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Wide-angle seismic profiles reveal anomalously thick crust with a high-velocity (>7.3 km s~ ') zone under the
Sierra Leone Rise, a major mid-plate elevation in the Atlantic lying between the Cape Verde platform and the
Cameroon Volcanic Line. A profile recorded over the crest using an ocean-bottom seismometer and surface sono-
buoys shows that beneath a 3 km water layer and 1 km of sediments, the basement extends to 16-20 km below
sea level. Most velocity-depth values fall outside the expected range for Mesozoic-early Cenozoic ocean floor and
stretched continental crust. The detection of 7.3-7.5 km s~ ! material beneath thick, lower-velocity volcanics sug-
gests that magmatic underplating of the crust has occurred. A prominent change in velocity gradient 10-12 km
below sea level may mark the transition to underplated material emplaced during the late Cretaceous—early Ce-
nozoic. A pronounced change in Moho depth lies on the line of a long offset fracture zone extending from the
African margin, implying underplating was influenced by a pre-existing discontinuity in the lithosphere. Other
seismic lines show 7.0-7.2 km s~ ! basement above the underplated zone extending into water depths of almost
5 km. This is probably the intrusive foundation of early-formed crust over a mantle hot-spot. It is suggested that
the development of the Sierra Leone Rise is distinct from other Atlantic hot-spot features to which it has been
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linked because of its setting in a region of intense lithospheric shear.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Atlantic contains many elevated platforms more than 300 km in ex-
tent which are believed to have resulted from copious outpourings of basic
volcanics. Whether these large igneous provinces have a common structure
and whether they trace out plate motions over mantle hot-spots or lie
above hot-lines that follow the upwelling limbs of Langmuir-like convec-
tion cells in the mantle, or are related to ridge tectonics over anomalous
mantle are questions that have catalysed both vigorous debate and field ob-
servations (Morgan, 1972; Bonatti and Harrison, 1976; Anderson et al.,
1992; Coffin and Eldholm, 1994; Ito et al.,, 2003; Fairhead and Wilson,
2005; Koppers, 2011; Ernst, 2014). Important to our understanding of
these features is their deep seismic structure. Seismic imaging offers a
means of distinguishing thickened igneous basement, formed with or with-
out magmatic underplating, from normal oceanic crust uplifted by the
buoyancy of a mantle hot-spot (Holbrook, 1995; Holbrook et al., 2001).

Recent seismic investigations of some of the large volcanic platforms
in the Atlantic (Fig. 1) suggest that significant underplating has not oc-
curred. The Madeira-Toré Rise (Peirce and Barton, 1991) and the region
around Tenerife, Canary Islands (Watts et al., 1997), are underlain by
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thickened, but not underplated, oceanic crust. A large-offset seismic ex-
periment in 2.5-4.5 km water depth on the Cape Verde platform (Pim
etal., 2008) has indicated the presence of normal oceanic crust and nor-
mal upper mantle velocities, suggesting dynamic support from a mantle
plume. With closely-spaced shot points they do not find evidence for
the thick crust reported by Lodge and Helffrich (2006) from earthquake
observations. Deep reflection profiles across the Cameroon Volcanic
Line just north of the Equator (Meyers and Rosendahl, 1991; Meyers
et al,, 1998) have also revealed normal oceanic crust that has been ele-
vated about 2 km above the level of the surrounding basins.

Midway between the Cape Verde Platform and the Cameroon Volca-
nic Line lies the Sierra Leone Rise, a broad regional swell in the equato-
rial Atlantic separated from the African continental margin by a deep
channel (Emery et al., 1975; Figs. 1-3). It is about 600 km long and
400 km wide at the 4000 m isobath. The crest rises about 2.5 km
above the abyssal plain in the Sierra Leone Basin and consists of a
wide plateau covered with ~900 m of late Cretaceous and younger pe-
lagic sediments which have been sampled at DSDP Site 366 (Fig. 3)
(Lancelot et al., 1977). To the west and north, the regional smoothness
of the basement surface is broken by large seamounts of Eocene age
(53-58 Ma; Jones et al., 1991; Skolotnev et al., 2012).

According to reconstructions of continental separation in the equa-
torial Atlantic magmatic activity on the Sierra Leone Rise was focussed
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Fig. 1. The Sierra Leone Rise (S) in relation to mid-plate elevations and fracture zone dis-
tributions in the central Atlantic as mapped using satellite gravity by Matthews et al.
(2011). M—Madeira-Toré Rise. N—Canaries. V—Cape Verde. C—Ceara Rise. L—Cameroon
Line. A—Ascension.

in the transition between the late Jurassic Atlantic and the newly
opened South Atlantic (Sibuet and Mascle, 1978; Jones et al., 1995;
Vogt and Jung, 2005; Moulin et al., 2010). This is a region of closely-
spaced transforms, which include the large-offset Guinea Fracture
Zone immediately north of the Rise and the St Paul transform to the
south (Figs. 1, 3). Fig. 2 shows the locations of magnetochrons C31
(~68 Ma; late Maastrichtian; Gradstein et al., 2004), C34 (~84 Ma;
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Fig. 2. Magnetic anomalies in the vicinity of the Sierra Leone Rise. GFZ—Guinea Fracture
Zone. SPFZ—St Paul Fracture Zone. The late Jurassic-early Cretaceous M-series anomalies
north of the Guinea Fracture Zone are taken from Cande et al. (1989). Further south the
positions of magnetochrons MO (~125 Ma; early Aptian; Gradstein et al., 2004), C34
(~84 Ma; Santonian) to C31 (~68 Ma; late Maastrichtian) are shown on flow lines based
on stage poles derived from South Atlantic fracture zone trends and magnetic anomalies
(Jones et al., 1995).

Santonian) to MO (~125 Ma; early Aptian) on flow lines south of the
Guinea Fracture Zone. To the north the late Jurassic-early Cretaceous
M-series from M25 (~155 Ma; late Oxfordian) to MO record the spread-
ing history off Africa before the opening of the South Atlantic (Cande
et al,, 1989). Some authors have suggested, in the absence of deep seis-
mic data, that the Sierra Leone Rise and its conjugate in the western At-
lantic, the Ceara Rise (Fig. 1), formed at the axis of the Mid-Atlantic
Ridge as a result of anomalously high rates of mantle melting arising
from regional changes in plate motions (Kumar, 1979; Vogt and Jung,
2005). Others have proposed that it is made up of uplifted oceanic
crust above a mantle hot-line that extended into central Africa, one of
several related mantle lineaments that include the Walvis Ridge,
Cameroon Volcanic Line, the Cape Verde platform and the Canaries
(Meyers et al.,, 1998). In view of the uncertainties surrounding the origin
of this prominent igneous feature we have determined its velocity
structure using wide-angle seismic data to examine its evolution in re-
lation to the development of large igneous provinces in the central
Atlantic.

2. Seismic acquisition

Seismic profiles were recorded over the crest and on the periphery
of the Sierra Leone Rise. The longest profile (1, Fig. 3; Fig. 4a) runs
over the summit plateau. An ocean bottom seismometer (OBS) was
laid in a water depth of 2908 m at the centre of the line (Table 1). The
OBS, with a basic design described by Francis et al. (1975), employed a
3-component seismometer and two hydrophones (1-40 Hz) as sensors.
Clear headwaves from Geophex explosive charges fired at 2.5-4.0 km
intervals were recorded out to ranges of 85 km to the NE and SW
(Fig. 5). To provide greater subsurface ray coverage, free-floating
Aquatronics sonobuoys with hydrophones 37 m below the sea surface
were deployed near the centre and at the two ends of the line (Buoys
1, 2 and 3: Figs. 4a, 5). All seismic arrivals were corrected to a sea level
datum using velocimeter measurements of sound speeds in the water
column. In addition, an airgun reflection profile was recorded close to
the line of shots to determine the thickness of the sedimentary cover
and to match reflectors to lithological units sampled at DSDP 366
(Lancelot et al., 1977). Two main sedimentary layers can be distin-
guished, with velocities of 1.82 and 2.30 km s~ ' (Fig. 4b).

Shorter (18-40 km) seismic profiles running parallel to local
isobaths were shot at positions 2, 3 and 4 (Fig. 3; Table 1) to determine
the upper crustal structure at the margins of the Sierra Leone Rise.
Water depths for each profile are given in Table 1. Free-floating
Aquatronics sonobuoys were again deployed to receive arrivals from
small Geophex charges detonated at intervals of 1.0-1.5 km. During
the shooting filtered (10-50 Hz and 300-600 Hz) signals were recorded
together with the shot instant from the ship's echo-sounder transducer.
Fig. 6 shows traces from the 10-50 Hz hydrophones. On the panels for
lines 2 and 3 the first sonobuoy deployed is labelled B1. On completion
of the forward shots the profiles were reversed by laying a second buoy
(B2). Line 2 reached a range of 33 km on the SE margin of the Rise.
Headwaves on line 3 on the northern side were received out to a
range of 40 km. Line 4 on the western boundary is a split profile shot
with two sonobuoys (B1, B2) placed near the centre of the transect.
Data from the OBS and sonobuoys are supplemented by three two-
ship profiles of Sheridan et al. (1969) located in the Sierra Leone Basin
at positions D-F in Fig. 3.

3. Results

The velocity model for Line 1 (Fig. 7b) was derived mainly by tomo-
graphic inversion of the first arrival travel times at the OBS and the three
sonobuoys, supplemented by iterative finite-difference acoustic full-
wavefield modelling (McMechan, 1985) for the Moho reflections
(Fig. 5). Constraints on the thickness and velocities in the sedimentary
cover are provided by the nearby reflection profile (Fig. 4). The
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Fig. 3. Locations of long-offset seismic profiles. Profile 1 is a 170-km line recorded over the late Cretaceous sediment cover on the summit plateau of the Sierra Leone Rise using an ocean
bottom seismometer placed at the centre in a water depth of 2908 m. Free-floating sonobuoys were deployed at the centre and ends of the line (see Fig. 4 and Table 1). Profiles 2, 3 and 4 on
the periphery of the Sierra Leone Rise were recorded with sonobuoys (Table 1). Lines D-F in the Sierra Leone Basin are two-ship profiles shot by Sheridan et al. (1969). The position of Deep
Sea Drilling Project site 366 (Lancelot et al., 1977) is shown. Bathymetry is derived from IBCEA (1999) and later soundings supplied by the National Oceanography Centre, UK, and the
Lamont-Doherty Earth Observatory, USA. Seamounts on the northern flank of the Sierra Leone Rise (area a) are early Cenozoic in age. GFZ—Guinea Fracture Zone. SLFZ—Sierra Leone Frac-
ture Zone. 4NFZ—Four North Fracture Zone. SPFZ—St Paul Fracture Zone. RFZ—Romanche Fracture Zone.

tomography uses the algorithm of Zhu and McMechan (1989) that pre- updates and retracing the rays to ensure internal consistency. The re-
dicts velocities within the region sampled by rays corresponding to first cording geometry produces a low ray sampling density in places
arrival paths. The tomography alternates between iterative velocity (Fig. 7a) so parts of the model have some non-uniqueness associated
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Fig. 4. (a) Shot and receiver positions on line 1 along the crest of the Sierra Leone Rise. OBS — Ocean bottom seismometer. B1, B2, B3 — sonobuoys 1, 2 and 3. Isobaths are in metres. (b) A
and B are sections of an airgun reflection profile recorded close to the long-offset line. Two-way reflection times are shown. The correlation of the two main seismic units with the stra-
tigraphy of the sediment cover at DSDP site 366 is also indicated.
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Table 1
Location of seismic lines: Sierra Leone Rise.

Line 1 Latitude (N) Longitude (W) Water depth (m)
OBS 5°12.43’ 20° 19.81 2908
Buoy 1 4° 42.35' 21° 00.20 2641
Buoy 2 5°11.62 20° 16.80’ 3021
Buoy 3 5°37.70" 19° 42.25' 2979

Line2  Buoy position Final shot position

Latitude Longitude Water Latitude  Longitude Water

(N) (W) depth (m) (N) W) depth (m)
Buoy 1 3°54.57' 19°33.52' 4727 3°44.08' 19°35.73' 4751
Buoy2 3°37.96’ 19°36.36" 4720 3°55.78" 19°34.50" 4713

Line3  Buoy position Final shot position

with them. Smoothing and both extrapolation and interpolation from
the sampled regions into the non-sampled regions are used to construct
a continuous model using the algorithm of Patel and McMechan (2003).
Individual times can be better-fitted with models that have higher local
variance in the less well sampled regions. We present in Fig. 7b a model
that stably represents the larger-scale structural features.

The first arrival ray paths (Fig. 7a) do not penetrate to the base of the
crust. However, Moho reflections were identified in the OBS and sono-
buoy data out to ranges of 81 km so these have been incorporated
into the model by iterative 2-D finite-difference modelling. While a dif-
ference in Moho depth to the NE and SW of the OBS is clear (Fig. 7b) de-
tails of the Moho geometry are not defined. In Fig. 5 the observed first
arrivals and Moho reflections are superimposed on the synthetic
seismograms predicted for the OBS data from the final velocity model
in Fig. 7b. Similar modelling was carried out using the three sonobuoy

EaNt)lmde ]('3\[,1)glmde r;;t:;r (m) %;t)ltu‘je m)gltuc'e X\g&r(m) data sets. The final composite model (Fig. 7b) accounts for all the ob-
served times (Fig. 5) with an accuracy consistent with the uncertainty
Buoy1 7°36.05 20°03.05 3950 7°24.67' 20°21.30' 3948 S S .
Buoy2 7°2835 20°1252' 3894 7°3333  20°0590° 3853 in picking arrival times (~0.050 s). All 127 arrivals from the OBS and so-
' ' ' ' nobuoy data are fitted with a root-mean-square (rms) travel time misfit
Line4  Buoy position Final shot position of 0.101 s. The rms misfits for basement headwaves and Moho reflec-
Latitude  Longitude Water Latitude  Longitude Water tions are 0.086 s and 0.112 s, respectively.
(N) (W) depth (m) (N) (W) depth (m) Below the sedimentary cover, the underlying crustal basement ex-
Buoyl 4°5173' 23755117 4321 24278 23°5095 4407 tends to depths of at least 16 km below sea level (Figs. 7b, 8). Large ver-
Buoy2 4°5041' 23°4833" 4385 5°01.90° 23°53.92 4396 tical gradients in P-wave velocity (~1.2 s~ ') characterize the upper
kilometre, reducing to ~0.14 s~ ! at depths of 9-10 km where velocities
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Fig. 5. Reduced-time plots of data recorded by the OBS and sonobuoys 1, 2 and 3 along line 1 (Figs. 3, 4). The traces are superimposed on synthetic seismograms computed for the OBS and
sonobuoy locations in Fig. 7a, using the P-wave velocity model in Fig. 7b. First arrival picks (P) are shown in red and Moho reflections (PmP) in green. W — direct water wave. B — seafloor

reflection. PP — multiple reflections of P from the sea surface.
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Fig. 6. a, b, c—Sonobuoy profiles 2, 3 and 4. Reduced time-distance plots of 10-50 Hz sonobuoy signals recorded along lines on the periphery of the Sierra Leone Rise (Fig. 3; Table 1).
(a) Traces recorded from the first sonobuoy deployed (B1) on line 2 indicate apparent velocities of 4.71 and 6.96 km s~ ' derived by least squares fits of arrival times. Reversing the

line by shooting from a second buoy (B2) in the direction of B1 gives apparent velocities of 4.80 and 7.25 km s

~1.(b) On line 3 apparent velocities from traces recorded from B1 and

B2 are shown. (c) Line 4 is a split profile recorded with sonobuoys B1 and B2 deployed near the centre of the line.

reach 7.2 km s~ . A prominent increase in gradient is found just below
10 km, with velocities changing from 7.2-7.4 km s~ ! over a depth incre-
ment of 0.7 km. This prominent feature of the crustal structure is
marked by the conspicuous concentration of turning rays at this level
(Fig. 7a).

Crustal velocities are well constrained by first arrival times to a
depth of 13.5 km, where they reach ~7.5 km s~ . To determine the base-
ment thickness below we assume an average velocity of 7.54 km s~ ! for
the lower crust, the highest velocity constrained by the deep
intersecting ray paths, and use observed Moho reflection times. This
gives Moho depths varying between 16 and 20 km along the profile
(Fig. 7b). In producing the synthetic seismograms, the velocity at the
Moho s fixed at 8.1 km s~ !, a value that gives sufficiently high reflection
amplitudes for comparison with observed travel times and amplitudes
(Fig. 5).

The velocity structures beneath the shorter sonobuoy profiles
around the edge of the Sierra Leone Rise (Profiles 2, 3 and 4; Fig. 3)
have been derived from the apparent velocities and intercepts in Fig. 6
using the method of Mota (1954). Dipping plane-layer solutions reveal
that below the 0.6-0.7 km sedimentary cover an upper basement layer,

1.1-1.8 km thick, is present with velocities typical of extrusive volcanics
(4.7-5.1 kms™; Fig. 8, Table 2). They also show that the intrusive base-
ment with a velocity of 7.1 km s~ ! beneath the crest of the Rise extends
to its periphery. Velocities below this section could not be determined
from the sonobuoy lines.

4. Discussion
4.1. Seismic velocity variations

Variations in seismic velocity with depth beneath the crest of the
Sierra Leone Rise and its environs are compared in Figs. 9 and 10 with
those observed under normal oceanic crust (White et al.,, 1992),
stretched continental crust (Christensen and Mooney, 1995) and other
volcanic elevations. The igneous basement beneath the crest of the
Sierra Leone Rise falls outside the range for uplifted oceanic crust of nor-
mal thickness or stretched continental basement (Fig. 9). It is not only
2-3 times thicker than the crust of the Sierra Leone Basin (Lines D-F;
Figs. 3, 8) but includes a section, approximately 7 km thick, with veloc-
ities greater than 7.3 km s~ . This zone lies beneath basement with
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velocities of 7.0-7.3 km s~ !, values which are appreciably higher than
the 6.26 km s~ ! characterizing oceanic Layer 3 in the central and north-
ern part of the Sierra Leone Basin (Lines E, F, Fig. 8) suggesting that
7.0-7.3 km s~ ! basement is the intrusive foundation of early-formed
anomalous crust on the Sierra Leone Rise. Extending into water depths
of more than 4.6 km at the periphery of the Rise (Lines 2, 3, 4; Fig. 8)
the basement contrasts markedly with oceanic Layer 3 in the Sierra
Leone Basin with its abnormally low velocity. In other regions Layer 3
velocities normally exceed 6.6 km s~ ! (White et al., 1992). A distinctive
feature of the Sierra Leone Basin observed on reflection profiles is wide-
spread post-Eocene faulting of its sediment cover and basement which
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Fig. 8. Seismic structure of the Sierra Leone Rise and environs. Section 1 is the modelled
structure from Fig. 7b which assumes a deep basement velocity of 7.54 km s~ ! from
13.5 km depth to the Moho. Sections for profiles 2, 3 and 4 (Table 2) are derived from dip-
ping plane-layer solutions for sonobuoy data in Fig. 6 using the method of Mota (1954). D,
E and F are taken from the two-ship seismic data of Sheridan et al. (1969).

has been related to changing motions between the African and South
American plates during the Cenozoic (Jones, 2003). Furthermore, airgun
profiles from the basin reveal numerous sediment diapirs and local seis-
mically transparent zones which suggest significant late-stage move-
ment of crustal fluids. The low velocity for Layer 3 may thus reflect an
unusually high porosity of the deep basement at the Layer 2/Layer 3
boundary resulting from the pervasive crustal deformation. Although
borehole evidence is lacking to support this conclusion, it should be
noted that analysis of downhole logs at ODP site 504B in the eastern
Pacific (Pezard, 2000) has demonstrated that changes in crustal stress
regime have led to reopening of cracks and fractures in the deep base-
ment which has affected fluid circulation and crustal alteration at the
Layer 2/Layer 3 boundary. More recent investigations of borehole sam-
ples from the same drill-site by Carlson (2014) indicate that velocity
changes at this level are more strongly influenced by the crack-related
porosity variations than by mineralogical changes brought about by
circulating fluids.

Having a basement core with velocities exceeding 7.3 km s~ ! the
Sierra Leone Rise shows similarities with the volcanic platforms around
Hawaii and the Marquesas in the Pacific (ten Brink and Brocher, 1987;
Caress et al., 1995; Leahy et al,, 2010) and Kerguelen, La Réunion,
Laccadive Island and the Ninetyeast Ridge in the Indian Ocean (Recq
et al., 1990; Charvis et al., 1999; Grevemeyer et al., 2001; Gupta et al.,
2010) where such high velocities have pointed to magmatic under-
plating by purely intrusive material or a mix of intrusions and pre-
existing basement. It differs from other mid-plate elevations in the east-
ern Atlantic which have been attributed to deep mantle plumes. The
Cape Verde Platform (Pim et al., 2008) and the Cameroon Volcanic
Line (Meyers and Rosendahl, 1991; Meyers et al., 1998) are floored by
uplifted normal oceanic crust; the Madeira-Toré Rise (Peirce and
Barton, 1991) and the Canaries (Watts et al., 1997) are underlain by
thickened oceanic crust with an absence of deep crustal velocities great-
er than 7.3 km s~ . Klingelhéfer et al. (2001) report that underplated
crust may be present beneath Ascension but is no more than 1 km
thick. However, a further study of a three-dimensional seismic dataset
from the area did not find any evidence for magmatic underplating
(Evangelides et al., 2004) (Fig. 10).
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Table 2
Seismic structure from sonobuoy profiles: margin of Sierra Leone Rise.

Line number Water layer Sedimentary layer Extrusive layer Intrusive layer
Thickness Velocity Thickness Velocity® Thickness Velocity® Velocity!
km kms™! km kms™! km kms™! kms™!
2¢ 4.73 1.50 0.61 2.00 1.74 4.75 (£0.18) 7.10 (£0.11)
3? 3.95 1.50 0.70 2.00 1.74 5.02 (£0.27) 7.01 (£0.08)
4b 434 1.50 0.59 2.00 1.14 5.11 (+0.58) 7.12 (+0.46)

2 Reversed profile.
b Split profile.

¢ Assumed value.
4" 1 Standard error.

Wide-angle reflections from the top of the high-velocity region lo-
cated ~7 km beneath the Marquesas have been interpreted (Caress
et al., 1995) as arrivals from a relict Moho marking the base of early-
formed crust (Mg, Fig. 9). While there is a distinct increase in trace am-
plitudes about 2 s before Moho reflections come in at near-vertical inci-
dence (Figs. 5, 7), the present data from the Sierra Leone Rise do not
show convincing evidence for coherent mid-crustal reflections over sig-
nificant distances. However, there is a pronounced increase in the verti-
cal velocity gradient at ~7 km below the top of the basement (Fig. 9)
from which much seismic energy is returned to the surface on both
sides of the OBS (Fig. 7a). This region is the transition to the thick section
with velocities exceeding 7.3 km s~ ! and is interpreted as the top of a
zone of magmatic underplating. The base is defined by pre-critical
Moho reflections at shot-receiver ranges up to 66 km (Fig. 5). The
shape and depth of the Moho are estimated by iterative modelling to
fit the picked reflection times and relative amplitudes and indicate
that the underplated section almost doubles in thickness over a distance
of ~100 km (Fig. 7b), suggesting relatively low viscosities in the lower
crust and upper mantle during the underplating process. At shallower
levels crustal thickening has involved not only underplating but the ad-
dition of an expanded extrusive section under the crest of the Sierra
Leone Rise (~3.0-6.0 km s~ 1), with a thickness exceeding its elevation
(Figs. 7b, 8).

The question of whether the conjugate of the Sierra Leone Rise in the
western Atlantic, the Ceara Rise, is an underplated volcanic platform re-
mains unanswered. A reversed seismic profile (Houtz et al., 1977) has
revealed in the upper part of the igneous basement a sequence of low-
velocity volcanics approximately equal in thickness to those found
beneath the crest of the Sierra Leone Rise (Fig. 10). Below lies a
6.8 km s~ ! layer of undetermined thickness. The deeper structure is
presently unknown.

Velocity (km s™)

i3 4 5 6 1 8 O
bl Normal
- S +— oceanic
£ 5 L] crust
- L
29 = Marquesas
% £ M., Relict Moho e —M,
_'2 #104 M Present Moho L
§ g — Sierra Leone Rise
M Present Moho
%15. <« M
o
Stretched —
20 continental crust

Fig. 9. P-wave velocities beneath the Sierra Leone Rise (kilometre 58, Fig. 7). The deep
basement velocity below 9.5 km is assumed to be 7.54 km s~ . The velocities for the cen-
tral Marquesas platform are taken from Fig. 4 (kilometre —25) of Caress et al., 1995). Also
shown are the bounds for stretched continental crust (Christensen and Mooney, 1995)
and normal oceanic crust (29-140 Ma) (White et al., 1992).

4.2. Development of Sierra Leone Rise

Thick igneous basement beneath the Sierra Leone Rise and the pres-
ence of a conjugate elevation in the Western Atlantic, the Ceara Rise
(Houtz et al,, 1977; Kumar and Embley, 1977) (Figs. 1, 10), are consis-
tent with high rates of magmatism over a mantle hot-spot and later
rifting at the westward migrating crest of the Mid-Atlantic Ridge
(Kumar, 1979). Magmatic activity began during the late Cretaceous
soon after continent/continent contact ceased along the Guinea Trans-
form (Sibuet and Mascle, 1978; Jones et al., 1995; Vogt and Jung,
2005; Moulin et al., 2010). It took place in an area characterized by an
unusually dense group of fracture zones, clearly defined by bathymetry,
magnetic anomalies and recent satellite gravity (Fig. 1) that mark re-
gional changes in plate motion and the development of leaky trans-
forms (Jones and Mgbatogu, 1982; Jones, 1987; Matthews et al.,
2011). The initially high rates of magma supply did not persist long
into the Cenozoic because the Sierra Leone Rise merges with the flanks
of the Mid-Atlantic Ridge about 900 km from the axis (Figs. 1, 3). Con-
tinued hot-spot activity which does not appear to be expressed in the
topography is evident from a broad geochemical anomaly west of the
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Fig. 10. Structure of mid-plate elevations in the central Atlantic. Seismic velocities are
shown for Ascension (Evangelides et al., 2004), the Ceard Rise (Houtz et al., 1977),
Sierra Leone Rise (Fig. 8), the Cape Verde Rise (Pim et al., 2008), Canaries (Tenerife)
(Watts et al., 1997) and the Madeira-Toré Rise (Peirce and Barton, 1991).
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Rise mapped using Pb-Nd-Sr isotopes and rare earths in dredged basalt
glasses (Schilling et al., 1994) and from low shear wave velocities de-
tected to depths of 250 km in this region (Silveira and Stutzmann,
2002; Heintz et al.,, 2005).

A feature of the Sierra Leone Rise is the presence of seamounts of Eo-
cene age (53-58 Ma) on its northern flank which are appreciably youn-
ger than the late Cretaceous sediment cover on the summit plateau
(Fig. 3; Jones et al., 1991; Skolotnev et al., 2012). It does not exhibit
the age progression observed on the Walvis Ridge and other Atlantic el-
evations attributed to lithosphere moving over deep mantle plumes
(O'Connor et al., 2012). This may be because the main episode of anom-
alous mantle melting was short-lived and was augmented in the early
Cenozoic by edge convection (King and Anderson, 1998) associated
with the large difference in age (>50 Ma) and thickness of the litho-
sphere across the Guinea transform at the northern boundary of the
Rise (Vogt and Jung, 2005; Moulin et al., 2010). The late-stage activity
extended from the Sierra Leone Rise further east along the Guinea Frac-
ture Zone where it bounds the African margin (Bertrand et al., 1993).
While the degree of melting associated with edge convection is the sub-
ject of debate (Armitage et al., 2013), intense shearing of the lithosphere
at the site of primary hot-spot activity could have promoted the creation
of pathways for the intrusion and then freezing of early melt below at-
tenuated crust within the closely-spaced fracture zones (Cormier et al.,
1984; Spathopoulos and Jones, 1993). Such pathways allowed the for-
mation of a high density barrier to further rising melt and the growth
of an underplated layer.

The ~4 km change in thickness of the high-velocity basement near
kilometre 100 beneath the summit of the Sierra Leone Rise (Fig. 7b)
lies on the western continuation of the Sierra Leone Fracture Zone
(McMaster et al., 1973) that displaces the African margin by approxi-
mately 140 km at 7°N (Fig. 3). This suggests that build up of the zone
of magmatic underplating was influenced by a major discontinuity in
the lithosphere established at the time of continental separation. In-
tense lithospheric shear, such as we see in the vicinity of the Sierra
Leone Rise, may account for the difference in deep crustal structure be-
tween the Rise and the mid-plate platforms of the Cape Verdes, Canaries
and Madeira-Toré Rise and may be an important factor in determining
the growth of magmatic underplating beneath mid-plate elevations in
other oceanic areas.

5. Conclusions

Wide-angle seismic observations indicate that the crust of the Sierra
Leone Rise is anomalously thick (13-17 km) and contains in its deeper
sections a zone with velocities exceeding 7.3 km s~ . The high values
suggest magmatic underplating has occurred through the addition of
purely intrusive material or a combination of intrusions and pre-
existing basement. The top of the underplated region is marked by an
increase in velocity gradient 10-12 km below sea level and its base is
defined by Moho reflections. Velocity variations within the basement
indicate that the Sierra Leone Rise did not form from uplift of normal
oceanic crust or from stretched continental basement left behind during
the early stages of separation of Africa from South America.

The development of the Sierra Leone Rise, with its core of high-
velocity basement, has followed a path that differs from other mid-
plate volcanic elevations in the eastern Atlantic, which are underlain
by uplifted normal oceanic crust (Pim et al., 2008; Meyers and
Rosendahl, 1991; Meyers et al., 1998) or thickened oceanic crust with-
out significant magmatic underplating (Peirce and Barton, 1991;
Watts et al.,, 1997). We suggest that the feature is distinct because it
evolved by anomalous mantle melting, possibly associated with edge
convection, beneath a region of intense lithospheric shear close to the
crest of the Mid-Atlantic Ridge soon after continent/continent contact
ceased along the main transform that bounded the newly opened
South Atlantic. The growth of an underplated layer (>7.3 km s™!)
may have been promoted by the creation of a high-density barrier to

rising melt in this intensely sheared region. The presence of strongly
sheared lithosphere above a mantle hot-spot may be a vital factor lead-
ing to the development of high-velocity underplated zones here and be-
neath large igneous provinces elsewhere.
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