How to Reproduce Results on State Aggregation Combined with
Options

Kamil Ciosek
Centre for Computational Statistics and Machine Learning
University College London
Gower Street, WC1E 6BT London

Abstract

This note summarizes the steps that have to be taken to reproduce our results on combining value
iteration with options with state aggregation. It describes the MATLAB source code used to obtain
results discussed in our paper, as well as gives the output of the software on three separate computers.
It also explains how to extend our code to work with other domains.

1 Hardware and software requirements

We recommend running this software on a computer with at least 2GB of RAM and a processor running
at at least 2Ghz. The computer has to be running a recent version of MATLAB (the earliest one we tested
was R2012a). The Java heap space allocated to MATLAB must be at least 256 MB. In recent versions
of MATLAB, this can be set by clicking the ‘Preferences’ button on the ‘Home’ tab, then navigating to
‘General’” and then ‘Java Heap memory’. Please note that the default amount that comes when you install
MATLAB will typically be less, so you have to change this. We do not support any version of Octave,
because it currently does not share MATLAB’s support of classes and other object-oriented constructs.

2 How to run the software

The entry point to this software is the file run.m, which is a script that runs all the experiment referred
to in our paper. You can run the software by unpacking the supplied zip archive, changing the current
directory to the OptionsAggregation folder and then typing run in the MATLAB console. Please note
that executing this file to the end may take some time (a few hours).

3 Structure of the source code

There are three classes that contain methods that provide a high-level access to the described algorithms,
one for each problem domain. These are TaxiRunner, HanoiRunner and EightPuzzleRunner. The
methods in these classes then call other functions to finally compute the value function.

There are two pieces of code responsible for the iteration proper. These are the function iterateAll,
which iterates the algorithm and the class OptimizePolicyAndTerminationNestedIteration, which
contains the code for the particular kind of two-stage iteration employed in our paper.

The code for generating the subgoal features is contained in classes whose name ends with Features.
These classes have a method for generating the Phi matrix and the G vector. Comments in these
classes explain the particular kind of approximation employed. For the eight-puzzle problem, there
are as many as 15 possible subgoals, which are mapped to the appropriate classes in the function
EightPuzzleRunner.generateSubgoal. In figure we graphically show all subgoals referred to in
this function.

4 How to use our algorithm in a new domain

Before we begin, we note that the current version of our software only supports discrete domains where
the number of states is manageable (we feel about 200000 states is the maximum that can be currently
handled in the deterministic setting, and about 400 states in the completely non-deterministic setting
— i.e. where the transition matrices are completely full). Therefore the new domain has to meet these
criteria.

@
@@
78]

N M@ @

45 (2 4)
e @R @
NOT) @

@5 O O @

z @08 @

D G2 @ D)3 @23

@i) @ 7)) W @s)®

Or O @ DRI @z O

N Y (2)7) MEN3) WENE) 1))
45 e @ B WP @Wem W
O O OOF @O O 0

@ @ 0 m 2] LB LB @
@5 e @ MBI @We - W @
O O @O@T @ET o O @
O) @ @) LeE) WRE O
BB @) @ MBI W @ @We) @
@O ..C OO MR OO 00 @

1 2 3 4 5 6 7 8 9

(Afala) (afala (afa)s, (alala (1)Afa (A(BC)
BEE WBE Qe Bl Bee MBI
g Qe BB B BC (A

10 11 12 13 14 15

Figure 1: Subgoals used in the 8-puzzle domain

The first thing one needs to do is to write a function (or a class) that is capable of generating action
models for the new domain. Our system stores actions in cell arrays, so that for instance in the Hanoi
problem the As vertical cell array has three elements, each a model of size (n + 1) x (n + 1) where n is
the number of states in the MDP. The function packModel can be used to convert a vector of expected
rewards and a transition matrix into a valid model. That being done, it should be easy to implement
value iteration by following steps entirely analogous to the function TaxiRunner.vi.

The next step is to add state abstraction with options. We will describe the case where we have
only one subgoal. In this case, we need two things. First, we need a function or a class to generate the
aggregation matrix Phi, where the rows correspond to original system states and the columns to aggregate
states. Then, we also need a function to generate the subgoal G in terms of the aggregate states. Once
we have these things, it is easy to write code that first solves for the subgoal and then solves the main
goal using the subgoal model, based on code in the function EightPuzzleRunner.optionsAggregation.

5 Results of three independent runs

The tables below summarize the results obtained by running the run.m script on three separate computers.
We begin with the TAXI domain. The ‘Iterations’ column refers to the iterations solving the main subgoal
(we do not give the number of iterations required to solve the subgoals). The time columns refer to the
total time necessary to compute the value function, which includes the generation and solution of subgoals.
All times are given in seconds. We note the difference between value iteration and plain value iteration
— the first one uses matrix models representing the current policy, whereas the plain version only stores
the current value function. The number of iterations for the two may be different because of different
initialization (model value iteration is initialized with the first action, plain value iteration is initialized
with a zero value function).

Problem Iterations Time (1)
Deterministic Problem
Value Iteration (models) 22 11.64
Value Iteration (plain) 22 6.43
Options 14 78.20
Aggregation 19 11.73
Options + Aggregation (models) 7 6.55
Options + Aggregation (plain) 7 4.57
Approx. aggregation (models) 28 4.83
Approx. aggregation (plain) 28 2.94
Non-deterministic Problem
Value Iteration (models) 30 47.80
Value Iteration (plain) 30 8.30
Options 18 256.04
Aggregation 28 26.04
Options + Aggregation (models) 7 6.78
Options + Aggregation (plain) 7 4.83
Approx. aggregation (models) 31 5.23
Approx. aggregation (plain) 30 3.08

Time (2)

18.36
9.79
121.06
18.12
10.42
7.08
8.29
4.92

67.40
12.36
351.73
38.65
10.83
7.60
8.82
5.22

Time (3)

21.06
9.91
136.70
20.11
11.22
7.30
9.36
5.17

60.19
12.69
342.48
38.02
11.20
7.52
10.06
5.29

The next table gives the results in the Towers of Hanoi domain (with 8 disks).

Problem Iterations Time (1) Time (2) Time (3)
Deterministic Problem

Value Iteration (mat. models) 256 51.65 81.49 93.83

Value Iteration (plain) 257 23.45 35.75 39.47

Options with Aggregation 4 11.57 18.97 19.61

Non-deterministic Problem

Value Iteration (mat. models) 296 357.52 335.32 413.99

Value Iteration (plain) 297 27.31 41.28 45.32

Options with Aggregation 10 21.71 34.64 36.57

Next, we show results for the (deterministic) eight-puzzle domain.

Problem Iterations Time (1) Time (2) Time (3)
Value Iteration (mat. models) 32 221.20 341.89 395.97
Value Iteration (plain) 33 100.19 155.02 166.87
Options (subgoals 1,2,3) 24 162.52 249.84 269.91
Options (subgoals 1-6) 22 232.39 353.24 386.50
Options (subgoals 1-8) 18 602.71 875.35 917.75
Options (subgoals 7,8) 20 462.91 665.36 696.36
Options (subgoal 7) 26 282.31 411.19 433.51
Options (subgoal 8) 28 299.90 439.42 459.67
Options (subgoal 9) 5 1940.35 1910.67 2422.08
Options (subgoal 10) 25 109.51 169.22 182.50
Options (subgoal 11) 32 130.55 202.01 217.57
Options (subgoal 12) 29 119.33 235.65 198.39
Options (subgoal 13) 32 136.80 210.06 226.88
Options (subgoal 14) 32 153.25 236.72 253.97
Options (subgoal 15) 26 113.65 180.25 189.01
Options (use 1,4 to learn 7, use 1 to learn 8) 20 720.20 1005.39 1033.77
Options (subgoal 10, horizon 9) 25 85.94 131.71 146.08

	Hardware and software requirements
	How to run the software
	Structure of the source code
	How to use our algorithm in a new domain
	Results of three independent runs

