Mechanical & adhesion properties of Adhesive, remineralising & anti-bacterial dental composite

Objectives:

Determine whether antibacterial chlorhexidine, reactive calcium phosphate fillers, level of adhesive monomers, and acid conditioning, will maintain adequate mechanical strength and ivory dentine bonding of dental composites.

Methods:

Base monomer UDMA and diluent monomer TEGDMA in 3:1 were mixed with (5 or 10 wt %) of HEMA, and 5 wt % of 4-META. This was mixed with silane treated glass particles along with chlorhexidine diacetate (5 wt %), calcium phosphate (0 or 10 wt %), and fibres (5 wt %). Powder to liquid ratio was 4:1.

For Biaxial flexural strength samples were made by light curing the composite from both sides(10 mm diameter, 1 mm thick), and placing it for 24 hours in distilled water.

Bonding was determined by ivory dentine blocks. Cylindrical holes (3mm diameter, 5 mm deep) were drilled. These were filled by composite after acid etching with 37 % H3PO4 for 0 or 20 s, along with ibond for 0 or 20 s.

Results were compared with commercial materials Z250, Gradia and Ecusphere using factorial analysis.

Results:

Experimental composite (with HEMA and 4-META) strength was comparable to Z250 and Ecusphere, and better than Gradia. Addition of reactive fillers decrease the strength by 50 MPa, but still maintain a better strength than Gradia. Varying adhesive monomer type had negligible effect.

Adhesion with 4-META was better in varying conditions. Composites with HEMA work only with acid etching. With 4-META the debonding force increased from 700 to 850 N with acid treatment. With other monomers and commercial materials, debonding force increased from ~100 to > 1000 N with acid pre-treatment. Reactive fillers addition helps in adhesion.

Conclusions:

Anti-bacterial, adhesive and remineralising composite produced with strength and adhesion comparable to commercial materials. Adhesive monomer 4-META and reactive calcium phosphate helps in adhesion under varying conditions.

Sample	Biaxial flexural	strength	Debonding force					
	Avg Strength	S.D	No Acid Tx	S.D	Acid Tx	S.D	Acid+ Ibond Tx	S.D
	(MPa)		(N)		(N)		(N)	
Z250	170	6	100	50	450	20	950	50
Gradia	70	3			360	80	1050	60
Ecusphere	175	13					950	125
Composite with HEMA	175	9	100	10	800	70	1300	50
Composite with 4-META	170	6	700	100	850	80	1050	100
Composite with reactive fillers	125	10	720	60	860	50		