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Abstract
We have compiled an extensive database of archaeological evidence for rice across Asia,

including 400 sites from mainland East Asia, Southeast Asia and South Asia. This dataset

is used to compare several models for the geographical origins of rice cultivation and infer

the most likely region(s) for its origins and subsequent outward diffusion. The approach is

based on regression modelling wherein goodness of fit is obtained from power law quantile

regressions of the archaeologically inferred age versus a least-cost distance from the puta-

tive origin(s). The Fast Marching method is used to estimate the least-cost distances based

on simple geographical features. The origin region that best fits the archaeobotanical data

is also compared to other hypothetical geographical origins derived from the literature,

including from genetics, archaeology and historical linguistics. The model that best fits all

available archaeological evidence is a dual origin model with two centres for the cultivation

and dispersal of rice focused on the Middle Yangtze and the Lower Yangtze valleys.

Introduction
Rice is one of the major world crops, and more than any other, has supported dense human
populations and state systems in eastern, southern and southeast Asia through much of history
and later prehistory (e.g. [1–3]). The origins and spread of cultivated rice has therefore been a
major research theme in the archaeology of China, Southeast Asia and India, as well as
amongst rice scientists working on genetic diversity (e.g. [4–8]). Approaches to locating origins
have included inferences from modern genetics (e.g. [9,10]), from the occurrence of phytoliths
in ocean cores (e.g. [11]), from phytoliths in archaeological sites (e.g. [12,13]), and from the
presence of charred grains in archaeological excavations or rice husks in early pottery [13,14].
Methodological issues surrounding how to distinguish between archaeobotanical evidence for
and model the evolutionary separation of wild gathered rice, pre-domestication cultivation and
domestication processes have been increasingly addressed in recent years (e.g. [15–19]). Recent
research has distinguished a phase of pre-domestication cultivation, lasting two to three
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thousand years, preceding full domestication [20,21]. Such discussions have tended to highlight
a protracted process of domestication that was completed in the middle Holocene between
6000 and 3000 BC, suggesting that dispersal processes would have begun during or after this
period. The origins and spread of cultivated rice has been implicated in the spread of human
population groups and the distribution patterns of most major language families in the region,
but again there has been little agreement about the source region(s) (e.g. [22–34]). While pin-
ning down precisely when and where rice was first brought under cultivation, and how this
relates to domestication as a subsequent extended process is an ongoing challenge [20,21], the
archaeobotanical evidence for rice under both pre-domestication cultivation and subsequent to
domestication is extensive enough that it warrants a systematic analysis in terms of which
hypotheses of geographical origins are more or less reasonable. Therefore, in this paper, the
term cultivation refers both to pre-domestication cultivation and farming of crops.

In the present paper we present the results of a modelling effort that calculated the most
probable areas for the origins of the dispersal of cultivated rice by comparing models of spread
from all possible points within the rice-growing domain. We assume simple least-cost distances
which are then fit to known occurrences of rice in time and space. This in essence uses the
existing knowledge of archaeological evidence of rice to infer backwards towards probable
areas of origin. It also allows us to calculate the goodness-of-fit of various published hypotheses
of the region of rice origin to the overall archaeological rice dataset. Although the distribution
of archaeological rice evidence is uneven, with some areas having little evidence, there are
enough data across a wide enough region to constrain a model of dispersal and provide a mea-
sure of the statistical likelihood of different potential origins. Therefore in addition to arriving
at a most probable centre of origin from an unconstrained search of the rice growing domain
and the archaeological evidence, we also test seven literature based hypotheses for region(s) of
origin and quantify how well these fit the archaeological dataset. Finally, we take a closer look
at the best-fitting model in order to identify outliers—archaeological sites that are earlier than
predicted by the model—as these can identify regions where an additional origin or more com-
plex geographical dynamics are possible and require further archaeobotanical investigation.

Materials
Our empirical evidence is an updated Rice Archaeological Database (version 2.0, S1 Map). The
first version of this database was used for a synthesis of rice dispersal by Fuller et al [35], while
a slightly expanded dataset (version 1.1) was then used to model the dispersal of rice, land area
under wet rice cultivation and associated methane emissions from 5000–1000 BP [36]. The
database records sites and chronological phases within sites where rice has been recorded,
including whether rice was identified from plant macro-remains, phytoliths or impressions in
ceramics. Ages are recorded as the start and end date of each phase and a median age of the
phase is then used for analysis. Dating is based on radiocarbon evidence, conventional or AMS,
where available (220 phases) and based on a cultural association elsewhere. In addition to
recording the presence of rice, evidence for domesticated or wild status is recorded as well as
an inference of whether this was wet or dry cultivation ecologies of rice [37]. Version 1.1
included information on 385 sites, with 457 phases (some sites have multiple phases). Version
2.0, used in the current analysis, includes 400 sites and a total of 470 phases. The spatial and
temporal distribution of the database can be seen in Fig 1 below, where the sites with rice that
is either domesticated or on the path to domestication, are mapped as filled black dots, and
archaeological sites with wild rice are mapped as open dots. The coloured background layer
corresponds to a quantile regression and interpolation of the median dates of each site phase
with cultivated rice, giving greatest weight to the earliest 10% of dates (see pp. 748–749 and
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supplementary information of [36] for details on this methodology). It therefore illustrates the
earliest attested archaeological dates of cultivated rice throughout eastern, southern and south-
east Asia.

Methods
Simple mapping of the earliest dates for rice for any given region, such as that in Fig 1, can be
quite informative. However, such approaches are limited by sampling issues and critics can

Fig 1. Map of the Rice Archaeological Database version 2.0. Sites with cultivated rice are shown as filled black dots, whereas open ones represent
archaeological sites with wild rice. The background layer shows the quantile interpolation of the median dates for the arrival of cultivated rice. The grey-
shaded region has been excluded from the interpolation (see main text). Major rivers have been included for reference (source: ESRI World Major Rivers).

doi:10.1371/journal.pone.0137024.g001
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point out, not incorrectly, that poorly sampled regions could in the future yield dates older
than those already identified. This is particularly true for interpolation since gaps in the data
are filled based merely on nearby sites and not on the entirety of available data. Alternatively,
regression models have been used to identify the source(s) of dispersal events, estimate rates of
spread, identify outliers and fill in sampling gaps with recourse to the entire dataset (see various
references below). This is the approach taken in this paper.

Regression modelling requires two quantities for each data-point: an estimate of age and an
estimate of distance travelled. Radiometric determinations can be, and have been, readily used
as estimates of age for such cases (see examples below). However, the actual travelled distance
is not so readily obtained as one cannot know exactly the path-history between the dispersal
origin and the archaeological site. One can, nevertheless, estimate it. Geodesic distances are the
shortest possible distances between two points on the surface of the earth, commonly known as
“as-the-crow-flies” distance or great circle distances. They are easy to calculate and this
approach has been taken by several scholars (eg [38–40]). However, they grossly underestimate
the actual distances travelled as geodesics are blind to obstacles to movement [41]. Whereas
actual people have to negotiate their movement around obstacles, further adding to the dis-
tances travelled, geodesics assume that people travel in straight lines—as straight as they can be
on the surface of the Earth—and through possible obstacles, such as insurmountable moun-
tains or a sea.

One very common alternative is to estimate distances in a more realistic landscape where
there can be features that incur differing costs of moving ([42–45], to name but a few). One can
then retrieve the distance travelled along a computational shortest path given the above land-
scape costs (hereafter referred to as a cost distance, for short). However this approach involves
the need to postulate a priori a friction surface—a raster where each grid cell has a value, the
local friction factor that affects the local rate of propagation. Thus one can postulate high-
speed corridors and low (or null) speed barriers which will need to be negotiated. Friction val-
ues would also need to be either postulated or independently estimated, for instance via an
exhaustive parameter space search, an optimization algorithm such as a Genetic Algorithm, or
other parameter estimation methods (eg. [41,46,47]). Friction surfaces are then models in the
truest meaning of the word: they are simplifications of relevant aspects of a real world situation.
Like any other model their reliability depends on the importance of the aspects chosen as rele-
vant, as well as on their parameters. The simplest cost distance model is a near-geography-free
one where unsurpassable obstacles—such as the sea—and regions without archaeological evi-
dence are masked out of the modelling. This forces the dispersing wave-front to negotiate travel
around these regions, making it a step up from geodesic distance (which is completely geogra-
phy-free, as argued above). Under these simple modelling assumptions, islands are not reached
unless some form of coastal transport or sea-bridge is also included. This is the modelling
framework which we have adopted in this paper, leaving alternative distance measures, such as
those based on circuit theory (eg [48,49]), as well as the exploration of the role of geographical
features (eg [41]) and a discussion of the nature of the dispersal (demic vs cultural) for future
works.

Cost distance modelling of this kind was done using the Fast Marching algorithm developed
by Sethian [50] and adapted for this purpose by Silva and Steele [41,51]. This method computes
the cost distance of an expanding front at each point of a discrete lattice or raster from the
source of the diffusion. It is flexible enough to allow for scenarios with different competing dif-
fusive processes [46,51] as well as realistic heterogeneous surfaces [41,47].

In this paper we have implemented a near-geography-free scenario where the available
domain is restricted by two ecological factors: firstly, regions with a total number of degree-
days in the year (a function of temperature important for crop growing see eg. [52–54]), lower
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than 2,500 were masked out since rice cannot grow in these regions and very little archaeobota-
nical evidence for rice was found in these regions; secondly, desert regions, where rice also can-
not grow, were masked out. Degree-days were computed based on mid Holocene monthly
temperatures retrieved from the WorldClim website [55]. Desert eco-regions were obtained
from the freely available Terrestrial Ecorregions of the World dataset [56]. All of these were
converted to a Lambert Azimuthal Equal Area projection that preserves the area of each cell in
the domain. Coastal transport was also included by buffering out 40 km off-coast. This ensures
that archaeobotanical data of key islands, such as the Japanese archipelago, are included in the
analyses as it creates maximum 80 km offshore bridges connecting them to the mainland.
Sadly, this minimalist approach to maritime transportation excludes data from Taiwan and
other Southeast Asian islands that are more than 80 km distant from each other or the main-
land. This issue will be addressed in a future paper looking at the dispersal routes of rice farm-
ing. The Rice Archaeological Database contains 330 records corresponding to the oldest
evidence of rice domesticated or on the path to domestication that fall within this domain and
were thus retained for the analysis in this paper. These are shown in Fig 2.

Non-linear dispersal processes and Quantile Regression
Although the dispersals associated with different prehistoric innovations are often modelled as
constant speed processes, this assumption is not necessarily always valid (eg see the discussion
in [41]). The present Rice Archaeological Database includes not only sites with fully domesti-
cated rice, but also older sites with rice that is clearly undergoing selection for domestication.
As argued elsewhere domestication is a long process, taking two to three thousand years to
complete (eg [16,20]). During this period, it is unlikely that rice cultivation would have spread
that far beyond its centre(s) of innovation, and indeed there is little to no evidence for this.
Rather, one would expect its dispersal to start very slowly, but quickly pick up pace once rice
nears full domestication. Fort et al [39] had also noticed a similar feature for the European
Neolithic but they opted to remove data prior to the Near Eastern PPN B/C cultures in order to
retain linearity in their models.

Here we have chosen to describe the entire process by a power law relationship between dis-
tance and age. Such a relationship entails a changing rate of spread: the dispersing wavefront
starts by moving very slowly and then speeds up. This assumption is confirmed a priori by
looking at the scatterplot of age vs distance from the oldest site in the database and a posteriori
by looking at the model scatterplots, which clearly exhibit a power law behaviour. With this in
mind we have opted to do log-log regressions. This entailed calculating the natural logarithm
of both the age and distance estimates for each site and model and conduct a linear regression
on these figures. When the resulting regressed line is converted back into untransformed space
it produces a power law curve of best fit to the data, as will be seen in the results section.

We have also chosen to continue as in previous studies using a quantile regression [57] to
model the relationship between early rice dates per site (as the dependent variable) and each
site’s distance from a proposed origin of domestication (the covariate). Whereas ordinary least
squares regression approximates the conditional mean of the dataset, quantile regression
approximates a regression for a given quantile of the dependent variable (with the median
being the 50th-percentile). Given that an archaeological dataset such as the present one is
bound to include sites and phases, which do not correspond to the first arrival of the dispersing
element being studied, regressing to the conditional mean does not always yield the most useful
or valid relationship, particularly when used for inference (see debate in [58] and [41]). Data
filtering or weighted regression can be used to minimize the impact of data-points that do not
correspond to local first arrivals (eg [46,47]) but quantile regression provides a reassuringly
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robust alternative as it can approximate a low quantile without the need to choose a sub-set of
the data, as in the filtering approach, or choosing an ad hoc weight function. Throughout this
paper we have therefore used quantile regressions to the 10th-percentile.

Identifying the dispersal origin
The methodology described so far allows for the regression modelling of the spread of rice in
Asia based on the empirical evidence compiled in the Rice Archaeological Database and

Fig 2. Domain used for the modelling.Regions excluded were those with annual total number of degree-days lower than 2,500 (blue-shaded) and desert
eco-regions (red-shaded). Kept were the landmass region (grey-shaded) and 40 km offshore buffers for coastal transport (green shaded). Database sites
with cultivated rice retained for analysis marked as black dots.

doi:10.1371/journal.pone.0137024.g002
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assuming a particular origin for the spread. This is because any measure of distance, whether a
simple geodesic distances or a cost distance weighted for landscape frictions, requires a starting
point—in our case representing a dispersal origin. The identification of this origin can in prati-
cal terms be construed as an optimization problem where a given ‘index of model fitness’ is
maximised when the appropriate origin is identified. Among different possible dispersal ori-
gins the one that ‘best-fits’ the empirical data is the one that should be chosen. Coefficients of
correlation between radiocarbon dates and an estimate of travelled distance, are popular fitness
indices for this purpose (eg [38,40,59]). The underlying logic is that stronger correlations will
be found when the best dispersal origin is chosen and, therefore, one can compare different
hypotheses by looking at the correlation coefficients they yield. This assumption was, as far as
the authors are aware, unchecked. The rise in computational power allows for millions of ran-
dom simulations to be run—the Monte Carlo method (eg [60])—which can be used to test cer-
tain methodological assumptions. These reveal the correlation coefficient to be of limited value
in the identification of the source of dispersal.

A scenario was simulated wherein a dataset of 500 points was randomly constructed based
on a known dispersal rule (i.e. known origin point and dispersal speed). To this underlying
law, stochastic noise taken from a Rayleigh distribution of varying parameter was added. A
Rayleigh distribution for the errors in age and distance ensures that the quantities used in the
regression (the observables) are always underestimates of the actual points in space and time,
mimicking an archaeological database where the distance travelled is always underestimated,
and the radiocarbon age is always later than the actual time of first arrival (see also [41]). The
Rayleigh parameter was allowed to vary in the range 0.001 to 1 over fifty equally spaced values,
and resulting picks were subtracted from the underlying values, so that a noise parameter of
0.001 meant that the mode is very close to that predicted by the underlying dispersal rule,
whereas a parameter of 1 meant that the noise was of the order of the value predicted by the
dispersal rule. For each set of noise parameters the simulations were run for a thousand itera-
tions. In each iteration, a grid of 121 equally spaced points (i.e. an 11x11 grid) was overlaid on
the simulated data and all these points were tested as potential sources for dispersal. This
involved finding the distance between each of the five hundred data-points and each of the
gridpoints, then calculating the values of several fitness indices based on said distances and the
simulated age of the data-points. The gridpoint that maximized each index, for each iteration,
was selected and stored.

This was done for both a linear and a log-log dispersal, and involving some 605 million sim-
ulations overall. The fitness indices selected for comparison were taken from the statistical/
modelling literature, namely: Pearson’s correlation coefficient r, Spearman’s rank correlation
coefficient ρ, the adjusted coefficient of determination R2

adj, and Akaike’s Information Crite-
rion (AIC). The first two indices are traditional correlation coefficients, whereas the latter two
have been widely used for regression model selection (eg [61]). Given our use of quantile
regression above and previous concerns with the validity of ordinary least squares (OLS)
regression of archaeological datasets [41,58] we have calculated R2

adj for OLS regression alone,
since there are issues with its quantile regression analogue [62], whereas AIC was calculated for
both the OLS and quantile regressions.

A comparison of the efficiency of each index, where the frequency with which each index
picked the real source, is shown, for varying levels of noise in the dataset (represented by the
correlation coefficient in the horizontal axis), in Fig 3. A correlation coefficient close to zero
means that the dataset has high levels of noise and is heteroscedastic. This figure is in every
way similar for both the linear and log-log/power law dispersal scenarios.

The Monte Carlo simulations reveal that the use of correlation coefficients, as well as ordinary
least squares goodness-of-fit measures, are unreliable model selection indices below correlations
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of about 0.38. Given that archaeological datasets for continental-scale dispersals have yielded cor-
relations in the range 0.5–0.8 (eg. [38,39,40,47]) this suggests that the choice of index is a minor
concern for the identification of the geographical origins of such large-scale processes. However,
lower correlation coefficients can be found on more regional datasets (e.g. [63]) and, in such
cases, our simulations indicate that the fitness index must be carefully chosen.

In fact, the quantile regression AIC index seems ideal across a vast range of possibilities as it
correctly identifies the true source of dispersal 96% of the time for correlations as low as 0.05.
Given that using AIC with OLS regression is only marginally better than using the correlation
coefficients, and exactly the same as using an R2

adj, we believe that this result is, at least par-
tially, due to the use of quantile regression which, as detailed above, gives more weight to the
earliest sub-set of the data. Regardless, AIC does a better job at retrieving the underlying dis-
persal rule and, therefore, more accurately recovers the origin of the dispersal. Moreover, the
Akaike Information Criterion has been widely applied for model selection and inference, has
solid foundation in both information theory and likelihood statistics [64,65] and, combined
with its robust behaviour in the above Monte Carlo simulations, this make it ideally suited for
our purposes and we will use it throughout, not only to find the origin area that best fits the
Rice Archaeological Database, but also when quantitatively comparing this with other litera-
ture-based models (see below). Both above and below we have used the small sample corrected
version for the AIC, often denominated AICc, but, for simplicity, we follow Burnham and
Anderson [65] in simply naming it AIC.

Unconstrained search for the best dispersal origin
To identify the dispersal origin(s) that best fits the archaeological dataset, an unconstrained
search algorithm was used. The simplest implementation of this idea on a spatially-explicit
domain is to lay out an equally spaced grid of points that will be tested as potential dispersal
origins, as in the Monte Carlo simulation above. Fitness values are then calculated for each of

Fig 3. Number of times the real dispersal source was selected by different fitness indices over a range of underlying correlation coefficients. The
R2

adj curve (in yellow) is exactly the same, and therefore hidden behind, the AIC OLS curve (in black).

doi:10.1371/journal.pone.0137024.g003
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these gridpoints as if they were the origin of dispersal. The gridpoints yielding the highest fit-
ness will be the nearest to the dispersal origin that best-fits the entire archaeological dataset. An
interpolated surface can then be constructed from this grid in order to highlight not a single
gridpoint, but the area most likely to contain the dispersal origin. We choose to adopt this
coarser grid search rather than use the original grid provided by the raster map shown in Fig 2
for two reasons: Firstly, in order to minimize computational time, one needs to keep the num-
ber of gridpoints to test as low as possible. The grid is therefore kept sparse, meaning that a
gridpoint identified as a high fitness origin might still be far from the actual dispersal origin.
And secondly, the nature of the problem, as well as the empirical data and employed statistical
methodology are such that pinpointing with certainty a single origin point is highly unlikely
and doubtfully meaningful. Instead, with an appropriate cut-off value, this interpolation
approach can highlight a region that yields high fitness values, hopefully small enough to allow
an archaeological interpretation.

This methodology has been used in both archaeology and genetics to identify the origins of
the Neolithic dispersal in Europe using radiocarbon dates (eg [37,59]), and the origins of mod-
ern humans within Africa, using empirical measures of genetic diversity, such as the LD and Fst
statistics (eg [40]), respectively. More complex variations have also been developed in order to
identify the set of origin locations that maximise not one but two independent correlation coef-
ficients, one archaeological and the other stemming from genetics data [49]. Whereas for other
fitness indices, particularly the correlation coefficents or adjusted R2, one would have to either
choose the point with the highest value or arbitrarily choose a cut-off value in order to identify
an area, an added advantage of using the Akaike Information Criterion here is that there is a
natural cut-off value which one can use to highlight the best origin area. Burnham and Ander-
son ([65]: 70–71) demonstrated that AIC values four units higher than the lowest have very lit-
tle empirical support in favour of them. Despite Anderson’s later cautious take ([66]: 89–91),
this cut-off figure follows naturally from the Method of Support of Edwards [67] where a cut-
off of 2 for the support, or log-likelihood, is the analogue of two standard deviations. By defini-
tion, this would yield a cut-off of 4 for the AIC.

For this project we have created a grid of points each 100 km apart, and have masked out
any grid points located outside the modelling domain defined above. This results in a total of
1275 gridpoints that act as hypothetical points of origin for the dispersal of rice (Fig 4). After
obtaining the AIC values for each gridpoint, we have then used ordinary kriging (as fitted by
maximum likelihood; [68]) to map them back onto the finer entire spatial domain. We then
subtracted the lowest AIC value (the best origin point) from this in order to obtain Δ = AIC -
AICmin and thereby rescale the map.

Comparison with literature-based models
Having identified the dispersal origin that best fits the Rice Archaeological Database, one can
compare the resulting model with those stemming from the literature, based on a variety of
data stemming from the fields of archaeology, genetics and/or linguistics. To model such
hypotheses we have chosen origin points close to the regions/sites indicated by each author(s),
estimated cost distances to each archaeological site as above, executed a quantile regression of
the data, and calculated the AIC and other indices that can be quantitatively compared to the
results of our unconstrained search algorithm. The models used for comparison are listed
(Table 1), with their imposed origin(s) mapped (Fig 5).

Some of these hypotheses involve more than one centre of innovation, implying more than
one dispersal process and hence extra parameters in their modelling. The two key parameters
are the rates of spread and starting time offset of each extra dispersal process [51]. Since all
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Fig 4. Map of the domain showing the gridpoints that were used in the unconstrained search for the best dispersal origin. The region not included in
the domain is grey-shaded. For reference, the background layer includes elevation data (source: USGS Shuttle Radar Topography Mission data), as well as
major rivers (source: ESRI World Major Rivers).

doi:10.1371/journal.pone.0137024.g004

Table 1. Literature-basedmodels tested in this paper, with their dispersal origins (numbers refer to
Fig 5) and references.

Model Dispersal Origin(s) References

L1 Ganges (1), Burma (3) and northern Vietnam
(5)

Chang [5]

L2 Ganges(1), N Thailand (4) and lower Yangtze
(8)

Oka [4]

L3 Middle Yangtze (7) and northern Bay of
Bengal littoral (2)

van Driem [27]; Hazarika [29]

L4 Pearl river delta (6) Huang et al [10]

L5 Middle Yangtze (7) Pei [14]; Crawford and Shen [30]; Toyama [31];
Higham [32]

L6 Lower Yangtze (8) Jiang and Liu [13]; Bellwood [33]

L7 Middle and Lower Yangtze (7 and 8) Fuller and Qin [17]; Fuller et al [20,30]

doi:10.1371/journal.pone.0137024.t001
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these literature-based hypotheses suggest similar, or the same, dates for the identified centres
of innovation we have forced all modelled dispersal processes to start at the same time. The
remaining parameters, the dispersal speeds, were normalized to one of the processes, so that
the parameters to be estimated are reduced speed ratios: how much faster, or slower, the second
and/or third independent dispersal process is with respect to the first one, following the order
given in Table 1. These have been estimated by maximizing the log-likelihood (via unified opti-
mization, see [69]), where we have implemented an upper bound of 20 and a lower of 0.01 for
the parameter values.

Given the inclusion of extra parameters in some of the models one needs to be careful about
our model selection approach, as models with more parameters will almost always fit the data
better. Nevertheless, the AIC is still a reliable index as it penalises less parsimonious models,
thereby preferring a model that not only best-fits but does not do so at the cost of adding extra
parameters [65]. The best model is the one with the lowest AIC value and it is thefore useful to
calculate a Δ value by subtracting this value from the AIC values of all models (as we have also
done for the unconstrained search, see above). This can then be used to calculate L(gi|x), the
likelihood of the model given the data, and wi, the Akaike weights or model probabilities,
which provide measures of support for the different models ([65]: 74–80).

All rasters and map outputs were generated in GRASS GIS [69]. The modified Fast March-
ing implementation was coded in MATLAB (version R2014b). All other modelling and output
generation was done in R [70], in particular: quantile regression was done using the quantreg
package [71], parameter estimation was done using the unified optimization algorithm of pack-
age optimx [72], kriging was done using the geoR package [73], and the interaction between
MATLAB and R was managed using the R.matlab package [74].

Fig 5. Locations of the origins used in the tested literature models. Specific archaeological sites: 1—Mahagara, 4—Non Nok Tha, 7- Pengtoushan, 8—
Shangshan; general areas: 2—Assam, 3—Burma, 5—Northern Vietnam, 6—Pearl river delta. For reference, there is a background layer containing elevation
data (source: USGS Shuttle Radar Topography Mission data) and the major rivers (source: ESRI World Major Rivers).

doi:10.1371/journal.pone.0137024.g005
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Results
The unconstrained search algorithm identified a single region as the most likely to contain the
dispersal origins for rice farming. Fig 6 shows the resulting map of Δ values. The contour line
shows Δ values of 4, therefore delimiting the area with the most evidence in support of it being
the dispersal origin. The best AIC value, corresponding to a Δ of zero in this figure (marked by
a cross in the figure), is given in Table 2, where it can be compared with that of the other, litera-
ture-based models.

Fig 6. Interpolated map of ΔAIC values obtained from the results of the unconstrained search algorithm. The gridpoint with lowest AIC is marked by
the cross. The black dots mark the sites with cultivated rice in the Rice Archaeological Database. Major rivers are also shown, for reference (source: ESRI
World Major Rivers).

doi:10.1371/journal.pone.0137024.g006
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Table 2 shows the AIC values obtained for all hypotheses considered, ordered by how well
they perform. Also included are all quantities used to calculate the AIC values, as well as the Δ
values and model likelihood, which provide a measure of support. Scatterplots for each of the
models are provided (Fig 7). The black dots correspond to data on the Rice Archaeological
Database, whereas the red curve corresponds to the maximum likelihood estimated curve for
each hypothesis, given the data.

Discussion
Our methodology has identified a wide area in China as the dispersal origin that best fits the
Rice Archaeological Database. This area lies in the region with the oldest known archaeological
evidence for rice domestication in Asia and this demonstrates that identifying the wider Yang-
tze valley as the oldest centre of innovation for rice farming is not simply a fluke of archaeolog-
ical sampling, but that it is supported by the entirety of available archaeological evidence for
the presence of cultivated rice in Asia.

The unconstrained search algorithm identified an area between the lower and middle Yang-
tze regions as the most likely source for the dispersal of rice. The gridpoint with lowest AIC
value, located at 29.05° N 117.65° E, lies in the northeast of the Jiangxi province, a region with
little archaeobotanical evidence for rice cultivation. However, the algorithm was inherently
looking for the best-fitting single source and could not identify multiple origin scenarios.
Under such constraints, and in the presence of several simultaneous origins, such algorithms
will always go for the spatial equivalent of an average: they highlight an area in-between the dif-
ferent real origins. They can even yield lower fits to the individual origin regions when com-
pared to the spatially averaged area. Such mathematical artefacts highlight the importance of
balancing purely statistical approaches, such as the unconstrained search approach above, with
the explicit modelling of archaeologically-informed hypotheses.

Because of this, and despite being the best-fitting single origin model, and the second best
overall, the model chosen by our unconstrained search algorithm is largely outperformed by
model L7, which postulates two independent origins in the Yangtze basin (Fig 8). The dual
Yangtze model outperforms all others to such an extent that all the weight of evidence is in sup-
port of it, as shown by the calculated model likelihoods and Akaike weights. In effect, the differ-
ence in log-likelihood between model L7 and the second best supported literature model, the
Lower Yangtze one (L6), corresponds to the random draw of over 125 million white balls out
of an urn and asking whether this is sufficient evidence that the urn contains only white balls,
versus containing an equal amount of white and black balls [75]. The evidence is therefore
overwhelmingly in favour of model L7 over all other models.

Table 2. Results for all consideredmodels. Models numbered L# are literature-based, whereas model Unc is the result of the unconstrained search. Esti-
mated parameters are speed ratios with relation to the first process, except for model Unc where the coordinates of the best-fitting source are given instead.
N stands for sample size, K for the number of parameters of each model.

Model Estimated Parameters N K Log-likelihood AIC Δ L(gi|x) and wi

L7 {1, 0.78} 330 4 -111.5053 231.1338 0 1

Unc {29.05°N, 117.65°E} 330 3 -142.7261 291.5259 60.3921 8 x 10-14

L6 {1} 330 3 -148.8051 303.6839 72.5501 2 x 10-16

L2 {1, 0.014, 20} 330 5 -147.1427 304.4705 73.3367 1 x 10-16

L5 {1} 330 3 -161.6986 329.4707 98.3369 4 x 10-22

L3 {1, 19.4} 330 4 -161.6662 331.4556 100.3218 2 x 10-22

L4 {1} 330 3 -189.0557 384.185 153.0512 6 x 10-34

L1 {1, 0.014, 0.01} 330 5 -228.5263 467.2378 236.104 5 x 10-52

doi:10.1371/journal.pone.0137024.t002
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Fig 7. Scatterplots of age with cost distance for all models considered. The black dots represent records
in the Rice Archaeological Database whereas the blue line represents the best-fitting log-log quantile
regressed line for each model.

doi:10.1371/journal.pone.0137024.g007
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Beyond this useful result, it is further instructive to look at the estimated parameter values
for the multi-centre hypotheses, given in Table 2. Reminding ourselves that these parameters
are the ratios of the diffusion rates of the different processes (always with respect to the first
one as given in Table 1), it becomes clear that with the exception of the double Yangtze model
(L7) where both processes have comparable rates of spread (a ratio of 0.78), all others provide
better fits to the data when one process dominates the others, as indicated by extreme ratios of

Fig 8. Predicted arrival times of cultivated rice in eastern and southeastern Asia, based on best-fitting model L7. Areas in dark grey were not
included in the modelling framework (see main text). Major rivers (source: ESRI World Major Rivers) and country borders shown for reference.

doi:10.1371/journal.pone.0137024.g008
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0.01, on the one hand, and 20, on the other. Namely, models L2 and L3 have more explanatory
power when they are closer to models L6 and L5, respectively (as evidenced by the AIC values),
that is when their lower and middle Yangtze processes, respectively, are fast enough to spread
through the available domain before the other processes disperse far from their origins. In
other words, models L2 and L3 are only good (in relative terms, as we have seen) when they
mimic models L6 and L5. Furthermore, model L1, which doesn’t consider the Yangtze valley as
a centre of innovation at all, is dominated by a diffusion process starting in the Ganges. How-
ever, this results in the worst fitting model of our set, with a Δ of about 236.

Even though it might be argued that we have not chosen the best possible origin points to
represent the literature-based models, the behaviour of models L1-L3 just discussed, combined
with the highlighting of the Yangtze basin by the unconstrained search algorithm and the over-
whelming evidence in favour of model L7, indicate that the available archaeological evidence
for the presence of cultivated rice across Asia is best described by a narrative involving two
independent but contemporaneous centres of cultivation, one in the Lower Yangtze and the
other in the Middle Yangtze.

Finally, one can look at the scatterplot for the best-fitting model in search of outliers and dif-
ferent signals that might help direct future archaeological sampling as well as identify bio-
geographical features that impacted the spread of rice outside of the Yangtze valley (Fig 9).
Since we are interested in origins and the dispersal of rice farming in Asia we can define outli-
ers as those sites that are older than predicted by the best-fitting model, given by Eq 1 below.
There are only a handful of these in temperate regions: Jiahu and Baligang in the Henan prov-
ince of China, and Gahyeon-ri, Seongjeo and Daechon-ri in South Korea (grey shaded in Fig
9). The first two might indicate a third early centre of innovation between the Yangtze and Yel-
low rivers or trade between this region and the Yangtze valley. Whereas the Korean sites might
indicate that rice arrived by crossing the Yellow sea, something that was not included in any of
the above models and that would shorten the cost distances between these sites and the origins
of the dispersal. The reported date of these sites may also be spurious, as these are not directly-
dated rice remains. Other critical reviews, for example, have suggested that rice may be intru-
sive and younger at Daechon-ri and mis-dated at the other sites [76]. In either case, they are
only a handful of sites in each region and further archaeological sampling is necessary in order
to test and further refine these ideas. It should also be noted that the arrival time for rice in
Japan, predicted by the model is significantly earlier (ca. 2,000–1,500 BC) than the generally
accepted terminal or post-Jomon arrival (ca. 1,000–800 BC) [35,77]. This suggests that factors
of cultural choice may have resisted rice in the Japanese islands, despite millennia of plant
management and some domestications by Jomon societies [77]. In tropical regions, namely in
northern India, we find several sites with possibly cultivated rice that can predate model L7 by
more than a millennium (as much as 3,000 years for the case of Lahuradewa). This might cor-
respond to an independent episode of domestication of proto-Indica rice and its subsequent
spread up the Ganges valley [17,34]. However, the Early Holocene evidence from Lahuradewa
in India, remains unclear as to whether this material was actually cultivated and was part of an
independent domestication trajectory [27,78], and further work is needed.

age ¼ 20346:7404 � distance�0:210026 ð1Þ

Conclusion
In this paper we present results of the spatial modelling for the origins of rice cultivation that
lead to the original domestication or domestications of Oryza sativa subsp. japonica. This is
based on an extensive database of empirical archaeological evidence for rice, which represents
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the fossil record of the relationship between past human societies and this important crop.
This modelling approach provides robust, explicit hypotheses of the regions or region in which
the earliest evidence for rice should be sought. This agrees with many archaeologists, who have
recently focused on the Middle and Lower Yangtze basin (e.g. [8,18,35,79]). There is no basis
on the present evidence to privilege the Lower Yangtze (Zhejiang province) or Middle Yangtze
(Hunan province) as a more likely source region of a singular rice domestication episode.
Instead, multiple, distinct domestication episodes seems the most plausible hypothesis in the
current state of our evidence. Indeed cultural differences between the Neolithic traditions of
the Lower and Middle Yangtze (e.g. [80]), including the earliest preserved field systems [17],
argues against diffusion of rice cultivation between the two centres of innovation.

Fig 9. Scatterplot of the dataset for the best-fitting model L7. The quantile interpolation of the 10th-percentile of the data (blue line) shows that the
distribution follows a power law rule. Sites earlier than the model are circled and identified (see the text for related discussion).

doi:10.1371/journal.pone.0137024.g009
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The origins of rice remains of interest to archaeologists, historical linguists and plant geneti-
cists, but there is no consensus of where this was located. Genetic evidence has been limited by
the modern distribution of wild populations, which is likely a poor reflection of where wild rice
was found in the early Holocene when rice cultivation began, meaning that those wild popula-
tions involved in domestication have been extirpated. The possible, but always highly indirect
contribution of linguistic evidence likely suffers from a similar problem, in that we are limited
by extant, or recently written down, languages, and therefore extinct language groups that may
have played a role in domestication cannot be easily taken into account. Indeed in the Yangtze
basin language shift to Sinitic languages is known to have occurred over the course of the
Bronze and Iron Ages under the political influence of the central Chinese state, and thus we are
left with only unprovable hypotheses of which modern or extinct language families might have
been present in the region during the Neolithic (e.g. [34]). Archaeobotanical evidence has the
advantage of being fixed in past time and in space, although the gaps between archaeobotanical
datapoints must be filled in by inference. We have demonstrated in this study how spatial
modelling and the fast-marching method to generating cost-surfaces for diffusion can effec-
tively fill in gaps in the archaeobotanical record and produce explicit hypotheses that can help
to direct further problem-oriented archaeological sampling.
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