Sustainable Synthesis of Chiral Tetrahydrofurans through the Selective Dehydration of Pentoses

Robert W. Foster, ${ }^{[a]}$ Christopher J. Tame, ${ }^{[b]}$ Dejan-Krešimir Bučar, ${ }^{[a]}$ Helen C. Hailes, ${ }^{[a]}$ and Tom D. Sheppard*[a]

Abstract

L-Arabinose is an abundant resource available as a waste product of the sugar beet industry. Through use of a hydrazone-based strategy, L -arabinose was selectively dehydrated to form a chiral tetrahydrofuran on a multi-gram scale without the need for protecting groups. This approach was extended to other biomass-derived reducing sugars and the mechanism of the key cyclization investigated. This methodology was applied to the synthesis of a range of functionalized chiral tetrahydrofurans, as well as a formal synthesis of $3 R$-3-hydroxymuscarine.

The effective use of biomass, and in particular that generated as waste, ${ }^{[1]}$ is essential to reduce the global dependence on petrochemical resources for the manufacture of valuable compounds, fuels and materials. ${ }^{[2]}$ The majority of biomass is made up of carbohydrates, which are an abundant source of pentoses and hexoses. ${ }^{[3]}$ For example, the refinement of sugar beet generates beet pulp as a major waste product, and this is a rich source of L-arabinose. ${ }^{[4]} \mathrm{A}$ variety of techniques has been developed to convert these biomass resources into valuable small molecules, such as the dehydration of pentoses under forcing acidic conditions to give furfural (Scheme 1), which can then be converted into various alcohols, alkenes, and heterocycles. ${ }^{[5]}$ However, the majority of compounds prepared from pentoses and hexoses in this fashion are either achiral ${ }^{[6]}$ or racemic mixtures where the stereochemistry of the chiral precursors is lost. ${ }^{[7]}$ Using these products as intermediates in the synthesis of more complex targets may therefore require the rein-

[^0]

Scheme 1. The preparation of furfural and THFs from biomass feedstock.
troduction of stereocenters using asymmetric catalysis ${ }^{[8]}$ or resolutions. ${ }^{[9]}$
The tetrahydrofuran (THF) is a privileged scaffold within medicinal chemistry ${ }^{[10]}$ and the stereoselective synthesis of chiral THFs has been a major area of recent research. ${ }^{[11]}$ An attractive approach is to utilize the inherent chirality present in single isomer biomass-derived carbohydrates. ${ }^{[12]}$ However, existing methods often require the selective conversion of a primary alcohol into an alkyl sulfonate or halide ${ }^{[13]}$ and/or the use of protecting groups, ${ }^{[14]}$ both of which are detrimental to the economy of a synthetic route. ${ }^{[15]}$ Herein we describe the application of N, N-dimethylhydrazine ${ }^{[6]]}$ for the selective dehydration of biomass-derived reducing sugars to prepare chiral THFs under mildly acidic conditions (Scheme 1). ${ }^{[17]}$
Treating L-arabinose 1 a with N, N-dimethylhydrazine and Amberlyst ${ }^{\circ} 15$ acidic resin in methanol at room temperature gave hydrazone 2a in 99% yield (Table 1, entry 1). Stirring hydrazone 2 a in methanol at $40^{\circ} \mathrm{C}$ for 16 h with $20 \mathrm{~mol} \%$ TFA resulted in 100% conversion of $\mathbf{2 a}$. Analysis of the crude ${ }^{1} \mathrm{H}$ NMR spectrum indicated the formation of THF 3 a as a $75: 25 \mathrm{mix}-$ ture of diastereoisomers and purification by flash column chromatography gave a mixture of the two stereoisomers in 67% yield. The reaction was scaled up from a 6.7 mmol scale to a 104 mmol scale without any significant drop in yield, giving 11.9 g of THF 3 a . The major diastereoisomer was isolated by recrystallization and the stereochemistry was confirmed by Communication

Table 1. Two-step synthesis of THFs 3 from sugars 1.

Entry \quad Sugar 1

3

4

L-rhamnose 1e
[a] Reagents and Conditions: $\mathrm{NH}_{2} \mathrm{NMe}_{2}$ (2.0 equiv), Amberlyst ${ }^{\circ} 15, \mathrm{MeOH}, 24 \mathrm{~h}, \mathrm{RT}$. [b] Reaction conducted on a $6.0-6.7 \mathrm{mmol}$ scale unless otherwise stated. [c] Determined by analysis of the crude ${ }^{1} \mathrm{H}$ NMR spectra. [d] Reaction conducted using 20.0 g (104 mmol) of hydrazone $\mathbf{2 a}$. [e] Yield over two steps from xylose.
single-crystal X-ray diffraction (Figure 1). Both steps were conducted in a sustainable solvent ${ }^{[18]}$ (methanol) without the need for either pre-drying of the solvent or for a drying agent in the reaction.

The same reaction conditions were used to prepare the enantiomeric THF ent-3a from D ribose (Table 1, entry 2) in a 58% yield over two steps. It is noteworthy that the diastereoselectivity of this reaction was comparable with that observed for the cyclization of arabinose-derived hydrazone 2 a . The methodology was also extended to D lyxose (Table 1, entry 3), with the corresponding hydrazone prepared in 98% yield. The TFAmediated cyclization step gave THF 3 b in 66\% yield as a 55:45 mixture of diastereoisomers. THF $3 \mathbf{b}$ could also be prepared from D-xylose in 61% yield over two steps, again as a 55:45 mixture of diastereoisomers (entry 4). This is a particularly important result as D-xylose is one of the major components of biomass. ${ }^{[3]}$ Xylose is naturally available in both enantiomers and using Lxylose it was possible to access ent-3b in a comparable yield (entry 5). The methodology was extended to deoxy sugar Lrhamnose, another constituent of sugar beet pulp, to give THF 3 c in 69\% yield as a 60:40 mixture of diastereoisomers (entry 6).

Figure 1. ORTEP of the asymmetric unit in the crystal structure of hydrazone anti-3 a. The thermal ellipsoids are shown at a 50% probability level. Only hydrogen atoms belonging to the cyclic core are shown for clarity. ${ }^{[19]}$

Recrystallization of hydrazone 3 a yielded the major anti-diastereoisomer in high purity. Reducing hydrazone anti-3 a using hydrogen, a palladium catalyst and $\mathrm{Boc}_{2} \mathrm{O}$ gave carbamate 4 in 60% yield as a single stereoisomer (Scheme 2).

Treatment of THF 3 a (d.r. $=75: 25$) with Amberlyst 15 acidic resin in water at room temperature resulted in rapid hydrolysis of the hydrazone to give hydrolyzed product 5 (Scheme 3). ${ }^{[20]}$

Scheme 2. Reduction of hydrazone anti-3a.

$3 R$-3-hydroxymuscarine 12

Scheme 3. Hydrolysis of hydrazones $\mathbf{3}$ and transformation into a range of THFs. Reagents and conditions; i) Amberlyst ${ }^{\circ} 15, \mathrm{H}_{2} \mathrm{O}, 5 \mathrm{~min}, \mathrm{RT}$; ii) NaBH_{4}, $\mathrm{MeOH}, 1 \mathrm{~h}, 0^{\circ} \mathrm{C}$; iii) $n B \mathrm{BuNH}_{2}, \mathrm{AcOH}, \mathrm{H}_{2}(1 \mathrm{~atm}),. 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 4 \mathrm{~h}, \mathrm{RT}$, then $\mathrm{Boc}_{2} \mathrm{O}$, cyclopentyl methyl ether (CPME), $16 \mathrm{~h}, \mathrm{RT}$; iv) trimethyl phosphonoacetate, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 4 \mathrm{~h} 0^{\circ} \mathrm{C}$; v) Amberlyst ${ }^{\circ} 15, \mathrm{MeOH}, 48 \mathrm{~h}, \mathrm{RT}$.

Reduction of compound 5 with NaBH_{4} in methanol gave triol 6 as an 85:15 mixture of diastereoisomers in 98% yield over two steps from hydrazone 3 a. Reductive amination of intermediate 5 using n-butylamine, acetic acid, and hydrogen/palladium, followed by trapping of the intermediate amine with $\mathrm{Boc}_{2} \mathrm{O}$, gave carbamate 7 in 65\% yield from hydrazone 3 a as an 80:20 mixture of diastereoisomers. Compound 5 was also converted to alkene 8 using trimethyl phosphonoacetate in 73% yield over two steps with excellent E-selectivity. Finally, treating compound 5 with Amberlyst 15 in methanol resulted in the formation of dimethyl acetal 9 in 74\% yield over two steps from 3 a as a 65:35 mixture of stereoisomers.

The hydrolysis/reduction sequence was also applied to the hydrazones $3 \mathbf{b}$ and $3 \mathbf{c}$, which gave the corresponding triols 10 and 11 in 90% and 93% yield respectively. L-Rhamnose-derived triol 11 is a late-stage intermediate in Fleet's synthesis of $3 R$-3-hydroxymuscarine 12. ${ }^{[21]}$ Triol 11 was previously prepared from L-rhamnose using stoichiometric bromine, trifluoromethanesulfonic anhydride, and lithium aluminium hydride, so our route represents a less hazardous and more sustainable alternative.

A plausible reaction mechanism for the cyclization of hydrazone 2a is proposed in Scheme 4. The N, N-dialkylhydrazone group of 2 a could promote the acid-mediated elimination of

Postulated Mechanism

Reversibility Study

Deuteration Study

Scheme 4. Postulated mechanism and mechanistic studies.
the adjacent hydroxyl to give vinyldiazenium intermediate 13. ${ }^{[22]}$ Cyclization of this intermediate would give THF 3 a as either an anti- or syn-diastereoisomer. Resubmission of an isomerically pure sample of anti-3a to the reaction conditions resulted in the same 75:25 mixture of anti- and syn-diastereoisomers that was observed in the original reaction, which suggests that the diastereoselectivity is under thermodynamic control. Conducting the reaction in $\left[\mathrm{D}_{4}\right] \mathrm{MeOH}$ did not result in detectable incorporation of deuterium adjacent to the hydrazone, indicating that epimerization occurs through a reversible ring closure rather than via a vinylhydrazine intermediate. The proposed mechanism is also consistent with the observation that hydrazones $2 \mathbf{a}$ and $\mathbf{2 b}$ converge to THF $\mathbf{3 a}$ and ent- $\mathbf{3} \mathbf{a}$ with the same diastereoselectivity (Table 1, entries 1 and 2), as the two reactions would proceed through enantiomeric vinyldiazenium intermediates. Without TFA present no cyclization of 1 a was observed.

In a preliminary study, the extension of this approach to hexoses was explored (Scheme 5). Hydrazone 14, formed from D-galactose, was subjected to the TFA-mediated cyclization conditions. This gave a 60:40 mixture of THF 15 and tetrahydropyran 16 in 53% isolated yield, with both heterocycles formed as single stereoisomers.

(from D-galactose)
$53 \% 15: 16=60: 40$

[^1]In summary, we have developed an efficient multi-gram approach to low-molecular weight chiral molecules from biomass feedstock sources. This route allows access to a range of THF products without the need for protecting groups, including a formal synthesis of $3 R$-3-hydroxymuscarine. On the basis of experimental evidence, we have proposed a reaction mechanism for the key cyclization involving a vinyldiazenium intermediate.

Experimental Section

Experimental procedures, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, characterization data for all compounds and crystallographic data for anti-3a are available in the Supporting Information.
A mixture of hydrazone 2a ($20.0 \mathrm{~g}, 104 \mathrm{mmol}$) in $\mathrm{MeOH}(210 \mathrm{~mL}$, 0.5 m) was treated with TFA ($1.5 \mathrm{~mL}, 2.4 \mathrm{~g}, 20 \mathrm{~mol} \%$) at room temperature and the reaction stirred at $40^{\circ} \mathrm{C}$ for 16 h . The reaction was quenched with aq. sat. NaHCO_{3} and concentrated in vacuo to give the crude THF (anti:syn =75:25). This was purified by flash column chromatography (80:100 hexane:acetone) to give THF 3a ($11.9 \mathrm{~g}, 68.3 \mathrm{mmol}, 66 \%$, anti:syn $=75: 25$).
anti-3 a: Isolated as a single stereoisomer following recrystallization from boiling CPME; white crystalline solid; m.p. $=65-67^{\circ} \mathrm{C} ; R_{\mathrm{f}}=$ 0.33 ($1: 1$ acetone:hexane); $v_{\text {max }}\left(\right.$ film $/ \mathrm{cm}^{-1}$) 3415 s br. 2875 s , $1586 \mathrm{~s}, 1467 \mathrm{~s}, 1445 \mathrm{~s} ;{ }^{1} \mathrm{H}$ NMR (600 MHz ; [D4] MeOH) $6.51(1 \mathrm{H}, \mathrm{d}$, $J=6.6, \mathrm{~N}=\mathrm{CH}), 4.23-4.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N}=\mathrm{CHCH}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.08(1 \mathrm{H}, \mathrm{dd}$, $\left.J=9.6,4.9, \mathrm{OCHH}^{\prime}\right), 4.02(1 \mathrm{H}, \mathrm{dd}, J=7.3,5.1, \mathrm{~N}=\mathrm{CHCHCH}), 3.76-$ $3.72(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 2.79\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (150 MHz ; $\left.\left[\mathrm{D}_{4}\right] \mathrm{MeOH}\right) 135.6(\mathrm{C}=\mathrm{N}), 82.5\left(\mathrm{CHCH}_{2}\right), 76.5(\mathrm{~N}=\mathrm{CHCHCH}), 73.9$ $\left(\mathrm{OCH}_{2}\right), 72.4\left(\mathrm{CH}_{2} \mathrm{CHCH}\right), 42.8\left(\mathrm{~N}_{(}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS $\left(\mathrm{El}{ }^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+}$ 174.0979; $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 174.0999; $[\alpha]_{\mathrm{D}}\left(20^{\circ} \mathrm{C}\right)=+85.8$ (anti$3 \mathrm{a}, \mathrm{MeOH}, \mathrm{C}=1.4)$.

Acknowledgements

This work was supported by GlaxoSmithKline and the Engineering and Physical Science Research Council (EPSRC Industrial CASE Award) and the UCL PhD program in Drug Discovery.

Keywords: arabinose - biomass - hydrazines - cyclization
tetrahydrofurans
[1] C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff, Science 2012, 337, 695-699.
[2] a) G. W. Huber, A. Corma, Angew. Chem. Int. Ed. 2007, 46, 7184-7201; Angew. Chem. 2007, 119, 7320-7338; b) P. N. R. Vennestrøm, C. M. Osmundsen, C. H. Christensen, E. Taarning, Angew. Chem. Int. Ed. 2011, 50, 10502-10509; Angew. Chem. 2011, 123, 10686-10694; c) J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 2010, 110, 3552-3599; d) M. He, Y. Sun, B. Han, Angew. Chem. Int. Ed. 2013, 52, 9620-9633; Angew. Chem. 2013, 125, 9798-9812; e) P. Gallezot, Chem. Soc. Rev. 2012, 41, 1538-1558; f) S. A. Sanchez-Vazquez, H. C. Hailes, J. R. G. Evans, Polym. Rev. 2013, 53, 627-694.
[3] R. A. Sheldon, Green Chem. 2014, 16, 950-963.
[4] a) M. Bayashi, K. Funane, H. Ueyama, S. Ohya, M. Tanaka, Y. Kato, Biosci. Biotechnol. Biochem. 1993, 57, 998-1000; b) S. Kühnel, H. Schols, H. Gruppen, Biotechnol. Biofuels 2011, 4, 14.
[5] a) J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539-554; b) M. Spagnuolo, C. Crecchio, M. D. Pizzigallo, P. Ruggiero, Biotechnol. Bioeng. 1999, 64, 685-691.
[6] B. Li, S. Varanasi, P. Relue, Green Chem. 2013, 15, 2149-2157.
[7] a) A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502; b) L. Hu, G. Zhao, W. Hao, X. Tang, Y. Sun, L. Lin, S. Liu, RSC Adv. 2012, 2, 11184-11206.
[8] P. F. Koh, P. Wang, J. M. Huang, T. P. Loh, Chem. Commun. 2014, 50, 8324-8327.
[9] P. Srihari, Y. Sridhar, Eur. J. Org. Chem. 2011, 2011, 6690-6697.
[10] a) J. Eron Jr. , The Lancet 2006, 368, 476-482; b) J. Hao, B. Chen, Y. Yao, M. Hossain, T. Nagatomo, H. Yao, L. Kong, H. Sun, Bioorg. Med. Chem. Lett. 2012, 22, 3441-3444; c) L. P. Jordheim, D. Durantel, F. Zoulim, C. Dumontet, Nat. Rev. Drug Discovery 2013, 12, 447-464; d) A. Dell'Isola, M. M. W. McLachlan, B. W. Neuman, H. M. N. Al-Mullah, A. W. D. Binks, W. Elvidge, K. Shankland, A. J. A. Cobb, Chem. Eur. J. 2014, 20, 1168511689.
[11] a) K. Asano, S. Matsubara, J. Am. Chem. Soc. 2011, 133, 16711-16713; b) D. Belmessieri, A. de La Houpliere, E. D. D. Calder, J. E. Taylor, A. D. Smith, Chem. Eur. J. 2014, 20, 9762-9769; c) J. Lee, J. S. Panek, J. Org. Chem. 2015, 80, 2959-2971; d) N. Cox, M. R. Uehling, K. T. Haelsig, G. Lalic, Angew. Chem. Int. Ed. 2013, 52, 4878-4882; Angew. Chem. 2013, 125, 4978-4982; e) I. Čorić, J. H. Kim, T. Vlaar, M. Patil, W. Thiel, B. List, Angew. Chem. Int. Ed. 2013, 52, 3490-3493; Angew. Chem. 2013, 125, 3574-3577.
[12] a) K. M. Tomczyk, P. A. Gunka, P. G. Parzuchowski, J. Zachara, G. Rokicki, Green Chem. 2012, 14, 1749-1758; b) A. Kamimura, K. Murata, Y. Tanaka, T. Okagawa, H. Matsumoto, K. Kaiso, M. Yoshimoto, ChemSusChem 2014, 7, 3257-3259; c) L. L. Adduci, T. A. Bender, J. A. Dabrowski, M. R. Gagné, Nat. Chem. 2015, 7, 576-581; d) N. Drosos, B. Morandi, Angew. Chem. 2015, 127, 8938-8942; Angew. Chem. Int. Ed. 2015, 54, 8814-8818.
[13] a) M. Cifonelli, J. A. Cifonelli, R. Montgomery, F. Smith, J. Am. Chem. Soc. 1955, 77, 121-125; b) I. Lundt, H. Frank, Tetrahedron 1994, 50, 13285 13298; c) L. M. H. Leung, V. Gibson, B. Linclau, Tetrahedron: Asymmetry 2005, 16, 2449-2453; d) S.-M. S. Choi, P. M. Myerscough, A. J. Fairbanks, B. M. Skead, C. J. F. Bichard, S. J. Mantell, J. C. Son, G. W. J. Fleet, J. Saunders, D. Brown, J. Chem. Soc. Chem. Commun. 1992, 1605-1607.
[14] a) G. J. Ewing, M. J. Robins, Org. Lett. 1999, 1, 635-636; b) D. Rolf, G. R. Gray, J. Am. Chem. Soc. 1982, 104, 3539-3541.
[15] a) T. Saloranta, R. Leino, Synlett 2015, 26, 421-425; b) I. S. Young, P. S. Baran, Nat. Chem. 2009, 1, 193-205.
[16] R. Lazny, A. Nodzewska, Chem. Rev. 2010, 110, 1386-1434.
[17] a) M. KoóŠ, H. S. Moscher, Collect. Czech. Chem. Commun. 1985, 50, 1994-1999; b) M. Behforouz, J. L. Bolan, M. S. Flynt, J. Org. Chem. 1985, 50, 1186-1189.
[18] R. K. Henderson, C. Jimenez-Gonzalez, D. J. C. Constable, S. R. Alston, G. G. A. Inglis, G. Fisher, J. Sherwood, S. P. Binks, A. D. Curzons, Green Chem. 2011, 13, 854-862.
[19] CCDC 1411520 contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
[20] In deuterium oxide compound 5 existed as an $85: 15$ mixture of hydrates, with a structure analogous to that drawn in Scheme 4 (accounting for deuterium exchange) However NMR spectra in $\left[D_{4}\right] \mathrm{MeOH}$ and $\left[D_{6}\right]$ DMSO indicated a more complex mixture of compounds, possibly as a result of reversible oligomerization. See the Supporting Information for details.
[21] S. J. Mantell, P. S. Ford, D. J. Watkin, G. W. J. Fleet, D. Brown, Tetrahedron 1993, 49, 3343-3358.
[22] F. W. Lichtenthaler, T. Weimer, S. Immel, Tetrahedron: Asymmetry 2004, 15, 2703-2709.

Received: September 3, 2015
Published online on September 25, 2015

[^0]: [a] R. W. Foster, Dr. D.-K. Bučar, Prof. H. C. Hailes, Dr. T. D. Sheppard
 Department of Chemistry, University College London
 Christopher Ingold Laboratories
 20 Gordon Street, London, WCIH OAJ (UK)
 E-mail: h.c.hailes@ucl.ac.uk
 tom.sheppard@chem.ucl.ac.uk
 Homepage: http://www.tomsheppard.eu
 [b] Dr. C. J. Tame
 GlaxoSmithKline, Medicines Research Centre Gunnels Wood Road, Stevenage, Herts, SG1 2NY (UK)

 - Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem. 201503510.
 © © 2015 The Authors. Published by Wiley-VCH Verlag GmbH \& Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

[^1]: Scheme 5. Extending the methodology to D-galactose.

