Article

mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype

Nicolás Herranz^{1,2}, Suchira Gallage^{1,2,3}, Massimiliano Mellone⁴, Torsten Wuestefeld^{5, a}, Sabrina Klotz⁵, Christopher J. Hanley⁴, Selina Raguz^{1,2}, Juan Carlos Acosta^{1,2}, Andrew J Innes^{1,2}, Ana Banito^{1,2}, Athena Georgilis^{1,2}, Alex Montoya⁶, Katharina Wolter⁵, Gopuraja Dharmalingam², Peter Faull⁶, Thomas Carroll², Juan Pedro Martínez-Barbera⁷, Pedro Cutillas^{6,b}, Florian Reisinger⁸, Mathias Heikenwalder^{8,9}, Richard A. Miller¹⁰, Dominic Withers³, Lars Zender⁵, Gareth J. Thomas⁴, and Jesús Gil^{1, 2,*}

¹Cell Proliferation Group, ²Epigenetics Section, ³Metabolic Signalling Group, and ⁶Proteomics Facility; MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK.

⁴Cancer Sciences Unit, Cancer Research UK Centre, Somers Building, University of Southampton, Southampton SO16 6YD, UK.

⁵Division of Molecular Oncology of Solid Tumors, Dept. of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.

⁷Birth Defects Research Centre, Neural Development Unit, UCL Institute of Child Health, London, WC1N 1EH, UK

⁸Institute for Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany.

⁹Division of Chronic Inflammation and Cancer, German Cancer Research (DKFZ), Heidelberg, Germany.

¹⁰Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109-2200, USA

^aCurrent address: Stem Cell & Regenerative Biology, Genome Institute of Singapore, Singapore 138672

^bCurrent address: Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ

*Corresponding author:	jesus.gil@csc.mrc.ac.uk
Short title:	mTOR controls the SASP
Keywords:	mTOR, SASP, senescence, rapamycin, MAPKAPK2,
	ZFP36L1.

1

ABSTRACT

Senescent cells secrete a combination of factors collectively known as the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence and activates an immune surveillance response but it can also display pro-tumorigenic properties and contribute to age-related pathologies. In a drug screen to find novel SASP regulators, we uncovered the mTOR inhibitor rapamycin as a potent SASP suppressor. Here we report a mechanism by which mTOR controls the SASP by differentially regulating the translation of the MK2/MAPKAPK2 kinase through 4EBP1. In turn, MAPKAPK2 phosphorylates the RNA binding protein ZFP36L1 during senescence, inhibiting its ability to degrade the transcripts of numerous SASP components. Consequently, mTOR inhibition or constitutive activation of ZFP36L1 impairs the non-cell-autonomous effects of senescent cells both in tumour-suppressive and promoting-promoting contexts. Altogether, our results place regulation of the SASP as a key mechanism by which mTOR could influence cancer, age-related diseases and immune responses.