequence imposes a filter
function which selects an ac signal with a reasonably
well-defined characteristic frequency ωac=2π, which
may, in turn, be used to infer interatomic coupling
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parameters. When ωac is resonant with the pulse
interval τ [see Fig. 1(c)], so when ωac=π ¼ 1=ð4τÞ, a
narrow dip in coherence is observed. Here, we show
that away from such resonances, or even for broad-
ened resonances, Floquet theory can shed insight on
other striking features that are not narrow dips but
can, nevertheless, yield rich information for atomic-
scale characterization. The key reason is that we
show that the widths and shapes of these features
may be understood in terms of avoided crossings of
an underlying Floquet spectrum.

(2) Current experiments operate primarily in regimes
of weak coupling. The pulses involve consecutive
switching between two electronic states u, d; the
associated characteristic frequencies of the detected
spinsωu,ωd canvary significantly, since, for stronger
coupling, there is significant backaction and entan-
glement between the sensor and detected spins. For
weak coupling, ωu ≃ ωd, and, in addition, average
Hamiltonian theory models apply, predicting typi-
callyωac ≈ 1

2
ðωu þ ωdÞ. Floquet theory remains valid

regardless of coupling strength; we examine regimes
of failure, obtain alternative forms for ωac, and show
that the avoided crossings shed insight into these
regimes. It also remains valid even if there is non-
trivial evolution due to finite duration of the pulses, a
problem only recently identified [17].

(3) For detection of two-state systems (spins or spin pairs
that reduce to an effective pseudospin), geometric
methods [16,21] are widely used to interpret data and
yield analytical expressions for the coherence decays.
Although here the Floquet method already sheds
additional physical insight, its full value is that it is
universally valid even for higher-dimensional state

spaces, and so would facilitate studies of, e.g.,
multispin clusters.

The key features of dynamical-decoupling-based quan-
tum sensing, using a multipulse periodic sequence,
are illustrated in Fig. 1. A π=2 pulse prepares the sensor
system in a superposition state, ψðt ¼ 0Þ ¼ ð1= ffiffiffi

2
p Þðjuiþ

jdiÞ ⊗ Bð0Þ, where Bð0Þ is the detected spin cluster at
initial time. In turn, interaction with the sensor means
that the spin cluster becomes entangled with the sensor,
ψðtÞ≃ð1= ffiffiffi

2
p Þ½juiBðωu;tÞþjdiBðωd;tÞ�, where Bðωu;d;tÞ¼

ðT̂u;dÞNpBð0Þ, for a pulse sequence (with propagator T̂u;d),
which is repeated Np times. The detected spin dynamics
is associated with a characteristic frequency that is state
dependent. The temporal coherence LðtÞ ¼ hSþi is given
by LðtÞ ¼ hBðωu; tÞjBðωd; tÞi to within a normalization
factor; averaged over bath states, it simulates the exper-
imentally measured signal.

II. FLOQUET THEORY

Floquet’s theorem is generally applicable to periodically
forced systems, classical or quantum, but it allows one
specifically to write solutions to the Schrödinger equation
in terms of quasienergy states, jψ lðtÞi¼expð−iϵltÞjΦli,
where ϵl is the quasienergy, jΦlðtÞi¼jΦlðtþτtotÞi, τtot is the
period, and l ¼ 1;…; D (D is the dimension). However,
for problems (such as our present study) where we require
only “stroboscopic” knowledge of our system (i.e., read-out
once every period τtot), the solution is even simpler. We can
obtain Floquet phases or modes simply as the eigenvalues
or eigenstates of the one-period unitary evolution operator
T̂ðτtot; 0Þ. The Floquet modes jΦli obey the eigenvalue
equation:

FIG. 1. (a) Current experiments have employed the S ¼ 1 electronic spins of NV centers to successfully detect (i) single nuclear spins
[15,21,22], (ii) the internal dynamics of nuclear spin pairs [16], as well to characterize on the atomic scale, by estimating parameters
such as electronic-nuclear dipolar couplings A and internuclear dipolar couplings C12. (b) Generic sensor detecting a pair of nuclear
spins. The electronic spin state is in a superposition of “up” jui and “down” jdi states. The nuclear dynamics and its characteristic
frequencies ωu;d depend on the electronic state. In turn, the electronic coherence is sensitive to the resulting weak ac noise from the
nuclei. This may be amplified by dynamical decoupling control such as CPMG, leading to observed “dips” in coherence. These are at
well-defined frequencies in typical weak-coupling regimes where the nuclear dynamics is not too different in the u, d subspaces.
However, strong-coupling regimes do not necessarily yield sharp dips. (c) Additional complexities occur for pulses of finite durations.
(d) It is also challenging to differentiate between (i) independent pairs of spins and (ii) many-body effects from an equivalent interacting
cluster. Floquet theory is not restricted to single spins or spin pairs and can be applied also to analysis of larger, correlated spin clusters,
strong coupling, and off-resonant driving.
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T̂ðτtotÞjΦli ¼ λljΦli≡ exp ð−iElÞjΦli; ð1Þ

where now El is the eigenphase (the Floquet phase) and ϵl ¼
El=τtot is the quasienergy. For sensing, we can obtain Floquet
phases or modes simply as the eigenvalues or eigenstates of
T̂u;d, the basic periodic sequence; for example, for the Carr-
Purcell-Meiboom-Gill (CPMG) sequence in Fig. 2, τtot ¼ 4τ.

In that instance T̂ijΦili ¼ e−iE
ðiÞ
l jΦili, where i ¼ u,d denotes

the state of the sensor spin. The eigenphases forNp ¼ 1 fully
determine the time evolution of the system since if the pulse
sequence is repeatedNp times, we just scale the eigenphases,
so for longer time propagation,

ðT̂iÞNp jΦili ¼ e−iNpE
ðiÞ
l jΦili: ð2Þ

In the present work, we show that these Floquet
eigenphases and eigenstates have particular important
properties.
(a) The eigenvalues are the same for the upper and lower

states; i.e., eiE
ðuÞ
l ¼ eiE

ðdÞ
l ≡ eiEl . This holds even for

pulses of finite duration, in typical cases. In other

words, the evolution of the T̂
ðNpÞ
u Bð0Þ and T̂

ðNpÞ
d Bð0Þ

are characterized by the same set of effective frequen-
cies ϵl ¼ El=τtot, in contrast to typical static, geometric

approaches where two distinct sets of frequencies ωul
and ωdl are involved.

(b) The eigenvectors do not, in general, coincide, but we
show that (to within a phase term) the eigenvectors
are related to each other by a half-period evolution;
e.g., T̂uðτtot=2ÞjΦuli ∝ jΦdli.

(c) Minima in coherence (of prime importance for sens-
ing, whether sharp dips or not) occur at avoided
crossings of Floquet eigenstates, where eiEl ≃ eiEk .
Once the Floquet phases and modes are obtained, one
can obtain the general form of the decoherence for
arbitrary times, which, averaged over bath states,
yields

hLðt¼Np4τÞi¼
1

D

XD
l;l0

e−iNpðEl−El0 ÞjhΦdl0 jΦulij2: ð3Þ

Derivations of (a)–(c) are given in Appendix A–C.
Although properties (a)–(c) are quite generic, physical
insight on the Floquet picture is more easily gained from
two-state systems, where direct comparison with usual
geometric methods [21,23,24] is also possible. For the two-
state case, eigenvalues must be conjugate pairs, λ� ¼ e�iE .
Level crossings occur when λþ ≃ λ−; hence, the crossings
must occur at E ≃ 0, π, 2π. The generic properties of states

(a) (b)

(c) (d)

(e) (f)

FIG. 2. (a) Usual geometric approach. Under CPMG-N control (b) the detected spins represent two-state systems that precess about
effectivemagnetic field, depending on the “up” jui and “down” jdi states of the probe spin. The coherence dips are understood by following
the precessions and relative angles between these spins,with increasingN. (c) Spectroscopic picture. The dips in coherence occur at avoided
crossings of the Floquet eigenstates. Both the position and contrast of the decoherence dip are related to the curvature of the crossing. This is
characterized by the splitting between the states 2δ and the deviation from the early τ → 0 linear evolution. The early time evolution (the ϵ0
quasienergy) gives the dip position τ̄dip for average Hamiltonian theory; the coherence minimum is given by Eðτdip=2Þ ¼ π=2. (d) The dip
contrast depends on the degree of curvature of the crossing, characterized by the level-repulsion strength, δ ¼ 2½EðτdipÞ=2 − Eðτdip=2Þ�.
(e) NV-center decoherence “diamonds.” While typical experimental studies scan along parallel field (ωz) component (thus remaining in
weak-coupling, single-dip regime), scanning the transverse magnetic field (ωx) would produce diamond pattern of high-decoherence
regions, as avoided crossings widen (and even overlap) then narrow (here, ωz ¼ 0 and A∥ ¼ 50 kHz). The upper panel shows
full oscillating coherence function, for Np ¼ 10 pulse pairs; the lower panel shows coherence envelopes, filled as Np → ∞. Here,
ωz ¼ 0. Boundaries of the diamonds trace out (green) τ ¼ π=2ðωd þ ωuÞ and (cyan) τ ¼ π=2ðωd − ωuÞ (see text). (f) Expanded version
of low-field region showing shape of avoided crossings versus coherence traces corresponding to two cuts (i),(ii), indicated in
the upper panel.
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at avoided crossings (see Appendix A–C) then imply that
coherence dips occur at E ≃ π. We now first investigate the
Floquet dynamics for these two-state single-spin or single-
pseudospin models.

A. Single-spin or spin-pair detection

Both pair flip-flop dynamics as well as single-spin
dynamics (in systems like NV centers where a crystal field
leads to nontrivial one-spin dynamics) can be approximated
by a two-state Hamiltonian. We term this the pseudospin
model, noting that for single-spin detection there is a
genuine spin, while for pair dynamics [14,16] it is a
pseudospin. It has led to a successful, widely used geo-
metric model [see Fig. 2(a) and Ref. [25]], where the
evolution of the pseudospin is conditional on the state
i ¼ u, d of the probe and corresponds to precession about
an effective magnetic field:Hi ¼ 1

2
hi · σ ¼ 1

2
ðXσx þ ZiσzÞ,

where σx, σz are Pauli matrices in the usual spin basis; in
the pseudospin case, of course, we have j↑↓i → j↑i and
j↓↑i → j↓i). The X, Zi depend on the physical system (see
Ref. [25] for details), but for NV centers hu ≃ ðωx; 0; A∥þ
ωzÞ, while hd ≃ ðωx; 0;ωzÞ, where γB0 ¼ ðωx; 0;ωzÞ is the
external magnetic field, γ is the gyromagnetic ratio and A∥
the parallel component of the hyperfine interaction. For
spin-pair sensing, on the other hand, hi ¼ 1

2
ðC12; 0;ΔAiÞ,

where ΔAi ¼ 2ðA1 − A2ÞhijŜzjii represents the energy
detuning between the nuclear spins in the pair and Ŝ
represents the operator for the sensor spin. The eigenvalues

of Hi are ωu;d ¼ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Z2

u;d

q
and the orientation of the

effective field is θi ¼ arctanðX=ZiÞ. For two-state systems,
we obtain

hLðτÞi ¼ 1–2

�
cos2½EðτÞ=2� − cos2½Eðτ=2Þ�

cos2½EðτÞ=2�
�
sin2½NpEðτÞ�:

ð4Þ

This is a key result of the presentworkas itmeans one cangive
the full coherence function using only the Floquet phases. To
calculate the Floquet eigenphase EðτÞ, as well as its half-
period value Eðτ=2Þ in Eq. (4), one may use cos½EðsÞ� ¼
cosð2ωusÞ cosð2ωdsÞ − sinð2ωusÞ sinð2ωdsÞ cosðθu − θdÞ,
with s ¼ τ or s ¼ τ=2. Thus, the coherence takes the form
LðτÞ ¼ 1 − FðτÞsin2½NpEðτÞ�, which is the product of a
smooth envelope FðτÞ, independent of Np, superimposed on
a fast oscillating function sin2 ½NpEðτÞ�, dependent on Np.
A full comparison with geometric methods is in Ref. [25]

where we argue it is the condition

Eðτdip=2Þ ¼ π=2 ð5Þ
that best specifies the dip positions. The depth of the
dip is related to the eigenvalue splitting parameter
δ ¼ π − EðτdipÞ, at the dip

Lðt ¼ 4NpτdipÞ ¼ 1–2sin2ðNpδÞ: ð6Þ

Hence, if E ¼ π, there is no dip, so a true level crossing
provides no signal. For Npδ≳ π=2, the width and shape of
the dip becomes largely independent of Np and is fully
determined by the Floquet anticrossing and envelope func-
tion, since the sin2ðNpδÞ prefactor simply superposes fast
oscillations on FðτÞ. A narrow avoided crossing (low
splitting, δ small) gives a single, sharp (but weaker)
coherence dip, while a large δ crossing has a broad envelope.
It is only for low Npδ ≪ π=2 that the dip height is strongly
dependent on Np; here, the central height increases
as ðNpδÞ2.
Comparison with average Hamiltonian models (see

Ref. [25] for details).—A frequently used approximation
in spin sensing is the average Hamiltonian model whereby
the eigenvalues ωav of 1

2
ðHu þHdÞ, the time-averaged

Hamiltonian, provide an estimate of the dip positions
and Tdip ¼ ðNpπ=ωavÞ. From Figs. 2(c) and 2(d), we
can equate linear behavior in our eigenvalues (narrow
crossing, linear shape) both with the occurrence of a sharp
dip as well as validity of the averaged Hamiltonian model.
In particular, for small τ, EðτÞ ≃ 4ϵ0τ corresponds to
the averaged Hamiltonian results. Expanding the
cos EðτÞ from below Eq. (4), for small τ, we easily obtain
ϵ0 ¼ 1

2
½ω2

u þ ω2
d þ 2ωuωd cos ðθu − θdÞ�1=2, and thus,

τ̄dip ¼
π

2½ω2
u þ ω2

d þ 2ωuωd cos ðθu − θdÞ�1=2
: ð7Þ

Expressing quantities in terms of the pseudofield compo-
nents X; Zu;d, we can show that this is equivalent to the
expression ωav ¼ 1

2
½ðX2 þ ðZu þ ZdÞ2=4�1=2 used in spin-

detection experiments [14,16] and to ωav ≃ 1
2
ðωu þ ωdÞ

for θu ≃ θd.

III. APPLICATIONS

A. Experimental control of quasienergy crossings

The above motivates us to investigate possibilities for
experimental control of the avoided crossings, by varying δ,
even in the simple one-spin or spin-pair case. In typical
sensing with NV centers, we have ωz ≳ ωx ≫ A, thus, in
Eq. (7), we have θu ∼ θd ≪ π, thus, τ̄dip ≃ ðπ=2ðωu þ ωdÞÞ.
However, setting ωz ¼ 0 and increasing ωx causes the
anticrossings to widen and narrow successively, forming
a checkerboard pattern of diamonds. This behavior is
illustrated in Figs. 2(e) and 2(f). In particular, Fig. 2(e)
illustrates the usefulness of the 2D map; it is not easy to
clearly discern the behavior from an individual trace [as in
Fig. 2(f)], especially if Np is not very large. We note that
higher harmonics have larger δ than lower harmonics at the
same parameters.
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However, here we consider in addition S ¼ 1=2 systems
as potential sensors. These might include silicon vacancies,
but in particular we focus on electron donors in silicon.
Although techniques analogous to optical read-out and
polarization of NV centers are not fully developed, there
has been considerable progress in single-spin detection
[26–28]. These systems also benefit from extremely long
coherence times (of order seconds) for cryogenically
cooled samples. They are also an ideal test bed for the
theory as one can vary θu, θd over a wide range as magnetic
field B0 is swept. For donor systems, the surrounding 29Si
nuclear spin dynamics does not generate an ac signal as
there is no internal crystal axis, in contrast to the case of NV
centers in diamond where the surrounding nuclear spins
precess around an effective quantization axis which is no
longer only the external magnetic field. For donors, single

strongly coupled 29Si nuclei have recently been detected
via the static shift of the donor frequency [29]. However,
the interesting coherence dynamics in these systems
involve only pairs or larger clusters of spins where the
flip-flopping dynamics generates an ac signal [30,31].
Formally, the state-conditional dynamics for donors is

very similar to that for NV centers: The dynamics correspond
to an effective spin precessing about effective magnetic
fields, hi¼1

2
ðC12;0;ΔAiÞ, where ΔAi¼ðA1−A2ÞPi. But in

contrast to NV centers PiðB0Þ ¼ 2hijŜzjii, the polarization
of the state (see Ref. [25]) varies strongly with the magnetic
field [32,33], while for NV centers, hijŜzjii ¼ 0,�1 is fixed
for the modest fields used in experiments.
Figure 3 shows the field dependence of the coherence

for a variety of coupling strengths. The behavior may be
compared with the NV centers: in this case, the coherence

FIG. 3. Coherence decay behavior for an electron spin detecting a flip-flopping pair of nuclear spins, for a donor in silicon system (see
Ref. [25]) with tunable interactions. LðB0; tÞ exhibits a rich structure in the two-dimensional τ, B0 plane, which is not evident in the
normal traces at constant B0. Decoherence map is shown for different R ¼ ΔA=C12, ðΔA ¼ A1 − A2Þ. Large R corresponds to weaker
dipolar coupling C12, and the maps trace the locus of a set of isolated sharp dips in coherence. For smaller R, there are no longer single
dips; nevertheless, the envelopes [given by FðτÞ] are well defined and track the behavior of the underlying Floquet avoided crossings.
The background oscillatory structure depends onNp, the envelopes do not. Time t≡ 4Npτ (color scale linear, where black is 1, yellow is
< 0.5). Similar behavior is obtained for several transitions of Si:Bi and other donors, but specific parameters are for 12 → 9 ESR
transition of Si:Bi and 2Np ¼ 40.
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dips trace out a curved locus. Like NV centers, for stronger
X ≡ C12=2 component of the pseudofield, the envelopes
broaden, but there is a similar pattern of intermittent
broadening and narrowing. There is a striking feature at
B0 ¼ 188 mT in Fig. 3 where all decoherence envelopes
“collapse” to a sharp dip. This is one of a set of special
fields [optimal working points (OWP)] where θu ≃ θd and
ωu ≃ ωd and which have been investigated theoretically
and experimentally for their favorable coherence properties
[31,32,34].
But, in the present work, we find that these points also

correspond to very narrow Floquet avoided crossings, at
which δ → 0. Figure 4 compares the dip position predicted
by average Hamiltonian theory Eq. (7) with the accurate dip
condition Eðτdip=2Þ ¼ π=2. In Fig. 4, ΔA ¼ ðA1 − A2Þ
(which approximately sets the time scale for R ≫ 1) was
fixed, while C12 (the intrabath dipolar coupling) was varied
to obtain different values of R ¼ ΔA=C12.
By means of a detailed theoretical analysis, we can show

that average Hamiltonian theory is valid if (i) jhu þ hdj ≫

jhu − hdj or if (ii) jhu − hdj ≫ jhu þ hdj. Condition
(i) corresponds to the weak-coupling regimes typical of
NV sensing experiments, where ωu ≃ ωd and θu ≃ θu; it is
also the regime of the optimal working points, where
average Hamiltonian theory is always valid. Regime (ii) is
not typical of sensing experiments: for the spin-1=2 system
of Fig. 4, it would correspond to the spins nearly anti-
aligned; thus, Pu ≃ −Pd. For Fig. 4, condition (ii) implies
ðΔAÞ2ðPu−PdÞ2≫ðC12Þ2þðΔAÞ2ðPuþPdÞ2. In particu-
lar, for Pu≈−Pd, we obtain the condition jΔAðPu−PdÞj≫
jC12j. Noting that jPu − Pdj ≃ 0.2–2, this means that
average Hamiltonian theory is valid at all fields for large
R≳ 100, as shown in Fig. 4(a). However, for increasing
intrabath dipolar coupling C12, the theory ceases to be valid
away from the small OWP regime in the center, as shown in
Figs. 4(b) and 4(c) for smaller R.

B. Detection of multispin clusters

In this section, we apply the Floquet approach to the
system depicted in Fig. 1(d): we compare the decoherence
“fingerprint” of three independent spin pairs (analogous,
formally, to the detection of three independent spins by
NMR) with a 3-cluster, which in the absence of many-body
interactions would give a similar signature.
For the 3-cluster, we take three spins, with hyperfine

couplings Ak ≡ A1, A2, A3 to the sensor spin and with
mutual dipolar interactions Cij≡C12, C23, C31. Disregard-
ing interactions, the energy cost of the spin flips is
Δij ¼ Ai − Aj.
For the independent pairs, we take three spin pairs, with

the same dipolar interactions Cij as the 3-cluster, but which
are independent of each other. To have similar frequencies
as the 3-cluster, we must have similar energy cost of all
three spin flips, and they must obey the cyclic condition of
the 3-cluster Δ12þΔ23þΔ31¼0. Pair 1 has two spins with
interaction C12 and a pair of hyperfine couplings ðA1; A2Þ;
pair 2 has interaction C23 and hyperfine couplings ðA2; A3Þ;
pair 3 has C31 and hyperfine couplings ðA3; A1Þ. We take
C12¼C23¼ð1.05=2πÞkHz and C31¼ð2.2=2πÞkHz, realis-
tic values for nuclear impurities in the silicon lattice. We
take A1¼ð180=2πÞkHz, A3 ¼ ð100=2πÞ kHz, and A2 ¼ 0;
thus, our pairs correspond to R ≃ 100 − 40 (as defined in
Fig. 3), so the interactions are sufficiently weak to make
their detection challenging but sufficiently strong to, below,
illustrate important features. The choice of A2 ¼ 0 does
not involve much loss of generality. If a state-dependent
Hamiltonian is chosen, the A1, A2, A3 values can be shifted
by an arbitrary constant without perturbing the dynamics. If
the full Hamiltonian is considered, there can be higher-
order effects such as hyperfine mediated corrections to Cij.
This correction is very small for our parameters but is tested
by full numerics below.
Solution of total Hamiltonian.—First, we set aside all

pseudospin approximations and do diagonalizations of
the full Hamiltonian followed by time propagation, using

FIG. 4. Comparisons between the dip positions obtained with
Eq. (4) (blue line) and average Hamiltonian theory Eq. (7) (red
line) for the full coherence function (left) as well as its envelope
(right). Within the field sweep there are global weak-coupling
points (e.g., B0 ≈ 0.19 T) where there is weak coupling regard-
less of the cluster properties and where the decoherence envelope
collapses into a single sharp dip, a useful feature if high resolution
is required: here, there is always good agreement with average
Hamiltonian theory. These points correspond to so-called optimal
working points [31,32] of silicon donors. Hence, the advantage
of such systems as future spin sensors, in addition to their very
long ∼1 s coherence times, is that a magnetic field sweep could
tune the dynamics from the weak- to strong-coupling regimes.
(a),(d) R ¼ 100; (b),(e) R ¼ 20; (c),(f) R ¼ 10.
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the complete 8-state basis of the 3-cluster as well as the
complete basis of the bismuth sensor including the host
nuclear spin. Thus, unlike Fig. 3, we do not use the
analytical form for the parameter Pi; it emerges from the
numerics. We evaluate the decoherence numerically rather
than using Eq. (4). A similar calculation is carried out with
the three disjoint pairs, then the decoherence was averaged
over the thermal ensemble of nuclear spin states (of which
there are eight for the 3-cluster). Figure 5 shows maps of
the coherence in the ðτ; B0Þ space in both cases.
One conclusion to be drawn from comparisons between

full numerics and the analytical (one-pair) Eq. (4) is that the
structure in Fig. 3 is surprisingly robust; without bath state
averaging, full numerics give similar structure to Fig. 3
[obtained from Eq. (4) for one bath state].
One striking feature of the 3-cluster decoherence map in

Fig. 5(b) is that some lines are split into “doublets” with
very similar structure. The origin of these is in the average

over the bath states; examining maps for the individual 8
bath states, we see that while the Iz ¼ �3=2 cluster states
j↑↑↑i and j↓↓↓i make no appreciable contribution, the
doublets arise from the separate Iz ¼ �1=2 subspaces,
which do not mix. In other words, the j↑↑↓i, j↑↓↑i, and
j↓↑↑i states with total quantum number Iz ¼ þ1=2 inter-
act only weakly with the equivalent Iz ¼ −1=2 subspace,
but each provides a locus of dips with a slightly different
shift. In contrast to the spin pairs, in the case of the 3-cluster,
the secular Ising (CjkÎzjÎzk) components yield a nontrivial
dynamical effect.
Figures 5(i) and 5(ii) also show a cut for two field values

and compare with the behavior of the Floquet eigenstates.
We can see that near the “weak-coupling” regime of
optimal working points (i), the dips are sharp and narrow
as are the avoided crossings. In contrast, away from the
OWP point, avoided crossings are broader and even overlap

FIG. 5. Fingerprinting multiple environmental spin cluster pairs via their decoherence “bar codes” illustrates the effect of 3-body
correlations. The figure shows the coherence as a function of magnetic field B0 and pulse interval τ, calculated with a full numerical
propagation under the total Hamiltonian for Np ¼ 100. Panel (a) denotes three independent pairs while panel (b) shows three interacting
spins, with otherwise equivalent dipolar couplings and intrabath interactions as illustrated in Fig. 1(b). One evident difference (and
signature of a cluster of three spins) is the doublets due to the two separate subspaces of the three interacting spins. The splittings are
directly related to the interactions. For the 3-cluster, in fact, there is a secular contribution from interactions between spins, greatly
amplifying their contribution. The two right-hand panels (i) and (ii) show single traces corresponding to the cuts in (b) as well as the six
corresponding eigenphases: in case (i), in a weak-coupling regime the dips are narrow and the eigenphases behave like three independent
pairs; the eigenvalues correspond to conjugate pairs (with blue, red, and green lines denoting the three pairs). In case (ii) there is stronger
coupling, the avoided crossings of the corresponding eigenphases are broader, giving rise to the features shown in the coherence maps.
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(ii); the level splitting is much larger. We can estimate
the point where two eigenvalues will collide and, hence,
τdip by exploiting the fact that in either case, the average
Hamiltonian theory value is not too far from the accurate
value τ̄dip ≃ τdip. We estimate Floquet quasienergies by
considering only the diagonals. We obtain

ϵl¼
1

2
ðAi−Aj−AkÞðPuþPdÞþCijþCik−Cjk; ð8Þ

where i, j, k≡ 1, 2, 3 or cyclic permutations give ϵl¼1;2;3

quasienergies.
Thus, we estimate the dip positions from the fact that the

quasienergies represent the gradients of the spectral lines
in Figs. 5(i) and 5(ii); hence, we estimate the degeneracy
point,

τðlmÞ
dip ≃

2π

ϵl − ϵm
; ð9Þ

for the dip arising from the difference between the lth and
mth quasienergy. One finding is that the secular contribu-
tion from the dipolar coupling greatly amplifies the effect
of the (usually weaker) Cij dipolar coupling between the
nuclei, as it is a linear contribution. This is in contrast to
disjoint pairs; if the dipolar coupling is weak, since
ωi ¼ � 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
12 þ ðPiΔAÞ2

p
, for C12 ≪ PiΔA the nonsecu-

lar contributions in the disjoint pairs represent a very small
quadratic shift.
In terms of the interaction strengths, the two dips of the

first doublet correspond to

τð�12Þ
dip ≃

2π

jΔ12ðPu þ PdÞ � 2ðC31 − C23Þj
; ð10Þ

and similarly for other doublets.
In Fig. 6, we compare values from Eq. (10) with the full

numerics. Thus, the mean position exposes the value of
Δ12, while the splittings expose the dipolar coefficients.

IV. CONCLUSIONS

The extension of technologies such as MRI and NMR to
the nanoscale is an outstanding technical challenge that is
leading not only rapid experimental progress but also the
development of newmethods to analyze data and to optimize
information gathering on the atomic-scale structure.
Motivated by this, in the present work we introduce

Floquet spectroscopy as an insightful new paradigm for
understanding and analysis of spin-sensing experiments.
The approach is universally valid for any type of periodic
driving, whether resonant or not. Hence, here potential
applications are explored for analysis of different physical
regimes and sensors that are not necessarily associated with
a single sharp resonant “dip,” but may nevertheless poten-
tially still offer well-delineated features.
Our key findings are as follows. (i) There is an underlying

structure associated with Floquet avoided crossings and the
Floquet spectrum, which is potentially information rich.
It represents an envelope on the usually studied coherence
dips with a shape controlled by the widths of the avoided
crossings. (ii) The Floquet approach also clarifies regimes
where the commonly used average Hamiltonian theory
methods will fail. (iii) The method’s generality extends
beyond single-spin and pseudospin systems and is also
useful for higher-dimensional spin systems, and potentially
any dynamical-decoupling protocol, provided it is tempo-
rally periodic.

ACKNOWLEDGMENTS

We are very grateful to Setrak Balian, Gary Wolfowicz,
and Gavin Morley for helpful discussions. J. E. L. acknowl-
edges a studentship from the Engineering and Physical
Sciences Research Council (EPSRC). R. B. L. was sup-
ported by Hong Kong RGC/CRF CUHK4/CRF/12G.

APPENDIX A: FLOQUET SPECTRUM

1. Coherence minima and avoided crossings

A key result of the present work is that the coherence
dips associated with single-spin sensing are associated with
avoided crossings of the underlying Floquet spectrum, and
in this appendix, this conjecture is justified.
In our study, we consider the important class of spin-

sensing experiments for which an electronic sensor spin S
is coupled to each environmental nucleus via the effective
Hamiltonian:

FIG. 6. Decoherence for an interacting cluster of three spins
(3-cluster). The colored lines show comparisons with Eq. (10),
showing excellent agreement with numerics obtained by diago-
nalization of the full joint sensor-cluster Hamiltonian.
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Ĥ ≈ hijŜzjiiA · I; ðA1Þ
where i ¼ u, d and A is a vector representing the hyperfine
interaction. The dependence on Sz arises only because of
the large energy difference between electronic and nuclear
states; in the case of NV centers, the above is valid only for
magnetic fields of magnitude and orientation which do not
mix the electronic states. The result is a state conditional
Hamiltonian,

Ĥ ¼ 1ffiffiffi
2

p ½juihuj ⊗ Hu þ jdihdj ⊗ Hd�; ðA2Þ

where the Hi are the effective bath Hamiltonians discussed
in Sec. II A, so that an initial joint sensor-target spin state
ψð0Þ ≃ ð1= ffiffiffi

2
p Þðjui þ jdiÞBð0Þ evolves into an (in general)

entangled state,

ψðtÞ ¼ 1ffiffiffi
2

p ½juiBuðtÞ þ jdiBdðtÞ�: ðA3Þ

Experiments probe the coherence LðtÞ ¼ hSþi. While
experimental comparison involves averaging over thermal
bath states Tr½ρSþ�, without loss of generality we consider a
pure state L ¼ hψðtÞjSþjψðtÞi ∝ hBuðtÞjBdðtÞi.
Maximum entanglement occurs whenever hBuðtÞjBdðtÞi¼

0. However, the general condition for a minimum or
dip to be observed is in fact jBuðtÞi ¼ −jBdðtÞi. This is
regardless of the particular dynamical decoupling sequence
applied. The key question for design of an experimental
pulse sequence (say, CPMG) is which pulse interval τ and
total pulse number N ≡ 2Np will correspond to underlying
quantum evolution,

hBuðt ¼ 4NpτÞjBdðt ¼ 4NpτÞi ¼ −1; ðA4Þ

and thus a minimum in the function L, which to
within an unimportant normalization factor we take L ¼
hBuðtÞjBdðtÞi (we note that for decoherence experiments
probing jLj, this in fact corresponds to a maximum in the
coherence).
The Floquet approach is based on the premise that for

any periodically driven quantum system, the Floquet states
Φj fulfil the same role as eigenstates of a Hamiltonian in a
time-independent system. Thus, if the initial quantum state
is projected into a Floquet basis, i.e., Bð0Þ ¼ P

lalΦl, then
its temporal evolution is known for all time.
A central finding for the present work is that for the

pulsed dynamical decoupling, the eigenspectrum is inde-

pendent of the sensor spin state; thus, EðuÞ
l ¼ EðdÞ

l ≡ ElðτÞ,
where the Floquet eigenspectrum ElðτÞ is a function of the
experimentally chosen pulse interval τ.
The above results are proved in the next section, but

we use them now to explain why coherence minima are
associated with avoided crossings. Since the Floquet spectra
are the same, if there is an avoided crossing and thus a near

degeneracy, eElðτÞ ≃ eEkðτÞ, in the u subspace of sensor states,
therewill simultaneously be an avoided crossing in the lower
d subspace of sensor states.

2. Avoided crossings for two-level system

Although the eigenspectra are the same, in general the
corresponding eigenstates or Floquet states are not.ΦdðτÞ ≠
ΦuðτÞ for arbitrary τ. Hence, the temporal evolution,

BuðtÞ ¼ auþΦuþe−iNpEðτÞ þ au−Φu−eþiNpEðτÞ ≠

BdðtÞ ¼ adþΦdþe−iNpEðτÞ þ ad−Φd−eþiNpEðτÞ; ðA5Þ

and, thus, entanglement with the sensor is established since
the sensor-target Bu;dðtÞ state is no longer factorizable.
One exception occurs for τ ¼ 0, where all the Floquet

states reduce to the unperturbed (thermal states). For a
two-state system, without loss of generality, Φuþðτ¼0Þ¼
Φdþðτ¼0Þ¼j↑i, or alternatively, Φu−ðτ ¼ 0Þ ¼ Φd−ðτ ¼
0Þ ¼ j↓i.
Another, most interesting, exception is at a level cross-

ing, where the eigenstates take the same form. It is a
textbook result for level crossings (also known as Landau-
Zener transitions) that the unperturbed states are maximally
mixed and become sums and differences of the unperturbed
states. The implication for the present case is that the
Floquet states for both upper and lower state must coincide
at approximately 1ffiffi

2
p ðj↓i � j↑iÞ. This allows for two dis-

tinct possibilities.
(i) In the first case,

Φuþ ¼ Φdþ ≃
1ffiffiffi
2

p ðj↓i þ j↑iÞ and

Φu− ¼ Φd− ≃
1ffiffiffi
2

p ðj↓i − j↑iÞ: ðA6Þ

This possibility is the trivial case where the Floquet
states for the upper and lower sensor state are
identical. There is never any difference in the evo-
lution, no entanglement, and so hBuðtÞjBdðtÞi ¼ þ1.

(ii) In the second case,

Φuþ ¼ Φd− ≃
1ffiffiffi
2

p ðj↓i þ j↑iÞ and

Φu− ¼ Φdþ ≃
1ffiffiffi
2

p ðj↓i − j↑iÞ: ðA7Þ

In this case, hBujBdi ¼ cos 2NpEðτÞ, which may,
for an appropriate choice of Np ≈ π=2E, attain the
minimal value for a dip hBujBdi ¼ −1.

Diagonalization of the two-dimensional unitary matrix is
straightforward (see Ref. [25]), and it is clear its eigenvalues
must be conjugate pairs, λ� ¼ e�iE . For a two-level case, the
avoided crossing condition is λþ ¼ λ−, and, hence, coher-
ence dipsmust occur at E ≃ 0, π, 2πwith case (i) occurring at
E ≃ π and case (ii) occurring at E ≃ 0, 2π.
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3. Coherence minima for the general case

For a spin cluster of arbitrary size, an initial pure state
can be projected into the upper or lower Floquet basis:

jBð0Þi ¼
XD
l

hΦiljBð0ÞijΦili; ðA8Þ

where jΦili are Floquet eigenstates for the upper (i ¼ u)
and lower (i ¼ d) sensor state, respectively, and D is the
dimension of the one-period unitary evolution operator.
The state after a time t ¼ 4Npτ is then

jBiðtÞi ¼
XD
l

e−iNpElhΦiljBð0ÞijΦili; ðA9Þ

where El are the eigenphases.
Thus, the coherence decay of the sensor spin

[LðtÞ ¼ hBlðtÞjBuðtÞi] is given in a Floquet basis by

Lðt ¼ Np4τÞ ¼
XD
l;l0

e−iNpðEl−El0 Þjalj2jhΦdl0 jΦulij2: ðA10Þ

Here, jalj2 ¼ jhΦuljBð0Þij2.
The target spins are in fact in a thermal ensemble, which,

given small nuclear energy scale, are all equally likely.
Thus, we must average over the thermal bath states and
calculate hLi ¼ ð1=DÞPD

j Lj, where Lj is the coherence
function evaluated for the bath initially in the jth thermal
bath state, jBjð0Þi. Under the thermal average, we findP

jhΦuljBjð0ÞihBjð0ÞjΦuli ¼ 1. This produces Eq. (3).
While L for a pure state is complex, the (in any case
small) imaginary part vanishes under the bath average and
we consider only the real part of L.
Returning briefly to the simplest case of D ¼ 2, treated

in the previous section, Eq. (A10) may be rewritten as

hLðτÞi ¼ 1–2jhΦd−jΦuþij2sin2
�
Np

E1 − E2

2

�
; ðA11Þ

which is of the form LðτÞ ¼ 1 − FðτÞfðNp; τÞ, where
fðNp; τÞ ∈ ½0; 1� is a pulse-number-dependent oscillation.
If we disregard the oscillation, we obtain the pulse-number-
independent minimal bound of the coherence function
given by LenvðτÞ ¼ 1 − FðτÞ, which we call the coherence
envelope.
Even if these envelopes are not necessarily sharp “dips”

(especially in strong-coupling regimes), they can corre-
spond to sharply delineated structures (for both NV centers
and donors), which should still be observable experimen-
tally and can yield valuable information about the atomic-
scale structure. We show above that the dips occur
when jΦuþi ¼ jΦd−i.
For a general bath, of arbitrary dimension D, we can

rearrange Eq. (A10) using only orthonormality and com-
pleteness of the eigenstates

P
k0 jhΦdk0 jϕij2 ¼ 1 into paired

contributions:

hLi≡ 1 −X
l<l0

½jhΦdl0 jΦulij2 þ jhΦdljΦul0 ij2�

× sin2
�
Np

El − El0

2

�
: ðA12Þ

This is, again, composed of pulse-number-independent
envelopes superimposed with pulse-number-dependent
oscillations. For a minimum, we require the term in square
brackets to be maximized; this will occur at a level crossing
between a given pair of eigenstates l and l0 as argued in the
previous section. For D > 2, level crossings between El ≈
El0 occur at arbitrary El and no longer at El;l0 ≈ π. Dips
occurring at the point for which jhΦdl0 jΦulij2 ¼ 1 and
jhΦdljΦul0 ij2 ¼ 1 generalize, to arbitrary dimension, the
two-state orthogonality condition that jΦuþi ¼ jΦd−i.

APPENDIX B: SYMMETRY OF EIGENPHASES
FOR CPMG CONTROL

For decoupling sequences like CPMG, the Floquet
phases are independent of the sensor spin state, regardless

of the dimensionality of the bath states; i.e., EðuÞ
l ¼EðdÞ

l ≡El.
To show this, we first construct the basic propagator, for
total period τtot ¼ 4τ, which is to be repeated periodically:

T̂ð2Þ
ðuÞð4τÞ ¼ T̂ðuÞðτÞT̂ðdÞðτÞT̂ðdÞðτÞT̂ðuÞðτÞ

≡ T̂ðuÞð2τÞT̂ðdÞð2τÞ;
T̂ð2Þ
ðdÞð4τÞ ¼ T̂ðdÞðτÞT̂ðuÞðτÞT̂ðuÞðτÞT̂ðdÞðτÞ

≡ T̂ðdÞð2τÞT̂ðuÞð2τÞ: ðB1Þ

We can then obtain the eigenvalues for T̂ð2Þ
ðuÞ:

T̂ð2Þ
ðuÞð4τÞjΦuli¼ T̂ðuÞð2τÞT̂ðdÞð2τÞjΦuli¼e−iEl jΦuli: ðB2Þ

Here, expð−iElÞ is the lth eigenvalue of T̂ð2Þ
ðuÞ. If we apply

the half-period operator, T̂ðdÞð2τÞ, we get

T̂ðdÞð2τÞT̂ðuÞð2τÞT̂ðdÞð2τÞjΦuli ¼ e−iEl T̂ðdÞð2τÞjΦuli;
ðB3Þ

this is equivalent to

T̂ð2Þ
ðdÞð4τÞT̂ðdÞð2τÞjΦuli ¼ e−iEl T̂ðdÞð2τÞjΦuli; ðB4Þ

Thus, expð−iElÞ is also an eigenvalue of T̂ð2Þ
ðdÞ. Equation (B4)

implies that T̂ðdÞð2τÞjΦuli is an eigenstate of T̂ð2Þ
ðdÞ, i.e.,

T̂ðdÞð2τÞjΦuli ∝ jΦdli, where the factor of proportionality is
a complex phase expðiμldÞ. Similarly,
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T̂ðuÞð2τÞjΦdli ¼ expðiμluÞjΦuli; ðB5Þ

for which μld þ μlu ¼ El. From this we see that each Floquet
state jΦuli, jΦdli is the half-period evolution of the other (up
to a complex phase).

APPENDIX C: PULSES OF FINITE DURATION

Provided that T̂ð2Þ
ðu;dÞð4τÞ can be decomposed into prod-

ucts of subpropagators, as in Eq. (C2), the π pulses do not
have to be of very short duration. If we write

T̂ðuÞð2τ þ 2δÞ ¼ T̂ðuÞðτÞTπð2δÞT̂ðdÞðτÞ;
T̂ðdÞð2τ þ 2δÞ ¼ T̂ðdÞðτÞTπð2δÞT̂ðuÞðτÞ; ðC1Þ

then we can write the full propagator in the same form as
previously:

T̂ð2Þ
ðuÞð4τ0Þ ¼ T̂ðuÞð2τ0ÞT̂ðdÞð2τ0Þ;

T̂ð2Þ
ðdÞð4τ0Þ ¼ T̂ðdÞð2τ0ÞT̂ðuÞð2τ0Þ; ðC2Þ

but with τ0 ¼ τ þ δ. Then all the above follow: the pulses of
finite duration are still assumed to be π pulses, but there can
be some arbitrary evolution of the system during the finite
interval δ, but properties such as the state independence of
the Floquet phases still hold.
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