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ABSTRACT 

The increased use of antibodies for human therapy has driven rational approaches to 

accelerate bioprocess development in producing cost effective and highly productive 

antibodies. The potential of microwell based systems and miniature bioreactors 

(MBR) to mimic the scalability and operations of conventional bench reactors are 

seen as an alternative. This study has investigated the microtitre plate (MTP), micro-

Matrix and MBR (HEL-BioXplore) as scale-down mimic for rapid and accurate 

reproduction of Chinese hamster ovary (CHO) cell growth and product yields in 

bench scale stirred tank reactors. A microtitre plate with sandwich lid CR1524a (for 

slow growing animal cells) was found to be suitable for CHO cell cultivation. An 

evaluation of feeding approaches in MTP showed that bolus addition resulted in 9.19 

x 10
6
 cell mL

-1 
and 38 % higher IgG titres compared to addition of FeedBeads. In 

order to enable scale translation, the engineering parameters for the MBR were 

characterised with regard to mixing time, volumetric oxygen transfer coefficient and 

power input. The MBR system was fitted with either direct driven impeller or 

magnetically driven impeller with singular hole impeller or horseshoe sparger. The 

combination of the direct driven impeller and horseshoe type sparger with bolus 

addition was selected as the best configuration and produced 8.89 x 10
6
 cell mL

-1 
and 

0.84 gL
-1

 IgG titres. Additionally, a prototype micro-Matrix system was 

characterised for its performance in a cell culture process. The micro-Matrix with 

controlled aeration and continuous feeding supported a cell concentration of 8.67 x 

10
6
 cell mL

-1
 and viability >90 % after 264 hours. Furthermore, scale translations of 

the studied systems were evaluated at the matched mixing time of 6 s with 

conventional lab scale 5L stirred tank reactors (STR). The scale-up studies 

demonstrated that the miniature systems were able to mimic the performance of the 

conventional bench reactors. Results from the scale-up studies between the MTP, 

MBR and STR with bolus feeding addition showed a comparable viable cell 

concentration of 9.30 x 10
6
 cell mL

-1
, 9.56 x 10

6
 cell mL

-1
 and 10.04 x 10

6
 cell mL

-1
 

and IgG titres of 0.92, 0.69 and 0.83 gL
-1

 respectively. Whereas, scale translation 

studies between micro-Matrix and MBR with continuous feeding gave equivalent 

viable cell concentration with 11.1 x 10
6
 cell mL

-1
 and 9.76 x 10

6
 cell mL

-1
 and IgG 

titres of 0.50 gL
-1

 and 0.64 gL
-1

 respectively. Overall, the miniature bioreactors 

evaluated have the potential for cell screening and optimisation studies which could 

generate early data for bioprocess development.  
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Chapter 1  Introduction 

1.1 Overview of therapeutic antibody production 

 

The past twenty years have seen increasingly rapid advances of therapeutic antibody 

production for the pharmaceutical markets (Walsh, 2014). Biopharmaceuticals from 

therapeutic antibodies has seen an increase in its growth and sales over the past four 

years (Aggarwal, 2014). Ever since the Food and Drugs Administration (FDA) 

approved an early mAbs (Rituximab) in 1997,  progression of monoclonal antibodies 

(mAbs) has advanced with 17 novel biologics approved annually over four-year in 

the United States and Europe markets (Walsh, 2014). Moreover, in the year 2012, 

monoclonal antibodies were recorded as the highest selling biopharmaceuticals with 

total revenue of $24.6 billion in the United States’s biotechnology sector (Aggarwal, 

2014). Monoclonal antibodies produced significant results on the treatment of 

different types of cancer and anti-inflammatory disorders such as non-Hodgkin 

lymphoma and rheumatoid arthritis (Shukla and Thömmes, 2010). Currently, there 

are six blockbuster therapeutic mAbs products that commercially available in the 

pharmaceutical market: Avastin, Herceptin, Remicade, Rituxan, Humira and Erbitux 

(Butler and Meneses-Acosta, 2012).  

 

The majority of novel therapeutic antibodies are produced from the mammalian cell 

expression system and continue to be dominated by the mAbs based product (Kelley, 

2007). Mammalian cells are the preferred host for complex therapeutic antibodies 

production because of its capacity for proper protein folding, assembly and post-

translational modification such as glycosylation patterns (Chadd and Chamow, 2001; 

Wurm, 2004; Warnock and Al-Rubeai, 2006). In addition, Chinese hamster ovary 

(CHO) cell are the most widely and most favoured cell lines for derivation of mAbs 

because of its good growth kinetic, high concentration of protein expression and 

easily adapted in suspension culture (Kelley, 2007). According to Browne and Al-

Rubeai (2009), CHO cell line is known to have stable cell line and better clone 

selection compared to other mammalian cell lines. At present, majority of CHO cell 

manufacturing cultivation  modes of operation is by means of fed-batch or perfusion 

culture rather than batch culture to maximise the product formation and cell viability 

(Hu and Aunins, 1997). Additionally, the production of commercial mAbs has 
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revolutionised drastically from lab scale bioreactor (10 L) up to commercial 

manufacturing production (20,000 L) with several biotechnology companies reported 

the product titres can yield to 5 – 10 gL
-1

 (Wurm, 2004; Kelley, 2007). These 

improvements have made the mammalian cell as the major platform for the 

production of monoclonal antibodies for biopharmaceuticals production.  

 

1.2 Antibodies 

 

Antibody is immune type glycoproteins that belong to the immunoglobulin super 

family. The antibody is a Y-shaped protein molecule synthesized by lymphocytes in 

vertebrates in response to detection of foreign substances. These immune molecules 

are formed from four polypeptides consisting of two identical heavy chains and two 

identical light chains (Figure 1.1) by disulphide bonds that comprised of homology 

regions of amino acid sequences (Jefferis, 2007). Each antibody is highly specific 

and binds to particular antigens (antibody generating substance). There are five 

different types of antibodies that are grouped into different isotypes based on their 

heavy chains; IgA, IgD, IgE, IgG and IgM. These five types of antibodies are based 

on the constant region structure and immune function (Jefferis, 2007). 

 

Moreover, therapeutic antibodies are produced by recombinant DNA technology and 

classified according to their sequence source; murine only, chimeric, humanized and 

human only (Chadd and Chamow, 2001). Figure 1.2 shows the schematic 

classification of antibodies according to their sequence source. A murine antibody 

was extracted from mouse cell and is regarded as foreign sources by the host body 

which able to draw out its own antibody reaction (Chadd and Chamow, 2001).  

 

By contrast, a chimeric antibody is the result of the construction of the animal 

(murine) antigen binding variable domain to the human constant domain. While, 

humanised antibody means the antibody that have more than 90 % of human 

sequences with murine complementarily-determining regions. Human only antibody 

means that it has human antibodies with 100 % sequences. The first human only 

antibody was successfully developed in the 1990s (Chadd and Chamow, 2001). 
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Figure  1.1: Structure of typical antibodies molecules (a) the X-ray crystallographic structure 

of an IgG antibody. (b) a schematic illustration of the antibody structure with the four chain: 

two identical heavy chains and two identical light chains (c) a simplified schematic 

illustration of an antibody molecule. Image adapted from (Janeway, 2001). 

 

 

 

http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A2908/
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Currently, many antibody products in clinical development are fully humanised. 

Advanced technologies for antibody development in partnership from big 

pharmaceutical companies has enabled a new generation of human antibody. 

Moreover, the expectation in the medical and regulatory community is that 

companies will use the best approach for their product to achieve humanization          

(Jones et al., 2007). 

 

 

 

Figure 1.2: Schematic classification of antibodies according to their complementary 

sequence source. A: murine, B: chimeric, C: humanised, D: human. Image adapted from 

(Velez Suberbie, 2013). 

 

1.2.1 Monoclonal antibodies 

 

Monoclonal antibodies accounted for a quarter of all new drugs in the market with 

profits of approximately US$100 billion annually (Aggarwal, 2014). Walsh (2014) 

reported that over the past four years, mAbs recorded the highest number of approval 

with 17 from 54 biologics approved in the United States and European Union (EU; 

Brussel). The importance of monoclonal antibodies (mAbs) has encouraged the 

researchers to find alternatives for cost effective and promising cell lines that able to 

yield high quality protein (Griffin et al., 2007; Matasci et al., 2008) Several factors 

such as media composition development and optimisation, different feeding 

strategies, extended fed-batch process and engineering characterisation of operating 

condition in bioreactors have contributed to the improvement of product titres of 

mAbs (Kelley, 2007; Walsh, 2014). 
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Conventionally, there are two expression systems suitable for mAbs production; 

mammalian and non-mammalian based expression systems. Walsh (2014) reported 

the progression of mAbs manufacturing platforms derived from the mammalian 

based expression have 60 % approval over non-mammalian system. Besides that, 

there are several factors that need to be evaluated for manufacturing mAbs including; 

antibody structure, expression systems, productivity, ease of purification and 

material costs (Chadd and Chamow, 2001). In addition, for antibody products to be 

effective, mAbs must be synthesized in biologically active form, with proper folding 

and post translational modification (Jayapal et al.,2007).  

 

1.3 Mammalian cell  

 

As of today, bacterial and mammalian based expression systems are the main 

expression systems used for producing therapeutic antibodies. However, the latter is 

the better option because of its similarity in biochemical properties to the naturally 

occurring human forms such as post-translational modification and glycosylation 

patterns (Butler, 2005; Warnock and Al-Rubeai, 2006; Matasci et al., 2008). Apart 

from that, mammalian cell lines have become the preferred host system because of 

its high specific productivity, cell stability and reproducibility. Basically, there are 

five mammalian cell hosts which are commonly used for protein production; Chinese 

hamster ovary cell (CHO), mouse myeloma (NS0), baby hamster kidney (BHK), 

human embryonic kidney (HEK-293) and human-retina-derived (PER-C6) (Butler, 

2005). Chinese hamster ovary cell is the most preferred host because CHO cell have 

well characterised platform technologies which permit for stable transfection, 

amplification and choices of high producer clones compared to other cell types such 

as microbial or plant (Butler, 2005). Besides that, the production of antibodies from 

mammalian cell culture has improved extensively in recent years (Wurm, 2004). 

Contemporary mammalian cell culture processes can yield antibody concentration up 

to 5 - 10 gL
-1

 (Butler, 2005). This is resulted from development in expression 

technology and process optimisation of upstream technologies at cell culture stage 

(Birch and Racher, 2006). 

 



 

 

  31 

 

1.3.1 Chinese hamster ovary cell  

 

Chinese hamster ovary (CHO) cell is known as the predominant host cell for the 

production of biopharmaceuticals. Chinese hamster ovary cell was originated from a 

primary culture of ovarian cells from Chinese hamster (Cricetulus griseus) and 

initially used in protein production as an immortalised cell (Puck, 1985). CHO cell 

was favoured because of its ability to adapt and grow well in suspension culture and 

able to scale up in a large scale culture (Wurm, 2004; Warnock and Rubeai, 2006). 

Furthermore, CHO cell lines can reach maximum cell densities of 2 x 10
7
 cells mL

-1
 

in fed batch cultures (Warnock and Rubeai, 2006). Basically, there are two 

expression vector system most commonly used for the production of therapeutics 

antibodies: glutamine synthetase (GS) gene expression system and dihydrofolate 

reductase (DHFR) gene. For successful gene expression, GS and DHFR vectors must 

have a strong promoter that can initiate expression of the antibody gene (Birch and 

Racher, 2006).  

Glutamine synthetase (GS) synthesise glutamine from glutamate and ammonium, 

with the latter being an undesirable waste product of the cells (Wurm, 2004). Figure 

1.3 shows the relationship between the glutamine and glutamate in the GS gene 

expression system. The inhibition of GS is achieved with the addition of methionine 

sulphoximine (MSX). On the other hand, DHFR expression system, a recombinant 

protein can be amplified by the use of folate analogue methotrexate (MTX) to inhibit 

the function of DHFR, an essential metabolic enzyme. After exposure of MTX, the 

majority of cells dead, but the surviving cells which contain several hundred to a few 

thousand copies of the integrated plasmid embedded in chromosomes and elongated.  

(Wurm, 2004; Birch and Racher, 2006). 

           ATP        ADP + Pi 

 

    
   +                       

 

           MSX 

Figure  1.3:Glutamine synthetase (GS) gene expression system in CHO cells.  
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1.3.2 CHO cell metabolism  

 

Glucose and glutamine are the major carbon and energy sources for CHO cells. 

Glycolysis and glutaminolysis are the key metabolic pathways in mammalian cells 

(Quek et al., 2010). Both pathways are vital for CHO cell growth and metabolism 

(see Figure 1.4). Chinese hamster ovary cells consume glucose for energy production 

and generate lactate as metabolic by-product through the glycolysis pathway (Li et 

al., 2012). In glycolytic process, excess glucose via pyruvate is reduced to lactate by 

lactate dehydrogenase A (LDA) before being metabolised in the tricarboxylic acid 

(TCA) cycle. This process has a negative impact on the energy yield which can be 

achieved by glucose (Altamirano et al., 2013).  

 

Lactate accumulation in CHO cell metabolism has resulted in lower cell growth in 

batch and fed-batch cultivation and reduced productivity (Li et al., 2010; Gagnon et 

al., 2011). Therefore, several strategies have been attempted previously to limit 

lactate accumulation such as genetically modified metabolic pathways (Paredes et 

al., 1999) and improved operating conditions of bioreactor through media 

optimisation and feeding strategies. However, lactate consumption by the cells is 

more profound compared to secretion which resulted in attempts to reduce the initial 

glucose concentration (Zhou et al., 1995; 1997), alternatively feeding galactose 

(Altamirano et al., 2006), or directly feeding lactate (Li et al., 2012). 

 

In CHO cell bioreactor processes, several parameters such as pH, temperature and 

dissolved oxygen influence the cell growth and metabolism. Gagnon et al. (2011) 

showed that by controlling the culture pH by feeding glucose lactate accumulation 

can be suppressed. They suggested that suppressing the pathway through cellular 

engineering can alter the cellular metabolism which subsequently altered the lactate 

production. Furthermore, Kuwae et al. (2005) showed that cells cultured at lower pH 

can reduce lactate accumulation in culture. They suggested that cells between pH 6.6 

to 7.2 will reduce peak lactate concentration by 70 %.  

 

By contrast in the glutaminolysis pathway, CHO cells assimilate nitrogen for 

biomass synthesis and release mainly ammonium as by-product (Altamirano et al., 

2006; Fan et al., 2015). Ammonium can build up in medium and cell cytoplasm 

through the chemical decomposition and metabolism of glutamine (Chen and 
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Harcum, 2005). Accumulation of this by-product from the unbalanced nutrient 

supply for cell activities may inhibit the cell growth (Fan et al., 2015) and negatively 

affect the protein glycosylation thus altering the product quality (Chen and Harcum, 

2005). Therefore, many strategies have been developed to overcome the toxic effects 

of ammonium on CHO cell culture. Research has focused on reducing the 

ammonium level by substituting glutamine with pyruvate (Genzel et al., 2005) or 

substituting glutamine by glutamate (Altamirano et al., 2000; 2004). Besides that, 

deZengotita et al. (2002) demonstrated the use of selected amino acids such as 

glycine, threonine and glycine beta could protect hybridoma and CHO cells from 

elevated carbon dioxide and osmolality levels.  

 

By understanding the interplay between these pathways on the cell growth, cell 

metabolism and glycosylation at metabolic levels will benefit bioprocess 

optimisation of antibody productivity in CHO cell cultivations.  
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Figure 1.4: Schematic diagram of glycolysis and glutaminolysis pathways for CHO cell 

metabolism. Legend: Blue arrows: Glycolysis pathway, Green arrows: Glutaminolysis 

pathway (images adapted from Altamirano et al., 2013). 
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1.3.3 Production of therapeutic antibodies from CHO cell 

 

Chinese hamster ovary cell is the most utilised mammalian cell type for therapeutic 

antibodies in bioprocess development. Even though CHO cell is slow growth and 

very sensitive to a wide range of environmental changes, its versatility and high in 

productivity makes CHO cell the best candidate for protein production. On the 

contrary, protein production from CHO cell is very challenging process 

development. The development of improved cell culture processes might be critical 

as several parameters such as medium formulation, feeding strategies and 

engineering parameters need to be characterised (Butler, 2005). 

 

Today, most of the large scale cell cultures are performed in chemically defined 

serum free media (Wurm, 2004). Medium formulation plays important roles in 

production process and cell line development. CHO cell lines have been adapted to 

serum free suspension culture. Serum free media are more favourable because of the 

more defined composition and the feeding strategy has a profound impact on cell 

growth and biologic products (Wen, 2009). Besides that, serum free media eliminates 

the risk of contaminants such as viruses, mycoplasma and prions from animal-

derived products that might have negative impacts on end products used by humans 

(Schröder et al., 2004). Moreover, the advantage of serum free medium is the 

absence of animal materials; therefore the cells do not easily attach to a solid 

substrate that make the cells grow well in suspension (Wen, 2009). 

 

One of the main concerns of using CHO cell lines is their susceptibility to shears or 

hydrodynamic stress (Nienow, 2006). The lack of cell wall makes the mammalian 

cell more shears sensitive that can give detrimental effect toward the cell growth and 

viability. Cells that continuously received hydrodynamic stress can give lethal effects 

which subsequently entered a programmable death sequence (apoptosis) (Chisti, 

2001; Nienow, 2006). These lethal effects not only give detrimental effect toward the 

cell growth, viability and size, but will disrupt the cell during the downstream 

process. 
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Although significant progress has been made to improve protein production and 

quality, mammalian cell culture remains costly, laborious and time-consuming 

process (Browne and Al-Rubeai, 2009). Economic concerns and time constraint are 

the major critical factors to generate high producer cell lines and processes for 

protein production (Griffin et al., 2007). It is therefore common practice to develop a 

model of the production process in a small scale reactor, where lower costs, ease of 

handling and higher throughput are possible. The usage of microtitre plates (MTP) 

and miniature bioreactors are more common in terms of screening the cells before 

being transferred to the large scale culture for bioprocess development. 

 

1.4 Cell culture bioprocess development 

 

Over the years, various options have been considered to accelerate the bioprocess 

development of biopharmaceuticals. For the past decade, microbial systems have 

been the major interest for the development of high throughput bioprocess system 

(Duetz and Witholt, 2004; Ferreira-Torres et al., 2005). Research has focused on a 

different aspect of parallelism and engineering characterization of the microtitre 

plates such as quantification and modelling of oxygen mass transfer rates (Hermann 

et al., 2003; Doig et al., 2005), mixing time (Nealon et al., 2006) and pH control in 

microtitre plates (Elmahdi et al., 2003). In the case of miniature bioreactors similar 

studies on oxygen transfer and power input have been conducted for microbial 

fermentation processes (Betts et al., 2006; Gill et al., 2008b). 

  

1.4.1 Conventional bioprocess development 

 

Traditionally, the development of mammalian cell lines cultivation required a large 

set of shake flasks for screening the cell culture for experimental conditions prior to 

pilot scale cultivation (Amanullah et al., 2010). However, this system has long 

development times, laborious, as well as limited throughput. For improvement, 

various designs of microbioreactors and miniature bioreactor systems has been 

developed, including shaken microtitre plates (MTPs) (Duetz and Witholt, 2004; 

Duetz, 2007; Barrett et al., 2010; Chen et al., 2009), miniature stirred bioreactor 
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(Betts et al., 2006; Harms et al., 2006) and other miniature devices such as micro-24 

micro reactor (Betts et al., 2014). Although each miniature bioreactors is designed to 

fulfil the requirement of bioprocess development, there usually is a trade off in terms 

of productivity and throughput (Doig et al., 2006). Figure 1.5 shows the conventional 

bioprocess development sequence. 

Studies using microwell based systems and miniature bioreactors for the high 

throughput bioprocess development of mammalian cell culture are very minimal 

(Girard et al., 2001). To date, researchers have investigated the potential of shaken 

microtitre plates (Micheletti et al., 2006; Chen et al., 2009; Barrett et al., 2010; Silk 

et al., 2010) and mixed minibioreactor (Diao et al., 2008) for development and 

optimisation of mammalian cells. Several researchers has quantified engineering 

parameters such as liquid phase mixing time, solid suspension and the energy 

dissipation rate (Nealon et al., 2006; Micheletti et al., 2006; Barrett et al., 2010). 

 

 

Figure 1.5: Conventional bioprocess development sequence. 
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1.4.2 Advanced process development sequence 

 

The increased use of monoclonal antibodies as a human therapy is driving the search 

for rational approaches to establish highly productive and cost effective processes  

(Li et al., 2010). Advancement of high throughput (HT) technology over the past 10 

years in bioprocessing industries is seen as a significant alternative for the 

conventional process development (Lye et al., 2003). High throughput technology is 

a new platform of bioprocess development that gives flexibility at the early research 

stage with minimal usage of materials. High throughput can offer a miniaturised 

system that amenable to automation (Micheletti et al., 2006; Barrett et al., 2010). 

Currently, the majority of high throughput studies are focused on microwell based 

systems (Micheletti and Lye, 2006). Additionally, the microwell based systems have 

the ability to run parallel cultivations simultaneously and have the potential to mimic 

quantitatively laboratory and pilot scale bioreactors (Lye et al., 2003; Kumar et al., 

2004).  

 

Figure 1.6 shows the advanced bioprocess development sequence. Recent 

introduction of micro-Matrix (Applikon Biotechnology, B.V. Deflt Holland) are 

solution to miniaturised, automated and high throughput bioprocessing. The micro-

Matrix offers a single use, 24 independently control bioreactors in microtitre plate 

format which can replicate larger scale bioreactors. The ability of micro-Matrix 

independently controlled bioreactors which promote a solution to automatic liquid 

handling in microwell based systems make micro-Matrix an ideal alternative to high 

throughput bioprocessing.  
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 Figure 1.6: Advanced bioprocess development sequence. 

 

1.5 Bioreactor system for therapeutic antibodies production 

 

Bioprocess development of mammalian cell culture involved a series of bioreactor 

systems from small scales up to commercial scales. Figure 1.7 shows a series of 

bioreactor scales utilize from small scale to production scales. In this work, a series 

of bioreactor system was studied from microtitre plates, miniature bioreactor and lab 

stirred tank bioreactors. The extensive use of the microtitre plates (MTP), micro-

Matrix, miniature bioreactor (HEL-BioXplore) and bench scale stirred tank reactor 

for bioprocess development were further discussed in the Section 1.5.1, 1.5.2, 1.5.3 

and 1.5.4 respectively. 

 

 

 

 

 

 

 

Parallel 

microtitre 

plates 

(0.5 – 3 mL) 

   

Fully instrumented 
stirred tank 

bioreactor 

(20– 100 L)  

Manufacturing scale 

(1000 – 20 000L) 

Cell line/ 

medium 

screening 

   

Optimisation - medium/ 

operating condition 

(aeration/agitation/ 

feeding) 

Scale-up  

 

Production 

Miniature 

stirred tank 

bioreactor 

(0.1  - 0.5 L) 



 

 

  40 

 

 

 

 

 

 

 

 

     2 L           20 L       100 L 

 

 

Figure 1.7: Flows of different scales of bioreactors in bioprocess development of 

mammalian cell cultures (adapted from Birch and Racher, 2006). 

 

1.5.1 Microtitre plate 

 

Microtitre plate (MTP) or microwell was invented 50 years ago by the Hungarian 

physician, Dr. Guyla Takatsy as a platform for diagnostic tests after a severe 

outbreak of influenza virus (Manns, 2003). Conventionally, microtitre plates are used 

for analytical methods such as medical diagnostic tests (for enzyme-linked 

immunosorbent assays), chemistry and biotechnology application. Microtitre plates 

are usually made from various plastics and polymers (polycarbonate or 

polypropylene), glass (borosilicate, quartz), metal (aluminium, stainless steels) (Lye 

et al., 2003, Betts and Baganz, 2006) with some new innovative plates incorporating 

optical-grade glass, fibre glass matting, polymer based filter membrane and specialty 

papers (Manns, 2003).  

 

Microtitre plates are available in various formats typically 6, 12, 24, 96, 384 to 3456 

wells per plate for ultra-high throughput screening (UHTS). The wells can be either 

in rectangular and cylindrical geometries with round, flat or pyramidal shaped 

bottoms and deep or shallow wells (Lye et al., 2003; Betts and Baganz, 2006). Figure 
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1.8 describes different type of microwell formats use in the bioprocess development 

experiments (Lye et al., 2003). 

 

Central to this approach a number of bioprocesses experimentation using microtitre 

plates has been applied at the screening stage to enhance throughput. So far, there are 

several commercial small scale screening system available on the market with 

instrumented controllable micro bioreactor such as SimCell
TM

 (Bioprocessors 

Corporation, Woburn, MA), Micro-24 Microreactor System (Pall Corporation, Port 

Washington, NY), M2P Biolector GmbH, (Aachen, Germany), Cellstation
TM

 

(Fluorometrix Corp., Stow, MA) and most recently the micro-Matrix (Applikon 

Biotechnology B.V., Holland).  

 

Microtitre plates are widely used in the industry due to its cost effective, high 

throughput and minimum use of materials. The advantage of microtitre plates 

(MTPs) to perform parallel reactions at very minimal volume in small scale has made 

MTPs an excellent choice for the screening phase of process development in cell 

culture (Betts and Baganz, 2006). Studies by several researchers to understand the 

parameters affecting microbial cell growth in microtitre plates had provide the basis 

for the establishment of mammalian cell culture in microtitre plate systems (Duetz et 

al., 2000; Elmahdi et al., 2003; Hermann et al., 2003; Kensy et al., 2005).  
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Figure  1.8: Schematic diagram of individual format of microwell based system: (a) 96-deep 

square well format; (b) 24-standard round well format; (c) 96-standard round well format 

(adapted from Lye et al., 2003; Barrett, 2008). 
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In addition to antibody production, MTPs experimentation can be used for medium 

formulation, selection of high producer clones and different aspects of environmental 

parameters in process development. Moreover, the processes that carry a large 

bioreactor burden can be alleviated by the use of high throughput miniature devices. 

In particular, microtitre plates not only reduce labour intensity and materials cost but 

increase the level of parallelism and throughput (Betts and Baganz, 2006).  

 

Besides all the advantages, there are a number of challenges using these systems 

such as high evaporation rate and poor mixing patterns between each of the wells. 

Mammalian cells tend to form aggregates and accumulate at the centre in the wells, 

which cause difficulty with sampling and cell quantification (Wen, 2009). Mixing in 

the wells can be achieved by pipette aspiration, mechanically agitated stirrer bars or 

orbital shaking (Lye et al., 2003). Currently, the common method of liquid mixing in 

the microtitre plates is by shaking of the entire plates on shaking incubator 

(Micheletti and Lye, 2006). Nealon and his colleague (2006) has reported the 

quantification of macro mixing times in different geometries of microtitre plates in 

static condition with jet mixing theories (Rej = 1000 - 3960) and liquid addition 

volumes (VA = 10-859 µl).  The result showed that generation of quantitative and 

reproducible data can be performed through efficient mixing and better 

understanding of the engineering environment with individual microtitre plates 

(Nealon et al., 2006). 

 

Another key challenge for shaken microtitre plates is to provide adequate oxygen for 

the cells to grow. Under oxygen limitation, cell growth may become slow and 

eventually will affect the production of antibodies (Barrett et al., 2010). In order to 

validate oxygen transfer rate, the DOT (dissolved oxygen tension) in microtitre 

plates can be measured using optical sensor (Oxo-Dish OD-24, PreSens-Presicion 

Sensing GmbH, Regensburg, Germany). The microtitre plates were equipped with 

the sensor at the bottom of each well that had been immobilised by a fluorescence 

optode. The measurement was taken under the sensor dish reader (SDR 

SensorDish®) with a read out unit located in the centre below each well of a 24 well 

plate. Figure 1.9 shows the experimental set up of standard 24-well with sensor for 

measurement of pH and dissolved oxygen (Kensy et al., 2005).  Evaporation rates in 
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the microtitre plates can be improved by using the Duetz system (sandwich lid) that 

been developed by the Duetz and co-worker (2000) for microbial systems. Silk et al. 

(2010) reported that the sandwich lid system has minimised the liquid losses to 0.6 % 

v/v in microtitre plates over 14 days of cultivation. This result shows that the 

sandwich covers developed by Duetz group are reliable and efficient in minimising 

the evaporation rate in the microtitre plate system. 

 

For the past decade, microtitre plates have been broadly used as a scale-down model 

for mammalian cell culture process development in expressing recombinant proteins. 

Research showed that a variety of microtitre plates as bioreactor for mammalian cell 

culture process development has been reported featuring optical based sensor for 

high throughput cell culture (Chatterjee et al., 2015). In addition, engineering 

characterization of liquid mixing and gas liquid mixing mass transfer in microtitre 

plates (Barrett et al., 2010) and fed batch operation of cell culture processes using 

bolus feeding techniques (Silk et al., 2010) have been described. 

 

However, the techniques of nutrient feeding in a microtitre plates are not well 

established. Fed batch operation in the microtitre plates presents great challenges in 

liquid handling and implementation of continuous feeding (Silk et al., 2010). Up to 

now, most of the techniques that have been applied are specifically designed for 

microbial system such as glucose silicone elastomer discs with slow release 

technique (Jeude et al., 2006) and enzyme controlled glucose auto delivery system 

(Panula-Perala et al., 2008). Both of the system had shown promising result to 

increase the microbial cell density and product formation.  
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Figure  1.9: Experimental set up for 24 microtitre plates for optical measurement of pH and 

DO (adapted from Kensy et al., 2005). 
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By contrast, Panula-Perala et al. (2008) developed a novel method using an enzyme-

based substrate-delivery system (EnBase
TM

) for growth of microorganisms in 

microtitre plates and shake flasks. Their method 5 – 20 times higher cell densities 

were obtained compared to standard methods. The advantages of this enzyme 

delivery system are that it does not require additional sensors or liquid supply system 

which can minimize the contamination risks compared to bolus feeding techniques. 

Furthermore, the EnBase
TM

 method is robust, easy to apply at mililitres scale down 

model and has the potential to control the microbial growth rate and oxygen 

consumption (Panula-Perala et al., 2008). The feeding strategies applied in the 

microtitre plates are summarised in the Table 1.1. 

 

The other method is the slow release technique of glucose in shake flasks for 

microbial production strains (Hansenula polymorpha) developed by Jeude et al. 

(2006). The FeedBead
®

 system provided a continuous delivery of glucose using 

silicone elastomer disks in slow release diffusion technique. However, the weakness 

of the system is that the release rates are high and the releases take place in a short 

period of time, which is not adequate for longer mammalian cell cultures (Hedge et 

al., 2012).  

 

Hegde et al. (2012) have developed a continuous feeding system in shake flasks that 

consists of hydrogel nutrient feed. The research group developed a method of 

hydrogel-based nutrient delivery in the shake flasks without the need of manual 

feeding. They demonstrated the continuous feeding of glucose to suspension of CHO 

culture in shake flasks which resulted in a viable cell density increase of 23% and the 

lactate concentration decreased by 89% at the end of the culture. They summarized 

important criteria’s for successful delivery system in mammalian cell cultures are: (a) 

the system must not have undesirable effect on growth and productivity (b) the 

release of the nutrient must be over a period of 5-10 days and (c) it must be possible 

to release other nutrient prior to addition of glucose. 
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Table  1.1: Different feeding strategies applied in the mammalian cell cultures. 

Culture  Materials  Nutrient  Concept  Reference  

CHO cells  2-Hydroxyl ethyl 

methacrylate [HEMA] 

(97% pure), ethylene 

glycol dimethacrylate 

[EGDMA] (98% pure) 

 

Glucose/protein 

hydrolysate  

Glucose-loaded 

hydrogel with 

controlled 

release  

 

Hedge et al. 

(2012)  

GS-CHO cells  CD CHO AGT 

(containing glucose 

and other nutrients) 

 

Glucose  Bolus addition  Silk et al. 

(2010)  

E.coli  Inactive polymer, 

starch from a gel 

phase (in tablet or 

liquid form)  

Glucose  Release of 

glucose by 

enzymatic 

degradation of 

polysaccharide  

(EnBase
TM

)  

 

Panula-

Perala et al.  

(2008)  

Hansenula 

polymorpha  

Polymer matrix 

consist of PDMS and 

glucose (sterile 

silicone elastomer 

discs)  

Glucose  Defined kinetic 

of glucose 

released from 

silicone 

elastomer discs 

(FeedBeads
®
)  

Jeude et al. 

(2006)  
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1.5.2 Micro-bioreactors (micro-Matrix) 

 

The demand to reduce the development time of potential new biopharmaceuticals to 

the market has enabled major pharmaceutical companies developing scale-down 

platform technologies (Birch and Racher, 2006). These platforms are meant to be a 

robust framework for bioprocess development which contains all elements required 

to produce the biopharmaceutical products. One of the alternatives is using a scale-

down models that can be relied to mimic laboratory and pilot scale bioreactors. It is 

predicted that using a scale-down models the growth kinetics and product expression 

can be optimized at miniature scale and scale-up quantitatively (Betts and Baganz, 

2006).  

 

The micro-Matrix (Applikon Biotechnology B.V., Holland) is new, small scale 

micro-bioreactors that have features for high throughput, parallel experiments, 

automated liquid handling and scalability. The system was developed in a microtitre 

plate format, with 24 independently controlled micro-bioreactors which can mimic 

the larger bioreactor unit operations. The square well cassette design is based on the 

deep square well (DSW) microtitre plates developed by Wouter Duetz (2007). The 

unique features of the cassette include the PreSens sensors at the bottom of the 

cassette. Figure 1.10 shows the micro-Matrix system with its square deep well plate 

cassette. 

 

 

The cassette was deep well plates, square bottom with maximum liquid volume of 7 

mL and working volume ranging from 3 – 5 mL. The cassette was covered with top 

plate that has a gasket seal for efficient gas transfer and gas filter bars to minimise 

cross contamination between cassette and cabinet. The micro-Matrix system also has 

the standard 25 mm orbital diameter shaking platform for mixing capability and lock 

features at the side of the system to hold firmly the cassette when agitated. The 

PreSens sensors at the bottom of the cassette have the ability to monitor temperature, 

pH and dissolved oxygen (PreSens-Presicion Sensing GmbH, Regensburg, 

Germany). 
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Figure 1.10: The micro-Matrix bioreactor system with 24-deep well plate cassette (adapted 

from the website of Applikon Biotechnology B.V. Holland). 

 

 

 

Each individual well or bioreactor has its own control system with proportional, 

integral and derivative controller (P.I.D). These P.I.D enable for control of 

temperature, pH, and DO on individual well. Furthermore, every single well 

temperature control is integrated with individual Peltier element for cooling and 

heating. The culture pH was controlled through automated gas addition and liquid 

addition. For dissolved oxygen concentration, it can be controlled up to four gases 

(oxygen, nitrogen, carbon dioxide, or compressed air) addition per bioreactors per 

wells. Figure 1.11 shows the schematic diagram of one well of DWP cassette for the 

micro-Matrix system. 
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Figure 1.11: Schematic diagram of single well of the 24-DWP of the micro-Matrix system 

(adapted from the website of Applikon Biotechnology B.V. Holland). 
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1.5.3 Miniature stirred bioreactors (HEL-BioXplore) 

 

The interest of developing miniature bioreactors for bioprocess development has 

progressed tremendously in the last 10 years (Betts et al., 2006; Gill et al., 2008a). 

Lye et al., (2003) described miniature bioreactor systems that facilitate parallel and 

automation of several fermentations simultaneously have the potential to reduce the 

fermentation times and costs. The capacity of miniature stirred bioreactor to monitor 

on-line and control the pH, dissolved oxygen and temperature could make an 

excellent alternative for mammalian cell culture bioprocess development. 

Furthermore, the engineering characteristic of miniature bioreactors has been studied 

in term of energy dissipation rate using computational fluid dynamic (CFD) analysis 

(Lamping et al., 2003), kLa values (Puskeiler et al., 2005), and mixing time (Betts et 

al., 2006). 

 

The key design features of miniature bioreactors are based on the conventional 

stirred tank reactors to enable rapid and scalable fermentation process. Betts et al. 

(2006) have characterised the volumetric oxygen transfer and mixing time of a novel 

10 mL miniature stirred bioreactor as a scale down model for microbial 

fermentations. One of the advantages of these reactors is their ability to monitor 

continuously and real time visualisation of parameters in each single bioreactor. The 

specific power input of the miniature bioreactor was compared with a conventional 7 

L bioreactor. It was concluded that the performance using an equivalent P/V is 

almost similar between these two bioreactors with regard of growth and product 

kinetics (Betts et al., 2006) 

 

Furthermore, Puskeiler et al. (2005) has developed a millilitre size bioreactor with a 

gas inducing impeller that has kLa value as high as over 0.45 s
-1

 (for 8 mL volume) 

agitated at 2300 rpm. The key feature of the 48 ml miniature bioreactor developed by 

Puskeiler et al. (2005) is a standalone reaction block with integrated heat exchangers. 

They also described the fed-batch mode of fermentation, which illustrates the 

potential of miniature bioreactor to achieve high levels of oxygen transfer. Moreover, 

the automated liquid handling and monitoring of several parameters such as pH was 

feasible using this miniature bioreactor block with gas inducing impellers.  
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Recently, Gill et al. (2008a) has investigated a novel miniature stirred bioreactor 

(Figure 1.12) and determined productivity of Escherichia coli and Bacillus subtilis 

fermentations which showed comparable operation of 4 autonomously controlled 

bioreactors. The bioreactor system has the continuous on -line monitoring, control of 

pH and DOT, and each bioreactor is geometrically similar to the conventional 

bioreactor. Table 1.2 compares several key parameters between miniature bioreactors 

and standard 5 L stirred tank rectors (STR). The results showed that the miniature 

bioreactor systems studied by Gill et al. (2008a) has excellent reproducibility with 

specific growth rates (0.68 ± 0.01h
-1

 for E.coli and 0.45 ± 0.01h
-1

 for B. subtilis). In 

addition, the kinetic growth and product parameters determined from the miniature 

bioreactor shown are comparable with that of the conventional 5 L stirred tank 

bioreactor. 

 

 

As reviewed above, the existing prototypes of miniature bioreactors have 

successfully demonstrated cultivation of the bacteria and yeast at its scaled. 

Nevertheless, animal cell culture cultivation using miniature stirred bioreactors are 

not extensively studied and well established. To date, there are only a few research of 

miniature reactor (< 0.5L) of stirred, suspension bioreactors published for animal cell 

culture.  
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Table 1.2: Comparison between miniature bioreactor and 5 L stirred tank reactors (adapted 

from Al-Ramadhani, 2015). 

 

 

 

 

 

 

 

 

 

Parameters UNIT MBR  5L  

Total vol.  L 0.5  5  

Working vol.  L 0.3  3.5 

Total ht  m 0.155  0.32  

Diameter  m 0.085  0.16  

Aspect ratio  H/L 1:1  1:1  

No. of 

impellers  

- 1  1  

Type of 

impeller  

- Marine 

(direct 

driven) 

/magnetic 

driven 

marine  

Pitched 

blade 

marine  

Impeller 

diameter (DI) 

m Direct- 

0.034 

Magnetic- 

0.033 

0.065  

Impeller depth  m Direct – 

0.07  

0.045  

DI:DT 

 

- Direct – 

0.40 

Magnetic – 

0.39  

0.41  

No. of impeller 

blades  

- Direct – 3 

Magnetic – 

4  

3  
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Figure 1.12: Miniature bioreactor system (HEL-BioXplore) (adapted from Gill et al., 

2008a,b). 
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The Diao research group described a mixed mini bioreactor or suspended animal 

cells using two wide culture chambers (U shape) that are linked by a 5 mm wide 

channel. In this bioreactor, the mixing is achieved by continuous transfer of the 

culture medium between two chambers using oscillatory regulating pressure. It has 

been shown that the insect cells, Spodoptera frugiperda grown in the bioreactor have 

a comparable length of lag phase and growth rate in comparison with the same insect 

cells in 50 mL spinner flasks. Additionally, the cells in the mixed mini bioreactor 

gave higher maximum cell density of 5.3 ± 0.9 x 10
6
 cell mL

-1
 than that of 3.4 ± 0.4 

x 10
6
 cell mL

-1
 obtained in the 50 mL spinner flasks (Diao et al., 2008). 

 

 

According to Betts and Baganz, (2006), the automation of miniature bioreactors is 

the key to high throughput capability in process development. A number of 

automated systems have recently been available for mammalian cell culture with 

automated sampling and post fermentation conditioning. Medicel Oy has designed 

automated small scale bioreactor that have 15 parallel fermentation systems (Medicel 

Explorer) with working volumes of 150 mL, independent control of pH, DO and 

agitation and one continuous feed. The system has been demonstrated for 

mammalian cell culture with good batch to batch reproducibility and comparability 

to shake flasks performance (Bareither and Pollard, 2011).  

 

 

The Automation Partnership (TAP) (with collaboration of an industry consortium) 

has designed a high throughput screening tool for protein production. Besides that, 

TAP has also recently developed an advanced automated microscale bioreactor for 

cell culture, ambr
TM

 system. The system operates with twenty four disposable cell 

culture reactors of 10 mL working volume and uses a robotic arm for liquid handling 

(Bareither and Pollard, 2011). Furthermore, the development of an automated 

bioprocess framework robotics should be further integrated with miniaturised 

downstream processing for product recovery and purification (Lye et al., 2003).  
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1.5.4 Stirred tank bioreactors (STR) 

 

A number of reactor designs have been investigated for maximising the production 

of antibodies from mammalian cell lines. For the past 40 years, several alternatives 

have been developed, but conventional stirred tank reactors (STR) have materialized 

as the industry’s system of choice for industry production (Chu and Robinson, 2001). 

The advantages of stirred tank bioreactors derive from its ease of monitoring and 

ease of scale-up. Besides that, a stirred tank reactor not only provides a homogenous 

system and mixing mechanism but can monitor the operating parameters (pH, 

temperature, DOT concentration) efficiently. Mixing in STR is achieved by means of 

mechanical impellers that are attached to the motor. The typical type of impeller 

applied in the STR for animal cell is the marine or pitched-blade which gives an axial 

flow pattern in the culture (Warnock and Al-Rubeai, 2006).  

 

 

Zhang et al. (2010) has highlighted the importance of shear and mixing operation in 

mammalian cell cultured with different scales and types of bioreactors. Nienow 

(2006) reported that the homogeneity and the pH of the culture are the important 

factors to be considered in large scale culture. The author reviewed the shear 

sensitivity due to the agitation and bubble formation during the fermentation. The 

largest commercial scale being employed are now up to 20 000 litres achieved by 

Lonza, GlaxoSmithKline, Eli Lily and Co., Johnson and Johnson and other leading 

biopharmaceuticals firms (Nienow, 2006). Besides that, fed-batch mode of operation 

gives higher cell densities with 5 -10 gL
-1

 of antibody in large scale culture (Zhang et 

al., 2010).  

 

 

The drawback of using stirred tank reactors as a scale down model is the lack of 

throughput, large requirement of nutrients and medium, laborious work for 

inoculation, sampling and harvesting, and the high shear sensitivity of the 

mammalian cell culture.  
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1.6 Characterisation of scale-up process  

 

Processes of scale-up from small scale laboratory equipment to industrial scale 

remain as critical parameters for mammalian cell cultivation. Design of industrial 

scale bioreactor is usually based on the performance of scale-down bioreactors. The 

successes of scale-down prototypes to mimic the larger scale reactors are 

significantly important to minimise the repercussion in term of reproducibility, cost 

effective process and stability of operations. Besides that, the optimisation of 

engineering characterisation of scale-down bioreactors play vital role in scale-up 

process includes; mixing time, oxygen mass transfer coefficient and power input 

(Micheletti et al., 2006). 

 

1.6.1 Mixing time  

 

Mixing is one of the important operations in bioprocess to achieve homogeneity. 

Mixing of bulk liquid in a closed vessel includes the physical process of diffusion, 

distribution and dispersion (Doran, 1995). Mixing gives direct interaction of heat 

transfer, gas dispersion and blending of different component of materials in medium 

in a reactor vessel. Furthermore, poor mixing achieved in bioreactors can result in 

pH, nutrient and temperature gradients as well as poor operating parameters control 

(Al-Ramadhani, 2015). In a bioreactor, mixing is normally achieved by mechanical 

agitation of an impeller (Doran, 1995. Therefore, the selections of impeller designs 

are very crucial which depend on viscosity of the liquid and sensitivity of culture 

towards the mechanical shears (Doran, 1995).  

 

Mixing time, Tm is defined as the duration of time required to reach 95 % 

homogeneity in a perfectly mixed vessel (Xing et al., 2009). There are two methods 

that commonly use to determine the mixing time in a reactor vessel; decolourisation 

and tracer addition method. In the decolourisation method, a fluorescent dye is used 

along with high speed camera to record the colour changes in the liquid. In the tracer 

method, a tracer is added into the bulk medium to monitor the concentration changes 

until it becomes homogeneous and stabilise. The tracer can be acid, base or salt 

concentration that can reduce the uniformities of gradient temperature, pH 

concentration and other properties (Xing et al., 2009). In order to have homogenous 
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distribution the probe that recorded the concentration changes is placed at several 

locations and height across the vessel (Velez-Suberbie et al., 2013). The equation 

uses to determine the normalised pH time is:  

 

    
          
         

  

          (1.1) 

Where, H        homogeneity index 

                                    

                                pH during initial time measurement 

                                                                    

 

 

On the other hand, Nienow (1998) proposes the following equation where the tank 

height (HT) ratio is equal to the tank diameter (DT): 

 

            
     

 
  
  
 
     

  
     

(1.2) 

 

Where,  Tm      mixing time (s) 

         Total energy dissipation rate in gassed bioreactor (Wm
-3

) 

  Di      impeller diameter (m) 

  DT      tank diameter (m)  

 

Production of mammalian cell culture at industrial scale is expensive and time 

consuming processes. Mixing of mammalian cell cultures are achieved using either 

marine or pitched blade impellers due to the cell shears sensitivity. These impellers 

designs will create a low shears and gently mix the culture without damaging the 

cells (Mirro and Voll, 2009). As mentioned before, scale-down prototypes are crucial 

to determine the design of industrial scale bioprocess. Using the scale-down 

experiment, a number of key engineering operating parameters could be determined 

for translation at production scale. Ideally, the scale-up process should be carried out 

as close as possible to those good conditions in a small vessel to achieve high 

productivity and performance (Doran, 1995). Therefore, matched mixing time seems 
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as the desirable option to accomplish reproducibility in the scale-up process. 

Moreover, Nienow (2006) described that for a successful and effective mixing, Tm 

should be as small as possible. 

 

1.6.2 Volumetric oxygen transfer coefficient 

 

The aeration system in a reactor must be able to maintain oxygen concentration for 

cells maintenance during fermentation. Oxygen uptake rate (OUR) by cells in the 

bioreactor is determined by the cell growth and metabolism. In aerobic fermentation, 

cells consumed oxygen molecules from the liquid and utilised the carbon source for 

growth and metabolism. In a well-mixed reactor, the oxygen transfer rate (OTR) to 

the liquid is determined by the mass transfer coefficient (     , where      is the mass 

transfer coefficient and a is the specific contact area (Van't Riet, 1979). Oxygen 

transports in reactors become the rate limiting step and control the overall mass 

transfer rate (Doran, 1995). Shuler and Kargi (2002) described that mass transfer rate 

as shown in the equation 1.3:  

 

 

   

  
         

         

          (1.3) 

Where, kLa    Oxygen mass transfer coefficient (h
-1

) 

    
  

    Dissolved oxygen concentration saturation (mol m
-3

) 

          Dissolved oxygen concentration in the liquid (mol m
-3

) 

 

 

kLa is used to characterise the oxygen mass transfer capability in the reactors. If the 

kLa of a system is small, the ability of the reactor to deliver oxygen to the cells is 

limited and vice versa (Doran, 1995). Nienow (2006) reported that typical kLa profile 

for large scale mammalian cell culture in the range of 1 – 15 h
-1

 for adequate oxygen 

transfer rate in the media.   
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The mass transfer coefficient can be determined by the dynamic (Van’t Riet, 1979) 

or static (Wise, 1951) gassing out methods. The dynamic gassing out technique is 

utilised during the activity of growing culture in the fermenter to lower the oxygen 

level prior to aeration. Normally the process is carried out during fermentation to 

give a more realistic assessment of fermenter’s efficiency (Van’t Riet, 1979). The 

static gassing out is a technique of lowering the oxygen concentration by gassing the 

liquid with nitrogen gas where the liquid is scrubbed free of oxygen. The 

deoxygenated liquid is aerated and the increase in the dissolved oxygen is monitored 

using DO probe (Wise, 1951). The following equation is typically used to determine 

the kLa: 

 

           
    

  

(1.4) 

Where,       the superficial gas velocity 

        the total energy dissipation rate in a gassed reactor 

  A, α, β   constants 

 

1.6.3 Power requirement 

 

The power requirement is important in determining the efficiency of operating 

parameters in bioreactors such as mixing, oxygen transfer rate and kLa. In a typical 

mammalian cell culture stirred tank bioreactors (STRs), low power input is required 

to minimise the mechanical stress damage, implied on the cells due to mixing 

properties (Chisti, 2000). Mixing in bioreactors is usually achieved using impellers 

which are driven by the electrical power, and the power requirement is determined 

by the type or size of impellers, viscosity of the liquid and speed of the impeller 

(Doran, 1995; Nienow, 2006). The relationship between these variables is usually 

expressed in dimensionless number such as the impeller Rei and the power number 

Np:  

     
 

    
    

  

 

(1.5) 
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Where,  P   power input (W) 

   ρ   fluid density (kgm
-3

) 

   Ni   stirrer speed (rps) 

   Di   impeller diameter (m) 

 

For a given impeller, Rei values greater than 1 x 10
4
 describes the turbulent flow 

regime, while Rei < 10 corresponds to laminar flow regime. The relationship 

between the Rei and Np could be determined experimentally for different types of 

impellers. Once the power number is known, the power input (W) in STRs is 

achieved using the following equation 

 

       
   

   

          (1.6) 

 

Where,       power input (W) 

                                    dimensionless impeller power number 

   ρ   liquid density (kgm
-3

) 

   N   impeller rotational speed (rps) 

   Di   diameter of impeller (m) 
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1.7 Aim and objectives of thesis 

 

This study aim was to evaluate the microwell based systems (microtitre plates 

(MTPs) and micro-Matrix, (Applikon Biotechnology, B.V. Holland) and miniature 

bioreactor (HEL-BioXplore, HEL Ltd, UK) for the rapid development of antibody 

(IgG) production in CHO cells. It was underpinned by a detailed analysis of the 

engineering environment of miniature bioreactors for rapid and accurate reproduction 

of Chinese hamster ovary (CHO) cell growth kinetics and product yields at larger 

scales specifically for fed-batch and high cell density cultivations. 

 

Objective 1: Characterisation of microtitre plate (MTP) and evaluation of fed- batch 

operating strategies using MTP 

Chapter 3 aims to characterise the initial CHO cell growth conditions using the 24-

standard round well (24-SRW) that have sensor spots for an on-line monitoring of 

pH and dissolved oxygen (DO). Two different feeding strategies using bolus addition 

and FeedBead
®
 system were evaluated using parallel MTP based on selected 

operating conditions. 

 

Objective 2: Engineering characterisation of miniature bioreactors and evaluation of 

fed-batch operating strategies using MBR 

Chapter 4 seeks to characterise engineering parameters of miniature bioreactors 

(HEL-BioXplore) for mixing time (Tm), volumetric oxygen transfer coefficient (kLa) 

and power requirement in MBR. Process condition from MTPs experiment was 

further evaluated with miniature bioreactor (HEL-BioXplore) for CHO cell growth 

kinetics, product yield and different feeding strategies. 

 

Objective 3: Scale translation of different geometry of reactors at matched mixing 

time.  

The aims were to validate scale-up conditions at the matched mixing time using 

laboratory scale 5 L stirred tank reactors (STR). The different designs and scales of 

bioreactors were compared for CHO cell growth kinetics and product yields. 
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Objective 4: Characterisation of a new micro-bioreactor (micro-Matrix) system for 

automated liquid addition and parallel control of operating parameters. 

The aim was to characterise a novel, single use 24-well micro-bioreactor (micro-

Matrix) for CHO cell growth and product yields. The system works on microtitre 

plates (MTP) footprint with automated liquid addition and parallel control of pH, 

temperature and dissolved oxygen (DO). The micro-Matrix was evaluated for its 

robustness, reproducibility and scalability of fed-batch system on bolus and 

continuous feeding. 
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Chapter 2  Materials and Methods 

 

All experiments in this work were carried out using an adapted glutamine synthetase 

Chinese hamster ovary (CHO) cell line (strain CY01) expressing IgG4 monoclonal 

antibody (generously provided by Lonza Biologics, Slough, UK).   

 

2.1 Cell storage and recovery 

 

Cells were cryostorage in liquid nitrogen using chemically defined medium (CD 

CHO medium, Life Technologies, Paisley, UK) containing 10 % dimethyl sulfoxide 

(DMSO) (Sigma-Aldrich, Gillingham, UK). For cell recovery, cells were thawed 

rapidly in water bath and re-suspended in 9 mL of warmed CD CHO medium, then 

centrifuged at 450 g for 5 minutes. The supernatant was decanted and the pellet was 

re-suspended in 5 mL of 20 mL warmed CD CHO medium and added back to shake 

flask (125 mL polycarbonate Erlenmeyer flasks with vent caps; Corning Life 

Sciences, New York, USA). The shake flask was incubated for 24 hours at 37°C, 5% 

CO2 (Sanyo, Loughborough, UK) and agitated at 150 rpm on orbital shaker 

(Sartorius, Epsom, UK). After 24 hours, cells were checked for growth and viability 

before routinely sub-cultured.    

 

2.2 Cell culture 

2.3 Cell maintenance and media 

 

Chinese hamster ovary (CHO) cell was routinely maintained in shake flasks (250 mL 

polycarbonate Erlenmeyer flasks with vent caps; Corning Life Sciences, New York, 

USA) at working volumes of 100 mL. Cells were cultured at 37°C and 5% CO2 using an 

incubator (Sanyo, Loughborough, UK) on an orbital shaker (Sartorius, Epsom, UK). 

The shaking platform was set to agitate at 150 rpm. Cells were routinely sub-cultured 

every 3 or 4 days interval (for 25 passages) using a seed density of 0.2 × 10
6
 viable cells 

ml
-1

. These cells were sub-cultured using CD CHO medium (Life Technologies, 

Paisley, UK), with supplementation of 25 µM methionine sulphoximine (MSX) (Sigma-

Aldrich). Methionine sulphoximine was added to the medium to maintain a selection of 

the recombinant gene.  
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2.4 Microtitre plate cultures 

 

Experiments in chapter 2.3 use the 24-standard round well (SRW) microtitre plates. 

For fed-batch experiment, the CHO cells were cultured on pre-calibrated oxygen 

(Oxodish
®
) and pH (HydroDish

®
) sensors integrated in 24-well microtire plates 

(PreSens-Precision Sensing GmbH, Regensburg, Germany) for on-line monitoring of 

dissolved oxygen and pH respectively. 

 

2.4.1 Batch cultures 

 

Twenty four standard round well (24-SRW) (Ultra low attachment plates, Corning 

Life Sciences, New York, USA) was used in microtitre plates (MTPs) experiments. 

The Chinese hamster ovary cell was inoculated using MTPs at a seed density of 0.2 × 

10
6
 cells ml

−1
 with working volume of 850 µL and incubated at 37°C, 5% CO2 using 

an incubator (Sanyo, Loughborough, UK). All cultures were shaken on 25 mm 

diameter orbital shaker (Sartorius, Epsom, UK) with rotational speeds of 220 rpm.  

 

Chemically defined medium (CD CHO medium, Life Technologies, Paisley, UK), 

was used to culture the cells without the addition of methionine sulphoximine 

(MSX). Microtitre plates were covered with two types of sandwich covers system to 

minimise evaporation and contamination: CR1524 (for fast growing cells) and 

CR1524a (for slow growing cells) (Duetz et al., 2000). The microtitre plates were 

held with metal clamps (Enzyscreen B.V., Holland). The sandwich lids were 

sterilised by autoclaving and subsequently oven dried before use. 

 

2.4.2 Fed-batch (bolus feed) 

 

The fed-batch CHO cell culture using microtitre plates were prepared initially, 

accordingly to the batch culture protocols. Briefly, all cultures was cultured with 

seed density of 0.2 × 10
6
 cells mL

−1
, working volume of 850 µL at 37°C, 5% CO2 

and shaken on orbital shaker with rotational speeds of 220 rpm. All microtitre plates 

were covered with sandwich cover, CR1524a (Enzyscreen B.V., Holland) to 

minimise evaporation and contamination (Duetz et al., 2000), and held with metal 

clamps (Enzyscreen B.V., Holland). For on-line monitoring of dissolved oxygen and 
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pH, the CHO cells were cultured on pre-calibrated oxygen (Oxodish
®
) and pH 

(HydroDish
®

) sensors integrated in 24-well microtitre plates (PreSens-Precision 

Sensing GmbH, Regensburg, Germany). The 24-well with sensors was read out on 

the SDR SensorDish
®
 reader.  

 

The feeding strategy applied in this experiment was a bolus feed. Feeding of the 

cultures was commenced on day seven of cultivation after the glucose concentration 

was depleted below 2 gL
-1 

in each well. The medium used for feeding was CD CHO 

AGT powder (Life Technologies, Paisley, UK). The CD CHO AGT powder was 

made up to 10 fold concentrated feed with approximately 60 gL
-1

 glucose. The 

concentrated feed was added with additional glucose (Sigma-Aldrich) to make up 

glucose concentration to 150 gL
-1

. One percent (v/v) of feed was fed to each well 

every day from day seven to maintain glucose concentration at 2 gL
-1

. In order to 

minimise evaporation and changes in medium osmolality, the concentrated feed was 

diluted with sterilised deionised water such that liquid addition were 6 fold dilution 

and the concentration of nutrients per bolus shot was unchanged.  

 

2.4.3 FeedBead
®
: Controlled glucose delivery                

 

FeedBeads
®
 (Kühner AG, Birsfelden, Switzerland) are polymer-based (silicone 

matrix) with embedded crystalline glucose that controlled glucose release by defined 

kinetic for continuous feeding in microbial cultivation of shaken systems (Jeude et 

al., 2006). In the preliminary studies for determination of glucose concentration 

released from the silicone elastomer discs, FeedBeads
®
 (diameter 6 mm) was added  

into a 100 mL shake flask (250 mL polycarbonate Erlenmeyer flasks with vent caps; 

Corning Life Sciences, New York, USA) of 12.5 mL Dulbecco’s Phosphate Buffer 

Solution (Life Technologies, Paisley, UK). The shake flasks were incubated at 37°C, 

5% CO2 (Sanyo, Loughborough, UK) and shaken on orbital shaker (Sartorius, 

Epsom, UK) with rotational speeds of 150 rpm.  

 

The glucose concentration released from silicone elastomer discs was determined by 

direct measurement of glucose concentration using YSI 2700 Select Bio Analyser 

(YSI Inc., Yellow Springs, Ohio, USA). The fed batch CHO culture in MTPs was 

prepared accordingly to the batch culture protocols. Briefly, all cultures was cultured 
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with seed density of 0.2 × 10
6
 cells mL

−1
, working volume of 850 µL at 37°C, 5% 

CO2 and shaken on orbital shaker with rotational speeds of 220 rpm. All microtitre 

plates were covered with sandwich cover, CR1524a (Enzyscreen BV, Holland) to 

minimise evaporation and contamination (Duetz et al., 2000), and held with metal 

clamps (Enzyscreen B.V., Holland). The feeding strategy applied was FeedBeads
® 

addition. One FeedBeads
®
 silicone elastomer disc was fed to the cultures on day 

seven of cultivation after the glucose concentration was depleted below 2 gL
-1

 in 

each well. The glucose concentration released from silicone elastomer discs were 

determined by direct measurement of glucose concentration using YSI 2700 Select 

Bio Analyser (YSI Inc., Yellow Springs, Ohio, USA).   

 

2.5 Micro-bioreactors (micro-Matrix) cultures 

 

In this experiment, Chinese hamster ovary cell was inoculated using chemically 

defined medium (CD CHO medium, Life Technologies, Paisley, UK) without the 

addition of MSX. The cells were inoculated aseptically in the 24-deep well plate 

(DWP) cassette, integrated with PreSens sensors (PreSens-Precision Sensing GmbH, 

Regensburg, Germany) at a seed density of 0.2 × 10
6
 cells ml

−1
 with working volume 

of 3.5 mL and incubated at 37°C, 5% CO2 using an in-house incubator. The in-house 

incubator was built for controlling the temperature of the cabinet of micro-Matrix 

system. All cultures were shaken on built-in 25 mm diameter orbital shaker with 

rotational speed set at 270 and 300 rpm. The cassette was covered with the top plate 

that assembled with the aeration and liquid addition manifold (Figure 2.1). There was 

a gasket seal (on top of the cassette) and filter gas bars on the top plate to reduce the 

risk of cross contamination within the wells.  

 

The temperature was controlled the at 37°C ± 0.5°C. pH was controlled at 7.1 ± 0.4 

by sparging CO2. The system was aerated using headspace aeration at a flow rate of 

0.5 mL min
-1

 for the four main gaseous. For the control aeration system, DOT  was 

control according to the standard of 30 % of air, while for the non-control aeration; it 

was direct sparging  of 95 % compressed air and overlay with 5% CO2. The overlay 

of 5 % of CO2 is to mimic the same environment as an incubator shaker for 24-SRW. 

The liquid addition was added through the opening and closing of micro valve 

(Figure 2.2). Micro valve was calibrated accordingly using the external priming 
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module attached on top of the top plate. The opening and closing of the micro valve 

were determined by the pulse time. The pulse time was determined by finding the 

volume per pulse for a specific media used in cultivation. This is done by weighing 

the dosed liquid with certain pulsing times. Prior to inoculation, the complete top 

plate with aeration and liquid addition manifold and feeding bottle was sterilised at 

121°C for 20 minutes. 

 

For fed batch cultures, feeding strategy applied was either bolus fed or continuous 

feed. The cultures were fed to maintain glucose concentration at 2 gL
-1

. The medium 

used for feeding was CD CHO AGT powder (Life Technologies, Paisley, UK). The 

feeding media were prepared as mentioned in the section 2.3.2.  
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Figure 2.1: Top plate assembled with aeration and liquid addition manifold.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Microvalve for the liquid additions. 
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2.6 Miniature stirred bioreactors (HEL-Bioxplore) cultures 

 

For miniature stirred bioreactors, it was carried out with either 2 or 4 vessels made of 

borosilicate glass which run in parallel. The vessels were modelled based on the lab-

scale 5 L vessel with working volume 1:1 aspect ratio. The working volume of the 

vessel was 0.35 L. The four vessels were housed in a polyblock that control the 

temperature of the vessels. Figure 2.3 shows the details of the miniature stirred 

bioreactors used in this experiment. These vessels were sealed with stainless steel 

head plate and tightened with stainless steel tightening collar. The head plate 

accommodates the on-line probes for temperature, pH and dissolved oxygen. For pH 

and DOT probes, the probe used was Easyferm 120 (Hamilton, Bonaduz, 

Switzerland) and Oxyferm 120 FDA (Hamilton, Bonaduz, Switzerland) respectively.  

 

The temperature was controlled using the polyblock at 37°C ± 0.5°C. pH was 

controlled at 7.1 ± 0.1 by sparging CO2 or by the addition of a sodium carbonate 

buffer (100 mM Na2CO3, 100 mM NAHCO3). Aeration in the bioreactor vessel was 

achieved either by two type of spargers; horseshoe sparger or singular hole sparger. 

DOT was maintained at 30% ± 1% by sparging air, oxygen or nitrogen using a 

standard laboratory rotameter (Cache Quality Instrumentation, Wakefield, UK) at a 

flow rate of 50 mL min
-1

. Agitation was provided either by a single 3 blade marine 

impeller (direct driven) or 4 bladed marine impeller (magnetic bottom driven) 

rotating at 450 rpm and 400 rpm respectively. Prior to inoculation, the culture vessel 

was sterilised at 121°C for 20 minutes with 0.2 L of deionised water which was 

removed aseptically after the sterilisation.  

 

CHO cells were cultured with seed density of 0.2 × 10
6
 cells mL

−1
. Chemically 

defined medium (CD CHO medium, Life Technologies, Paisley, UK), was used to 

culture the cells without the addition of methionine sulphoximine (MSX). For fed 

batch cultures, feeding strategy applied was a bolus and continuous fed. For bolus 

addition, the cultures were fed once a day to maintain glucose concentration at 2 gL
-

1
. For the continuous feed, the culture was continuously fed over 24 hours/day with 

calculated feeding regimes to maintain the glucose concentration at 2 gL
-1

. The 

medium used for feeding was CD CHO AGT powder (Life Technologies, Paisley, 

UK). The CD CHO AGT powder was made up to 10 fold concentrated feed with 

approximately 60 gL
-1

 glucose. The concentrated feed was added with additional 
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glucose (Sigma-Aldrich) to make up glucose concentration to 150 gL
-1

. Metabolites 

(glutamine, glutamate, glucose, lactate, ammonium) and osmolality were monitored 

daily using a NOVA Bioanalyser 400 or NOVA Bioprofile Flex (Nova Biomedical, 

Cheshire, UK). 

 

 

 

 

 

 

Figure 2.3: HEL-BioXplore miniature bioreactors. 
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2.7 Stirred tank bioreactor (STR) cultures  

 

The experiments in this chapter were carried out with two bench top 5 L stirred tank 

bioreactors (Biostat B-DCU, Sartorius, Epsom, UK) run in parallel with a working 

volume of 3.5 L. The bioreactors consisted of borosilicate glass vessel supported 

with stainless steel scaffold and attached to a stainless steel head plate. The head 

plate accommodates the on-line probes for temperature, pH and dissolved oxygen. 

The operating parameters (temperature, pH, dissolved oxygen) in the bioreactors 

were set in a Biostat B-DCU supply tower located within the two bioreactors. The 

temperature was controlled using an electrical heating jacket (covered around the 

glass vessel) at 37°C ± 0.1°C. pH was controlled at 7.1 ± 0.1 by sparging CO2 or by 

the addition of a sodium carbonate buffer (100 mM Na2CO3, 100 mM NAHCO3).  

 

Aeration in the bioreactor vessel was achieved via horseshoe type sparger with 5 

aeration holes. DOT was maintained at 30% ± 1% by sparging air, oxygen or 

nitrogen using a standard laboratory rotameter at a flow rate of 100 mL min
-1

. 

Agitation was provided by a single three-blade segment marine impeller rotating at 

260 rpm. Prior to inoculation, the culture vessel was sterilised at 121°C for 20 

minutes, with 2 L of deionised water which was removed aseptically after the 

sterilisation. CHO cells were cultured with seed density of 0.2 × 10
6
 cells mL

−1
. 

Chemically defined medium (CD CHO medium, Life Technologies, Paisley, UK), 

was used to culture the cells without the addition of methionine sulphoximine 

(MSX).  

 

For fed batch cultures, feeding strategy applied was a bolus fed. The cultures were 

fed once a day to maintain glucose concentration at 2 gL
-1

. The medium used for 

feeding was CD CHO AGT powder (Life Technologies, Paisley, UK). The CD CHO 

AGT powder was made up to 10 fold concentrated feed with approximately 60 gL
-1

 

glucose. The concentrated feed was added with additional glucose (Sigma-Aldrich) 

to make up the glucose concentration to 150 gL
-1

. Metabolites (glutamine, glutamate, 

glucose, lactate, ammonium), were monitored daily using a NOVA Bioanalyser 400 

or NOVA Bioprofile Flex (Nova Biomedical, Cheshire, UK). 
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Tracer addition 

    Temperature probe 

HL 

2.8 Engineering characterisation of reactors process 

2.8.1 Mixing time  

 

Mixing time was measured in the HEL-BioXplore miniature bioreactor using the pH 

tracer method. The experiment was conducted using the horsehoe type and singular 

hole sparger and two type of impellers; direct driven and magnetic driven. Different 

gas flow rates and impeller speeds were tested. The 500 mL reactor vessel was filled 

with 300 mL of RO water. Then, it was added with 2 N KOH to increase the medium 

pH. Once the pH has a steadied reading, a tracer of 2 N HCL was added to the 

medium. By using a stopwatch, the time taken for the pH reading to drop over 95 % 

of the pH difference was measured as the mixing time (Tm). The different pH value 

was considered as the corresponding mixing intensity. Figure 2.4 shows the tracer 

was injected opposite to the pH electrode, at 10 mm from the surface. The pH 

electrode was placed at 20 mm from the vessel bottom.  

 

 

 

 

Figure 2.4: Schematic of the bioreactor set-up for mixing experiments. The tracer was 

manually added as bolus addition on top of the liquid surface (adapted from Xing et al., 2009). 

 

 

 

 

 

 Di

  D 

DT 

 Liquid surface 

pH probe 

20mm 



 

 

74 

 

The following homogeneity for mixing was considered: 

 

    
          
         

  

          (2.1) 

 

 

2.8.2 Volumetric oxygen transfer coefficient 

 

The estimation of the oxygen transfer coefficient (kLa) in bioreactor is usually 

determined experimentally. The oxygen mass transfer coefficient (kLa) was 

determined using the static gassing out method as mentioned by Wise (1951), 

(Lamping et al., 2003) and (Betts et al., 2006). Prior to experiment, the probe 

response time (τp) was measured and the DO electrode was calibrated to 100 % and 0 

% air saturation by sparging air and nitrogen respectively. The experiment was 

carried out using the CD CHO medium. kLa was measured in a HEL-BioXplore 500 

mL miniature bioreactor filled with 350 mL CD CHO medium and controlled at the 

operating temperature, 37°C. The 100 % oxygenated medium was lowered by 

sparged nitrogen until the oxygen level was totally scrubbed off from the medium (0 

%). The air supply was then quickly pumped into the medium at a constant flow rate 

and the increase in the oxygen concentration over time was recorded. The re-

oxygenation at steady state is measured between 20 % and 80 % of saturation. 

Different gas flow rates and impeller speeds were tested. 

 

The oxygen mass transfer coefficient (kLa) was calculated from the oxygen mass 

balance equation: 

     
  

  
        

        

            (2.2) 

Where, OTR Oxygen transfer rate (mol m
-3

 h
-1

) 

  kLa Oxygen mass transfer coefficient (h
-1

) 

  C* Dissolved oxygen concentration saturation (mol m
-3

) 

  CL Dissolved oxygen concentration in the liquid (mol m
-3

) 
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kLa is given by calculating the slope of the graph of ln (C* - CL) over period of time 

which has a gradient of kLa as described by: 

 

                        

              (2.3) 

 

2.8.3 Power input 

 

Power input was determined using the theoretical of ungassed power correlations. 

The impeller diameter for magnetic-driven impeller and direct driven impeller, a 

value of 0.033 m and 0.034 m was used respectively. Since, this is ungassed power 

correlation; volumetric gas flow rate was negligible. For theoretical calculation, the 

liquid was assumed to be close to water; with density of 998.2 kg m-3, viscosity of 

1.003 x 10-3 Nm-2. The ungassed power equation described as: 

 

       ρ 
   

   

(2.4) 

 

2.9 Analytical techniques 

 

Approximately 850 µl medium was aseptically removed from shake flask cultures, 

while a sacrificial well approach were used for MTP experiments (Micheletti et al., 

2006). Evaporation of the culture was monitored throughout the experiment by 

gravimetric analysis. All culture data was corrected for evaporation losses using ratio 

between initial volume and the volume removed for analysis. Unless stated 

otherwise, all MTP cultures were performed in triplicate. All data was averaged and 

standard deviations were calculated.   

 

2.9.1 Determination of cell number and viability 

 

Cell number and viability were analysed using a haemocytometer (Olympus IX70, 

Southend-on-Sea, UK) or by automated cell counting devices, VI-Cell XR (Beckman 

Coulter, High Wycombe, UK) which automates the trypan blue dye exclusion 
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method for counting cells, with samples diluted using Dulbecco’s Phosphate Buffer 

Solution (Sigma Aldrich) as necessary. 

  

2.9.2 Cell size analysis 

 

The average cell size diameter was determined using a CASY analyser (Innovatis, 

Bielefeld, Germany). The measurement was set up to 40 µm with a 150 µm orifice 

for 5 times repeat measurement. The samples were diluted using 10 mL of Casyton 

buffer as necessary.  

 

2.9.3 Determination of antibody titres 

 

The samples for IgG antibody titres analysis were centrifuged and the supernatant 

was stored frozen prior quantification.  The quantification was determined by an 

Agilent 1200 High performance liquid chromatography (HPLC) (Agilent 

Technologies, South Queensferry, UK) and analysed using 1 mL HiTrap Protein G 

HP column (GE Healthcare, Buckinghamshire, UK). The gradient for HPLC was 

performed with a sodium phosphate buffer (10 mM NaH2PO4, 10 mM Na2HPO4, 

adjusted to pH 7.0) and glycine buffer (20 mM, adjusted to pH 2.8). The elution peak 

was measured by UV at 280 nm. The mAb concentration was determined by 

integrating the elution peak and using a standard curve of purified mAb.  

 

2.9.4 Determination of metabolites 

 

Metabolites (glucose, lactate, ammonia, glutamine, glutamtate) were measured using 

a NOVA 400 BioProfileVR or NOVA Bioprofile Flex automated metabolite analyser 

(Nova Biomedical, Cheshire, UK). Samples were diluted with deionised water as 

necessary. 
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2.10 Derived growth calculations 

2.10.1 Specific growth rate and doubling time 

 

The maximum specific growth rate (µmax) was determined from the exponential 

growth phase by plotting the natural logarithm of viable cell concentration measured 

against time. It was defined by: 

 

  

  
     

           

     (2.5)  

 

  
             

     
 

          (2.6) 

 

Where, Ln Natural logarithm (Loge) 

  XV1 Viable cell concentration at time 1 (cell mL
-1

) 

  XV0 Viable cell concentration at time 0 (cell mL
-1

) 

  µ Specific growth rate (h
-1

) 

     Elapsed time at time 1 (h) 

      Elapsed time at time 0 (h) 

 

 

The cell doubling time is derived by integrating equation 2.6 and rearranging: 

 

  
  
  
            

           (2.7) 

 

 

   
    

 
 

 

          (2.8) 
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Where, td Doubling time (h) 

  Ln 2 Loge 2 

  µ Specific growth rate (h
-1

) 

     Elapsed time at time 1 (h) 

      Elapsed time at time 0 (h) 

 

2.10.2 Integral viable cell concentration (IVCC)  

 

The integral viable cell concentration (IVCC) is calculated as the average of viable 

cell concentration between two data points and multiplied by the time difference 

between the two data points:  

 

      
       

 
            

 

          (2.9) 

 

Where, XV1 Viable cell concentration at time 1 (cell mL
-1

) 

  XV0 Viable cell concentration at time 0 (cell mL
-1

 

     Elapsed time at time 1 (h) 

      Elapsed time at time 0 (h) 

 

 

Whilst, the cumulative integral viable cell concentration (cIVC) is calculated as 

follows: 

 

           

          (2.10) 
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2.10.3 Average specific antibody production (qp) 

 

The average specific antibody production (qp) was measured for product formation 

(IgG) concentration over culture cumulative cell time. The calculation was 

determined by dividing cumulative antibody concentration by cumulative integral 

viable cell concentration. 

 

    
     

 
       

            
  

          (2.11) 

Where, XV1 Viable cell concentration at time 1 (cell mL
-1

) 

  XV0 Viable cell concentration at time 0 (cell mL
-1

) 

     Elapsed time at time 1 (h) 

      Elapsed time at time 0 (h) 

 

2.10.4 Specific glucose consumption (qglc) 

 

The specific glucose consumption (qgluc) is a calculation of measured glucose 

consumption over elapsed time in cell culture. qgluc is determined by plotting of linear 

slope of cumulative glucose consumption cqglc (pg L
-1

) measured over the cumulative 

integral viable cell concentration cIVC (cells d mL
-1

): 

 

                                                  

          (2.12) 

 

                 

 

2.11 Statistical analysis 

The data were analysed by paired t-test analysis and the differences were considered 

significant when P value was < 0.05. 
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Chapter 3 Characterisation of microtitre plates (MTPs) and   

  evaluation of fed-batch operating strategies 

3.1 Introduction 

 

Productions of biopharmaceuticals are complicated processes which involve long 

bioprocess development times, are laborious and costly (Li et al., 2010). In order to 

reduce the materials and cost, several alternatives have been considered to accelerate 

the process development of biopharmaceuticals (Micheletti et al., 2006). Microtitre 

plates (MTP) experimentation which focused on principles of parallelism and high 

throughput is seen as excellent options (Lye et al., 2003; Micheletti et al., 2006). 

Moreover, MTPs are designed to fulfil the bioprocess development requirements for 

selection and screening of high producer clones, medium formulation and feeding 

strategies (Betts and Baganz, 2006).  

 

Previous works have demonstrated the performance of microtitre plate (24-SRW) in 

the suspension culture of hybridoma cell line (Barrett et al., 2010). Additionally, Silk 

et al. (2010) have established the bolus feeding strategy for GS-CHO cells in shaken 

MTPs. In this chapter, the preliminary studies of Chinese hamster ovary (CHO) cell 

growth profile using the 24-standard round well (24-SRW) was characterised. The 

initial experiment focused on the characterisation of sandwich covers (CR1524 and 

CR1524a) for cell growth and viability, metabolites concentration (glucose, lactate, 

and ammonium), osmolality and IgG antibody production. For fed batch operations, 

dissolved oxygen and pH was monitored using the pre-calibrated oxygen (Oxodish
®
) 

and pH (HydroDish
®
) sensors integrated in 24-well microtitre plates (PreSens-

Precision Sensing GmbH, Regensburg, Germany). Moreover, different types of 

feeding strategies were applied in MTPs was further investigated for enhanced 

growth and productivity. 

 

Chapter aims and objectives: 

 To reproduce the growth profile and product formation of mAb producing 

CHO cell line (CY01) in microtitre plates (24-SRW) (Silk, 2014). 
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 To investigate the capability of on-line monitoring of dissolved oxygen and 

pH using PreSens pre-calibrated sensors integrated in 24-well microtitre 

plates of fed-batch mode of operation. 

 To investigate two types of fed-batch mode applied in the microtitre plates 

(24-SRW) culture of CHO cells. 

 

3.2 Parallel microtitre plate (MTPs) of CHO cell in batch mode 

 

The preliminary experiments compared the initial growth conditions of CHO cell in 

the batch cultures with two types of commercial sandwich covers: CR1524 (for fast 

growing cells) and CR1524a (for slow growing cells). The former consists of a 

stainless steel foil (0.2 mm) with pinhole to control the headspace aeration rate and 

evaporation (Duetz et al., 2000). On contrary, CR1524a covers have 5 layers to seal 

the MTP which are (a) stainless steel lid for rigidity, (b) microfiber filter (c) an 

ePTFE filter (0.3 micron) (d) a stainless steel foil with pinhole (e) silicone layer of 

96 holes to hermetically seal the MTP. According to Silk et al. (2010) two important 

criteria for successful microtitre plate experimentations were to maintain sterility and 

control of evaporation rate. The exchange of headspace air was 1.1 mL min
-1

 and 

0.25 mL min
-1

 for CR1524 and CR1524a respectively. Whilst, the evaporation rate 

measured at 30°C with 50 % humidity was 30 µL well
-1

 day
-1

 and 6 µL well
-1

 day
-1

 

for CR1524 and CR1524a respectively (Duetz, 2007).  

 

 

The initial work by Silk (2014) shows the drawback of Breatheasy membrane 

(Diversified Biotechnology) to seal the MTPs. The evaporation rate for shaken MTPs 

using the Breatheasy membrane with fill volume of 0.8 µL was found at rate of 38 % 

(120 rpm) and 41 % (180 rpm) volume loss after 144 hours. Silk (2014) further 

explored the feasibility of sandwich cover by Enzyscreen to overcome the 

evaporation problem. The sandwich cover CR1524 was used and the evaporation rate 

measured was 24 µL well
-1

 day
-1

 compared to 50 µL well
-1

 day
-1

 for Breatheasy 

membrane. Table 3.1 summarised the evaporation rate observed during the MTP 

batch experiment. The evaporation rate obtained in this work is comparable with Silk 

et al. (2010) and Enzycreen B.V. Holland. 
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Besides that, the shaking diameter use in this work was 25 mm compared to 20 mm 

(Silk, 2004) which may gave effect on oxygen transfer rate (OTR) capacity in MTP. 

According to (Maier and Buchs, 2001), OTRmax can be increased by 0.04 % if the 

system has the similar condition but different shaking diameter.  

 

 

Table 3.1: Comparison of absolute evaporation rate during batch CHO cells. 

Culture 

vessel 

Sterile 

covers 

Cell type Evaporation 

rate (µL well
-1

 

day
-1

) 

Reference 

24-

SRW 

Breatheasy 

(Diversified 

Biotech) 

Hybridoma 

cell line 

(VPM8) 

10% losses 

from initial fill 

volume at 37°C 

Barrett et al. (2010) 

24-

SRW 

Breatheasy 

(Diversified 

Biotech) 

CHO-S 

(MedImmune) 

50 at 37°C 

 

Silk et al. (2010) 

24-

SRW 

CR1524 

(Enzyscreen) 

GS-CHO 

(MedImmune) 

 

24 at 37°C Silk et al. (2010) 

24-

SRW 

CR1524a 

(Enzyscreen) 

GS-CHO 

(Lonza 

Biologic) 

8 at 37°C This work 

24-

SRW 

CR1524a 

(Enzycreen) 

n/a 6 at 30°C Enzycreen 

 

 

 

3.2.1 Growth kinetics and antibody productivity 

 

The initial growth rate of batch CHO cells cultured in MTP for both sandwich covers 

was very similar. Sandwich cover CR1524 gave considerably higher viable cell 

concentration (VCC) than the MTP culture with CR1524a cover (Figure 3.1 A). 

MTP culture with CR1524 cover had VCC of 8.51± 0.181 x 10
6
 cell mL

-1
 and MTP 

culture with CR1524a cover had VCC of 7.92± 0.078 x 10
6
 cell mL

-1
. The paired t-

test was performed to determine the viability of CHO cell culture in the two MTPs 

system. There was no significant difference between the VCC of CR1524 cultures 

with the CR1524a cultures (p-value 0.18). The peak VCC obtained in this 

experiment was notably higher compared with VCC produced by Silk (2014) with 

4.40 x 10
6
 cell mL

-1 
on day 8 with the similar sandwich cover CR1524.  
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The difference observed in the previous work was the agitation speed at 180 rpm 

compared to 220 rpm optimised agitation speed (data not shown) applied in this 

work. Duetz, (2007) noted that high rotational speed would likely support growth in 

culture due to enhanced mixing. In terms of CHO cell viability in batch cultures, 

MTP with sandwich cover CR1524a shows high cell viability over a considerably 

longer time (until day 12 of culture) than MTP with sandwich cover CR1524 (Figure 

3.1 B). The extra silicone layer provided with the CR1524a had prolonged the cell 

viability as it provide better sterility and hermetically seal the MTPs. 

 

A higher IgG antibody production (Figure 3.1 C) was observed in the MTP with 

CR1524a cover (for slow growing cells) with 0.86 gL
-1

 compared to MTP with 

CR1524 cover (for fast growing cells) with 0.55 gL
-1

 at the end of culture. The 

higher antibody production might due to the longer time of fermentation that occurs 

in the MTP with CR1524a with 12 days of cultivation than 9 days for MTP culture 

with CR1524. Apart from that, cell specific productivity (qp) gave comparable results 

when plotted for product formation with IVCC (Figure 3.2). The CR1524a gave the 

highest qp with 26.1 pg cell
-1

 d
-1

 compared to CR1524 with 17.2 pg cell
-1

 d
-1

 

correspondingly.  
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Figure 3.1: CHO growth kinetics in batch culture for shaken 24-SRW microtitre plates (MTP) with two different sandwich covers: CR1524 (for fast 

grow cells) (●) and CR1524a (for slow grow cells) (○); A: Viable cell concentration; B: Cells viability; C: IgG antibody titre. Error bars represent one 

standard deviation about the mean (n = 3).  
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Figure 3.2: Comparison plots of product formation vs IVCC for the two covers with 

trend line, solid line (○) represents CR1524a and dashed line (●) represents CR1524. 

 

 

3.2.2 Metabolites analysis  

 

Glucose is known as the major carbon source employed in the CHO cell line 

fermentation (Altamirano et al., 2000). For batch culture, glucose was utilise 

rapidly by CHO cells metabolism making the culture inefficient and subsequently 

increase the accumulation of by-product of lactate and ammonium (Altamirano et 

al., 2000). The concentration of glucose in both 24-SRW MTP with sandwich 

covers (CR1524 and CR1524a) dropped below 2 gL
-1

 after seven days (168 

hours) of culture with very similar uptake rates (Figure 3.3 A). Result showed 

that the glucose exhaustion had affected the CHO viable cell concentration. The 

cells were observed entering the death phase as glucose was no longer available.  

 

By contrast, the lactate concentration in the 24-SRW MTPs showed variation 

between the two sandwich covers. For MTP with CR1524 cover, the highest 

lactate concentration was observed on day 9 with 4.59 gL
-1

, while MTP with 

CR1524a the lactate production peaked on day 5 with 2.29 gL
-1

 (Figure 3.3 B). 

The higher maximum lactate concentration in MTP with CR1524 cover is 
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probably because the cells were in the death phase and not consumed the lactic 

acid secreted, which led to poorer cell viability and increase in pH (Gagnon et al., 

2011). Besides that, there is the possibility of a lactate metabolic shift by the cells 

due to unavailability of primary carbon sources.  In animal cell metabolism, 

glucose might be synthesised from lactate during the initial conversion of lactate 

through pyruvate, catalysed by lactate dehydrogenase (LDH) (Tsao et al., 2005). 

The consumption of lactate reduces its own accumulation, thus alleviating the 

adverse effect on cell viability. This explanation is in agreement with research 

using metabolic flux analysis on lactate consumption (Altamirano et al., 2006) 

and feeding lactate directly (Li et al., 2012) for improvement of CHO cell 

metabolism. 

 

Ammonia concentration was observed to vary between the two MTPs (Figure 3.4 

A). Microtitre plates (MTP) with cover CR1524 showed higher ammonia 

concentration compared to MTP with cover CR1524a. Microtitre plates with 

cover CR1524 ammonia concentration peaked on day 9 of cultivation with 8.02 

mmolL
-1

, whilst microtitre plates with cover CR1524a peaked on day 12 with 

3.84 mmolL
-1

. The elevated concentration of ammonia suggests that increased 

osmolality had shift the metabolism to favour formation of by-products such as 

ammonia and lactate (Zhu et al., 2005).  

 

The dramatic reduction in viable cell concentration (Figure 3.1 A) was observed 

during the growth phase as a result of high levels of osmolality (450 – 650 mOSm 

Kg
-1

). The highest osmolality concentration was observed in cultures using 

sandwich cover CR1524 with 624.3 mOSm Kg
-1

, while those with cover 

CR1524a reached a value of 498.6 mOSm Kg
-1

 (Figure 3.4 B).  Zhu et al., (2005) 

also showed that high osmolality appeared to accelerate the cell death and led to 

rapid decrease in viable cell concentration. Furthermore, the results suggest that 

increased osmolality are the consequence of the high lactate production rate 

(Figure 3.3 B) in the culture.  
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Figure 3.3: CHO metabolites concentration in batch culture for shaken 24-SRW microtitre plates 

(MTP) with two different sandwich covers: CR1524 (for fast grow cells) (●) and CR1524a (for 

slow grow cells) (○). A: Glucose concentration and B: Lactate concentration. Error bars represent 

one standard deviation about the mean (n = 3).  
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Figure 3.4: CHO ammonium and osmolality concentration in batch culture for shaken 24-SRW 

microtitre plates (MTP) with two different sandwich covers: CR1524 (for fast grow cells) (●) and 

CR1524a (for slow grow cells) (○). A: Ammonium and B:  Osmolality. Error bars represent one 

standard deviation about the mean (n = 3).  
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3.3 Parallel microtitre plates (MTPs) of CHO cell in fed-batch mode  

3.3.1 Growth kinetics and antibody productivity 

 

The preliminary fed-batch mode experiments were done to compare the initial 

growth condition of CHO cells with two types of sandwich covers: CR1524 (for 

fast growing animal cells) and CR1524a (for slow growing animal cells). The 

sandwich covers were important for CHO cell cultured in MTP to minimise the 

liquid losses throughout the cultivation. Both covers provided efficient sterile 

condition for the 24-SRW MTP as no microbial contamination was observed over 

few experiments. The feeding strategy applied was daily bolus feed addition in 

each well for 6 days until day 13.  

 

 

The growth profile for cultures with either cover was comparable (Figure 3.5). 

Both cultures had a prolonged exponential phase but reached the peak viable cell 

concentration at different days. Peak viable cell concentration was higher in the 

MTP with sandwich cover CR1524 (for fast growing cells) (9.01 x 10
6
 cell mL

-1
 

on day 8) than MTP with sandwich cover CR1524a (for slow growing cells) (8.71 

x 10
6
 cell mL

-1
 on day 7) (Figure 3.5 A). Even though, the viable cell 

concentration (VCC) was higher in culture using CR1524, the cell viability was 

extremely poor compared to culture using CR1524a. At the end of experiment on 

day 14, the cultures in MTPs with sandwich cover CR1524a had a viability of 

82.5% compared to cultures in MTP with CR1524 a viability of 1.2% (Figure 3.5 

B). Besides that, the low percentage viability might be due to the high rate of 

water loss (high evaporation rate) from each well that occurs during cultivation. 

This is attributed to the low evaporation rate measured through the CR1524a 

cover with 8 µl well
-1

 day
-1

 compared to 30 µl well
-1

 day
-1

 for CR1524 cover 

(Duetz, 2007). 

 

The titres of IgG antibody production was found higher compared to the batch 

culture system. The fed-batch culture MTP with CR1524 and CR1524a cover 
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gave final IgG titres of approximately 1.30 gL
-1

 and 1.25 gL
-1

 respectively 

(Figure 3.6). The slightly higher IgG titre antibody production in MTP with 

CR1524 could be due to evaporation of wells leading to increased culture 

osmolality as discussed by Barrett et al. (2010) and Silk et al. (2010). They 

discussed that higher osmolality in culture might contributed to the higher final 

antibody titres in MTP. Silk et al., (2010) reported that final IgG in 24-SRW was 

1.5 gL
-1

 with final osmolality of 506 mOsmKg
-1

. Furthermore, high specific 

antibody production at elevated osmolality was well documented in other 

literature (Takagi et al., 2000). 
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Figure 3.5: CHO growth kinetics in fed-batch mode for shaken 24-SRW microtitre plates (MTP) 

with two different sandwich covers: CR1524 (for fast grow cells) (●) and CR1524a (for slow 

grow cells) (○); A: Viable cell concentration and B: Cells viability. Arrows (↓) stand for feed 

addition every day from day 7 of cultivation. Error bars represent one standard deviation about the 

mean (n = 3). 
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Figure 3.6: IgG antibody production of CHO cell fed-batch mode for shaken 24-SRW microtitre 

plates (MTP) with two different sandwich covers: CR1524 (for fast grow cells) (●) and CR1524a 

(for slow grow cells) (○). 

 

 

3.3.2  Metabolites analysis  

 

The glucose concentration in fed-batch cultures (Figure 3.7 A) using both covers 

dropped below 2 gL
-1

 after seven days of experiment. From the time when the 

glucose was nearly exhausted, the culture was bolus fed every day to maintain the 

concentration approximately at 2 gL
-1

. The feeding strategy was seen to extend 

the culture growth and cell viability until fourteen days in MTPs with CR1524a. 

In contrast, the glucose concentration in the MTP with CR1524 was seen to 

increase rapidly after the bolus feed was applied. The sharp increase in glucose 

concentration in the MTP with CR1524 cover consequently had an impact on the 

lactate concentration and osmolality of the culture. Besides that, the large 

increase in glucose concentration was due to the unused glucose in the culture. In 

terms of lactate concentration (Figure 3.7 B), the culture in MTP with CR1524a 

showed a significant lower lactate and osmolality concentration (Figure 3.8 B) 
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compared to MTP culture with CR1524. According to Gagnon et al., (2011), the 

consumption of lactic acid by the CHO cells resulted in a decrease of osmolality, 

which is favourable as the nutrient feed can be supplemented directly without 

increasing the osmolality towards an inhibitory level. Once the glucose 

concentration is depleted, the cells will convert pyruvate generated from glucose 

metabolism to form lactic acid and thus lowering the pH and triggering the 

glucose addition to the microwells. In fed-batch mode, this sequence was 

repeated and continued for the duration in culture. The net result is effective 

control of lactate throughout the cultivation at low level (Gagnon et al., 2011).   

 

 

Ammonia is seen as metabolic by-product of the culture. Ammonia concentration 

in the fed-batch cultures for both MTPs with CR1524 and CR1524a (Figure 3.8 

A) cover showed that osmolality had significant effect toward ammonia 

production. Ammonia concentration in MTP with cover CR1524 reached the 

highest concentration (14.2 mmolL
-1

) on day 8 of cultivation. In contrast, 

ammonia production in MTP with cover CR1524a is constant in the range (2 – 4 

mmolL
-1

) over 14 days of cultivation. The high concentration of ammonia had 

resulting in lower cell numbers and reduced growth rates as reported by Genzel et 

al. (2005).  

 

 

There is a significant difference in osmolality (Figure 3.8 B) between the two fed 

batch cultures. The microtitre plate (MTP) with CR1524 had a higher osmolality 

of 866.3 mOsm Kg
-1

, while MTP with CR1524a had an osmolality of 499.2 

mOsm Kg
-1

. The high osmolality observed in the MTP with CR1524 cover is 

likely due to the unused glucose supplemented with the concentrated feed. The 

high osmolality had a detrimental impact on the viable cell concentration and cell 

viability (Figure 3.5 A, B). Although elevated osmolality led to lower viability 

and viable cell concentration, the antibody titre was not affected as observed in 

Figure 3.6.  
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Even though both covers show promising results in term of cell growth kinetics 

and product formation, CR1524a was chosen as an ideal sandwich lid cover for 

MTPs. Besides that, some differences in growth parameters were observed 

between the two covers; peak cell density, maximum specific growth rate, 

specific glucose consumption rate and specific product formation rate. Table 3.1 

summarise the differences of growth parameters in MTPs for both sandwich lid 

covers. The cumulative integral viable cell concentration was 4.61 x 10
8
 cell d

-1
 

L
-1

 (CR1524) and 5.30 x 10
8
 cell d

-1
 L

-1
 (CR1524a). The maximum specific 

growth rate was slightly higher for the slow growth covers CR1524a (0.014 h
-1)

 

compared to CR1524 (0.012 h
-1

). However, the specific antibody production rate 

was lower with CR1524a at 12.9 pg cell
-1 

d
-1

 compared with CR1524 with 18.8 

pg cell
-1 

d
-1

. 

 

 

 

Table 3.2: Cell culture parameters in MTPs for CR1524 and CR1524a sandwich covers. 

Sandwich lid cover CR1524 CR1524a 

Peak cell concentration                           

(x 10
6
 cell mL

-1
) 

9.01 ± 0.52 8.75 ± 0.31 

Cumulative integral viable cell 

concentration (x 10
8
 cell d

-1
 L

-1
) 

4.61 5.30 

µmax (h
-1

) 0.012 0.014 

IgG antibody titre (gL
-1

) 1.30 ± 0.02 1.25 ± 0.03 

qP  (pg cell
-1 

d
-1

) 18.8 12.95 

*qglc (pg cell
-1 

d
-1

) 90.2 88.4 

*qglc were calculated during exponential phase before feeding was initiated. 

The data represents 3 replicate of MTPs for 24-SRW ± s.d. 
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Figure 3.7: CHO metabolites concentration in fed-batch mode for shaken 24-SRW microtitre 

plates (MTP) with two different sandwich covers: CR1524 (for fast grow cells) (●) and CR1524a 

(for slow grow cells) (○): A: Glucose concentration and B: Lactate concentration. Arrows (↓) 

stand for feed addition every day from day 7 of cultivation. Error bars represent one standard 

deviation about the mean (n = 3). 

    A 

    B 



 

 

96 

 

 

Time (hours)

0 100 200 300 400

M
e
ta

b
o
lit

e
 c

o
n
c
e
n
tr

a
ti
o
n
 (

m
m

o
l/
L
)

0

2

4

6

8

10

12

14

16

18

Ammonia (CR1524)

Ammonia (CR1524a)

 

  
 

 
 

 

 

 Time (hours)

0 100 200 300 400

O
s
m

o
la

lit
y
 (

m
O

s
m

 K
g

-1
)

200

400

600

800

1000

1200

sandwich cover (CR1524)

sandwich cover (CR1524a)

 

 

 

  
 

 

 

 

 

 

 

 

Figure 3.8: CHO growth kinetics in fed-batch mode for shaken 24-SRW microtitre plates (MTP) 

with two different sandwich covers: CR1524 (for fast grow cells) (●) and CR1524a (for slow 

grow cells) (○): A: Ammonia concentration and B: Osmolality. Error bars represent one standard 

deviation about the mean (n = 3). 
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3.3.3  Particle size distribution in fed-batch mode 

 

Figure 3.9 shows the particle size distribution (PSD) profile of fed-batch mode 

for MTP cultures with the two covers. The particles size at the start of the 

cultivation were observed between 14 and 20 µm (viable cells) and reduced to 

smaller size ~ 10 µm when the cells entering the death phase (non-viable). 

Cultures with either cover (CR1524a and CR1524) show no significant difference 

of particle size during the cultivation as seen on day 0 and day 7. The impact of 

growth conditions on particle size was clearly seen toward the end of cultivation 

on day 10 after the cell started entering death phase. The graph on day 14 depicts 

the effect of cell death as particles size shift to the left hand side of the plot with 

smaller particle size and fewer cell counts (Figure 3.9 B). Besides that, several 

factors such as nutrient limitation and accumulation of by-products (lactate and 

ammonia) contributed to changes in PSD cell population profile which causing 

cell death (Velez-Suberbie et al., 2013). 

 

3.4  Monitoring of process parameters  

 

Recent development in disposable optical sensor has shown the effectiveness of 

scale-down system for continuous monitoring the DO and pH (Deshpande et al., 

2004; Kensy et al., 2005). The advantages of disposable optical sensors over 

traditional electrochemical method are non-invasive, high sensitivity, ease of 

miniaturisation, and free of electromagnetic inference (Chatterjee et al., 2015). 

This advent has made small scale as system of choice for early design data 

experiment. PreSens-Presicion Sensing GmbH has developed a smart 

measurement method which has optical sensor, non-invasive, disposable, and pre-

calibrated MTPs. The sensor located on the bottom of modified 24-SRW MTP to 

monitor the pH and DO. The pH (HydroDish
®

) and DO (OxoDish
®
) MTPs have 

the ability for on-line and continuously monitor the culture and visualise it in 

real-time. The sensor spot for HydroDish
®
contain luminescence dye at the bottom 

of the plate. It is excited by SensorDish
®
 reader placed below the MTPs and its 

lifetime detected by the luminescence dyes. The lifetime of the dye depend on the 
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oxygen partial pressure (HydroDish
®
) (PreSens-Presicion Sensing GmbH, 

Regensburg, Germany).  

 

Figure 3.10 A, B shows the process monitoring of the MTP PreSens sensors with 

24-wells on the SensorDish
®
 reader for 14 days fed-batch experiment. The 

fluctuation that observed in the graph depicts the daily bolus feed that 

commenced on day 7 of experiment. During the bolus addition, the software was 

paused for a while and the MTP were aseptically fed with 1 % feeding media 

under laminar flow cabinet. The system was quickly resumed after each well was 

completely fed. As observed in Figure 3.10 A, the initial pH measurement of the 

culture was ~ 9.0 ± 0.5 for 24-well. The high initial pH in the culture because of 

the CO2 gradual release from the media which was previously kept in equilibrium 

with 5 % CO2 incubator (Genzel et al., 2005; Ge et al., 2006) The culture pH was 

gradually reduced to acidic condition ~pH 6.5 after 72 hours due to the excessive 

CO2 release as the cell growth. As the cell started to enter the exponential phase, 

the pH started to increase to more alkaline condition which was more favourable 

with the cell growth rate. Besides that, the lactate and ammonium also started to 

accumulate after the feeding commence which likely to increase pH at the end of 

fermentation (Genzel et al., 2005).  

 

 

Figure 3.10 B illustrates the DO measurement for the HydroDish
®
 for fed-batch 

experiment. The measurement was in the range of ~80 % - ~95 % for 14 days 

experiment. The sandwich cover CR1524a which mentioned earlier has 

subsequently maintained the amount of dissolved oxygen required by cell for cell 

growth and metabolism process. The slightly high oxygen level at the end of the 

experiment was due to the cells started to undergo apoptosis and oxygen 

consumption began to deplete. Moreover, the lack of nutrients and energy for 

metabolism also contributed to the high DO at the death phase (Ge et al., 2006). 
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Figure 3.9: Comparison of particle size distribution of CHO cell fed-batch culture on day 0, day 7 and day 14. A:  MTPs with CR1524a  

B:  MTPs with CR1524. The measurement was done for 5 replicates using a CASY analyser.
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Figure 3.10: PreSens on-line data of 24-SRW. A: HydroDish for pH measurement B: 

OxoDish for dissolved oxygen measurement.  

    A 

    B 
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3.5  FeedBead
®
: Controlled glucose delivery by slow release technology 

 

FeedBead
®
 is a commercially available glucose feed for application in microtitre 

plate and shakes flasks culture. The principle of the FeedBead
®
 was to continuously 

supply nutrients by slow release technology. One of the advantages of FeedBead
®
 is 

to provide substrate limited fed-batch culture without the need for additional tubing 

or pumps. Notably, the single addition of FeedBead
®
 in cultures minimise the labour 

intensity and contamination risks during manual feeding. The crystalline glucose was 

embedded inside the silicone matrix and slowly released into the culture with defined 

kinetics during fermentation. FeedBead
®
 is a method developed by Jeude et al. 

(2006) to enhance the feeding strategy for Hansenula polymorpha shake flasks 

fermentations. The system provides a novel continuous feeding strategy using slow 

release diffusion technique in shake flasks cultures and able to produce 23.4 gL
-1

 dry 

cell weight of H. polymorpha (Jeude et al., 2006).  

 

In this study, the aim was to apply FeedBead
®
 for CHO cell cultivation, while 

addressing the question whether application of FeedBead
®
 has an impact on process 

performance for growth and product formation. The ability of FeedBead
®
 to provide 

continuous feed to the cultures was seen as a novel technique in small scale CHO 

culture. For the initial study, the glucose release kinetics from the elastomer discs 

was determined by adding a single, two or three discs to each well with culture 

medium. All measurements were performed threefold. The course of relative glucose 

release from the silicone elastomer discs is depicted in Figure 3.11 A. For all glucose 

discs added, it shows rapid glucose release kinetics in the first 6 hours decreased 

when the crystalline glucose was almost depleted in the discs.  
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Figure 3.11: FeedBead® release kinetics in shake flasks experiment; A: relative glucose 

released from elastomer discs B: Glucose release rate per hour. The number of bead added 

into the shake flasks indicated with; one FeedBeads® (●), two FeedBeads®(○),  three 

FeedBeads® (▼). 
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The absolute glucose release is shown in Figure 3.11 B. For glucose release rate, 

there was no significant difference between the theoretical and experimental results. 

The glucose released rate was in the range of 0.04 – 1.0 mghr
-1

 for one, two or three 

bead added into the MTPs. The release rate showed that the concentration of the 

glucose should be adequate to support glucose uptake by cell during fermentation 

based on the assumption that uptake rate of 4.16 x 10
-6

 mghr
-1 

by CHO cells. The 

assumption was made from the previous experiment in Section 3.3.2, whereby 

specific glucose consumption rate by CHO cell was around 90 pg cell
-1 

d
-1

.  

 

3.6  Evaluation of two types of feeding strategies for CHO cell culture in 24 

standard round well (24-SRW) 

3.6.1  Growth kinetics and antibody productivity 

 

In terms of CHO growth, the viable cell concentration (VCC) cultures was found to 

be higher with bolus fed (9.19 x 10
6
 cells mL

-1
) compared to FeedBeads

®
 (8.30 x 10

6
 

cells mL
-1

) (Figure 3.13 A). Both of the cultures reached nutrient starvation after 7 

days of experiment and the glucose concentration was observed to decrease below 2 

gL
-1

. Normally, CHO cells culture required glucose concentration at the average of 

minimal amount 2 gL
-1

d
-1

 for prolong survival, productivity and cell maintenance 

growth (Barrett et al., 2010; Silk et al., 2010). Low nutrient concentrations will 

eventually lead to the cell death and decrease CHO cells viability.  

 

In terms of CHO cell viability the bolus fed cultures showed enhanced cell viability 

with 82.5% compared to the FeedBeads
®
 where no viable cells were found at the end 

of experiment (Figure 3.13 A). This is attributed to the supplementation of nutrients 

in the fed-batch cultures that commenced on day 7 of the experiment. For 

FeedBeads
®
 addition, it shows that the high concentration of glucose released in the 

culture had damaging effects on the cells. On day 10, it shows that cell viability has 

decreased to 1.4%. This high glucose concentration not only will reduce the viable 

cell concentration, but eventually could lead to a doubling in the medium osmolality 

due to liquid losses over the course of the batch culture (Silk et al., 2010).  
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The microtitre plate feeding performed using an established bolus addition with 

diluted glucose was found to replace the water loss and minimise changes in medium 

osmolality in the microtitre plates. Another main factor for low viability might be 

due to high evaporation rate in the microtitre plates. Each bolus addition comprised 

of diluted glucose with a concentration of 150 gL
-1

. The diluted feed added to the 

culture was found to replace the water loss and minimise changes in medium 

osmolality in the microtitre plates. Besides that, the feed addition proved to replace 

the depleted glucose concentration in the cultures due to cellular uptake and 

metabolism. 

 

Final antibody titre for bolus fed and FeedBeads
®
 were 1.25 gL

-1
 and 0.77 gL

-1
 

(Figure 3.13 B). The higher IgG titre measured in bolus fed cultures is thought to be 

a consequences of raised final culture osmolality of 478 mOsmKg
-1

 compared to 373 

mOsmKg
-1

 in batch culture. The result of increased antibody productivity as culture 

osmolality increases are well documented for CHO cells (Takagi et al., 2000). In 

contrast, the lower IgG titer in the FeedBeads
®
 culture is likely the consequence of 

cell death after 10 days of culture. As the cell entered the death phase, the 

accumulation of lactate and ammonium increased. Furthermore, at this rate, cell 

started to entered programmable death (apoptosis) and glucose uptake by cell 

gradually slowing down (Li et al., 2010). The introduction of FeedBead
®
 was found 

not suitable as the glucose released rates are high and glucose uptake rate by cell was 

very slow. Figure 3.12 describes the glucose consumption rate by CHO cell and 

glucose release rate by FeedBead
®
. Based on the graph, high release rates can be 

seen in the MTP after 24 hours addition. It was predicted that after 168 hours of 

FeedBead
®
 addition, the glucose concentration will increase to 23 gL

-1
. This is in 

agreement with (Hegde et al., 2012) regarding the short period of glucose release 

within 2 days in mammalian culture, contrasted with high release rates of glucose 

observed in FeedBead
®
. Furthermore, the size of the bead (6 mm) was quite big to 

accommodate the well with diameter of 15.2 mm. The bead added during the fed-

batch mode has disrupted the mixing of the culture during experiment. As CHO cells 

have no cell wall and shear sensitive is very high, the continuous collisions that occur 

during mixing might gave detrimental impact on the cell growth. Table 3.3 shows 

cell parameters in the different feeding strategy applied for fed-batch mode 

experiment. The major different observed in the production of antibody with bolus 

fed has better production compared to FeedBead
®
. 
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Figure 3.12: Glucose uptake rate by fed-batch CHO cell for the MTP in comparison with 

glucose release by FeedBead
®
. Glucose uptake rate (●), glucose release rate (■). 

 

 

Table 3.3: Cell culture parameters in fed-batch mode for bolus fed and FeedBead
®
  

 

Feeding strategy Bolus fed FeedBead
®
 

Peak cell concentration    

(x 10
6
 cell mL

-1
) 

 

9.19 ± 1.24 8.30 ± 0.40 

Cumulative integral viable 

cell concentration 

 (x 10
8
 cell d

-1
 mL

-1
) 

 

5.40 3.30 

µmax (h
-1

) 0.028 

 

0.018 

IgG antibody titre (gL
-1

) 1.25 ± 0.04 

 

0.77 ± 0.08 

qP  (pg cell
-1 

d
-1

) 14.3 

 

16.5 

*qglc (pg cell
-1 

d
-1

) 92.1 78.4 

*qglc were calculated during exponential phase before feeding was initiated. 

The data represents 3 replicate of MTPs for 24-SRW ± s.d. 
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Figure 3.13: CHO growth kinetics for shaken 24-Standard Round Well (24-SRW) plates 

with CR1524a sandwich covers.  A: viable cell concentration; bolus fed (●) FeedBeads® (○) 

and percentage cells viability; bolus fed (■) FeedBeads® (□) and B: IgG antibody 

concentration; bolus fed (●) FeedBeads® (○). Error bars represent one standard deviation 

about the mean (n=3). Arrows (↓) stand for feed addition every day from day 7 of 

cultivation. 
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3.6.2 Metabolites analysis  

Glucose and lactate concentration profiles for the bolus and FeedBeads
®
 cultures are 

shown in Figure 3.14A. Initially the glucose concentration in the cultures was 

approximately 7 gL
-1 

(±1.0 gL
-1

). The glucose concentration in the microtitre plates 

dropped below 2 gL
-1

 after day 7 (168 hours) of the experiment. In the fed-batch 

cultures, the feed supplemented through either bolus fed or FeedBeads
®
 was shown 

to compensate the depleted glucose.  

 

 

After the initial addition of the FeedBeads
®
 discs into the culture, the glucose 

concentration increased sharply to 10 gL
-1

. The high concentration of glucose could 

not be fully utilised by the CHO cells. The high residual glucose level in the culture 

is ultimately decreasing the cell viability. One of the limitations of FeedBeads
®
 

system for cell culture is the high glucose release rate that eventually gives 

detrimental effects towards the cells. Besides, the large transient of glucose becomes 

highly toxic that increases the level of osmolality and metabolite concentrations in 

the culture (Wong et al., 2005).  

 

 

As for lactate (Figure 3.14 A), the concentrations for both cultures are seen to 

increase up to 2 gL
-1

 on day 7 of the experiment. As for FeedBeads
®
 culture, the 

lactate concentration keeps on increasing until the final day of the cultivation. 

Lactate accumulation is generated from the glucose metabolism in glycolysis 

pathway. The principle is once the glucose concentration is depleted, the cells will 

convert pyruvate generated from glucose metabolism to lactic acid and thus lowering 

the pH which will trigger the glucose addition to the microtitre plates.  In fed-batch 

mode, this sequence is repeated and continued for the duration of fed-batch culture. 

The net result is effective control of lactate production throughout the cultivation at 

low level (Gagnon et al., 2011). 
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Figure 3.14: Metabolites concentration in the microtitre plate over 14 days of cultivation.            

A: glucose concentration; bolus fed (●) FeedBead® (○) and lactate concentration; bolus fed 

(■) FeedBead® (□) B: ammonium; bolus fed (●) FeedBead® (○) and glutamine; bolus fed 

(■) FeedBead® (□) C: osmolality; bolus fed (●) FeedBead® (○). Error bars represent one 

standard deviation about the about the mean (n=3).  
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The accumulation of ammonium (Figure 3.14 B) was seen in both feeding strategies 

of the microtitre plate systems. The bolus fed and FeedBead
®
 system peaked in the 

range of  2.50 – 3.50 mmolL
-1

 throughout the feeding phase. By contrast, there were 

no differences observed for the glutamine production in both systems (Figure 3.14 

B). As for the osmolality concentration (Figure 3.14 C), both of the feeding strategies 

applied had elevated osmolality (400 – 550 mOsmKg
-1

) concentration which 

indicated the high evaporation rates observed in the microtitre plate system as agreed 

by literatures (Barrett et al., 2010; Silk et al., 2010). 

 

3.7 Conclusion 

 

The application of microtitre plates for high throughput and parallel cultivation 

enables to generate early quantitative bioprocess information; reduce the costs of 

medium requirements; and reduce the overall costs of experimentation. In addition, 

bioprocess development using shaken microtitre plates offer the potential to speed up 

delivery of new drugs to market and increasing patient’s benefits. The bolus feeding 

techniques employed in the microtitres are able to provide the cells with glucose after 

glucose starvation. Consequently, utilization of diluted feed in the fed-batch of CHO 

culture significantly lowered the concentration of lactate in the culture after 14 days 

of experiment. The peak viable cell concentration for MTP with bolus feed was 9.19 

x 10
6
 cells mL

-1
, while FeedBead

®
 was 8.30 x 10

6
 cells mL

-1
. MTP with bolus feed 

able to enhance viability to 82.5 % compared to FeedBead
®
 with 1.4 % at the end of 

culture. The final antibody production in bolus feed was 63.4 % over than 

FeedBead
®
. FeedBeads

®
 application was found not suitable for the CHO cell culture 

in microtitre plates as the glucose release rates are very high compared to the glucose 

uptake rate by cells. Moreover, FeedBeads
®
 system increased the residual glucose 

concentration that led to metabolic waste. Overall, this work has shown that cell 

culture performed in the shaken microtitre plate is able to provide a basis for 

bioprocess data that is quantitative and reproducible.  
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Chapter 4 Characterisation of miniaturised stirred bioreactors and 

  evaluation of fed-batch operating strategies 

4.1  Introduction 

 

Conventional large scale stirred tank reactors are commonly the main system used in 

biopharmaceutical industry for production of therapeutic antibodies (Warnock and 

Al-Rubeai, 2006). However, large scale STR systems have limitations of performing 

process development and optimisation in cell culture. In order to reduce this 

bottleneck, pharmaceutical companies have validated scale-down models to mimic 

the performance of their pilot or manufacturing scale bioreactors (Li et al., 2010; 

Bareither et al., 2013). The alternative is to develop miniaturised systems that have 

parallel reactors, high throughput and have the comparable key engineering 

parameters as conventional large scale reactors.  

  

Design and engineering characterisation of these miniaturised stirred bioreactors are 

important to determine that the growth kinetics and product formation are equivalent 

when it is being scaled-down. These MBR are predicted to simulate analogous 

process performances as their large scale counterpart. The MBRs size usually varies 

from 0.5 L to 5 L (Nienow, 2006). Previously, Gill et al. (2008) have developed a 0.1 

L MBR for microbial fermentation. A recent study focused on adapting this MBR 

design to mammalian cell culture including the optimisation of the gas delivery 

system and demonstration of fed-batch operation with CHO cells using the 0.5 L 

MBR (Al-Ramadhani, 2015). In this study, the engineering characterisation of the 

miniaturised stirred bioreactor with design modification was further investigated. 

Moreover, batch and fed-batch mode studies were applied to a CHO cell system and 

growth profiles and IgG productivity determined.  

 

Chapter aims and objectives: 

 To characterise the engineering parameters of the HEL-BioXplore MBR for 

liquid mixing time and oxygen transfer capacity. 

 To apply existing correlation to predict the power requirement in mixing of 

the HEL-BioXplore MBR. 
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 To investigate the growth profile and product formation of mAb producing 

CHO cell line (CY01) in the HEL-BioXplore reactors.  

 To investigate fed-batch strategies applied to the HEL-BioXplore reactors for 

CHO cell line cultivation. 

 

4.2  Engineering characterisation of miniaturised stirred bioreactors  

 

Engineering characterisation is the important factor to determine the performance of 

a bioreactor. Detailed engineering characterisation such as mixing time (Tm), 

volumetric oxygen transfer coefficient (kLa) and power input is the initial work to be 

studied to understand the performance of a bioreactor. Besides that, engineering 

characterisation is imperative for determination of key engineering parameter in 

bioreactor for accurate prediction of scale translation. By characterising the system 

over the typical operating range, it is possible to set a benchmark for choosing the 

parameter for scale translation.  

 

The MBR system used in this chapter is a commercially available HEL-BioXplore. 

This system has two modes of agitation for liquid mixing; a direct driven impeller or 

a magnetic driven impeller. Both are marine type impellers which will produce 

mainly axial flow in the medium. Axial flow is usually used for low shear rate 

animal cell culture (Chisti, 2000; Marks, 2003; Nienow, 2006). Additionally, the 

vessel of the reactor was housed in a polyblock which has two functions; to control 

the temperature and to drive the magnetic impeller as described in Figure 2.3 in 

Section 2.5. The detailed engineering characterisation of the system for mixing time 

(Tm) and volumetric mass transfer coefficient (kLa) are described in Section 4.3 and 

4.4, whilst theoretical consideration of power input requirement are discussed in 

Section 4.5.  
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4.3  Mixing time  

 

Homogenous mixing in stirred bioreactors is a crucial operation for mammalian cell 

cultivation. The bioreactor must provide cells to access of all substrates through 

proper aeration and agitation to create an optimal environment in cell cultivation 

(Doran, 1995). For mammalian cell cultivation in a stirred bioreactor, hydrodynamic 

shear and bubble damage are traditionally the major problem due to the shear 

sensitivity of mammalian cells (Chisti, 2001; Marks, 2003). Mammalian cells which 

lack a cell wall have a high shear sensitivity compared to microbial cells. Therefore, 

mixing in stirred bioreactor for mammalian cells is usually kept at a minimum force 

of aeration and agitation to avoid shear damage to cells (Zhang et al., 2010). These 

authors added that usually mixing force in mammalian cell culture is 100 times less 

than that in microbial fermentation. Furthermore, for a successful cell growth 

performance mixing time should be optimised and minimised as much as possible to 

avoid any changes of operating conditions such as pH and temperature (Doran, 

1995). Given the importance of mixing in mammalian cultivation, mixing time was 

measured as function of operating conditions in the miniaturised stirred bioreactor.  

 

4.3.1  pH tracer method 

 

Mixing times were evaluated in the miniaturised stirred bioreactor for both agitation 

systems with working volume of 0.3 L. The method selected for the mixing time 

studies was the pH tracer technique. As described in Section 2.7.1, the pH tracer 

approach was selected over the decolourisation method because base such as sodium 

hydroxide is routinely added to maintain pH in commercial cell bio processing. 

Therefore, it is advantageous to measure the mixing time using the tracer (base) that 

is added regularly in a production process to mimic the actual cell cultivation 

conditions (Xing et al., 2009). In theory, as t →∞, the liquid inside the bioreactor is 

completely homogenous. The H value will reach steady state which is equal to 1.0. 

Conversely, in practice, 95 % degree of mixing is considered to determine the mixing 

time. Thus, 5 % H deviation from final homogenisation (H = 1.0) was adopted as 

standard value (Xing et al., 2009). The raw data from the pH probe were normalised 

according to Equation 4.1. 
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          (4.1) 

 

 

Where, H     homogeneity index/normalised pH 

                                    

                           pH during initial time of measurement 

                                                                   

 

Figure 4.1 shows a representative normalised pH curve using the direct driven 

impeller as it approached the ±5 % region for variation of agitation rate (200 rpm, 

300 rpm, 400 rpm and 500 rpm). The figure of the normalised pH shows that the 5 % 

H deviation was achieved as H reach steady state and is equal to 1.0. The regions of 

homogeneity are in the range of 5 s to 30 s for all agitation rates tested. 

 

 

 

 

 

Figure 4.1: A normalised pH curve as it approaches the 5 % region in the bioreactor for different 

agitation rates (●) 200 rpm, (○) 300 rpm, (▼) 400 rpm, (∆) 500 rpm. 
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The mixing time study was further explored for both impeller systems with two types 

of flow rate; 0 cm
3 

min
-1

 (non-aerated) and 100 cm
3 

min
-1

 (aerated). Figure 4.2, 

shows that mixing time is inversely proportional to agitation rate. As expected, 

mixing time using the direct driven impeller with flow rate of 100 cm
3 

min
-1

 resulted 

in faster mixing time compared to non-aerated reactor (0 cm
3 

min
-1

). Figure 4.2 A 

represents the mixing time for the direct driven impeller at flow rates of 100 cm
3 

min
-

1
 and 0 cm

3 
min

-1
 varying from 4 – 12 s, and 5 – 15 s respectively. Similarly, Figure 

4.2 B illustrates the mixing time for the magnetic-driven impeller shared the similar 

pattern as direct driven impeller with faster mixing time measured with 100 cm
3 

min
-

1
 flow rate. The measured mixing time for 100 cm

3  
min

-1
 flow rate was between 5 – 

13 s, and 0 cm
3 

min
-1

 was measured at 5 -14 s. The findings are consistent with large 

scale STR as aeration promotes better gas distribution in the liquid and are known to 

decrease the mixing time (Nienow, 2006). Besides that, the presence of bubbles 

(aerated) in the fluid mixing is known to facilitate better fluid flow in the reactor 

(Betts, 2015). 

 

 

Since the flow rate of 100 cm
3 

min
-1

 promotes better mixing time measurement in the 

miniaturised bioreactor, different gas delivery modes were studied to see the effect of 

the aeration system on mixing time. The three types of gas delivery modes were 

headspace aeration, singular hole sparger and horseshoe type sparger. Similarly, the 

presence of gas flow inside the reactor improved the mixing time. Figure 4.3 depicts 

that mixing time is inversely proportional to agitation rate for the three types of gas 

delivery modes. The average mixing time measured was 3.3 – 14.0 s. Figure 4.3 A 

shows the mixing time for the direct driven impeller with horseshoe sparger, singular 

hole sparger and headspace aeration varying from 3.3 – 9.3 s, 3.6 – 9.6 s and 4.3 – 

12.3 s respectively. By contrast, Figure 4.3 B illustrates the magnetic driven impeller 

with the same sparging configurations varying from 4 – 10.3 s, 4.6 – 12.3 s, and 5.4 – 

14 s correspondingly. The headspace aeration for both impellers produced the 

slowest mixing time. This is resulted from the small headspace and low airflow rate 

which make the mixing in the headspace produced slowest time.  
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Figure 4.2: Mixing time for different agitation rate with variation of impeller A: Direct driven 

impeller with (●) 0 cm
3
min

-1
, (○) 100 cm

3 
min

-1
 and B: Magnetic driven impeller with (■) 0 cm

3
min

-1
, 

(□) 100 cm
3 

min
-
. Error bars represent one standard deviation about the mean (n=3). 
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Figure 4.3: Mixing time for different agitation rate with variation of gas delivery mode for A: Direct 

driven impeller with (■) headspace aeration, (●) singular hole sparger and (▲) horseshoe sparger B: 

Magnetic driven impeller with (■) headspace aeration, (●) singular hole sparger and (▲) horseshoe 

sparger. Error bars represent one standard deviation about the mean (n=3). 
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However, these findings of the current study do not support the previous research by 

Al-Ramadhani (2015). He reported that gas mixing in the headspace is quicker using 

small headspace, but at higher gas flow rate. Overall, the direct driven impeller with 

horseshoe sparger was seen as excellent option for fluid mixing in MBR compared to 

the other system due to the fastest mixing time (Figure 4.3 A). In addition, the 

mixing times obtained in this experiment were comparable with recent literature 

values for CHO cell cultivation as summarised in Table 4.1. From the table, it can be 

seen that both mixing time methods are applicable for different geometries of STR 

bioreactors.  

 

 

Table 4.1: Comparison of mixing times obtained using CHO cells for different small scale 

bioreactors. 

 
 

Type of CHO 

cell 

Configuration 

of reactor 

Method of 

mixing time 

study 

Mixing 

time 

(s) 

Literature 

GS-CHO 

(Medimmune) 

5 L STR 

(Sartorius)  

 

Decolourisation  6 ± 0.6 Silk., (2014) 

 

dhfr-CHO DG44 

(GSK) 

 

3 L STR 

(Applikon) 

Decolourisation  4 – 13  Betts., (2015) 

GS-CHO 

(LonzaBiologics) 

0.5 L MBR 

(HEL-

BioXplore) 

Decolourisation 

pH tracer  

3 – 15 

7 – 20  

AlRamadhani., 

(2015) 

 

GS-CHO 

(LonzaBiologics) 

0.5 L MBR 

(HEL-

BioXplore) 

pH tracer 3 – 14  This study 

 

4.3.2  Mixing time correlation 

 

Mixing time is a useful parameter to measure the mixing efficiency in a reactor and 

homogeneity of a fluid when agitated by impeller. As discussed previously, mixing 

time is measured as the time required for a liquid to become homogenous after 

injection of tracer at a fixed point in the reactor (Doran, 1995). These mixing time 

values vary depending on the geometry of the reactor. Nienow (1997) has proposed 
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an equation to predict the mixing time in a reactor, where; the tank height HT and 

tank diameter DT are in 1:1 ratio.  

 

            
     

 
  
  
 
     

  
     

          (4.2) 

This equation was used to compare the mixing time of predicted and experimental 

values. Based on Figure 4.4, the predicted values vary between the two types of 

impeller system. For the magnetic driven impeller, the predicted and experimental 

values showed no significant difference using the same working volume. The mixing 

time achieved is 4.7 – 12.3 s and 4.3 – 11.0 s for experimental and predicted values 

respectively. These values suggest that the correlation accurately predicted the 

mixing time in the reactor with the magnetic driven impeller. Whilst, mixing time for 

direct driven impeller shows that experimental values are lower compared to the 

predicted values. Nevertheless, the predicted value with the direct driven impeller 

shared the same trend of increased agitation rate will rapidly decrease the measured 

mixing time in the system.  The results showed that the Nienow (1997) correlation is 

applicable for both types of impeller using a similar working volume. 

 

 

Figure 4.4: Comparison of experimental mixing time and Nienow (1998) correlation, direct driven 

impeller with (●) experimental, (○) Nienow correlation and magnetic driven impeller with (■) 

experimental, (□) Nienow correlation. 
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4.4  Volumetric oxygen transfer coefficient 

 

Oxygen requirement is vital in bioprocessing involving aerobic fermentation 

primarily in microbial (Garcia-Ochoa and Gomez, 2009) and mammalian cell culture 

(Nienow, 2006; Nienow, 2015). Cells in aerobic culture usually take up oxygen from 

the liquid. For mammalian cells, adequate amount of oxygen transfer from gas to 

liquid is needed to support cell growth and product formation (Marks, 2003). An 

expression for rate of oxygen transfer from gas to liquid is given by Equation 2.2, 

where kL is the liquid-phase mass transfer coefficient and a is the gas-liquid 

interfacial area per unit volume, CAL is the oxygen concentration in the medium and 

C
*
AL is the oxygen concentration in the equilibrium concentration (Doran, 1995). 

Practically, the kLa profile should be determined in the MBR involving aerobic 

mammalian cell cultivation particularly for high cell density. Furthermore, kLa is an 

important parameter in scale translation of different geometry of bioreactors (Gill et 

al., 2008).   

 

4.4.1  Static gassing out method 

 

kLa was measured experimentally using the static gassing out method as described in 

Section 2.7.2. kLa was investigated in this section as function for impeller agitation in 

a non-coalescing liquid. The experiments were conducted in the culture media of 

CD-CHO with 37°C operating temperature to represent the actual culture condition.  

kLa was determined by gassing out the oxygen with nitrogen gas (de-oxygenation) 

and re-oxygenated with compressed air/oxygen before measuring DOT value as 

function of time using a DO probe.  

 

The DOT-time profiles generated during the experiment were used to calculate kLa 

values using equation 2.2. The probe response time (τp) was measured at 24 ± 1 s. 

The probe response time measured was equivalent to that found by Gill et al., (2008) 

at 18 ± 2 s. As mentioned previously, two types of impeller and two different 

spargers were use in the MBR for this study. For the DOT-time profile, the DOT % 

measurement was taken for re-oxygenation between 20 % to 80 % to minimise the 

amount of time required for the experiment. The DOT-time profile of magnetic 

driven impeller is represented in Appendix A1, whilst the DOT-time profile of direct 
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driven impeller is represented in Appendix A2. The profiles show rate of re-

oxygenation of culture media in the MBR for magnetic driven impeller with two 

different spargers. The rate increased proportionally for both spargers with variation 

of agitation rate in the range of 200 rpm to 500 rpm.  

 

For the kLa, results showed a discrepancy between the configuration of bioreactors 

with two different impellers and spargers as depicted in Figure 4.5. The graph shows 

that the kLa values obtained in the MBR ranging from 5.9 h
-1

 to 12.5 h
-1

 as function 

of agitation rate/impeller speed. Since the kLa values achieved were > 1.0 h
-1

, it can 

be assumed that oxygen is not the limiting factor in the bioreactors. Figure 4.5 A 

illustrates the increasing trends of kLa values for both spargers in the magnetic-driven 

impeller. For both spargers, the graph shown that the kLa values are directly 

proportional with the agitation rate. The kLa values for singular hole sparger with 5.9 

– 9.0 h
-1

, whereas horseshoe sparger with 7.7 – 8.5 h
-1

. While, for the direct driven 

impeller, the kLa values showed inconsistency between the two spargers (Figure 4.5 

B). The significant differences were seen in the horseshoe type sparger with 

decreasing kLa values from 7.3 – 7 h
-1

 with the increasing agitation rate. 

 

However, the experimental kLa values were equivalent to the reported kLa for 

different type of bioreactors used for mammalian cells. Xing et al. (2009) determined 

kLa values for 5 L and 20 L Applikon STR ranging from 2.8 – 7.6 h
-1

 and 2.1 – 6.9 h
-

1 
respectively. Tissot et al. (2010) reported kLa values lower than 15 h

-1
 (3.5- 11 h

-1
) 

using a small scale orbital shaken reactor (OSR) of 0.25 L to 0.5 L and a  shaking 

frequency of 110 rpm. The results obtained in this study using different impeller and 

spargers are within the range of reported system.   
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Figure 4.5: kLa profile in the MBR as function of agitation rate with flow rate of 0.33 vvm 

for A: Magnetic driven impeller (●) singular hole sparger and (■) horseshoe type sparger B: 

Direct driven impeller (●) singular hole sparger and (■) horseshoe type sparger. Error bars 

represent one standard deviation about the mean (n = 3). 
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4.4.2  Volumetric oxygen transfer coefficient correlation 

 

The kLa correlation for the MBR was determined and compared with the predicted 

values as reported by other literatures. The proposed correlation by Gill et al. (2008) 

and Van't Riet (1979) for non-coalescing and coalescing media was applied for kLa 

prediction. This correlation was selected because the MBR and methods used in this 

experiment have a similar geometry and operating parameters as described by Gill et 

al. (2008). However, the correlation suggested by Gill et al. (2008) was predicted for 

microbial fermentation. The general equation for the kLa prediction is as follows, 

where the constant and exponents are vary between the three correlation as shown in 

table 4.2 

 

 

            
    

  

(4.3) 

 

 

Table 4.2: The proposed constant and exponents for equation 4.3 using three different 

correlations.   

Literature A α β 

Gill et al. (2008) 0.224 0.35 0.52 

van’t Riet (non-coalescing) 

(1979) 

0.002 0.7 0.2 

van’t Riet (coalescing) 

(1979) 

0.026 0.4 0.5 
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Figure 4.6 shows the predicted kLa in comparison with predicted total energy 

dissipation rate. The experimental kLa values were equivalent to the predicted values 

using the correlation by Gill et al. (2008). The kLa produced from Gill correlation 

illustrates increasing trends with high kLa values. The predicted values for direct 

driven impeller were 7.3 – 16.3 h
-1

 (Figure 4.6 A) while magnetic-driven impeller 

was 6.4 – 17.1 h
-1

 (Figure 4.6 B). Furthermore, the consistent kLa for agitation rates 

of 400 – 500 rpm suggested that it could be the optimum agitation rate to supply 

oxygen to the MBR. By contrast the kLa values obtained from van’t Riet correlations 

show low kLa values ranging from 0.12– 1.94 h
-1

 for direct driven impeller and 0.28 

– 1.83 h
-1

 for magnetic-driven impeller. 

 

Besides that, the total energy dissipated in the MBR are higher using the direct 

driven impeller compared to magnetic driven impeller by > 10 % due to the higher 

energy required to drive the motor. The highest total energy dissipated from the 

vessel was observed in the direct driven impeller with 9.3 x 10
3
 Wm

-3
 (Figure 4.6 A). 

Meanwhile, lowest energy dissipated was observed from the magnetic-driven 

impeller with 5.1 x 10
4
 Wm

-3
 (Figure 4.6 B). For a typical animal cell cultured in 

stirred tank reactor, the average energy dissipated rate was 1 x 10
3
 Wm

-3
 

(Godoy‐Silva et al., 2010). These authors added that energy dissipated above 10
7
 

Wm
-3

 will begin to lyse the cells which will affect the cell viability. Computational 

fluid dynamics can be used to determine the energy dissipation rate (EDR) as 

described by Velez Suberbie et al. (2013). These authors reported the maximum 

EDR from computational fluid dynamic simulation was higher compared to the 

reported EDR from mammalian STR.  
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Figure 4.6: kLa profile in the MBR as function of total energy dissipated compared with the 

proposed correlation for A: Direct driven impeller, Gill et al. (2008) (-▲-), van’t Riet 

coalescing (-♦-),van’t Riet non-coalescing (-x-), direct_singular (-□-), direct_horseshoe (-■-). 

B: Magnetic driven impeller, Gill et al. (2008) (-∆-), van’t Riet coalescing (◊),van’t Riet 

non-coalescing (-+-), magnetic_singular (-○-), magnetic horseshoe (-●-).  
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4.5  Power requirement for mixing 

 

Conventionally, in a stirred tank bioreactor the impeller is driven by the electrical 

power. The power required usually depends on the resistance of fluid when agitated 

by an impeller. The gassed power input was not determined because of the system 

gas flow and agitation is relatively low for animal cells (Amanullah et al., 2004; 

Nienow, 2006). The sparged aeration gave insignificant effect on power input, 

therefore gassed power input (Pg) can be assumed equal to ungassed power input 

(Pug). The ungassed power consumption can be easily predicted using equation 2.4 

and depends on variables such as stirrer speed, impeller diameter, geometry of 

reactor and properties of the fluid (Doran, 1995). These variables are usually 

expressed as dimensionless numbers such as the impeller Reynolds number Rei. 

Reynolds number are closely related with the power number of an impeller Po and is 

defined as  

     
 

   
   

  

 

(4.4) 

Power number and impeller Reynolds number represent a ratio of inertial to viscous 

force. Within the reactor at low agitation rate Po is inversely proportional to Re and 

usually in the laminar flow (Re < 10), whereas at high agitation rate the Po is constant 

with Re and described as turbulent flow (Re > 10000) (Doran, 1995). Table 4.3 

shows the calculated impeller Reynolds number for the two impeller systems used in 

the MBR. The calculated impeller Reynolds number for both impeller systems gave 

Re > 4000. The Re number in the MBR shows that both impeller systems have the 

transition flow conditions. The transition flow lies between the laminar and turbulent 

flow. Doran (1995), described that there is gradual transition from laminar to 

turbulent flow in stirred reactor and usually depends on the system geometry. The 

direct driven impeller system has a greater Re than the magnetic driven impeller 

system due to the fact that it has greater impeller diameter. This is in agreement with 

the literature (Marks, 2003; Nienow, 2006) reported that small changes in impeller 

diameter have large effect on power requirement. Furthermore, both the magnetic 

and direct driven impeller are marine impellers which promote to axial flow in the 

system. Axial flow will produce parallel current to the axis of the impeller and lower 

shear rate compared to radial flow (Marks, 2003). Figure 4.7 shows the predicted 
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power number for both of the impellers. The direct driven impeller has higher power 

number of 0.26 – 1.29, compared to magnetic-driven with 0.06 – 0.95. The low 

power numbers obtained from both impellers are vital to minimise the mechanical 

damages on cell, hence will produce low mixing time (Varley and Birch, 1999). It is 

predicted that the Po of impeller reduced as it moves towards the turbulent flow in the 

system, Re > 4000. 

 

 

Table 4.3: Calculated values of impeller Reynolds number for the direct driven and 

magnetic driven impeller in MBR. 

 

Impeller Reynolds number, Rei N (s
-1

) 

 3.3 5.0 6.7 8.3 10.0 

Direct driven 4286 6494 8702 10780 12988 

Magnetic driven 4037 6117 8198 10155 12235 

 

 

 

 

Figure 4.7: Power number for both impeller in MBR in function of Rei for; direct driven 

impeller (●), magnetic driven impeller (■). 
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4.5.1  Predicted power input 

 

The predicted power input in the MBR was calculated for function of impeller types 

at varying agitation rate. Figure 4.8 shows that the power input increased 

exponentially with the agitation rate.  The calculated power input is in the range of 

1.7 – 54.5 Wm
-3

. These predicted values are consistent with low mechanical power 

input applied in agitated animal cell culture (Chisti, 2000). Furthermore, low power 

input is required in animal cell culture to prevent from damaging the cells because 

animal cell lack of cell wall (Chisti, 2000; Chisti, 2001; Nienow, 2006). Moreover, 

the power inputs shown in Figure 4.8 are in agreement with data by Heath and Kiss 

(2007) and Nienow (2006) as values 10 - 1000 Wm
-3

 are practically used in 

mammalian cell bioreactors. Additionally, the impeller tip speed for direct driven 

impeller was 0.35 – 0.88 ms
-1

, while magnetic-driven was 0.34 – 0.86 ms
-1

 (data not 

shown). Both of the impellers tip speed observed was below 1.5 ms
-1

, which reported 

will promote to shear damage in cells (Al‐Rubeai et al., 1995).  

 

 

 

Figure 4.8: Calculated power input in MBR in function of impeller speed for; direct driven 

impeller (●), magnetic driven impeller (■). 
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4.6  Design modification of miniature stirred bioreactor  

 

The engineering characterisation suggested that the miniature stirred bioreactor has 

the potential for high cell density cultivation. This study evaluates the performance 

of the MBR as a scale-down bioreactor for mammalian cell cultivation. This section 

also details CHO cell growth profile and product formation using parallel MBR fitted 

with different type of agitation and aeration systems. The agitation system applied 

was direct driven impeller and magnetic driven impeller, whilst aeration system 

chosen was horseshoe sparger and singular hole sparger.  

 

4.7  Effect of different type of impeller and sparger in batch mode 

 

The preliminary study was aimed at comparing the CHO growth kinetics in batch 

mode for different configuration as mentioned in Section 4.6. The four MBR 

configurations were:  direct driven impeller with horseshoe sparger (DirHS), direct 

with singular hole (DirSH), magnetic driven impeller with horseshoe sparger 

(MagHS) and magnetic with singular hole (MagSH). The experiments were done in 

parallel for the same impeller type configuration. The selected operating parameter 

for impeller speed was based on matched mixing time of a 5L STR used for scale 

translation experiments (see chapter 5). With the basis of matched Tm of ~6 s, the 

calculated impeller speed selected for the MBR was 400 rpm (magnetic driven) and 

450 rpm (direct driven).  The studies were carried out as described in the Section 2.5.    

 

4.7.1  Growth kinetics and antibody production 

 

The growth rate trends of batch CHO cells cultured in the MBR using four different 

configurations (DirHS, DirSH, MagHS, and MagSH) were shown to be very similar 

and exhibited a good reproducibility from day 0 until day 6 (Figure 4.9 A).  The peak 

viable cell concentration for MBR with DirHS was the highest with 7.06 x 10
6
 cell 

mL
-1

 on day 8. The main differences between these configurations were in the cell 

viability. The MBR with MagHS showed a considerable longer stationary phase 

compared to other configurations and achieved higher cell viability of 67 % on day 

11 (Figure 4.9 B). On the contrary, cell viability for both impeller systems with 

singular hole sparger dropped abruptly after day 7 of cultivation. The sudden drop of 
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cell viability in MBR is probably due to the glucose limitation, which is main carbon 

source in CHO cell fermentation. For batch cultivation, glucose is not added and the 

exhaustion of glucose was seen as the problem to extend cell growth in culture. The 

variation of derived growth parameters in MBR with different configurations are 

listed in Table 4.4. Some differences in growth parameter were observed; maximum 

specific growth rate, cumulative integral viable cell (cIVC) and specific product 

formation were higher in the MBR with DirHS.  

 

For final antibody production (Figure 4.9 C), there was some variability between the 

four configurations. Both of the impellers with singular hole sparger produced low 

product formation. This is in agreement with Al-Ramadhani (2015), which reported 

of significant variability and low product formation from the MBR system using 

headspace aeration. He added that the variability in the product concentration trends 

might be due to the human error while preparing the samples for HPLC analysis. 

Results show that MBR with DirHS reached 0.40 gL
-1

 compared to other 

configuration with ~0.20 gL
-1

 at the end of culture. Although the MBR system is 

well controlled (DOT, pH, temperature), based on the qp, most of the configurations 

have lower specific product formation of less than 10 pg cell
-1 

d
-1

. Nowadays, it is 

expected that the product formation should reached 1 -5 gL
-1

 or 20 pg cell
-1 

day
-1

 in 

volumetric for controlled bioreactors (Wurm, 2004; Birch and Racher, 2006; Huang 

et al., 2010). 

 

Table 4.4: Derived growth parameters of CHO cell in MBR in batch mode with different 

impeller and sparger configurations. 

 

Impeller/Sparger Dir/HS Dir/SH Mag/HS Mag/SH 

Peak cell concentration                            

(x 10
6
 cell mL

-1
) 

7.06 6.76 6.42 6.39 

cIVC (x 10
8
 cell d

-1
 mL

-1
) 3.62 2.35 3.33 3.39 

µmax (h
-1

) 0.021 0.019 0.018 0.017 

IgG antibody titre (gL
-1

) 0.40 0.20 0.21 0.20 

qP  (pg cell
-1 

d
-1

) 7.3 5.7 4.3 3.8 

qglc (pg cell
-1 

d
-1

) 71 63 69 71 
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Figure 4.9: CHO growth kinetics in batch culture for HEL-BioXplore MBR with two 

different impellers and spargers: direct driven with horseshoe (●), direct driven with singular 

hole (○), magnetic driven with horseshoe (■), magnetic driven with singular hole (□) A: 

viable cell concentration; B: cells viability; C: IgG antibody titre. Error bars represent one 

standard deviation about the mean (n = 3). 
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4.7.2  Metabolites analysis 

 

The metabolites and osmolality profiles for CHO cells in the MBR with different 

configurations are shown in Figure 4.10. It can be seen clearly that there were 

significant difference in the profiles. From the profiles, it shows that some of the 

metabolites data points (glutamine, glutamate, and ammonium) are not available due 

to a technical fault with the metabolite analyser. At the start of the fermentation, the 

glucose concentration was similar for all MBR cultures and within the range of 6 -7 

gL
-1

. As the CHO cells started to grow and entering the exponential phase, the 

glucose consumption increased as expected. The largest glucose consumption was 

observed in the MBR with DirSH (Figure 4.10 A). The cells in this reactor consumed 

the main carbon source available fastest and the effect can be seen in the cell 

viability (Figure 4.10 A), where the viable cell concentration dropped massively after 

7 days cultivation.  

 

For lactate accumulation (Figure 4.10 B), the MBR with DirSH also accumulated the 

highest lactate concentration as a result of the greater glucose consumption. This is in 

agreement with findings by Sheikh et al. (2005) and Velez-Suberbie et al. (2013) that 

fast glucose consumption by the cells will lead to more by-product in the medium. 

The lactate production also had an impact on the medium osmolality as seen in 

Figure 4.10 C, where MBR with DirSH reached the maximum of 385 mOsmkg
-1

. 

The medium osmolality profile was seen increasing for all the MBR cultures (300 - 

400 mOsmkg
-1

) apart from for MBR with DirHS. Another by-product ammonium is 

highest for the MBR with MagHS at 6.0 mmolL
-1

 (Figure 4.10 E). The greater 

ammonium concentration also will eventually increase the medium osmolality as 

seen in Figure 4.10 C. As for glutamine profile (Figure 4.10 D), there was large 

variation of glutamine produced throughout the cultivation. The cell line used is GS-

CHO which supposedly does not produce any glutamine and is grown in glutamine 

free medium. However, glutamine can be synthesised by glutamate and ammonium 

as explained in Section 1.3.1. The glutamate profile (Figure 4.10 F) illustrates a 

similar pattern for all MBR cultures except for the MBR with DirSH. The glutamate 

concentration in the MBR with DirSH was observed initially with lower 

concentration with 2.5 mmolL
-1

, whilst the other three configurations with 3.5 – 4.2 

mmolL
-1

.  
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Figure 4.10: CHO metabolites concentration and osmolarity in batch culture for HEL-BioXplore MBR with two different impellers and spargers: direct 

driven with horseshoe (-●-), direct driven with singular hole (-○-), magnetic driven with horseshoe (-■-), magnetic driven with singular hole (-□-) A: 

glucose concentration; B: lactate concentration; C: osmolarity, D: glutamine concentration, E: ammonium concentration, F: glutamate concentration. 

(Note: missing data points due to faulty NOVA Flex to measure metabolites during the analysis).
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4.8 Effect of different type of impeller in fed-batch mode 

From the batch culture experiment, it was clearly seen that both MBR systems with 

singular hole sparger were not producing good results in terms of viable cell 

concentration and product formation. The MBR gas delivery mode was set up for 

intermittent sparging due to the low demand of oxygen in the early period of CHO 

cell growth.  However, problems arise when using the singular hole sparger with the 

intermittent sparging, where large bubble formation are produced in the medium. As 

consequences, the large bubbles that intermittently formed had given negative effect 

on the cell growth as seen in Figure 4.11 A. Although the difference is minor, we 

chose to use the horseshoe type sparger for the fed-batch mode experiment because 

the geometry is similar with the standard sparger fitted in the 5 L bench STR. 

Furthermore, based on the engineering characterisation, the MBR with horseshoe 

type sparger gave shorter mixing times of ~4 - 6 s for different agitation rates, thus 

promoting better mixing in the MBR.  

 

4.8.1 Growth kinetics and antibody production 

All experiments were done in parallel using two MBRs with the same configuration 

of horseshoe type sparger. The studies were expected to produce similar growth and 

product formation in each MBR. Figure 4.11 A illustrates the CHO cell growth 

kinetics and percentage viability for both MBRs with horseshoe type sparger. The 

results showed that both MBR gave similar pattern of growth. Both of the MBR 

started the exponential phase on day 3 and attained peak viable cell concentration. on 

day 7 with 8.89± 0.39  x 10
6
 cell mL

-1 
 (direct driven impeller) and 7.68(± 0.33 x 10

6
 

cell mL
-1 

(magnetic driven impeller). The paired t-test was performed to determine 

the viability of CHO cell culture between the direct driven and magnetic driven 

impeller. The VCC of direct driven impeller cultures have no significant differences 

with the magnetic driven impeller cultures (p-value 0.08). This indicates that there is 

a positive linear relationship between the data sets obtained from the two culture 

system and highly correlated. The percentage viability for both MBRs demonstrated 

that the system with proper monitoring and control able to prolong the viability until 

the harvest point on day 14 with ~55 - 65%.  
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Figure 4.11: CHO growth kinetics in fed-batch culture for HEL-BioXplore MBR with two 

different impellers and horsehoe type sparger: direct driven (●▲), magnetic driven (○∆) A: 

viable cell concentration and cells viability; B: Log VCC vs time. Arrow (↓) bolus fed 

addition on day 7. Error bars represent one standard deviation about the mean (n = 2). 
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Figure 4.12: Product titre formation and IVCC in fed-batch culture for HEL-BioXplore 

MBR with two different impellers and horsehoe type sparger: direct driven (●), magnetic 

driven (○) A: IgG formation B: IgG antibody titre vs IVCC. Solid line shows the direct 

sparger, while dashed line shows the magnetic driven. 

 

 

 

 

 

 

0.00 

0.25 

0.50 

0.75 

1.00 

0 100 200 300 400 

A
n
ti

b
o

d
y
 t

it
re

 (
g
L

-1
) 

Time (hours) 

y = 0.0131x - 0.0262 

R² = 0.977 

y = 0.0156x - 0.0074 

R² = 0.9776 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 20 40 60 80 

P
ro

d
u
ct

 c
o

n
ce

n
tr

at
io

n
 (

g
L

-1
) 

IVCC (x106 cell d-1 mL-1) 

    A 

  B 



 

 

136 

 

The derived growth parameters from this study are shown in Table 4.5. The major 

difference was observed in the maximum specific growth rate. The MBR with 

magnetic driven impeller had a higher μmax with 0.026 h
-1

 compared with MBR 

with direct driven impeller with 0.019 h
-1

. Nonetheless, the cumulative integral 

viable cell concentration depicted a higher cIVC in the culture using the direct driven 

impeller compared with the magnetic driven impeller system yielding 4.96 x 10
6
 cell 

d
-1

 mL
-1

 and 4.00 x 10
6
 cell d

-1
 mL

-1
 respectively. Besides that, the maximum 

antibody production (Figure 4.12 B) achieved in the MBR with direct driven impeller 

is higher by 13 % with 0.84 gL
-1

 on day 14 compared to MBR with magnetic driven 

impeller system. The probability values of approximately 0.95 (95%) shows that both 

of the systems are reproducible. Both of the MBR shows good reproducibility based 

on the standard deviation of <±0.4 for cell concentration and <±0.1 for IgG 

concentration. 

 

 

 

Table 4.5: Derived growth parameters of CHO cells in MBR in fed- batch mode with direct 

driven and magnetic driven impeller fitted with horseshoe type sparger. 

. 

Impeller/ 

Sparger 

Direct/ 

Horseshoe 

Magnetic/ 

Horseshoe 

Peak cell concentration                            

(x 10
6
 cell mL

-1
) 

8.89±0.39 7.68±0.33 

cIVC (x 10
8
 cell d

-1
 mL

-1
) 4.06 2.84 

µmax (h
-1

) 0.019 0.026 

IgG antibody titre (gL
-1

) 0.84±0.01 0.73±0.1 

qP  (pg cell
-1 

d
-1

) 13.3 15.1 

qglc (pg cell
-1 

d
-1

) 51.5 50.1 

*qglc were calculated during exponential phase before feeding was initiated. 

The data represents 2 replicas of MBR ± s.d. 
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4.8.2  Metabolites concentration 

 

Generally, the CD-CHO medium used in the cultivation provided an initial glucose 

concentration of around 6 – 7 gL
-1

. The high glucose concentration is needed in the 

initial stage of CHO cell fermentation to support high glucose demand. As the cells 

started to grow, the glucose is being consumed and it becomes limited. For fed-batch 

mode studies, 1 % of CD-CHO AGT was added on day 7 to prevent glucose 

limitation. The daily amount of glucose added to the MBR was sufficient to support 

the CHO cell growth until the end of fermentation. Figure 4.13 A shows the glucose 

consumption in the MBR with direct and magnetic driven impeller fitted with 

horseshoe sparger. Glucose consumption followed the similar decreasing pattern as 

expected in fed-batch mode for both MBRs. Glucose consumption rate observed was 

quite high at the beginning of the cultivation, especially during the exponential stage. 

As seen in Figure 4.13 A, the bolus addition of feed, was able to maintain the glucose 

concentration within a range of 1 – 3 gL
-1

 in the culture medium. This concentration 

was in agreement with several literature reports (Silk, 2014; Al-Ramadhani, 2015) 

suggesting that 1- 2gL
-1

 is needed to support the growth of CHO cells. The low 

residual glucose concentration is likely to enhance the cell growth and reduce the by-

product formation (Butler, 2005).  

 

 

By contrast, the lactate formation in MBR with direct driven impeller (Figure 4.13B 

was elevated to 4 gL
-1

. Additonally, the high lactate concentration in the medium had 

an impact on the cell growth as seen in Figure 4.11 A, where the viable cell 

concentration quickly dropped after 260 hours. There was no stationary phase 

observed in this culture. As reported by Lao and Toth (1997), the combination of 

high lactate and osmolarity concentration had an adverse effect on cell growth and 

metabolism. The osmolarity also increased in the MBR with direct driven impeller to 

540.8 mOsmkg
-1

 as the lactate accumulation became greater in the medium (Figure 

4.13 C). 
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Ammonium was the other waste product that has an inhibitory effect on product 

synthesis in mammalian cell cultivation (Ozturk and Palsson, 1991; Lao and Toth, 

1997; Chen and Harcum, 2005). The effect of elevated ammonium levels in the MBR 

with direct driven impeller (Figure 4.13 D) resulted in lower specific growth rate as 

illustrated in Table 4.5. Ozturk et al. (1991) reported that the presence of ammonium 

and lactate will reduce the specific growth rate by one half in such a medium. 

Moreover, the continuous increase of ammonium concentration subsequently 

accelerated the consumption of glucose (Ozturk et al., 1991). 

 

 

For glutamine concentration the results show fluctuation in the concentration for the 

MBR with direct driven impeller, whilst for the MBR with magnetic driven impeller 

it follows the normal trend of glutamine consumption (Figure 4.13E). Glutamine is 

an essential amino acid for cell metabolism. Glutamine and glucose are closely 

related in cell growth and metabolism and exhaustion of either one will have an 

adverse effect on cell growth (Lao and Toth, 1997; Altamirano et al., 2000). The 

limitation of glutamine in the MBR with direct driven impeller caused the CHO cell 

growth rate to decrease. The glutamate concentration profile showed  a similar trend 

as the batch fermentation with a decrease after 182 hours before it stabilised within 

0.5 – 1 mmolL
-1

 until end of cultivation.  
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Figure 4.13: CHO metabolites concentration and osmolarity in fed-batch culture for HEL-BioXplore MBR with two different impellers with horseshoe 

type spargers: direct driven (●), magnetic driven (○), A: glucose concentration; B: lactate concentration; C: osmolarity, D: ammonium concentration, E: 

glutamine concentration, F: glutamate concentration. (Note: missing data points due to faulty NOVA Flex to measure metabolites during the analysis).
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4.9 Conclusion 

 

The chapter has presented a detailed engineering characterisation of the MBR for 

assessment of process performance using CHO cell culture. Mixing time (Tm) and 

volumetric oxygen transfer coefficient (kLa) has been characterised experimentally, 

whilst power input was predicted using existing engineering correlation. This system 

was characterised for better understanding of the MBR process performance at 

selected operating parameters. These engineering parameters are vital to explore the 

efficiency and feasibility of the MBR for high cell density cultivation especially 

using mammalian cells.  Besides that, the characterisation is essential for scale 

translation studies which are described in Chapter 5. 

 

Mixing time was characterised experimentally using the pH tracer method. The 

mixing time reduced significantly as the agitation rate increased in the MBR. The 

mixing time was measured between 3.3 – 14 s for different type of impellers and 

spargers as function of agitation rate. The shortest mixing time was obtained using 

the MBR with direct driven impeller equipped with horseshoe sparger ranging from 

3.3 – 9.3 s. The mixing times measured experimentally were comparable with 

calculated values using the Nienow correlation of between 4.8 – 12.1 s and 4.3 – 11.0 

for the direct driven and magnetic driven impeller respectively. The consistent 

mixing times obtained in this study showed that the correlation is suitable for the 

evaluated MBRs.  

 

kLa was measured experimentally using the static gassing out technique (Wise, 1951) 

as described by Section 2.7.2. The studies conducted with cultivation media CD 

CHO at 37°C to mimic the actual fermentation condition. kLa was determined using 

two types of modified spargers; horseshoe type and singular hole sparger. The 

measured kLa obtained were 5.9 to 12.5 h
-1

 as function of agitation rate ranging from 

200 rpm – 500 rpm. The kLa of the current study are consistent with values given by 

Xing et al. (2009) and Tissot et al. (2012) which indicated that kLa values below 15 

h
-1

 are applicable for mammalian cell culture. Power input into the MBR was 

calculated based on equations described in Section 4.5. The power input measured 

was varied for two different types of impellers. As expected, direct driven impeller 

required more power to rotate the shaft compared with magnetic driven impeller. The 
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power inputs measured ranged from 1.7 – 54.5 Wm
-3

, which is in agreement with 

Nienow (2006) and Heath and Kiss (2007) with power inputs from 10 – 1000 Wm
-3

 

for different geometry of mammalian cell bioreactors.  

 

Based on the findings from the engineering characterisation, batch and fed-batch 

mode of operation in the MBR with variation of impeller configurations were 

studied. Using a mixing time of 6 s for magnetic and direct driven impeller gave 

agitation rates of 400 rpm to 450 rpm respectively. For batch mode of operation the 

MBR with direct driven impeller equipped with horseshoe sparger was the best 

configuration in terms of cell growth  (7.06 x 10
6
 cell mL

-1
) and IgG productivity 

(0.40 gL
-1

). The findings were further explored in fed-batch mode operation of MBR 

with two types of impeller and horseshoe sparger.  

 

Fed-batch mode results indicated that bolus addition of feed on day 7 enhanced the 

growth of CHO cell and IgG product formation. Peak viable cell concentration was 

8.89 x 10
6
 cell mL

-1
 and IgG productivity of 0.84 gL

-1
 at the end of fermentation. The 

significant differences observed between the two impellers were the higher lactate 

and ammonia concentration produced in direct driven impeller than magnetic driven 

impeller. Nonetheless, the higher by-product concentration reported does not affect 

the cell growth and reproducibility for the direct driven impeller as cIVC produced 

are better than magnetic driven impeller with 4.06 and 2.84 x 10
8
 cell d

-1
 mL

-1 

respectively.  

 

The results of this investigation show that MBR with parallel reactors produced 

growth kinetics and productivity that are comparable and reproducible. Furthermore, 

the characterised engineering parameters will serve as basis for scale translation 

studies using bioreactors with different geometries.  
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Chapter 5 Scale translation between microwell based systems and 

  miniature bioreactors at matched mixing time 

5.1  Introduction  

 

Predictive scale-up from miniature reactors to industrial scales are essential to 

reproduce comparable product yields and quality (Bareither and Pollard, 2011). 

Moreover, scale-up is a critical step in predictive operation of a reactor to perform at 

optimal conditions. Nonetheless, Wurm (2004) mentioned that there are many issues 

that need to be scrutinized when scaling up mammalian cell cultivation from small 

scale to manufacturing scale. For a successful scale-up process, optimisation of 

miniature reactors is very important to determine the reliability of a reactor, which 

subsequently could save on materials and costs of bioprocess development 

(Micheletti and Lye, 2006). Previous studies have looked into the predictive scale-up 

of mammalian cell culture based on several fundamental engineering parameters for 

different geometries of bioreactors.  Micheletti et al. (2006) investigated the 

application of 24 and 96 microtitre plates (MTP) for predictive scale-up to shake 

flasks based on equal energy dissipation rate. Xing et al. (2009) used the basis of 

mixing time and kLa to predict the scale translation of 5 L and 20 L stirred tank 

reactors (STR) to industrial scale reactor of 5000 L. Whereas, Tissot et al. (2010) 

studied the effect of kLa on different scales of orbitally shaken reactors (250 mL and 

200 L) and found that kLa between 7 – 10 h
-1

 are sufficient to avoid dissolved oxygen 

limitation in reactors.  

 

In this chapter, the scale translation of different geometries and scales of reactors was 

investigated. Cell culture performances were investigated to determine the scalability 

and reproducibility of microtitre plates (2 - 4 mL scale), miniature bioreactor (500 

mL scale) and stirred tank bioreactor (5 L scale). The basis of the engineering 

characterisation of the miniature bioreactor from Chapter 4 and selected engineering 

parameters from previous studies for MTP (Silk, 2014) and STR (Barrett, 2008) were 

applied to compare the growth kinetics and productivity. 
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Chapter aims and objectives: 

 To investigate the scale-up of fed-batch (bolus fed) of CHO cell line based on 

matched mixing time in 24-SRW, miniature stirred reactors and stirred tank 

reactors.  

 To characterise a prototype micro-bioreactor (micro-Matrix) for CHO cell 

line growth profiles and productivity. 

 To investigate the scale-up of fed-batch (continuous) of CHO cell line based 

on matched mixing time in micro-Matrix and miniature stirred reactors. 

 

5.2  Fed-batch with bolus feed and matched Tm 

 

Fed-batch culture is the most attractive choice for monoclonal antibody production 

due to its flexibility, reliability and productivity in reactors. Normally in fed-batch 

culture, bolus addition is applied to enhance the longevity and maintenance of the 

specific productivity of a desired protein (Altamirano et al., 2000). The essential 

nutrients are fed in order to reduce by-product formation and improve control of 

environmental conditions (Bibila and Robinson, 1995). Recent studies have focused 

on scale-up comparison from miniature bioreactors to 5 L STR (Al-Ramadhani, 

2015) and micro-24 to shake flasks and 2 L STR (Betts, 2015) using bolus addition. 

In this study, the fed-batch cell culture formats were selected based on predicted 

matched mixing time (Tm ~ 6 ± 2 s) as scale-up criterion. This is in agreement with 

the findings suggested by Silk (2014) which experimentally applied mixing time as 

scale translation criterion for small scale reactors. The literature recommended that at 

mixing time of 6 s with kLa > 5 h
-1

 is sufficient for oxygen transfer in reactors. 

Therefore, oxygen would not be the limiting factors when homogenous mixing is 

achieved within these conditions. The selected operating conditions for each of the 

reactors experimentally applied in these studies are described in Table 5.1. 
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Table 5.1: Selected operating parameters for cell culture cultivation based on matched 

mixing time. 

 

Reactor 24-SRW 

(MTP) 

HEL-

BioXplore  

Bench 

STR 

Shaking/Stirring  220 rpm 450 rpm 260 rpm 

Aeration system Headspace 

Horseshoe 

type 

sparging 

with flow 

rate of 50 

mL min
-1

 

 

Horseshoe 

type 

sparging 

with flow 

rate of 

100 mL 

min
-1

 

Working volume 
 

800 μL 

 

350 mL 

 

3.5 L 

pH/DO/Temperature 

control 

 

n/a 

 

Yes 

 

Yes 

Feeding strategy 
 

Bolus fed 

 

Bolus fed  

 

Bolus fed 

 

 

5.2.1  Growth kinetics and antibody productivity 

 

The growth kinetics of CHO cell cultures in different geometries of reactors; 24-

SRW (MTP), MBR, and bench 5 L STR are depicted in Figure 5.1. CHO cell growth 

for 24-SRW and 5 L STR shows good similarity, whilst the MBR has slower growth 

between 70 hours until 168 hours of cultivation (Figure 5.1 A). During this period of 

culture time, cells are in the exponential phase and started to proliferate. However, 

the peak viable cell concentration for the three reactors are comparable with 24-SRW 

(9.30 x 10
6
 cell mL

-1
 on day 7), MBR (9.56 x 10

6
 cell mL

-1
 on day 9) and 5 L STR 

(10.04 x 10
6
 cell mL

-1
 on day 7) as shown in Table 5.2. The significant growth 

difference was observed in MBR cultures with a slower growth that only peaked on 

day 9. Final percentage viability of the 24-SRW and MBR were equivalent at 60 %, 

while 5 L STR was at 80 % after 336 hours (Figure 5.1 B). The possible explanation 

for this result might be that feed addition was initiated daily on day 7 until day 13.  

Altamirano et al. (2004) suggested that addition of feed able to lengthen the cell 

viability as it provide extra nutrient supplement to the culture. This finding was 

further support the literature’s suggestion that longevity of the cell culture is 

influenced by fed-batch of periodic addition of depleting nutrients, which 

subsequently would increase final protein production. The higher viability observed 
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in the STR on day 14 might be due to the better control and monitor of process 

parameters for cell cultivation in the reactor. Furthermore, the engineering 

parameters and bolus feeding strategies in the STR system used in this study has 

been characterised and optimised for mammalian cell cultivation (Barrett, 2008).  

Table 5.2 summarises the derived growth parameters and yield coefficients. The 

yield coefficient of lactate produced over glucose consumption shows similar values 

between the 24-SRW and STR system. The low Y lac/gluc suggests that glucose is 

being metabolised by different pathways leading to more energetically efficient 

utilisation of glucose (Zhou et al., 1995). However, the MBR has slightly higher 

value with 1.15 g g
-1

 compared to the other systems. The yield of ammonium 

produced over glutamine consumed shows that the MBR system has the highest yield 

with 1.07 mmol mmol
-1

, while the 24-SRW and STR have almost identical yields 

with 0.98 and 0.95 mmol mmol
-1

. The yield of Y’ NH3/Gln is slightly lower to that 

reported in literature (1.4 – 1.7) by Zeng et al., (1998) however this may be due to 

differences in the experimental conditions. In general, the yield coefficients 

determined from cultures in the three reactors are comparable with variation within 

the error of analysis. 

Table 5.2: Derived growth parameters of fed-batch CHO cell in three different reactors 

formats based on matched mixing time. 

Type of reactor 24-SRW 

MTP 

MBR 

DirHS 

5 L 

STR 

Peak cell 

concentration                            

(x 10
6
 cell mL

-1
) 

 

9.30± 

2.43 

9.56 ± 

1.12 

10.04 

± 0.06 

CiVC 

(x 10
8
 cell d

-1
 mL

-1
) 

 

4.74 4.05 4.83 

µmax (h
-1

) 0.024 0.018 0.018 

 

IgG antibody titre 

(gL
-1

) 

0.92 

±0.05 

0.69 

 ± 0.15 

0.83 

± 0.03 

 

qP  (pg cell
-1 

d
-1

) 12.2 10.2 9.7 

 

*qglc (pg cell
-1 

d
-1

) 

 

Y’ Lac/Gluc (g g
-1

) 

 

Y’ NH3/Gln (mmol 

mmol
-1

) 

 

338.7 

 

1.09 

 

0.98 

293.3 

 

1.15 

 

1.07 

274.5 

 

1.08 

 

0.95 

*qglc were calculated during exponential phase before feeding was initiated. 

The data represents 3 replicas of 24-SRW and 2 replicas of MBR and STR ± s.d. 
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Figure 5.1: CHO growth kinetics in fed-batch cultures for three reactors: 5 L STR (●), MBR 

(■), 24-SRW (▲) A: Viable cell concentration; B: Cells viability. Arrow (↓) indicated bolus 

fed addition on day 7. Error bars represent one standard deviation about the mean (n = 2) for 

MBR, STR and mean (n = 3) for 24-SRW. 
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Apart from that, cell specific productivity (qp) also gave similar trend when plotted 

for product formation with IVCC (Figure 5.3 B). The 24-SRW gave the highest qp 

with 12.2 pg cell
-1

 d
-1

 compared to MBR and STR with 10.2 and 9.7 pg cell
-1

 d
-1

 

correspondingly. Based on the semi-logarithmic plot of VCC vs time (Figure 5.2), 

the cell growth kinetics for the three reactors geometries showed similar trends. The 

graph indicates that 5 L STR and MBR exhibited the identical μmax during the 

exponential stage with 0.018 h
-1

, while 24-SRW had a higher μmax with 0.024 h
-1

 at 

the same stage. Nevertheless, the cumulative integral VCC for the three reactors 

show minor disparities between the three reactors geometries with 4.0 – 4.9 x 10
6
 

cell d
-1

 mL
-1

 for 14 days of cultivation. As for the antibody productivity, the 24-SRW 

had the highest final IgG titre of 0.92 gL
-1

, which is 10 % and 24 % higher than 5 L 

STR and MBR correspondingly (Figure 5.3 A). These results may be explained by 

the fact that the 24-SRW had a higher osmolality due to the higher relative rate of 

evaporation as discussed previously in Section 3.3.1. Even though osmolality was 

not measured for this study, it was predicted that the 24-SRW cultures have the 

identical trends as described in Chapter 3. The findings of the current study are 

consistent with Silk et al. (2010) who found that high osmolality may have 

contributed to the maximum final antibody concentration in microtitre plates. The 

final antibody concentrations produced in MTPs were 10 % higher compared to the 

shake flasks cultivations. 

 

 

 

Figure 5.2: Log VCC of CHO growth kinetics in fed-batch culture for three reactors: 5 L 

STR (●), MBR (■), 24-SRW (▲). 
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Figure 5.3: A: Antibody production in CHO growth kinetics in fed-batch culture for three 

reactors: 5 L STR (●), MBR (■), 24-SRW (▲). Error bars represent one standard deviation 

about the mean (n = 2) for MBR and STR and mean (n = 3) for 24-SRW. Arrow (↓) 

indicated bolus fed addition on day 7. B: Comparison plots of product formation vs IVCC 

for three reactors with trend line, solid line (●) represents 5 L STR, dotted line (■) represents 

MBR and dashed line (▲) represents 24-SRW. 

 

 

0.00 

0.25 

0.50 

0.75 

1.00 

1.25 

0 100 200 300 400 

A
n
ti

b
o

d
y
 t

it
re

 (
g
L

-1
) 

Time (hours) 

Bolus 

feed 

initiated 

y = 0.0097x - 0.0129 

R² = 0.9982 

y = 0.0102x + 0.0055 

R² = 0.9619 

y = 0.0122x + 0.02 

R² = 0.9943 

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

0 20 40 60 80 100 

P
ro

d
u
ct

 c
o

n
ce

n
tr

at
io

n
 (

g
L

-1
) 

IVCC (x 106 cell d-1 mL-1) 

    A 

    B 



 

 

149 

 

5.2.2  Metabolites analysis 

 

As previously reported in Chapter 3 and 4, starting glucose concentrations in the 

culture was in the range 6 – 7 gL
-1

. Glucose consumption was almost identical for all 

three reactors from 0 hour until 120 hours as shown in Figure 5.4 A. During this 

phase, the cultures are in batch stage and no nutrient is being added as the amount of 

glucose available is adequate to support the cell growth and metabolism. At the same 

time as the glucose concentration was depleted at 168 hours, the feed was added to 

supplement the cultures with nutrients for cell proliferation and metabolism. At this 

stage, glucose concentrations were observed to be lower than 2 gL
-1 

for all reactors. 

Bolus fed was initiated for the three cultures on day 7 by adding 1% v/v of 

concentrated feed CD CHO AGT (supplemented with glucose). Since the three 

cultures were bolus fed daily until day 13, the glucose consumption for three reactors 

changed. Glucose concentration in 24-SRW are within 2 – 3  gL
-1

, whilst in 5 L STR 

and MBR the concentration are within 0.5 – 2 gL
-1

. The lower glucose concentration 

in MBR and STR is probably due to the higher metabolism by CHO cells as seen in 

the growth kinetics in Figure 5.1 A. The cell growth in MBR and STR kept 

increasing until 200 hours, while in 24-SRW the cell growth kinetics showed a 

sudden decline after bolus addition.  

 

Lactate concentration profiles between the three reactors show a comparable 

production trend for 0 - 142 hours (Figure 5.4 B). Since glucose was added during 

the fed-batch stage, lactate was produced in MBR and STR cultures until it reached a 

peak of 3.54 and 2.77 gL
-1

 respectively. Surprisingly, lactate production in the 24-

SRW culture dropped after the bolus addition until the later stage of culture. This 

finding was unexpected and suggests that there could be lactate consumption by the 

cells during this period. The present findings seem to be consistent with studies by 

Altamirano et al. (2004) which found that the decrease in lactate concentration 

during tissue plasminogen activator (t-Pa) productions was not due to dilution but 

actually represent lactate consumption by cells. Moreover, they noted that lactate 

consumption is generally taking place when glucose started to be depleted in cultures 

which are comparable to this study. However, the findings in our study show that the 

glucose supply was sufficient and maintained in range of 2 – 3 gL
-1

 during the 

feeding phase. Basically glucose and glutamine are the main carbon and energy 

sources required to support cell metabolism (Altamirano et al., 2006). However, it is 
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observed that the glutamine consumption in CHO cells is relatively fast and not 

adequate for cell metabolism. The phenomenon drives the culture to a situation of 

nutrient depletion and accumulation of by-products (lactate and ammonium) which 

made the medium imbalanced and consequently inhibited the cell growth 

(Altamirano et al., 2006). The CHO cell line cultured in this study is glutamine 

synthetase (GS) CHO, which does not required glutamine addition for cell 

metabolism (Bibila and Robinson, 1995). However, glutamine is generally available 

and can be synthesised from glutamate as described in Section 1.3.1. This was seen 

in this study with STR and MBR cultures where glutamine concentration of 2.57 

mmol L
-1 

and 1.03 mmol L
-1

 correspondingly were found on day 5 of culture (Figure 

5.4 C). As shown in Figure 5.4 D, glutamate consumption was similar for all three 

cultures, as expected.  

 

Altamirano et al. (2004) also mentioned in their study, cells grown with glutamate 

supplementation consumed glucose more efficiently. They added that low rates of 

glutamate consumption are able to reduce accumulation of waste metabolite of 

ammonium and prolong fed-batch culture. However, the findings of the current study 

do not support the previous research. Ammonium concentration in three reactors 

cultures reached peak concentration of > 2.5 mmol L
-1

 (Figure 5.4 E) which could 

inhibit the cell growth and viability. The accumulation of ammonium which is a 

toxic metabolic by-product will create a toxic environment in the culture. 

Specifically, elevated ammonium levels significantly inhibit final cell densities and 

product formation as agreed by other studies (Chen and Harcum, 2005; Altamirano et 

al., 2006; Gagnon et al., 2011; Li et al., 2012). Moreover, ammonium accumulation 

in cell culture has a more adverse effect than lactate build up, which even at low 

concentration is able to inhibit cell growth and cellular productivity (Li et al., 2012). 

Accordingly, future studies on methods to control ammonium and lactate level in 

culture should be emphasised. Altamirano et al. (2006) have studied extensively to 

replace glucose and glutamine with galactose and glutamate to improve the t-Pa 

production process. The possibility of CHO cells to consume galactoses in the 

absence of glucose opens up possibility of different culture strategies in fed-batch 

cultivation.  
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Figure 5.4: CHO metabolites concentration and osmolality in fed-batch culture for three 

reactors geometries; 5 L STR (●), MBR (■), 24-SRW (▲) A: glucose concentration; B: 

lactate concentration; C: glutamine concentration, D: glutamate concentration, E: ammonium 

concentration. Arrow (↓) indicated bolus fed addition on day 7. Note: missing data points 

due to faulty NOVA Flex to measure metabolites during the analysis.
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5.3  Characterisation of a new micro-bioreactor system (micro-Matrix) 

 

As described in Chapter 3, automation of microtitre plates is crucial to accelerate 

early bioprocess development of therapeutic proteins (Micheletti and Lye, 2006). 

Microtitre plates which are parallel and high throughput are commonly used in 

the screening stage of process development for cell line evaluation (Duetz et al., 

2000). Thus, development and innovation of microtitre plates technology has 

resulted in advanced microtitre plate systems that could offer automation, parallel 

and high throughput. The micro-Matrix by Applikon Biotechnology B.V. 

(Holland) is a further development of an existing micro-24 system that using the 

microtitre plate platform. Micro-Matrix is a micro bioreactor with a 24-deep well 

plate (24-DWP) cassette. The system was designed for research on early process 

development which could generate representative and high quality data during 

screening. This system enables high throughput and parallel experiments and 

independently controls each of the wells individually. The unique square size, 

deep well plate cassette is integrated with PreSens sensors (Duetz, 2007). The 

PreSens sensors have the ability to independently monitor the temperature, pH 

and dissolved oxygen (DO). Each bioreactor or well have its own proportional, 

integral and derivative (P.I.D) controller for pH, temperature and dissolved 

oxygen (DO). Individual pH control is achieved via automated gas addition and 

liquid addition, whilst the DO level can be controlled using up to four gas 

(oxygen, nitrogen, carbon dioxide, or compressed air) additions per well. The 

temperature control is integrated with an individual Peltier element for cooling 

and heating of each well. At the moment, there are no publications regarding the 

application of micro-Matrix for cell cultures. The finding in this study will 

provide the initial data using the micro-Matrix system for CHO cell cultivation. 
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5.4  Effect of control and non-control of aeration in the micro-Matrix 

with bolus feed 

 

The preliminary studies were aimed at determining the effect of the control and 

non-control of aeration in micro-Matrix with bolus feed. Several operating 

conditions from the previous studies of 24-DWP by (Duetz, 2007) were selected 

to study CHO cells growth kinetics and antibody productivity. The selected 

operating conditions for CHO cells cultured in the micro-Matrix system in 

comparison with 24-SRW (MTPs) are described in Table 5.3. It shows that both 

systems had the same shaking diameter of 25 mm and similar headspace aeration 

through the filter on the top cover. The 24-SRW plate was covered with sandwich 

lid that  had 5 layers to minimise evaporation and contamination, whereas, the 

micro-Matrix plate was covered with a top plate that had gas filter bars to control 

the gas exchanges, evaporation and contamination as described in Figure 2.1 

(Section 2.4). Additionally, the significant advantage of micro-Matrix over 

standard 24-SRW plate is the automation interface that could monitor and control 

operating conditions with micro valve system for advance feeding strategies. The 

micro-Matrix reactor was prepared as described in Section 2.4. The reactor was 

aerated using headspace aeration at flow rate of 0.5 mL min
-1

 for the four main 

gases. For the micro-Matrix with controlled aeration, DOT was controlled 

according to the standard of 30 % of air, while for the non-control aeration; DOT 

was control through constant air flow rate. Furthermore, as direct comparison of 

the culture environment between the micro-Matrix and 24-SRW system, the 

micro-Matrix was overlayed with gas mixture of 95 % compressed air and 5% 

CO2. The overlay of 5 % of CO2 was to mimic the equivalent air environment as 

in the incubator shaker applied in the 24-SRW cultures.   
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Table 5.3: Selected operating conditions in micro-Matrix in comparison with 24-SRW 

system. 

 

Reactor micro-Matrix 24-SRW (MTP) 

Type of plate 24 deep square well 

plate 

24 standard round well 

Maximum volume (mL) 7  3 

Fill volume (mL) 3.5  0.85 

Shaking frequency (rpm) 270 220 

Shaking diameter (mm) 25 25 

Feeding strategies Bolus and continuous 

(micro valve) 

Bolus (manual 

addition) 

Automation Yes No 

pH/DO/temperature control Yes No  

Aeration Headspace Headspace 

   

 

 

5.4.1  Growth kinetics and antibody production 

 

The growth rate of the fed-batch CHO cells cultured in the micro-Matrix showed 

a significant distinction with the 24-SRW. The growth rates observed in micro-

Matrix for control and non-control aeration were very slow, while for 24-SRW 

similar results as discussed comprehensively in Chapter 3 were found with 8.76 x 

10
6
 cell mL

-1 
(Section 3.3.1). Peak viable cell concentration for 24-SRW was the 

highest with 9.30 x 10
6
 cell mL

-1
, whilst micro-Matrix (control) and micro-Matrix 

(non-control) gave 7.80 x 10
6
 cell mL

-1
 and 6.15 x 10

6
 cell mL

-1
 correspondingly 

(Figure 5.5 A). As for the cell viability, 24-SRW and micro-Matrix (control) 

show good similarity with > 60% of viability on the harvest day (~336 hours). 

However, the micro-Matrix culture (non-control) had a very poor viability with 

10 % on the harvest day (Figure 5.5 B). The possible explanation for the poor 

viability might be due to the accumulation of partial pressure carbon dioxide 
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(pCO2). As described in Section 2.4, the micro-Matrix system was sparged with a 

gas mixture of 95 % air and 5 % CO2 to mimic the condition of the standard 

incubator for 24-SRW cultivation. Nonetheless, the addition of 5 % CO2 to the 

system had a negative effect on cell growth and viability as seen in Figure 5.5 B. 

Several literatures have reported a similar effect of high pCO2 on cell growth of 

CHO cells (Gray et al., 1996; Kimura and Miller, 1997; Zhu et al., 2005). For the 

micro-Matrix (non-control aeration) the impact of dissolved (dCO2) saturation 

from the partial pressure CO2 over time increased as the removal of CO2 is 

inadequate. This is in agreement with Gray et al. (1996) and Kimura and Miller- 

(1997) studies of the importance of CO2 removal from the mammalian cell 

reactors. Additionally, from the Kimura and Miller (1997) investigation, they 

found that headspace aeration also contributed to the high CO2 level to 115 mm 

Hg from normal level (31 – 55 mm Hg) in the 6 well plates.  

 

The detrimental effect possibly due to dCO2 accumulation in culture can be seen 

with the low specific growth rate (μmax) in the micro-Matrix (non-control). The 

μmax for non-control is 0.009 h
-1

, while control and 24-SRW are 0.014h
-1

 and 

0.019h
-1

 respectively (Figure 5.6). Moreover, product formation for both of the 

micro-Matrix cultures is very low with maximum titre of 0.24 – 0.30 gL
-1

 (Figure 

5.7 A). The low titres obtained in the micro-Matrix are probably due to the initial 

dCO2 accumulation in the wells. Derived growth parameters for cIVC and 

specific product formation (qP) supports the same explanation for low product 

formation as described in Table 5.4. Alternatively, by-product formation of 

lactate and ammonium could be the cause for the low growth obtained as 

discussed in Section 1.3.2.  
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Figure 5.5:CHO growth kinetics for micro-Matrix in comparison with 24 SRW using 

bolus fed: micro-Matrix with control and bolus (●), micro-Matrix with non-control and 

bolus (○), 24-SRW (▲) A: viable cell concentration; B: cells viability. Arrow (↓) 

represents bolus and continuous fed addition commenced on day 7. 
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Figure 5.6: Log VCC of CHO cells growth kinetics for micro-Matrix in comparison with 

24 SRW using bolus fed: micro-Matrix with control and bolus (●), micro-Matrix with 

non-control and bolus (○) and 24-SRW (▲). 

 

 

 

Table 5.4: Derived growth parameters of fed-batch CHO cell in for micro-Matrix 

(control), micro-Matrix (non-control) and 24-SRW. 

 

Type of reactor micro-Matrix 

(control) 

micro-Matrix  

(Non-control)  

24 MTP 

(SRW) 

Peak cell concentration                            

(x 10
6
 cell mL

-1
) 

7.80 6.15 9.30 

CiVC (x 10
8
 cell d

-1
 mL

-1
) 2.85 2.80 4.77 

µmax (h
-1

) 0.014 0.009 0.019 

IgG antibody titre (gL
-1

) 0.30 0.24 1.0 

qP  (pg cell
-1 

d
-1

) 4.9 4.6 14.5 
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Figure 5.7: A: Antibody production CHO cells growth kinetics for micro-Matrix in 

comparison with 24 SRW using bolus fed: micro-Matrix with control and bolus (●), 

micro-Matrix with non-control and bolus (○) and 24-SRW (▲) B: Comparison plots of 

product formation vs IVCC for micro-Matrix and 24 SRW with trend line, solid line 

represents 24 SRW, dashed line represents micro-Matrix with control and bolus,  and 

dotted line represents micro-Matrix with non-control and bolus. 
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5.4.2  Metabolites analysis 

 

For glucose consumption in the micro-Matrix (control and non-control) system a 

good comparison with 24-SRW culture from 0 hour until 192 hours (Figure 5.8 

A) was obtained. In the exponential stage, glucose was consumed at a high rate 

(quantify) as expected in CHO cell cultivation. After the glucose concentration 

decreased to about 2 gL
-1

, it was maintained around this level by bolus feeding 

based on daily analysis. However, the glucose concentration in the micro-Matrix 

cultures was not able to be maintained around the desired concentration of ~2 gL
-

1
. The micro-Matrix system uses the micro valve technology that should provide a 

flow rate of 17.4 nL min
-1

 for 10 minutes.  

 

 

Therefore, approximately 150 μL of glucose from a concentrated feed was added 

of to each well. The amount of glucose added was supposedly adequate to 

support the cell growth and prevent glucose starvation. This finding was 

unexpected and suggests that bolus feed applied in micro-Matrix failed to provide 

sufficient nutrients required by cells. Lactate production in the micro-Matrix and 

24-SRW showed distinctive differences with large fluctuation. (Figure 5.8 B). 

The peak lactate concentration obtained in the micro-Matrix (non-control) with 

5.25 gL
-1

, whilst micro-Matrix (control) and 24-SRW produced 4.9 and 3.9 gL
-1

 

correspondingly. Surprisingly, the fluctuation observed in the concentration is not 

expected as the lactate should produce exponentially with the glucose 

consumption. The inconsistency in the lactate production may be due to the 

following reasons as suggested by (Tsao et al., 2005).  Firstly, the inaccuracies in 

measuring the correct amount of glucose feed in the each wells to balance the 

glucose consumption and lactate production. Secondly, the cell culture volume 

changes in each well through the nutrient feed, pH control and sampling loss and 

evaporation (Tsao et al., 2005).  

 

 



 

 

160 

 

The concentration profile of ammonia and glutamate are shown in Figure 5.9. 

Ammonia concentration was presumed start to accumulate for micro-Matrix and 

24-SRW cultures from day 1 and peaked approximately on 300 hours and 200 

hours respectively. Data analysis for ammonia from 24-SRW culture in Figure 

5.4 E was referred to show that ammonia gradually increased after 24 hours 

cultivation. For 24-SRW, the accumulation showed a sudden drop after the bolus 

addition, whilst for the micro-Matrix (control) and micro-Matrix (non-control) 

the ammonia probably peaked at 6.8 and 6.3 mmol L
-1

 on day 14 though some 

intermittent data are missing due to technical problems. The high concentration of 

ammonia in the micro-Matrix cultures might due to low viability observed from 

240 hours until 336 hours. Nonetheless, glutamate concentrations in the micro-

Matrix and 24-SRW cultures decreased and stayed low during the exponential 

phase even when bolus feeding commenced. The low glutamate concentration is 

probably a consequence of the conversion of glutamate to glutamine. Since the 

CHO cell cultured in the system was derived from GS expression, glutamine was 

formed from glutamate and ammonia mainly from asparagines deamidation 

(Zhou et al., 1997). However, due to the faulty glutamine (Gln) sensor, glutamine 

was not measured.  
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Figure 5.8: CHO metabolites concentration for micro-Matrix in comparison with 24 

SRW using bolus fed: micro-Matrix with control and bolus (●), micro-Matrix with non-

control and bolus (○) and 24-SRW (▲) A: Glucose concentration; B: Lactate 

concentration. Note: Large fluctuation of lactate concentration and missing data points 

due to the faulty Lac sensor and NOVA during the analysis.  
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Figure 5.9: CHO metabolites concentration for micro-Matrix in comparison with 24 

SRW using bolus fed: micro-Matrix with control and bolus (●), micro-Matrix with non-

control and bolus (○) and 24-SRW (▲) A: Ammonium concentration, B: Glutamate 

concentration. Note: missing data points due to the faulty of NOVA during the analysis. 
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5.5  Effect of control and non-control aeration system in micro-Matrix 

with continuous feeding 

 

The operating conditions for the micro-Matrix were selected using the same 

conditions as previously described in Table 5.3. For continuous feeding, the 

system was fed with CD-CHO AGT (supplemented with glucose) continuously 

for 6 days. The diluted feed was added continuously was at a flow rate of 104.4 

nL min
-1

. Therefore, the total feed added in the system daily was at 150 μL well
-1 

d
-1

 which is sufficient for CHO cell growth and viability. 

 

5.5.1  Growth kinetics and antibody productivity 

 

CHO cell growth kinetics using continuous feeding in the micro-Matrix system 

showed a slight improvement compared to bolus fed study. In the exponential 

phase from 72 hours to 168 hours, the viable cell concentration showed good 

comparability between the control aeration and non-control aeration system 

(Figure 5.10 A). The viable cell concentration observed for the control aeration 

system peaked at 8.67 x 10
6
 cell mL

-1
 after 240 hours, while that for the non-

control aeration system peaked at 6.91 x 10
6
 cell mL

-1
 after 216 hours. The 

continuous feeding applied in the micro-Matrix system increased the viable cell 

concentration by 10 % compared to the bolus addition for both control and non-

control aeration systems. Furthermore, during the exponential phase (Figure 

5.11), the maximum specific growth rate was almost equivalent for both systems 

with continuous feeding ranging from 0.017 – 0.018 h
-1

 as described in Table 5.5.  

 

However, the viability of the CHO cells dropped abruptly after 264 hours (Figure 

5.10 B). The lowest percentage viability was observed on 336 hours with 22.2 % 

and < 1 % for control and non-control aeration system respectively. The low 

viability observed in these cultures is probably due to the gas mixture (95 %, 5 % 

CO2) that supposedly to mimic the environment of incubator for 24-SRW cultures 

was found not efficient for micro-Matrix. For micro-Matrix with control aeration, 

CO2 gas was added to control the pH of the system. Conversely, the addition of 
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gas mixture of 5 % CO2 actually increased the dCO2 in the well which probably 

led to CO2 toxicity in the cultures. Kimura and Miller, (1997) described 

comprehensively regarding high pCO2 level in their study of six well plates of 

recombinant tPa production from CHO cells. The online pH of the micro-Matrix 

system dropped from 7.1 to 6.7 (data not shown). It is possible that the changes in 

pH also affected the protein processing and secretion of IgG as shown in Figure 

5.12 A. The maximum IgG concentration obtained was very poor for both 

systems with 0.30 gL
-1

 and 0.26 gL
-1

 for control and non-control cultures 

respectively. Cell specific productivity (qp) for both control and non-control 

systems is also in agreement with the IgG productivity. The qp for the micro-

Matrix is below 5 pg cell
-1

 d
-1

, which is very low for compared to 24-SRW 

system (14.5 pg cell
-1

 d
-1

). There are also reported literatures regarding elevated 

pCO2 decreased the cell growth and protein productivity (Gray et al., 1996; 

Kimura and Miller, 1997; Zhu et al., 2005). Although osmolality was not 

measured experimentally, it can be predicted that the medium osmolality 

increased to a level that gave adverse impact on cell growth and productivity. The 

reason for this assumption was to the fact that high osmolality usually led to 

programmed cell death (apoptosis) in cultures (deZengotita et al., 2002).  
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Figure 5.10: CHO growth kinetics for micro-Matrix with control and non-control 

aeration using continuous feeding: micro-Matrix with control and continuous (■), micro-

Matrix with non-control and continuous (□) A: viable cell concentration; B: cells 

viability. Arrow (↓) represents bolus and continuous feed addition commenced on day 7. 
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Figure 5.11: Log VCC of CHO growth kinetics for micro-Matrix with control and non-

control aeration using continuous feeding: micro-Matrix with control and continuous (■), 

micro-Matrix with non-control and continuous (□). 

 

 

Table 5.5: Derived growth parameters of CHO growth kinetics for micro-Matrix with 

control and non-control aeration using continuous feeding. 

 

Type of reactor micro-Matrix 

(Control) 

micro-Matrix  

(Non-control)  

Peak viable cell concentration                            

(x 10
6
 cell mL

-1
) 

8.67 6.91 

CiVC (x 10
8
 cell d

-1
 mL

-1
) 3.03 3.01 

µmax (h
-1

) 0.018 0.017 

IgG antibody titre (gL
-1

) 0.30 0.26 

qP  (pg cell
-1 

d
-1

) 4.9 3.7 

qglc  (pg cell
-1 

d
-1

) 56 50 
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Figure 5.12: A: Antibody production CHO growth kinetics for micro-Matrix with 

control and non-control aeration using continuous feeding: micro-Matrix with control 

and continuous (■), micro-Matrix with non-control and continuous (□). B: Comparison 

plots of product formation vs IVCC with dotted line represents micro-Matrix with 

control and continuous, and dashed line represents micro-Matrix with non-control and 

continuous.  
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5.5.2  Metabolites analysis 

 

The glucose and lactate concentration profiles are shown in Figure 5.13. Glucose 

concentration (Figure 5.13 A) for control and non-control aeration system showed 

that the consumption was very similar to the previous bolus addition in Figure 5.4 

A. In the exponential phase from 72 hours to 168 hours, the specific glucose 

consumption rate for control system was 56 pg cell
-1 

d
-1

, whilst for non-control 

system it was 50 pg cell
-1 

d
-1

 (Table 5.5). Glucose concentration was observed to 

keep decreasing until the end of the cultivation and gave an undesirable effect on 

cell growth and productivity as seen in Figure 5.10 A and 5.12 A. As the glucose 

concentration started to decrease during exponential phase, lactate concentration 

in the micro-Matrix started to increase. The lactate concentration in micro-Matrix 

peaked on 216 hours with 4.5 gL
-1

 for non-control and 4.4 gL
-1

 for control 

(Figure 5.13 B). However, similar lactate fluctuation was seen in Figure 5.8 B. As 

discussed in the previous sections, the large fluctuations might be due to the 

changes in culture parameters (pH, temperature and/or osmolality) and loss of 

culture volume due to the evaporation (Tsao et al., 2005). Another possible 

explanation for high lactate might be to the transition of cellular metabolism from 

glucose to lactate. In animal cell, glucose might be synthesised by lactate via Cori 

cycle. This phenomenon happens during the initial conversion of lactate through 

pyruvate, supported by lactate dehydrogenase (LDH) (Tsao et al., 2005). The 

transition of cellular metabolism has been repeatedly observed in the fed-batch 

cultures (Zhou et al., 1997). Previously, in Section 4.8.2 we observed the 

equivalent lactate metabolism shift from production to consumption in the MBR. 

This is in agreement with findings by Zhou et al. (1997) with GS-NS0 cultures 

cultured in 2 L STR. The increase of lactate concentration is parallel with 

ammonia accumulation that coincided with cell death phase. Hypothetically, 

lactate consumed by cells will be converted to pyruvate which will enter the 

Krebs cycle (Zhou et al., 1997). Once the lactate started being consumed, the 

cells started to die rapidly (Bibila et al., 1994) as observed in Figure 5.10 A.  
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The concentration profile of ammonia and glutamate are shown in Figure 5.14. 

Ammonia concentration in continuous fed cultures shared the same trend as bolus 

addition where the accumulation possibly started during the growth phase.  The 

ammonia concentration for micro-Matrix (control) and micro-Matrix (non-

control) peaked at 7.1 and 6.2 mmol L
-1

 on day 13 respectively (Figure 5.14 A). 

Notably, the high ammonia concentration might have an effect to the cell growth 

as reported by (Genzel et al., 2005). On the other hand, glutamate concentrations 

for control and non-control cultures dropped to very low levels after the 

continuous feeding commenced (Figure 5.14 B). The low glutamate concentration 

was also seen in the bolus addition cultures described previously in Section 5.4.2.  
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Figure 5.13: CHO metabolites concentration for micro-Matrix with control and non-

control aeration using continuous feeding: micro-Matrix with control and continuous (■), 

micro-Matrix with non-control and continuous (□). A: Glucose concentration, B: Lactate 

concentration.  Arrow (↓) represents continuous feed addition commenced on day 7. 

Note: Large fluctuation of lactate concentration and missing data points due to the faulty 

Lac sensor and NOVA during the analysis.  
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Figure 5.14: CHO metabolites concentration for micro-Matrix with control and non-

control aeration using continuous feeding: micro-Matrix with control and continuous (■), 

micro-Matrix with non-control and continuous (□) and 24-SRW (▲) A: ammonium 

concentration, B: glutamate concentration. Arrow (↓) represents bolus and continuous 

feed addition commenced on day 7. Note: missing data points due to the faulty of NOVA 

during the analysis. 
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5.6  Fed-batch with continuous feed at matched Tm 

 

In Section 5.2, the comparison of growth kinetics and scale translation from small 

scale (MTP) and MBR to 5 L STR using bolus addition was investigated. 

However, continuous feeding strategies were not well established for small scale 

studies owing to the difficulties for the reactors set-up. Lu et al. (2013) 

demonstrated automated dynamic feeding strategies in 3 L STR using a feeding 

algorithm. They found that the methods were able to automatically adjust the feed 

rates according to the cultures demands for glucose and other nutrients. However, 

comparison studies of mammalian cell cultures with continuous feeding and 

scale-up from miniature reactors are still limited. Berrios et al. (2011) 

demonstrated the replacement of glucose by mannose for the continuous feeding 

of CHO cells for production of recombinant tissue plasminogen activator (tPa).  

The results showed that mannose addition was able to increase the biomass 

concentration (15 – 20 %), leading to increased productivity by 30 % and reduced 

specific lactate production by 25 – 35 %. In this section, an investigation of 

continuous feeding and scale-up between micro-Matrix and MBR is presented. 

The operating parameters were selected on the basis of matched mixing time of 

Tm ~ 6 s. From the previous micro-Matrix studies, improvements were made to 

overcome the problems of low growth rate, poor cell viability and productivity 

titres. Specifically, the agitation speed was increased to 300 rpm, the fill volume 

was changed to 2.5 mL and the flow rate of gas mix (95% air and 5 % CO2) was 

reduced to 0.1 mL min
-1

. The reason for changing the agitation speed from 270 

rpm to 300 rpm was to increase the specific cell growth rate. The fill volume also 

was changed from 3.5 mL to 2.5 mL to overcome the issue of medium spillage at 

the edges of the well. Gas mix flow rate was reduced to overcome the issue of 

pCO2 accumulation and dCO2 toxicity as observed previously in Section 5.4 and 

5.5. The MBR agitation speed also was changed from 450 rpm to 420 rpm to 

match the mixing time of Tm ~ 6 s. Table 5.6 summarised the operating 

conditions for this study.   
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Table 5.6: Selected operating conditions for cell culture cultivation between micro-

Matrix system and HEL-BioXplore MBR based on matched mixing time. 

 

Reactor Micro-

Matrix 

(control 

aeration) 

MBR 

(HEL-

BioXplore) 

Shaking/Stirring 

(rpm) 

300 420 

 

Aeration system 

 

Headspace 

with flow 

rate 0.5 mL 

min
-1

 

 

Horseshoe 

type 

sparging 

with flow 

rate 50 mL 

min
-1

 

 

Working volume 

 

2.5 mL 

 

350 mL 

 

pH/DO/Temperature 

control 

 

Yes 

 

Yes 

 

Feeding strategy 

 

Continuous 

 

Continuous  

 

5.6.1  Growth kinetics and antibody productivity 

 

Figure 5.15 shows the comparison of CHO growth kinetics and viability for 

micro-Matrix with control of aeration and MBR cultures. Both reactors are using 

a continuous fed-batch strategy. Viable cell concentration for both reactors 

peaked after 192 hours and 212 hours for micro-Matrix and MBR 

correspondingly. The peak viable cell concentrations for micro-Matrix was 11.1 x 

10
6
 cell mL

-1
, while the MBR culture reached 9.76 x 10

6
 cell mL

-1
. Furthermore, 

cell viability percentage also improved in the continuously fed cultures for both 

reactors. The final viability for MBR on day 14 was almost 70 %, whereas for 

micro-Matrix culture it was > 90 % on day 11. However, the experiment in 

micro-Matrix was suddenly stopped due to leakage on the top plate that cover the 

24-DWP used in micro-Matrix. As the consequence from the leakage, the top 

cover was unable to provide a sterile environment for the micro-Matrix, hence the 

experiment was stopped on day 11. Table 5.7 shows derived growth parameters 

obtained for both reactors with comparable results. The micro-Matrix culture 
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exhibited a slightly higher cIVC at 4.43 x 10
8
 cell d

-1
 mL

-1
 compared with the 

MBR (4.09 x 10
8
 cell d

-1
 mL

-1
). Notably, the maximum specific growth rate for 

micro-Matrix was very similar to that of the MBR as shown in Figure 5.16 and 

Table 5.7. Both of the reactors have comparable lag, exponential, and stationary 

phase. The cIVC for the micro-Matrix tremendously improved from previous 

continuous-fed experiment in Section 5.5 by 30 %. Furthermore, the 

improvement made to the micro-Matrix system enhanced the titre of CHO cell to 

0.50 gL
-1

, which is slightly better compared to the previous experiment (Figure 

5.17 A). It was predicted that the final IgG antibody would be enhanced to 0.80 

gL
-1

 if the cultivation would have been continued until day 14. Figure 5.17 B 

depicts the trend lines to determine the qp for both reactors. The qp for both 

reactors show good comparability with micro-Matrix at 10.5 pg cell
-1 

d
-1

 and 

MBR with 9.1 pg cell
-1 

d
-1

.  

 

 

 

Figure 5.15: CHO growth kinetics in fed-batch culture with continuous feed for  two 

types of reactors micro-Matrix and MBR. The VCC represents micro-Matrix (●) and 

MBR (▲), while cell viability was represented for micro-Matrix (○) and MBR (∆) A: 

viable cell concentration; B: cells viability Arrow (↓) indicated feed addition on day 7. 

Error bars represent one standard deviation about the mean (n = 2) for MBR. Note: 

micro-Matrix data until day 11 only due to leakage problem on the top plate cover of the 

24-DWP.  
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Figure 5.16: Log VCC of CHO growth kinetics in fed-batch culture with continuous 

feed for two types of reactors; micro-Matrix (●) and MBR (▲).Note: micro-Matrix data 

until day 11 only due to leakage problem on the top plate cover of the 24-DWP. 

 

 

 

Table 5.7: Derived growth parameters obtained from continuous fed batch cultures in 

micro-Matrix and MBR. 

 

Type of reactor micro-Matrix 

(control) 

MBR  

(HEL-

BioXplore) 

Peak cell concentration                            

(x 10
6
 cell mL

-1
) 

11.1 9.76 

CiVC (x 10
8
 cell d

-1
 mL

-1
) 4.43 4.09 

µmax (h
-1

) 0.019 0.020 

IgG antibody titre (gL
-1

) 0.50 0.64 

qP  (pg cell
-1 

d
-1

) 10.5 9.1 

qglc (pg cell
-1 

d
-1

) 58.4 45.7 
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Figure 5.17: A: Antibody production CHO growth kinetics for micro-Matrix and MBR 

using continuous feeding: micro-Matrix with control and continuous (●), MBR and 

continuous (▲). B: Comparison plots of product formation vs IVCC with solid line 

represents micro-Matrix with control and continuous; dashed line represents MBR with 

continuous. Note: micro-Matrix data until day 11 only due to leakage problem on the top 

plate cover of the 24-DWP. 
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5.6.2  Metabolites analysis 

 

The metabolite concentrations (glucose, lactate, ammonia, glutamine and 

glutamate) were measured using NOVA Flex is shown in Figure 5.18. During the 

log phase in the cultures, glucose was consumed and partly converted to lactate as 

shown in Figure 5.18 A and B. After the glucose concentration decreased to at 

about 2 gL
-1

, the cultures were supplied with a concentrated feed (supplementary 

with glucose). The feed added was ~150 gL
-1

 of CD CHO AGT to replenish the 

nutrients that have been consumed by cells. After the addition, the glucose 

concentration was analysed and maintained daily around 2 gL
-1

. The continuous 

feeding strategy in MBR which largely focused on maintaining cultures at low 

glucose concentration was able to balance the nutrient demands. Whereas, the 

micro-Matrix system was able to maintain the glucose level at 0.50 – 1 gL
-1

. Even 

though the glucose concentration in the micro-Matrix was quite low compared to 

the expected level of 2 gL
-1

, it was sufficient to compensate for nutrient 

exhaustion in the system, as depicted in Figure 5.15 with viable cell concentration 

peaked at 11 millions viable cells per mL. Specific glucose consumption rate also 

shows a 20 % higher consumption in micro-Matrix compared to the MBR 

cultures (Table 5.7). The higher consumption rate in micro-Matrix might be due 

to the approximately 10 % higher viable cell concentration shown in Figure 5.15.  

 

High lactate accumulation in culture has long been experienced as the inhibitory 

factor for mammalian cell growth and recombinant protein production (Zhou et 

al., 1995; Zhou et al., 1997). Lactate concentrations in the cultures increased after 

glucose is rapidly consumed in the exponential phase (Figure 5.18 B). Lactate 

concentration in MBR cultures increased to 1.95 gL
-1

 after 120 hours. Thereafter, 

lactate was assumed being consumed by cells and then the concentration increase 

sharply after the continuous feeding commenced. The highest lactate 

concentration for micro-Matrix and MBR was 2.91 gL
-1 

and 3.83 gL
-1

 

respectively. Lactate in the micro-Matrix shows an unstable profile during the 

course of continuous feeding phase of the culture. The variation in lactate 

concentration may be due to it being consumed by cells when the level of glucose 
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is low. This finding corroborates with the work of Ma et al. (2009) and Mulukutla 

et al. (2015) regarding the metabolic shift to lactate consumption during low 

glucose availability in the culture. They added that sometimes in later stage of 

fed-batch cultivation cell metabolism switches from lactate production to low 

level of lactate consumption. Additionally, Butler (2005) suggested that lactate 

production can be reduced by minimising the glucose concentration in the media, 

particularly during the transition of log to stationary phase. During this phase, 

cells are actively proliferating and are most productive. He added that low 

concentration of lactate in culture influence the primary metabolism of cells. 

 

Ammonia is the by-product of glutamine metabolism. Accumulation of ammonia 

in mammalian cell culture is known to inhibit cell proliferation and protein 

product quality (Genzel et al., 2005). Ammonia concentrations in the cultures 

were seen to build up from 0 hour until 120 hours (Figure 5.18 C). The ammonia 

concentrations at 120 hours was in the range of 2.20 – 2.50 mmolL
-1

 for both 

cultures. Over the following 24 hours, the analysed ammonia concentration in 

micro-Matrix reduced to < 2 gL
-1

 before suddenly experienced an increase up to 

5.49 mmolL
-1

 after 240 hours. In contrast, ammonia concentration in MBR 

maintained at 2 gL
-1 

for 300 hours before suddenly it peaked after 336 hours at 

3.40 mmolL
-1

. However, the ammonia concentration reported is still low 

considering the unfavourable concentration would be at of 7 – 10 mM as 

described by Glacken et al. (1983). 

 

Glutamine is an energy source and precursor of anabolic pathways for 

mammalian cells cultures (Genzel et al., 2005). Generally, mammalian cell media 

contains 2 – 6 mM glutamine to support metabolism (Genzel et al., 2005). 

However, for cells with glutamine synthetase (GS) expression system metabolism 

of glutamine and synthesis of GS enzyme should be in equilibrium and remain 

unchanged (Zou and Al-Rubeai, 2015). In this study, the glutamine concentration 

for micro-Matrix might have the similar equilibrium as there was no glutamine 

produced during the cultivation (Figure 5.18 D). While, inconsistent glutamine 

concentration for the 14 days cultivation was observed in MBR cultures. 
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Glutamine was actively produced by cells during exponential phase for 120 hours 

and peaked at 0.85 mmolL
-1

. Interestingly, before the continuous feeding 

commenced, glutamine concentration showed a rapid decline. The reduced 

concentration might be due to the glutamine consumption by cells (Zou and Al-

Rubeai, 2015). They added that low glucose concentration might enhance higher 

glutamine consumption in culture. This is in agreement with Zeng et al. (1995) 

study of mathematical modelling of three modes of cultivation of mammalian cell 

cultures; batch, fed-batch and continuous. They found that the specific glucose 

consumption rates in cultures are usually influences by three factors; cell growth, 

glucose excess and glutamine regulation, while specific glutamine consumption 

rate was merely due to cell growth and glutamine excess.  

 

Figure 5.18 E depicts the glutamate concentration for both cultures. The 

glutamate consumption by the cells followed a similar trend as previously 

described in fed-batch mammalian cell culture. The initial glutamate 

concentration observed was around 2.0 – 2.5 mmolL
-1

. Glutamate was rapidly 

consumed by cells during the early proliferation phase from 48 hours until 120 

hours. Glutamate concentration in the MBR was maintained in the region of 0.2 

mmolL
-1

 for 13 days before it suddenly increased to 0.63 on day 14.   

 

This study has shown that continuous feeding using two different miniature 

bioreactor geometries has potential to improve CHO cultivation. Furthermore, the 

continuous feeding show capabilities of supporting the cells with adequate 

glucose and other nutrients required for energy and cellular metabolism. 

Advantages of continuous feeding over bolus fed through single intervention not 

only minimise the contamination issue, but also is less labour intensive for high 

throughput and parallel MBR systems.  

 

 

 

 

 



 

 

180 

 

 

 

 

 

 

0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

0 100 200 300 400 

G
lu

co
se

(g
L

-1
) 

Time (hours)  

Glucose level 

after fed-batch 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

4.50 

0 100 200 300 400 

L
ac

ta
te

 (
g
L

-1
) 

Time (hours) 

0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

0 100 200 300 400 

A
m

m
o

in
a 

 (
m

m
o

lL
-1

) 

Time (hours) 

   A 

   B 

   C 

Continuous 
feeding initiated 



 

 

181 

 

 

 

 

 

Figure 5.18: CHO metabolites concentration in cultures with continuous feed for two 

types of reactors; micro-Matrix (●) and MBR (▲). A: glucose concentration, B: lactate 

concentration. C: ammonia concentration, D: glutamine concentration, E: glutamate 

concentration. Arrow (↓) indicated feed addition on day 7. Note: micro-Matrix data until 

day 11 only due to leakage problem on the top plate cover of the 24-DWP. 
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5.7  Comparison of process parameter control  

 

Process parameter such pH, DO, and temperature in a bioreactor can be measured 

either on-line, at-line (via connection to calibrated analysers) or off-line (manual 

intervention by operator) (Li et al., 2010). In a controlled bioreactor, monitoring 

these process parameters for specific set point is essential. Furthermore, these 

culture process parameters may give significant impacts on the cell growth, 

metabolism and productivity. Therefore, key process parameters were presented 

in this section to compare the process capability of the two miniature bioreactors 

studied in the Section 5.6. The data was from the 24 wells (micro-Matrix), while 

one MBR (HEL-BioXPlore) with the direct driven impeller and horseshoe type 

sparger. Additionally, the data reading was logged every 30 seconds for micro-

Matrix, while every 60 seconds for MBR. 

 

5.7.1  pH 

 

pH is one of the most vital variables to monitor and control in mammalian cell 

cultivation. Minor changes in culture pH can significantly impact on cell growth, 

metabolism and product formation (Li et al., 2010). The culture pH in both 

systems was set at 7.10 with dead band of 0.4 and 0.1 for micro-Matrix and HEL-

BioXplore MBR correspondingly. For the first 55 hours, the pH logged for 

micro-Matrix was 7.00 - 7.35 (Figure 5.19 A). After 60 hours of cultivation, pH 

was observed dropped in the range 6.90 – 7.15, then gradually increased until 200 

hours. Subsequently, after the continuous feeding started on 168 hours, two of the 

wells show deviation from the set point 7.10 ± 0.4. The pH drift was presumed by 

the fact that the micro valves on the top plate were not properly opened up during 

the feeding. The culture in the wells that experience pH drift might not received 

feed from the system. As consequences, the top plate was found leaked and the 

experiment in micro-Matrix was stopped on day 11. On contrary, pH in the MBR 

system was seen very tight on the higher end of the dead band (Figure 5.19 B). 

pH was logged in the range of 7.15 – 7.20 throughout the cultivation.  
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Figure 5.19: pH profiles for the two systems with continuous feeding strategy. A: micro-

Matrix system with data logged every 30 seconds B: HEL-BioXplore MBR with data 

logged every 60 seconds. 
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5.7.2  Dissolved oxygen 

Dissolved oxygen is important parameters controlled in bioreactor to prevent DO 

limitation, which could lead to cytotoxicity (Li et al., 2010). Normally, DO is set 

at specific point of 20 – 50 % of air saturation. The system was set at 30 % 

(MBR) and 30 % (micro-Matrix) with dead band of 10 %. The dissolved oxygen 

profiles for micro-Matrix and MBR showed large variations over the set point. 

The micro-Matrix DO profiles (Figure 5.20 A) illustrates that air saturation of 80 

– 95 % was maintained during the cultivation. The spikes produced during the 

cultivation might be due to the time taken for the gaseous system to resume back 

after the system was stopped for sampling. By contrast, the MBR system DO 

profiles was stable for 100 hours (Figure 5.20 B). The first four days of 

cultivation, cells are in the lag-log phase where demand for oxygen is very 

minimal. After these phase, cell enter full exponential phase for proliferation and 

metabolism which make the demand for oxygen are optimal. This can be seen 

with the spikes that produced after 100 hours.  

5.7.3  Temperature 

The temperature profiles for the two systems showed distinctive variation. The 

temperature control was set at 37°C ± 0.5 for both systems. Figure 5.21 A shows 

the temperature profiles for the micro-Matrix system over the cultivation period. 

Based on the data logged every 30 seconds, there are a number of downward and 

upward spikes for every 24 hours until around 200 hours. Each of the spikes 

indicated the sampling point, which the micro-Matrix system was stopped for few 

minutes. During sampling procedure, the micro-Matrix cabinet was opened and 

the culture was aseptically sampled for analysis. The longer the times taken 

during sampling mean that a longer time will be needed for the system to 

continue its operation.  By contrast, the temperature profile for the MBR system 

was very stable over the cultivation period (Figure 5.21 B). The temperature set 

point was able to maintain within the range of 37°C ± 0.5. Besides that, the 

minimal spikes found in the logged data were due to the addition of ‘cold’ culture 

feed. The culture feed was refrigerated to maintain its sterility and nutrients 

content throughout the continuous feeding strategy. The slight changes of 

temperature from the continuous feed added might gave these minimal spikes.  
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Figure 5.20: DO profiles for the two systems with continuous feeding strategy. A: 

micro-Matrix system with data logged every 30 seconds B: HEL-BioXplore MBR with 

data logged every 60 seconds. 
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Figure 5.21: Temperature profiles for the two systems with continuous feeding strategy. 

A: micro-Matrix system with data logged every 30 seconds B: HEL-BioXplore MBR 

with data logged every 60 seconds. 
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5.8 Conclusion 

 

This chapter has demonstrated the potential of the microwell based systems and 

miniature bioreactors for scale translation using matched mixing time as scale 

translation criteria. Predictive scale-up results achieved in this chapter has 

provided the basis understanding on performance of different geometries and 

scales of reactors. Scale comparison cultivations for bolus fed CHO cell cultures 

were carried out for 24-SRW and miniature bioreactors (MBR) and compared 

with a standard 5 L STR at matched mixing time of ~6 ± 2 s. The cultivations 

show that 24-SRW and MBR gave comparable CHO cell growth kinetics with 

standard 5 L STR. The cell viability data also shows that 24-SRW and MBR 

systems are able to prolong the viability > 60 % with the bolus addition until the 

harvest on day 14. All three reactors are able to reach similar product titres with 

24-SRW giving the maximum titre of 0.92 gL
-1

, followed  by 5 L STR (0.83 gL
-1

) 

and MBR (0.69 gL
-1

). 

 

In this chapter, a new micro-bioreactor (micro-Matrix) was characterised for its 

ability to perform a cell culture process. The advantages of the automation system 

of the micro-Matrix to control automated feed regimes and other engineering 

parameters were analysed. The systems were studied using a controlled and non-

controlled aeration system with either bolus or continuous feeding. Based on the 

preliminary results, the micro-Matrix with controlled aeration and continuous 

feeding shows good potential for CHO cell cultivation with peak viable cell 

concentration of 8.67 x 10
6
 cell mL

-1
 and viability > 60 % after 264 hours. 

However, due to the toxicity of dCO2 accumulated in the system as discussed in 

Section 5.4.1 and 5.5.1 that inhibited the cells to maintain good viability and 

subsequently led to low product yields.  

 

This chapter also indicates the potential of the micro-Matrix with controlled 

aeration and continuous feeding for scale translation of CHO cell cultivation in 

comparison with MBR system. The basis of matched mixing time of 6 s was 
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applied for the scale-up performance. The ability to continuously feed the micro-

Matrix and MBR has shown that CHO cell growth kinetics improved 

tremendously from our previous studies in Section 5.2.1, 5.4.1, 5.5.1. Besides 

that, several improvements of operating conditions as summarised in Table 5.6 

has supported the good results that were achieved in this study. Viable cell 

concentration for both reactors show good similarity with peak VCC of 11.1 x 

10
6
 cell mL

-1
 and 9.76 x 10

6
 cell mL

-1
 for micro-Matrix and MBR respectively. 

After 11 days cultivation, both of the system managed to maintain a cell viability 

of 87 %. The product titre for the MBR was 0.64 gL
-1

 (336 hours), while micro-

Matrix was 0.50 gL
-1

 (264 hours). Unfortunately, the micro-Matrix cultivation 

had to be stopped on day 11 due to the leakage on the top plate that covered the 

24-DWP. The experiment was not repeated because of the unavailability of 

suitable gas filter bars for the top plates. Hence, this preliminary study should be 

repeated in future for better understanding and ability of the micro-Matrix system 

for cell culture application.  
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Chapter 6 Conclusions and Future work 

 

This chapter aims are to review and summarise the key findings of each chapter 

and provide future work recommendations. Each chapter was evaluated for CHO 

growth kinetics and IgG formation with different geometries and scales of 

bioreactors.  

 

6.1 Characterisation of microtitre plates and fed-batch operating 

strategies 

 

Chapter 3 described the application of microtitre plates in batch and fed-batch 

operating strategies for CHO growth profiles and antibody productivity. The 

study in this chapter was built on the work of Silk (2014) who studied extensively 

different microwell based systems for feasibility of CHO cultivation. The 

preliminary study was based on selected optimised operating conditions for 24-

SRW. Two types of commercial sandwich covers (CR1524 and CR1524a) were 

evaluated for its performance in batch CHO cultivation. Chinese hamster ovary 

cells which cultured in 24-SRW showed comparable results for both covers. Both 

MTPs cultures peak viable cell concentration was 45 % higher compared to a 

previous study by Silk (2014). The optimised agitation rate of 220 rpm was found 

suitable for CHO cell cultivation.  Besides that, MTP cultured with CR1524a (for 

slow growing cells) cover has enhanced growth until day 11 with 80 % viability. 

The lengthened viability also raised the final product titre to 0.86 gL
-1

 in 

CR1524a. Nonetheless, glucose exhaustion and accumulation of by-products 

(lactate and ammonia) have inhibited the batch growth and antibody production 

of CHO cells. Hence, a suitable feeding strategy was employed in the MTP to 

avoid nutrient limitations.  

 

At the moment, the feeding strategy of CHO cell cultured in MTP is not well 

established. Only recently, Silk et al., (2010) reported that bolus feeding with 

concentrated glucose for CHO cell cultivation and found that large residual of 
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glucose had an effect on the culture osmolality. In contrast, Hedge et al., (2012) 

studied glucose feeding achieved using the glucose loaded hydrogel in shake 

flasks that resulted in a 23 % higher integral viable cell concentration and 89 % 

lower lactate concentration. The use of diluted glucose solution for bolus feeding 

and the commercial FeedBead
®
 system for improved fed-batch CHO growth 

kinetics was studied. The diluted concentrated feed for bolus addition in MTP 

with CR1524a led to considerably higher viable cell count and viability compared 

to using FeedBead
®
. The bolus addition was able to maintain viability of 82.5 %, 

while using the FeedBead
®
 system the viability decreased to less than 1 %. 

Notably, fed-batch with bolus addition was able to maintain the average glucose 

concentration of 2 gL
-1

d
-1

, in agreement with Barrett et al. (2010) and Silk et al. 

(2010). The FeedBead
®
 system was found not to be efficient for the CHO cell 

cultivation because of the high release rates as described in Section 3.6.1. The 

high glucose release within short period time (1 – 2 days), lead to large transient 

increases in nutrient concentrations and gave detrimental effect on cell growth 

and metabolism (Hegde et al., 2012). Therefore, few improvements can be 

applied in the FeedBead
®
 system for fed-batch strategy in mammalian cells. The 

release of nutrient from the hydrogel should occur over period of 5 – 7 days to 

accommodate the long duration of mammalian cell cultivation. Besides that, the 

release rate of nutrient into the culture should be slower to balance the glucose 

consumption rate by the slow growing mammalian cells.  

 

6.2  Characterisation of miniaturised stirred bioreactor and evaluation 

of fed-batch operating strategies 

 

The need to reduce the cost of operation and speed up the process development 

has enabled companies to develop miniaturised system that have the same key 

engineering parameters as conventional large scale reactors (Lye et al., 2003; 

Betts and Baganz, 2006). The advantages of small scale systems or miniature 

reactors are generation of early design data, parallel operation and high 

throughput (Bareither and Pollard, 2011). The study in Chapter 4 focussed on the 

evaluation of a commercialised miniature bioreactor system (HEL-BioXplore) for 
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parallel mammalian cell cultures. The HEL-BioXplore reactor is an MBR with a 

working volume of approximately  100 – 300  ml that is based on geometry and 

mechanical similarity to a standard bench scale STR. Gill et al., (2008 a,b) 

reported the MBR performance for microbial cultivation, while Al-Ramadhani, 

(2015) demonstrated that headspace aeration and suitable feeding strategies for 

CHO cell cultivation. Design modification to the gas delivery system and 

continuous feeding strategies were employed in this study. The MBR was fitted 

with either direct driven impeller or magnetic driven impeller with singular hole 

impeller or horseshoe type sparger. Before the feasibility of CHO cell cultivation 

was initiated, a comprehensive engineering characterisation of mixing time, 

overall volumetric oxygen transfer coefficient and power input was performed.  

 

Mixing time study was conducted experimentally using the pH tracer method. In 

this study, different types of impeller and gas delivery modes as a function of 

agitation rate were evaluated. Mixing time obtained in this experiment was 

comparable with recent literatures for CHO cultivation bioreactor systems (Al-

Ramadhani, 2015; Betts, 2015; Silk, 2014). Direct driven impeller with horseshoe 

sparger achieved the shortest mixing times with averaged measurement ranging 

from 3.3 – 9.3 s. Since the MBR exhibits a similar geometry as a conventional 

STR, Nienow (1998) correlation was applied to compare experimental and 

predicted values. The mixing time obtained for experimental and predicted values 

was comparable which suggested that the correlation accurately predicted mixing 

times in the MBR using either impeller system.   

 

Furthermore, the overall volumetric oxygen transfer coefficient was measured 

experimentally using the static gassing out technique (Wise, 1951). The measured 

kLa obtained were 5.9 to 12.5 h
-1

 as function of agitation rate ranging from 200 

rpm to 500 rpm for two different types of impeller and sparger.  The measured 

kLa values are consistent with studies by Xing et al. (2009) and Tissot et al. 

(2012) for kLa values below 15 h
-1

 for the application in mammalian cell cultures. 

Morevoer, the predicted power input into the MBR was in the range of 1.7 – 54.5 

Wm
-3

 as function of impeller system and agitation speed. Unfortunately, the 
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power input was not measured experimentally due to a broken air bearing 

dynamometer. 

 

The results from the engineering characterisation studies of the MBR were used 

to select the operating conditions for CHO cultivation experiments in batch and 

fed-batch mode. Matched mixing time at 6 s was selected for the magnetic and 

direct driven impeller giving agitation rates of 400 rpm and 450 rpm respectively. 

The growth kinetics for both impeller systems in batch mode showed comparable 

results with direct driven impeller fitted with horseshoe sparger presented the 

highest viable cell concentration of 7.06 x 10
6
 cell mL

-1
 on day 8 and final 

antibody titre of 0.40 gL
-1

. The MBR system was further explored for its 

application in fed-batch mode of CHO cultivation. The suitability of the 

horseshoe sparger with both impeller system that is magnetic and direct driven 

was studied. The culture in the reactor with direct driven impeller system attained 

peak viable cell concentration on day 7 with 8.89 x 10
6
 cell mL

-1
, whilst the 

culture using in the MBR with magnetic impeller peaked at 7.68 x 10
6
 cell mL

-1
. 

Bolus feed that was initiated after glucose was depleted able to lengthen the 

viability of both cultures to >55 % on harvest day. In addition, the improved 

product formation for both impeller systems was seen in fed-batch mode with 

0.84 and 0.73 gL
-1

 for direct driven and magnetic MBR respectively.  

 

6.3  Scale translation between microwell based systems and miniature 

bioreactors at matched mixing time 

 

Chapter 5 aimed to evaluate the potential of microwell based systems and 

miniature bioreactors for scale translation using matched mixing time as criterion. 

Predictive scale-up from small scale reactors to larger scale is vital to determine 

the scalability of a reactor. Additionally, a successful scale translation of CHO 

cell cultivation from small scales using different geometry of reactors will 

provide a better understanding of the reactor performance. The scale comparison 

was for fed-batch (bolus fed) of CHO cell line based on matched mixing time of 6 

s for 24-SRW, miniature bioreactor (MBR) and STR. Initial growth kinetics 
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depicted that the three reactors gave comparable viable cell concentration with 

high viability of 60 % after 14 days of culture. The final antibody titres for the 

three reactors showed that 24-SRW was the highest with 0.92 gL
-1

, followed by 

STR (0.83 gL
-1

) and MBR (0.69 gL
-1

). Additionally, the specific product 

formations are equivalent in the range of 9.7 – 12.2 pg cell 
-1

d 
-1

.  The bolus feed 

addition commenced on day 7 was able to supply the nutrient consumed in 

culture and the residual concentration could be maintained in the region of 0.5 – 3 

gL
-1

 for all reactors. However, elevated metabolic waste of lactate and ammonia 

was observed after the addition which could inhibit the cell growth and 

metabolism.  

 

The micro-Matrix system is an example of an automated system with parallel and 

high throughput capability that are essential to speed up bioprocess development. 

In this chapter, a prototype micro-Matrix was characterised for its performance in 

a cell culture process. The system was evaluated with controlled and non-

controlled aeration system using two different feeding strategies (bolus and 

continuous). Based on the initial results obtained, the micro-Matrix with 

controlled aeration and continuous feeding shows potential for CHO cell 

cultivation with peak viable cell of 8.67 x 10
6
 cell mL

-1
 and viability > 90 % after 

264 hours. However, due to the toxicity of accumulated dCO2 have inhibited the 

cell proliferation and hence had a detrimental impact on the cells. The effect of 

accumulated of CO2 in reactors has been well documented by other researchers 

(Gray et al., 1996; Kimura and Lee, 1996).  

 

This chapter also described the potential of the micro-Matrix with controlled 

aeration and continuous feeding for scale translation of CHO cell cultivation in 

comparison with the MBR system. Besides that, few improvements were done 

with the micro-Matrix system for scale translation studies as described in Table 

5.6. Matched mixing time of 6 s was applied as scale translation criterion. The 

viable cell concentrations between the two reactor cultures are comparable with 

micro-Matrix achieving a peak VCC of 11.1 x 10
6
 cell mL

-1
 while MBR reached 

9.76 x 10
6
 cell mL

-1
. For the first 7 days of cultivation, both systems show good 
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comparability in terms of cell viability and product formation. The continuous 

feeding applied to both systems was able to sustain the nutrients depleted in the 

cultures. Nevertheless, on day 11 the culture in micro-Matrix was abruptly 

discontinued because of the major leakage on the top plate that covered the 24-

DWP. Unfortunately, the experiment could not be repeated due to the severe 

leakage found in the gas filter bars built-in on the top plate. For this reason, this 

initial work should be repeated for future work to better determine the capability 

of micro-Matrix in CHO cell cultivation. 

 

6.4 Overall conclusions 

 

As conclusion, the findings between each of the systems studied (microwell 

based systems, miniature bioreactors and bench stirred tank reactors) had 

provided a crucial understanding of the capability of each system for CHO cell 

growth kinetics and antibody productivity. Based on the predictive scale 

translation using mixing time as criterion, the three systems have comparable 

peak viable cell and product concentrations. There was no significant difference 

between the three systems studied. Bolus feed strategies applied to each of the 

systems showed that the required glucose level for CHO metabolism at 2 g L
-1

 d
-1

 

as reported in literature could be maintained. The antibody productivities 

obtained are similar with recent studies using microwell systems (Barrett et al., 

2010; Silk et al., 2010), MBR (Al-Ramadhani, 2015), and STR (Velez-Suberbie, 

2013). Overall, the small scale bioreactors evaluated have shown a potential as 

scale-down models which could applied for generation of early bioprocess 

development data in the biopharmaceuticals industry.  
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6.5  Future work and recommendations 

 

The work carried out in this study established that small scale reactors with 

optimised operating conditions have the potential for scale-up to larger scales. 

The capacity of the microwell based systems and miniature bioreactors to mimic 

the performance of conventional lab-scale STR (5L) gave fundamental insight 

into each bioreactor performance. However, there are always few areas that 

should be scrutinised for future improvement in CHO cell cultivation.  

 

Conventionally, microtitre plate experiments are a manual, labour intensive and 

time consuming process. The initial proposal for this study to integrate the 

microtitre plate with a TECAN robotic platform for liquid automation was seen 

as alternative to speed up the process. In order to perform the automation 

platform for mammalian cell culture, the unit should maintain high sterility. 

Hence, the robotic arms should be house in a cabinet (e.g. laminar flow) with 

temperature control and HEPA unit filter. The unit also could be attached to a 

shaking incubator for culture cultivation. Furthermore, the robotic system with 

liquid handling system might be integrated with a flow cytometer for cell 

quantification and analysis. The integration with robotic arms will reduce the 

labour intensity of manual feeding in MTP, thus consequently increasing the 

liquid handling accuracy for sampling, feeding and pH control, thus minimise the 

contamination risks and time. 

 

The versatility of the HEL-BioXplore
TM

 MBR investigated shows that the system 

has the potential for predictive scale translation to conventional lab-scale reactors. 

The variation of impellers and spargers possible with the system provides the 

basis for further exploration. The possibility of the MBR to run 4, 8 or 16 parallel 

bioreactors on the same platform makes it an excellent cell culture tools for 

Quality by Design setting. The development of different feeding strategies and 

optimisation of operating and environmental conditions might be applied in the 

DoE approach. By means of the DoE implementation, a series of reproducible 

results could be generated that would be beneficial in CHO cell cultivation. 
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Besides that, the application of computational fluid dynamic (CFD) and finite 

element model (FEM) might give valuable information on the hydrodynamic 

environment and engineering aspects that are not measureable directly in the 

vessel. Velez-Suberbie, (2013) described fluid motions and energy dissipation 

rate measurement in the 5 L STR that can be used to determine the hydrodynamic 

and shear stress. Furthermore, the experimental values of mixing time and 

volumetric oxygen transfer coefficient measured might be useful to validate the 

computational model (Betts, 2015). 

 

Additionally, each of the miniature systems investigated have the potential to 

perform in early process development and optimisation studies. The microwell 

based systems (MTP and micro-Matrix) which enable parallelism, reproducibility 

and high throughput sequences could allow for cell line screening studies as 

example the selection for high producing clones. Furthermore, these systems 

could offer optimisation studies for media and feed development. The miniature 

bioreactors (MBR) investigated could fit in the process characterisation studies 

where usually bench scale bioreactors have been system of choice. The capability 

of the systems to run parallel with 4 – 16 reactors and with the implementation of 

DoE, several key and critical process characterisation studies can be done. 

 

The antibody produced in this study might be evaluated using different 

downstream processing options to optimise product purification. The method 

developed within this Department of Biochemical Engineering for microscale cell 

separation can be used to compare the material harvested at the end of the 

cultivation. Tait et al. (2009) has developed ultra scale down (USD) approaches 

for centrifugation, whilst Jackson et al. (2006) has developed the membrane 

filtration. Furthermore purification of the antibody product could be accessed 

using the affinity-based chromatography methods for detail analysis of product 

quality and quantity. Finally, a generic and robust framework for rapid bioprocess 

development using small scale bioreactors with combination of downstream 

process mimics could be established. 
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6.6  Publication and conferences attended  

 

Book chapters 

Mohd Helmi Sani and Frank Baganz, (2012). Miniature Bioreactors for Rapid 

Bioprocess Development of Mammalian Cell Culture. Jurnal Teknologi, 59(1), 

pp. 3-4. 

 

Conference 

Sani M. H., Kreukniet M., Robinson G., Baganz F. Comparison of feeding 

strategies for a CHO cell culture process using a single use 24-well miniature 

bioreactor system (micro-Matrix). Poster for 25
th 

Annual ESACT-UK 2015, 

Queens Hotel, Leeds, United Kingdom, 7-8 Jan 2015. 

 

Sani M. H., Kreukniet M., Robinson G., Baganz F.  Initial evaluation of a single 

use 24-well miniature bioreactor system (micro-Matrix) applied to fed-batch 

cultivation of CHO cells. Poster for 11
th

 Annual bioProcess UK Conference, St 

George Hall, Liverpool, United Kingdom, 25-26 Nov 2014. 

 

Mohd Helmi Sani. CHO cell culture at the micro-bioreactor scale. Oral 

presentation for Technology Showcase Forum: Micro-bioreactors: the challenges 

and opportunities for down scale R&D by Applikon Biotechnology UK, Crowne 

Plaza, London, United Kingdom, 3-4 Nov 2014. 

 

Sani, M.H., Micheletti M., Baganz F. A comparison of two different feeding 

methods for CHO cell cultures in shaken microtitre plates. Poster for 10
th

 Annual 

bioProcess UK Conference, BMA House, London, United Kingdom, 3-4 Dec 

2013. 

 

Sani M.H., Micheletti M and Baganz F., Rapid Bioprocess Development Using 

Microwells for Mammalian Cell Culture, Oral Presentation for International 

Conference on Humanities, Social Sciences, Science and Technology (ICHSST 

2012), Cardiff, Wales, 16 July 2012. 
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Appendix 

Appendix A1 

 

Figure A1: Effect of agitation rate on re-oxygenation of during static gassing out 

method in MBR with magnetic driven impeller for two different types of sparger 

A: singular hole sparger, B: horseshoe type sparger. 
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Appendix A2 

 

 

 

 
Figure A2: Effect of agitation rate on re-oxygenation of during static gassing out 

method in MBR for direct driven with two different types of sparger A: singular 

hole sparger, B: horseshoe type sparger.  
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