

NOSQL FOR STORAGE AND RETRIEVAL OF LARGE LIDAR DATA COLLECTIONS

J. Boehm, K. Liu

Department of Civil, Environmental & Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT UK –

j.boehm@ucl.ac.uk

Commission III, WG III/5

KEY WORDS: LiDAR, point cloud, database, spatial query, NoSQL, cloud storage

ABSTRACT:

Developments in LiDAR technology over the past decades have made LiDAR to become a mature and widely accepted source of

geospatial information. This in turn has led to an enormous growth in data volume. The central idea for a file-centric storage of LiDAR

point clouds is the observation that large collections of LiDAR data are typically delivered as large collections of files, rather than

single files of terabyte size. This split of the dataset, commonly referred to as tiling, was usually done to accommodate a specific

processing pipeline. It makes therefore sense to preserve this split. A document oriented NoSQL database can easily emulate this data

partitioning, by representing each tile (file) in a separate document. The document stores the metadata of the tile. The actual files are

stored in a distributed file system emulated by the NoSQL database. We demonstrate the use of MongoDB a highly scalable document

oriented NoSQL database for storing large LiDAR files. MongoDB like any NoSQL database allows for queries on the attributes of

the document. As a specialty MongoDB also allows spatial queries. Hence we can perform spatial queries on the bounding boxes of

the LiDAR tiles. Inserting and retrieving files on a cloud-based database is compared to native file system and cloud storage transfer

speed.

1. INTRODUCTION

Current workflows for LiDAR point cloud processing often

involve classic desktop software packages or command line

interface executables. Many of these programs read one or

multiple files, perform some degree of processing and write one

or multiple files. Examples of free or open source software

collections for LiDAR processing are LASTools (Isenburg and

Schewchuck, 2007) and some tools from GDAL (“GDAL -

Geospatial Data Abstraction Library,” 2014) and the future

PDAL (“PDAL - Point Data Abstraction Library,” 2014).

Files have proven to be a very reliable and consistent form to

store and exchange LiDAR data. In particular the ASPRS LAS

format (“LAS Specification Version 1.3,” 2009) has evolved into

an industry standard which is supported by every relevant tool.

For more complex geometric sensor configurations the ASTM

E57 (Huber, 2011) seems to be the emerging standard. For both

formats open source, royalty free libraries are available for

reading and writing. There are now also emerging file standards

for full-waveform data. File formats sometimes also incorporate

compression, which very efficiently reduces overall data size.

Examples for this are LASZip (Isenburg, 2013) and the newly

launched ESRI Optimized LAS (“Esri Introduces Optimized

LAS,” 2014). Table 1 shows the compact representation of a

single point in the LAS file format (Point Type 0). Millions of

these 20 byte records are stored in a single file. It is possible to

represent the coordinates with a 4 byte integer, because the

header of the file stores an offset and a scale factor, which are

unique for the whole file. In combination this allows a LAS file

to represent global coordinates in a projected system.

This established tool chain and exchange mechanism constitutes

a significant investment both from the data vendors and from a

data consumer side. Particularly where file formats are made

open they provide long-term security of investment and provide

maximum interoperability. It could therefore be highly attractive

to secure this investment and continue to make best use of it.

However, it is obvious that the file-centric organization of data is

problematic for very large collections of LiDAR data as it lacks

scalability.

2. LIDAR POINT CLOUDS AS BIG DATA

Developments in LiDAR technology over the past decades have

made LiDAR to become a mature and widely accepted source of

geospatial information. This in turn has led to an enormous

growth in data volume. For airborne LiDAR a typical product

today which can be bought form a data vendor is a 25 points per

square meter point cloud stored in a LAS file. This clearly

exceeds by an order of magnitude a 1 meter DEM raster file,

which was a GIS standard product not so long ago. Not only did

the point count per square meter increase but the extent in the

collection of data has significantly increased as well.

As an example we can use the official Dutch height network

(abbreviated AHN), which has recently been made publicly

available (“AHN - website,” 2014). The Netherlands extend

across approximately 40,000 square kilometres (including water

surfaces). At 25 points per square meter or 25,000,000 points per

Item Format Size Required

X long 4 bytes *

Y long 4 bytes *

Z long 4 bytes *

Intensity unsigned short 2 bytes

Return Number 3 bits (bits 0, 1, 2) 3 bits *

Number of Returns 3 bits (bits 3, 4, 5) 3 bits *

Scan Direction Flag 1 bit (bit 6) 1 bit *

Edge of Flight Line 1 bit (bit 7) 1 bit *

Classification unsigned char 1 byte *

Scan Angle Rank char 1 byte *

User Data unsigned char 1 byte

Point Source ID unsigned short 2 bytes *

 20 bytes

Table 1: Compact representation of a single point in the

LAS file format.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-577-2015

577

mailto:idowman@ge.ucl.ac.uk

square kilometre a full coverage could theoretically result in 25 ∙
106 ∙ 40 ∙ 103 = 1012 or one trillion points. At 20 bytes each this

truly constitutes big data. The current AHN2 covers less ground

and provides an estimated 400 billion points (Swart, 2010). It

delivers more than 1300 tiles of about one square kilometre each

of filtered terrain-only points at an average density of 10 points

per square meter. The same volume is available for the residual

filtered out points (e.g. vegetation and buildings). Together this

is over a terabyte of compressed data in more than 2500 files.

Figure 1 shows a single tile of that dataset. It is one of the smallest

tiles of the dataset. The single tile contains 56,603,846 points and

extends from 141408.67 to 145000.00 in Easting and 600000.00

to 601964.94 in Northing. In compressed LAZ format it uses 82

MB disk space and uncompressed it uses 1.05 GB.

In terrestrial mobile scanning acquisition rates have now

surpassed airborne acquisition rates and therefore data volumes

can become even larger. Organization such as public transport

authorities are scanning their tunnel systems in regular intervals

for inspection and monitoring purposes. Repetitive acquisitions

at centimetre and even millimetre spacing result in large

collections which accumulate over the years. In order to detect

changes over several epochs data from previous acquisitions

needs to be available just as well as the most recent acquisition.

These examples clearly demonstrate the tough requirements on

data storage, redundancy, scalability and availability for LiDAR

storage. Just as clearly traditional file-centric organization of data

faces some challenges to meet these requirements. However

databases have dealt with these requirements successfully for

years.

3. POINT CLOUDS AND DATABASES

The simplest approach to store LiDAR point clouds in a relational

database, would be to store every point in a row of a three column

table where the columns represent X, Y and Z. Further columns

could represent additional attributes (see Table 1). As (Ramsey,

2013) has mentioned classic relational databases are not cable to

store hundreds of billions of rows for performance reasons.

However, this would be necessary as follows from the examples

above. Classic databases can maybe store millions of rows.

There have been nevertheless efforts to approach this. The

solution is typically to collect a larger set of points and store them

as a single object in a row. The two major examples for this are

Oracle Spatial and PostGIS. PostGIS refers to this concept as

point cloud patches (PcPatch). The obvious disadvantage is that

to access the actual geometry, i.e. the individual points you need

to unpack these patches (PC_Explode) and casted to classic GIS

points, which is an additional operation. For PostGIS the

recommendation is to use patches with a maximum of 600 points,

i.e. rather small patches.

Google’s Bigtable (Chang et al., 2008) finally promised to break

the storage boundaries of traditional databases. According to the

authors Bigtable was designed as a distributed database system

to hold “petabytes of data across thousands of commodity

servers”. The number of rows in a database is virtually unlimited.

A Bigtable inspired open source distributed database system

HBase was used as a storage backend for Megatree (“Megatree -

ROS Wiki,” 2008). Megatree is an octree like spatial data

structure to hold billions of points. It is now maintained by

hiDOF (“hiDOF,” 2014).

Document oriented NoSQL (Not only SQL) databases depart

from the idea of storing data in tables. A significant portion of

NoSQL databases (mongodb, couchbase, clusterpoint …) are

indeed document oriented (Jing Han et al., 2011). If one was to

draw a comparison to relational databases documents were the

equivalent to rows in a table. A collection of documents then

makes up the table. The decisive difference is that the documents

in a collection need not follow the same schema. They can

contain different attributes while the database is still able to query

across all documents in a collection. These NoSQL databases are

highly scalable and are one of the most significant tools for Big

Data problems. We introduce a possible solution for LiDAR

storage using NoSQL that follows a file-centric approach in the

following section. We had first suggested the use of document

oriented NoSQL for LiDAR storage in (Boehm, 2014). (Wang

and Hu, 2014) have proposed a similar approach focusing on

concurrency.

4. NOSQL DATABASE FOR FILE-CENTRIC STORAGE

The central idea for a file-centric storage of LiDAR point clouds

is the observation that large collections of LiDAR data are

typically delivered as large collections of files, rather than single

files of terabyte size. This split of the dataset, commonly referred

to as tiling, was usually done to accommodate a specific

processing pipeline. It makes therefore sense to preserve this

split.

A document oriented NoSQL database can easily emulate this

data partitioning, by representing each tile (file) in a separate

document. The document stores the metadata of the tile. Different

file formats could be accommodated by different attributes in the

document, as NoSQL does not enforce a strict schemata. The

actual files cannot efficiently be stored inside a document as they

are too large. A different mechanism is needed.

We choose to use MongoDB a highly scalable document oriented

NoSQL database. MongoDB offers GridFS which emulates a

distributed file system. This brings the possibility to store large

LiDAR files over several servers and thus ensures scalability.

GridFS is a database convention to enable file storage. A file is

split up into smaller chunks which are stored in separate

documents linked via a common id. An index keeps track of the

chunks and stores the associated file attributes. The idea to store

large geospatial collections in a distributed file system is not

dissimilar to Spatial Hadoop which uses HDFS for this purpose

(Eldawy and Mokbel, 2013). Figure 2 gives an overview of the

proposed architecture of the database. Figure 3 details the

attributes that are stored in a document. Note that this is not meant

to be a fixed schema, it is rather a minimal set of information

which can be easily extended.

Figure 1: Visualization of a single point cloud tile stored

in a LAS file. The colours indicate height.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-577-2015

578

Figure 2: Overview of the three collections that make up

the database for big LiDAR data

{

 type: <file type, e.g. LAS>,

 version: <version of file format>,

 id: <project id>,

 date: <acquisition date>,

 loc: <location for spatial index>,

 filename: <original file name>,

 gridfs_id: <pointer to gridfs file>

}

Figure 3: Attributes of a document stored in the collection

representing the metadata of a tile.

5. IMPLEMENTATION DETAILS

We start from the data provided by the LAS files. The

information in their headers provides the crucial metadata for

later queries. We use liblas (Butler et al., 2010) and its python

bindings to parse the files. While we show all code excerpts in

python for brevity there is nothing language specific in the data

organization. The following python code excerpt shows an

example of metadata that can be extracted. In this example we

use the file’s signature, the version of LAS, the project ID and

the date to describe the file’s content. We also extract the

minimum and maximum of coordinate values to later construct

the bounding box.

open LAS/LAZ file

file_name = 'g01cz1.laz'

f = file.File(file_name, mode='r')

header = f.header

read meta data from header

s = header.file_signature

v = header.version

i = header.project_id

d = header.date

min = header.min

max = header.max

Many of the NoSQL databases target web and mobile

development. Hence their geospatial indices are often restricted

to GPS coordinates, which are most commonly represented in

WGS84. LiDAR data on the other hand is usually locally

projected. Therefore any coordinates extracted from a LiDAR

file need to me transformed to the correct coordinate system

supported by the database. This is a very common operation in

GIS. We use the PROJ library for this purpose. Again we provide

some sample code which shows the transformation from the

original coordinate systems (Amersfoort / RD New to WGS84 in

this case). As you can see we only transform the bounding box of

the data. The actual LiDAR data remains untouched.

p1 = Proj('+proj=sterea

 +lat_0=52.15616055555555

 +lon_0=5.38763888888889

 +k=0.9999079 +x_0=155000

 +y_0=463000 +ellps=Bessel

 +units=m +no_defs')

p2 = Proj('+proj=longlat +ellps=WGS84

 +datum=WGS84 +no_defs')

min = transform(p1, p2, min[0], min[1])

max = transform(p1, p2, max[0], max[1])

loc = {"type": "Polygon",

 "coordinates" :

 [[[min[0], min[1]],

 [max[0], min[1]],

 [max[0], max[1]],

 [min[0], max[1]],

 [min[0], min[1]]]

]

 }

For all of the above the actual data content of the LiDAR file

never gets analysed. This is important to avoid unnecessary

overhead. The file gets stored in full and unaltered into the

database. As mentioned above MongoDB provides a distributed

file system for this called GridFS. We show in following code

how the compressed LAS file gets stored into the database. We

store a pointer to the file (a file ID) to connect it to the metadata

in the next step.

We have now all the information in place to generate a document

which combines the meta data of the LiDAR file, the geometric

key and a pointer to the actual data content in the database (see

Figure 3). This NoSQL document represents one tile of the

collection of LiDAR data. The document is represented as a

BSON object. This representation is very similar to the well-

known JSON representation, but optimized for storage. The

actual creation of the document and its storage are very simple.

The next code sample shows all that is required.

Database

collections

big_lidar

tile metadata

fs.files

file attributes

fs.chunks

file chunks

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-577-2015

579

open mongodb big_lidar database

client = MongoClient()

db = client.test_database

big_lidar = db.big_lidar

add file to GridFS

file = open(file_name, 'rb')

gfs = gridfs.GridFS(db)

gf = gfs.put(file, filename = file_name)

file.close()

add one tile to big_lidar database

tile = {"type": s, "version": v, "id": i,

 "date": d, "loc": loc,

 "filename": file_name,

 "gridfs_id": gf}

big_lidar.insert(tile)

Figure 4 shows a graphical result of the operation. It is the

visualization of all stored tiles’ bounding boxes on top of a map

using a desktop GIS system (Quantum GIS). Since the bounding

boxes are stored as BSON objects, it is straight forward to export

them as GeoJSON files.

We show a simple status report and an aggregation on the

database in the MongoDB console. This confirms the successful

storage of 1351 tiles and a total of 447728000747 points in the

database.

> db.big_lidar.stats()

{

 "ns" : "AHN2.big_lidar",

 "count" : 1351,

 "size" : 670096,

 "avgObjSize" : 496,

 "storageSize" : 696320,

 …

}

> db.big_lidar.aggregate([{ $group : { _id:

null, total: { $sum : "$num_points" } } }])

{ "_id" : null, "total" :

NumberLong("447728000747") }

6. SPATIAL QUERY

MongoDB like any NoSQL database allows for queries on the

attributes of the document. When an index is created on a certain

attribute queries are accelerated. As a specialty MongoDB allows

spatial indices and spatial queries. Hence we can perform spatial

Figure 4: Bounding Polygons of the tiles of the AHN2 dataset displayed over a map.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-577-2015

580

queries on the bounding boxes of the LiDAR tiles. We show a

very simple example of an interactive query on the Python

console. The query uses a polygon to describe the search area.

The database returns the tile metadata including the GridFS

index. Using the GridFS index the actual point cloud data can be

read from the database. It is simply the LiDAR point cloud file

that was previously put into the database. It is important to note

that no conversion or alteration of the files was done.

>>> tiles=list(big_lidar.find({ "loc" :

 { "$geoWithin" : { "$geometry" :

 {"type": "Polygon", "coordinates" :

 [[[5.1, 53.3], [5.5, 53.3],

 [5.5, 53.5], [5.1, 53.5],

 [5.1, 53.3]]]}}}

 }))

>>> len(tiles)

4

>>> tiles[0]['filename']

u'g01cz1.laz'

>>> gf_id = tiles[0]['gridfs_id']

>>> gf = gfs.get(gf_id)

>>> las_file = open('export_' + file_name,

 'wb')

>>> las_file.write(gf.read())

>>> las_file.close()

In Figure 5 we give the visualization representation of the query

operation. Four tiles were retrieved by the spatial query. In the

example we attach the filename as attributes and plot the

bounding boxes over a base map using the filenames as labels.

The leftmost tile corresponds to the point cloud visualized in

Figure 1.

7. TIMING EXPERIMENTS

As we move file-centric storage from the operating systems’ file

systems to a database, the performance of the transfer operation

with respect to the time they need to complete is of interest. We

have therefore performed some timing experiments for simple

storage and retrieval of a single tile of about 40 MB. The

experiments were performed on an Amazon EC2, a well-known

high-performance computing environment (Akioka and

Muraoka, 2010). We used an EC2 small instance in all

experiments. We separated local transfer from remote transfer.

Local Transfer is in-between the operating systems’ file system

and the database on the same machine. Remote transfer occurs

between the EC2 instance and a machine outside the amazon

cluster connected via the internet. To better assess the measured

times we give comparisons to alternative transfer methods. We

compare local transfer to the timing measured for direct file

system transfer (file-copy). Remote transfer is compared to

transfer with Dropbox, a leading personal cloud storage service

(Drago et al., 2012).

Figure 6 shows the results of local transfer. We can see that there

is some overhead compared to file system copy. This is

particularly the case for storing files (put), less so for retrieving

them (get). Figure 7 shows the timings for remote transfer. The

database performs at least on par with a common cloud storage

system. This obviously depends on the internet connection. All

experiments were performed on the same computers at nearly the

same time.

Figure 6: Transfer times for local transfer.

Figure 7: Transfer times for remote transfer.

0.036

1.515

0.268

0.000 0.500 1.000 1.500 2.000

OS file copy

GridFS - put

GridFS - get

Local Transfer (~40MB Tile) in sec.

95.8

116.1

6.2

13.1

0.0 50.0 100.0 150.0

GridFS - upload

Dropbox - upload

GridFS -download

Dropbox - download

Remote Transfer (~40MB Tile) in sec.

Figure 5: Example result of a spatial query visualized using

QGIS. In the top image the red box represents the search

polygon. The bottom image shows the tiles that are

completely within the search polygon. The MongoDB spatial

query delivered four tiles on the coast of the Netherlands.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-577-2015

581

8. CONCLUSIONS

We have presented a file-centric storage and retrieval system for

large collections of LiDAR point cloud tiles based on scalable

NoSQL technology. The system is capable of storing large

collections of point clouds. Using a document-based NoSQL

database allows retaining a file-centric workflow, which makes

many existing tools accessible. The suggested system supports

spatial queries on the tile geometry. Inserting and retrieving files

locally has some overhead when compared to file system

operation. Remote transfer is at par with popular cloud storage.

Building the system on MongoDB, a proven NoSQL database,

brings in a range of advantageous features such as

 Scalability

 Replication

 High Availability

 Auto-Sharding

MongoDB supports Map-Reduce internally for database queries.

However it is also known to work with external Map-Reduce

frameworks such as Hadoop. A special adapter to access

MongoDB from Hadoop is provided. This offers very interesting

future opportunities to combine Map-Reduce based processing

with NoSQL spatial queries.

9. ACKNOWLEDGEMENTS

We would like to acknowledge that this work is in part supported

by an Amazon AWS in Education Research Grant award. Also

part of this work is supported by EU grant FP7-ICT-2011-318787

(IQmulus).

REFERENCES

AHN - website [WWW Document], 2014. URL http://-

www.ahn.nl/index.html (accessed 5.19.14).

Akioka, S., Muraoka, Y., 2010. HPC Benchmarks on Amazon

EC2. IEEE, pp. 1029–1034. doi:10.1109/WAINA.2010.166

Boehm, J., 2014. File-centric organization of large LiDAR Point

Clouds in a Big Data context.

Butler, H., Loskot, M., Vachon, P., Vales, M., Warmerdam, F.,

2010. libLAS: ASPRS LAS LiDAR Data Toolkit [WWW

Document]. libLAS - LAS 1.0/1.1/1.2 ASPRS LiDAR data

translation toolset. URL http://www.liblas.org/

Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,

Burrows, M., Chandra, T., Fikes, A., Gruber, R.E., 2008.

Bigtable: A distributed storage system for structured data. ACM

Transactions on Computer Systems (TOCS) 26, 4.

Drago, I., Mellia, M., M. Munafo, M., Sperotto, A., Sadre, R.,

Pras, A., 2012. Inside dropbox: understanding personal cloud

storage services. ACM Press, p. 481. doi:10.1145/2398776.-

2398827

Eldawy, A., Mokbel, M.F., 2013. A demonstration of

SpatialHadoop: an efficient mapreduce framework for spatial

data. Proceedings of the VLDB Endowment 6, 1230–1233.

Esri Introduces Optimized LAS [WWW Document], 2014. URL

http://blogs.esri.com/esri/arcgis/2014/01/10/esri-introduces-

optimized-las/ (accessed 5.19.14).

GDAL - Geospatial Data Abstraction Library [WWW

Document], 2014. URL http://www.gdal.org/ (accessed 9.4.14).

hiDOF [WWW Document], 2014. URL http://hidof.com/

Huber, D., 2011. The ASTM E57 file format for 3D imaging data

exchange, in: IS&T/SPIE Electronic Imaging. International

Society for Optics and Photonics, p. 78640A–78640A.

Isenburg, M., 2013. LASzip: lossless compression of LiDAR

data. Photogrammetric Engineering and Remote Sensing 79,

209–217.

Isenburg, M., Schewchuck, J., 2007. LAStools: converting,

viewing, and compressing LIDAR data in LAS format. avaliable

at: http://www. cs. unc. edu/ isenburg/lastools.

Jing Han, Haihong E, Guan Le, Jian Du, 2011. Survey on NoSQL

database. IEEE, pp. 363–366. doi:10.1109/ICPCA.2011.-

6106531

LAS Specification Version 1.3, 2009.

Megatree - ROS Wiki [WWW Document], 2008. URL http://-

wiki.ros.org/megatree

PDAL - Point Data Abstraction Library [WWW Document],

2014. URL http://www.pdal.io/ (accessed 9.4.14).

Ramsey, P., 2013. LIDAR In PostgreSQL With Pointcloud.

Swart, L.T., 2010. How the Up-to-date Height Model of the

Netherlands (AHN) became a massive point data cloud. NCG

KNAW 17.

Wang, W., Hu, Q., 2014. The Method of Cloudizing Storing

Unstructured LiDAR Point Cloud Data by MongoDB, in:

Geoinformatics (GeoInformatics), 2014 22nd International

Conference on, Kaohsiung, Taiwan, China. pp. 1–5.

doi:10.1109/GEOINFORMATICS.2014.6950820

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-577-2015

582

