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Abstract 
This tutorial provides an introduction to navigation using inertial sensors, explaining 
the underlying principles. Topics covered include accelerometer and gyro technology 
and their characteristics, strapdown inertial navigation, attitude determination, 
integration and alignment, zero updates, motion constraints, pedestrian dead reckoning 
using step detection, and fault detection. 
 
Index Terms 
Navigation, Inertial Navigation, Integrated Navigation 
 
I. INTRODUCTION 
 
 Inertial sensors comprise accelerometers, which measure specific force, and 
gyroscopes, commonly abbreviated to gyros, which measure angular rate. An inertial 
measurement unit (IMU) combines multiple accelerometers and gyros, usually three 
of each, to produce three-dimensional measurements of specific force and angular 
rate. By integrating these measurements and applying a gravity model, a position, 
velocity, and attitude solution may be maintained, a concept known as inertial 
navigation. 
 Practical inertial navigation systems (INS) have been available from the 1950s, 
but were initially very large and expensive. In early INS, the sensors were physically 
aligned with the horizontal and vertical by mounting them on a platform connected to 
the host body by a series of gimbals driven by motors. This was known as a platform 
configuration and was due to the limitations of early gyro technology and the need to 
minimize the computational load. The strapdown configuration, whereby the sensors 
are aligned with the host body, was first proposed in 1962 [1] with production of the 
first aircraft systems starting at the end of the 1970s [2]. Today, it is almost universal. 
Inertial sensors are now available with a wide range of physical and performance 
characteristics at costs ranging from a few dollars to hundreds of thousands of dollars. 
 This tutorial provides an introduction to navigation using inertial sensors, 
covering a range of topics and explaining the underlying principles. Section II 
describes how accelerometers and gyros work and introduces the IMU. Section III 
then reviews their error characteristics. Strapdown inertial navigation is explained in 
Section IV, including the basic principles, initialization, the navigation equations, and 
error propagation. Section V then describes absolute attitude determination using 
inertial sensors, both alone and with magnetometers. Section VI explains how inertial 
navigation performance is improved through integration with other sensors. Section 
VII then introduces zero updates and motion constraints. Section VIII introduces 
pedestrian dead reckoning using step detection, an alternative navigation technique. 
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Finally Section IX discusses fault detection and Section X presents concluding 
remarks.  
 The notation, conventions, and terminology are based on [3], which provides 
further details of most of the topics covered. 
 
II. INERTIAL SENSORS 
 
 This section describes the basic principles of the accelerometer and gyro, 
compares the different types of sensor, and then explains how they are incorporated 
into an inertial measurement unit. Inertial sensor technology is described in more 
detail in [35]. 
 
A. Accelerometers 
 Figure 1 shows a simple accelerometer. A proof mass is free to move with 
respect to the accelerometer case along the accelerometer’s sensitive axis, restrained 
by springs. A pickoff measures the position of the mass with respect to the case. When 
an accelerating force along the sensitive axis is applied to the case, the proof mass will 
initially continue at its previous velocity, so the case will move with respect to the 
mass, compressing one spring and stretching the other. This alters the forces the 
springs transmit. Consequently, the case will move with respect to the mass until the 
acceleration of the mass due to the asymmetric forces exerted by the springs matches 
the acceleration of the case due to the externally applied force. The resultant position 
of the mass with respect to the case is proportional to the applied acceleration. By 
measuring this with a pickoff, an acceleration measurement is obtained. 
 

 
Figure 1. A simple accelerometer (From [3] © Paul Groves 2013. Reproduced with 
Permission). 
 
 An important exception is gravitational acceleration. This acts on the proof 
mass directly, not via the springs, and applies the same acceleration to all components 
of the accelerometer, so there is no relative motion of the mass with respect to the 
case. Therefore, accelerometers sense only the nongravitational acceleration, known 
as specific force. People also sense specific force. The sensation of weight is actually 
caused by the forces opposing gravity, known as the restoring force on land, buoyancy 
at sea, and lift in the air. During freefall, the specific force is zero so there is no 
sensation of weight. Conversely, under zero acceleration when the specific force is 
equal and opposite to the acceleration due to gravity, the reaction to gravity is sensed 
as weight. 
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 An accelerometer measures the specific force of the accelerometer case with 
respect to inertial space, which does not accelerate or rotate with respect to the rest of 
the universe. An IMU containing a triad of accelerometers with mutually-orthogonal 
sensitive axes measures the specific force vector, b

ibf , where the subscript ib denotes 
measurement of the origin of the IMU body frame, b, with respect to an inertial frame, 
i, and the superscript b denotes that the components of the vector are resolved along 
the axes of the IMU body frame, which normally coincide with the sensitive axes of 
the constituent sensors (an exception is the skewed configuration; see Section IX). 
The specific force may be expressed in terms of the inertially referenced acceleration, 

b
iba , and the gravitational acceleration, b

ibγ , using 
 b

ib
b
ib

b
ib γaf   . (1) 

 However, it is often more convenient to express the specific force in terms of 
the Earth referenced acceleration, b

eba . Thus, 
 b

b
b
eb

b
ib gaf   , (2) 

where b
bg  is the acceleration due to gravity, the sum of the gravitational acceleration 

and the outward centrifugal acceleration due to the Earth’s rotation. Centrifugal 
acceleration is a pseudo-acceleration arising from the use of a rotating reference frame 
[3]. 
 The accelerometer hardware shown in Figure 1 is incomplete. The proof mass 
must be supported in the axes perpendicular to the sensitive axis, and damping is 
needed to limit oscillation of the proof mass. Practical accelerometers used for 
navigation currently follow either a pendulous or vibrating-beam design. 
 In a pendulous accelerometer, the proof mass is attached to the case via a 
pendulous arm and hinge, forming a pendulum. This leaves the proof mass free to 
move along the sensitive axis while supporting it in the other two axes. The hinge 
provides damping, which may be increased by filling the case with oil. In an open-
loop pendulous accelerometer, one or two springs are used to transmit force from the 
case to the pendulum along the sensitive axis. However, the accuracy is limited by the 
pickoff resolution, the nonlinearity of the spring, and variation in the direction of the 
sensitive axis as the pendulum moves. Precision pendulous accelerometers therefore 
use a closed-loop, or force-feedback, configuration, whereby a torquer maintains the 
pendulous arm at a constant position with respect to the case [4, 5]. The pickoff 
detects departures from the equilibrium position as the specific force changes, and the 
torquer is adjusted to return the pendulum to that position. It is then the force exerted 
by the torquer, not the pickoff signal, which is proportional to the specific force. 
 Higher performance pendulous accelerometers are mechanical. Different 
grades of performance are offered at different prices by varying the component 
quality. Micro-electro-mechanical systems (MEMS) technology enables small and 
light quartz and silicon sensors to be mass produced at low cost using etching 
techniques with several sensors on a single wafer, offering a lower cost, lower 
performance alternative [6]. MEMS sensors also exhibit much greater shock tolerance 
than conventional designs, enabling them to be used in gun-launched guided 
munitions [7].  
 In a vibrating-beam accelerometer (VBA), the proof mass is also mounted on a 
pendulous arm. However, it is supported along the sensitive axis by a vibrating beam, 
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largely constraining its motion. When a force is applied to the accelerometer case 
along the sensitive axis, the beam pushes or pulls the proof mass, causing the beam to 
be compressed in the former case and stretched in the latter. This changes the resonant 
frequency of the beam. Therefore, by measuring this, the specific force along the 
sensitive axis can be determined. Performance is improved by using a pair of vibrating 
beams, arranged such that one is compressed while the other is stretched. Larger, 
higher performance VBAs use quartz, while lower cost MEMS VBAs can use quartz 
or silicon. 
 A third class of accelerometer, currently under development, is based on cold-
atom interferometry [8, 9]. This offers a much higher precision than conventional 
sensors, but is relatively large and expensive, limiting its deployment to larger ships, 
submarines, and aircraft. 
 The operating range of an accelerometer is typically quoted in terms of the 
acceleration due to gravity, abbreviated to ‘g’, where 1g = 9.80665 m s2, noting that 
the actual acceleration due to gravity varies with location.  Many navigation 
applications require an operational range of at least ±10g. 
 
B. Gyroscopes 
 A device that senses angular rate with respect to inertial space is known as a 
gyroscope. Early gyroscopes used spinning mass technology. However, the vast 
majority of gyros used for navigation today are either optical or vibratory. An IMU 
containing a triad of gyros with mutually-orthogonal sensitive axes measures the 
angular rate vector, b

ibω , where the subscript ib denotes measurement of the axes of 
the IMU body frame with respect to an inertial frame and the superscript b denotes 
that the components of the vector are resolved about the axes of the IMU body frame, 
which normally coincide with the gyro sensitive axes. Manned vehicles typically 
rotate at up to 3 rad s1 (170 deg s1) [10]. However, a gun-launched guided shell can 
rotate at up to 120 rad s1 (6,800 deg s1) [7]. 
 
 1) Optical gyroscopes. Optical gyroscopes work on the principle that, in a 
given medium, light travels at a constant speed in an inertial frame. If light is sent in 
both directions around a nonrotating closed-loop waveguide made of mirrors or 
optical fiber, the path length is the same for both beams. However, if the waveguide is 
rotated within its plane, then, from the perspective of an inertial frame, the reflecting 
surfaces are moving further apart for light traveling in the same direction as the 
rotation and closer together for light traveling in the opposite direction. Thus, rotating 
the waveguide in the same direction as the light path increases the path length and 
rotating it in the opposite direction decreases the path length. This is known as the 
Sagnac effect and is illustrated by Figure 2. By measuring the changes in path length, 
the angular rate of the waveguide with respect to inertial space can be determined. 
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Figure 2 . Effect of closed-loop waveguide rotation on path length. (From [3] © Paul 
Groves 2013. Reproduced with Permission). 
 
 There are two main types of optical gyro. The ring laser gyro (RLG) was 
originally designed as a high-performance technology with the interferometric fiber-
optic gyro (IFOG) as a lower cost solution. However, the performance ranges now 
overlap with IFOGs able to meet the performance standards for civil and military 
aviation. 
 In a ring laser gyro, light travels in both directions around a closed-loop tube, 
known as a laser cavity, containing a helium-neon gas mixture. The cavity comprises 
at least three arms with a mirror at each corner. The wavelength of the light depends 
on both the properties of the gas and the length of the laser cavity, which must contain 
an integer number of wavelengths. If the laser cavity does not rotate, the light 
travelling in each direction has the same wavelength. However, if the laser cavity is 
rotated within its plane, the cavity length is increased for light travelling in the 
direction of rotation and decreased for the light travelling in the opposite direction, 
changing both wavelengths. Light traveling in both directions is focused on a detector 
and the angular rate is deduced from the interference pattern. 
 In an interferometric fiber-optic gyro, broadband light is modulated and split 
into two equal portions that are then sent through a fiber-optic coil in opposite 
directions. Within the coil, light travelling in one direction is lagged or advanced with 
respect to light travelling in the other direction according to the angular rate of the coil 
within its plane. The outputs from the coil are recombined and passed to a detector 
which measures the interference between them, from which the angular rate may be 
deduced. 
 
 2) Vibratory Gyroscopes. A vibratory gyroscope is based around a driven 
vibrating element, which may be a string, beam, pair of beams, tuning fork, ring, 
cylinder, or hemisphere. The Coriolis acceleration of the vibrating element is detected 
when the gyro is rotated. Figure 3 illustrates this for a vibrating string. This is able to 
vibrate in two orthogonal directions and is driven to vibrate along one of these 
directions. If the string is then rotated about its longitudinal axis, which is 
perpendicular to the directions it can vibrate along, the Coriolis effect induces 
vibration along the axis perpendicular to both the drive and longitudinal axes. The 
amplitude of this vibration is proportional to the angular rate. 
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Figure 3. Axes of a vibrating gyro. 
 
 Most vibratory gyros are low-cost, low-performance devices, often using 
MEMS technology [6] and with quartz giving better performance than silicon. The 
exception is the hemispherical resonator gyro (HRG), which can offer aviation grade 
performance and is often used for space applications. 
 
 3) Other types of Gyroscope. Traditional spinning-mass gyroscopes remain in 
use in old equipment while a number of new technologies for sensing angular rate are 
under development. Nuclear magnetic resonance (NMR) gyro technology has now 
been developed on a chip scale, offering high performance with small and light 
sensors [11]. Cold-atom interferometry offers the potential of much higher precision 
than current gyroscope technology for large-scale applications [12]. In theory, angular 
rate can also be sensed using an array of accelerometers [13]. However, this is not 
currently a practical solution. 
 
C. Inertial Measurement Units 
 Figure 4 shows the main elements of a typical inertial measurement unit. The 
IMU regulates the power supplies to the accelerometers and gyroscopes, digitizes their 
outputs, and transmits them on a data bus. The specific forces and angular rates, or 
their integrals (known as “delta-v”s and “delta-”s) are output at a rate between 100 
and 1,000 Hz. Most IMUs have three accelerometers and three gyroscopes, mounted 
with orthogonal sensitive axes. However, some incorporate additional inertial sensors 
in a skewed configuration to protect against single sensor failure (see Section IX). 
Conversely, for some land vehicle applications, partial IMUs, comprising three 
accelerometers and a single yaw-axis gyro, are used [14]. 
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Figure 4. Schematic of an inertial measurement unit. (From [3] © Paul Groves 2013. 
Reproduced with Permission). 
 
 Inertial sensors exhibit systematic errors (see Section III) which can be 
calibrated in the laboratory and stored in memory, enabling the IMU processor to 
correct the sensor outputs. These errors vary with temperature, so the calibration is 
performed at a range of temperatures and the IMU is equipped with a temperature 
sensor.  
 Inertial sensors are sensitive to vibration (e.g., from a propulsion system). 
Many IMUs therefore incorporate vibration isolators, which also protect the 
components from shock. These must be designed to limit the transmission of 
vibrations at frequencies (and harmonics thereof) close to either the mechanical 
resonances of the sensors or the computational update rates of the IMU [4, 10]. 
 There is no universally agreed definition of high-, medium-, and low-grade 
inertial sensors. One author’s medium grade can be another’s high or low grade. 
IMUs, INSs, and inertial sensors may be grouped into five broad performance 
categories: marine, aviation, intermediate, tactical, and consumer. 
 The highest quality sensors are used in military ships, submarines, some inter-
continental ballistic missiles, and some spacecraft, noting that different sensors are 
required for these very different environments. A marine-grade INS can cost in excess 
of a million dollars. 
 Aviation-grade, or navigation-grade INSs are used in military aircraft and 
commercial airliners. They cost around $100,000, have a standard size of 178 178 
249 mm, and must exhibit a horizontal position drift within 1.5 km in the first hour 
of operation. An intermediate-grade IMU, about an order of magnitude poorer in 
performance, is used in smaller aircraft and helicopters and costs $20,000–50,000.  
 A tactical-grade IMU can only be used for stand-alone inertial navigation 
solution for a few minutes. However, an accurate long-term navigation solution can be 
obtained by integrating it with a positioning system, such as GPS. These IMUs 
typically cost between $2,000 and $30,000 and are used in guided weapons and 
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unmanned air vehicles (UAVs). Most are less than a liter in volume. Tactical grade 
covers a wide span of sensor performance, particularly for gyros. 
 The lowest grade of inertial sensors are known as consumer grade or 
automotive grade. They are usually supplied as individual sensors or accelerometer 
and gyro triads, rather than as complete IMUs. Without calibration, they are not 
accurate enough for inertial navigation, even when integrated with other navigation 
systems, but can be used for attitude determination, detection of a pedestrian’s steps, 
and detection of context information, such as vehicle type and activity. They are 
typically used in pedometers, antilock braking, active suspension, and airbags. 
Accelerometers cost around a dollar or euro while gyro prices start at about $10. 
Sensors can be as small as 551 mm. 
 The extent of calibration and other processing applied within the IMU can 
affect performance dramatically, particularly for MEMS sensors [15].  Sometimes, the 
same MEMS inertial sensors are sold at consumer grade without calibration and 
tactical grade with calibration. 
 
III. SENSOR ERROR CHARACTERISTICS 
 
 All types of accelerometer and gyro exhibit biases, scale factor and cross-
coupling errors, and random noise to a certain extent. Further errors may also arise, 
depending on the sensor type. Each of these errors is discussed in turn, followed by a 
summary error model. Further details may be found in [3, 4, 10]. 
 Each systematic error source has four components: a fixed contribution, a 
temperature-dependent variation, a run-to-run variation, and an in-run variation. The 
fixed contribution is present each time the sensor is used and is normally corrected by 
the IMU processor using the laboratory calibration data. The temperature-dependent 
component can be similarly corrected. Otherwise, the systematic errors will typically 
vary over the first few minutes of operation as the sensor warms up to its normal 
operating temperature. 
 The run-to-run variation of each error source results in a contribution to the 
total error which is different each time the sensor is used, but remains constant within 
any run. The in-run variation contribution changes slowly during the course of a run. 
Neither can be corrected by the IMU processor, but they can be calibrated through 
integration with other navigation sensors as described in Section VI. Sudden step 
changes in the systematic errors can also occur if an IMU is subject to a large shock, 
such as launching it from a gun [7]. 
 In discussing the error performance of different types of inertial sensor here, 
the contributions to the error sources that are corrected within the IMU are neglected 
as the postcalibration performance is of greatest interest. 
 
A. Biases 
 The bias is a constant error exhibited by all accelerometers and gyros. It is 
independent of the underlying specific force and angular rate and is usually the largest 
error source. Accelerometer biases are typically quoted in units of milli-g (mg) or 
micro-g (g), where 1g = 9.80665 m s2, while, for gyro biases, degrees per hour ( 
hr1 or deg/hr) are normally used, where 1  hr1 = 4.848106 rad s1. Table 1 lists 
typical accelerometer and gyro biases for different grades of IMU [3]. 
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Table 1. Typical Accelerometer and Gyro Biases for Different Grades of IMU. 
 
IMU grade Accelerometer bias Gyro bias 
 mg m s2  hr1 rad s1 
Marine 0.01 104 0.001 5109 

Aviation 0.03–0.1   3104–103 0.01 5108 

Intermediate 0.1–1 103–102 0.1 5107 

Tactical 1–10 0.01–0.1 1–100 5106–5104 

Consumer >3 >0.03 >100 >5104 

 
 Pendulous accelerometers span most of the performance range, while VBAs 
exhibit biases of 0.1 mg upward, with MEMS accelerometers of both types exhibiting 
the largest biases. RLG biases vary from 0.001  hr1 to 10  hr1, depending on the 
sensor quality, while IFOG biases range between 0.01 and 100  hr1 and vibratory-
gyro biases range from 1  hr1 to 1  s1. Uncalibrated MEMS sensors can exhibit 
larger biases, including temperature- variations of several degrees per second or milli-
g [16]. 
 
B. Scale Factor and Cross-Coupling Errors 
 The scale factor error is the departure of the input-output gradient of the 
instrument from unity. The resulting accelerometer error is thus proportional to the 
true specific force, while the gyro error is proportional to the true angular rate. The 
lowest-cost sensors can exhibit significant scale factor asymmetry, whereby the scale 
factor errors are different for positive and negative readings.  
 Cross-coupling errors make each accelerometer sensitive to the specific force 
along the axes orthogonal to its sensitive axis and each gyro sensitive to the angular 
rate about the axes orthogonal to its sensitive axis. One of the major causes is 
mounting misalignment, whereby the sensitive axes of the inertial sensors are not 
completely orthogonal due to manufacturing limitations. In vibratory sensors, cross-
talk between the individual sensors can arise. In consumer-grade MEMS sensors, the 
cross-coupling errors of the sensor itself can dominate. Cross-coupling errors are 
sometimes called misalignment errors or cross-axis sensitivity. 
 Scale factor and cross-coupling errors are typically expressed in parts per 
million (ppm) or as a percentage, though some manufacturers quote the axis 
misalignments instead. The scale factor and cross-coupling errors of most types of 
inertial sensors, including IFOGs, are between 104 and 103 (100–1000 ppm). 
However, some uncalibrated consumer-grade MEMS sensors exhibit scale factor 
errors as high as 0.1 (10%) and cross-coupling errors of up to 0.02 (2%), while RLG 
scale factor errors are typically between 106 and 104 (1–100 ppm). 
 
C. Random Noise 
 Accelerometers and gyros all exhibit random noise from both electrical and 
mechanical sources. This noise is approximately white for frequencies below 1 Hz, so 
the standard deviation of the average specific force and angular rate noise varies in 
inverse proportion to the square root of the averaging time. Consequently, the noise is 
often described using the root power spectral density (PSD) with units of g/√Hz (= 
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9.80665 106 m s1.5) for accelerometer random noise and /√hr (= 2.909 104 rad 
s0.5) for gyro random noise commonly used. The noise standard deviation is the 
corresponding root PSD multiplied by the square root of the sampling rate (or divided 
by the square root of the sampling interval). Thus, at a sampling rate of 400 Hz, an 
accelerometer noise PSD of 100 g/√Hz corresponds to a noise standard deviation of 
2 mg or 0.196 m s2. White random noise cannot be calibrated as there is no 
correlation between past and future values. MEMS sensors can also exhibit significant 
high-frequency noise, which can cause problems under high dynamics or high 
vibration. 
 The accelerometer and gyro random noise are sometimes described as random 
walks. This is because random noise on the specific force measurements is integrated 
to produce a random-walk error on the inertial velocity solution. Similarly, angular 
rate random noise is integrated to produce an attitude random-walk error. The 
standard deviation of a random-walk process is proportional to the square root of the 
integration time. 
 The accelerometer random-noise root PSD varies from about 20 g/√Hz for 
aviation-grade IMUs, through about 100 g/√Hz for tactical-grade IMUs, up to about 
1000 g/√Hz for consumer-grade MEMS sensors. Gyro random noise varies from 
0.0010.02 /√hr for RLGs, through 0.03–0.1 /√hr for tactical-grade IFOGs or quartz 
vibratory gyros, to 0.062 /√hr for MEMS silicon vibratory gyros. For consumer-
grade sensors, many manufacturers quote the standard deviation of the total noise 
(white and high frequency) at the sensor output rate instead of the root PSD. Noise 
levels of 2.510 mg for accelerometers and 0.31 /s for gyros are common. 
 A further source of noise is the quantization of the IMU data-bus outputs. This 
rounds the sensor output to an integer multiple of a constant, known as the 
quantization level, as shown in Figure 5. The quantization errors are largest for 
consumer-grade sensors where the word length is typically 12 bits or less and they can 
have a similar impact to the noise of the sensors themselves. Thus, quantization errors 
can be as high as 103 m s1 for integrated specific force increments and 2105 rad for 
attitude increments. 
 

 
Figure 5. Effect of quantization on sensor output. (From [3] © Paul Groves 2013. 
Reproduced with Permission). 
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 Inertial sensors often exhibit nonlinearity, whereby the scale factor varies with 
the specific force or angular rate. This is normally expressed as the variation of the 
scale factor over the operating range of the sensor and ranges from 105 for some 
RLGs, through 104 to 103 for most inertial sensors, to 102 for MEMS gyros. The 
largest nonlinearity effects typically occur at the maximum angular rates or specific 
forces that the sensor will measure. 
 Vibration interacts with the sensor scale factor and cross-coupling errors to 
produce oscillating sensor errors, which largely average to zero over time. However 
nonlinearity and/or asymmetry of the scale factor and cross-coupling errors results in a 
component of the vibration-induced sensor error that does not cancel. This is known 
as a vibration rectification error (VRE) and behaves like a bias that varies with the 
amplitude of the vibration. 
 Further error characteristics can be exhibited by certain types of accelerometer 
and gyro. Vibratory gyros and some IFOGs exhibit a sensitivity to the specific force 
along all three axes, known as the g-dependent bias. The coefficient is of order 1 
/hr/g (4.944105 rad m1 s) for an IFOG and 10200 /hr/g for an uncalibrated 
vibratory gyro [4]. Open-loop sensors, including some MEMS accelerometers and 
vibratory gyros, can also exhibit anisoinertia errors, whereby the cross-coupling errors 
vary as a function of the specific force or angular rate due to changes in the direction 
of the sensitive axis. These errors can interact vibration in the environment to produce 
a bias-like error known as the vibropendulous error. 
 MEMS sensors often exhibit errors due to their operating ranges being 
exceeded, in which case the sensor simply outputs its largest possible positive or 
negative reading. Note that human motion exceeds the maximum ranges of many 
consumer-grade sensors. Errors can also arise when the bandwidth of the sensor is 
exceeded, particularly for high-vibration environments. 
 
E. Error Model 
 The contribution of the main error sources to the outputs of an accelerometer 
triad may be summarized by 
   a

b
ibaa

b
ib wfMIbf  3

~ , (3) 

where b
ibf~  is the IMU-output specific force vector, ba is the accelerometer bias vector, 

I3 is the identity matrix, Ma is the matrix of coefficients of the accelerometer scale-
factor error (diagonal elements) and cross-coupling error (off-diagonal elements), b

ibf  
is the true specific force, and wa is the accelerometer random noise vector. 
 Similarly, for a gyro triad, 
   g

b
ibg

b
ibgg

b
ib wfGωMIbω  3

~ , (4) 

where b
ibω~  is the IMU-output angular rate vector, bg is the gyro bias vector, Mg is the 

matrix of gyro scale-factor error and cross-coupling error coefficients, Gg is the matrix 
of gyro g-dependent errors, b

ibω  is the true angular rate, and wg is the gyro random 
noise vector. 
 
IV. STRAPDOWN INERTIAL NAVIGATION 
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 As shown in Figure 6, an inertial navigation system (INS) comprises an inertial 
measurement unit, described in Section II, and a navigation processor, which forms 
the focus of this section. The navigation processor computes a position, velocity, and 
attitude solution from the specific force and angular rate measurements made by the 
inertial sensors. For marine, aviation, and intermediate-grade systems, the IMU and 
navigation processor are typically packaged together. Where tactical or consumer-
grade sensors are used, the navigation equations are typically implemented on an 
integrated navigation processor or the application’s central processor. 
 

 
Figure 6. Basic schematic of an inertial navigation system. (From [3] © Paul Groves 
2013. Reproduced with Permission). 
 
 The section begins by introducing inertial navigation, going from a single-
dimensional implementation through two dimensions to three, followed by a 
discussion of initialization. The navigation equations are then described, with a 
derivation of the simplest form followed by the presentation of a more precise set of 
equations. Further implementations are described in [3, 4, 17, 18], including those 
using integrated specific force and attitude increments (“delta-v”s and “delta-”s). The 
section concludes by describing error propagation. 
 
A. Introduction to Inertial Navigation 
 Considering first an example of one dimensional inertial navigation, a body, b, 
is constrained to move in a straight line perpendicular to the direction of gravity with 
respect to an Earth-fixed reference frame, p. The body’s axes are fixed with respect to 
frame p, so it does not rotate. Its Earth-referenced acceleration may be measured by a 
single accelerometer with its sensitive axis aligned along the direction of motion 
(neglecting the Coriolis force). 
 If the speed, vpb, is known at an earlier time, t0, it may be determined at a later 
time, t, simply by integrating the acceleration, apb: 

  
t

t
pbpbpb tdtatvtv

0

0 )()()( . (5) 

 Similarly, the position may be obtained by integrating the velocity: 
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 Moving on to a two dimensional example, b is now constrained to move within 
a horizontal plane defined by the x and y axes of the p frame. It may be oriented in any 
direction within this plane, but is constrained to remain level. It thus has one angular 
and two linear degrees of freedom. Following, the 1D example, the position and 
velocity, resolved along the axes of the reference frame, p, are updated using 
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 Measuring the acceleration along two orthogonal axes requires two 
accelerometers. However, their sensitive axes will be aligned with those of the body, 
b. To determine the acceleration along the axes of frame p, the heading of frame b 
with respect to frame p, pb, is required as shown in Figure 7. The resolving axes of 
the accelerometer measurements may be then be transformed using a 22 coordinate 
transformation matrix: 
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Figure 7. Orientation of body axes with respect to the resolving axes in a horizontal 
plane. (From [3] © Paul Groves 2013. Reproduced with Permission). 
 
 The rotation of the body, b, within the xy plane of the reference frame, p, may 
be measured with a single gyro with its sensitive axis perpendicular to the plane 
(neglecting Earth rotation). If the heading, pb, is known at the earlier time, t0, it may 
be determined at the later time, t, by integrating the angular rate measured by the 
gyro, b

zpb, : 

  
t

t

b
zpbpbpb tdttt

0

,0 )()()(  . (10) 
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Three inertial sensors are thus required to measure the three degrees of freedom of 
motion in two dimensions.  
 For all practical applications, three-dimensional motion must be assumed. 
Even for land and marine navigation, strapdown inertial sensors will not remain in the 
horizontal plane due to terrain slopes or ship pitching and rolling. Consequently, 
nominally horizontal accelerometers will sense the reaction to gravity as well as the 
horizontal-plane acceleration. A platform tilt of 10 mrad (0.57) produces an 
acceleration error of 0.1 m s2, leading to a position error 500m after 100s (see Section 
IV.E). Tilts of 10 times this are commonly exhibited by both cars and boats. 
 Unconstrained motion in three dimensions has six degrees of freedom, three 
linear and three angular, requiring six inertial sensors to measure it. The specific force, 

b
ibf , and angular rate, b

ibω , output by the IMU are integrated to produce an updated 
position, velocity, and attitude solution in four steps: 
 1. The attitude update; 
 2. The transformation of the specific-force resolving axes from the IMU body 
frame to the coordinate frame used to resolve the position and velocity;  
 3. The velocity update, including transformation of specific force into 
acceleration using a gravity or gravitation model; and 
 4. The position update. 
 Further details are presented in Sections IV.C and IV.D. Figure 8 summarizes 
this process. Note that the specific force and angular rate from the IMU are averaged 
over its sampling interval, whereas the position, velocity and attitude are applicable at 
the end of this interval. In an integrated navigation system, there may also be 
correction of the IMU outputs and navigation solution using estimates from the 
integration algorithm (see Section VI.E). Where a partial IMU is used, the missing 
angular rate measurements are assumed to be zero. 
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Figure 8. Schematic of an inertial navigation processor. (From [3] © Paul Groves 
2013. Reproduced with Permission). 
 
B. Initialization 
 As Figure 8 shows, each cycle of the inertial navigation equations uses the 
previous navigation solution as its starting point. Therefore, the position, velocity, and 
attitude solution must be initialized. Position and velocity initialization requires 
external information. The position can be initialized by starting at a known position. 
However, when inertial navigation forms part of an integrated navigation system 
(Section VI), another navigation technology, such as global navigation satellite 
systems (GNSS), is commonly used to initialize position. 
 Velocity may also be initialized from another navigation system. However, it 
is also common to set it to zero (with respect to the Earth) when the host vehicle is 
stationary. The effects of disturbance by wind or human activity, such as refueling and 
loading, may be minimized by performing the initialization process over several 
seconds, averaging out the motion effects. 
 When an INS is stationary, it can initialize its own attitude solution, a process 
known as self-alignment. The roll and pitch components of attitude are determined by 
measuring the direction of gravity using the accelerometers, a process known as 
leveling and described in Section V.A. The heading may be determined by measuring 
the rotation of the Earth using the gyros, which is known as gyrocompassing and 
described in Section V.B. However, effective gyrocompassing requires sensors of 
aviation grade or better. Otherwise, the heading must be initialized using external 
information. Magnetic heading measurement is described in Section V.C. Other 
methods, described in [3], include GNSS interferometric attitude determination, 
heading from trajectory, and image-based techniques. 
 
C. Simple Inertial-Frame Navigation Equations 
 The simplest form of the inertial navigation equations computes a position, 
velocity and attitude with respect to, and resolved along the axes of, an Earth-centered 
inertial (ECI) coordinate frame. An ECI frame, denoted i, is an inertial frame with its 
origin at the Earth’s center of mass. The z-axis points along the Earth’s axis of rotation 
from the origin to the true north pole. The x- and y-axes lie within the equatorial plane, 
but do not rotate with the Earth. The y-axis points 90 degrees ahead of the x-axis in the 
direction of the Earth’s rotation. An ECI-frame implementation is simplest because 
the inertial sensors measure motion with respect to an inertial frame so only two 
coordinate frames, the ECI frame and the body frame, are used. The effects of the 
Earth’s rotation need not be considered. However, for most applications, the inertially-
referenced navigation solution must be transformed to an Earth-referenced solution to 
be useful. 
 The four steps, described in turn in this subsection, show how the angular-rate 
and specific-force measurements made over the time interval t to it   are used to 
update the navigation solution. The suffixes () and (+) are, respectively, used to 
denote values at the beginning of the navigation equations processing cycle, at time t, 
and at the end of the processing cycle, at time it  .  
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 1) Attitude Update. The attitude update step of the inertial navigation 
equations uses the angular-rate measurement from the IMU, b

ibω , to update the attitude 
solution, expressed as the body-to-inertial-frame coordinate transformation matrix, 

i
bC . A coordinate transformation matrix, also known as a rotation matrix, is used to 

transform a vector from one set of resolving axes to another. Thus, for an arbitrary 
vector, x,  
 bi

b
i xCx  , (11) 

where the superscript of x denotes the resolving axes. The lower index of the 
coordinate transformation matrix represents the “from” frame and the upper index the 
“to” frame. Transformations are reversed simply by transposing the matrix, thus 
 

Ti
b

b
i CC  . (11) 

 To perform successive transformations or rotations, the coordinate 
transformation matrices are simply multiplied: 
 b

a
i
b

i
a CCC  . (12) 

 However, as with any matrix multiplication, the order is critical, so 
i
b

b
a

i
a CCC  . Performing a transformation and then reversing the process must return 

the original vector or matrix, so  
 3ICC i

b
b
i , (13) 

where In is the n  n identity or unit matrix. Coordinate transformation matrices are 
thus orthonormal and only 3 of the 9 components are independent. Although not 
always the most computationally efficient way of representing attitude, coordinate 
transformation matrices are comparatively straightforward and intuitive to manipulate.  
 As shown in [3, 19], the time derivative of the coordinate transformation 
matrix is 
 b

ib
i
b

i
b ΩCC  , (14) 

where b
ibΩ  is the skew-symmetric matrix of the angular rate, defined as 
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 Integrating (14) over the inertial navigation update interval gives 
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If the angular rate is assumed to be constant over this  interval, this simplifies to 
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noting that the exponent of a matrix is not the same as the matrix of the exponents of 
its components. Expressing (17) as a power series, 
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 The simplest form of attitude update is obtained by truncating the power-series 
to first order: 
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 This first-order approximation of (18) is a form of the small angle 
approximation,  sin , 1cos  . It introduces errors in the attitude integration 
which will be larger at lower update rates (large i) and higher angular rates. In 
practice, the first-order approximation can be used for land vehicle applications where 
the dynamics are low. However, for applications with high-dynamic, such as aviation, 
or regular periodic motion, such as pedestrian and boat navigation, a more precise 
attitude update is required, incorporating higher-order terms in the power series, (18). 
 
 2) Specific-Force Frame Transformation. The IMU measures specific force 
along the body-frame resolving axes. However, to use this to update the velocity 
solution, it must be resolved about the same axes as the velocityin this case, an ECI 
frame. The resolving axes are transformed simply by applying a coordinate 
transformation matrix: 
 )()()( ttt b

ib
i
b

i
ib fCf  . (20) 

 As the specific-force measurement is an average over time t to it  , the 
coordinate transformation matrix should be similarly averaged. A good approximation 
is 
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 3) Velocity Update. From (1), inertially referenced acceleration is obtained by 
adding the gravitational acceleration to the specific force: 
 i
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i
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i
ib γfa  . (21) 

 The gravitational acceleration is determined using a model [20]: 
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where i
ibr  is the Cartesian position of the IMU body frame with respect to the ECI 

frame origin, resolved along the ECI-frame axes, R0 = 6,378,137.0 m is the Earth’s 
equatorial radius,  = 3.9860044181014 m3s2 is the Earth’s gravitational constant, 
and J2 = 1.082627103  is the Earth’s second gravitational constant [21]. 
 The time derivative of the velocity of the IMU body frame with respect to the 
ECI frame origin, resolved along the ECI-frame axes, i

ibv , is simply the corresponding 
acceleration as the reference frame and resolving axes are the same. Thus, 
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 i
ib

i
ib av  . (23) 

 The velocity is updated by integrating this. Assuming the acceleration is 
constant over the update interval gives 
 i

i
ib

i
ib

i
ib avv  )()( . (24) 

 
4) Position Update. As the reference frame and resolving axes are the same, the time 
derivative of the Cartesian position is simply the velocity. Thus, 
 i

ib
i
ib vr  . (25) 

 Where the variation in acceleration over the update interval is unknown, i
ibv  is 

assumed to be a linear function of time over the interval t to it  . The position may 
therefore be updated using 
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5) Navigation Solution Transformation. To obtain a navigation solution with respect 
to the Earth, a transformation is required. An Earth-centered Earth-fixed (ECEF) 
coordinate frame, denoted e, has its origin at the Earth’s center of mass, coincident 
with the ECI-frame origin. The z-axis also points from origin to the true north pole. 
However, the x- and y-axes are fixed with respect to the Earth, rotating with it, with 
the x- and y-axes pointing from the origin to the 0 and 90 east meridians, 
respectively. The Cartesian ECEF position is obtained using 
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where t0 is the time at which the ECEF-frame and ECI-frame axes coincide and ie =  
7. 292115  105 rad s1 is the Earth rotation rate [21]. 
 For most applications, it is more convenient to express position with respect to 
the surface of the Earth rather than the center. The surface is irregular so, for 
navigation purposes, is typically approximated by an ellipsoid. The geodetic latitude 
of body b, Lb, is defined as the angle of intersection of the normal from b to the 
ellipsoid with the equatorial plane. The longitude, b, is the angle subtended in the 
equatorial plane between the meridian plane containing b and the 0 meridian plane. 
Finally, the geodetic height, hb, is the distance from b to the ellipsoid surface along the 
normal to that ellipsoid. Figure 9 illustrates this. Together, Lb, b, and hb form the 
curvilinear position of point b. This may be determined from the corresponding 
Cartesian position using [22] 



Paul D Groves Navigation using Inertial Sensors Tutorial submission to IEEE AESS Systems 
Magazine 2013; Revised March 2014 

  19 

 

)(
cos

tan

cos1

sin1tan

22

3
0

2222

3
0

22

bE
b

e
eb

e
eb

b

e
eb

e
eb

b

b
e
eb

e
eb

b
e
eb

b

LR
L

yx
h

x
y

Reyxe

ReezL














 










, (28) 

where e = 0.0818191908425 [21] is the eccentricity of the ellipsoid and 
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noting that RE is the transverse radius of curvature. 
 

 
Figure 9. Geodetic latitude, longitude and geodetic height of point b 
 
 The velocity with respect to the Earth, resolved along north, east, and down 
(NED), an example of a local navigation frame, is obtained using [3] 
  i

ib
i
ie

i
ib

e
i

n
e

n
eb rΩvCCv  , (30) 
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 Finally, the attitude, expressed as the coordinate transformation matrix from 
the body frame to NED, is obtained using 
 i
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b CCCC  . (32) 

 For user output, it is more intuitive to express attitude as a set of three Euler 
angles. The Euler attitude of the body frame with respect to NED may be expressed as 
a set of three rotations from the NED to the body. Firstly, the yaw rotation, nb, is a 
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positive rotation about the z (down) axis of the NED frame. Secondly, the pitch 
rotation, nb, is a positive rotation about the y (right) axis of the first intermediate 
frame. Finally, the roll rotation, nb, is a positive rotation about the x (forward) axis of 
the second intermediate frame. The Euler angles may be obtained from the coordinate 
transformation matrix using 
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where four-quadrant arctangent functions must be used. The reverse transformation is 
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D. Precision North, East, Down Navigation Equations 
 The inertial navigation equations presented in the preceding subsection are 
approximate and exhibit errors that increase with the host-vehicle dynamics, vibration 
level and update interval. For most applications, a higher precision, and thus greater 
complexity and processing capacity, is required. It is also common to directly compute 
an Earth-referenced navigation solution resolved about north, east, and down axes (or 
east, north, and up) instead of computing an ECI solution and converting. In such an 
implementation it is necessary to account for the rotation of the Earth with respect to 
inertial space, including  the ensuing Coriolis force, and also the rotation of the NED 
coordinate frame with respect to the Earth as the navigation system moves. A 
derivation and explanation of the constituent terms may be found in [3, 4]. 
 The attitude solution is updated using 
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where, from (16), the rotation measured by the gyros is 
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the skew symmetric matrix of the angular rate of the Earth, resolved about NED is 
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and the skew symmetric matrix of the angular rate of the north, east, and down axes 
with respect to the Earth, known as the transport rate, is 
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where 
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is the meridian radius of curvature. The attitude solution may be converted to Euler 
angles using (33). The coordinate transformation matrix should also be subject to a 
reorthogonalization and renormalization process at regular intervals to compensate for 
computational rounding errors [3, 4]. 
 The specific force resolving axes are transformed to NED using 
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 The velocity solution is then updated using 
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where the acceleration due to gravity is given by [21]: 
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where f = 1 / 298.257223563 is the flattening of the ellipsoid. 
 The curvilinear position may be updated directly from the velocity using 
 

 

    









































)(cos)())((
)(

)(cos)())((
)(

2
)()(

)())((
)(

)())((
)(

2
)()(

)()(
2

)()(

,,

,,

,,

bbbE

n
Eeb

bbbE

n
Eebi

bb

bbN

n
Neb

bbN

n
Nebi

bb

n
Deb

n
Deb

i
bb

LhLR
v

LhLR
v

hLR
v

hLR
v

LL

vvhh








, 

  (44) 
 The preceding equations should be updated at the IMU output rate. However, 
it is possible to implement slower varying terms, such as the Earth rotation and 
transport rate contributions, at a lower rate, reducing processor load at the expense of 
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increased complexity [23]. It should also be noted that a NED-resolved 
implementation is not suitable for use in polar regions because north and east are 
undefined at the poles; an ECI-frame, ECEF-frame or wander-azimuth 
implementation must be used instead [3, 17]. A wander-azimuth coordinate frame is a 
local-level frame in which the x- and y- axes are rotated about the vertical with respect 
to north and east by a wander angle that varies with position, avoiding the singularity 
at the poles. 
 
E. INS Error Propagation 
 The errors in an inertial navigation solution arise from three sources: the 
inertial sensors, initialization errors, and processing approximations, including the 
gravity model. For example, the models given in (22) and (43) are accurate to about 
103 m s2 in each direction. These errors are integrated through the navigation 
equations to produce position, velocity, and attitude errors that grow with time. For 
example, the velocity initialization error results in a growing position error. The error 
propagation is also affected by the host vehicle trajectory. For example, the effect of 
scale factor and cross-coupling errors depends on the host vehicle dynamics, as does 
the coupling of the attitude errors, particularly heading, into velocity and position. 
 Full determination of INS error propagation is a complex problem, normally 
studied using simulation software. This section begins by defining the INS errors. 
Several examples of short-term error propagation are then presented followed by brief 
discussions of longer-term error propagation, the effects of maneuvers, and indexed 
IMUs. The Earth-referenced form of the navigation solution, resolved along north, 
east, and down, is used. A more detailed treatment of INS error propagation may be 
found in [4, 18, 20]. 
 
 1) Error Definitions. In general, an INS error is simply the difference between 
an INS-indicated quantity, denoted by a “~”, and the true value of that quantity. Thus, 
the Cartesian position, velocity and acceleration errors are 
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 Similarly, the latitude, longitude, and height errors are 
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 As explained in Section IV.C.1, coordinate transformation matrices are 
multiplied to perform successive transformations or rotations. Therefore, the attitude 
error in coordinate transformation matrix form is obtained by multiplying the attitude 
solution by the transpose of the true attitude: 

 b
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n
b CCC ~
 , (47) 

noting that the attitude error components are resolved about the axes of the NED 
frame.  Where the small angle approximation is applicable, the attitude error may also 
be expressed as a vector resolved about an axis of choice. For example, n

nbδψ  is the 
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error in the INS indicated attitude of the body frame with respect to the NED frame, 
resolved about NED axes. This may be expressed in terms of the coordinate 
transformation matrix form of the attitude error using [3] 
   3I n

b
n
nbδ Cψ  . (48) 

 Finally, the specific force and angular rate errors from the accelerometer and 
gyro measurements are 
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 2) Short-Term Straight-Line Error Propagation. As inertial navigation is 
most commonly integrated with GNSS and/or other sensors, short-term error 
propagation is of most relevance. For the short-term case, the effects of curvature and 
rotation of the Earth and gravity model feedback may be neglected. Here, the simplest 
case, in which the host vehicle is traveling in a straight line at constant velocity and 
remains level, is considered. Consequently, there are no dynamics-induced errors. 
 Figure 10 shows the position error growth with constant velocity, acceleration, 
attitude, and angular-rate errors. The position error is the integral of the velocity error, 
so with a constant velocity error, 
 tt n

eb
n
eb vr  )( . (49) 

Thus, an 0.1 m s1 initial velocity error produces a 30m position error after 300s (5 
minutes). 
 

 
Figure 10. Short-term straight-line position error growth per axis for different error 
sources. (From [3] © Paul Groves 2013. Reproduced with Permission). 
 
 The velocity error is the integral of the acceleration error, so the velocity and 
position errors resulting from a constant accelerometer bias are: 

0.1 ms1 0.01 ms2 

1 mrad 105 rad s1 
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and an 0.01 m s2 (~ 1 mg) accelerometer bias produces a 450m position error after 
300s. Acceleration errors can also result from gravity modeling approximations. For 
example, the models in Sections IV.C.3 and IV.D are typically accurate to about 103 
m s2 (0.1 mg) in each direction [4, 20]. 
 Attitude errors produce errors in the transformation of the specific-force 
resolving axes from the body frame to the NED frame, resulting in errors in the 
acceleration resolved in that frame. Figure 11 illustrates this. Where the attitude error 
may be expressed as a small angle, the resulting acceleration error is 
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Figure 11. Acceleration error due to attitude error. (From [3] © Paul Groves 2013. 
Reproduced with Permission). 
 
 In the constant-velocity and level example, the specific force comprises only 
the reaction to gravity. Thus, pitch (body-frame y-axis) attitude errors couple into 
along-track (body-frame x-axis) acceleration errors and roll (body-frame x-axis) 
attitude errors couple into across-track (body-frame y-axis) acceleration errors. These 
acceleration errors are integrated to produce the following velocity and position errors. 
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A 1 mrad (0.057) initial attitude error therefore leads to a position error of ~440m 
after 300s.  
Similarly, the velocity and position errors due to the gyro bias are 
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while a 105 rad s1 (2.1  hr1) gyro bias produces a ~439m position error after 300s. 
 The other major source of error in this scenario is inertial sensor noise, which 
may be considered white over timescales exceeding one second. If the single-sided 
accelerometer noise PSD is Sa, the standard deviations of the ensuing velocity and 
position errors are 
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 Similarly, if the gyro noise PSDs is Sg, the standard deviations of the ensuing 
attitude errors and horizontal position and velocity errors are 
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 Figure 12 shows the growth in position error standard deviation due to sensor 
noise. If the accelerometer random noise PSD is 106 m2 s3 (corresponding to a root 
PSD of about 100 g/Hz), the position error standard deviation after 300s is 3m per 
axis. Similarly, if the gyro random noise PSD is 109 rad2 s1 (a root PSD of ~0.1 
/hr), the position error standard deviation after 300s is ~22m per horizontal axis. 
 

 
Figure 12. Short-term straight-line position error standard deviation growth per axis 
due to inertial sensor noise. (From [3] © Paul Groves 2013. Reproduced with 
Permission). 
 
 Figure 13 shows the growth of the horizontal position error standard deviation 
using tactical-grade and aviation-grade INSs with the characteristics listed in Table 2. 
The tactical-grade INS error is more than an order of magnitude bigger than that of the 
aviation-grade INS after 300s. The difference in horizontal and vertical performance 
of the tactical-grade INS arises because the gyro bias dominates and, under constant 
velocity conditions, this only affects horizontal navigation. For the aviation-grade 
INS, the acceleration, roll, and pitch errors dominate. The initial position error has 
little impact after the first minute. Where a tactical-grade INS is calibrated through 
sensor integration or fine alignment (Section VI), the errors are reduced by about a 
factor of 10. 
 

 
Figure 13 Short-term straight-line position error standard deviation growth per axis for 
tactical-grade and aviation-grade INSs. (From [3] © Paul Groves 2013. Reproduced 
with Permission). 

Horizontal 

Vertical 

All axes 

106 m2 s3 109 rad2 s1 
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Table 2. Tactical-grade and Aviation-grade INS Characteristics 
 
Sensor grade Tactical Aviation 
Initial position error SD 10m 10m 
Initial velocity error SD 0.1 m s–1 0.01 m s–1 
Initial (roll and pitch) attitude error SD 1 mrad 0.1 mrad 
Accelerometer bias SD 0.01 m s–2 (1 mg) 0.001 m s–2 (0.1 mg) 

Gyro bias SD 510–5 rad s–1 (10  hr1) 510–8 rad s–1 (0.01  
hr1) 
Accelerometer noise PSD 106 m2 s3 (100 g/Hz)2 107 m2 s3 (32 
g/Hz)2 
Gyro noise PSD 109 rad2 s1 (0.1 /hr)2 1012 rad2 s1 (0.003 
/hr)2 
 
 3) Longer-Term Error Propagation. Longer term INS error propagation is 
affected by the gravity model. A horizontal position error results in the gravity model 
assuming that gravity acts at an angle to its true direction, producing a horizontal 
acceleration error. However, this acceleration error is in the opposite direction to the 
position error, providing negative feedback and correcting the error. Consequently, the 
position error due to a velocity, attitude, or acceleration error undergoes a bounded 
simple harmonic oscillation, known as Schuler oscillation, with a period of 
approximately 84 minutes. The position error due to an angular rate error comprises 
the sum of a linearly growing term and an oscillatory term. Thus, over the long term, 
it is the quality of the gyros that determines the overall accuracy of an inertial 
navigation system. Further details may be found in [3, 4, 20]. 
 A positive height error causes the magnitude of the gravity to be 
underestimated, resulting in a positive vertical acceleration error. Thus, in the vertical 
direction, there is positive feedback through the gravity model and the solution is 
unstable. Historically, aircraft INS have been integrated with barometric altimeters to 
stabilize the vertical channel. Today, this stabilization may also be achieved through 
integration with GNSS. For land and sea applications, a motion constraint may be 
used. 
 
 4) Maneuver-Dependent Errors. Much of the error propagation in inertial 
navigation is dependent on the host vehicle maneuvers. As explained in Section 
IV.E.2, the effect of attitude errors on the velocity and position solutions depends on 
the specific force. The heading error only has an impact during maneuvers. A linear 
acceleration or deceleration maneuver couples the heading error into the cross-track 
velocity and the pitch error into the vertical velocity. A turn produces transverse 
acceleration, which couples the heading error into the along-track velocity and the roll 
error into the vertical velocity. 
 The heading error is typically an order of magnitude larger than the roll and 
pitch errors because it is more difficult to initialize and calibrate. Consequently, 
significant maneuvers can lead to rapid changes in velocity error. Figure 14 shows the 
velocity errors of an aircraft, initially flying north at 100 m s1 with north and east 
velocity errors of 0.05 m s1 and 0.1 m s1, respectively, and a heading error of 1 
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mrad. The aircraft then accelerates to 200 m s1, resulting in the east velocity error 
doubling to 0.2 m s1. Later, it undergoes a 90 turn to the west at constant speed, 
which increases the north velocity error to 0.25 m s1 and drops the east velocity error 
to zero. 
 

 
Figure 14. Illustration of the effect of maneuver on velocity error with a 1 mrad 
heading error. (From [3] © Paul Groves 2013. Reproduced with Permission). 
 
 The effect of scale factor and cross-coupling errors, gyro g-dependent errors, 
and higher-order inertial sensor errors on navigation error growth also depends on the 
maneuvers. In the previous example, a 500 ppm x-accelerometer scale factor error 
would produce an increase in north velocity error during the acceleration maneuver of 
0.05 m s1, while a z-gyro scale factor error of 637 ppm would double the heading 
error to 2 mrad during the turn. 
 Velocity and direction changes often cancel out over successive maneuvers, so 
the effects of the scale factor and cross-coupling errors largely average out. An 
exception is circular and oval trajectories where the gyro scale factor and cross-
coupling errors produce attitude errors that grow with time. Using tactical-grade gyros 
with scale factor and cross-coupling errors of around 300 ppm, the attitude errors will 
increase by about 0.1 per axis for each circuit completed by the host vehicle. With a 
circling period of 2 minutes, the position error will increase by about 400m per hour. 
 With a figure-of-eight trajectory, the attitude error due to gyro scale factor and 
cross-coupling errors will be oscillatory and correlated with the direction of travel. 
This produces a velocity error that increases with each circuit. Using tactical-grade 
gyros, position errors of several kilometers can build up over an hour. 
 INS error propagation is also affected by vibration. Synchronized angular 
oscillation about two orthogonal axes, known as coning, results in a constant angular 
rate error. Similarly, linear oscillation synchronized with angular oscillation about an 
orthogonal axis, known as sculling results in a constant acceleration error. These 
coning and sculling errors are larger when the update interval is larger and/or there are 
approximations in the navigation equations [3, 4]. 
 
 5) Indexed IMUs. In an indexed or carouseling IMU, the inertial sensor 
assembly is regularly rotated with respect to the casing, usually in increments of 90. 
This enables the cancellation over time of the position and velocity errors due to the 
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accelerometer and gyro biases. From (50) and (53), the growth in the position and 
velocity errors depends on the attitude. Therefore, if the direction of an inertial 
sensor’s sensitive axis is regularly reversed, its bias will lead to oscillatory position 
and velocity errors instead of continuously growing errors. To achieve this, it is rather 
more convenient to turn the inertial sensor assembly than to turn the entire host 
vehicle. 
 Single-axis indexing normally employs rotation of the inertial sensor assembly 
about the z-axis, generally the vertical. This enables cancellation of the effects of x- 
and y-axis accelerometer and gyro biases, but not the z-axis biases. The z-axis gyro 
bias has less impact on navigation accuracy as maneuvers are needed to couple the 
heading error into the position and velocity errors, while the z-axis accelerometer bias 
mainly affects vertical positioning which always requires aiding from another sensor 
or a motion constraint. Dual-axis indexing enables cancellation of the effects of all six 
sensor biases on horizontal positioning [24]. These systems are designed so that the 
errors induced by the sensor rotations cancel out over the course of a rotation cycle. 
 
V. ATTITUDE DETERMINATION 
 
 This section describes how inertial sensors may be used for absolute attitude 
determination, both on their own and with magnetometers. Accelerometer leveling, 
gyrocompassing, magnetic heading determination, and the attitude and heading 
reference system (AHRS) are described in turn. 
 
A. Accelerometer Leveling 
 When an INS is stationary, the only specific force sensed by the 
accelerometers is the reaction to gravity. The specific force measurements are 
resolved along body-frame axes, whereas predictions from a gravity model are 
resolved along north, east, and down. Therefore from (2) and (11), the attitude, n

bC , 
can be estimated by solving 
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given that 0n
eba . At the Earth’s surface, the reaction to gravity is in the up direction 

of a local navigation frame. Therefore, neglecting the first two components of n
bg  and 

replacing the third column of b
nC  with the corresponding Euler angles, obtained from 

(34), gives 
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where nb is pitch, nb is roll, and n
Dbg ,  is the down component of the acceleration due 

to gravity. This solution is overdetermined. Therefore, gravity can be eliminated to 
give 
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noting that a four-quadrant arctangent function must be used for roll. Heading cannot 
be determined by leveling because the orientation of the gravity vector within the 
body frame is independent of it. 
 Where the INS is absolutely stationary, the accuracy is determined only by the 
accelerometer errors. For example, a 1 mrad roll and pitch accuracy is obtained from 
accelerometers accurate to 103 g. Disturbing motion, such as mechanical vibration, 
wind effects, and human activity, disrupts the leveling process. However, if the 
motion averages out over time, its effects may be mitigated simply by time-averaging 
the accelerometer measurements over a few seconds. 
 Leveling should not be performed when the host vehicle is maneuvering and 
attempting to do so can lead to large errors. Therefore, accelerometer leveling 
measurements should only be accepted when n

b
b
ib gf  . 

 
B. Gyrocompassing 
 When the INS is stationary, the only rotation it senses is that of the Earth, 
which is about the z direction of an ECEF frame. Measuring this rotation in the body 
frame enables the heading to be determined, except close to the poles, where the 
rotation axis and gravity vector coincide. There are two types of gyrocompassing, 
direct and indirect. 
 Direct gyrocompassing measures the Earth rotation directly using the gyros. 
The attitude, n

bC , may be obtained by solving 
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given that 0n
ebω . Substituting in (31) and rearranging, 
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 Solving the middle row of (60), substituting the corresponding Euler angles 
into n

bC , enables the heading to determined without knowledge of position, provided 
the roll and pitch are known (e.g., from leveling): 
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Again, a four-quadrant arctangent function must be used. Leveling and direct 
gyrocompassing may also be performed in one step where the latitude is known [4]. 
 If there is any disturbing motion, the gyro measurements must be time 
averaged. However, even small levels of angular vibration will be much larger than 
the Earth-rotation rate. Therefore, if the INS is mounted on any kind of vehicle, an 
averaging time of many hours can be required. Consequently, the application of direct 
gyrocompassing is limited. 
 Indirect gyrocompassing uses the gyros to compute a relative attitude solution, 
which is used to transform the specific-force measurements into inertial resolving 
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axes. The direction of the Earth’s rotation is then obtained from rotation of the 
inertially resolved gravity vector about this axis as shown in Figure 15. Indirect 
gyrocompassing typically takes 2 to 10 minutes, depending on the amount of vibration 
and disturbance and the accuracy required. Suitable quasi-stationary alignment 
algorithms are described in [3, 18, 25]. 
 

 
Figure 15. Earth rotation and gravity vectors resolved in ECI-frame axes. (From [3] © 
Paul Groves 2013. Reproduced with Permission). 
  
 The accuracy achievable using gyrocompassing depends on gyro performance. 
Given that ie  7105 rad s1, to obtain a 1 mrad heading initialization at the equator, 
the gyros must be accurate to around 7108 rad s1 (0.01  hr1). Only aviation- and 
marine-grade gyros are this accurate. 
 
C. Magnetic Heading 
 A three-axis magnetic compass measures the magnitude and direction of the 
Earth’s magnetic field using a triad of magnetometers with mutually perpendicular 
sensitive axes. Fluxgate magnetometers, magnetoinductive sensors, and 
magnetoresistive sensors are all suitable [26]. Accelerometer leveling or an inertial 
attitude solution is used to determine the pitch and roll. This enables the heading of 
the unit with respect to the direction of the Earth’s magnetic field, known as magnetic 
north, to be determined using 
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where b
mm~  is the measured magnetic flux density and a four-quadrant arctangent 

function must be used. 
 The heading with respect to true north is then given by 
 nEmbnb   ~~ , (63) 
where nE is the declination angle or magnetic variation of the Earth’s magnetic field. 
This is the bearing of the magnetic field from true north and varies predictably with 
both position and time. Global models, such as the International Geomagnetic 
Reference Field (IGRF) and the US/UK World Magnetic Model (WMM), are updated 
every five years. They are typically accurate to about 0.5, but can exhibit errors of 
several degrees in places [26]. Higher resolution national models are available for 
some countries. 
 Further errors arise due to magnetic fields from other sources. Land 
applications are affected by man-made objects, such as vehicles, buildings, bridges, 
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lamp posts, and power lines [27, 28]. These fields can be significant several meters 
away and cannot easily be distinguished from the Earth’s magnetic field. These local 
anomalies may be detected by comparing the magnitude of the measured magnetic 
flux density with that of the Earth’s magnetic field, enabling inconsistent 
measurements to be rejected. This may be enhanced by also comparing orientation of 
the magnetic field with respect to the vertical [29]. However, heading errors of several 
degrees can remain undetected, while out-of-date heading measurements must be used 
when an anomaly is detected. Better performance is thus obtained if the magnetic 
heading is also smoothed using another sensor, such as gyroscopes. 
 As well as the geomagnetic field and local anomalies, the magnetometers also 
measure the magnetic field of the navigation system itself, the host vehicle, and any 
equipment carried. This comprises a mixture of hard-iron and soft-iron magnetism. 
Hard-iron magnetism is simply the magnetic fields produced by permanent magnets 
and electrical equipment. It is usually a few percent of the Earth’s magnetic field, but 
can sometimes exceed it. Soft-iron magnetism is produced by materials that distort the 
underlying magnetic field. It is typically largest in ships, where it can distort the 
magnetic field by about 10%. 
 As the equipment magnetism moves with the magnetic compass, it can be 
calibrated using a process known as swinging, whereby a series of measurements are 
taken with the instrument at different orientations at a fixed location, varying the roll 
and pitch as well as the heading [30, 31].  
 
D. Attitude and Heading Reference System 
 Figure 16 depicts an attitude and heading reference system, which comprises a 
low-cost IMU with consumer- or tactical-grade sensors and a magnetic compass. It is 
typically used for low-cost aviation applications [32], such as private aircraft and 
UAVs, and provides a three-component inertial attitude solution without position and 
velocity. For marine applications, it is sometimes known as a strapdown gyrocompass. 
 

Accelerometer 
triad

Gyroscope triad

Magnetometer 
triad

Attitude update

Leveling

Magnetic 
heading 

determination

Attitude 
correction

Attitude 
solution

 
Figure 16. Basic schematic of an attitude and heading reference system. (From [3] © 
Paul Groves 2013. Reproduced with Permission). 
 
 The attitude is maintained by integrating the gyro measurements. The 
accelerometers measure roll and pitch by leveling (Section V.A), which is used to 
correct the gyro-derived pitch. Similarly, the magnetic compass (Section V.C) is used 
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to correct the gyro-derived heading. This may be accomplished using a simple 
smoothing filter: 
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where t is time;  is the time interval; nb̂ , nb̂ , and nb̂  is the roll, pitch, and yaw 

solution; lnb,̂  and lnb,̂  are the roll and pitch measurements from leveling; mnb,̂  is the 
heading obtained from the magnetic compass; Wl is the leveling weighting; Wm is the 
magnetometer weighting; and nb , nb , and nb are the roll rate, pitch rate, and yaw 
rate derived from the gyro measurements using 
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noting that the Earth-rotation and transport-rate (see Section IV.D) must be neglected 
where position and velocity are unknown. 
 More sophisticated AHRS use a Kalman filter (Section VI) to perform the 
attitude integration. In either case, the weighting of the leveling measurements is 
normally reduced or zeroed when host-vehicle maneuvers are detected. Similarly, the 
magnetic heading measurements may be down-weighted or rejected when magnetic 
anomalies are detected. 
 Performance depends on the quality of the inertial sensors and the type of 
processing used. A typical AHRS provides roll and pitch to a 10-mrad (0.6) accuracy 
and heading to a 20-mrad (1.2) accuracy, but this may be degraded by a factor of 2 
during high-dynamic maneuvers. 
 
VI. INTEGRATION AND ALIGNMENT 
 
 As explained in Section IV.E, the error in the position, velocity, and attitude 
solution of an inertial navigation system normally grows with time, primarily due to 
IMU measurement errors, but also due to initialization errors and approximations in 
the navigation equations. This error growth may be minimized by using a series of 
position and/or velocity aiding measurements from another source. This is known as 
integration where the measurements are provided continually and alignment where 
they are only available during the initialization process. In some systems, attitude 
measurements are also provided. However, where there is sufficient maneuvering, the 
attitude errors may be inferred from position and velocity measurements. The inertial 
sensor errors may also be calibrated. 
 Inertial navigation may be integrated with many different navigation 
technologies [3, 19]. INS is most commonly integrated with global navigation satellite 
systems (GNSS), such as the Global Positioning System (GPS). GNSS computes a 
position solution from measurements of the time taken for radio signals to propagate 
from a constellation of orbiting satellites [33, 34]. Unlike an inertial navigation 
solution, the GNSS position solution does not normally degrade with time. 
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 For indoor navigation, inertial navigation may be integrated with positioning 
systems using other radio signals, such as Wi-Fi and ultra-wideband (UWB), while, 
for underwater applications, acoustic ranging is typically used. Position information 
may also be inferred from cameras, laser scanners, radar, and sonar. For land 
applications, position corrections may be obtained from map matching on the basis 
that road vehicles normally travel on roads, trains stay on tracks, and pedestrians don’t 
walk through walls. In multisensor integrated navigation systems, a variety of 
different navigation and positioning technologies are combined [3, 19]. This may 
include additional dead-reckoning technologies, such as odometry (wheel speed), 
Doppler radar, or Doppler sonar. Sources of attitude information include 
magnetometers (Section V.C), cameras, and multi-antenna GNSS. 
 An important question is why inertial navigation is used at all when a drift-free 
position and velocity solution is available from another source. There are several 
reasons. Firstly, an INS typically exhibits less short-term noise than technologies, such 
as GNSS, that measure position directly, so the integrated solution is smoother and 
more accurate. Secondly, an INS provides a much higher bandwidth, with an update 
rate of at least 50 Hz and lower latency than many other sensors. Thirdly, attitude, 
acceleration, and angular rate are provided in addition to position and velocity. 
Finally, INS integration enables a continuous navigation solution to be maintained, 
whereas position-fixing technologies fail when insufficient signals are received or 
landmarks observed. For example, GNSS signals are highly vulnerable to incidental 
and deliberate interference, and can be blocked by buildings and mountainous terrain. 
 Alignment algorithms may use the same sources of aiding measurements as 
integration algorithms. In addition, transfer alignment uses velocity, and sometimes 
attitude, measurements from another INS or integrated INS/GNSS aboard the same 
host vehicle, while quasi-stationary alignment derives aiding measurements from 
knowledge that the INS is approximately stationary with respect to the Earth [3, 18, 
25]. 
 Figure 17 shows the basic configuration of a typical integrated navigation 
system. The integration algorithm, usually based on a Kalman filter, compares the 
inertial navigation solution with the outputs of an aiding system, such as GNSS, and 
estimates corrections to the inertial position, velocity, and attitude solution, usually 
alongside other parameters. The corrected inertial navigation solution then forms the 
integrated navigation solution, noting that closed loop correction is shown in Figure 
17. This architecture ensures that an integrated navigation solution is always 
produced, regardless of the availability of aiding measurements. A detailed discussion 
of integration architectures may be found in [3]. Figure 18 shows the typical stages of 
an integration or alignment algorithm. 
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Figure 17. Generic integration architecture [3]. 
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Figure 18. Typical stages of an integration or alignment algorithm [3]. 
 
 The rest of this section comprises an introduction to the Kalman filter, a 
discussion of state selection, the system propagation, and measurement update, and 
the correction of the navigation solution. 
 
A. Introduction to the Kalman Filter 
 The Kalman filter is an estimation algorithm that maintains real-time estimates 
of a number of parameters of a system, such as its position and velocity, which may 
continually change. The estimates are updated using a stream of measurements that 
are subject to noise. The measurements must be functions of the parameters estimated, 
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but the set of measurements at a given time need not contain sufficient information to 
uniquely determine the values of the parameters at that time. 
 The Kalman filter uses knowledge of the deterministic and statistical 
properties of the system parameters and the measurements to obtain optimal estimates 
given the information available. It is a Bayesian estimation technique. It is supplied 
with an initial set of estimates and then operates recursively, updating its working 
estimates as a weighted average of their previous values and new values derived from 
the latest measurement data.  
 A Kalman filter has five core elements: the state vector and covariance, the 
system model, the measurement vector and covariance, the measurement model, and 
the algorithm. 
The state vector, x, is the set of parameters describing a system, known as states, 
which the Kalman filter estimates. For integration and alignment of inertial navigation 
systems, the states include the position error, velocity error, and attitude error. 
Associated with the state vector is an error covariance matrix, P. This represents the 
uncertainties in the Kalman filter’s state estimates and the degree of correlation 
between the errors in those estimates. This correlation information may be used to 
infer one state from another. Thus, the velocity error could be estimated from the rate 
of change of the position error. Similarly, the attitude an acceleration errors may be 
inferred from the variation of the velocity error. 
 The system model, also known as the process model or time-propagation 
model, describes the known variation of the Kalman filter states over time. For 
example, the position error varies with time as the integral of the velocity error. This 
is expressed using the transition matrix, , which relates the value of the state vector 
at the previous epoch in time to its current value. The transition matrix is also used to 
update the state error covariance matrix. However, the state uncertainties must also be 
increased with time to account for unknown changes in the system, such as random 
noise on an instrument output. This variation in the true values of the states is known 
as system noise or process noise, and is described by the system noise covariance 
matrix, Q. 
 The measurement vector, z, is a set of simultaneous measurements of 
properties of the system which are functions of the state vector, such as the difference 
in navigation solution between an INS under calibration and a reference navigation 
system. This is the information from which all of the state estimates are derived after 
initialization. Associated with the measurement vector is a measurement noise 
covariance matrix, R, which describes the statistics of the noise on the measurements. 
 The measurement model describes how the measurements vary as a function of 
the states. For example, the difference in velocity measurements between an INS and 
a reference system is directly proportional to the INS velocity error. In a linear 
Kalman filter, the measurement model is 
 mwHxz  , (66) 
where H is the measurement matrix and wm is the measurement noise vector. The 
measurement model also enables the Kalman filter to compare the measurement noise 
covariance, R, with the state error covariance, P, to determine the optimal weighting 
of the new measurements. 
 The Kalman filter algorithm uses the measurement vector, measurement 
model, and system model to maintain optimal estimates of the state vector. It consists 
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of two phases, system propagation and measurement update, which together comprise 
up to 10 steps per iteration. These are shown in Figure 19. Steps 14 form the system-
propagation phase and steps 510 the measurement-update phase. Clear introductions 
to Kalman filter-based estimation, suitable for beginners, may be found in [35, 36], 
while more comprehensive coverage is presented in [37, 38], and its application to 
integrated navigation is described in detail in [3, 10, 19]. Here, a relatively simple 
example is presented. 
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Figure 19. Kalman filter algorithm steps. (From [3] © Paul Groves 2013. Reproduced 
with Permission). 
 
B. State Selection 
 Most INS integration and alignment algorithms implement an error-state 
Kalman filter (or derivative thereof), where the states estimated comprise a selection 
of the INS errors, defined in Section IV.E.1. The position and velocity errors are 
always estimated. For all but the highest grades of INS, there is significant benefit in 
estimating the attitude error which, here, is expressed in the small angle form. 
 The choice of inertial instrument errors (Section III) to estimate depends on 
how they affect the position, velocity, and attitude solution. If an IMU error has a 
significant impact on the navigation accuracy, it will be observable. Conversely, if its 
impact is much less than that of the random noise, which cannot be calibrated, it will 
not be observable. In practice, this depends on the user dynamics and the IMU design. 
 The following discussion assumes that position and/or velocity measurements 
are available from an aiding source, but not attitude measurements. The attitude errors 
are therefore observed through the variation in the velocity error they produce. 
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 Except where they are very small, the accelerometer biases should always be 
estimated where the attitude errors are estimated. Conversely, the attitude errors 
should always be estimated where the accelerometer biases are estimated. Otherwise, 
the attitude error estimates are contaminated by the effects of the acceleration errors or 
vice versa. This is because both types of error lead to a linear growth in velocity error 
and quadratic growth in position error (see Section IV.E). 
 As (51) shows, acceleration errors arise where the specific force is 
perpendicular to the rotation axis of the attitude error. Thus, the heading error only 
produces a velocity error when there is acceleration in the horizontal plane. Therefore, 
the navigation system’s host must undergo significant maneuvering for the INS 
heading error to be observed and calibrated. When the navigation system is level and 
not accelerating, the vertical accelerometer bias is the only Kalman filter state that 
causes growth of the vertical velocity error. This makes it the most observable of the 
accelerometer biases, so vertical navigation is normally better than horizontal during 
periods of a few minutes without aiding measurements. The roll and pitch attitude 
errors and horizontal accelerometer biases are observed as linear combinations under 
conditions of constant acceleration and attitude. To fully separate the estimates of 
these states, the host-vehicle must turn, while a period of forward acceleration enables 
separation of the pitch error and forward accelerometer bias.  
 The gyro biases are also estimated in most integration and alignment 
algorithms. These are the only significant error sources that produce a quadratic 
growth in the velocity error with time.  
 Whether it is worth estimating the accelerometer and gyro scale factor and 
cross-coupling errors or the gyro g-dependent biases depends on the size of the errors 
and the behavior of the host vehicle (see Section IV.E.3). These errors have most 
impact in highly dynamic applications, such as motor sports, combat aircraft, and 
some guided weapons. Gyro scale factor and cross-coupling errors can also be 
significant for aircraft performing circling movements and roll-stabilized guided 
weapons. A common mistake is to estimate scale factor errors, but not cross-coupling 
errors as they are usually of a similar magnitude.  For very high-precision 
applications, gravity modeling errors may be estimated. 
 The Kalman filter may also estimate errors exhibited by other components of 
an integrated navigation system, such as GNSS clock errors [3, 19, 36]. However, this 
is outside the scope of this article.  
 For the integration/alignment algorithm described in the following subsections, 
the INS attitude and velocity errors, resolved in north, east and down axes; the 
position error expressed in terms of latitude, longitude, and height; and the 
accelerometer and gyro biases are estimated. The state vector is thus 
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C. System Propagation 
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 The system model is used to propagate forward the Kalman filter state 
estimates and their associated error covariance, from one epoch in time to the next. 
The state estimates are propagated using 
 


  11ˆˆ kkk xΦx , (68) 

where 
kx̂  is the vector of state estimates at epoch k prior to the incorporation of 

measurement information, 
1ˆ kx  is the vector of state estimates at epoch k1 after the 

measurement update, and 1kΦ  is the transition matrix from epoch k1 to epoch k. 
 The transition matrix is derived from the dynamic model, 
 )()()()()( ttttt swGxFx  , (69) 
where F is the system matrix, G is the system noise distribution matrix and ws is the 
system noise vector. A key assumption of this model is thus that the time derivative of 
each state is a linear function of the other states and white Gaussian noise sources. For 
integration and alignment of most inertial navigation systems, these assumptions are 
approximately correct. For short time intervals, the transition matrix may be 
approximated to [3, 3538] 
 skk 11   FIΦ . (70) 
where s is the time interval between successive epochs. 
 For INS integration and alignment, much of the system model for the state 
vector defined in (67) is intuitive. The rate of change of the attitude error is dominated 
by the gyro bias, the rate of change of the velocity error is dominated by the 
accelerometer bias and the rate of change of the position error is dominated by the 
velocity error. However, additional dependencies must be modeled due to the rotation 
of the north, east, and down axes with respect to the Earth as the system moves; the 
rotation of the Earth with respect to inertial space; and the variation of gravity with 
height. The derivation of the system model is fully described in [3, 19]. Here, only the 
result is presented. The system matrix is  
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 In each case, the caret, ‘^’ denotes the navigation solution corrected using the 
most recent Kalman filter state estimates, 

1ˆ kx , as described in Section VI.E. Note that 
RE is given by (29), RN by (39), and g0 by (43). 
 Moving from continuous to discrete time, from (70), the transition matrix may 
be approximated to 
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which is typically acceptable for propagation intervals of 0.2s or less. 
 At the same time as the state estimates are propagated forward in time using 
(68), the associated error covariance matrix is propagated using 
 1

T
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


  kkkkk QΦPΦP , (82) 
where 

kP  is the state error covariance matrix at epoch k prior to the incorporation of 
measurement information, 

1kP  is the error covariance matrix at epoch k1 after the 
measurement update, and Qk1 is the system noise covariance matrix, which defines 
how the uncertainties of the state estimates increase with time, in this case, due to 
inertial sensor noise and bias variation. 
 For short propagation intervals (s  0.2 s), a suitable system noise covariance 
matrix is  
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where Srg, Sra, Sbad, and Sbgd are the power spectral densities of, respectively, the gyro 
random noise, accelerometer random noise, accelerometer bias variation, and gyro 
bias variation, and it is assumed that all gyros and all accelerometers have equal noise 
characteristics. Values may be obtained from the inertial sensor manufacturer’s 
specifications or from laboratory tests. However, in practice, some trial and error is 
often needed to determine the best values, particularly as the system noise covariance 
must also account for the effects of unestimated systematic errors, such as the scale 
factor and cross-coupling errors. 
 
D. Measurement Update 
 The measurement update phase of the Kalman filter updates the state estimates 
using information from the measurements. For the INS integration/alignment example 
presented here, the measurements comprise position and velocity from an aiding 
system, such as GNSS. This position-domain integration is sometimes referred to as a 
loosely-coupled architecture and may also incorporate attitude measurements, where 
available. In the alternative tightly-coupled architecture, ranging, displacement, 
bearing and elevation, and/or line fix measurements are used [3, 19]. Tightly-coupled 
integration offers more flexibility and normally leads to a more accurate and robust 
navigation solution. However, it can only be implemented where the aiding system 
outputs the necessary information. 
 The measurement innovation, z, comprises the difference between the true 
measurement vector, z, and that estimated from the state vector prior to the 
measurement update. Thus, for the example presented here, the measurement 
innovation is the difference between the position and velocity from the aiding system 
and the corrected INS position and velocity solution: 
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where k is the current epoch;  Tˆˆˆˆ aaaa hL p  and  Tˆˆˆˆ bbbb hL p  are, 
respectively, the aiding system and INS curvilinear position solutions; n

eav̂  and n
ebv̂  

are, respectively, the aiding system and INS velocity solutions; n
bĈ  is the INS attitude 

solution; b
ibω̂  is the INS angular rate; b

bal  is the lever arm from the INS to the aiding 

sensor; n
ieΩ̂  is obtained from (37) using the INS latitude solution; p

nr )(T̂ , given by 
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is used to convert position perturbations from Cartesian to curvilinear; and Sp is the 
curvilinear position scaling matrix, given by 
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where a suitable value for sL is 103. This prevents numerical problems. 
 The Kalman filter measurement update is then performed in three steps: 
   1TT   kkkkkkk RHPHHPK , (87) 
   kkkk zKxx ˆˆ , (88) 
     kkkk PΗKIP , (89) 
where Kk is the Kalman gain matrix, ( )1 denotes matrix inversion, and the 
measurement matrix can normally be approximated to 
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as the coupling of the attitude errors and gyro biases into the measurements through 
the lever arm is normally weak. 
 The diagonal components of the measurement noise covariance matrix, Rk, are 
the variances of the noise on each component of the position and velocity solution 
from the aiding system, such as GNSS. Where known, any correlation between the 
different components should be modeled using the off-diagonal elements of Rk. 
Furthermore, where this measurement noise is correlated over time, it is necessary to 
increase Rk accordingly, multiplying it by the ratio of the correlation time to the 
update interval. In practice, some trial and error is needed to determine the best 
values. 
 
E. Navigation Solution Correction 
 The final step in each cycle of an integration or alignment algorithm is to 
correct the position, velocity, and attitude solution using 
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where the suffixes () and (+) denote before and after the correction, respectively, and 
the small angle approximation is assumed to be applicable to the attitude error. 
Following these corrections, the attitude error, velocity error, and position error states 
of the Kalman filter are zeroed as the information they contain has been transferred to 
the navigation solution. However, the error covariance matrix, P, remains unchanged, 
because the error in the state estimates has not changed. 
 The accelerometer and gyro biases estimated by the Kalman filter are also fed 
back to correct the IMU measurements as they are input to the inertial navigation 
equations. These corrections are in addition to any that may be applied by the IMU’s 
processor. These accelerometer and gyro corrections must be applied on every 
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iteration of the navigation equations, with feedback from the Kalman filter 
periodically updating them. Consequently, the accelerometer and gyro bias estimates 
are commonly stored in the navigation processor with the Kalman filter estimating the 
residual errors and feeding back perturbations to the biases stored by the navigation 
processor. The Kalman filter bias estimates are zeroed each time they are used to 
estimate the navigation processor’s bias estimates. 
 
VII. ZERO UPDATES AND MOTION CONSTRAINTS 
 
 Zero updates and motion constraints, also known as nonholonomic constraints, 
use information about the host vehicle (or user) motion to correct the inertial 
navigation solution and calibrate the sensor errors. They may be processed as Kalman 
filter measurements in the same way as aiding sensor measurements in an integrated 
navigation system (Section VI) and may share the same Kalman filter. They are 
particularly useful where GNSS reception is poor. The zero velocity update (ZVU or 
ZUPT), zero angular rate update (ZARU), land vehicle motion constraints, and 
pedestrian motion constraints are described in turn. 
 
A. Zero Velocity Updates 
 Zero velocity updates are useful for any application where the host vehicle or 
user is often stationary during navigation, such as land vehicle navigation [39] 
(without odometry, which provides velocity continuously). For pedestrian navigation 
with a shoe-mounted IMU, a ZVU may be performed on every step. When combined 
with a method for reducing heading drift, this enables relatively accurate inertial 
navigation to be performed with very-low-cost consumer-grade inertial sensors [40–
42]. Other applications of ZVUs include robotics, helicopter navigation (during 
touchdowns), and inertial surveying. 
 The measurement innovation for a ZVU is simply 
 n

kebk ,v̂z    (94) 
and the measurement matrix, assuming the state vector defined by (67), is 
  33333 000I0H k  . (95) 
 Although ZVUs do not provide absolute position information, the Kalman 
filter models the correlation between the velocity and position errors in the off-
diagonal elements of the error covariance matrix, P. This enables a ZVU to correct 
most of the position drift since the last measurement update, ZVU or otherwise [28].  
 Measurement noise arises due to vibration and disturbances. Vehicles may be 
disturbed by wind gusts, other vehicles passing, people moving around inside, 
loading, and unloading. Similarly, a nominally-stationary pedestrian may be moving 
on the spot. The amount of residual motion during a ZVU will depend on what the 
stationary-condition detection algorithm allows, so there should be a relationship 
between the assumed measurement noise covariance and the detection threshold. 
 For extended stationary periods, e.g. during initialization of an aircraft 
navigation system, zero position displacement measurements can give better 
performance. The measurement innovation is 
  )(ˆ)(ˆ 0 tt bbpk ppSz  ,  (96) 
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where t0 is the time when the system first became stationary or the initialization time, 
as appropriate, and Sp is given by (86). The measurement matrix is 
  3333 00S00H pk   . (97) 
 ZVUs must only be performed when the navigation system is stationary. For 
surveying applications, stationarity is typically indicated by the operator. However, 
for navigation, automated detection is needed. Pedestrians may be assumed to be 
stationary if the magnitude of the accelerometer measurements is close to the 
acceleration due to gravity for about 0.5s for body-mounted sensors and 0.2s for foot-
mounted sensors [28, 42]. This is because most parts of the body are constantly 
accelerating and decelerating during walking and running. The horizontal velocity 
solution is typically used to determine when a land vehicle is stationary, with 
accelerometer or gyro measurements used for confirmation [39, 43].  
 
B. Zero Angular Rate Update 
 A zero angular rate update is useful for low-performance gyros with errors at 
least as large as the angular disturbances to a stationary vehicle or person. ZARUs and 
ZVUs are sometimes performed separately and sometimes performed together. For 
land vehicle applications, zero angular rate may be assumed whenever the vehicle is 
stationary. For pedestrian applications, ZARUs should be approached with caution 
because the residual angular motion of a stationary person’s body can be much larger 
than the gyro errors, while a foot can rotate during the stance phase of walking. An 
additional test is therefore needed to determine whether a ZARU should be performed. 
 The measurement innovation for a full-IMU ZARU is 
 b

kibk ,ω̂z   . (98) 
 Assuming the state vector defined by (67), the measurement matrix is simply 
  33333 I0000H k . (99) 
 The measurement noise covariance represents the variance of the nominally-
zero angular rate due to vibration and disturbances. For a stationary land vehicle, there 
will be less disturbance about the yaw axis than about the roll and pitch axes. 
 
C. Land Vehicle Motion Constraints 
 Normal land vehicle motion is subject to two constraints. The velocity of the 
vehicle is zero along the rotation axis of any of its wheels and is also zero in the 
direction perpendicular to the road or rail surface [44, 45]. The acceleration is not 
necessarily zero. This vehicle velocity constraint can be applied as a Kalman filter 
measurement update with measurement innovation 
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where b
rbl  is the lever arm from the center of the rear axle to the origin of the IMU 

body frame, resolved along the IMU axes, which are assumed here to be aligned with 
the forward, right and down directions of the vehicle body. Assuming the state vector 
defined by (67) and neglecting the coupling of the attitude errors and gyro biases into 
the measurements through the lever arm, the measurement matrix may be 
approximated to 
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 This is equivalent to a ZVU applied along only two axes. However, the 
motion-constraint measurements may be applied continuously. If the IMU is not 
aligned with the vehicle body, the relative orientation may be estimated by the 
Kalman filter, as may the lever arm [46, 47]. 
 The measurement noise covariance must account for the differences between 
the true and assumed vehicle motion. Causes include sideslip of the wheels, the 
vehicle’s suspension system, and engine vibration [44]. The time correlation of these 
effects may be significant where the measurement update rate is high. 
 Sideslip can invalidate the transverse velocity constraint when the vehicle turn 
rate exceeds about 0.05 rad s1. Better performance is therefore obtained if the 
transverse measurements are omitted whenever the yaw rate exceeds a pre-defined 
threshold [48]. 
 
D. Pedestrian Motion Constraints 
 In man-made environments, pedestrians tend to walk in approximately straight 
lines, particularly where walls and roads are in the way. Therefore, the drift in an 
inertial navigation solution can be constrained by assuming that a person’s heading is 
constant whenever the change in the INS heading solution over a certain interval is 
below a certain threshold [49]. Indoors, the floor is usually flat, so a constant-height 
constraint may be assumed unless steps, an escalator, an elevator, or a ramp are 
detected [50]. 
 
VIII. PEDESTRIAN DEAD RECKONING USING STEP DETECTION 
 
 Pedestrian navigation is highly challenging. It must work in urban areas, under 
tree cover, and indoors, where coverage of GNSS and many other radio navigation 
systems is poor. Inertial sensors can be used to measure motion. However, for 
pedestrian use, they must be small, light, consume minimal power, and, for most 
applications, be low-cost, requiring MEMS sensors to be used. However, these 
provide very poor inertial navigation performance stand alone, while the combination 
of low dynamics and high vibration makes them difficult to calibrate using other 
positioning systems. One option is to use a shoe-mounted IMU with conventional 
inertial navigation (Section IV) aided by zero velocity updates (Section VII.A) every 
step. However, this is impractical for many applications. 
 This section describes pedestrian dead reckoning (PDR) using step detection, 
whereby the inertial sensors are used for detecting steps. Note that a step is the 
movement of one foot with the other remaining stationary, while a stride is the 
successive movement of both feet. This gives significantly better performance than 
conventional inertial navigation for sensors mounted on the user’s body or in a 
handheld device, even with tactical-grade sensors [28]. 
 As shown in Figure 20, a PDR algorithm comprises three phases: step 
detection, step length estimation, and navigation-solution update. The step-detection 
phase identifies that a step has taken place. For body-mounted or device-mounted 
sensors, the vertical or root sum of squares (RSS) accelerometer signals exhibit a 
double-peaked oscillatory pattern. Steps can be detected from the peaks [51] or the 
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points where the specific force rises above or drops below the acceleration due to 
gravity [52], with a recognition window used to limit false detections. 
 

 
Figure 20. Pedestrian dead reckoning processing. (From [3] © Paul Groves 2013. 
Reproduced with Permission). 
 
 The step length varies depending on the individual, the slope and texture of the 
terrain, whether there are obstacles to be negotiated, whether an individual is tired, 
whether they are carrying things, and whether they are walking alone or with others. 
Thus, PDR implementations that assume a fixed step length for each user are only 
accurate to about 10 percent of distance traveled [53]. However, the step length may 
be modeled as a function of parameters such as the step frequency, the variance of the 
accelerometer measurements, the slope of the terrain, and the vertical velocity. One 
model is [42]: 
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where rP is the PDR-estimated step length, P is the interval between successive 
steps, 2

f  is the variance of the specific force measurements, nb̂ , is the estimated 
angle of the slope, and cP0, cP1, cP2, and cP3 are the model coefficients. Using this 
approach, an accuracy of about 3 percent of distance traveled may be obtained [54, 
55]. The model coefficients for each user may be estimated using measurements from 
GNSS or another positioning system. 
 How inertial sensors respond to pedestrian motion depends on their location. 
Thus, an algorithm optimized for waist-mounted sensors may not give the best results 
for sensors located in a pocket, in a backpack, or in a device held by the user. 
Similarly, step-length model coefficients optimized for walking will not give good 
results for running, turning and climbing stairs or steps. A robust implementation of 
PDR should thus incorporate a real-time classification system that detects both the 
motion type and sensor location and tunes both the step-detection and step-length-
estimation algorithms accordingly [56, 57].  
 
IX. FAULT DETECTION 
 
 There are a number of ways in which an inertial navigation system can fail. 
Faults can arise in individual inertial sensors. All inertial sensors can exhibit large 
errors when the vibration levels are much higher than the system is designed for or 
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there is a mounting failure. The whole IMU or INS may also exhibit a power failure, 
software failure, or communications failure, which can sometimes be fixed by 
performing a reset.  
 To avoid producing a false navigation solution, fault detection is required. The 
simplest approach is range checks, which may be applied to both the sensor 
measurements and the navigation solution. Faulty sensors may output measurements 
outside the operational range specified by the manufacturer or the operating range of 
the sensor environment. A faulty sensor can also produce a succession of repeated 
measurements, null measurements or no measurements at all. 
 A fault may also be indicated by a navigation solution outside the operational 
envelope of the application. Every vehicle has a maximum speed, a land vehicle or 
ship should always be close to the Earth’s surface, and every aircraft has a maximum 
altitude above which it cannot fly. 
 Where a Kalman filter is used to align and calibrate the INS and/or integrate it 
with other sensors, as described in Section VI, it may also be used for fault detection. 
The accelerometer and gyro biases are normally estimated as states. Therefore, if a 
bias estimate is several times the standard deviation specified by the manufacturer, 
there is likely to be a fault with the sensor. Outlying state estimates can also arise due 
to a lack of measurements or observability problems. However, in these cases, the 
state uncertainties will also be large. 
 The Kalman filter measurement innovations, 

kz , provide an indication of 
whether the measurements and state estimates are consistent with each other. 
Therefore, by comparing the current innovations with their expected uncertainties and 
computing statistics over several epochs, errors in both the INS and the aiding sensors 
may be detected [3]. 
 Where a standard IMU with three accelerometers and three gyros is used, the 
whole inertial navigation solution must normally be discarded if a fault is found in one 
of the sensors. However, if additional sensors are included, a navigation solution may 
be maintained. These systems are known as redundant IMUs [58, 59]. The sensors are 
normally mounted in a skewed configuration so that all six degrees of freedom can be 
observed using any three accelerometers and any three gyros. Where external 
information is available for fault detection, recovery from faults is achievable using 
four accelerometers and four gyros. 
 The outputs of four skewed accelerometers or gyros may be compared with 
each other to determine if they are in agreement. This is known as consistency 
checking [3] and can detect a fault without external information. However, it cannot 
identify the faulty sensor. This requires five accelerometers and gyros, enabling 
different combinations of four sensors to be tested for consistency. If a fault is 
detected immediately, the inertial navigation solution may be protected simply by 
excluding further measurements from the faulty sensor. However, to protect against 
slow-onset faults, parallel inertial navigation solutions computed from different sensor 
combinations must be maintained.   
 
X. CONCLUDING REMARKS 
 
 Inertial sensors have been used in navigation for many decades. However, the 
field is still evolving. The development of small, light, low-cost sensors has greatly 
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expanded the number of applications. At the same time, advances such as GNSS 
integration, step detection, and context-specific motion constraints has enabled better 
navigation performance to be extracted from lower quality sensors. Looking to the 
future, developments in accelerometer and gyro technology are likely to offer higher 
performance at lower cost. At the same time, new navigation and positioning 
techniques are being developed for use alongside inertial sensors in integrated systems 
[60]. 
 Further details on all of the topics covered in this tutorial may be found in [3] 
and the references therein, some of which are listed below.  
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