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ABSTRACT   

 We investigated the reaction mechanism of the desorption of single hydrogen from a 

titanium dioxide surface excited by the tip of a scanning tunneling microscope (STM). 

Analysis of the desorption yield, in combination with theoretical calculations, indicates the 

crucial role played by the applied electric field. Instead of facilitating desorption by reducing 

the barrier height, the applied electric field causes a reduction in the barrier width, which, 

when coupled with the electron excitation induced by the STM tip, leads to the tunneling 

desorption of the hydrogen. A significant reduction in the desorption yield was observed 

when deuterium was used instead of hydrogen, providing further support for the tunneling-

desorption mechanism. 
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 Electric conductivity, photo physical properties, magnetic properties and catalytic 

activity can be produced by introduction of defects onto inert materials.1-8 Clarifying the 

fundamental properties of such defects is therefore of extraordinary interest in developing 

new materials. Typical defects on titanium dioxide (TiO2) include hydrogen (H) adatoms, 

oxygen vacancies (Ovac) and Ti interstitials, each of which confer new properties absent in the 

perfect material. TiO2 is a transition metal oxide showing a number of characteristic functions 

that can be exploited in processes such as heterogeneous catalysis, photocatalysis, sensing, 

and light-induced switching, amongst others.1-10 

Defects have been created at TiO2 surfaces by thermal annealing11 as well as by 

photo- and electron-stimulated desorption (PSD and ESD).1, 12, 13 The principles of these 

methods are based on thermal reaction to produce O2 in the former case and inter-ionic Auger 

decay processes in the latter two examples.1, 11-13 While these methods have been successfully 

used to introduce defects on the TiO2 surface, precise control of the defect arrangement is not 

possible. The control of the defect arrangement on TiO2 has been reported by applying 

specific voltages with a scanning tunneling microscope (STM). For example, Suzuki et al. 

found that hydrogen atoms on TiO2 can be removed by scanning at a raised bias14 and we 

have recently reported the introduction of an individual Ovac by applying a single voltage 

pulse.15 While manipulation of defects by STM methods allows for ideal spatial control of the 

defect, the mechanisms are still unclear.  

In the manipulation of atoms/molecules by STM, the mechanisms can be categorized 

into electron excitation and non-electron excitation processes. In electron excitation reactions, 

tunneling electrons excite electronic states that are related to chemical bonds [1, electronic 

state excitation]16 or vibrational states (including translational, rotational and conformational 

change states) to overcome reaction barriers by exciting reaction coordinate modes [2, 

vibrational state excitation]17-19. Also, heating by electrons causes reaction in electron 
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excitation [3, manipulation by local heating].20 In non-electron excitation reactions, direct 

interaction between the STM tip and atoms/molecules by means of van der Waals/chemical 

forces [4, direct manipulation]21 or electric field to reduce the height of the reaction barrier 

[5, electric field excitation]22-24 have been utilized to manipulate atoms/molecules. Here, we 

provide insight into such reaction mechanisms for manipulation of defects on TiO2 by using 

action spectroscopy measured by STM (STM-AS), whereby the response of a molecule is 

recorded as a function of applied bias voltage.16-19 H desorption on TiO2 was chosen as a 

model system because it is the simplest reaction. We found that H desorption induced by the 

STM is a tunneling reaction facilitated by the reduction of the barrier width by the applied 

electric field together with excitation by the tunneling electrons. Although tunneling reactions 

of atoms/molecules induced by STM tips are reported25, 26, this reaction mechanism whereby 

the barrier width is reduced by the applied electric field has not been observed previously. 

Apart from being an important reaction mechanism in other H/TiO2 systems, such reaction 

mechanisms are also likely to be important in other atomic scale reactions as well. 

 

Results and Discussion 

Fig. 1a shows a typical STM image of H on TiO2(110) obtained with sample bias (Vs) 

= +1.5 V. The bright rows and the spot at the center of the image are the Ti ions and H on 

bridging oxygen (Ob), respectively.1-8, 14, 15 After applying a Vs = +1.7 V pulse to the H for 1 

sec., the spot corresponding to H disappeared due to desorption of H (Figure 1b). In contrast, 

no change occurred when voltage pulses were applied with negative sample bias (up to Vs = -

5.0 V). These observations are in line with previous reports.1-8, 14, 15, 27, 29   

In order to investigate the reaction mechanism for H desorption, STM-AS was 

measured. When the tip was fixed at Vs = +1.0 V and It = 0.02 nA (with no additional tip 

displacement (TD = 0 nm)), the obtained spectrum showed two clear threshold energies at Vs 
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= +1.4 and +1.7 V (blue, filled squares and curve in Figure 2a). Displacing the tip closer to 

the TiO2 surface leads to a shift of the thresholds towards lower energy. For example, when 

the tip was moved towards the surface (TD = -0.04 nm), the threshold energies were shifted 

to Vs = +1.3 and +1.6 V (green, filled triangles and curve in Figure 2a) and with further 

displacement of the tip to -0.10 nm, the threshold energies were also further shifted to Vs = 

+1.2 and +1.5 V (purple, filled circles and curve in Figure 2a). Further shifts of the threshold 

energies were not observed for displacements of -0.14 and -0.20 nm (orange, filled squares 

and black, filled triangles in Figure 2a). In contrast, displacement of the tip away from the 

surface to +0.1 nm led to a shift of the threshold energy originally at Vs = +1.7 V to Vs = +2.0 

V (red, filled circles and curve).30 Figure 2b summarizes the threshold energy shifts as a 

function of tip displacement. Clearly, the shift of the threshold energies depends on the tip 

displacement (TD between +0.1 and -0.1 nm) with saturation of the shift in the closer region 

(TD less than -0.1 nm).  

Based on our STM-AS results, we consider possible mechanisms for the voltage 

pulse-induced desorption of H: [1] electronic state excitation of reaction coordinate modes16, 

[2] multiple vibrational state excitation for overcoming the reaction barrier17-19, 25, 26, [3] 

thermal reaction caused by local heating20, [4] direct manipulation by means of van der 

Waals/chemical forces21 and [5] electric field excitation for reduction of the reaction 

barrier.22-24 To assess the possibility of electronic state excitation of anti-bonding states, dI/dV 

measurements were performed on H/TiO2(110) as a function of TD. No electronic states were 

observed in dI/dV curves that correspond with the threshold energies observed in STM-AS 

(Figure S1). Also, the shift of the threshold energies (≈ 3.0 V/nm in -0.1 ~ +0.1 nm of TD) in 

STM-AS did not match with the shift in dI/dV spectra (≈ 6.0 V/nm) that is caused by tip 

induced band bending (TIBB) (Figure S1). This implies that the reaction cannot be caused by 

electronic state excitation. Next, we consider the possibility of multiple vibrational excitation 
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to overcome the reaction barrier. From density functional theory (DFT) calculations, the 

energy barrier of H desorption was obtained as 3.7 eV (open circles in Figure 3). To 

overcome the reaction barrier by vibrational state excitation, multiple excitation is necessary 

(for example, the vibrational energy of stretching mode of OH on TiO2(110) is 0.457 eV 

(3690 cm-1)31). However, the tunneling current dependence of the reaction yield indicates a 

one-electron process (Figure S2). Therefore, this reaction cannot be explained by multiple 

vibrational state excitation.32 In addition, the possibility of local heating and direct 

manipulation by means of van der Waals/chemical forces can be eliminated because the 

thermal energy is not changed by tip position and the van der Waals/chemical forces are not 

dependent on the applied electric field. Finally, the possibility of electric field excitation was 

considered. We estimated the electric field generated in our experimental condition by 

carrying out simulations using a tip-sample distance of 0.4 nm at Vs = +1.0 V35, with the 

SEMTIP program developed by Feenstra.36 The electric field for the threshold energies of the 

shifted region (-0.1 < TD < +0.1 nm) was estimated to be 3.25 – 4.00 V/nm. However, the 

reaction barrier obtained by the DFT calculation under the electric field (3.6 eV at 4.5 V/nm; 

black, filled circles in Figure 3) is not lower than the thermal activation energy estimated 

from the Arrhenius equation using the experimental condition (0.15 - 0.19 eV at 78 K 

assuming that reaction rates and frequency factor are 1 – 100 s-1 and 1×1012 s-1, 

respectively37). We conclude therefore that the reaction cannot be caused by electric field 

excitation. Based on the above discussion, we conclude that the reaction cannot be caused by 

any one of these excitation processes.  

Then, how does this reaction proceed? From the calculated potential curve under an 

electric field, it was found that while the height of the reaction barrier does not change 

significantly, either side of the maximum point (i.e. the points indicated by red arrows in 

Figure 3) decreases as a result of the applied field. The energy gain in the potential curve is 
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caused by ionization of the desorbed H and variability of the valence state and bond distance 

of Ti and O in the applied electric field (supporting information 4). This means the barrier 

width is reduced by the electric field and this may open up a tunneling channel for the 

desorption of H. In addition to this, the tunneling electrons injected by the STM tip also 

excite the adsorbed hydrogen into electronic or vibrational states part way up the energy 

barrier at which point the barrier width is narrower, thereby further increasing the tunneling 

probability. From the calculation of potential curves with and without applied electric field, 

therefore it is suggested that STM tip-induced H desorption is caused by a H tunneling 

reaction (for the effects of the tip on the reaction barrier, see supporting information 5). 

To test this tunneling desorption mechanism further, we used STM-AS to measure 

any isotope effect on the reaction yield. STM-AS of D desorption from TiO2(110) showed a 

significant decrease (≈ 10-4) in the reaction yield at Vs = +1.8 V (black, filled square and 

curve in Figure 4a) compared with H desorption (blue, filled square and curve in Figure 4a). 

A theoretical model was used to quantitatively explain the isotopic shift of the tunneling 

desorption. H on the Ob of TiO2 is positively charged, the hydrogen being attached to the O 

site through a bond with some ionic character.37, 38 The hydrogen feels an electric potential –

αeEx from the STM tip when the sample voltage is positive, where α is a constant showing 

the valency of hydrogen, e is the elementary charge, E is the electric field, x is the position of 

the hydrogen. We modeled the system as an energy-potential well represented by the 

potential curve shown in Figure S4. We assume that the hydrogen receives energy, ε, from 

the tunneling electrons flowing from the STM tip to the sample. Using the Wentzel–

Kramers–Brillouin (WKB) approximation39, the tunneling probability for the hydrogen 

desorption denoted by T is expressed by 

𝑇 = exp −
8π 2𝑚
3ℎ𝑒𝐸

(𝑉! − ε)
!
!   ,      (𝑒𝑞. 1) 
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where h is the Planck constant, m is the mass of hydrogen, V0 is the reaction barrier (for 

detail, see supporting information 6). Equation 1 gives the dependence of T on m, so that with 

the mass of D being twice that of H, the multiplier factor of the exponential will increase by 

2 given that the isotopic element does not change electronic properties such as V0. Figure 4a 

shows the H desorption yield spectrum together with the same spectrum re-plotted with the 

electric field multiplied by 2. The re-plotted spectrum (blue, open squares and curve in 

Figure 4a) appears to reproduce that obtained for D desorption (black, filled squares and 

curve in Figure 4a), thus confirming that STM tip-induced H desorption on TiO2(110) is 

indeed due to the proposed tunneling reaction which results from the narrowing of the barrier 

width by the electric field together with excitation by the tunneling electron (Figure 4b). 

Previously, Acharya et al. reported a vibrational excitation mechanism for H 

desorption on TiO2(110) based on their STM-AS measurements.40 They observed (A) no 

threshold energy, (B) no isotope effects on the reaction yield, (C) no tip position dependence 

of the reaction yield and (D) a reaction order ≈ 1.7, which we did not observe in our 

experiments. (A) might be caused by different energy resolutions between the different 

experiments (current detection circuit, vibration and scanner noise etc.) whereas (B)-(D) are 

probably caused by different tip positions in our experiments. The STM-AS experiments in 

ref. 40 were measured with Vs = +1.7 V and It = 0.5 – 5 nA. In our experiments, the tunneling 

reaction was observed with Vs = +1.0 V and It = 0.001 – 0.5 nA (TD = +0.1 – -0.1 nm). Thus 

in the earlier work40, a much closer tip-sample distance was used and in that regime, H 

desorption is caused by vibrational state excitation leading to observations (B)-(D) in ref. 40. 

We note that when we displace the tip towards the sample by more than -0.1 nm (TD = -0.1 – 

-0.2 nm, Figure 2), we also did not observe any further shift of STM-AS.  

The saturation of the shift as the tip approaches closer to the surface and the origin of 

the two threshold energies in STM-AS (Figure 2) are not completely understood so far. The 
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former is probably related to the formation of a chemical bond of the tip with H on TiO2(110) 

and the latter probably related to the electric field that narrows the width of the desorption 

barrier (see supporting information 7). 

 

Conclusion 

 We have investigated the reaction mechanism of the desorption of a single hydrogen 

on the surface of TiO2(110) by STM-AS and DFT calculation under an electronic field. Our 

results clearly shows the new reaction mechanism of defect control on TiO2(110)  by a 

narrowing of the desorption barrier due to the electric field, together with electron excitation. 

Understanding the role of the tunneling reactions of H may be important for the application 

of TiO2 and related materials in electronic devices.1-8, 41-43  

 

 

Methods 

The experiments were performed with a low temperature STM (Omicron GmbH) 

housed in an ultrahigh vacuum chamber (base pressure: 4×10-9 Pa). The TiO2(110) samples 

(Shinkosha, Co. Ltd.) were cleaned by cycles of Ar+ sputtering (1 keV, 10 µA for 10 min) 

and annealing (900 K for 10 min). The density of Ovac on pristine TiO2(110) was 9%. After 

cleaning, a small amount (1×10-8 Pa for 3 sec) of H2O (or D2O) was dosed in the chamber to 

form H (or D) on the surface. All STM results were obtained at 78 K with electrochemically 

etched tungsten tips.  

To analyze the reaction mechanism, we used DFT calculations of the charged surface 

under an electric field. The DFT calculations were performed using the Tokyo ab-initio 

program package (TAPP).44 We employed the Perdew-Burke-Ernzefhof (PBE) functional as 

the exchange correlation term45, ultrasoft pseudopotentials46 and a plane wave basis set. In 
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order to examine the effect of an electric field, the field-induced charge-sheets method was 

implemented in the DFT calculations.47 In this method, electrons are subtracted from the slab 

to realize the positively-charged surfaces, and negatively-charged counter sheets are inserted 

in the vacuum regions to maintain overall charge neutrality. The TiO2(110) surface is 

modeled by a repeated (1×2) slab made of five TiO2 trilayers. Single H adsorbs on the surface 

O site of the slab.  
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 Figure. 1. STM images of TiO2(110) (a) before and (b) after H desorption (2.7 nm×3.0 nm, 

Vs = +1.5 V, It = 0.3 nA). (c) and (d) are schematic images of H desorption on TiO2(110).  
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Figure. 2.  (a) STM-AS of H desorption on TiO2(110). The spectrum with blue, filled squares 

is obtained with start parameters, Vs = +1.0 V, It = 0.02 nA, and with no tip displacement (i.e. 

TD = 0 nm). All other spectra have the same start parameters but with different TD. Red, 

filled circles: TD = +0.1 nm; green, filled triangles: TD = -0.04 nm; orange, filled circles: TD 

= -0.10 nm; purple, filled squares: TD = -0.14 nm, black, filled triangles: TD = -0.20 nm. (b) 

Threshold energy observed in STM-AS depending on TD. 
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Figure. 3. Potential energy of H as a function of the displacement from the surface of 

TiO2(110) under an electric field as calculated using DFT. Open circles: 0.0 V/nm; filled 

circles: 4.5 V/nm. 
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Figure. 4. (a) STM-AS measurements of the desorption of atomic H (blue filled squares) and 

atomic D (black filled squares) from TiO2(110). The STM-AS results for H are also re-

plotted with the applied electric field multiplied by 2 (blue open squares). The initial tip 

position was Vs = +1.0 V, It = 0.02 nA. (b) Schematic energy diagram for H desorption on 

TiO2(110). 
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