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Abstract

Epidermal growth factor receptor (EGFR) signaling is fundamentally important for tissue

homeostasis through EGFR/ligand interactions that stimulate numerous signal transduction

pathways. Aberrant EGFR signaling has been reported in inflammatory and malignant diseases but

thus far no primary inherited defects in EGFR have been recorded. Using whole-exome

sequencing, we identified a homozygous loss-of-function missense mutation in EGFR (c.

1283G>A; p.Gly428Asp) in a male infant with life-long inflammation affecting the skin, bowel

and lungs. During the first year of life, his skin showed erosions, dry scale, and alopecia.

Subsequently, there were numerous papules and pustules – similar to the rash seen in patients

receiving EGFR inhibitor drugs. Skin biopsy demonstrated an altered cellular distribution of

EGFR in the epidermis with reduced cell membrane labeling, and in vitro analysis of the mutant
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receptor revealed abrogated EGFR phosphorylation and EGF-stimulated downstream signaling.

Microarray analysis on the patient’s skin highlighted disturbed differentiation/premature terminal

differentiation of keratinocytes and upregulation of several inflammatory/innate immune response

networks. The boy died aged 2.5 years from extensive skin and chest infections as well as

electrolyte imbalance. This case highlights the major mechanism of epithelial dysfunction

following EGFR signaling ablation and illustrates the broader impact of EGFR inhibition on other

tissues.

INTRODUCTION

EGFR signaling represents a key activity in several biologic processes underpinning tissue

development and homeostasis (Jutten and Rouschop, 2014). Thus far, 7 EGFR ligands have

been identified: EGF, transforming growth factor-α, amphiregulin, heparin-binding EGF-

like growth factor, betacellulin, epiregulin, and epigen (Schneider and Wolf, 2009; Nanba et

al., 2013). Interaction between EGFR and these ligands leads to stimulation of numerous

transduction pathways that includes the RAS/RAF/MEK/ERK, PLC-gamma/PKC, PI3K/

AKT, JAK/STAT, and NF-κB cascades (Jost et al., 2000; Silbilia et al., 2007). Acquired

abnormalities of EGFR signaling have been observed in various inflammatory and

malignant diseases (Jost et al., 2000; Gschwind et al., 2004; Dreux et al., 2006; Zhang et al.,

2014). Of note, aberrant EGFR activation is found in many tumor cells, and humanized

neutralizing antibodies and synthetic small compounds against EGFR are in clinical use

today. These drugs may cause skin and hair toxicities, indicating a key role for EGFR in

cutaneous homeostasis (Lacouture, 2006; Liu et al., 2013). These side-effects have been

recapitulated in a mouse model, with evident abnormalities in cutaneous chemokines

associated with early infiltration of macrophages and mast cells and later infiltration of

eosinophils, T cells and neutrophils (Mascia et al., 2013). EGFR mutations in tumors are

typically gain-of-function and located within the tyrosine kinase domain of the protein, but

thus far there are no reports of naturally occurring loss-of-function mutations in humans.

Knockout and transgenic murine models and in vitro studies have demonstrated the essential

role of EGFR in multiple organs (Miettinen et al., 1995; Silbia and Wagner, 1995;

Threadgill et al., 1995; Jost et al., 2000; Schneider et al., 2008), but clinical correlates in

patients are currently lacking. In this study, we used whole-exome sequencing to identify an

inherited loss-of-function mutation in EGFR in an individual with inflammatory skin, lung

and bowel disease.

RESULTS AND DISCUSSION

Clinical presentation with cutaneous erosions and inflammation

We investigated a male infant born to parents of Polish Roma origin who presented to us at

12 months of age with extensive skin inflammation. Initially, there were widespread

erosions affecting his trunk and limbs that had been present since birth (Figure 1a), but

subsequently we observed papules and pustules (Figure 1b). He also had life-long watery

diarrhea and respiratory difficulties. He was born at 34 weeks’ gestation, weighing 1560

grams; the pregnancy had been complicated by polyhydramnios and maternal hypertension.

Clinically, at 12 months his weight was only 5.52kg with evident failure to thrive. His
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inflamed skin was frequently infected with Staphylococcus aureus. He had loss of scalp hair

but long eyelashes (trichomegaly). No nail abnormalities were observed. He had previously

undergone surgery for probable coarctation of the aorta and was noted to be hypertensive.

Other abnormalities included recurrent bronchiolitis and pulmonary infection with

Pseudomonas aeruginosa (requiring tracheostomy and oxygen). Renal ultrasound showed

bilateral renal enlargement but no obstruction. The child had no specific food allergies but

was unable to tolerate solids due to diarrhea and vomiting and severe dehydration. We

observed low albumin, zinc, vitamin A, iron, magnesium, profound hypokalaemia

(persistent), and hypernatraemia - though barium meal showed no evidence of

malabsorption. He preferred to drink water rather than milk and subsequently required total

parenteral nutrition. Blood eosinophil counts were slightly elevated during the first year

(observed levels 0.4-1.0 × 109/l). Total IgE was found to be raised as a neonate (100 IU/l;

range for <1 year 0-15 IU/l) and at 15 months (107 IU/l; range for this age 0-60 IU/l). IgM

was borderline normal/low; IgG and IgA were normal. Venous access lines frequently

became clotted and he developed deep vein thromboses. He died aged 2.5 years as a result

of cutaneous and pulmonary infections and electrolyte imbalance. Further details of the

clinical history can be found in the Supplementary Material.

Skin biopsy reveals acanthosis and intra-epidermal edema

We obtained written informed consent from the subject’s legal guardian with approval from

the St. Thomas’ Hospital Ethics Committee. Elliptical skin biopsies were obtained under

local anesthetic from a non-lesional area on the right thigh of the child (aged 12 months) as

well as the abdomens of healthy control patients undergoing cosmetic (“tummy tuck”)

surgery. The initial clinical diagnosis was a subtype of inherited skin fragility, a

heterogeneous group of disorders known collectively as epidermolysis bullosa (EB) (Fine et

al., 2008). Light microscopy of non-lesional skin revealed mild acanthosis compared to age-

and site-matched control skin, as well as a slight widening between adjacent keratinocytes

(Figure 2a). A few neutrophils were noted within the superficial dermis with some

infiltration of follicular epithelium and folliculitis, although Gram stain for bacteria was

negative. The changes within the epidermis resembled those of a primary inherited

abnormality of desmosomes (Petrof et al., 2012), although transmission electron microscopy

showed intercellular edema from the basal layer to the mid-spinous layer and a slight

decrease in the number of gap junctions but no structural or numerical abnormalities in

hemidesmosome or desmosome cell junctions (Figure 2b). Skin immunolabeling using a

panel of antibodies that target basement membrane and epidermal proteins implicated in

inherited skin fragility disorders (see Supplementary Material for antibody details)

demonstrated a marked reduction in staining intensity for the desmosomal proteins

desmoglein 1 and plakophilin 1, as well as altered labeling patterns for profilaggrin,

involucrin and keratin 10, markers of terminal differential in the epidermis (illustrated in

Supplementary Material). Some of the clinicopathologic features also resembled Netherton

syndrome, an autosomal recessive disorder associated with loss-of-function mutations in a

serine protease inhibitor (SPINK5) that encodes lympho-epithelial Kazal-type related

inhibitor (LEKT1) (Chavavas et al., 2000; Stoll et al., 2001). Immunostaining for LEKTI in

our patient’s skin, however, revealed a slight increase compared to control (illustrated in

Supplementary Material)– in contrast to findings of reduced LEKTI expression that usually
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accompany Netherton syndrome. Taken together, these findings were not in keeping with

any known form of EB, Netherton syndrome or any other recognized inherited or acquired

skin disease.

Whole-exome sequencing reveals a homozygous missense mutation in EGFR

Next, after obtaining approval from the ethics committee and informed consent, we

extracted genomic DNA from peripheral blood samples from the child, other family

members and controls in compliance with the Helsinki Guidelines. Using the patient’s DNA,

whole-exome sequencing was performed on the Illumina HiSeq 2000 (San Diego, CA,

USA). After excluding pathogenic mutations in genes implicated in different forms of EB

(Fine et al., 2008), the exome variant profile was filtered to look for novel homozygous

mutations (based on probable consanguinity). This disclosed 6 possible gene mutations (see

Supplementary Material). Within these genes, EGFR was deemed to be of potential

relevance given that some clinical features (e.g. papulo-pustular skin eruptions, alopecia and

trichomegaly) resembled known side-effects of EGFR inhibitor drugs (Lacouture, 2006).

Immunofluorescence microscopy to assess EGFR expression in the affected infant’s skin

showed a markedly altered staining pattern with loss of the cell peripheral membrane

labeling and a more cytoplasmic or peri-nuclear region distribution, compared to strong cell

membrane localization of EGFR throughout the epidermis, with minimal intracellular

labeling, in control skin (Figure 2c). The non-synonymous substitution identified in exon 11

of EGFR, c.1283G>A, replaces a neutral glycine with a negatively charged aspartic acid

molecule at a highly conserved residue, p.Gly428Asp. The pathogenicity of this missense

mutation was supported by both the ‘Sorts Intolerant From Tolerant’ (SIFT; score 0,

probably damaging) and Polymorphism Phenotyping v2 (polyphen-2; score 1, probably

damaging) programs (Ng and Henikoff, 2003; Adzhubei et al., 2010). The EGFR mutation

was also validated by Sanger sequencing (Figure 2d; primers for EGFR amplification are

given in Supplementary Material) and found to be homozygous in the affected patient,

heterozygous in the mother, and homozygous wild-type sequence in the unaffected older

sibling; DNA from the father was not available. The mutation is located in extracellular

domain III of EGFR (Figure 2e), in contrast to the tyrosine kinase domain mutations

commonly found in tumors (Kumar et al., 2008). The region surrounding the mutation has

been postulated to be involved in intra-molecular interactions that promote dimerization of

EGFR and receptor activation (Ogiso et al., 2002; Dawson et al., 2005). We were unable to

find the observed mutation in the dbSNP database, the 1000 Genomes database, the 13,005

exomes in the Exome Variant Server or in 900 unrelated European in-house control exomes.

Aberrant cutaneous expression of genes germane to keratinocyte differentiation,
inflammatory response and innate immunity

Microarray data have been deposited in the Gene Expression Omnibus repository; accession

number GSE54162. Comparison of the affected infant’s skin with healthy control skin

identified 2-fold or greater differential expression for 2,157 gene transcripts: 1004 up-

regulated and 1153 down-regulated. These genes did not include EGFR, which was

insignificantly up-regulated in the patient’s skin (fold change=1.36; p=0.012). Evaluation of

the changes in gene expression by functional enrichment analysis identified a multitude of

enriched gene ontology (GO) pathways, processes, networks and disease-associated
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transcripts germane to EGFR signaling (see Supplementary Materials for tabulated results).

The top 3 up-regulated GO processes were linked to known EGFR functionality:

keratinocyte differentiation, keratinization and epidermis development (involving genes

such as transglutaminases, small proline rich genes, S100 genes, involucrin and late

cornified envelope genes). Reports have also indicated a role for EGFR in regulating skin

inflammation and cutaneous defence (Lichtenberger et al., 2013; Mascia et al., 2013). Thus,

innate inflammatory response gene components (specifically PLA2, NF-κB, and JNK1)

were among the most significantly up-regulated GO networks. Notably, CCL2 expression

was increased 2.2 fold, in keeping with reported findings in mouse models lacking

epidermal Egfr expression (Lichtenberger et al., 2013). Additionally, regulation of

epithelial-to-mesenchymal transition and angiogenesis, processes known to be controled by

EGFR activation (Perrotte et al., 1999; Avraham and Yarden, 2011), were identified as

significantly down-regulated GO pathways and processes, respectively. Of note, there was

also down-regulation of transcripts that are normally increased in tumors which show gain-

of-function mutations in EGFR (e.g. non-small cell lung cancer, colorectal cancer, and

glioblastoma).

Mutant EGFR at the plasma membrane is highly unstable and more susceptible to
constitutive endocytosis

To determine whether the mutation p.Gly428Asp in EGFR was responsible for

mislocalization of EGFR in the affected infant, we generated DNA constructs containing

mutant or wild-type EGFR sequence linked to green fluorescent protein (GFP) and

expressed these constructs in MCF7 cells that express low endogenous EGFR and analyzed

EGF-dependent localization of EGFR using confocal microscopy. Under normal growth

conditions, the mutant EGFR construct localized diffusely throughout the cytoplasm of the

cell in contrast to the wild-type construct, which was present mostly on the plasma

membrane (Figure 3a). EGF stimulation resulted in robust translocation of wild-type EGFR

to the plasma membrane within 10 minutes of EGF treatment (Figure 3b). Conversely, the

mutant EGFR remained in the cytoplasm following EGF stimulation with no clear

recruitment to the plasma membrane (Figure 3b), suggesting this mutation prevents or

diminishes EGFR membrane localization, supporting the immunostaining findings in patient

skin (Figure 2c).

EGFR membrane localization is regulated through a balance of endocytosis under the

control of a number of intracellular signaling pathways that converge on the large GTPase

dynamin (Lee et al., 2006). To examine whether the lack of mutant EGFR localization to the

cell membrane was due to defective endocytic traffic, MCF-7 cells expressing either wild-

type or mutant EGFR were treated with an inhibitor of dynamin-mediated endocytosis,

Dynasore (Macia et al., 2006). Receptor localization was then examined by confocal

microscopy. In the absence of ligand, membrane localization of both wild-type and mutant

EGFR increased after treatment with Dynasore (Figure 3c). Similar results were observed in

a normal human keratinocyte cell line expressing wild-type or mutant EGFR (see

Supplementary Material). Immunostaining of MCF-7 cells expressing wild-type or mutant

EGFR was performed using an antibody against the extracellular domain of EGFR to

quantify membrane localization. Pearson’s correlation coefficient analysis to quantify the
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co-localization between wild-type or mutant EGFR with the antibody staining demonstrated

that for both constructs the EGFR membrane localization increased significantly following

Dynasore treatment (Figure 3c) but not following treatment with the chemical chaperone 4-

PBA (data not shown). These data demonstrate that the mutant EGFR is able to undergo

recycling to the plasma membrane but that it can only be retained at the membrane upon

blockade of endocytic signaling. This suggests that the mutation p.Gly428Asp renders

EGFR at the plasma membrane highly unstable and thus more susceptible to constitutive

endocytosis.

Loss of downstream Akt and ERK signaling associated with mutant EGFR

Following EGF binding, EGFR undergoes rapid autophosphorylation and activation at a

number of residues within the cytoplasmic domain of the receptor. These changes result in

recruitment of a host of initiators and scaffolds of signaling leading to activation of MAP

kinase family members including ERK (p44/42) and Akt (Avraham and Yarden, 2011). We

therefore assessed the effect of the mutation p.Gly428Asp on EGF dependent

phosphorylation of EGFR and downstream signaling. EGF-dependent ERK and Akt

activation were assessed in untransfected MCF-7 cells or those expressing wild-type or

mutant EGFR. EGF-stimulated activation of EGFR (monitored by a phospho-specific

antibody) was robust in the cells expressing wild-type EGFR, but was undetectable in the

mutant EGFR-expressing cells above levels seen in untransfected controls (Figure 4a).

Similarly, neither Akt nor ERK activation was detected following ligand binding in mutant

EGFR-expressing cells, in contrast to cells expressing wild-type EGFR which showed

robust EGF-stimulated EGFR, ERK and Akt phosphorylation (Figure 4a). We observed

similar results in parallel experiments in another cell line (CHO-K1 cells) (see

Supplementary Material for data).

The suppression of EGFR-dependent activation and downstream signaling observed

suggests that the EGFR mutation p.Gly428Asp results in loss-of-function as well as loss of

plasma membrane localization. One of the primary functions of EGFR signaling following

EGF binding is to promote cell proliferation (Jost et al., 2000). To determine whether the

loss of EGF-dependent signaling in p.Gly428Asp mutant EGFR-expressing cells results in

functional defects, proliferation was analyzed in CHO-K1 cells expressing the wild-type or

mutant EGFR constructs. EGF and serum-stimulated proliferation was induced in CHO-K1

cells expressing wild-type EGFR, but no induction of cell growth was detected in cells

expressing the mutant EGFR (Figure 4b). Indeed, there was a negative growth rate of the

mutant EGFR-expressing cells, consistent with other work showing inhibition of EGFR

signaling induces apoptosis in keratinocytes (Figure 4c) (Rodeck et al., 1997).

Clinicopathologic overlap with patients harboring mutations in ADAM17

The exact mechanism by which the missense mutation p.Gly428Asp leads to loss of EGFR

function is unclear. Mutagenesis of the adjacent amino acid (p.Arg429Glu) was previously

found to prevent EGFR homo-dimerization through disruption of an interface between

domains II and III of the protein (Dawson et al., 2005). However, altered homo-dimerization

would not provide a sufficient explanation for the pathology as both monomeric EGFR and

the p.Arg429Glu mutant were present at the plasma membrane (Ogiso et al., 2002). In our
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experiments, we found that inhibition of endocytosis promoted levels of mutant EGFR at the

cell surface. We hypothesize that the mutant receptor is unstable and rapidly undergoes

internalization from the plasma membrane, perhaps implicating altered intracellular protein

binding and subsequent aberrant tethering within membrane microdomains.

Functionally, failure of EGFR to correctly localize to cell membrane is expected to reduce

ligand binding. In healthy people, several ligands require proteolytic cleavage to become

capable of binding to EGFR – this ectodomain shedding is induced by at least 5 different

metalloprotease enzymes, including ADAM17 (Blobel, 2005) – mutations in which may

underlie an inflammatory skin and bowel disease that has overlap with the clinical features

present in our patient (Blaydon et al., 2011). We hypothesize that the lack of EGFR

localization at the cell membrane in our patient has some similarity at a signaling level to

that which occurs in the ADAM17-deficient patients, i.e. a common failure of EGFR-ligand

interaction and altered downstream signal transduction.

Clinicopathologic similarities with mouse models of EGFR impairment

The clinical manifestations of the mutation p.Gly428Asp in terms of loss of EGFR function

show some similarities with the phenotype of Egfr knockout or transgenic mice (Miettinen

et al., 1995; Silbia and Wagner, 1995; Threadgill et al., 1995; Schneider et al., 2008).

Although the phenotype of Egfr-deficient mice depends on the strain of the mice (several are

embryonic lethal), the abnormalities in the skin, lung and bowel in surviving mice are

similar to many of the clinical manifestations in our patient. In the epidermis, some

knockout mice show an initially thin skin that then becomes thicker but with defective

barrier function (Miettinen et al., 1995). Lack of Egfr in mice also affects hair growth, with

wavy or reduced hair growth; EGFR is essential for normal hair follicle progression through

the anagen, catagen, and telogen phases of the hair growth cycle (Hansen et al., 1997;

Schneider et al., 2008). EGFR initiates hair growth and hair follicle organization, and EGFR

inhibition leads to inflammation, follicular necrosis and alopecia, as well as slow hair

growth with brittle hairs, as observed in our patient (Hansen et al., 1997; Schneider et al.,

2008). Egfr-deficient mouse lungs show condensed collapsed alveoli with a lack of

surfactant leading to respiratory difficulty that has been likened to human neonatal

respiratory distress syndrome (Miettinen et al., 1995). In murine bowel lacking Egfr, there

are fewer, shorter intestinal villi and reduced proliferation of jejunal enterocytes, leading to

fluid loss (Miettinen et al., 1995). Other abnormalities noted in the mice that show

phenotypic similarities to our patient have included cystic dilatation of the collecting ducts

in the kidneys (indicating that EGFR is vital for the differentiation of structures derived

from the ureteric bud), aortic narrowing and a thrombotic tendency (Miettinen et al., 1995).

In addition, there are similarities in the phenotype of transgenic Egfr-and Adam17 mice, thus

supporting the clinical overlap in humans with germline autosomal recessive mutations in

EGFR or ADAM17 (Peschon et al., 1998).

Clinical resemblance to the side-effects of EGFR inhibitor medications

The clinical manifestations in the child homozygous for p.Gly428Asp in EGFR also show

some resemblance to the side-effect profile in individuals taking EGFR inhibitors. The side-

effects of these drugs include a distinctive acne-like rash with pustules, dry skin, alopecia,
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trichomegaly, as well as mucositis, diarrhea, and, in rare instances, interstitial lung disease

(Inoue et al., 2013; Lacouture, 2006). All these clinical features were evident to some degree

in our patient. Nevertheless, although skin papules and pustules developed during disease

progression in our case, the early skin changes mostly consisted of erosions (which led to

the erroneous initial clinical diagnosis of EB). EGFR signaling is known to be involved in

the re-epithelialization phase of wound healing (Repertinger et al., 2004; Pastore et al.,

2008), as well as the proliferation of keratinocyte stem cells (Jensen et al., 2009), and we

hypothesize that the missense mutation in our patient impeded these processes and was the

primary cause of the erosive skin changes, with bacterial super-infection being a secondary

contributing factor. The transcriptomic data from our patient illustrate the consequences of

impaired EGFR signaling. The results (albeit based on RNA extracted from non-inflamed

skin) reveal enhanced pro-inflammatory activation and disturbed differentiation/premature

terminal differentiation of keratinocytes as key pathogenic mechanisms, thereby

demonstrating a similar profile to that associated with the papulopustular rash associated

with EGFR inhibitory drugs (Lacouture, 2006; Lichtenberger et al., 2013; Mascia et al.,

2013). Notably, several inflammatory/innate response networks were significantly up-

regulated, including NF-κB.

In conclusion, the EGFR network is one of the most influential and intricate signaling

systems in biology. We believe the protean features in our patient offer clinical insight into

the critical and diverse roles of EGFR, supporting many of the putative functions that have

been ascribed to the receptor via murine models and in vitro studies. This case highlights the

major mechanism of epithelial dysfunction following EGFR signaling ablation and

illustrates the broader impact of EGFR inhibition on other tissues that might be under-

appreciated in the context of concurrent malignancy in patients receiving EGFR inhibitor

medications.

MATERIALS AND METHODS

Transmission electron microscopy

Small pieces of skin (<2mm3) were prepared for transmission electron microscopy, as

described in the Supplementary Material.

Immunofluorescence microscopy

A skin biopsy from the affected infant and control skin were collected in Michel’s medium.

The methods for immunofluorescence microscopy and primary antibodies used are listed in

the Supplementary Material.

Whole-exome sequencing

Initially, 3 μg of genomic DNA was sheared with focused acoustic technology (Covaris,

Woburn, MA, USA) to yield a mean fragment size of 150bp. Fragments ends were repaired

and sequencing adaptors ligated. Biotinylated 120bp RNA probes (Agilent, Santa Clara, CA,

USA), designed against the coding regions of the genome were hybridized with the

sequence library for 24 hours. DNA bound to RNA probes was retained using streptavidin-

coated magnetic beads; unbound DNA was washed off. The exome-enriched pool of DNA
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was eluted and amplified with a low-cycle PCR. The DNA fragments were then sequenced

with 100 bp paired-end reads. Novoalign (Novocraft technologies, Selangor, Malaysia) was

used to align reads to the reference genome (hg19, National Center for Biotechnology

Information build 37). With over 7.0 Gb of sequence generated, more than 90% of coding

bases of the GENCODE-defined exome were represented by at least 20 reads (see

Supplementary Material).

Sanger sequencing

We sequenced the exon and intron/exon boundaries of all 28 exons of EGFR, including the

mutation present in exon 11, in the infant, mother, unaffected older brother and 3 controls.

Each exon was amplified by PCR using AmpliTaq Gold® 360 Master Mix (Applied

Biosystems, Foster City, CA, USA) and the primers listed in the Supplementary Material.

Whole-genome expression microarray analysis

Whole-genome expression microarray analysis was performed using RNA extracted from

skin biopsies sampled from the affected child as well as 4 pooled, healthy controls. RNA

extraction from cutaneous biopsies was performed using the Ambion mirVana miRNA

Isolation kit (Invitrogen, Paisley, UK) according to the manufacturer’s instructions. RNA

was amplified using the Illumina TotalPrep RNA Amplification Kit (Illumina, San Diego,

CA, USA) and subsequent gene expression profiling was performed using the Illumina array

HumanHT-12 v4.0 Expression BeadChip kit according to the manufacturer’s instructions

(Illumina). Gene expression data were then analyzed using GenomeStudio software

(Illumina). Control samples were pooled and compared to the affected individual.

Mutant construct transfection

Mutant complementary cDNA mimicking the mutation of the infant (c.1283G>A) was

generated with green fluorescent protein (GFP) tagged to the C-terminus of EGFR. Wild

type EGFR1-GFP was a gift from Dr Andrew Reynolds (Institute for Cancer Research,

London, UK). The mutant construct, p.Gly428Asp EGFR-GFP was generated using a site-

directed mutagenesis kit (Stratagene, La Jolla, CA, USA) as per the manufacturer’s

instructions using the following mutagenesis primer: 5′

GAGAACCTAGAAATCATACGCGACAGGACCAAGCAACATGGT-3′. The mutation in

the plasmid was verified by sequencing. Transfection was carried out using Fugene (Roche

Applied Science, Penzberg, Germany) or Lipofectamine (Invitrogen) reagents according to

manufacturer’s instructions.

Confocal microscopy

For confocal microscopy, cultured MCF-7 human breast adenocarcinoma cells were

transfected with wild-type EGFR-GFP or p.Gly428Asp EGFR-GFP washed with PBS, fixed

with 4% paraformaldehyde (PFA) in PBS for 10 mins and then permeabilized with 0.2%

TritonX-100 for 10 mins. For EGF stimulation experiments, cells were incubated in serum-

free media (Opti-MEM®; Gibco Life Technologies, Carlsbad, CA, USA) for 16h prior to

stimulation with 100 ng/ml EGF for the indicated times. For endocytosis inhibition

experiments, cells were treated for 1 hour with 10 μM Dynasore (Millipore, Billerica, MA,
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USA) or equivalent volume of dimethyl sulfoxide (DMSO) as a control prior to fixation.

Where appropriate, cells were incubated with a primary antibody directed against the

extracellular domain of EGFR for 2h followed by the relevant secondary antibodies

conjugated to Alexafluor-568 and Phalloidin conjugated to Alexafluor 568 or 633 for 1h at

room temperature.

Western blotting

Thirty-thousand MCF-7 or CHO cells per condition were cultured in either Dulbecco‘s

modification of Eagle‘s medium (DMEM) alone or DMEM containing 10% fetal calf serum

(10% FCS) and transfected with wild-type EGFR-GFP or p.Gly428Asp EGFR-GFP; 36h

later, the cells were starved for 16h with Opti-MEM® (Gibco Life Technologies) before

treatment with 100 ng/ml EGF for the appropriate times. Cells were then lysed in sample

buffer containing 2-mercaptoethanol at room temperature. Lysates were immediately

subjected to SDS-PAGE and blotted using nitrocellulose membrane. Blots were blocked and

probed using p-ERK, ERK, p-Akt, Akt, p-EGFR and EGFR antibodies (Cell Signaling

Technology, Beverly, MA, USA), as well as HSC-70 antibodies (Santa Cruz Biotechnology,

Dallas, Texas, USA), using 3% milk/PBS-0.2%tween or 5%BSA/TBS-0.1%tween.

Growth assessment rates

Ten-thousand CHO cells per condition were cultured in DMEM containing 10% FCS for

24h before transfection with GFP alone, wild-type EGFR-GFP or p.Gly428Asp EGFR-GFP.

Twenty-four hours later, the media was replaced with normal growth media (10% FCS),

growth media minus FCS or growth media minus FCS supplemented with 100 ng/ml EGF.

Cells were then either Hoechst treated and fixed immediately with 4% PFA or were fixed

24h later. Phase and Hoechst images of 5 fields of view per condition were taken using an

Olympus IX71 widefield microscope with a 4× 0.13 NA air objective (Olympus, Tokyo,

Japan). Images were then analyzed for total number of cells as well as GFP expressing cells.

The number of GFP expressing cells was then normalized using the total number of cells per

field of view and presented either as the average number of GFP expressing cells per

condition or the growth rate per condition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Clinical features of the patient demonstrating inflammation, erosions, papules and
pustules
(a) At 12 months of age the infant has extensive erosions and markedly reduced scalp hair

and eyebrows. He is also receiving total parenteral nutrition. (b) At 22 months there is a

confluent papular eruption, particularly on the limbs, with numerous pustules. Consent to

publish these photographs was obtained from the infant’s mother.
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Figure 2. The homozygous mutation p.Gly428Asp results in acanthosis, intra-epidermal edema,
and loss of keratinocyte cell membrane labeling for EGFR
(a) Semithin section of patient skin from the thigh reveals acanthosis and hyperkeratosis

compared to age and site-matched control skin (scale bars = 50 μm). (b) Ultrastructurally,

there is widening of spaces between adjacent keratinocytes in the lower epidermis (asterisks;

scale bar = 2 μm). (c) Immunostaining for EGFR in patient epidermis shows loss of

keratinocyte membrane staining compared to control skin (scale bars = 50 μm). (d) Sanger

sequencing reveals a homozygous missense mutation in EGFR. (e) Schematic representation

of the functional domains and encoding exons and the site of the pathogenic mutation in this

patient. TM = transmembranous domain.
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Figure 3. The mutation in EGFR renders the receptor unstable and susceptible to endocytosis
(a) Confocal microscopy was performed using GFP-tagged constructs of wild-type or

mutant EGFR (green) and F-actin (red) in MCF-7 cells under normal growth conditions. (b)

Images were then taken following stimulation of the cells with EGF at specified time points

to assess the localization of EGFR within the cell cytoplasm or at the cell membrane. (c)

Confocal microscope images were also taken for wild-type and mutant EGFR-GFP

constructs (green) in cells stained for surface EGFR (red) in DMSO (dimethyl sulfoxide)

control or Dynasore-treated cells (to inhibit endocytosis). The colocalization between EGFR

antibody staining and either wild-type or mutant EGFR-GFP constructs was then quantified

in DMSO control or Dynasore-treated cells using Pearson’s correlation coefficient (Panel D

lower). * p<0.001 vs WT-EGFR; scale bars = 10μm.
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Figure 4. The mutation in EGFR reduces signal transduction and cell proliferation
(a) Western blotting was performed for p-EGFR, EGFR, p-ERK, ERK, p-Akt and Akt on

lysates from untransfected (U), wild-type EGFR (WT) or mutant EGFR (MUT) transfected

MCF-7 cells after EGF stimulation for the indicated times. MCF-7 cells express very low

endogenous EGFR and therefore EGFR is undetectable in UT cells. Arrows indicate

phospho and total EGFR species in top and second row blots respectively. Note the higher

molecular weight species of EGFR in the WT samples in the second row blot are

phosphorylated receptor and directly correlate with phosphorylated EGFR as detected in the

top row blot. (b) Cell proliferation was quantified in CHO-K1 cells transfected with GFP,

wild-type EGFR-GFP or mutant EGFR-GFP in starved (−), normal growth (10% fetal calf

serum) or EGF-stimulated (EGF) conditions. (c) GFP-positive cells were counted and

normalized against total cell number, and the cell growth rate was then calculated from these

data.
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