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Abstract

Computational psychiatry involves applying a collection of theoretical notions,
including data analysis and mathematical and computational modeling, to the prob-
lems of psychiatry. It is a nascent field whose central methods are just in the process
of being developed. We consider some of the challenges and opportunities for tech-
niques and approaches that are presenting themselves as it starts to take on a more
concrete form.

1 Introduction

The field of computational neuroscience [1, 2] has three main facets: (i) data analysis,
which provides mostly statistical and machine learning-based techniques for manipulat-
ing and understanding the ever-growing wealth of empirical data that it is now possible
to collect [3, 4]; (ii) mathematical modeling, which provides for multi-scale treatments
of neural phenomena, explaining findings at one level of characterization by (typically
quantitative) reduction to mechanisms at lower levels [5]; and (iii) computational model-
ing, which derives substantial constraints for neural processing from the fact that brains
perform information processing functions – i.e., the phenomena play computational roles.

As soon as investigators started to build such mathematical and computational models of
normal neural structure and function, the idea that these formal characterizations might
illuminate abnormalities such as those apparent in neurology and psychiatry (and indeed
vice-versa) was born [6–8]. It was as computational neuroscience started to mature, and,
simultaneously, dissatisfaction with the state of psychiatry started to fester, that notions
of a more fully-fledged field of computational psychiatry became concrete.

By now, each of the three facets has found some resonance in psychiatry: data analy-
sis, simultaneously reaching a zenith and nadir in psychiatric genetics [9]; mathematical

1



modeling, for instance evident in the analysis of altered network dynamics associated
with imbalances between excitation and inhibition [10]; and computational modeling, in
the extensive investigations of disordered decision-making [11].

These successes in turn have led to a number of enthusiastic reviews (or somewhat more
accurately, previews) of the field [12–17], including some by various of us. However, a
body of clear and compelling methods is a key preliminary to the sort of new understand-
ing and nosology (i.e., systematic classification) of psychiatric conditions that are popular
interim goals in the field, let alone to the potential therapeutic advances that even the
brave are as yet far from offering.

In this review, we consider some of the existing and desirable methodological steps for
the field. Most methods are not unique to psychiatry – they just need careful application.
However, some, for instance to do with individual differences, are of more immediate
significance in psychiatry than in some other neuroscience disciplines. Given limited
space, and the modeling focus of the panoply of previews, we mainly focus on data anal-
ysis, touching only briefly on relevant aspects of the two forms of modelling. Of the
many areas in which methods of data analysis are playing, or could play, a crucial role
in computational psychiatry, two of very general importance concern (a) dimensionality
reduction and more general ways of finding statistical structure in very high dimensional
data; and (b) a specially noteworthy case of dimensionality reduction, namely ways of
characterizing differences within and between populations, at both single points in time,
and longitudinally.

2 Taming complexity through low dimensional structure

The bewildering complexity of the anatomy and physiology of the nervous system, to-
gether with those of its genetic and environmental determinants, require substantial tam-
ing in order for it to be possible to make progress in understanding what can go right and
wrong. Taming is typically understood in terms of finding low dimensional structure that
quantitatively and/or qualitatively characterizes central aspects of the full problem, or at
least provides a path to a form of sequential expansion.

As an illustrative example, one of the most vibrant areas of experimental and theoret-
ical research concerns mis-wiring - abnormalities and disease as a form of functional
dysconnection or synaptopathy [18]. Wiring can be wrongly or additionally routed (as
suggested, for instance, in synaesthesia [19]), or over-exuberant or under-pruned, at least
some times over the course of development; there could be more fine-scale problems, such
as the make-up of subunits of membrane-embedded channels (as in channelopathies;
[20]), or indeed the nature of synaptic plasticity, which adjusts these characteristics typ-
ically over the course of the interaction between the individual and their environment
[21, 22].
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The first step in any of these directions involves being able to assess normal and abnormal
states of wiring. Network analysis methods - the qualitative understanding of patterns
of connectivity (small-worldness; hubs and the like; [23]) provide just such a character-
ization - structure in the gargantuan space of connectivity matrices. Ideas for the impli-
cations of such qualitative structures for the flow of information in the brain remain in
demand [24, 25].

More prosaically, even the first stages of any analysis of structure - the determination of
what is connected to what and by what means, poses a monumental challenge - methods
that facilitate or augment manual segmentation of images from electron microscopy in
order to determine the nature of the connections [26] are of obvious note.

What goes for anatomy also applies to physiology. Again, just as an example, there has
been much work considering the low-dimensional structure in the dynamics of the activ-
ity of large populations of neurons – enabled by recent advances in methods for large-
scale simultaneous electrical or optical recording. There are various reasons to think that
such structure will exist - for instance, it has been noted (Ganguli, personal communica-
tion) that the dimensionality of the input or output that are encoded is often very modest
compared with the huge number of neurons. Qualitative structures such as surprisingly
sluggish low-dimensional attractor dynamics [27] have been extracted using advanced
statistical methods from multi-unit recordings; these turn out to have implications for be-
haviourally measurable quantities such as reaction times and various forms of variability.
It is, however, early days for our understanding of the nature and functional role of such
structures across different spatial and temporal scales.

Other suggestions, such as chaotic itineracy [28, 29] – that such low dimensional state rove
substantially over a whole domain – have been tied to abnormalities. More generally, so-
called ’dynamical diseases’ [30–32] are supposed to arise if the state evolves in an unusual
manner, visiting potentially incorrect regions of state space in an incorrectly controlled
way. Methods such as dynamic causal modeling (DCM) based on effective or functional
connectivity are also starting to prove their mettle as ways of divining various aspects of
abnormalities [33].

Mathematical modeling would ideally provide the link between these anatomical and
physiological cases, answering how patterns of wiring, together with the characteristics
of the neural elements that are thereby coupled, lead to the dynamics of activity that are
observed [34, 35]. More generally, mathematical modeling provides a form of multiscale
analysis, associated with the huge range of temporal and spatial scales [2] that are rele-
vant for the brain. This is of particular value in trying to understand cause and effect -
something that is critical to get at the heart of the problems associated with disease.

There has perhaps been rather less computational modeling associated with these qual-
itative characteristics. One main exception concerns attractor models, which have been
implicated in a host of computational operations. The effect of abnormal (e.g., dopamin-
ergic) neuromodulation, for instance in schizophrenia, in the dynamics of such networks
has been implicated in computationally characterised aspects of the disorder such as ab-
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normal fixedness and flightiness [6]. The idea is that the gain of neurons (i.e., the slope
of the input-output relationship) is modulated by neuromodulators. The effect of this is
either to over- or under-stabilize points of attraction, which themselves represent states
of cognitive importance such as goals or short-term memories. Aspects of oscillations
have also been awarded computational roles, albeit as yet with rather nascent links to
psychiatry [36].

3 Individual differences

Consider any way whatsoever of assessing genes, anatomy, physiology, or indeed be-
haviour across one or more populations of individuals. It is an obvious truism that the
study of dysfunction must begin with a characterization of the way that these facets vary
within and between these groups, and indeed the longitudinal reliability of the instru-
ments used for this characterization [37]. For a start, it is impossible to define the ab-
normal without reference to the normal. More subtle, though, are the forms of structure
prevalent in the populations. This has implications for such things as categorical or dis-
crete versus spectrum conditions [38–40], and also temporal characteristics evident in the
familiar distinction between traits and states [41]. However, it is also of note in periodic
diseases in psychiatry such as bipolar disorder and others [31], and secular changes as in
development, ageing and indeed dementing disorders, for which there are sophisticated
statistical treatments [42–47], for instance involving forms of structural equation model-
ing.

Some such characterizations are commonplace – for instance, principal components and
factor analysis are in ubiquitous use. These can be seen as assuming a particular sort of
Gaussian characterization of the variables concerned (e.g., questionairre measures) [48,
49], and finding a typically restricted number of axes associated with their covariance
matrices. Each axis defines a spectrum, realizing continuous dimensions of variability.

However, continuous spectra are not the only possibility. One could equally perform clus-
tering, as in statistical mixture models [50], which can quite naturally lead to the notion
of discrete disorders. They can also be naturally combined with dimensional models as
in mixtures of factor analysers [51, 52], a model that applies if the dimensional or spectral
structure within different discrete clusters is different.

There are many methods for discovering, validating and testing such so-called latent vari-
able models [53]. These get their name from the fact that the aspect of the structure that
underlies each example, for instance the cluster whence it hails, is not a direct part of the
input, but is rather latent or hidden and has to be discovered. These are often seen as ran-
dom effects models – since individuals, individual examples, or, more richly, individual
(neural) mechanisms or systems are seen as typically independent samples drawn from
an underlying population distribution.
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[33] provides an inspiring example in the case of schizophrenia, involving a reanalysis
of fMRI data from patients and controls performing a simple visual working memory
task. These authors performed clustering, using a statistically sophisticated rendition of
the data, and found not only that those with a disorder naturally separated from those
without, but also that the patients could be separated further into three subgroups in an
unsupervised manner, using only the pattern of their neural responses.

One popular approach for fitting such models is maximum likelihood density estima-
tion, for instance using the expectation maximization algorithm. In cases in which the
actual input is itself a noisy or partial reflection of the underlying parameters (something
that happens routinely when the underlying data being fit are parameters of a behavioural
model, such as the learning rate or the sensitivity to reward, and the input are observed
choices), it may be necessary to build more layers of latent structure, and to use approxi-
mations to perform the fitting. Of particular importance in these cases is model compari-
son – assessing which model fits the data better can provide a (typically, and importantly,
incomplete) statistical justification for claims about the structure of a disease or a class of
diseases. More complex models with more parameters can typically fit data more accu-
rately; thus proper comparison requires complexity to be correctly penalised. There are
various ways of doing this - notable examples are using hold-out data, or other forms of
cross-validation [54], and approximate Bayesian methods such as the Bayesian Informa-
tion Criterion or the Akaike Information Criterion [55].

An increasingly popular alternative to maximum likelihood fitting is to employ a more
fully-fledged Bayesian approach [56–59]. This can make fewer approximations, but at
the expense of greater computational cost, for instance accrued by Markov chain Monte-
Carlo sampling [59]. One particular advantage of the Bayesian methods is that they more
readily afford the possibility of what are known as non-parametric models, i.e., avoiding
a priori restrictions on such things as the number of clusters or factors. They also auto-
matically penalize complexity, via a form of Occam’s razor – although there are various
theoretical concerns with model comparison, as Bayesians prefer to average over mod-
els rather than select between them. Averaging is based on the marginal likelihood or
model evidence, which, unfortunately, not only is often very hard to compute, but can
also depend on a set of assumptions about prior distributions whose justification may
not always be completely transparent.

In view of these various uncertainties, investigators often use multiple methods to assess
population differences [33, 60]. One method is to compare mixture models fit in both
supervised and unsupervised ways - i.e., with and without knowledge of the putative
population structure (control or diseased). Another is to calculate and compare summary
statistics of the exact or approximate posterior distributions over the implied parameters
or characteristics.

It is also important to study the structure of outliers – i.e., extremes relative to any of
these distributions [61]. Outliers pose many statistical problems (not the least because of
the conventional focus on eliminating them as noise rather than studying them as sig-
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nal; [62]). Investigating them is significantly dependent on getting access to very large
populations.

Unlike more mature fields such as development and ageing [63–66], computational psy-
chiatry has yet to come firmly to grips with longitudinal aspects of the characteristics of
its populations – capturing the various sorts of changes that can occur across time, and
indeed finding signs pre-morbidly that can be of clinical benefit. This should not only
include evidence related to shorter-term states and longer-term traits, but also more basic
questions such as test-retest reliability (which could be importantly affected by recall of
the reinforcement contingencies, or meta-contingencies such as the speed of change in
the task). There is a dearth of work on more sophisticated aspects of directed change over
time that require more comprehensive longitudinal models [42–47, 67].

4 Discussion

Many of the initial efforts in computational psychiatry concerned ideas to do with decision-
making. This is partly because this is a key aspect of information processing that is dis-
turbed in psychiatric conditions. It is also because decision-making is an area in which
there are powerful models of normative function that link computations with psycholog-
ical and neural findings, and also environmental influences on information processing (in
the shape of priors, with consequences for biases, generalization and more; [11]).

However, the other aspects of computational psychiatry are of at least equal importance.
Mathematical modeling is necessary to provide multiscale analyses that can tie malfunc-
tioning or mis-wired elements to their dynamical consequences. Data analysis, on which
we focused here, is critical to provide compact, and thus revealing, analyses of the other-
wise overwhelming complexity of the brain. It is also essential to provide an analysis of
the structure within and between populations, to help delimit abnormalities.

There remain a wealth of areas requiring further work and analysis. Prime amongst these
is to import data analytical ideas about systematic change into the field to capture secular
and oscillatory evolution, along with the bio- and behavioural markers which will have
the appropriate discriminative and generative capacities.
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