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ABSTRACT  
 
GNSS shadow matching is a new technique that uses 3D 
mapping to improve positioning accuracy in dense urban 
areas from tens of meters to within five meters, potentially 
less. This paper presents the first comprehensive review of 
shadow matching’s error sources and proposes a program 
of research and development to take the technology from 
proof of concept to a robust, reliable and accurate urban 
positioning product. A summary of the state of the art is 
also included. 
 
Error sources in shadow matching may be divided into six 
categories: initialization, modelling, propagation, 
environmental complexity, observation, and algorithm 
approximations. Performance is also affected by the 
environmental geometry and it is sometimes necessary to 
handle solution ambiguity. For each error source, the 
cause and how it impacts the position solution is 
explained. Examples are presented, where available, and 
improvements to the shadow-matching algorithms to 
mitigate each error are proposed. 
 
Methods of accommodating quality control within shadow 
matching are then proposed, including uncertainty 
determination, ambiguity detection, and outlier detection. 
This is followed by a discussion of how shadow matching 
could be integrated with conventional ranging-based 
GNSS and other navigation and positioning technologies. 
This includes a brief review of methods to enhance 
ranging-based GNSS using 3D mapping. Finally, the 
practical engineering challenges of shadow matching are 
assessed, including the system architecture, efficient 
GNSS signal prediction and the acquisition of 3D 
mapping data. 
 
1. INTRODUCTION 
 
The performance of global navigation satellite systems 
(GNSS) positioning in dense urban areas is poor because 
buildings block, reflect and diffract the signals. Those 
signals with lines of sight perpendicular to the street 
direction are more likely to be blocked or reflected by 
buildings than signals travelling along the street. Thus, the 
signal geometry, and hence the positioning accuracy, is 
much better along the direction of the street than across 
the street [1][2]. 
 



Positioning accuracy in the cross-street direction is of 
great importance to many applications. Examples include 
vehicle lane detection for intelligent transportation 
systems (ITS), location-based advertising, augmented-
reality, and step-by-step guidance for the visually 
impaired and for tourists. Augmenting GNSS with other 
sensors can improve the position solution availability and 
robustness, but does not particularly improve the cross-
street accuracy. A possible solution arises from the 
increasing availability of 3D city models, which enable 
the effects of the buildings on GNSS signal propagation to 
be predicted [3][4]. 
 
GNSS shadow matching is a new technique that 
determines position by comparing the measured signal 
availability and strength with predictions made using a 3D 
city model [1]. It is designed to be used alongside 
conventional ranging-based GNSS positioning in dense 
urban areas to improve the cross-street accuracy. The 
basic principles are described in Section 2. Since 2011, 
several research groups have demonstrated shadow 
matching experimentally, using both single and multiple 
epochs of GNSS data. Cross-street positions within a few 
meters have been achieved in environments where the 
error in the conventional GNSS position solution is tens of 
meters, enabling users to determine which side of the 
street they’re on. Shadow matching has also been 
demonstrated in real time on an Android smartphone. This 
work is reviewed in Section 3. 
 
The potential of shadow matching to provide accurate 
positioning in dense urban areas has been proven. The 
challenge now is to make it sufficiently reliable and 
efficient for deployment in professional and consumer 
products. Thus, shadow matching must: 
 Work across a wide range of different environments, 

not just a few carefully selected test areas; 
 Provide reliable quality metrics to enable it to be 

appropriately weighted within an integrated navigation 
system; 

 Be easily adapted to work across different designs of 
user equipment; 

 Be efficient in its use of processing, data storage, and 
communications capacity; 

 Have access to suitable 3D mapping at a viable price. 
This paper therefore sets out the technical research and 
development challenges that must be met to take shadow 
matching from proof of concept towards a commercial 
product.  
 
Section 4 presents the first comprehensive review of the 
sources of error in shadow matching, explaining each 
error and discussing how it might be mitigated through 
improvements to the shadow matching algorithms. Section 
5 proposes approaches to quality control, comprising 
uncertainty determination and outlier detection, both of 
which are required for a robust positioning system. 
Section 6 discusses the integration of shadow matching 
with conventional ranging-based GNSS positioning and 
other sensors. Then, Section 7 discusses the practical 

engineering of shadow matching, including sourcing and 
dissemination of 3D building data, system architectures 
and efficient GNSS signal prediction. Finally, Section 8 
presents a summary of the research and development tasks 
that are required to take shadow matching to maturity. 
 
2. THE BASIC CONCEPT 
 
Shadow matching uses a 3D city model to predict where 
within a street signals from each satellite can be directly 
received. Consequently, by determining whether a direct 
signal is being received from a given satellite, users can 
localize their position to within one of two areas of the 
street. By repeating this process for several different 
satellites, a position solution can be determined. Figure 1 
illustrates this. 
 

 
 
Figure 1: Principle of Shadow Matching. 
 
In practice, a hypothesis testing approach is adopted, 
whereby an array of candidate positions are scored 
according to how well the predicted and measured satellite 
visibilities match. This enables errors in the matching 
process (see Section 4) to be treated as noise. Shadow 
matching uses a fundamentally different positioning 
method from conventional GNSS. Whereas conventional 
GNSS uses the ranging method, shadow matching uses 
pattern matching, also used in Wi-Fi received signal 
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strength (RSS) fingerprinting and terrain referenced 
navigation (TRN) [5].  
 
Figure 2 shows a typical shadow matching algorithm, 
comprising five steps: 
1) Firstly, a search area is determined using, for example, 

the conventional GNSS position solution and an 
appropriate confidence interval. Within this search 
area, a grid of candidate positions is set up. 

2) For each candidate position, the satellite visibility is 
predicted either using the 3D city model directly or 
from pre-computed building boundaries (the minimum 
elevation above which satellite signals can be received 
at a series of azimuths) at each position. Satellite 
azimuths and elevation angles are obtained from the 
navigation data as for conventional GNSS positioning. 

3) The observed satellite visibility is determined from the 
GNSS receiver’s carrier-power-to-noise-density ratio, 
C/N0, measurements. In a basic shadow matching 
implementation, a signal is assumed to be directly 
received if the signal is tracked and the C/N0 
measurement exceeds a certain threshold. Signals 
tracked with a lower C/N0 are assumed to be reflected 
or diffracted, i.e. the direct path to the satellite is 
assumed to be blocked. 

4) The next step is to score each candidate position 
according to the match between the predicted and 
measured satellite visibility. The simplest approach is 
to score one point for each matching satellite and zero 
for those satellites that do not match. These scores may 
be depicted as a map, as shown later in the paper. 

5) Finally, a position solution is derived from the 
matching scores of all of the candidate positions. A 
simple approach is to average the positions of the 
highest scoring candidates. 

To get the best performance out of the shadow-matching 
technique, each of these five steps must be optimized.  
 

 
 
Figure 2: A Typical Shadow Matching Algorithm 
 

3. A BRIEF HISTORY OF SHADOW MATCHING 
 
The shadow matching concept was independently 
conceived by four different research groups [6][7][1][8], 
each publishing before becoming aware of the work of the 
others. In [7], the concept is extended to matching the 
predicted and measured C/N0.  The term ‘shadow 
matching’ was first introduced in 2011 [1], with the first 
experimental results quickly following. Tests of a full 
shadow matching algorithm are briefly summarized in [8], 
with an average error of 4m reported for a single-epoch 
implementation and an accuracy within 1m achieved for 
observations over several hours. A simpler shadow 
matching experiment using a geodetic multi-constellation 
GNSS receiver is described in detail in [9]. In these tests, 
shadow matching identified the user to be on the correct 
side of the street more than 97% of the time and 
distinguished the footpath from a vehicle lane 90% of the 
time. A GPS World publication at the beginning of 2012 
then brought shadow matching to a wider audience [10]. 
 
Following the initial proof of concept, a wide range of 
tests have been published with different shadow-matching 
algorithm designs spanning static, pedestrian and vehicle; 
single and multiple epochs; and with different classes of 
GNSS receiver. Static testing of a full single-epoch 
shadow-matching algorithm at multiple sites using a 
geodetic GNSS receiver is described in [11]. In these tests, 
the cross-street positioning error was within 5m for 89% 
of the time and within 2m for 64% of the time. The utility 
of predicting diffracted signals was also investigated. In 
[12], it was shown that a consumer-grade GPS chip with a 
geodetic-grade antenna can achieve an RMS error of 4m 
at a site where the building geometry allows shadow 
matching to work in two dimensions. 
 
Multi-epoch static positioning using a particle filter was 
demonstrated in [13]. Here, reflection and diffraction of 
the GNSS signals was also modelled and convergence of 
the position solution to within 2m was achieved after 32s 
of data. 
 
The first smartphone shadow matching results were 
presented in [14], closely followed by a real-time 
demonstration [15]. A direct comparison of smartphone 
and geodetic receiver shadow matching across 20 sites 
using the same algorithm showed that the geodetic 
receiver is almost twice as accurate as the smartphone in 
the cross-street direction [16]. This is primarily due to the 
antenna characteristics, as discussed in Section 4.7. To 
mitigate this, the shadow matching algorithm was adapted 
to treat the measured satellite visibility as fuzzy, with the 
probability of the received signal being direct modelled as 
a  function of the C/N0 measurement [16][17]. 
 
In [18], it was shown that shadow matching can be used 
for road lane identification in relatively open areas by 
making use of the shadows cast by mobile phone masts. 
However, receiver firmware modifications are needed to 
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detect these at speed because C/N0 measurement with a 
high spatial resolution are needed. 
 
Recently, several research groups have demonstrated 
multi-epoch shadow matching for a moving pedestrian 
using a particle filter [19][20][21][16][22]. In tests with 
smartphone data, the cross-street accuracy was 12.8m 
using conventional GNSS, 4.6m using single-epoch 
shadow matching and 2.2m using the particle filter [16]. 
Meanwhile, the first three dimensional shadow matching 
algorithm was demonstrated by simulation in [22].  
 
Finally, a number of researchers have demonstrated the 
reverse process of building a 3D city model using GNSS 
measurements [23][24][25][26]. In [19][20], shadow 
matching and map building were combined into a 
simultaneous localization and mapping (SLAM) process. 
 
4. ERROR SOURCES AND THEIR MITIGATION 
 
GNSS shadow matching and conventional GNSS 
positioning operate on different physical principles. 
Shadow matching applies the pattern matching positioning 
method to C/N0 (or signal-to-noise) measurements, 
whereas conventional GNSS positioning applies the 
ranging method to pseudo-range measurements [5]. 
Consequently, their error sources are very different. The 
satellite clock, ephemeris, ionosphere and troposphere 
propagation errors that impact conventional GNSS 
positioning have very little impact on C/N0 measurements 
(apart from ionospheric scintillation), so do not affect 
shadow matching. Shadow matching is affected by 
multipath, non-line-of-sight reception, radio frequency 
interference and signal attenuation. However, these affect 
C/N0 and ranging measurements differently. Finally, there 
are many error sources which impact shadow matching, 
but not conventional GNSS positioning. 
 

Shadow matching step In
iti

al
is

at
io

n 

M
od

el
lin

g 

Pr
op

ag
at

io
n 

En
vi

ro
nm

en
ta

l 
co

m
pl

ex
ity

 

O
bs

er
va

tio
n 

A
lg

or
ith

m
 

ap
pr

ox
im

at
io

ns
 

 1. Determine search area       
 2. Predict sat. visibility       
 3. Measure sat. visibility       
 4. Score pos. hypotheses       
 5. Determine position       
 
Table 1: Mapping of error sources to shadow matching 
algorithm steps 
 
This section reviews all of the (known) sources of error in 
shadow matching. It discusses their causes, describes how 
they impact the position solution and presents examples, 
where available. Improvements to the shadow-matching 
algorithms to mitigate these errors are also proposed. 
Error sources may be divided into six categories: 

initialization, modelling, propagation, environmental 
complexity, observation, and algorithm approximations. 
Table 1 shows which error sources affect each stage of the 
shadow matching process (Figure 2). 
 
The section begins with a discussion of environmental 
geometry, loosely equivalent to solution geometry and 
dilution of precision in ranging. This is followed by an 
introduction to ambiguity. Each error source is then 
discussed in turn. A review of position determination 
methods is included within Section 4.8. 
 
4.1 Effect of Environmental Geometry 
 
The accuracy of a shadow-matching position solution is 
affected by the environmental geometry in three ways: 
building distribution, building height to street width ratio, 
and scale. Street direction also has an effect because of the 
orbital distribution of the GNSS satellites. Figure 3 shows 
two different ways in which buildings may be distributed 
in dense urban areas. Where there are high-rise towers 
with large gaps between the individual towers, the GNSS 
signal shadowing will vary in both the along-street and 
cross-street directions, enabling a two dimensional 
position solution to be obtained from shadow matching 
[8][13]. 
 

 
 
Figure 3: Building distributions in urban areas 
 
In older urban areas comprising medium-rise buildings 
(and often narrower streets), the gaps between adjacent 
buildings are too narrow to allow GNSS signals through, 
resulting in little variation in signal shadowing along the 
street. In these areas, accurate shadow matching is 
generally limited to the cross-street direction, along which 
conventional GNSS is less accurate [2]. Figure 4 
illustrates this with a shadow-matching scoring map based 
on smartphone measurements. The algorithm 
configuration is described in [17] and the scores are 
normalized to a scale of 0 to 1. The highest-scoring area 
(shown in dark red) is on the correct side of the street, but 
extends for a long distance along the street, so there is a 
large position uncertainty in the along street direction. 
Figure 5 shows a similar scoring map for a user located 
near a junction. Here, the highest-scoring area is much 
smaller. 
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Figure 4: GNSS shadow-matching scoring map for a mid-
street location with no large gaps between buildings (the 
cross shows the true position and white areas are indoor 
locations) 
 

 
 
Figure 5: GNSS shadow-matching scoring map for a 
location near a road junction (the cross shows the true 
position and white areas are indoor locations) 
 
The next environmental geometry factor that affects 
shadow-matching performance is the building height to 
street width ratio. Shadow matching relies on there being 
satellites that are directly visible in some parts of the street 
and blocked by buildings in others. The more of these 
partially visible satellites there are, the more accurate and 
reliable shadow matching should be. If the building height 
to street width ratio is low, the environment will be open 
and most satellites will be directly visible except very 
close to buildings. Shadow matching will not work well 
under these conditions; it will only be able to determine 
when the user equipment is close to a building. However, 
as conventional GNSS positioning works well in open 
environments, this is not a problem. Conversely, if the 
building height to street width ratio is high, most satellites 
will be blocked at all candidate positions, leaving only a 
few available for shadow matching. Adding reflected 
signal prediction (see Section 4.5) to the shadow-matching 
concept should improve performance under these 
conditions, as should the increase in the number of GNSS 
satellites as Galileo and Beidou development continues. 
 

Simulations have been conducted to quantify the impact 
of building height to street width on shadow-matching 
performance [1]. These also highlighted a dependency on 
street direction, with fewer satellites directly visible in 
north-south streets than east-west streets (assuming a 45 
latitude). Consequently, both conventional GNSS and 
shadow matching were predicted to work better in east-
west aligned streets. The minimum building height to 
street width ratio tested was 0.5 as, below this, 
conventional GNSS was predicted to work well (assuming 
two constellations). As the building height to street width 
ratio increases above 0.5, shadow-matching performance 
was predicted to degrade with position errors roughly 
doubling at a height to width ratio of 1.5 for north-south 
streets and 3 for east-west streets. Experimental work is 
needed to verify these results. 
 
The final environmental factor to consider is scale. For 
each partially visible satellite, the buildings divide the 
environment into regions where the signal can be directly 
received and regions where it cannot. The bigger the 
buildings and spaces between them, the larger these 
regions will be and the coarser shadow matching will 
become. The accuracy of an ‘ideal’ shadow matching 
system, ignoring modelling errors (Section 4.4) and signal 
propagation effects (Section 4.5) is thus directly 
proportional to the scale of the environment. The practical 
accuracy of shadow matching depends on many other 
factors, some of which vary with the scale of the 
environment and some of which do not. For example, the 
area over which a signal is affected by diffraction, 
blurring the boundary between shadowed and unshadowed 
areas, is proportional to the distance of the structure 
causing that diffraction. Similarly, if the 3D city model is 
represented as a set of building boundaries [2], the impact 
on positioning resolution of the boundary resolution 
depends on how far away the buildings are. Thus, a 1 
azimuth resolution corresponds to a 0.35m positioning 
resolution for a building 20m away and a 1.75m 
positioning resolution for a building 100m away. Again, 
experimental work is needed to assess the practical impact 
of scale on shadow-matching performance. 
 
4.2 Ambiguity in Shadow Matching  
 
An inherent characteristic of all pattern-matching 
positioning techniques is that there is sometimes a good 
match between measurements and predictions at more 
than one candidate position. In GNSS shadow matching, 
ambiguity can occur when the building geometry is 
repeated at different locations within the search area such 
that the same combination of satellites is predicted to be 
visible at multiple non-contiguous locations. However, 
ambiguity can arise as a consequence of errors in the 
shadow-matching process. Thus, the score at the true 
position may be reduced, while the scores at some of the 
incorrect positions may be inflated. Figure 6 shows an 
example of an ambiguous shadow-matching scoring map 
based on smartphone measurements. The algorithm 
configuration is described in [17] and the scores are 



normalized to a scale of 0 to 1. Maximum scores (shown 
in dark red) are obtained at several different locations 
within the search area, giving several possible position 
solutions.  

 

 
 
Figure 6: GNSS shadow-matching scoring map showing 
an ambiguous position solution (the cross shows the true 
position and white areas are indoor locations) 
 
There are a number of ways of mitigating the ambiguity 
problem. These are not mutually exclusive, so can be 
deployed in combination. The possibilities are as follows: 
1) Using positioning algorithms that are designed to 

handle ambiguity as discussed generically in [27] and 
for shadow matching in Section 4.8 

2) Minimizing the search area; the fewer candidate 
positions under consideration, the less likely an 
ambiguous match will occur. However, this can also 
result in a wrong position, as discussed in Section 4.3. 

3) Improving the accuracy of the scoring map through 
improvements to the whole shadow matching process, 
which is the focus of much of this paper. With fewer 
errors propagating through, the true position is more 
likely to score significantly higher than the other 
candidates.  

4) Using more measurements, combining information 
from successive epochs and/or using additional GNSS 
constellations (when available). However, this only 
works where the errors in the position hypothesis 
scores are random, not when they are systematic. 
Experiments with four-constellation shadow matching 
(achieved by combining two separate datasets) showed 
no significant improvement over two-constellation 
results [17]. From this, it can be concluded that there 
are significant systematic errors that must be 
addressed.  

 
4.3 Initialization Errors 
 
The initialization phase of shadow matching uses external 
information, such as the conventional GNSS position 
solution, to determine the search area for the satellite 
visibility prediction and position hypothesis scoring 
phases. In experiments published to date (see Section 3), 
the search area has been defined as a fixed-radius circle or 
fixed-side square centered about the initialization position 

or the true position (which is not available in a practical 
system). This does not account for variation in the quality 
of the initialization information supplied to the shadow-
matching algorithm. 
 
If the search area is too big, the computational load will be 
larger than necessary and an ambiguous scoring map is 
more likely. Conversely, if the search area is too small, it 
will often exclude the true position, making a correct 
shadow matching solution impossible. Figure 7 illustrates 
this. Problems can also occur when the true position is 
right at the edge of the search area as it may be 
inadequately weighted within the position solution when 
there is ambiguity in the matching process. 
 

 
 
Figure 7: Shadow Matching Search Area Determination 
 
Effective initialization of shadow matching therefore 
requires: 
 Reliable position information from other positioning 

systems, i.e. no large outliers; 
 Reliable information on the uncertainty of the 

positioning information; 
 An algorithm that determines the optimum search area 

from the above information (and the mapping data). 
 
If the size of the search area is scaled with the uncertainty 
of the initialization position, a fixed probability of the 
position being within the search area is maintained, so 
ambiguity is not introduced unnecessarily. For ranging-
based positioning, such as conventional GNSS, the 
probability distribution of the initialization position 
depends on the signal geometry, so the position is more 
accurate in some directions than others [5]. Therefore, if 
the search area is approximated to a circle (or square), 
there will be both an increase in ambiguity and an 
increased chance of the true position lying outside the 
search area as shown in Figure 8. Therefore, it is 
important that the initialization position uncertainty is 
considered in two dimensions. This requires three 
parameters: either the semi-major axis size, semi-minor 
axis size and axis direction of the error ellipse, or the 
north position error variance, east position error variance, 
and north-east position error covariance. 
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Figure 8: Effect of approximating the search area to a 
circle 
 
A key problem with using conventional ranging-based 
GNSS for initialization is that the accuracy varies. In open 
areas, the horizontal position error is usually within 10m. 
In dense urban areas, position errors of a few tens of 
meters are typical, but much larger errors can occur when 
there is NLOS reception via a distant reflector. 
Commercial position solutions do not typically come with 
much quality information. Dilution of precision (DOP) 
values provide information on the solution geometry, but 
not the degree of multipath and NLOS contamination. 
Furthermore, it is not possible to know how the 
positioning algorithm deals with outliers. 
 
The best way of minimizing these problems is for the 
shadow matching system to generate its own ranging-
based GNSS solution so that the quality and uncertainty of 
that solution is well known. By using a 3D city model, it 
should also be possible to compute more realistic error 
bounds for that solution, though this requires further 
research. This is part of the intelligent urban positioning 
(IUP) concept [28], discussed in Section 6.1, in which the 
3D city model can also be used to improve the accuracy of 
the ranging-based position solution. However, this all 
relies on the availability of GNSS user equipment that 
outputs pseudo-ranges (see Section 7.1). 
 
Wi-Fi positioning is another possible source of 
initialization. Because buildings also block Wi-Fi signals, 
it should be better than GNSS at distinguishing between 
parallel streets. However, it is difficult to determine the 
quality and accuracy bounds of the solution as commercial 
Wi-Fi positioning software does not provide this 
information. Reliability also depends on how the Wi-Fi 
positioning algorithms work, how many access points are 
used, and how the database is created, all of which are 
kept confidential by the supplier. Empirically determining 
suitable uncertainty bounds for Wi-Fi position 
measurements as a function of the building geometry 
would require a large amount of experimental data. 
 

For multi-epoch shadow matching, whether stand-alone, 
part of an IUP system, or part of a multisensor navigation 
system, the previous epoch’s position solution is available 
for determining the search area for the current epoch. This 
is potentially the most reliable approach as it uses the 
most information, provided the algorithms correctly 
account for the solution ambiguity and motion between 
epochs. However, multi-epoch position is not suited to all 
applications of shadow matching. 
 
4.4 Modelling Errors  
 
The prediction phase of shadow matching uses a 3D city 
model to predict which GNSS signals are directly 
receivable at each candidate position within the search 
area. This requires an accurate city model, but it also 
requires an effective method for determining which 
buildings affect signal reception. The area containing 
these buildings is sometimes called the region of interest 
(ROI) [8]. If an ROI larger than necessary is used, the 
processing load will be increased. However, if the ROI is 
too small, important buildings will be omitted, resulting in 
blocked signals being predicted as direct line-of-sight 
(LOS), causing position errors. Errors due to “missing” 
buildings can potentially be compensated using outlier 
detection (Section 5.3). However, the number of outliers 
(from all causes) must be minimized as outlier detection 
does not work when there are too many errors. 
 
Within the shadow-matching literature, there is currently 
no consensus on ROI size and shape. In [2][11][16][17], 
buildings within a 300m radius of each candidate position 
are considered, while the overall ROI is limited to 
200200m in [8] and 100100m in [18]. In [13], buildings 
within 100m of each candidate are considered. These 
differences may reflect the characteristics of each research 
group’s test site. Where all buildings are of a similar 
height, a relatively small ROI should suffice. However, 
buildings that are much taller than their neighbors will 
affect GNSS signal reception over a much wider area. A 
possible solution to this problem is to add ROI guidance 
to the city model. For example, each 1010m tile could be 
accompanied by a set of coordinates defining the 
perimeter of the area containing those buildings which 
impact GNSS reception within that tile. Alternatively, the 
height of the tallest in each 5050m tile could be used to 
determine whether to include that tile in the ROI. 
 
CityGML (the Open Geospatial Consortium’s approved 
standard for storage and exchange of virtual 3D city 
models, [29]) defines 3D city models as having varying 
levels of detail (LOD) [30]. LOD 0 is a digital terrain 
model, sometimes called a 2.5D model. LOD1 is a block 
model without any roof structures, i.e. all the buildings 
have flat roofs. Finally, LOD 2 is a full 3D city model 
having explicit roof structures and potentially associated 
texture.   
 
City models are commonly stored using a boundary-
representation approach, where each face (wall, floor, 
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roof) of a building is described separately and a collection 
of faces grouped to represent the building. To minimize 
storage, these can be represented as polygons, described 
by the coordinates of each node (corner point).  However, 
due to rounding errors this may not result in planar faces, 
which can cause problems for some of the techniques used 
to predict GNSS signal propagation, such as ray tracing.  
Thus, polygons are frequently triangulated, either on the 
fly or as a pre-processing stage, and a triangular mesh 
created prior to visualization or further processing. The 
greater the level of detail, the greater the number of 
triangles and hence the greater the time required for 
triangulation and the computational complexity of 
subsequent steps. Figures 9 and 10 show two 3D models 
of the same area of London, with Figure 9 derived from 
LOD 1 data and Figure 10 derived from LOD 2 data.    
 

 
 
Figure 9: LOD 1 3D model of Central London near 
Fenchurch Street (data from Ordnance Survey) 
 

 
 
Figure 10: LOD 2 3D model of Central London near 
Fenchurch Street (data from Z Mapping) 
 
Errors due to approximations in the city model directly 
lead to errors in the shadow matching solution. If a 
modelled building is displaced horizontally by 1m from its 
true position, the shadows it casts will also be displaced 
by 1m, so a shadow-matching position derived only from 
that building would be in error by 1m. In practice, 
multiple buildings are used, so the contribution to the 
shadow-matching position error will be a weighted 
average of the individual building displacements. 
Environmental geometry (Section 4.1) limits shadow 
matching precision to about 0.5m [1], while the physics of 

signal propagation at GNSS wavelengths may limit 
precision to 12m, as discussed in Section 4.5. Thus, a 
horizontal accuracy and resolution of 0.5m is a reasonable 
requirement to set for the city model. 
 
LOD 1 city models represent roofs as flat, and are created 
by a process of ‘extrusion’ which builds these models by 
taking 2D buildings to a given height. The provided height 
may vary depending on the data source, and could be an 
average height for the rood, an eaves height or a ridge 
height. Furthermore, real roofs may be pitched, while flat 
roofs may include perimeter walls, lift shaft and stairwell 
heads and other furniture, such as fans and satellite dishes. 
Even many LOD 2 models may omit these features. In 
practice, any roof feature that is visible from the ground 
can impact (ground-level) shadow matching. Figure 11 
shows some rooflines around London as viewed from 
street level, where a GNSS antenna would typically be. 
The visibility of roof details varies.  The effect of roofline 
modelling on shadow matching is thus a subject for 
further study. 
 

 
 
Figure 11: London rooflines viewed from the street below  
 

 
 
Figure 12: Impact of vertical model error on shadow 
position 
 
The error in the shadow position due to a vertical error, 
h, in the city model is h / tan, where  is the satellite 
elevation angle, as shown in Figure 12. Thus, shadow 
matching using low-elevation satellites is more 
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susceptible to roof modelling errors. Consequently, it 
could be beneficial to incorporate elevation-dependent 
weighting of the satellite signals within the shadow-
matching algorithm. 
 
As discussed in Section 7.2, GNSS signal propagation 
prediction using a 3D city model can be highly 
computationally intensive. This can be mitigated by 
simplifying the model so that each building is represented 
by fewer blocks or triangles. This is known as 
‘generalization’ in the geographic information science 
(GIS) community, i.e., the process by which a map with 
reduced complexity is derived from a more detailed 
spatial data source, while retaining the major 
characteristics of the source data. This will clearly result 
in increased shadow-matching positioning errors. 
Therefore, research is needed to determine: 
 Acceptable bounds for the 3D model approximation 

errors, given the other sources of error in shadow 
matching; 

 Which model simplifications have the greatest and 
least impact on shadow matching (e.g., edges are more 
important than faces); 

 How to simplify the model in such a way that the 
average impact on shadow-matching performance is 
minimized. 

An extreme form of simplification is the ‘urban trench’ 
model [31], whereby all buildings are represented as a pair 
of continuous walls of equal height, one on each side of 
the street. This is highly efficient where applicable, but 
can lead to large errors if used inappropriately. 
 
The real-time computational load can be reduced 
dramatically using building boundaries [2]. A building 
boundary is precomputed for each candidate position and 
describes the minimum elevation above which satellite 
signals can be received at a series of azimuths. However, 
converting the 3D city model to a building boundary array 
introduces additional errors due to the quantisation of the 
building boundaries. As only discrete azimuths are 
considered, the boundaries of shadowed regions are 
effectively shifted to wherever there is a change in the 
azimuth to which the shadowed region corresponds. The 
position resolution due to azimuth quantization is r, 
where  is the azimuth resolution and r is the distance to 
the building causing the shadowing. Thus, for a 1 
azimuth resolution, the position resolution for a building 
20m away is 0.35m. 
 
The elevation angle will also be quantized to limit the 
amount of data required to represent the building 
boundaries. This results in a position resolution of 
hsin2, where  is the elevation resolution,  is the 
elevation angle at the building boundary and h is the 
building height. For a 1 elevation resolution, 45 
elevation, and 20m building height, the position resolution 
is 0.70m. As the position resolution is poorer for lower 
elevation angles, it is worth considering storing building 
boundaries in terms of the sine of the elevation so that 
lower elevations are quantised less. 

Another issue to beware of is differences in datum 
between the city model (or building boundaries) and 
GNSS. Mapping is supplied in a local datum that moves 
with the tectonic plates, whereas GNSS uses a global 
datum, such as WGS84 or ITRF, that averages out plate 
movement across the Earth. Therefore, it is necessary to 
convert either the city model to the global datum or the 
GNSS positioning to the local datum. A datum conversion 
for the final position solution may also be required. Any 
errors in these datum conversions will result in position 
errors. 
 
An obvious source of errors in shadow matching is out-of-
date city models. As 3D mapping is relatively underused, 
it is not currently updated as frequently as 2D mapping. 
For example, Ordnance Survey’s 2D MasterMap product 
is updated every 6 weeks. If a building is present in the 
real world, but absent from the city model, or vice versa, 
large shadow-matching errors are likely to arise. 
Mitigating this problem requires a mechanism for 
maintaining up-to-date city models (see Section 7.3) and 
the implementation of outlier detection within the shadow-
matching algorithm (see Section 5.3). A particular 
problem is buildings under construction, which can 
change on a daily basis; a potential solution to this 
problem is to mark particular regions of the city model 
(and derivations thereof) as ‘do not use’ so that signals 
affected by construction sites are simply omitted from the 
shadow-matching process. 
 
4.5 Signal Propagation Effects 
 
Basic versions of shadow matching assume that GNSS 
signal propagation is much simpler than it really is, 
leading to errors. For example, signals are assumed to be 
either directly received or completely blocked by 
buildings. However, real buildings also reflect GNSS 
signals. Surfaces that are smooth to within about a quarter 
of a wavelength (~48mm for GPS L1) tend to produce 
specular reflection, whereas rougher surfaces scatter. 
Specular reflection produces a strong signal in a particular 
direction, whereas scattering produces a weak signal 
across a wide range of angles. Consequently, in dense 
urban areas, most signals that are not received directly are 
received via reflection, provided the user equipment is 
sufficiently sensitive Thus, signals from approximately 
40%  more satellites were observed with a Samsung 
Galaxy S3 smartphone than a Leica GS15 geodetic GNSS 
receiver. 
 
Scattered signals are significantly weaker than directly 
received signals, so are relatively easy to distinguish using 
C/N0. However, specularly reflected signals can be almost 
as strong as directly received signals. Furthermore, as a 
result of environmental effects (Section 4.6) and antenna 
limitations, particularly on smartphones (Section 4.7), 
some specularly reflected signals can be stronger than 
some directly received signals. This can confuse the 
shadow matching algorithm, resulting in a position error. 
Figure 13 shows an example.  



 
 
Figure 13: GNSS shadow-matching scoring map with an 
error due to a specular reflection (the cross shows the true 
position and white areas are indoor locations)  
 
A potential solution to this problem is to predict reflected 
signals as well as directly received signals. This is 
essentially the power matching concept first proposed in 
[7] and subsequently demonstrated in [13]. However, in 
[13], it was assumed that all buildings were equally 
reflective and tests were performed in an environment 
where this assumption was realistic. In practice, different 
buildings will exhibit different levels of reflectivity at 
GNSS wavelengths, depending on the physical and 
electrical characteristics of their surfaces. Some surfaces 
absorb more of the signal energy than others. There is also 
no clear boundary between specular reflection and 
scattering; a mixture of the two effects can occur. For 
example, at optical wavelengths, glass and metal buildings 
exhibit more specular reflection than brick and stone 
buildings, which mainly scatter. Substantial further 
research is thus required, including: 
 An experimental study into how different types of 

building reflect GNSS signals, potentially including 
the testing of different materials in an anechoic 
chamber; 

 Development of an efficient reflectivity prediction 
method, and  

 Enhancement of the shadow matching algorithms to 
make use of reflection predictions.  

 
A second common approximation is the assumption that 
the signal path between the satellite and the user antenna 
is a single ray. The wavelength of GNSS signals (~0.19m 
for GPS L1) is significant in comparison with buildings. 
The signal path is therefore determined by the Fresnel 
zones, such that the effective radius of the signal footprint 
at a blocking or reflecting object is car , where r is the 

distance of the object from the user antenna and ca is the 
carrier wavelength. Thus, for a building about 10m away, 
the diameter of the signal footprint is about 3m. This has 
two consequences. Firstly, a building can partially block 
or partially reflect a signal. Secondly, variations in the 
building surface over the signal footprint can cause both 
constructive and destructive interference, depending on 

the angle of incidence. Consequently, a diffraction pattern 
may be observed as the user and/or satellite move. 
 
In practice, when a GNSS signal is blocked by a building 
according to the ray approximation, that signal is still 
receivable if the line of sight to the satellite is within about 
5 of the building boundary, either the top or the sides 
[32]. The signal strength steadily drops as the line of sight 
moves further behind the building and superimposed on 
this is a diffraction pattern. An example is shown in 
Figure 14 [2]. Based on a ray approximation, the satellite 
was predicted to be directly visible between 9.26 and 9.68 
hours. The data was collected in Central London using a 
Leica Viva GS15 geodetic receiver. 
 

 
Figure 14: Measured GNSS signal to noise when the 
signal is partially blocked by a building [2]. 
 
The consequence of this for shadow matching is that there 
is no sharp boundary between regions where a signal can 
be received and regions where it cannot. Instead, there is a 
gradual transition. Thus, the wavelength of GNSS signals 
and their resulting Fresnel radii fundamentally limit the 
positioning resolution of the shadow matching approach. 
Further research is needed to determine what this 
resolution limit is. However, experimental results 
published by several research groups (see Section 3) 
suggest that this limit is within 2m. Short of redesigning 
GNSS to operate at higher frequencies, there is very little 
that can be done to mitigate this phenomenon as it results 
from the laws of physics, not the engineering. 
 
Predicting the ‘diffraction region’ at the edge of buildings 
was attempted in [11], but this had little effect on shadow-
matching performance. Another possibility is to treat these 
signals as having non-zero probabilities of being both 
direct LOS and NLOS and computing the matching scores 
as a weighted average of the two hypotheses. The 
probabilities used for this weighting could be varied 
according to how close to the building boundary the 
predicted line of sight is. This would be consistent with 
the probabilistic hypothesis scoring requirement discussed 
in Section 4.8. 
 



4.6 Environmental Complexity 
 
An underlying assumption of shadow matching is that 
GNSS signals are only affected by the surrounding 
buildings and other permanent structures. However, the 
signals are also affected by other objects in the 
surrounding environment that are impractical to model. 
Road vehicles can block and reflect GNSS signals. Thus a 
signal that would normally be direct line of sight could be 
temporarily blocked, while a strong reflection could be 
received at locations where a signal is normally weak. 
High-sided vehicles, such as London’s double decker 
buses, are a particular problem. 
 
Outlier detection (Section 5.3) could be used to minimize 
the impact of vehicles on shadow matching. Elevation-
based signal weighting within the scoring process may 
also be useful as lower elevation signals are more likely to 
be affected by vehicles. Similarly, mounting the antenna 
as high as possible could help, though this is impractical 
for many applications. 
 
Street furniture, such as bus shelters, vending booths, 
telephone kiosks and advertising displays will also have 
an impact though, in principle, this could be incorporated 
in the 3D city model. Lamp posts are probably too thin to 
have much of an impact. GNSS signals are also affected 
by foliage, particularly trees [33]. Foliage attenuates 
signals with the result that a direct LOS signal could be 
misclassified as NLOS. It also varies with the season, 
making it harder to predict. 
 
Radio frequency interference, including deliberate 
jamming, will also affect shadow matching. Typically, all 
C/N0 measurements will be reduced by a common factor. 
To mitigate this, some form of interference detection is 
required. Because the noise exceeds the signal strength 
prior to correlation within the receiver (a common feature 
of spread spectrum signals), interference can be measured 
using the receiver front-end. However, making use of this 
in shadow matching requires the receiver manufacturer to 
output this information. An alternative is to use the C/N0 
measurements of those signals predicted to be direct LOS 
throughout the search area to rescale the C/N0 
measurement set. 
 
For vehicle applications, the host vehicle can affect the 
C/N0 measurements, particularly where the user antenna is 
mounted inside. Experiments are thus needed to determine 
the impact of this. 
 
Finally, GNSS signals are attenuated by the human body, 
particularly if the antenna is close [34][35]. In the 
smartphone shadow-matching experiments reported in 
[16][17], the phone was handheld with the experimenter 
facing four different ‘compass points’ at each test site. 
Shadow matching was successfully demonstrated under 
these conditions, so body attenuation does not usually 
prevent it from working. However, its effect on 
performance needs to be properly quantified. 

4.7 Observation Errors 
 
The observation step in shadow matching determines 
which signals are being received via a direct line-of-sight 
path and which are not. Clearly, any signal above the 
masking angle that is not being tracked at all is not 
receivable via a direct LOS path. Otherwise, the C/N0 (or 
signal to noise ratio (SNR)) measurements must be used to 
determine whether reception is direct LOS or NLOS. In a 
basic implementation of shadow matching, a simple 
threshold is used. However, there are several factors that 
complicate the determination of LOS/NLOS status from 
C/N0. These can result in misclassification of signals, 
potentially resulting in positioning errors. 
 
The first factor is variation in the satellite transmission 
powers. Each GNSS constellation transmits signals at 
different powers; while there can also be variations 
between different generations of satellite within the same 
constellation. Furthermore, the transmission powers of 
individual satellites vary, starting out several dB above the 
nominal level and then gradually decaying with age. An 
obvious solution is to provide the shadow matching 
algorithm with the transmission powers of all of the 
satellites so it can scale the LOS/NLOS detection 
thresholds accordingly. This information could be 
distributed with the 3D mapping data (see Section 7.1). 
Alternatively, the transmission power can be estimated 
from the C/N0 measurements taken when each satellite is 
at a high elevation and predicted to be directly receivable 
across all high-scoring candidate positions. Algorithms 
should be developed to do this and should incorporate a 
long averaging time with outlier detection, but still be 
responsive to changes as each satellite ages. 
 
The second factor is variation in the user antenna gain 
pattern. A geodetic-grade antenna has a higher gain than a 
consumer- or automotive-grade antenna, which in turn has 
a much higher gain than a smartphone antenna. There can 
also be variations of a few dB-Hz due to the design of the 
receiver front-end. A strong direct-LOS signal will exhibit 
a C/N0 of more than 40 dB-Hz in a geodetic receiver, such 
as the Leica Viva series. However, in tests of a Samsung 
Galaxy S3 smartphone in an open environment, where 
nearly all signals should be direct LOS, few C/N0 
measurements above 30 dB-Hz were observed [17]. 
Consequently, different LOS/NLOS detection thresholds 
are needed for different types of user equipment. 
 
The user antenna gain pattern also varies with the angle of 
reception. For a typical right-hand-circularly-polarized 
(RHCP) antenna the gain is highest for signals at normal 
incidence and drops as the angle of incidence increases. 
For application where the user antenna remains horizontal, 
this translates into a variation in antenna gain with the 
satellite elevation angle, which is known, so this effect can 
be calibrated and compensated for. Otherwise, it is 
necessary to maintain a 3D attitude solution in order to 
perform this compensation. 
 



Smartphones have linearly-polarized antennas, which 
exhibit significant nulls for signals with lines of sight 
parallel to the axis of the antenna. The gain varies 
approximately as the sine of the angle subtended by the 
antenna axis and the signal line-of-sight vector at the 
antenna. Signals within a 30 cone are thus attenuated by 
a factor of 2 (3 dB) or more. As a smartphone may be held 
at almost any angle, it is not possible to calibrate and 
compensate for this effect unless a 3D attitude solution is 
available; this can be difficult to generate using 
smartphone sensors. 
 
Strong specularly reflected signals are left-hand circularly 
polarized (LHCP), provided the angle of incidence at the 
reflector is less than Brewster’s angle and the reflector is 
smooth. A RHCP antenna will attenuate LHCP signals by 
about 10 dB at normal incidence. This makes it easier to 
distinguish direct LOS from strong NLOS signals using 
C/N0 measurements and minimizes the impact of 
multipath interference on the C/N0 of the direct signals. 
However, the polarization discrimination of a RHCP 
antenna drops as the angle of incidence increases. For 
signals incident within its plane, the antenna is effectively 
linearly polarized and has no polarization discrimination 
at all. Thus, for a horizontally-mounted antenna, the 
ability to distinguish between LOS and NLOS signals 
increases with the satellite elevation angle. This provides 
further motivation for allocating higher weighting to 
higher elevation signals within shadow matching’s 
position hypothesis scoring process (Section 4.8) and thus 
needs further study. Using a dual-polarization (RHCP and 
LHCP) antenna [36] can improve the sensitivity of 
LOS/NLOS determination. However, additional receiver 
hardware is required and the elevation dependency 
remains. Where a linearly-polarized smartphone antenna 
is used, there is no gain discrimination between RHCP 
and LHCP signals. With the nulls in the gain pattern as 
well, this means that some NLOS signals can be stronger 
than some direct LOS signals, regardless of the satellite 
elevation. 
 
The final factor impacting LOS/NLOS determination is 
how the receiver measures the carrier-power-to-noise-
density ratio, C/N0. Fundamentally, C/N0 is a measure of 
postcorrelation signal-to-noise ratio. However, some 
receivers use precorrelation SNR measurement techniques 
that only approximate C/N0, depending on the power 
spectrum of the noise [37]. Some manufacturers also 
adjust their SNR measurements to compensate for 
antenna/receiver losses, whereas others don’t. 
Furthermore, the C/N0 measurements themselves are 
subject to noise, which is most significant for weak 
signals. With a 1s averaging time, the C/N0 measurement 
noise SD is about 1 dB-Hz at 20 dB-Hz, increasing to 
about 3 dB-Hz at 15 dB-Hz [38]. 
 
For any GNSS user equipment, it is thus necessary to 
perform some form of calibration of the C/N0 threshold(s) 
for determining LOS/NLOS status to account for the 
antenna gain, receiver losses and C/N0 or SNR 

measurement biases. A universal shadow-matching 
algorithm that uses the same tuning parameters for all 
designs of user equipment is thus not feasible, which has 
implications for server-based shadow matching (Section 
7.1). Manual calibration is logistically difficult because of 
the need to keep up with new products, reliably identify 
which antenna and receiver is in use, and distribute the 
calibration parameters. 
 
Self-calibration of the user equipment using high elevation 
satellites predicted to be directly receivable at all high-
scoring candidate positions should be viable where a 
horizontally mounted RHCP antenna is used. Suitable 
algorithms should be developed for this, incorporating a 
long averaging time and outlier detection. This will need 
to work in collaboration with the satellite transmission 
power calibration, where implemented, as the two 
phenomena are difficult to separate. This would leave the 
variation in antenna gain with incidence angle. If all 
antennas of a particular class (e.g., geodetic, automotive, 
etc) have similar gain patterns, it should be possible to use 
a standard model. Some form of self-calibration may also 
be possible, particularly if data from open environments is 
available. However, both approaches require further 
investigation to assess their feasibility. 
 
For smartphones using linearly polarized antennas, there 
are the additional problems of the nulls in the antenna gain 
pattern and the lack of polarization discrimination. 
Experiments with signals known to be either direct LOS 
of NLOS have shown that there is significant overlap 
between their measured C/N0 distributions [17], noting 
that some of this variation could be due to user body 
masking. This is shown in Figure 15. Consequently, if 
signals are determined to be either direct LOS or NLOS 
using a simple C/N0 threshold, the misclassification rate 
will be too high. For example, using data collected at the 
same sites, the mean absolute deviation (MAD) of the 
cross-street shadow-matching position error was found to 
be 2.1m using a geodetic receiver and 3.9m using a 
smartphone [16]. 
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Figure 15: Normalized SNR distributions of LOS and 
NLOS signals observed using a smartphone across 20 test 
sites. 



In [17], Boolean LOS/NLOS classification on a 
smartphone is replaced by an estimated probability of 
each signal being direct LOS, based on the measured 
C/N0. This enables the candidate position scoring 
algorithm to implicitly attribute greater weighting to those 
signals for which the observed LOS/NLOS status is more 
certain, resulting in better shadow-matching performance. 
With more data, there is scope to incorporate satellite 
elevation into the model for determining the direct LOS 
probability. Further work is also needed to determine how 
to adapt the model to different types of smartphone. 
However, even with better algorithms, shadow matching 
is never likely to work as well on a smartphone as it will 
with a RHCP antenna. Moreover, probabilistic 
LOS/NLOS classification is also likely to be beneficial for 
shadow matching with a RHCP antenna, noting that 
different model parameters will be required. 
 
4.8 Hypothesis Scoring and Positioning Algorithms  
 
Shadow matching determines position by comparing the 
observed and predicted satellite visibility to determine a 
score for each candidate position hypothesis and then 
determines a position solution from the scoring grid. 
Limitations in the algorithms used to do this will result in 
position errors. 
 
The first limitation is the resolution of the grid of 
candidate positions within the search area. The majority of 
shadow-matching tests have used a 1m spacing between 
candidate positions. A 3m grid spacing was used for the 
real-time smartphone implementation and produced a 
position solution about 15% less accurate than with a 1m 
spacing [15]. One way of balancing performance and 
processing load is to scale the resolution with the size of 
the search area so that the number of grid points is fixed. 
Another option is to initially perform shadow matching 
with a coarse grid and then add additional grid points in 
the highest-scoring regions. Whether a higher resolution 
than 1m would lead to a more accurate position solution 
depends on the size of the other error sources. At present, 
it is unlikely to have much effect. 
 
Position hypothesis scoring in shadow matching provides 
an indication of how likely it is that the user equipment is 
located at each candidate position. If the observation and 
prediction phases of shadow matching were perfect, the 
true position would be one of the highest-scoring 
candidates and the other candidate positions could be 
discounted. However, the various errors inherent in the 
prediction and observation processes (Sections 4.4 to 4.7) 
effectively add noise to the candidate position scores. 
Therefore, when the scores of two candidate positions are 
compared, the difference in those scores must exceed this 
noise level for there to be confidence that one position is 
more likely than the other. In other words, the signal-to-
noise ratio must be sufficient to extract the underlying 
signal from the noise. 
 

Improvements to the prediction and observation processes 
will reduce this noise level. However, noise can never be 
completely eliminated from GNSS shadow matching as it 
is not practical to mitigate every source of error. To ensure 
that the scoring grid is correctly interpreted by the 
subsequent position determination phase of shadow 
matching, the sources of error must be understood and 
quantified so that an appropriate uncertainty can be 
attributed to each candidate position score. 
 
Ideally, the position hypothesis scoring stage of shadow 
matching should output a probability distribution, or 
equivalently a likelihood or log-likelihood surface, noting 
that likelihood is unnormalized probability. This then 
enables each candidate position to be correctly weighted 
using standard statistical techniques when the final 
position solution is determined; otherwise, position errors 
will ensue. This is particularly important where shadow 
matching is combined with other positioning technologies 
(Section 6), which requires a realistic position uncertainty 
(see Section 5.1(. Early shadow-matching algorithms have 
taken a heuristic approach to position scoring. Some 
simply score 1 where a prediction and observation match 
and 0 where they do not, while others incorporate 
different scores for different values of C/N0. 
 
A first attempt at a probabilistic scoring scheme is 
described in [16][17]. This uses empirically-derived 
observed direct-LOS probabilities, but the predicted LOS 
probabilities are heuristic. Generating realistic 
probabilities requires identification of all of the major 
error sources affecting both observation and prediction of 
direct LOS signals and the acquisition of sufficient 
experimental data to build an effective model. In practice, 
this is likely to be an iterative process. Note that a scoring 
scheme based on probabilities or likelihoods requires the 
scores from each satellite signal to be multiplied, whereas 
a log-likelihood-based scoring scheme requires addition of 
the scores from each satellite. 
 
As discussed in Sections 4.4 and 4.6, lower elevation 
signals are more difficult to predict accurately and more 
likely to be affected by unpredictable environmental 
features, so there is reason to weigh them less in the 
hypothesis scoring algorithms. Within a probabilistic 
framework, this can be achieved by allocating a wider 
range of predicted signal visibilities for high-elevation 
signals than for low-elevation signals. There may also be 
merit in adjusting these probabilities according to the 
building geometry. Section 4.7 also explains that 
distinguishing direct LOS from NLOS signals using a 
RHCP antenna is more difficult for low-elevation signals. 
This effect should be modelled by adjusting the observed 
signal probabilities. 
 
There are many different ways of extracting a position 
solution from the shadow-matching scoring grid, resulting 
in different position errors. Simply taking the highest-
scoring candidate position will make the position solution 
highly sensitive to noise. Taking the average of positions 



with scores within a certain margin of the maximum 
produces a reasonable solution when the matching process 
is unambiguous, but leads to significant errors where there 
is an ambiguity [11][17]. The same applies if a weighted 
average of all candidate positions is taken, noting that this 
requires probabilistic hypothesis scoring.  
 
The best way to handle an ambiguous scoring grid 
depends on how the shadow-matching position solution is 
used. In an integrated system (Section 6.3), information 
from the other positioning technologies can be used to 
help resolve the shadow-matching ambiguity [27], so the 
shadow-matching algorithms should output as much 
information as possible. This can be the whole scoring 
grid, expressed as a probability distribution, likelihood 
surface, or log-likelihood surface. Alternatively, a series 
of position solution hypotheses can be extracted from the 
scoring grid, each accompanied by a probability and 
covariance (Section 5.1). This can be done either by fitting 
a set of bivariate Gaussian distributions (known as a 
Gaussian mixture) to the probability distribution/ 
likelihood surface or by dividing the scoring grid into 
discrete clusters [39]. Note that the probability of a 
position hypothesis is proportional to the volume of the 
corresponding peak in the probability distribution or 
likelihood surface. 
 
Where a simple single-hypothesis or single-mode 
integration algorithm, such as an extended Kalman filter 
(EKF), is used, the shadow-matching solution may simply 
be rejected whenever it is ambiguous. In this case, 
shadow-matching could output either the highest-
probability position hypothesis (with probability and 
covariance) or a simple mean and covariance with some 
measure of ambiguity (Section 5.2). 
 
For a stand-alone shadow-matching system, the 
requirement may simply be for a “best guess” position, in 
which case the highest-probability position hypothesis 
should be output. Alternatively, a confidence region may 
be required in the form of an ellipse within which there is 
a certain probability of finding the position (see Section 
5.1). In practice, shadow matching will always be 
integrated with ranging-based GNSS positioning (Section 
6.1), so ambiguity could potentially be resolved by 
multiplying the shadow-matching probability distribution 
by that of the horizontal ranging-based solution, which is 
a bivariate Gaussian distribution if a conventional least-
squares or EKF positioning algorithm [5] is used. 
However, this will not always reduce ambiguity and could 
sometimes increase it. For example, if the ranging solution 
peak does not coincide with one of the main shadow-
matching peaks. A simpler approach is to take the nearest 
high-scoring position to the initialization position [8]. 
However, this then makes the shadow-matching position 
sensitive to errors in the initialization position. 
 
Multi-epoch particle filters combine the shadow-matching 
scoring grids from successive epochs [13][16][20][21] 
[22]. Where there is sufficient data, this should normally 

resolve any ambiguity. However, where the candidate 
position scores are not true probabilities (or likelihoods), 
the particle filter may converge too quickly to one 
candidate position cluster, which may not be the correct 
one, or continue to consider multiple clusters when there 
is sufficient data to select one. The position solution will 
also be sensitive to the tuning of the particle filter itself. In 
particular, if the particle distribution becomes too tight, 
the filter can converge on an incorrect solution. 
 
There are (at least) two alternatives to the particle filter for 
multi-epoch shadow matching. A grid filter maintains an 
array of equally spaced hypotheses, in contrast to the 
equal-probability hypotheses of a particle filter. This 
enables the grid filter’s hypotheses to be exactly matched 
to those of shadow-matching’s scoring process, which 
should be more efficient. A multi-hypothesis Kalman 
filter (MHKF) [5][40] represents the position solution 
probability distribution as the sum of a series of 
multivariate Gaussian distributions (i.e., a Gaussian 
mixture). This is typically more efficient  than a particle 
filter, particularly where additional states, such as 
velocity, are added. However, the hypothesis management 
process can be complex. Multi-epoch filtering can be 
implemented at a number of levels: shadow matching 
only, shadow matching plus ranging-based GNSS, and 
multi-sensor integrated navigation. 
 
One option in an integrated system is to run a multi-epoch 
shadow-matching filter whenever there is ambiguity. 
Then, once the filter has processed sufficient epochs to 
resolve the ambiguity, the shadow-matching position 
solution can be output to the multisensor integration 
algorithm and the shadow-matching filter reset. Clearly, 
considerable research is needed to determine the most 
efficient position determination and filtering method for 
shadow matching. 
 

 
 
Figure 16: Biasing of the shadow-matching position 
solution near the edge of a building 
 
A problem that affects all positioning methods is edge 
effects near buildings. A 3D city model enables indoor 
areas to be eliminated from the search area. Thus, if the 
true position is right next to a building, the adjacent 
candidate positions will have a zero score on the building 
side and a non-zero score on the street side. Consequently, 
the application of weighted averaging within the position 
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determination process will tend to pull the position 
solution away from the building. Figure 16 illustrates this. 
This phenomenon will also impact the computation of 
uncertainty/covariance and the probabilities of different 
position solution hypotheses. As a systematic error, it 
should be possible to correct for this phenomenon. 
However, research will be needed to determine the best 
method. 
 
5. QUALITY CONTROL 
 
The resolution and degree of ambiguity in the shadow-
matching position solution depends on the geometry of the 
surrounding environment, as explained in Sections 4.1 and 
4.2. Shadow matching is also subject to many different 
error sources (Sections 4.34.8). Some of these simply 
degrade the position accuracy while others introduce 
completely wrong information into the shadow-matching 
process. Therefore, like most position-fixing techniques, 
shadow-matching performance will vary with the location, 
time, and user equipment. Consequently, to enable 
shadow matching to be used reliably as part of a practical 
positioning or navigation system, some form of quality 
control is required: 
 Uncertainty and ambiguity information must be 

computed to enable subsequent integration and/or 
application algorithms to treat shadow-matching-
derived positioning information with the appropriate 
weighting. This is discussed in Sections 5.1 and 5.2. 

 Outlier detection must be implemented within the 
shadow-matching process to identify erroneous 
information and eliminate it form the position solution 
whenever possible. This is discussed in Section 5.3. 

 
5.1 Uncertainty Determination  
 
Position uncertainty in shadow matching arises from a 
number of sources, including environmental geometry 
(Section 4.1), 3D model errors (Section 4.4), and the 
propagation of GNSS signals (Section 4.5). How this 
uncertainty is computed depends on the form of the 
candidate position hypotheses scoring grid and how a 
position solution is derived from this, as discussed in 
Section 4.8. 
 
Where the scoring grid is in the form of a probability 
distribution or likelihood surface, determination of the 
position uncertainty is straightforward. The 2D position 
error covariance matrix (from which uncertainty is 
derived) is obtained simply by computing the second 
statistical moment of the scoring distribution. Where the 
distribution has been separated into multiple position 
hypotheses by clustering, the covariance of each cluster is 
determined in the same way. Where a set of bivariate 
Gaussian distributions are fitted to the overall probability 
distribution, the covariance of each is an output of the 
fitting process. 
 
Where the candidate position hypothesis scoring in 
shadow matching is heuristic, an empirical process is 

required to determine how to extract covariance 
information from the scoring grid. To ensure these 
covariances are reliable, experimental data must be 
collected for as wide a range of operating conditions as 
possible. Note, however, that a similar empirical process 
is needed to ensure that the statistical models used to 
generate a probabilistic scoring grid are reliable. 
 
5.2 Ambiguity Detection 
 
An ambiguous shadow-matching position solution can be 
caused by a repetitive environment and/or errors in the 
shadow-matching process. For applications where a single 
position solution is output (as opposed to a probability 
distribution or set of hypotheses), it is necessary to 
indicate when this solution is ambiguous. However, the 
implications of this ambiguity depend on what kind of 
position solution is output. If a set of position hypotheses 
is computed (see Section 4.8) and only the top hypothesis 
output, then this will be accompanied by a probability 
which subsequent algorithms can use to determine 
whether to trust it. If the output position comprises a 
weighted average of the candidates, an indication of the 
extent to which the underlying distribution is multimodal 
would be useful. Approaches to explore include 
computing and outputting higher order statistical moments 
(e.g., skew and kurtosis), computing and outputting 95% 
or 99% confidence error bounds as well as covariance, 
and simply rescaling the output covariance to compensate 
for the effects of a multi-modal distribution by ensuring 
that the shadow-matching solution is downweighted in 
subsequent processing. Further investigation is needed. 
 
5.3 Outlier Detection 
 
In general, an outlier is a measurement which exhibits a 
large error due to a fault somewhere. In navigation, a 
faulty measurement can corrupt the position solution, so a 
reliable system needs to be able to detect faulty data and 
either eliminate or correct it [5]. In shadow matching, 
outliers can occur in both the prediction and observation 
of satellite visibility. Causes include an out-of-date 3D 
model (Section 4.4), reception of very strong reflected 
signals (Section 4.5), the effect of unpredictable objects, 
such as buses, (Section 4.6), and nulls in the user antenna 
gain pattern (Section 4.7). These errors can result in 
contributions from the affected signals to the candidate 
position hypothesis scoring grid that are completely 
wrong. Thus, it is desirable to identify the affected signals 
and remove them from the shadow-matching process. 
 
Fault detection techniques can be divided into range 
checks, innovation-based methods, consistency checks 
and infrastructure-based fault detection [5]. Range checks 
are of little use as visibility prediction will be direct-LOS 
or NLOS and C/N0 measurements will be between 10 and 
50 dB-Hz regardless of whether outliers are present. 
Infrastructure-based approaches are limited to mapping 
updates as the other causes of outliers are local to the 



individual user. The discussion here will therefore focus 
on consistency and innovation-based methods. 
 
Consistency checking of conventional GNSS ranging 
measurements is normally called receiver autonomous 
integrity monitoring (RAIM). As well as fault detection 
and identification (FDI), a full RAIM implementation also 
incorporates solution protection. However, shadow 
matching is not sufficiently mature to consider the 
computation of high-integrity protection levels. 
Consistency checking techniques for ranging 
measurements include the solution separation, range 
comparison, and least-squares residual methods [41]. 
Equivalents of these techniques for shadow matching are 
discussed below. 
 
Consistency checking by solution separation computes a 
set of parallel positioning solutions, each excluding 
signals from one satellite. If one or more measurements is 
faulty, these solutions will diverge. However, to identify 
the faulty signal, solutions excluding two satellites must 
then be computed so that consistency checking may be 
performed with each satellite in turn completely excluded. 
In shadow matching, the underlying causes of outliers will 
often impact multiple satellites, typically those with 
similar lines of sight. Consequently, a large number of 
position solutions, based on different satellite 
combinations, will be needed for consistency checking. 
Thus, the processing load could be excessive. 
 
The shadow-matching equivalent of the range comparison 
and least-squares residual consistency checking methods 
is to compare each single-satellite candidate position 
hypothesis scoring grid with a reference scoring grid. The 
reference grid may be generated from all satellite signals 
or from all except the satellite under test. However, 
because outliers can be correlated across multiple 
satellites with similar lines of sight, it is better to exclude 
satellites with similar azimuths to the test satellite from 
the reference grid. 
 
To compare each single-satellite scoring grid with an 
appropriate reference grid, each grid must first be 
normalized to zero mean and unit variance, noting that it 
may be better to compare log-likelihoods than 
probabilities. A test statistic can then be computed by 
differencing the normalized scores of the two grids, 
squaring those differences and then averaging them across 
all candidate positions, excluding those that are indoors. If 
the test statistic exceeds a certain threshold, the satellite 
signal under test can be assumed to be affected by an 
outlier and excluded from the final position hypothesis 
scoring grid. The threshold will depend on the scoring 
scheme and the size of the search area. Signals with 
borderline test statistics can be downweighted. It may also 
be useful to consider the sum total of the test statistics for 
different signals. If this is too high, a viable shadow-
matching solution may not be possible. 
 

The shadow-matching equivalent of innovation filtering 
[5] is to compare each single-satellite scoring grid with a 
reference grid generated from previous measurements and 
predicted forward to the current epoch. This is applicable 
to multi-epoch shadow matching using a particle filter, 
grid filter, or MHKF (Section 4.8) and the filter can 
incorporate information from ranging-based GNSS 
(Section 6.1) and other navigation sensors (Sections 6.2 
and 6.3). A key advantage of this approach is that more 
information is used to generate the reference grid, so it is 
more sensitive and can operate where there is insufficient 
information for single-epoch consistency checking. 
However, there is a risk with innovation filtering (in 
general) that correct information could be rejected if the 
navigation filter is allowed to converge to an incorrect 
solution. 
 
6. INTEGRATION WITH GNSS RANGING AND 
OTHER SENSORS 
 
Shadow matching will never be implemented on its own 
in a practical system as the hardware required to 
implement it can also be used to produce a ranging-based 
GNSS position solution that is typically complementary to 
the shadow-matching solution. Furthermore, the 3D 
mapping used for shadow matching can also be used to 
improve ranging-based positioning. Where additional 
navigation and positioning sensors are available, these can 
be used to aid the shadow-matching process. However, for 
maximum robustness across different environments and 
varying host behavior, shadow matching should be 
deployed as part of a multisensor navigation system. This 
section discusses each of these topics in turn, followed by 
a brief discussion of context determination. 
 
6.1 Ranging-based GNSS 
 
As discussed in Section 4.1 and demonstrated 
experimentally in [11], shadow matching is normally 
more accurate in the cross-street direction than along the 
street. Conversely, ranging-based GNSS positioning in a 
dense urban environment is more accurate along the street 
because of the geometry of the direct-LOS signals [2]. 
The two techniques are thus complementary and a better 
position solution can usually be obtained by combining 
both solutions, part of the intelligent urban positioning 
concept. A crude approach is simply to take the cross-
street component of the shadow-matching solution and the 
along-street component of the conventional GNSS 
solution [28]. However, this does not ensure optimal 
weighting of the two solutions and is problematic at 
junctions where there are multiple street directions. 
 
A better way of integrating shadow-matching with 
ranging-based GNSS is a weighted average of the two 
solutions based on their covariances. A commercial GNSS 
position solution does not always come with error 
covariance information and it is difficult to estimate this 
from the satellite lines of sight and C/N0 measurements 
when details of the receiver’s positioning algorithm are 



not available. Even where error covariance is supplied, 
experimental testing is needed to determine whether it can 
be trusted in dense urban areas. Therefore, it is better to 
compute the ranging-based position solution within the 
shadow-matching system, requiring a GNSS receiver that 
outputs pseudo-ranges. 
 
As discussed in Sections 4.8 and 5, it is difficult to extract 
a reliable positioning solution and covariance from 
shadow matching when the candidate position hypothesis 
scoring grid presents an ambiguous solution. Therefore, 
integration of shadow matching with ranging-based GNSS 
at the scoring grid level should be considered. A bivariate 
Gaussian distribution can be used to determine the 
likelihood of each candidate position in the scoring grid 
from the ranging-based position and covariance. The 
combined score for each candidate position is obtained by 
multiplying the shadow-matching and ranging scores if 
they are expressed as probabilities or likelihoods and by 
adding the two scores if they are expressed as log-
likelihoods. 
 
With 3D mapping available, it is a wasted opportunity to 
integrate a conventional GNSS position solution with 
shadow matching. Instead, the mapping can be used to 
improve the ranging-based position solution. For outdoor 
urban positioning, the height of the user antenna above the 
ground will typically be known to within half a meter. 
Therefore, the terrain height from the 3D city model can 
be used to aid GNSS positioning. The ability of terrain 
height aiding to improve vertical positioning is well 
known [5][42]. However, in areas with poor solution 
geometry, such as dense urban areas, it can also improve 
the horizontal accuracy by about 40% [43][44][45]. 
 
Satellite visibility prediction using a 3D city model 
enables NLOS signals to be excluded from the ranging-
based GNSS solution. Early implementations assumed the 
user position was approximately known [46][47][48]. 
However, shadow matching already predicts satellite 
visibility at every candidate position within the search 
grid. From this, a NLOS probability across the whole 
search area can be computed for each satellite and used to 
weight each pseudo-range measurement within the 
ranging solution. The NLOS probabilities from the 3D 
mapping can also be combined with consistency-based 
and C/N0-based NLOS prediction techniques, improving 
the horizontal position accuracy by about 42% compared 
to a similar approach without the 3D mapping data [45]. 
 
Positioning algorithms based on least-squares estimation 
or an EKF can only use spatially-averaged NLOS 
predictions. However, a positioning algorithm that scores 
an array of candidate positions according to the 
differences between the predicted pseudo-ranges at each 
point and the measured pseudo-ranges can make different 
assumptions about which signals are NLOS at each 
candidate position. The receiver clock error can be 
eliminated by differencing pseudo-ranges across satellites, 
while the height of each candidate position can be 

obtained from the 3D city model’s terrain height data. 
This has the potential to significantly improve positioning 
performance. Furthermore, the ranging-based and shadow-
matching scores for each position on a common scoring 
grid could easily be combined, helping to reduce the 
occurrence of ambiguous solutions. 
 
Several research groups have taken this concept of 3D-
mapping-aided GNSS ranging a step further by using the 
3D city model to predict the path delay of the NLOS 
signals at each candidate position [49][50][51][52]. A 
single-epoch positioning accuracy of 4m has been 
reported [51]. However, the path delay must be 
determined using ray tracing, which is highly 
computationally intensive and thus an obstacle to real-
time implementation (see Section 7.2). The urban trench 
approach [31] enables the path delays of NLOS signals to 
be computed very efficiently, but only if the building 
layout is highly symmetric. Whether more sophisticated 
versions of this approach could be developed for more 
complex building layouts remains a topic for further 
research. 
 
Figure 17 shows how GNSS ranging and shadow 
matching could be combined together into an intelligent 
urban positioning system. 
 

 
 
Figure 17: Integration of Shadow Matching with Ranging-
Based GNSS 
 
6.2 Aiding from Other Sensors  
 
Other positioning technologies can aid shadow matching 
in two main ways. The first is through the determination 
of the search area as discussed in Section 4.3. Wi-Fi 
positioning is the most practical option. However, any 
position-fixing technology could potentially be used, 
whether it is based on radio signals or environmental 
features [5]. The second opportunity is for multi-epoch 
shadow matching where an aiding system can be used to 
determine how much the user has moved between epochs. 
For pedestrians, a simple step detector can be used to 
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determine whether or not the user has moved, while 
pedestrian dead reckoning using step detection can 
provide an estimate of distance travelled. For vehicles, 
inertial and magnetic sensors and/or wheel-speed 
odometry can provide an estimate of speed and distance 
[5]. However, making a separate shadow-matching or 
GNSS filter in a multisensor navigation system is not 
necessarily the most efficient approach.  
 
6.3 Multisensor Navigation and Positioning 
 
To reliably achieve meters-level positioning across a 
range of different challenging environments, a paradigm 
shift is needed. Instead of designing a single-technology 
navigation or positioning system, it is necessary to use as 
much information as can be cost-effectively obtained from 
many different sources in order to determine the best 
possible navigation solution in terms of both accuracy and 
reliability. 
 
This new approach to navigation and real-time positioning 
in challenging environments requires many new lines of 
research to be pursued [27]. These include: 
 How to integrate many different navigation and 

positioning technologies when the necessary expertise 
is spread across multiple organisations [53]; 

 How to adapt a multisensor navigation system in real-
time to changes in the environmental and behavioural 
context to maintain an optimal solution [54]; 

 How to obtain more information for positioning by 
making use of new features of the environment [55]; 

 How to handle ambiguous information in a 
multisensor navigation system; 

 How to efficiently distribute environmental data 
(including 3D mapping). 

 
Thus, in the long term, shadow matching and 3D-
mapping-aided GNSS are likely to become just two of 
many components within a complex multisensor 
navigation system. The multisensor integrated navigation 
solution will typically define the search area for shadow 
matching and 3D-mapping-aided GNSS ranging, while 
both subsystems will output to an integrated navigation 
filter, either separately or together. The shadow-matching 
position data sent to the navigation filter can take a 
number of forms, as discussed in Section 4.8, and there 
will be some trade-off between performance and 
processing load. 
 
6.4 Context Determination 
 
Shadow matching and 3D-mapping-aided GNSS ranging 
are designed to work in dense urban environments. In 
open environments, conventional GNSS positioning 
works well, so the extra processing capacity and mapping 
data required by advanced GNSS positioning techniques 
cannot be justified. For indoor environments, it may be 
possible to enhance GNSS positioning using 3D mapping. 
However, other positioning technologies, such as Wi-Fi 
positioning and Bluetooth Low Energy (BLE), are likely 

to be more effective. Thus, before activating shadow 
matching and advanced GNSS ranging algorithms, it is 
necessary to determine the environmental context. 
 
Several studies have shown that GNSS C/N0 
measurements can be used to distinguish indoor, urban, 
and open environments [56][54][27]. The challenge now 
is to develop reliable context determination algorithms 
and assess whether other information, such as Wi-Fi 
signal strength, ambient light, and magnetic field 
measurements can be used to assist this process. 
 
7. PRACTICAL ENGINEERING 
 
The final set of challenges that shadow matching must 
meet are of a more practical nature. These are the design 
of the overall system architecture, efficient satellite 
visibility prediction and acquisition of suitable mapping 
data. This section discusses each of these issues in turn. 
 
7.1 System Architecture 
 
Shadow matching requires GNSS user equipment, a 
processing platform for the shadow-matching and satellite 
visibility prediction algorithms, and a means of 
distributing 3D mapping data. There are two main system 
architectures that can accommodate this: server-based and 
receiver-based. In a server-based architecture, the receiver 
sends pseudo-range and C/N0 measurements to a remote 
server which stores all of the mapping data, computes a 
position solution and sends it to the receiver. In a receiver-
based architecture, all processing is done aboard the 
receiver with the mapping data supplied via a 
communications link. Both architectures are shown in 
Figure 18. 
 

 
 
Figure 18: Server-based and receiver-based shadow-
matching system architectures 
 
The server-based system architecture has a number of 
advantages. The user equipment processing load is 
minimized. Transmitting GNSS measurement data 
requires minimial communications capacity and existing 
assisted GNSS (AGNSS) protocols used by mobile 
phones could be used as C/N0 measurements are 
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transmitted from the receiver to the server under the 
existing 3GPP protocols for server-based positioning [57].  
Furthermore, servers can potentially store mapping data 
for the whole world. 
 
A key disadvantage of a server-based approach is that the 
time taken to transmit data in both directions, together 
with potential queuing at the server will introduce a lag in 
the position computation. This is not a major problem for 
location-based services, for which data must typically be 
retrieved from a server anyway. However, it is a potential 
problem for applications requiring continuous positioning, 
such as navigation. A second potential problem is the need 
to calibrate the shadow-matching algorithms to account 
for the antenna and receiver characteristics (Section 4.7) 
as this potentially requires a large amount of data to be 
collected. A possible solution is to transmit model 
identification data to the server so that calibration data 
from multiple users of the same type of user equipment 
can be pooled. Finally, a continuous communications link 
is required for server-based shadow matching to work, 
though mobile phone coverage is generally good in dense 
urban areas. 
 
A receiver-based system architecture potentially offers a 
shorter processing lag with easier calibration. It is also 
less reliant on communications continuity as mapping data 
can be preloaded [10], avoiding the need for any real-time 
communications. Mapping data could also be exchanged 
directly between users via peer-to-peer communications, 
an example of cooperative positioning [27]. Different 
forms of data distribution could also be combined. 
 
The main challenge of a receiver-based architecture is 
processing load. Real-time shadow matching has been 
demonstrated on an Android smartphone [15]. However, 
the algorithms were simple and the scoring grid resolution 
was relatively low. A possible way forward is to make use 
of the graphics processing unit (GPU). A GPU is designed 
for parallel processing and could potentially run both the 
satellite visibility prediction and candidate position 
hypothesis scoring stages of shadow matching. GPUs are 
accessible for general processing on both PCs and 
Android phones (but not iPhones, which also fail to 
provide access to the C/N0 or SNR measurements that 
shadow matching requires). 
 
In terms of business models, a server-based architecture 
leads to the provision of a positioning service. Thus, the 
suppliers of certain smartphone apps might pay for access 
to more accurate GNSS positioning, while other apps 
running on the same device use basic positioning. For the 
receiver-based architecture, the products are the advanced 
positioning software and the mapping data. Thus, this 
approach may be more suited to dedicated navigation and 
positioning devices. At present, it is recommended that 
both system architectures be pursued. 
 
A further issue to consider is the GNSS receiver interface. 
As explained in Sections 4.3 and 6.1, positioning 

performance will generally be better if pseudo-range 
measurements can be used. In particular, they enable use 
of the 3D mapping to aid ranging-based GNSS 
positioning. However, most consumer-grade and many 
professional-grade receivers output using the National 
Marine Electronics Association (NMEA) interface 
standard, which does not incorporate pseudo-ranges. 
Some manufacturers add non-standard messages to their 
NMEA interfaces in order to provide the pseudo-ranges. 
However, many do not. Thus, the GNSS receiver should 
be chosen carefully. Interestingly, on smartphones, 
pseudo-range measurements are available for server-based 
positioning through AGNSS communications, but are not 
available through the application programming interface 
(API) for the use of advanced receiver-based positioning 
algorithms. 
 
7.2 Signal Prediction 
 
The most computationally intensive part of shadow 
matching is the satellite visibility prediction. There are 
three main types of approach. Recursive ray tracing 
(which may be implemented with standard tools) 
computes the complete signal path from the satellite to the 
user antenna. As well as predicting whether or not a signal 
is receivable via a direct line of sight, it also predicts 
reflected paths and determines their path delays with 
respect to the direct path. Recursive ray tracing thus 
supports the most advanced 3D-mapping-aided GNSS 
ranging techniques (Section 6.1). However, it is also the 
most computationally demanding of the three approaches. 
 
The second approach, which is sometimes called ray 
casting, is intersection based. If the 3D city model is 
represented as a series of triangles, all triangles within an 
appropriate region of space are tested to determine 
whether they block the direct LOS between the user 
antenna and satellite (halting the search if a blocking 
triangle is found) [2][11]. A similar approach may be 
adopted for models comprised of blocks. Representing the 
city model as an array of block heights on a regularly 
spaced grid (e.g., 11m tiles) can speed up the process at 
the expense of increased data storage and spatial 
quantization errors. Intersection techniques are less 
computationally intensive than ray tracing, but also 
provide less information. 
 
The third category is projection-based techniques, 
demonstrated in [8]. These use standard graphics 
processing tools, implemented on a GPU, to determine in 
parallel whether the lines of sight from a given satellite to 
multiple candidate user positions are blocked. An example 
is shadow mapping [58]. Graphics processing techniques, 
such as rasterization, can also be used to predict 
reflections, though not necessarily the associated path 
delays. 
 
The need to process 3D city models in real time can be 
eliminated by pre-computing building boundaries [2] at 
each candidate position using one of the above techniques. 



A building boundary describes the minimum elevation 
above which satellite signals can be received at a series of 
azimuths. Signal visibility at each candidate position is 
then determined simply by comparing the satellite 
elevation angle with that of the building boundary at the 
satellite azimuth. This is far more efficient in terms of 
processing load (and hence battery life) than any 
technique that uses the 3D city model directly and has 
enabled shadow matching to run on a smartphone. 
 
There is, however, one major disadvantage of building 
boundaries. They take up much more space than the 
equivalent city model, requiring more data storage 
capacity and a higher communications bandwidth for 
dissemination. A building boundary with a 1 resolution 
requires about 2500 bits (without compression). For a 
100100m tile with 1m spacing, this corresponds to 3 
MB. By contrast, an equivalent array of block heights 
requires only 12.5 kB. The building boundaries can 
potentially be compressed more; however, there remains a 
large difference in the capacity required. Thus, the 
decision as to whether to use building boundaries or 
process the city model directly is a trade-off between 
processing load and data storage load. 
 
7.3 Acquisition of 3D Mapping Data   
 
3D mapping data is become increasingly available and can 
be generated by a number of methods. Basic LOD 1 3D 
mapping can now be created cheaply and efficiently using 
the process of extrusion to “grow” 2D topographic 
mapping data to a given height, using information from, 
for example, light detection and ranging (LiDaR)., 
surveys.  This can be achieved within standard 
Geographical Information Systems, resulting in rapid 
generation of city-wide datasets suitable for testing 
shadow matching.  
 
The height information for many 3D city models is 
derived from LiDAR data. An aerial scan creates a cloud 
of points by illuminating the scene with a laser array and 
calculating the distance from the plan based on the 
reflection time.  The denser this resulting point cloud, the 
higher the accuracy of the height information for 
individual buildings.  In general, three heights are given 
for each city model: the roof line, the eaves height and the 
average height of the roof.  However, these heights may 
be inaccurate for lower density point clouds (e.g. 1 
point/m2 versus 1 point/5m2). The selection of height for 
the LOD 1 model creation will in turn impact the shadow 
matching process. 
 
More detailed (and realistic) 3D building models are also 
becoming available, either generated from individual 
computer aided design (CAD) data, or from terrestrial or 
airborne LiDaR using dense point clouds to ensure detail 
is captured.  Although this type of model tends to be 
available mainly for urban, city center, areas, these useful 
for shadow matching.  These LOD 2 models may also be 
expensive, particularly where texture information is 

required.  For both the flat roofs and more detailed 3D 
structures, the resulting 3D data is generally quite large in 
volume and complex in detail [59]. 
 
Data availability and coverage itself is also an issue.  In 
the UK it is now possible to obtain building height 
information for many urban areas, leading to LOD 1 3D 
data. Ordnance Survey MasterMap data in urban areas is 
accurate to 0.9m (99% confidence level) [60].  However, 
this data is expensive, and not universally available in 
other countries particularly to the same level of horizontal 
accuracy. 
 
An alternative approach to both of the above problems, 
although very much in its infancy, is crowd-sourcing of 
3D building information, where members of the public 
capture map data and contribute it to a shared database.  
GNSS measurements can potentially be used to capture 
this data [19][20][23][24][25][26], so map building could 
potentially be incorporated within the shadow-matching 
system architecture. 3D data capture currently forms part 
of Open Street Map’s worldwide mapping project [61], 
and, although 3D information is sparse at the moment, this 
approach shows promise for the future should it mirror the 
growth of the equivalent 2D Map. 
 
8. SUMMARY 
 
This paper has summarized the state of the art of shadow 
matching, presented the first comprehensive review of its 
error sources, and proposed a program of research and 
development to take the technology from proof of concept 
to a robust, reliable and accurate urban positioning 
product. 
 
The tasks ahead may be grouped into three categories: 
error characterization, algorithm development and systems 
engineering. They are summarized below. 
 
To quantify the error sources of shadow matching and 
assess how the performance varies under different 
operating conditions, the following should be investigated 
experimentally: 
 The effects of building geometry and distribution, 

scale, roof type, building height to street width ratio, 
and street direction; 

 The effect of building surface characteristics (e.g. 
glass/steel vs brick stone); 

 The effects of passing vehicles, street furniture, 
vegetation, passing people, a host vehicle and the 
user’s body; 

 The effect of varying the user antenna and GNSS 
receiver; 

 The physical limit to shadow matching resolution 
imposed by the signal wavelength and how this 
impacts the highest useful matching grid resolution; 

 The effects of 3D city model errors, including level of 
detail, resolution and roof detail; 

 The errors that arise when positioning very close to 
buildings. 



 
To improve the performance of shadow matching, the 
following algorithm development should be conducted: 
 Determination of the optimum search area and region 

of interest; 
 Calibration of the satellite transmission power, user 

antenna gain and receiver characteristics; 
 Development of interference detection and mitigation 

algorithms; 
 Incorporation of reflected signal prediction; 
 Incorporation of elevation-dependent signal weighting 

in the scoring process; 
 Development of a fully probabilistic scoring scheme, 

comprising both predictions and observations, for the 
candidate position hypotheses; 

 Correction of the positioning bias close to buildings; 
 Incorporation of quality control including uncertainty 

computation, ambiguity detection, and outlier 
detection; 

 Extraction of multiple position solution hypotheses 
with associated probabilities and covariances from the 
scoring grid; 

 Determination of the best multi-epoch positioning 
algorithm, comparing the grid filter and MHKF with 
the particle filter; 

 Integration of shadow matching with ranging-based 
GNSS and other navigation sensors. 

 
To enable shadow matching to be deployed in 
professional and consumer products, the following 
systems engineering tasks should be completed: 
 Build prototypes of both a server-based shadow 

matching system architecture and a receiver-based 
architecture with real-time data dissemination to assess 
the practicality of each approach; 

 Work with GNSS receiver manufacturers to develop 
standard interfaces for both server-based and receiver-
based shadow matching to ensure that both C/N0 and 
pseudo-range measurements are readily available (or, 
alternatively, develop a mapping data interface to 
enable shadow matching to run on a GNSS chipset); 

 Determine the optimum satellite visibility prediction 
technique and mapping data format (including 
compression) for shadow matching, balancing 
accuracy, processing load, and data storage 
requirements. This may or may not use building 
boundaries as an intermediary; 

 Determine the most effective way of sourcing 3D 
mapping for shadow matching, considering cost, 
accuracy, availability and maintainability. 
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