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Abstract

This thesis sets out to analyse and define an instrument capable of advancing the field

of exoplanet research. This exciting and nascent field of astrophysics is moving beyond

simple population counts and into more detailed characterisation of exoplanet parameters.

To this end high resolution and high contrast missions are required to achieve this. In this

thesis three designs were investigated, two pupil masked telescopes and an interferometric

system.

The First masked design was an axially symmetric system using a petal mask. This

design was intended to reduce the diffraction wings resulting from a circular aperture by

apodising the pupil. After analysis in software it was found to be insufficient in reducing

the airy rings to an acceptable level by a factor of 105 and a new design was sought.

Secondly a non axially symmetric mask was tried based on the spergel mask design.

This displaced the light from an on axis source away from two detection zones allowing

a faint off axis companion to be registered at much higher contrast. Again however the

resulting contrast was insufficient to meet science goals.

The third design used was an interferometer based on the Intensity Interferometer

model of Hanbury Brown and Twiss. The resolution, < 0.5mas, and time taken per

observation, < 3600s for a signal to noise of 5, of a moderately sized system was found to

be within reach. An attempt was made to verify this on in the laboratory.

A space based mission profile that outlines this system is included. This mission uses

a sparse aperture architecture of between 3 and 10 free flying satellites.
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Chapter 1

An introduction

As in all academic fields astrophysicists have consistently sought better instruments with

which to measure the universe. The field of astrophysics faces two particular challenges;

that the items of interest are typically both very faint and very small, at least in the case

that we remain Earth bound observers.

Despite attention being aimed at situations of violence and energy unfathomable on a

terrestrial scale, the resultant influence detectable from Earth is very weak. Matched with

this problem, and also an explanation of it, are the tremendous distances involved so that

talk of physical distances is rendered truly academic. In its place we consider angular size

far more often, and still most objects we consider as unresolved point sources.

1.1 Current technology

For those of us interested in the universe at far-infrared wavelengths1 the problems are

exacerbated by the condition that resolving power decreases with inreasing wavelength,

summarised in the Rayleigh criterion as

Θ ≈ λ

d
. (1.1)

1In this thesis the definition of infrared sub bands will be loosely taken as 0.8 to 5µm - near infrared,
5 to 20µm - mid infrared and 20 to 300µm - far infrared.

15



1.1. Current technology 16

Figure 1.1: Atmospheric transmittance as a function of wavelength show-
ing the windows in near and mid infrared and the cutoff around 40µm.
Credit:http:/ewhdbks.mugu.navy.mil/transmit.gif

Hence we either suffer a reduced resolution relative those working at shorter wavelengths

or we seek new ways to enlarge our apertures. Additionally Earth’s atmosphere has a

complex transmittance profile as a function of wavelength with some windows in the near

and mid infrared but little to none at wavelengths larger than around 40µm as can be seen

in figure 1.1. Several of the molecules that make up the Earth’s atmosphere are listed for

interest and the absence of these molecules in space are what has driven the production of

several infrared satellites. IRAS(Neugebauer et al. 1984), IRTS(Murakami et al. 1996) and

ISO(Kessler et al. 1996) paved the way for Spitzer(Werner et al. 2004) and the recently

retired Herschel(Pilbratt et al. 2010). The resolution of Herschel with an equivalent 3.28m

aperture was around 20 to 100 arcseconds depending on instrument.

In comparison to optical observers for the same size aperture we have the ratio

ΘFIR

ΘOpt
=

300µm

0.5µm

so that ΘFIR ≈ 600ΘOptical and therefore for the same angular resolution we would have

to increase our aperture to the kilometre scale relative to the largest optical telescopes in

operation. In comparison with radio astronomers we find the ratio closer to

ΘRad

ΘOpt
=

300µm

102m

and so ΘRadio ≈ 106ΘFIR. However radio techniques allow for baselines that stretch across
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the Earth and therefore they can match the resolving power of a 10 metre FIR instrument

with arrays such as the Very Long Baseline Array2 with baselines in the realm of 103km.

So it is these two primary challenges that astronomical instrumentation scientists must

combat to push forward the boundaries of the science of astrophysics. Luckily there is a

straightforward answer to both lack of flux, the sensitivity problem and tiny angular size,

the resolution problem: make it bigger. A larger telescope aperture gathers both more

light and more angular information, hence we see a progression of ever larger telescopes

from mere centimetres to today’s ten metres and the near future of 30 and 40 metre

mirrors.

Putting numbers to these challenges gives us a feeling of the challenges ahead, accessible

angular resolution with today’s facilities are in the micro-arcsecond regime. GRAVITY(Gillessen

et al. 2010) to be installed on the Very Large Telescope Interferometer (VLTI)(Glindemann

et al. 2003) at the European Southern Observatory will have an astrometric precision of

around 10 micro-arcseconds. This is enough for the accurate determination of the black

hole Sgr A* at the centre of the Milky Way, giving us clues to the formation and develop-

ment of our galaxy. Measurements with the MIRC3 installed at the CHARA(McAlister

et al. 2000) interferometer on Mount Wilson have given us images of the gravity darkening

of rapid rotators(Monnier et al. 2007), challenging and amending the coefficients of the

Von Zeipel laws(de Souza Jr and de Souza Jr 2002). The angular diameter of the stars

measured by MIRC are in the realm of 0.1 - 0.4 milli-arcseconds(Monnier et al. 2006).

Single aperture telescopes such as the Keck pair(Colavita et al. 1998) on Mauna Kea

and of course Hubble in orbit have imaging capabilities, boosted by adaptive optics in

the ground based Keck telescopes, in the region of 0.5 to 1 milli-arcsecond working in the

optical and near infrared(Colavita et al. 2003).

Additional to the large cost of such schemes is the impossibility of launching such giant

apertures into orbit. Current monolithic schemes are limited by the lifting capabilities of

modern launch systems. These restrict the size of any space based telescope to around 3.5

metres as witnessed by the size of Herschel’s primary mirror and are unlikely to increase

by more than a factor of two within the near future. NASA’s Space Launch System only

proposes a 5 metre capability. With a segmented mirror the James Webb Space Telescope

(JWST)(Clampin 2011)4 can boast a 6.5 metre primary but again little improvement on

2VLBA (Napier et al. 1994)
3Michigan Infrared Camera (Monnier et al. 2004)
4For a collection of white papers see: http://www.stsci.edu/jwst/doc-archive/white-papers/.
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this can be foreseen in the near future.

It is in this light that I have worked on schemes and ideas that take our ability to

measure angular resolution to even finer limits. For while we have been building ever

larger fully filled apertures the engineering restrictions incumbent upon such schemes

means we cannot expect significant development beyond 50 metre apertures in the near

future. And telescopes of that size are unlikely to number more than a handful. The costs

of the E-ELT5 are of the order of billions of pounds(Stepp et al. 2003), we cannot rely

on such large funding being available for the construction of many of such instruments.

Therefore low cost schemes unencumbered by large scale civil engineering requirements

are the obvious choice for future development and investment.

1.2 Moving beyond state of the art

Along with the atmospheric problems mentioned above moving a future observatory into

space releases the potential for 100 to 1000 metre baselines6 that offer a flexibility and

resolving power that can dwarf anything on the Earth’s surface while working in the FIR

regime. While we can consider fantastical schemes with baselines stretching to the orbit

of Jupiter at 106km more conservative approaches have been considered by the likes of

Labeyrie(Labeyrie 1996) with an array stretching 102km. Darwin(Fridlund 2000) was a

nulling interferometer with a baseline of 100m proposal from the European Space Agency

(ESA) that lost funding support around 2010 and NASA’s SPIRIT concept with a choice

between a 30m or 1Km baseline also lost funding at the same time. Recently FIRI, A

Far Infrared Interferometer(Helmich and Ivison 2009), also with a 1Km proposed baseline

failed to gain support for further study.

This lack of support for both free flying and tethered missions at the current time

suggests a serious concern around the feasibility of an interferometer freed from the Earth’s

atmosphere. It is possible to make many speculations as to why no interferometric mission

has flown in the 50 years of the space age but that would be inappropriate in a focussed

technical study. One area I will comment on though is the mechanical finesse that the

instrument must achieve to carry out its goals. Interferometers promise so much in terms

of resolution over single aperture telescopes but are very tricky to build and run. The

5European Extremely Large Telescope(Gilmozzi and Spyromilio 2008)
6As will be shown in section 2.2 we may in optical terms consider “baseline length” analogous to

“aperture diameter” when discussing resolving power of an instrument.
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scientific output of orthodox7 interferometers in the world is still only around 50 papers per

year in 2011(Ridgway et al. 2011). As mentioned much speculation for this is possible but

again I shall refer to the mechanical difficulties of operating an interferometric observatory.

At CHARA, perhaps the most productive interferometric observatory operating today,

they operate a maximum of six apertures with the light coming to a central beam com-

bining laboratory. The optical path from front optical surface to front optical surface of

an instrument involves 20 surfaces. Roughly a further 10 surfaces are present in the in-

strument before reaching a detector. Maintaining a very complex instrument is obviously

very taxing and moving such an arrangement into space beyond the reach of maintenance

or adjustment has proved to be too large a risk for the scientific community to consider.

One such mechanical restriction we can calculate is the requirement on optical surface

alignment via consideration of the coherence length of the incident light. This is a physical

length over which a wave packet maintains some singular personality and it is these packets

that are correlated at separate apertures in a working interferometer. This length, l is

given by dividing the packet’s speed, c, by the frequency of oscillation of the physical

phenomena we are correlating, ν,

lorthodox =
c

ν
m,

=
3 · 108

1013
m,

≈3 · 10−5m (1.2)

lintensity =
c

ν
m,

=
3 · 108

107
m,

≈3 · 10−1m. (1.3)

These frequencies are for light at 1µm from a thermal source, the difference is explained in

section 5.1 We can immediately see a benefit for the non orthodox Intensity Interferometry

method with a factor 104 relaxation in coherence length. This translates to aligning and

holding surfaces, all surfaces in total, to an accuracy of around 10’s of microns compared

to centimetres, clearly a more realistic proposal. The law of “conservation of difficulty”

7In this thesis I use the term “orthodox” to refer to the class of interferometer that relies measuring
the correlation of the amplitude of a light wave. This is in contrast to an Intensity Interferometer that
relies on measuring the correlation of the intensity(The square of the amplitude.). The theory in chapter
2 and appendix A is applicable to both classes and the difference is described in detail in section 5. Note
the sub-classifications of “Fizeau” and “Michelson” can apply to both.
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present in all instrumentational work declares there must be problems elsewhere with this

scheme and indeed there are difficulties.

The fluctuations measured with a Intensity Interferometer are of much lower magnitude

than with an orthodox interferometer, which directly leads to a much lower signal to noise

ratio. This translates to a longer observing time for the same science output than if we

used the orthodox method. Further consideration of these problems are given in chapter

3 with regard to applying Intensity Interferometer to exoplanetary study.

1.3 A summary of chapters

The theory of interferometry is given in chapter 2 showing how the size and shape of a

distant object beyond the resolution of (1.1) can be determined by an interferometer using

separate distant apertures. The arguments and details in this section are re-elaborated

from the books Principle of Optics(Born and Wolf 1999) and Optical Coherence and

Quantum Optics(Mandel and Wolf 1995). In the first section the physical propagation of

light from a source towards the observer is given using a simple geometric argument. This

argument replicates the effects of the underlying physics, the Van-Cittert Zernike theorem

and a brief run through of the mathematics of this theorem are given in appendix A.

In chapter 3 the subject of exoplanets is introduced. Exoplanetary research is an

exciting nascent field of study for astronomy barely into its second decade. As of summer

2014 around 18008 exoplanets have been discovered and many more are suspected. To

properly characterise these objects requires accurate host star size measurements and it

is here that interferometry can really aid this scientific area as stellar radii measurements

are a relatively simple application. This chapter sets out key scientific goals for any future

space mission.

In the following chapters description is made of an instrument prototype that is able to

achieve the science goals as set out in 3. The form of this instrument varies through three

iterations in an attempt to produce a telescope that is able to fully deliver on the science

goal requirements. The first of these iterations is a monolithic telescope fitted with a first

order spergel mask so that light from a dim target exoplanet, relative to its host star can

be separated for spectrographic analysis. The second iteration attempts to do the same

image plane manipulation but with a star petal mask. The axial symmetry allowing for

8Data taken from www.exoplanet.eu/catalog/ (Schneider et al. 2011)
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a much greater “detection zone” than the asymmetric spergel mask. The third iteration

is a radical architectural change to an interferometric imaging telescope. This design can

better achieve more of the defined science goals. This interferometer design makes use

of the “Intensity Interferometer” type operating in a Fizeau configuration. While the

feasibility of the first two iterations are calculated in software, a lab top demonstrator was

constructed and tested. Additional theoretical explanation is given for this technology

ahead of a description of the physical model.

Chapter 4 is a discussion of a project to simulate a masked aperture using both a

gaussian petal mask and a Spergel shaped pupil. Included is a description of the code

written with Matlab and its usage to draw and evaluate mask designs. Aperture masks

are a way to manipulate the electric field entering the instrument in such a way that the

image produced is “enhanced” in some way. This can include an increase in resolution

beyond that expected from a given aperture size or even to spatially alter the light in the

image plane relative to field angle to improve the contrast of desired objects. The ability

to characterise the planets via spectroscopy of their atmospheres via spatially resolved

imaging is also described.

In chapter 5 a detailed description of an updated lab based Intensity Interferometer

based on the work of Hanbury Brown and Twiss is given. An Intensity Interferometer is a

special type of interferometer that has seen little application and deployment despite prov-

ing its worth in the 1970’s at the Narrabri observatory, Australia(Hanbury Brown 1974).

Its primary benefit is that it has a much lower sensitivity to mechanical imperfections,

and thusly building a large scale instrument is significantly easier than a comparative

“orthodox” interferometer. The theoretical background is also given to explain how the

advantages come about as worked on by Robert Hanbury Brown and Richard Twiss in

the 1950’s. This work therefore acts as a proof of concept for the proposals in chapter 3.

A space mission proposal of a satellite based Intensity Interferometer using the work of

Klein, Guelman and Lipson(Klein et al. 2007) is outlined as a best attempt to reach the

constraints set out in chapter 3.

Finally in chapter 6 conclusions are drawn on the general area of this PhD study.

Reference is made to scientific goals and how the instrument studied here can aid scientists

in making the next generation of discoveries and advancements in astrophysics.
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Chapter 2

The theory of interferometry

Interferometry is a subsection of the field of physical optics that investigates the correlation

of electric fields and is used by astronomers to gather spectral and spatial information of

some source distribution. In particular the analysis of the electric field can be described

by the “partial coherence function”. A helpful aspect of this function is that we can

use the concepts of coherence to mathematically describe the physical electric field using

readily measurable quantities. The framework uses correlation functions and time averaged

intensities which are available to the practical astronomer with “day to day” equipment.

This is unlike the actual field variables which oscillate at a frequency that is unreachable

with standard laboratory tools; The details of this are given in appendix A, in this chapter

a simpler, more applied description is given.

In the venerable status of interferometry there are many full theoretical descriptions

of the fundamental physical underpinning the astronomical applications. Complete de-

scriptions can be found in the books Optical Coherence and Quantum optics, Mandel and

Wolf, Cambridge(Mandel and Wolf 1995), Cambridge and Principles of Optics, Born and

Wolf, Cambridge(Born and Wolf 1999). This chapter will try to summarise the pertinent

points required to understand how multiple apertures can be used to investigate spectral

and spatial information of some target of interest.

We start with the situation that some source radiates light towards our observatory,

it is intercepted in an aperture plane and from there directed at some detector plane for

investigation. To simplify we can split this into two physical sections, firstly the space

23
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Figure 2.1: Light from a source σ is radiated towards Earth and is intercepted in an
aperture plane A. From here the light is brought together at plane F .

from the source to the intermediary aperture plane and secondly from the aperture plane

to the detector plane. This situation is shown in figure 2.1

The three planes are thus denoted as the source plane, Σ; the aperture plane, A; and

the detector plane F . And from here we can refer to the physical propagation of light across

the vacuum of space as the transfer from Σ to A and the transfer from A to F representing

the mechanical 1 process of interfering the light fields via our interferometer. The first part

for monochromatic situations was put on firm physical and mathematical understanding

by Van Cittert and Zernike(van CITTERT 1958) and is described in full in appendix A. It

was later advanced to the full polychromatic case by Parrent(Parrent Jr 1960). Here the

notion of coherence between two points in A is explained via a simple geometric description

1And later electrical, see chapter 5
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Figure 2.2: A source Σ of angular size θ emits light towards A from two points E1 and
E2. The sum of the fields at these two points is of central importance in the theory of
interferometry, it is here that coherence is/is not measured.

and this makes up the next section2.1. The second part can be described by reference to

the experiment of Young, popularly known as Young’s slits and will make up section 2.2.

2.1 A geometric description of coherence

Redrawing figure 2.1 to consider only the propagation from Σ to A we get figure 2.2. Here

we consider the electric field E at E1 and E2 and two points in A, A1 and A2 that will

come to represent the two apertures of a real interferometer. The essence of interferometry

is in the fact that while the fields at A1 and A2 due to either point alone will be essentially

uncorrelated2 the sum of the fields E1 and E2 will be similar at A1 and A2 while the four

paths from E1and E2 to A1 and A2 are of similar length3.

To state this more mathematically we describe the fields in Σ with a complex number

Ẽ(t) that fluctuates randomly over time such that the time average is zero,
〈
Ẽ(t)

〉
= 0.

We define the correlation between two fields as Γ

Γ =

〈
EA1(t+

δx

c
)EA2 ∗ (t)

〉
(2.1)

and where two fields are perfectly correlated Γ = max and Γ = 0 for perfectly uncorrelated

fields.

2Assuming the fields to be uncorrelated in Σ
3“similar” means less than the coherence length “l” as defined in (2.5).
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Given this we can write the summed fields in A as

EA1(t) = 〈E1(x) ∗ E2(y + δy)〉 (2.2)

EA2(t) = 〈E2(y) ∗ E2(x+ δx)〉 . (2.3)

From the geometry of figure 2.2 we can see that Γ will vary as the angle θ varies.

Γ→ 1 as long as x ≈ x+ δx and y ≈ y + δy (2.4)

The angle is obviously dependent on: the separation of the planes Σ and A, the

separation of A1 and A2 and the separation of E1 and E2. The astrophysics studied in

this thesis limits us to being able to alter only A1 and A2, the physical distance to objects

of interest is too great, and the physical size of the objects obviously not being amenable

to alteration. And it is indeed this that is generally practiced in the field, with two, or

more, separate telescopes independently collecting the light from the source.

The approximations in equation (2.4) are constrained by the coherence length, l, of

the radiation from Σ where the coherence decreases from 1 to 0 as δx goes from 0 to l. l

is defined as

l = c∆τ (2.5)

with c the speed of light and here τ the coherence time. The coherence time is set by the

object emitting the radiation.

Sample distributions of Γ normalised to one in the plane A are as in figure 2.3; Where

the Solid line represents the correlation as given by a binary system of point sources, the

dashed line represents a circular distribution and the dashed line a circular distribution

with a guassian intensity profile. The game of modelling the source from the visibility

curve is still partially a work of art, as can be seen very different source profiles can give

very similar curves and typically a real observation will only have 3 or so points with which

to model the curve on. As such this is a complicated area of research and not discussed

further here beyond that necessary in chapter 3.
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Figure 2.3: Model Visibility Curves. The solid line represents a binary system, the dashed
line a flat circular source and the dotted line a circular source with a guassian intensity
distribution. Credit:

2.2 Measuring Coherence

As seen in the previous chapter measurement of the coherence in a some plane illuminated

by a source can lead to a full description of the intensity distribution in that source. In

practical terms it’s rarely possible to sufficiently measure the electric field and so some

ambiguities reside in any reconstruction of the source. To measure the curves seen in figure

2.3 we can use the experiment of Young where the light from two apertures is brought to

focus on a screen and as such is “imaged”.

This section represents the second physical setup as mentioned in this chapters intro-

duction where we are considering the passage of the light from A to F .

After redrawing figure 2.1 again we get figure 2.4 which shows two pinholes A1 and

A2 in A allowing light to reach a point f on a screen at F . The light from pinhole 1 to f

takes the path r1 and from pinhole 2 the path r2. Much like we did in section 2.1 we again

look at the electric field disturbance at the point f due to the sum of the disturbances at
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Figure 2.4: Light arriving at the plane A passes through two aperture A1 and A2 and
passes to a f in the focal plane F

the two pinholes and write this disturbance as

E(f, t) = K1E(A1, t− t1) +K2E(A2, t− t2), (2.6)

t1 and t2, are the times taken for the light to get from 1 and 2 to f respectively

t1 =
r1

c
,

t2 =
r2

c
(2.7)

and K is factor representing the finite size of the pinholes and is inverse to their size.

Taking the intensity If measured at f as the time average of the square of E(f, t) we get

If =E2(f, t)

If =|K1|2I1 + |K2|2I2 + 2|K1K2|Γ12

(
r2 − r1

c

)
. (2.8)

The first two terms represent the light reaching f independently from either pinhole 1 or 2.

The third term is more interesting in that it takes into account the correlation in the fields

at 1 and 2 which as seen previously can vary according to the source distribution. The

values of K1 and K2 are fixed by the equipment used and so we can let them be absorbed
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into I1 and I2 respectively without loss of description. Γ is referred to as the mutual

coherence function between the fields in A1 and A2. When the apertures are co-incident

we have the auto-correlation which is physically the same as the intensity,

Γ11(0) = I1,

Γ22(0) = I2. (2.9)

At the moment Γ can vary simply due to more light reaching A1 or A2 without any

change in the actual correlation. The curves in figure (2.4) would look different only for

changes in the source brightness and not in shape, and where the source brightness varies

because of the intervening transmission this can be misleading. To account for this we

normalise Γ to the actual received intensities,

γ12 =
Γ12√
I1

√
I2
. (2.10)

where γ is known as the complex degree of coherence.

Finally we recompose the term
(
r2−r1
c

)
which represents the phase difference in an

exponential form

γ12(τ) =|γ12(τ)|ei[α12(τ)−2πν̄τ ] (2.11)

where

α12(τ) =2πν̄τ + argγ12(τ). (2.12)

With ν̄ used to represent the mean frequency of light.

With these modifications we can write equation (2.8) as

If = I1f + I2f + 2
√
I1f

√
I2f |γ12(τ)| cos[α12(τ)− δ]. (2.13)

Here τ and δ are the terms

τ =
r2 − r1

c

δ = 2πν̄τ =
2π

λ̄
(r2 − r1), (2.14)

λ̄ is the mean wavelength.
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The behaviour of equation (2.13) on the plane of F is to produce stripes of light

and dark when the cos term is relevant, that is when γ is high, and to produce a low

modulation, though of the same frequency, when γ is low. The frequency varies as the

difference in the terms τ and δ varies. τ represents the physical size of the path difference

whereas δ represents the phase difference over this length.

With this we can reproduce the visibility curves as seen in figure 2.3 with measurements

of γ or rather measurements of coherence at different separations. With this interpreta-

tion we can now see how, by varying the separation of our apertures we can probe and

investigate the coherence of an electric field in A and from there infer the original source

distribution.

Quite how γ is measured depends on the specific instrument and there are various

strategies used to maximise the accuracy of the measurement made. In ideal circumstances

we might simply scan F and measure the intensity of the modulation. In more physical

circumstances, such as observing through an atmosphere, an additional phase term, φδ,

can be added to δ due to variations in the refractive index along the different paths. This

can act to shift the modulation laterally and as such we might be unable to measure the

modulation.

To work around this problem an additional path length modulation can be introduced

that varies at a frequency higher than that introduced by φδ. The output from such an

operation is to scan across the zero path difference.



Chapter 3

Exoplanets; Their character and

characterisation

A fundamental question at the heart of astrophysics is how did our Earth come to support

life? And how likely was that? To answer this requires knowledge of the biological pro-

cesses that come together, these are left for experts in those fields. Prior to the biological

activity must have come the geological and prior to this the astrophysical actions of planet

formation. And so to understand some of the grandest questions scientists can ask we need

to look at how planets form and what populations have been created.

In this very young science we are still working predominantly in the world of modelling

and with the limited explanatory power of our solar system. To be able to push the science

forwards we need more data, the numbers of discovered exoplanets currently sits at near

20001. And this sample is heavily biased towards the large and the bright members of the

family, hot jupiters, massive gas giants sitting very close to their host star. A description

of the types is given in section 3.1.

The major method of exoplanetary discovery has either been radial velocity observa-

tions or via light curve analysis of transiting planets. The radial velocity (RV) method

works on observing the red- and blue-shifting of the host star’s spectra as the planet or-

bits it. As the planet moves towards Earth it will gravitationally tug the star towards

1Data for this chapter was taken from www.exoplanet.eu maintained by the Exoplanet Team at the
Observatoire de Paris. Where plots are credited to www.exoplanet.eu they were produced with the online
plotter tool at http://www.exoplanet.eu/diagrams/.

31
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the Earth as well, lending a blue shift to the spectra. As the planet moves away from the

Earth the opposite effect occurs and a red shift is seen. This is shown diagrammatically

in figure 3.1. Obviously the exoplanetary orbit is not constrained to sit on a plane with

the host star and Earth and therefore a free parameter is introduced that represents the

inclination of the orbit to this plane. The timing of the spectral shifts and subsequent

velocities measured can both lead to information about the exoplanet. Directly the ratio

of the stellar mass, (m⊕/m?) ∗ sin i is given from the velocity and knowledge of M? gives

the planetary mass as a function of i. For a change in inclination of 30◦, sin(i) changes

by a factor of 2. Given the geometry of the situation we can expect 87% of exoplanets to

lie within 60◦ and therefore we can be confident that we are at most our planetary mass

estimates are within a factor of 2 independently of the actual obital inclination. The size

of the orbit is also available from this orbit via the timing of the spectral shifting.

Observations via the transiting method (TM) work on a different premise but one that

also relies on identifying the orbital periodicity of an exoplanet. In the case of TM however

it is a dip in the apparent brightness of the host star that is observed. This dip is a direct

effect of the planet shadowing the stellar light. A typical light curve is given in figure 3.2.

again several orbital parameters can be deduced from this data including the radius of

the exoplanet, its mass and the orbital radius. Via spectral subtraction an estimation of

the composition of the planetary atmosphere can be made. Fuller descriptions of this are

given in the following sections.

3.1 Discovering exoplanets

3.1.1 The Radial Velocity method

The RV method makes use of the doppler shifting of the light from the host star, this

doppler shift can be converted into a line of sight velocity V?. A plot of this velocity over

time allows a sinusoidal curve to be plotted as in figure 3.1. Making use of Kepler’s third

law,

r3 =
GM

4π2
P 2, (3.1)
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Observer

Red Shift

Blue Shift

Figure 3.1: On the left the exoplanet’s motion is drawing the host star away from the
observer and so a red shift is observed in the star’s spectra. On the right, after half an
orbital period the host star’s motion is toward the observer and a blue shift is observed.

where r is the planetary radius, G is Newton’s gravitational constant, P is the orbital

period and M ≈ m?, the host star mass. The velocity of the planet can be found from

v⊕ =
√
Gm?v?. (3.2)

Here v⊕ and v? are planetary and host star velocities, and while the velocity of the ex-

oplanet is not directly interesting in does lead via a conservation of momentum to the

planetary mass m⊕

m⊕v⊕ = m?v?

m⊕ =
m?v?
v⊕

. (3.3)

Fischer et al.(Fischer et al. 2014) report that the “Habitable Zone Planet Finder”(Mahadevan

et al. 2012) will operate with an ability to measure down to 1− 3ms−1. This instrument

operates in the NIR via a fiber fed spectrograph.
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Figure 3.2: As the exoplanet moves in front of its host star it obscures a portion of the
stellar light. Typical changes in flux are around 1% of the total light.

3.1.2 The Photometric Transit method

The Photometric Transit method (PT) works on observation of the light curve from a

star, this curve, figure 3.2(Credit:(Alonso et al. 2008)), is a plot of flux versus time. In the

absence of natural periodic variations the presence of a transiting exoplanet can be deduced

from the regular reduction in flux from a star as it is partly obscured by the planetary

disc. This obscuration typically leads to a reduction of around 1% of the light from the

host star. Usually the curve is measured over several periods and after an estimation of

the orbital period P the measurement points are folded into one period. The time when

the flux first starts to drop is known as the ingress of the exoplanet and the time as it

leaves is the egress, the time between the beginning of ingress and finishing of egress is the

transit duration, T . The shape of the curve at these points can give information of the

orbital and planetary parameters. As with the RV method detailed above in 3.1.1 we can
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Figure 3.3: The orbit of an exoplanet around its host star can betray several orbital
parameters simply through analysis of the resulting light curve. Full description and
credit in text.

compute several orbital parameters of the exoplanet via analysis of this light curve. With

these we can determine the planetary radius, its orbital inclination and its orbital period.

This method obviously only works for the correct alignment such that the exoplanet

obscures part of the stellar disc as seen from Earth. The chances of this happening are

roughly equal to the ratio of the planetary radius to the stellar radius. Given typical

planetary sizes this leads to a chance of detection of around 3%, thus this method is

inherently limited in its ability to find exoplanets. It is however easier to scan a large

number of potential stars simultaneously in comparison with the RV method as photometry

of a field is easier to do than spectroscopy of a field. Photometry is less photon hungry.

To identify exoplanetary characteristics of radius, orbital radius and mass we need to

translate the light curve as seen in figure 3.2 to a physical situation such as seen in figure

3.32, Here we see that as the exoplanet traverses from A to B it moves a distance 2l on

the sky as seen from Earth. a represents the semi major axis of the planets orbit, the

inclination of the plane of the orbit i is shown and the portion of the orbit that defines 2l

is given by α. This geometry leads us to see that the duration T is related to the sum of

the radii by

T = P
α

2π
, (3.4)

2credit for both figure 3.3 and figure 3.4:https://www.paulanthonywilson.com/exoplanets/exoplanet-
detection-techniques/the-exoplanet-transit-method/.
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Figure 3.4: Seen in projection the planetary disc travels across the stellar disc. Assuming
a circular orbit

where the fraction of the orbit α/2π is given by rearranging the triangle A,B and the

star’s centre to

sin(α/2) =
l

a
, (3.5)

so combining (3.4) and (3.5) we get

T =
P

π
sin−1(l/a). (3.6)

l can give us the sum of the planetary and stellar radii. Figure 3.4 and a small amount of

pythagoras shows us that 2l is equivalent to

2l = 2
√

(Rstar +Rplanet)2 − b2. (3.7)

So with T and b we can from (3.7) measure the total of the radii and with independent

measures of the host star’s radius we can calculate the radius of the exoplanet.
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Type Size (Jupiter masses) Constitution

Mercurian 10−7 − 0.1−2 Rocky
Sub-Terran (0.1− 0.5) ∗ 10−2 Rocky

Terran (0.5− 2) ∗ 10−2 Rocky
Super-Terran 0.02− 0.1 Rocky

Neptunian 0.1− 0.5 Gas Giant
Jovian > 0.5 Gas Giant

Table 3.1: Table of exoplanet types detailing sizes and constitution.

Figure 3.5: Plot of exoplanet mass versus radius . Showing all discovered as of September
2014.

3.2 Current populations of known exoplanets

Exoplanets come in four archetypes, named after analogues to planets in our own solar

system. These are, in increasing size, Mercurians, Terrans, Neptunians and Jovians. The

first three represent rocky or terrestrial constitutions and the last two gas giants. There

sizes are summarised in table 3.1. The current total of discovered and confirmed3 exoplan-

ets as of September 2014 is 1822 planets in 1137 systems. Figure 3.5 shows the range of

3The main source for exoplanet possible detections is NASA’s Kepler space mission. This mission
has suggested around 4000 stellar candidates as possible host stars, 1822 have been confirmed by further
independent ground based observation. This backup confirmation work has had a low false positive rate and
so we can expect the number of discoveries to raise significantly over the coming years as more candidates
are reassessed.
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Figure 3.6: Planetary mass in the range 0 − 0.01mJup versus orbital semi-major axis in
AU. 1 Earth mass ≈ 0.005mJup. The green area represents the “habitable zone” where we
might best expect to find life supporting conditions. The zone is defined in the text.

exoplanetary masses versus radii. These range from around 10−1 to just over 101 Jupiter

masses (mJup), and from as small as 10−5 Jupiter radii (rJup) up to 2.4 rJup. The major-

ity of discoveries lie in a range from 0.3 to 3 mJup and 0.75 to 1.75 rJup. As can be seen

in table 3.1 this places the discoveries in the Neptunian and Jovian class. Focussing on

Terran sized exoplanets gives figure 3.6. Which shows us that almost all the discovered

Terran sized planets closest to Earth in size and constitution all sit at an orbital radius

of less than 0.3 AU. At this distance the surface temperature is likely to be too high for

liquid water and as such not a good candidate for supporting life. This region is known as

the “goldilocks zone” or “habitable zone” (HZ). It’s definition varies according to author

but a sample of recent work suggests4 it is a region 0.8 to 2 AU from the host star. This

is obviously dependent on the luminosity of the host star and the above figures are for a

Sol, G type star on the main sequence. This work will concentrate on stars of F,G and K

spectral type, cooler less massive stars.

As can be seen in figure3.6 there are currently no discovered planets sitting in the HZ

4(Traub 2012), (Kaltenegger and Sasselov 2011), (Von Braun et al. 2011)
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Figure 3.7: Exoplanetary masses are plotted against orbital radius. The dashed lines
represents the threshold of potential discovery for a given sensitivity to the RV modulation.
This physically represents a velocity of the host star.

with the expected bias towards massive planets that sit closer to there host star. Sitting

closer leads to a greater RV effect as does being more massive. Also being more massive

has a greater effect on the light curve with respect to the PT method. Figure 3.7(Bouchy

et al. 2008) highlights the RV sensitivity against discovered planets in 2009. Sensitivities

of less than 1ms−1 are required to find Earth like masses at 1AU. Reading off the plot and

taking an Earth like mass to be around 0.5∗10−3mJup an RV sensitivity of about 15cms−1

would be required at 1AU. This is still a fair way off with regards to current technology,

these capabilities are discussed more in 5.4.

Figure 3.8 shows a histogram of discovered exoplanetary masses. There is a bi modal

distribution with peaks at 2mJup and 2 ∗ 10−2 representing the Jovian and Terran/Super

Terran archetypes. It has been discussed that current survey methods favour discovery of

Jovian types but figure 3.8 shows a significant proportion of lower mass planets. This di-

rectly implies a higher source population of Terran sized planets to overcome the detection
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Figure 3.8: Population of exoplanetary masses. Masses are plotted in Jupiter masses on
a log scale. Two peaks can be seen, around 1− 2mJup and 2 ∗ 10−2mJup.

biases. Foreman-Mackey(Foreman-Mackey et al. 2014) propose an underlying population

of 0.02 Earth analogues per star. This is lower than other estimates but with strong

(pessimistic) assumptions. Given this abundance they calculate there should be 10.6+5.9
−4.5

transiting Earth like exoplanets in the full, including unconfirmed, Kepler dataset(Borucki

et al. 2010).

This is an intriguing result but still only represents a beginning of the study of Terran

exoplanets and there is no guarantee that these exoplanets will lie in any HZ around their

host stars.

Shifting our focus to look at the HS, we can plot figure 3.9 which shows us planetary

mass versus the radius of the host star. There is a clear trend towards stars of close to

1 solar radius (rSol) with a mean of 1.8rSol across those stars that have a measurement.

Again the source populations of stars in our galaxy5 will suggest that smaller stars are

more common. There is a minimum size of a star at around 10% of the solar radius and

mass. So while we might expect a predominance of M class Red Dwarfs, around 76% of

5Exoplanetary science is still almost entirely a galactic, not intergalactic enterprise.
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Figure 3.9: Exoplanetary mass plotted against the measured radii of the host star. The
plot concentrates on masses < 5mJup and we see that stars of 0.7 − 1.1 solar radius
dominate.

stars near our sun are M class stars(Ledrew 2001), in our selection their luminosity drops

away to less than 10%(Kaltenegger and Traub 2009) of a solar luminosity. Therefore it

is the brighter yet still numerous class that will dominate a survey. The classification of

the HS is presented in table 3.2. Concentrating then on these more populous stars we

can start to consider the angular sizes we are confronted with when considering these

objects. In table 3.3 the angular size in micro-arcseconds of the stellar disc is calculated

for typical F,G, K and M class stars at a distance of 40, 60 and 100 parsecs. Even the

largest of these classes at a relatively short distance of 40pc is a challenging target of

only 302 micro-arcseconds. The more numerous G and K classes at modest distances

are of the order of tens of micro-arcseconds. The angular size of 1 AU is in the order

of tens of milli-arseconds, a resolution already achieved by both ground based and space

based observatories. Considering the habitable zone as seen in figure3.6 a search space

of 8 to 100 milli-arcseconds is defined dependent on host star distance. The Gliese star
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Stellar class Count Percentage

O 0 0
B 10 1
A 12 1
F 116 14
G 370 45
K 243 29
M 77 9

Table 3.2: The surveys are dominated by F,G and K class stars representing 88% of
exoplanet hosts. G class stars alone count for 45% of discoveries. Note this table only
includes exoplanets for the which the spectral class of the host star is recorded.

Table 3.3: Angular sizes in micro-arcseconds are given for typically sized F, G, K and M
class stars at distances of 40, 60 and 100 parsecs. The angular size represented by 1 AU
is also included for reference.

Stellar Class Typical Radius (m) [rSol] Size (µ-arcsec) at 40pc Size at 60pc Size at 100pc

F 9.05 ∗ 108 [1.4] 302 101 60
G 6.96 ∗ 108 [1] 233 78 47
K 4.18 ∗ 108 [0.6] 140 47 28
M 1.74 ∗ 108 [0.25] 58 19 12

Also included is 1 AU for comparison, the angular sizes are given in milli-arcseconds

1 AU 1.50 ∗ 1011 50 17 10

catalogue(Gliese 1957) suggests a stellar density of 0.120 stars per cubic parsec out to 5

parsecs. Extrapolating that density to 100 parsecs we find,

Starswithin100pc =0.120 ∗ 4π

3
(100pc)3, (3.8)

=47557stars. (3.9)

The angular size is not out only concern when considering the difficulties of observing

and measuring exoplanets. The flux from the host star relative to the exoplanet is very

large. The flux from the planet is almost entirely the reflected flux from the star. Some of

the most massive stars are self luminous but these are outside our area of interest which

is centred around Terran type exoplanets.

Brown and Burrows(Brown and Burrows 1990) calculate the flux ratio of a star to

exoplanet for a Jovian type at an angle most favourable to detection. Their result is

R =
3.1× 10−8

d(pc)2θ(′′)2
. (3.10)

Where R is the ratio of flux received at Earth of that produced by the HS and that
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Figure 3.10: Flux ratio of a Jovian sattelite around a G class star. The ratio is plotted as
a function of the seperation of the exoplanet and host star.

reflected by the exoplanet, d is the distance to the system from Earth and θ is the angular

separation on the sky of the exoplanet and host star in arcseconds. Figure 3.10 plots

equation (3.10) to show the variation in flux ratio between the host star and an exoplanet

within the bounds of the habitable zone. It can be seen to vary between 0.2− 1.2× 10−7.

This is a challenging setup for equipment and methods to address this problem are given

in chapter 4.

This leaves us with some numerical constraints and goals for any future instrument

that might wish to able to detect Earth like exoplanets around nearby stars. These can

be summarised as follows:

With the data in table 3.4 we can constrain and inform a space mission aimed at the

goal of furthering investigation of possible life supporting exoplanets and this is discussed

in the following section.
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Parameter Upper Bound Lower Bound

Reflected flux ratio R a = 0.5AU a = 2AU

λ− independent 0.2× 10−7 1.2× 10−7

Angular size θ d = 20pc d = 100pc

semi-major axis, a 50 10
Stellar radius, R 0.47 0.094

Planetary radius, r 0.005 0.001

Table 3.4: Summary of the limits imposed on Earth bound observers of nearby exoplanets
seeking Earth like Terran type planets in the habitable zone. Angular sizes are given in
milli-arcsecs.



Chapter 4

Image plane manipulation via

pupil masks

Two initial versions of an instrument to reach the goals set out in chapter 3. First a

short description of the theory required to understand aperture masking is made before

discussion of an apodised pupil mask with plots of resulting diffraction ring reduction.

Following this a different attempt to enhance image plane contrast is made using a non

axially symmetric Spergel mask. the image plane is plotted for an off axis point source of

much lower brightness than an on axis source.

The analytic method used is to draw an x, y map in some array structure where the

value of each element represents the electric field at that “point”. In reality the code

is non-analytic and uses discrete elements to describe both the physical structure of the

entrance pupil and the electric field is chopped into finite pieces so that the field can be

digitised. Full use is made of Fourier optics such that the “image” output is considered to

be in the far field Fraunhofer regime as defined in equation 4.1. This assumption allows for

the simplification that the image is therefore simply the Fourier transform of the entrance

pupil. The entrance pupil sits in a plane that is equally considered in the far field from

the object such that again the electric field in the aperture plane is the Fourier transform

of the object plane.

45
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Figure 4.1: A circular aperture with a circular pupil mask producing an airy pattern in
the image plane.

4.1 Aperture Masking Theory

Perhaps counter-intuitively the diffraction limited resolution of an optical system can be

improved by placement of an obscuring mask over the aperture of the system. The basic

setup is as seen in figure 4.1 in the simple case of a circular aperture and circular mask

centred on the optical axis. The idea is to manipulate the input electric field in such a

way as to counteract inevitable unwanted diffraction effects. It is easiest to understand

the effect blocking off part of the aperture has within the formalism of Fourier optics and

this will be used in this section to explain the situation.

It can be shown that the illumination of the image plane is simply the Fourier transform

of the entrance pupil(Hecht 2nd 1987) for an object suitably far away to be considered in

the Fraunhofer regime. We can set an arbitrary limit on this distance whereby the number

of Fresnel zones encompassed by the aperture is much less than one.

D2

d · λ
� 1 (4.1)
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Where D is the aperture of the optical system, d is the distance of the object and λ is the

observing wavelength.

So given we meet this condition we can simply compute the output of any optical

system via Fourier mathematics. Doing this for the elementary case of a point source at

infinity and a circular aperture we get the familiar Airy pattern of a bright central spot

and concentric diffraction rings. It is here that Fourier can give us insight into where

these rings come from. The light from the point source will form plane waves at a suitably

large distance so that the entrance pupil of the system is uniformly illuminated across the

entire aperture. We can represent this mathematically with a top hat function Π, where

Π = 1 for a radius of ρ < D/2 and Π = 0 for ρ > D/2, 1 within the radius a = D/2 and

0 outside. ρ being a radial vector from the centre of the aperture. We can look up the

Fourier transform of Π and see it gives us a first order Bessel function, J1. To show this

we begin with the result from studies of diffraction that the electric field E at a point P

is

E =
εAe

i(ωt−κR)

R

∫∫
Aperture

eiκ(Y y−Zz)/R dS, (4.2)

where we introduce several new terms. E is the electric field disturbance at a point P

on [F ] due to a source in the plane Σ. εA is the source strength per unit area, which we

consider to be constant over the aperture, ω = 2πf , t is some time of propagation and

κ = 2π
λ . f and λ are the frequency and wavelength of observation. R, Y , y, Z, z and

dS are all part of the geometry of the situation which can be seen in figure 4.2. The first

term in equation 4.2 represents the strength of the disturbance at a distance R from the

source and the integral representing a phase term taking into account the variation in

phase caused by different optical paths from dS to P .

Now as we have a circular symmetry it makes sense to transform from rectilinear x, y

co-ordinates to cylindrical,

z = ρ cosφ, y = ρ sinφ

Z = q cos Φ, Y = q sin Φ,
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Figure 4.2: A circular aperture of radius a producing a diffraction pattern at a plane F .

so that our source element becomes

dS = ρdρdφ.

so that 4.2 becomes

E =
εAe

i(ωt−κR)

R

∫ a

ρ=0

∫ 2π

φ=0
ei(κρq/R) cos(φ−Φ)ρdρdφ. (4.3)

With the circular symmetry we can set Φ = 0 and the integral over φ we recognise as the

definition of a Bessel function,

J0(u) =
1

2π

∫ 2π

0
eiu cos ν , (4.4)
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and 4.3 reduces to

E =
εAe

i(ωt−κR)

R
2π

∫ a

0
J0(κρq/R)ρdρ. (4.5)

Using the recurrence relation of Bessel functions allows us to rewrite the integral in 4.5,

E(t) =
εAe

i(ωt−κR)

R
2πa2(R/κaq)J1(κaq/R). (4.6)

The intensity is the focal plane is of course the real part of the field therefore we have the

intensity distribution given by

I =
1

2
EE∗,

I =

[
εAe

i(ωt−κR)

R
2πa2(R/κaq)J1(κaq/R)

]2

, (4.7)

I =
2ε2AA

2

R2

[
J1(κaq/R)

κaq/R

]2

. (4.8)

2ε2AA
2

R2 is a constant for the source at a distance R and so we simplify this by setting it

equal to I(0). Identifying the angle q/R as the angle θ we finally arrive at

I(θ) = I(0)

[
2J1(κa sin(θ))

κa sin(θ)

]2

(4.9)

A slice through this bessel gives a squared sinc function as plotted in figure 4.3. And

so the airy rings can be seen as the Fourier ringing due to the step in the Π function. This

ringing is a natural consequence of either the Fourier mathematics used to describe the

situation or more physically the effect of diffraction.

To see the effect of an obscuring disk as in figure 4.1 we remind ourselves of the Rayleigh

criterion

Θ = 1.22
λ

D
, (4.10)

But now we can see where this originates from. The arbitrary definition of equation 4.10

is the angular separation when the peak of one Airy disc meets the first zero of another.

We can now see that this occurs where the term in the square brackets in 4.9 goes to zero,
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λ
D

Figure 4.3: A slice through a bessel function shows the intensity rolling off from the
maximum at the optical centre and reaching the first zero around 1.21λ/D.

ie

J1 (κa sin(θ)) = 0, (4.11)

and using the small angle approximation, sin(θ) ≈ θ, the argument in 4.11 rearranges to

θ = x
κ

a
(4.12)

θ =
x

π

λ

2a
(4.13)

θ =
x

π

λ

D
, (4.14)

where J1(x) = 0 for x = 3.83, 7.016, .... And we find 3.83/π = 1.22 and we recover (1.1).

We can now calculate the angular resolution for a circular aperture with a central

circular mask of some diameter r = εD where 0 ≤ ε ≤ 1 and D is the diameter of the full

aperture. Then from equation (4.3) with the radial integral only over the domain from

εa ≤ ρ ≤ a, where a = D/2, and following the same steps to (4.9) we get

I(θ) =
I(0)

(1− ε2)2

[
2J1(κa sin(θ))

κa sin(θ)
− ε2 2J1(κεa sin(θ))

κεa sin(θ)

]2

. (4.15)
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θ
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)
Figure 4.4: This figure represents the intensity profile at focus for an circularly obscured
aperture, radius a. Each curve represents a different value of ε where the mask is of radius
εa. We see that the first zero gets progressively closer to zero as the mask increase in size
and that the central intensity reduces as the aperture becomes more obscured. Included is
the profile for a mask of ε = 0.27 that correspond to the inner radius of the mask leading
to the result in figure 4.12.

Searching for the roots of of equation (4.15) we find that

Θ = 1.00
λ

D
, (4.16)

which tells us we can resolve features of slightly smaller size when using a mask according

to our Rayleigh criterion. Plotting the intensity I against angle θ in units of λ/D for

varying epsilon gives us figure 4.4. Here the intensity is plotted logarithmically to show

clearly where it comes to zero for 5 different values of epsilon; ε = 0.95, 0.80, 0.70., 0.50

and 0.00. We can see how increasing the size of the obstruction, increasing ε, reduces θ

and thus improves our resolution. It is important to note the denominator in equation

(4.15) contains a 1− ε term and so the intensity is reduced as might be expected.

Further results for more complicated pupil plane distribution can be calculated and

these are shown in figure 4.5. We can see we have the power to favourably alter the image

plane through manipulation of the entrance pupil, indeed figure 4.6 shows the well known

effect of star “points” resulting from diffraction off the secondary support of a Newtonian

telescope.
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Figure 4.5: A square aperture shows diffraction ringing perpendicular to the edge encoun-
tered.

Figure 4.6: A cross aperture shows the familiar star spikes of diffraction from a spider in
the telescope aperture.
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4.2 Apodised Pupil Masking

The purpose of my work in this field was to enhance the imaging of exoplanets via a pupil

mask that reduced the airy rings of objects in the field, bringing down the size of the Airy

disc as seen in equation 4.16. The concept being inspired by the work of Kasdin(Kasdin

et al. 2003) et al. The basic design being a petalled “star-shade”, these petals are aimed

at reducing the ringing via apodisation of the disc in the pupil.

Apodisation is manipulation of the pupil to remove the step functions at the edges

of the aperture and replace them with Gaussian profile(Tschunko 1983). Again this is

explained by Fourier, as the transform of a Gaussian profile is another Gaussian and as

such there is no ringing, just a bright central spot. The aperture function in 4.2 would be

a Gaussian for this technique. Unfortunately a Gaussian profile is impossible to recreate

in the lab as the wings continue to infinity and therefore any physically realisable aperture

has to truncate the Gaussian. Allied with this is the mechanical difficulty of reducing the

throughput of the aperture with an exact analytical profile.

These two problems have stunted the exploitation of the field so far and most work in

this area is theoretical outside of the work of Kasdin. To refine and reduce the problem of

generating a mask a measure of fitness was devised. The measure taken was the reduction

in height of the sidelobes of the airy pattern produced assuming a circular aperture en-

closing the mask. So a test pattern could be produced and the output of any mask could

be compared to this original unobscured aperture. Each mask generated could be assessed

mathematically and a optimum could be found.

This approach limits our confidence in any optimum found due to relatively few masks,

O(100) being assessed. This limit was due to available processing power.

4.3 Apodised petal mask design code

The higher level description of the code can be seen in figure XXX and in some detail in

appendix C. The first part sets several variable constituents of the design such as petal

height, size of central obscuration and number of petals. These define the parameter

space to be searched via an iterative process outputting one dimensional slices of the

calculated image plane illuminated. Left to run for some period of time several designs

could be evaluated and fine tuning could be directed at the masks showing most promise

of reducing the intensity of the first airy ring. Typically a run of 20 masks could be
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Figure 4.7: A scaled Gaussian curve is digistised by taking points along the curve. The
number of points, M depends on the required resolution, ie how squared off can the curve
be allowed to get.

completed within 12 hours.

4.3.1 The code in detail

To calculate the petal curve the code draws a curve in (x, y) to represent half a Guassian

from the peak to some value arbitrarily close to zero. This curve is digitised by taking

y-values on this curve at a set number of points along the x-axis. The logic being that for

each petal on the outside of the central disc the curve will be tangentially offset from some

radial line as shown in figures 4.7 and 4.8. We now have a petal shape with a Gaussian

edge profile mapped in (x, y), however the circular symmetry strongly suggest converting

to polar co-ordinates (r, θ), where

r =
√
x2 + y2 (4.17)

θ = tan−1 y

x
. (4.18)

So armed with the polar co-ordinates of one petal we can now readily repeat this petal

around the circumference of the central mask as many times as our design requires. The

number of points defining the curve is set as M , so that the resolution can be varied

depending on computing power or to simulate machining errors. r will remain constant
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Figure 4.8: The digitised curve is rotated and reflected to create a standard petal. This
petal has a user definable resolution so that the average distance from an analytic curve
can be controlled for. Manufacturing errors can be simulated by varying this “squaring
off.”

for each point on the petal and θ will change by1

θ
⋃
n

2π

N
, for n = 1 to N − 1 (4.19)

where n is the nth petal and N is the the number of petals in the design and we approach

the situation in figure 4.9

The petals were coded so that the basic structure could be varied. The principle

parameters for variation other than the total number of petals, N , were the radius of the

inner circular mask, r, and the height of the petal from the edge of the central mask, h.

This is shown pictorially in figure 4.10. The curve of the petal, though chosen here to

be Gaussian, is user definable and can be modified for optimisation. As this work used a

relatively inefficient evaluation method the curve was left as Gaussian.

An example of the output of the code is shown in figure 4.11 To evaluate this mask

it was assumed that the mask sat directly in the entrance pupil of a telescope and that

it was perfectly binary. So that the area defined within the petals and central disc was

perfectly opaque and the area outside the mask but inside the aperture was perfectly

1The actual coding is slightly more complex: θn = π
2

+ n 2π
N

− π
N

+ m2π
MN

, with a double index over m
and n.



4.3. Apodised petal mask design code 56

n = 1
θ = 12π

N n = 2
θ = 22π
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N

Figure 4.9: The petals once converted to polar co-ordinates could be scaled and applied
to the edge of the disc N times as per the desired number.

transmitting. Using code from the online Matlab database the mask was converted from a

vector detailing the r, θ co-ordinates to an x− y transmission map. This map represented

transmission with the value 1 and obscuration with 0. In accord with the theory in section

4.1 the electric field in the focal plane is the Fourier transform of this map. To do this the

two dimensional fast Fourier transform function within Matlab was used, fft2. The output

of this places the zero frequency in the upper left corner, to better represent the physical

situation at the detector fftshift was used to move this to the centre of an output matrix.

When the piecewise-square of this matrix is taken we end with the intensity distribution

at the output of the system. The assessment of this output is covered in the following

sub-section.

4.3.2 The evaluation of the code output

To evaluate the code it is useful to identify a metric against which a particular mask

configuration can be assessed.

In table 3.4 and making use of the theory in 4.2 we can understand that to probe

the angular scales required we might get there using an apodised pupil mask. So that
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Figure 4.10: A few of the apodising petals are shown top left. Enlarging a portion of the
mask we can see the variable parameters within the code. The radius of the central mask
r, the additional height above this of the petal, h, and the size of the aperture that we are
masking, ra. As well as these parameters the function of the curve can be altered to the
desired form and the total number of petals can chosen.
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Figure 4.11: The output of the petal code is shown here. Parameters as defined in the
text as follows: N = 20, r = 400, ra = 1500, r = 1000

the primary goal of using the mask is to reach an angular resolution of our instrument

sufficient to resolves distances that allow for exoplanetary investigation. This then leads

us to see that the distance in the focal plane to the first minima of an unresolved star

should be reduced to an equivalent angular size of around 10 to 50 milli-arcseconds.

And so taking the output as shown in figure 4.12 we take a slice through the centre

of the image to get a one dimensional vector. The plot of this we might expect to look

similar, if not identical, to that shown in figure 4.3. With the mask present however we

find that the sinc function has been modified with the first zero closer to the centre of the

plot. Figure 4.12 shows an overlay of the modified sinc function against the sinc function

given by an aperture of the same radius as the outer aperture in 4.11, ie = ra with a

simple circular mask of radius r installed. The x-axis is marked in arbitrary units centred

on 1000. This allows us to properly evaluate the effect of the apodising petals, rather than

simply re-iterate that a masked aperture brings the first zero closer to the photocentre of

the diffraction pattern.

We see that with a central circular mask of radius 400 with a petal height of 640 does

bring in the first zero by a few points but there is still significant ringing, though not worse
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Figure 4.12: A slice through the calculated focal plane gives a trace of the intensity. The
Blue curve represents the diffraction pattern with a petal mask installed. The Green curve
represents the intensity with a simple circular mask installed. Parameters as defined in
the text as follows: N = 15, r = 400, ra = 1500, h = 640. Note the figure is zoomed the
area of interest to show where the function approaches zero. Both curves are normalised.

than with a simple circular mask. And this ringing drops off significantly quicker. Which

suggests we may get some imaging improvement with use of the mask. The first zero may

be seen to be at a distance approximately 3/5 of the first zero for the plain circular mask.

This plain mask has a resolution limit at just under 1.21
(
λ
D

)
, so that very roughly we

may say the apodised mask has a resolution at

θapodised ≈
3

5
× θcircular

θapodised ≈
3

5
× 1.2

(
λ

D

)
θapodised ≈ 0.72

(
λ

D

)
, (4.20)

which shows a modest improvement. Whether this improvement is significant in an imag-

ing depends strongly on how the diffraction wings affect the overall picture. This is not

covered here and awaits further work.
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Figure 4.13: A star occulter flies in front of the telescope in the bottom left corner and
is positioned so that it shadows the star without blocking the direct path to an orbiting
planet. The region encompassed by the total field of view, in one dimension, with the
shadowed region subtracted is shown by the grey regions. In practice this zone creates an
annulus around the occulter so that a planet’s full orbit may be observed.

It is important to note that the throughput of the system is strongly reduced, to

approximately 40% with these parameters. This is less of a problem when viewing bright

sources and there are spare photons. Also this reduction in throughput also reduces

problems associated with scattered light.

4.4 Apodised petal mask applications

The original mask design has been designed to be a star occulter free flying in front of the

James Webb Space Telescope at a significant distance while the design described in this

chapter is to be attached at the pupil of a telescope. The star occulter is briefly described

before the outline of a space telescope with apodised pupil mask is given.

4.4.1 Star occulter

A star occulter differs from a pupil mask in that it is placed to geometrically shadow the

telescope aperture of the star light but not of a planet in orbit. This requires precise

placing of the mask so that it’s angular size is larger than the host star but less than the

angular size the planets orbital distance as shown figuratively in 4.13 The positioning of

the occulter can be calculated simply from the triangle formed by the linear size of the host

star and it’s distance, we have seen in table 3.4 that a typical angular size of a host star

may be 0.250milli− arcseconds and 1AU is 50milli− arcseconds. Therefore we require our

occulter to have an angular size, θ, between these values. It is easier to fly the occulter
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at nearer distances than further so that we would like to maximise the angular size and

we choose a size of 25milli− arcseconds. A further constraint is that the shade must have

a diameter, D, larger than the telescope aperture, this gives us a base for our long thin

triangle and in this case we may choose 5 metres. This ensures a 3 metre aperture is well

shadowed. Thus the distance, r, to our occulter is given by

r =
D

θ
(4.21)

r =
5

25× 10−3

r = 4.13× 107m

r = 41300km. (4.22)

Obviously 40000 kilometres sounds like a long way away and indeed this precludes a

low Earth orbit but in more distance orbits this is not an insurmountable problem. It is

still a problem, not least with station keeping and repositioning.

There are benefits of the system over a pupil mask acting as a coronagraph, as the

star light that enters the telescope’s entrance pupil is much lower and the major problem

of scattered light is very much reduced. Optimised schemes such as though planned for

operation with a JWST-like telescope such as the New Worlds Observatory/Terrestrial

Planet Finder - Occulter(Puig et al. 2010) reckon on a suppression of the incident starlight

at focus by a factor of around 10−10.

4.4.2 Apodised pupil mask

In this work the petal mask shape is to be used as a pupil plane mask whereby the petal

shapes act to apodise the mask. As already described several times the mask is designed

to lie in the pupil plane of a telescope. As such in exo-planetary work it would operate

much like a coronagraph. For this mission concept a space telescope operating in the far

infrared near to λ = 250µm. The aperture d would be three metres in size and use a

cryogenic detector system as seen in the Herschel Space Telescope. With such a setup the

unobstructed, ie no mask, diffraction limited angular resolution θDL of the system would
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be expected to be

θHerschel DL = 1.22× λ

d

= 1.22× 250µm

3m

= 100.0× 10−6 radians

θDL = 21.0′′. (4.23)

With the mask seen in figure 4.11 and using the calculations in (4.20) we might expect

our resolution to increase to approximately 3/5 Herschel DL,

θmasked = 3/5θHerschel DL

θmasked = 12.6′′. (4.24)

Again it needs to be noted that this is just a raw improvement on one metric, whether this

is seen as an improvement overall depends on the scientific objective of the instrument.

For the mission of observing exoplanets we are still a long way from investigating the

search space as defined in table 3.4. As such this work can be seen as of limited possible

exploitation in regards to direct viewing of exoplanets. Another application however could

be the imaging of proto-planetary discs.

These discs are large structures of gas and dust that are orbiting their host star in

a thin disc, at a stage just prior to the formation of planetary solar systems. They can

stretch as far as 50 AU in radius and therefore are much larger targets. If we wanted to

place 5 resolution elements across the image then we might hope to resolve such detail out

to a range of 1.5pc. This is a distance would still limit the search space and considerations

of flux throughput are again important so that we may consider only bright sources.

4.5 Shaped Pupil Design

An alternative design that was then looked at is the Spergel mask(Kasdin et al. 2005).

This is an unapodised pupil mask that seeks to alter the contrast ratio between two objects

in the field of view. This is done by dispersing the light to particular zones of the image

plane depending on the distance from the optical axis. Those objects lying on or near

to the optical axis have their light concentrated in two symmetric zones about the image
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Figure 4.14: Pupil plane illumination of a Spergel mask. Red denotes transparent(= 1)
and blue opaque(= 0).

plane while off axis objects are imaged largely unaffected due to the contrast ratio between

the star and object of study. As seen in table 3.4, section 3.2 the this ratio is substantial

and carries the threat of swamping off axis sources as the diffraction wings get blown up.

The purpose of this is to aid the viewing, direct imaging of exoplanets or spectrographic

analysis. As seen in section 3 the contrast ratio between a planet and its host star can

be of the order 107 at λ = 20µm. This is typically of a dynamic range beyond current

detectors reach. And so with our Spergel mask we hope to reduce this contrast in particular

“detection zones” in the image plane. The resulting image plane illumination can be

explained by reference to the Fourier optics as described above. Figures 4.14 and 4.15

as generated in MATLAB show how the flux is diverted to a cross shape centred on the

centre of the image. Light from an off axis source is affected in the same way, the point

spread function (PSF) has the same shape, and we would see this light brought to focus

as expected. However while the off-axis object sits in a discovery zone the contrast ratio

is improved. The measured improvement in contrast ratio is of the order of 102 and

we might expect to be able to discern the ratio of 104 with modern technology. Equation

(3.10) and figure 3.10 tell us we face a ratio of the order 107. Therefore the design fails

to meet this requirement. The main failure to achieve the required reduction in flux ratio

comes from the digitisation of the curve in the Matlab code. To carry out a finite Fourier

transform the curve needs to be squared off. The resolution of the Fourier transform is
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Figure 4.15: Image plane illumation. Red denotes illuminated portion of the plane. Note
the two detection zones, left and right of the image centre.

×

=

Figure 4.16: The figure shows top right the electric field as produced by a bright central
object and two faint objects (brightness ratio 100:1). One positioned due South and one
due East. Top right is the Spergel pupil. At the bottom is the product of the two, the
physical electric field that will propagate through our system.
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Low Contrast
Zone

High Contrast
Zone

Figure 4.17: Top left shows the Fourier transform of the lower image in figure 4.16. The
yellow and red areas show where the light from the “star” has been diffracted too and the
blue areas where the light has been diffracted from. The object to the South is in an area
of low contrast as shown in the surface plot below, object to the East is in a high contrast
region.

then limited by the processing power available. Reflecting this, the concept has not been

employed in the field over concerns about the accuracy that the mask could be constructed.

Any deviation from an analytic curve and the desired contrast ratio reduction is sig-

nificantly reduced. As seen in figure 4.15 the contrast reduction in illumination within

the detection zone is of O(10), well short of the analytic capability. The reason for this

is the “graininess” as seen in figure 4.14. The curve is squared off within the code and

assuming the mask is one metre wide at its widest point vertically then the pixel size

is equivalent to 200µm, which is a considerable engineering challenge already. Secondly,

the flux throughput of the system is necessarily reduced due to the opaque nature of the

mask. A further problem with the system is that not all of the image plane benefits from

a reduced contrast and as such you have a reduced detection efficiency over other meth-

ods. If the on axis light is constrained to 10% of the image plane then your time spent

looking for exoplanets is also reduced to 10%. As such this method presents some very

tempting benefits. Further iterations are possible where the shape is repeated vertically,

each iteration will increase the search areas(Kasdin et al. 2005).
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4.5.1 A space based aperture masked spectrograph

Unmentioned so far in this chapter is the investigation of the atmospheric composition of

exoplanets. In the search for extra terrestrial life finding hospitable planets is only the

beginning. The primary method of identifying biological processes on these planets seems

to be looking for bio-marker molecules in their atmospheres. This is a large and broad

subject that isn’t discussed further here other than to list several of these molecules that

we might be of interest in table 4.1.

Bio Marker Strong lines present at: µms

CO 2.3, 4.6
CO2 2.8, 4.3, 15
CH4 3.3, 8.0
NH3 3.0, 6.1, 10.5

Table 4.1: Table of significant bio-markers that we may use as targets for spectroscopic
analysis of exoplanetary atmospheres.

What can be described are instruments that might help in collection and analysis of

light from atmospheres such that spectroscopy can be carried out. The problem that limits

current investigation is that the light received at Earth is with current instruments is not

spatially resolved. With transiting exoplanets we can deduce a planetary atmosphere via

spectrographic substitution whereby the light from the host star is subtracted from host

star and planet. This light is obviously collected at different parts of the planet’s orbit

such that it is obscured at some point. This is still a messy method as the light from

atmosphere, includes reflected as well emitted radiation. What can help through spatially

resolving the source is the light from the planet can be sent to a spectrograph separately.

As discussed at length above the ability is very challenging and it is proposed that this

could be achieved through pupil masking.

The flux ratio R between the host star and an exoplanet at 1AU is calculated above,

equation (3.10), and so we need to separate the star from the planet and reduce the

diffracted light. This diffracted light needs suppression by a factor of at least Rwing, the

ratio of star light to the planetary light in the wing of the of the image. Considering the

star image to be an airy disc then the further the separation of the planet from the star

the lower this ratio becomes, given some modulation. However we can shape the pupil of

our telescope such that the result we obtain in the image plane is more helpful.

The shape of pupil used in this work was devised by Kasdin et al.(Kasdin et al. 2005).
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This pattern distributes the light into a star shaped pattern as seen in 4.15. This immedi-

ately helps with Rwing by redistributing the light from some “detection” zone to elsewhere

in the image. Analytically this method can reduce the flux ratio in the detection zones by

a factor of 106 in the NIR. With this reduction we can apply some version of an integrated

field unit whereby the light from different points in the image plane can be directed to a

spectrograph separately2. This allows for a direct measure of the spectra of exoplanetary

atmospheres.

With such a mask placed in front of a 12 metre telescope we could expect to resolve the

habitable zone around host stars out to a distance of around 6 parsecs. This distance would

limit the ability to conduct wide surveys but allow for a high accuracy of spectrographic

measurement.

2See section ?? in chapter ?? for one such way to do this.
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Chapter 5

A labtop Intensity Interferometer

Robert Hanbury Brown did in 1950(Brown and Twiss 1957)(Brown and Twiss 1958) what

all good physicists do and abstracted the ideas associated with practical interferometry,

that is the recombination of light in phase, and reconsidered which physical phenomena

had to be recombined. In previous discussions about the procedure of interferometry we

have made reference to the phase of the electric field being recombined and noted that

this leads to a coherence time ∆t and coherence length ∆l(Haniff 2007) of around 1µm.

It is this tough engineering constraint that Hanbury Brown thought to overcome, and he

did this by using the correlation of the phase of the intensity ϕI in place of the phase of

the amplitude ϕA.

It is by no means obvious that there should be a correlation measurable within ϕI across

two apertures but with mathematical assistance provided by Richard Twiss a coherent

theory was developed and proven in the lab over the next decade(Brown and Twiss 1958).

Some counter experiments were attempted to contradict this theory but they came up

short and the Hanbury Brown and Twiss effect is accepted science today1. As well as

being used in astronomy it has also found applications in the field of particle physics.

Photons are bosons and particle physics of course has its own interest in that class of

particle, the quantum physics is directly transferable.

In this chapter a brief update of the theory of interferometry with respect to mea-

surements of ϕI instead of ϕA is given. Then there is a description of laboratory work to

1Indeed Roy Glauber’s work to determine the concept from a quantum physical perspective earned him
the Nobel Prize in 2005(Glauber 2006)

69
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build an updated Intensity Interferometer as an alternative instrument architecture to the

orthodox amplitude based interferometers.

5.1 The theoretical underpinnings of the Intensity Interferometer

To explain the use of the phenomena in astronomy it is not necessary to invoke quantum

mechanics, we can use the classical wave mechanics as described in chapter 2 with a small

amendment to the interfered quantity.

An electromagnetic wave is typically described by a magnitude and an oscillating phase

in such a way Eϕiθ. However a thermal source will have a non constant magnitude and as

such we need to consider E as complex as well with a separate phase, denoted as EϕI or

Ẽ. It can be observed that ϕI oscillates on a much slower timescale than ϕA, by a factor

of 104. Which leads directly to a coherence length increased by the same factor.

This increase in coherence length is of significant benefit to the construction of an

interferometer. As can be shown(Haniff 2007)(Dravins et al. 2012) the total induced path

length error must be less than half the coherence length

∆L < ∆l/2.

The increase in ∆l by a factor of 104 means the construction of the instrument is con-

strained to being accurate to 30cm against a limit of 1µm. 2 Building to these limitations

is obviously an easier task and this de-restricting of build quality lets us be much more

optimistic about the viability of a full size instrument.

To understand how an Intensity Interferometer works I use the explanation given in the

introduction to “The Intensity Interferometer” written by Robert Hanbury Brown(Hanbury Brown

1974), further explanation can be found in (LeBohec et al. 2008). We refer back to figure

2.2 where two points radiate independently and interfere at two apertures but we replace

the apertures with detectors. Here we move the discussion further by considering the

current created in the detectors by the incident radiation. A simple consideration about

the behaviour of the detector would suggest the current produced is proportional to the

intensity of the light I. Therefore the current produced, iA at detector A, iB at detector

2A path length error of 30cm would lead to a reduction in the interferometric visibility of 50% when
observing in the optical.
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B, will be the sum of the electric field disturbances created by σ1 and σ2:

iA = KA [E1sin(ω1t+ φ1) + E2sin(ω2t+ φ2)]2 (5.1)

iB = KA [E1sin(ω1(t+ d1/c) + φ1) + E2sin(ω2(t+ d2/c) + φ2)]2 . (5.2)

The electric field at B showing an extra phase term to represent the longer distance the

light has travelled to B than the path to A. And we use K to represent the efficiency of

the detectors in converting photons to electrons.

And so multiplying out the squared brackets we find that both iA and iB have a similar

form of four terms;

iA =
1

2
{(E2

1 + E2
2)− [E2

1cos2(ω1t+ φ1) + E2
2cos2(ω2t+ φ2)]

− 2E1E2cos((ω1 + ω2)t+ (φ1 + φ2))

+ 2E1E2cos((ω1 − ω2)t+ (φ1 − φ2))}, (5.3)

iB =
1

2
{(E2

1 + E2
2)− [E2

1cos2(ω1(t+ d1/c) + φ1) + E2
2cos2(ω2(t+ d2/c) + φ2)]

− 2E1E2cos((ω1 + ω2)t+ ω1d1/c+ ω2d2/c+ (φ1 + φ2))

+ 2E1E2cos((ω1 − ω2)t+ +ω1d1/c− ω2d2/c(φ1 − φ2))}. (5.4)

The first is an expected DC offset representing the basic response of the semiconductor.

The second term is more subtle and represents the second harmonic of the combined

radiation fields. This term is filtered out from the signal and does not reach the multiplier.

This electronic chain is explained next in section 5.3. The third term again can be filtered

by our electronics.

The fourth term however is of use to us. This term causes a fluctuation in the intensity

of the light that we expect to be correlated as it is the sum of the electric fields, which we

can see by multiplying the fourth term of equations (5.3) and(5.4), letting c(d) stand for

the correlation.

c(d) = KAKBE
2
1E

2
2cos[(ω/c)(d1 − d2)]. (5.5)

As the phase offset (d1− d2) increases in magnitude with angle θ the correlation will drop

to zero. It can then be seen by direct analogy to 2.2 and (2.4) that our Intensity Interfer-
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Detectors

Integrator

A B

Telescopes

Figure 5.1: Light from a distant source is collected by two telescopes and directed at two
detectors which each send a filtered signal to the integrator. Note the optical transmission
of the signal is denoted by a curvy wave and electronic transmission via a zig-zag wave.

ometer is measuring angular sizes in a very similar way to the amplitude interferometer

described in section 2. Actually we are measuring the square of the visibility function,

γ2, which has the unfortunate result of losing the phase information. This means we can-

not unambiguously reconstruct any image asymmetries directly from two apertures in a

Intensity Interferometer.

A major problem that we encounter with attempting to measure this second order

effect is that it is a fluctuation in a relatively large current. Extraction of the signal from

the noise is the main drawback

(
S

N

)
= c(d)T0/N(T0) = Aαn|γd(0)|2

(
∆fT0

2

)1/2

(5.6)
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The plotting of the measured electronic correlation against separation of the detectors

then allows us to investigate the correlation function as we would have with the strength

of the modulation in section 2.2.

5.2 An updated intensity interferometer

To see if we can make use of the benefits of the Intensity Interferometer setup while

lessening the impact of the negatives associated with the scheme we can look at the

effect of introducing modern electronics to the system such as looked at by Camarata and

Horch(Camarata and Horch 2011). Focus on those areas we can readily improve on the

1970’s incarnation within Equation (5.6) tells us that increasing the electronic resolving

power of the detector ∆f increases the signal to noise ratio. Specifically

(
S

N

)
∝ (∆f)1/2. (5.7)

At the Narrabri Observatory they achieved a ∆f of approximately 100MHz, with mod-

ern electronics we can readily increase that by a factor of ten with available laboratory

equipment. As such we would see an increase by a factor of three on the results previously

generated. For example in practical terms this means we could assess the radii of stars

to a known percentage in a third of the time previously, or that we could assess three

times as many objects in a given time. Further we can see that the signal to noise is

also directly proportional to the systems quantum efficiency, that is how well we can turn

incident photons into output electrons.

(
S

N

)
∝ α. (5.8)

With a modern chain of electronics and detectors we can be optimistic of an efficiency of

%50(Le Bohec and Holder 2006), an improvement of two and half times on the benchmark

that was Narrabri.

Taken together these improvements give a signal to noise increase of seven over the

Intensity Interferometer operated by Hanbury Brown. There they were limited to a mag-

nitude of 2.5, with this improvement we can calculate the magnitude reachable by an

improved, modern interpretation. Starting with equation (5.6) and rearranging for n, and
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Characteristic Value

Aperture 4× 10−6m2

Quantum efficiency α 0.70
Detector bandwidth 1GHz
Integration time 3600s

Table 5.1: Values for a theoretical Intensity Interferometer at the University of London
observatory (ULO).

substituting the known relation between the photon flux and the magnitude

n = 2.512mλF0 (5.9)

wherem is magnitude and F0 the photon flux of a zero magnitude star, 5×10−5s−1m−2Hz−1,

we find

mλ = −2.5 log

[
(S/N)

F0Aα|γ(d)|

√
2

∆fT0

]
. (5.10)

Aiming for a signal to noise of 5 and using apertures of 30m2, an integration time of

T0 = 3600s and values of α and ∆f as suggested above, we can probe stars down to a

magnitude of 6. A very significant improvement on previous instruments.

Alternatively we might consider a modest field setup at a small observatory such as the

University of London Observatory at Mill Hill in North London. Here they are a pair of

matched C14 Celestron Schmidt Cassegrain telescopes at a fixed baseline of approximately

7m. The important values for calculating the signal to noise are contained in table 5.1,

with values for the detectors found in section 5.3.1.

Using these values we can plot the deepest magnitude reachable for a given integration

time. In figure 5.2 each curve represents the variation in signal to noise ratio given an

increase in integration time for varying magnitudes. At the bottom of the figure we can

see the curve for a 0 magnitude star and each line gives the ratio with the magnitude

increasing by one, up to m = 6, towards the top of the figure.

Taking reasonable values for the signal to noise and integration time, 5 and 103s

respectively we can expect to be able to measure stars down to third magnitude even with

the modest setup at ULO.
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Figure 5.2: Integration time (s) vs Signal to Noise.

5.3 The lab model

To validate the improvements suggested in section 5.2 a simple lab top demonstrator

was designed and implemented within the Optical Science Laboratory of the Astrophysics

group at University College London. A major inspiration for this work was the second in

a series of papers by Hanbury Brown and Twiss(Brown and Twiss 1958) that set out their

initial proof of concept experiments carried out in the 1950’s. The physical setup is shown

in figure 5.3. This design recreates an interferometric setup on the labtop by placing a

pinhole some distance from two detectors that the pinhole is not well resolved by either

aperture3. To show that the coherence of the light in the aperture plane is being measured

the detectors are firstly placed co-incident, and a non zero correlation is found and then

separated by a distance that should show a zero correlation if the above theory is correct.

To allow for the detectors to be placed co-incident as seen from the source a beam splitter

is placed in inbetween the source plane and aperture plane. This is optically flat and has

no effect other than redirecting 50% of the light at a right angle to the original optical

axis. Thus optically the two detectors are at the same angle and distance from the source

which implies d = 0 and we measure γ0.

As seen in The Intensity Interferometer(Hanbury Brown 1974) we can calculate the

3See (5.12) for details.
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Detector B

Movable stage

Oscilliscope
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= optical transmission
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= Area optically shielded

Figure 5.3: Diagram of the labtop Intensity Interferometer setup showing the optical setup.
Light from the source via a pinhole hits the beam splitter and sent to two detectors such
that they are optically coincident. A lens in front of each detector increasses the collection
area. Detector B can move perpendicular to the optical axis simulating increasing the
baseline separation of the detectors as in a functioning interferometer.

zero separation correlated signal S(0) from

S(0) = ATbνf

(
a1θ1π

λ0

)
f

(
a2θ2π

λ0

)∫
α2(ν)n2

0(ν)dν (5.11)

This partial coherence factor, f (η), is dependent on the product of the angular size of

the source and linear size of the aperture, with the parameters defined in figure ??. Where
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η � 1 then f(η)→ 1, or

for
aθ

λ
= η � 1

f(η) ≈ 1

for
aθ

λ
= η ≈ 1

f(η) ≈ 0.7

(5.12)

From here a movement perpendicular to the optical axis has the effect of increasing d

and at d = D we would find a zero correlation. If we were in the far field then to calculate

D we refer can back to equation (1.1) on page 15 and considering L = 3m, a pinhole at

the source of 0.1mm2, lenses at the detector stopped to 5mm and λ = 500nm so that

θ = 3.33× 10−5radians and

D ≈ 1.22× 500nm

3.33× 10−5

D ≈ 1.8cm (5.13)

However because we are not in the far field, as seen η ≈ 1, we need to consider the effects of

only partial coherence over the aperture and as such the correlation S is actually measuring

the overlap of the two apertures. So a movement to a separation of D = 2×aperturewidth

should result in a zero correlation, ie at

d = D S(d) = 0 (5.14)

Which for our apertures of 5mm width suggests a separation of 1cm.

5.3.1 The detectors

The detectors used are a pair of avalanche photo diodes (APD) from Hamamatsu Photon-

ics, Japan. These were provided in a module with a built in amplifier, unit C5658. The

unit is biased to improve the sensitivity and within this circuit is a temperature control to

moderate the bias voltage to appropriate levels. The technical details are summarised in

table 5.2. The detector is well matched in terms of response time to the signal frequency

of a thermal source. As seen in chapter 1 for a thermal source this is expected to be a
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Characteristic Value

Bandwidth 50kHz to 1GHz
Wavelength 400nm to 1µm
Sensitivity (λ = 800nm) 2.5× 105 V/W
Maximum input 10 mW
Amplifier Gain, B 100

Table 5.2: Important Characteristics as per APD module C5658 instruction manual.

frequency around 1GHz and with a wavelength response wide enough to detect a source

out to near infrared frequencies.

The output of the detector can be calculated from

Vout = Pin × radiant system× diode gain× load resistance× amplifier gain. (5.15)

For high speed optical signals the lower bound to the sensitivity is determined by the

dark noise present in the semi conductor. For a low noise amplifier the signal to noise is

improved by an amount approximately equal to the amplifier gain B.

5.3.2 The electronics

For the integrator an oscilloscope was used to collect the output from the detectors and

to save the data to file. This file is later analysed in software to determine the correlation

of the detector outputs.

The oscilloscope used was a GW Instek GDS-2302A with a Bandwidth of 300MHz

which under samples the detectors at 1GHz as seen in table 5.2. This is the limiting

bandwidth of the system. The sensitivity at 100MHz is approximately 100mV which via

equation (5.15) determines a minimum light intensity of

Pin =Vout ×
1

radiant sensitivity × diode gain× load resistance× amplifier gain

Pin =
100mV

0.5A/W × 100× 50Ω× 100

Pin =2.5× 10−6 = 2.5µW (5.16)

Which dictates a bright source.

To record the data from the oscilloscope use was made of the Datalog function. This is

not native to the equipment but was downloaded and installed as an additional function.

This function allowed the waveform as currently displayed to be saved to memory and
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then downloaded to a memory stick. This could be repeated for a set time, the sum of

which would be the total integration time. This leaves a set of files to be analysed as

described in section 5.3.4.

5.3.3 The source

The theory of Intensity Interferometry requires a thermal source that comprises a very

large number of independent emitters so that the source is a collection of varying intensity.

For scientific objects of interest it is not unrealistic that we can expect such a thermal

source. For the laboratory experiment an incandescent bulb was used. This was imaged

onto a pinhole to provide a thermal source with known size and shape.

We can calculate the photon flux at the detector with some fair assumptions of the

physical parameters present in the system.

Beginning with the source, an incandescent lamp, we can measure the input power via

P = IV (5.17)

P = 650mA× 12V

P = 7.8W

Where P is the electrical power through the lamp, I and V the current through and

voltage across the filament. And so we expect our output to be in the region of 10 watts.

To calculate the output power of the lamp we turn to the blackbody equation

I =
2hc2

λ5

1

exp
(
hc
kTλ

)
− 1

(5.18)

Where h is Planck’s constant, c is the speed of light, λ the wavelength at which the power

is emitted, k is the Stefan Boltzmann constant and T the temperature of the filament.

Integrating this over the region of the spectrum that the detector is sensitive to will

gives us a relevant power output. Allowing for losses due to glass surfaces, the light

dispersing over a hemisphere centered on the pinhole in front of the lamp, the emmisivity

of the tungsten at 15% and the detector efficiency we can see that the total input power

comes out at 3.0 × 10−6 watts. Assuming an average wavelength of 500nm we have a

photon flux of 7× 1024 photons per nano second of integration time. Which matches the

requirements of equation (5.16)
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Figure 5.4: A simulated recording of an electronic signal generated by a detector. The top
trace shows the raw output of a time varying, AC intensity about some DC constant. The
bottom trace shows how the AC component after removal of the DC offset. The central
trace shows the product of the two AC traces over time. Note for this highly correlated
sample this correlation is “high”.

5.3.4 The software

The data from each channel was simultaneously recorded by the oscilloscope and trans-

ferred to a pc running Matlab for analysis. This software calculates the average value

of the light over the total integration time, then calculates the correlation value from

equation (5.6).

Figure 5.4 shows the output of Matlab after inputting the data. It shows three traces

using simulated data. The top traces show iA and iB which represent the electronic output

from two detectors, A and B as seen in figure 5.3. These traces are the combination of

the AC and DC components inherent the incident light. The bottom trace is the AC trace

alone with the DC trace removed. These AC traces are then multiplied together timewise

to produce the middle trace. The correlation as defined in (5.11) is equal to the sum of

this trace for the correct integration time. For the near perfect correlation in figure 5.4

sums to around an, arbitrary, value of around 4200. In figure 5.5 we have input a delay
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Figure 5.5: Here the simulated data as used in figure 5.4 has a time offset applied to
represent a path length difference. The red trace is at zero path length and the blue trace
has an offset of about 1200 points. The purple and yellow trace show the input signals
with the DC component removed. Green shows the product of the AC signals, note how
it now goes negative for parts of the integration time.

into one signal so that we see a much lower correlation in the original signals. Importantly

we note that the product trace varies both positive and negative and that the sum of this

therefore much closer to zero at around 15.

To obtain the DC component the arithmetic mean is taken of the trace and this is

subtracted piecewise from each data point to leave the AC signal alone. This simulated

data shows a much larger AC signal than would be expected in a thermal source.

5.3.5 Results

The results taken from the lab were effectively a null result. Six runs were made both at

zero displacement and with the detectors offset to 8mm. These results are summarised in

table 5.3

The low measured value of Γ fails to confirm the expected result of a positive value.

This is possibly due to the short integration time. While the system was running for the
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Table 5.3: Table of runs conducted on labtop Intensity Interferometer.

Equipment Setup

Run Number: d T Γ
1 0 5 0.001
2 0 30 0.002
3 0 35 0.013
4 0 35 0.002
5 0 35 -0.0086
6 8mm 35 -0.0121

full time, there was a latency within the oscilliscope recording method whereby data was

only being recorded for a short period of this time. As such this needs further investigation

and improvement, else the low actual integration time will ultimately limit the signal to

noise ratio.

5.4 A space based Intensity Interferometer

This section will try to describe a space mission based on Intensity Interferometry and

consider what can be achievable with a low cost and high reliability mission. It is consid-

ered to be an alternative mission paradigm, distinct from those mentioned in chapter 1

that have repeatedly failed to see the light of day or indeed night.

5.4.1 Architectural Overview

An Intensity Interferometer can be constructed from just five parts, two apertures, two

receivers and a correlator. In practice we need to add ancillary items to direct the light and

electrical signals to where they are needed. These parts can be considered independently

of the main parts however so here we will concentrate on considerations directly related to

these main parts. As with any space mission the total mass of the system is the primary

cost and as such the fewer parts the better. However the technical capabilities of the system

are much improved on increase from the basic five elements. With an interferometer there

is a tension between spreading your apertures far and wide to increase the sensitivity to

longer wavelength fourier components4 which correspond to smaller details on the source

with the ability to substantially measure the intermediate frequencies. The measurement

of these lower frequencies relies on being able to “fill” the aperture plane with receivers

over the course of an observation. This may be done by rotation of the array of apertures

4For further details on fourier optics see section 4.1.
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R theta

Figure 5.6: As the aperture array rotates about θ the sky is filled with footprints of the
apertures. Varying R allows for full coverage. In practical terms it is not necessary to
have 100% coverage and integrationtimes may limit the amount of time spent in any one
configuration.

as shown in figure 5.6. These considerations are discussed in sections 5.4.3 and 5.4.4.

With the low cost of this scheme the mission proposal would be for a core of five to ten

apertures able to image objects of large angular size such as the planetary orbits in table3.4

and three or four “outriggers” flying at a large separation able to measure objects of low

angular size such as stellar discs. This suggests a total number of spacecraft in the region

of 5 + 3 + 1 = 9 to 10 + 4 + 1 = 15, each aperture is envisaged to be 1m in diameter.

The total error budget in the system is set by choosing an arbitrary limit for loss

of coherence due to path length mismatches between the source and the apertures. A

reduction in coherence by 50% allows a path mismatch of around 30cm5 and therefore the

optical surfaces can be of the “light bucket” type. This can significantly reduce the cost

of manufacture and eases concerns over correct figuring of the mirror in space. Formation

5As described on pages 148 and 149, An Introduction to Optical Stellar Interferometry(Labeyrie et al.
2006) and chapter 5.
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Figure 5.7: Baseline versus angular resolution for three wavelengths. The vertical dashed
line represents the angular size of a G class star at 100pc and the dot-dash line the same
star at 40pc.

flying concerns can also be lessened, maintaining position in formation flight is still a

largely unproven technology. Lim(Lim and Ahn 2014) writes that position keeping to a

millimetre accuracy is possible. Kristiansen and Nicklasson(Kristiansen and Nicklasson

2009) suggest a sub metre accuracy available after ≈ 5 minutes. This level of control is

well capable of operating within the total error budget of the satellite array.

Each spacecraft would record the measured intensity for some integration time and

then send this data to the central hub spacecraft for primary correlation.

5.4.2 Baseline versus angular resolution and field of view

As explained in chapter 2 the baseline of an interferometer may be seen as analogous to the

diameter of a monolithic aperture when considering the finest detail that may be resolved.

As such it is tempting to fly our apertures as far apart as reasonably possible in the aim

of maximising our angular resolution. However the further apart the spacecraft fly the

higher the demands on the station keeping of the apertures. Also an interferometer is only

able to measure angular frequencies equal to 1/B and the overall picture is modelled from

a variety of visibility measurements as seen in figure 2.3. Therefore some sophistication

is required in the spacing and positioning of our apertures. Figure 5.7 shows angular

resolution versus baseline annotated with the size of several objects of interest at three

different wavelengths. We can see that at a distance of 100pc a baseline of at least 105m



5.4. A space based Intensity Interferometer 85

is required to view in the FIR while only 2 × 102 in the visible. A problem of inverse

wavelength dependency mentioned in chapter 1. Therefore for this mission proposal a

baseline of 5× 104 metres is suggested as this includes the ability to resolve G class stellar

discs at a distance of 100 parsecs. The core would be 200 metres in size as this allows

sizes as small as 0.5AU at 100pc to be resolved. This ability allows for imaging of of the

habitable zone of 0.5 to 2AU around G class stars.

5.4.3 Apertures and phase closure

The advantage of a monolithic lens over the diluted nature of an interferometric pupil

is its ability to simultaneously measure all fourier frequencies up to λ/D for some di-

ameter, or baseline, D. With this information an image can be obtained instantly, for

interferometric imaging some finite time is necessary while as many fourier components

are compiled as wanted. We do not need to fully measure the pupil plane for a usable

image, some partial measurement can be made and via modelling a usable image can be

obtained. While the contrast of the visibility function can be readily obtained it’s phase

is much harder in a practical instrument. We can regain the phase information from the

“closure phase”(Cornwell 1989)(Baldwin et al. 1986). It was first described by Jennison

in 1958(Jennison 1958).

Closure phase works by comparing the phase from three apertures such that the origi-

nal, “absolute” value is replaced with a relative value and the ambiguity within the image

is lowered. Without an assumption about the original source intensity or with a completely

filled aperture then ambiguity will never be zero but we can make substantial progress

with only a partially filled aperture.

As described in Kraus et al., Infrared imaging of Capella with the IOTA closure phase

interferometer(Kraus et al. 2005) the closure phase can be used for the imaging of Binary

stars, with the ability to plot angular separation as a function of time. Phase closure is

necessary for high angular resolution of stellar discs, giving information about variations in

surface temperature and equatorial bulging. Highly detailed images including dynamical

processes can be reconstructed via the method such the Equatorial disc conjunction of

ε-Aurigae(Kloppenborg et al. 2010), where the equatorial dust disc of one of the binary

system obscures it’s partner.
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Figure 5.8: Signal to noise ratio for decreasing magnitude vertically. The lowest dashed
line represents 8thmag and the top line 0thmag, each line between being a change in
magnitude of one.

5.4.4 Observation time versus Signal to Noise

Section 5.1 references the low sensitivity of an Intensity Interferometer and therefore we

are sensitive to maximising the integration time spent observing objects of interest. As

can be seen in figure 5.2 an integration time of one hour allows a signal to noise ratio

(snr) of five to be measured for a magnitude two star using modest equipment. With

modern equipment and larger mirrors we can investigate the deepest magnitude we can

reach with an Intensity Interferometer . With six metre sized mirrors, an efficiency of

0.5 and electronics operating in the region of 100MHz we can expect observation times

of around one hour to reach a snr of around 1 for a 7thmag star as shown in figure 5.8.

Within 10 hours a magnitude 4 star can be measured to a SnR of approximately 5. Being

space based has the major advantage of allowing integration times of over 12 hours, for

given directions on the sky. And as such much longer integrations can take place. Figure

5.9 shows the same function but plotted against a log time to see the effects of longer

integration times. Due to the nature of the function there are ever diminishing returns

on integration times. Setting an arbitrary limit at 100 hours we can hope to achieve a

signal to noise ratio of unity down to a magnitude of nine and ten can achieved in a little

over 100 hours. Using the parameters in table 5.4 this sets our limiting magnitude at

a conservative nine. Using this magnitude of nine we can determine a distance at which

we can hope to measure a G class star. Taking our own star as a prototype the absolute
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Figure 5.9: Plotting time on a log scale shows that for very long exposures of 100 hours
we can reach a signal to noise of one for at most a magnitude nine star. This could be
pushed to magnitude ten for a little extra time. The lowest solid line represents a 10thmag
star and the top line 0thmag star, each line between being a change in magnitude of one.

Parameter Value

Collecting area, A 30m2

Overall system efficiency, η 0.5
Electronic bandwidth, ∆T 100 MHz
Integration time, T

Table 5.4: Parameters of a space mission.

magnitude of such a star is five and using the distance modulus relationship,

m−M = 5 log d− 5,

d = 10
M−m+5

5 , (5.19)

we find that,

d = 10
10−5+5

5

d = 102pc. (5.20)

Here, m is the apparent magnitude, M the absolute magnitude and d, the distance in

parsecs.

So with the parameters as in table 5.4 we can hope to reach close to a distance of 100

parsecs in line with our scientific goals.
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Chapter 6

Conclusions

Considering the technical capabilities of the instruments studied we can reach some ten-

tative conclusions that an interferometric array may be some minor benefit to the study

of exoplanets.

Of the three iterations of the instrument we have found that pupil masking is unlikely

to be of sufficient benefit to overcome the problems of flux ratio and diffraction wing

suppression. A large scale space based interferometer may well be able to probe some of

the search space needed to advance the science of the field.

The flux ratio improvement calculated in chapter 4 is of the order of 102, well short of

the required 107 as defined in chapter 3. As such the designs as presented would not be

of sufficient efficiency to allow separation of the light of the host star from the exoplanet

in orbit. Improvements in the fidelity of the coding could possibly enhance our analysis

of the masks calculated as the resolution of the software is such that a lot of noise from

the discrete fourier transforms. This increase of fidelity would require an increase in the

processing power available.

The angular resolution of a space based Intensity Interferometer of sub 0.1 milliarc-

second into the far infrared with a baseline around 104 would allow significant numbers

of stars to be studied with unprecedented accuracy. Integration times of a few hours are

highly acceptable within a space mission where the Earth’s rotation and diurnal nature

are not relevant.

Ultimately this system would be a cheap and reliable first space based interferometer

89
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from which other more adept machines can learn from and build upon. As seen in section

5.3 a working laboratory demonstrator could be made with simple cheap components.

Though a refined model of this is required to show it’s potential. A larger scale model

could then be made to further understand the issues of such an instrument operating in a

space environment.



Appendix A

The Van Cittert-Zernike Theorem

The Van Cittert-Zernike Theorem (VCZ Theorem) is the physical description of light

propagation and the resultant coherence of two points in space-time1. As such it can used

to construct a notion of a coherence area, the size of which can give information about

the source responsible for emitting the light.

To begin with we define a 4D co-ordinate system of (X,Y, Z, t), that is three spatial

and one time component. We take Z as parallel to a line connecting the centres of our

three planes of interest, Σ, A and F and thus can be taken as the optical axis of our

system. We will consider the general case where the system is ‘stationary’ and as such

the behaviour of the electric field at a specific time Et is time independent. That is while

it will have an instantaneous random value, the character of the fluctuations remain the

same over time and therefore a time average of appropriate length (t >> 1/ν, where ν is

some typical frequency) will give the same answer regardless of any offset in t. Assuming

a plane parallel geometry of the source, σ, our apertures, A1, A2 and the focal plane F

allows us to reduce the co-ordinate system to 2D, (X,Y ). To avoid confusion (X,Y ) will

be mapped to three different notations, (l,m) in Σ, (u, v) in A and (x, y) in F as shown

in figure 2.1.

The VCZ theorem can be summarised as follows, the intensity distribution in A is

proportional to the fourier transform of the intensity distribution in Σ given that the

1Note that use of the word space-time is not to invoke notions of relativity but simply to refer to a
particular point in space at a particular point in time.
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Figure A.1: We consider beams of light travelling from Σ to A, from the point on the
surface of Σ, σ to 2 apertures in A.

distance between Σ and A is great enough that we might consider to be in the fraunhofer

regime. To see this we begin by defining the situation between Σ and A in figure A.1.

Within this picture an elementary point is considered on the surface of Σ, σ and the direct

path that point makes towards two apertures A1 and A2; Which gives two vectors riA1

and riA2 .

From this situation we can describe the disturbances at A1 and A2 as

VA1(t) =
∑
i

Vi1(t) and (A.1)

VA2(t) =
∑
i

Vi2(t) (A.2)

with Vi the disturbance at σi.
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Defining the mutual intensity J(A1,A2) as

J(A1,A2) =〈VA1(t)V ∗A2
(t)〉

=
∑
i

〈ViA1(t)V ∗iA2
(t)〉+

∑
i 6=j

∑
〈ViA1(t)V ∗jA2

(t)〉, (A.3)

and assuming a physical source of mutual incoherent oscillators then

∑
i 6=j

∑
〈ViA1(t)V ∗jA2

(t)〉 = 0 (A.4)

for i 6= j. Now with reference to the vectors in figure A.1, riA1 and riA2 , we can write the

disturbances at A1 and A2 due to σi are respectively

ViA1(t) =Ai

(
t− riA1

v

) e−2πiν̄(t−riA1
/v)

riA1

and

ViA2(t) =Ai

(
t− riA2

v

) e−2πiν̄(t−riA2
/v)

riA2

, (A.5)

|Ai| represents the is the magnitude of the radiation from σi and arg Ai the phase, v is

the velocity of light in the intervening medium between Σ and A. Combining equations

(A.3) and (A.5) gives us the coherence at two points on A due to a single point on σ,

〈
ViA1(t)V ∗iA2

(t)
〉

=
〈
Ai

(
t− riA1

v

)
A∗i

(
t− riA2

v

)〉 e−2πiν̄(riA1
−riA2

)/v

riA1riA2

=

〈
Ai(t)A

∗
i

(
t− riA2 − riA1

v

)〉
e−2πiν̄(riA1

−riA2
)/v

riA1riA2

. (A.6)

In astronomical applications the path length riA2 − riA1 can be considered small com-

pared to the coherence length of the light then (riA2 − riA1)/v is negligible and from

equations(A.3) and (A.6) we arrive at

J(A1,A2) =
∑
〈Ai(t)A∗i (t)〉i

e2πiν̄(riA1
−riA2

)/v

riA1riA2

(A.7)

A real physical source will comprise so many individual elements σi that it can be

considered continuous and the sum in equation (A.7) becomes an integral. This also

permits us to rewrite 〈Ai(t)A∗i (t)〉 as I(σ), the intensity per unit area of Σ. We can also

reconsider our vectors as typical of the path from some source point to our apertures and

lose the i subscript. Further refinement can be made with the use of the wave number k̄
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in place of 2πν̄/v and so (A.7) becomes

J(A1,A2) =

∫
I(σ)Σ

eπik̄(r1−r1)

(r1r1)
dσ. (A.8)

Equation (A.8) is more useful when normalised to the overall brightness of the source

which allows easy reference between different sources. We do this by dividing by the

brightness of the source as seen at A1 and A2 leading to

j(A1,A2) =
1√

I(A1)
√
I(A2)

∫
Σ
I(σ)

eπik̄(r1−r1)

(r1r1)
dσ (A.9)

which is the formal van Cittert Zernike theorem. It tells us that the correlation between

two points illuminated by a source will vary as separation increases and this variance

depends on the size of the source and its distance.

Rewriting the vectors r1 and r2 in terms of the surface coordinates on Σ, l,m and A,

u, v, (A.9) can be rewritten into a very familiar form

jA1A2 =
eiφ
∫∫

Σ I(l,m)e−ik̄(pl+qm)dldm∫∫
Σ I(l,m)dldm

. (A.10)

This clearly resembles a fourier transform, so that a plot of the coherence in A will be equal

to the value in the fourier transform of the source distribution. Taking a simple circular

source as a top hat function we find the transform to be a first order bessel function, fixing

one aperture to the centre of this distribution and moving the second aperture radially

outwards the correlation drops as a bessel function drops, reaching zero at distance of

0.61λ̄
θ , where θ is the angular size of the source as seen from A.

From here we can understand the principles of how an interferometer works, by varying

the separation of the two collecting areas we are investigating the size and form of the

coherence area and, at least in theory, after suitable sampling we can reconstruct the

source distribution.



Appendix B

Petal mask code output examples

In this appendix a few examples of the output from the petal mask code are given to show

the variation in the focal plane arising from parameter variation.

Table B.1 contains a summary of the parameters used for four mask designs and are

representative of the full output from the code.

Parameter

Chart number: r h N ra
1 400 500 8 1500
2 400 650 8 1500
3 400 600 14 1500
4 400 550 10 1500

Table B.1: The table contains the parameters as defined in section 4.3.1
, page 54.
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Figure B.1: Top: Chart 1. Bottom Chart 2.
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Figure B.2: Top: Chart 3. Bottom Chart 4.
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Appendix C

Starmask code example

clear all

%Mask Parameters

r = 400; %inner radius

theta = linspace(0,2*pi(),500); %angular position of spike vertex

theta2 = linspace(2*pi(),0,500); %angular position of aperture

N = 10; %number of spikes

M = 500; %number of vertex points per spike

h = 500; %height of spikes

%h1 = 300; %mid-height of spikes

%h2 = 800; %height of spikes from inner radius r

ra = 1500; %radius of aperture

filler = NaN;

DetSize = 1500;

delta = 250; %fft resolution

edge = 15000;

%Guassian Constants % f(x) = a.exp(-((x-b)^2)/(2.c^2))

Gsig = 1;

Gmu = 0;

99
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Ga = 1/(Gsig*(sqrt(2*pi())));

Gb = Gmu;

Gx = 1;

Gc = Gsig;

%GaussFunc = a*exp(-((x-b)^2)/(2*c^2));

%vector pre allocation

x1 = zeros(5,N);

trianglex = zeros(5,N);

y1 = zeros(5,N);

triangley = zeros(5,N);

circley = r.*sin(theta + pi());

circlex = r.*cos(theta + pi());

circleay = ra.*sin(theta2+pi());

circleax = ra.*cos(theta2+pi());

%plot(x,y)

subY = linspace(-DetSize, DetSize, delta)’; %size of ’detector’/image

subX = linspace(-DetSize, DetSize, delta);

X = repmat(subX,delta,1);

Y = repmat(subY,1,delta);

for n = 0:N-1

for m = 0:M/2;

triangleVert1r(M*n+m+1) = r + (2.*m.*h/M); %setting the spike points

%around the circle (r) (out)

end

for m = (M/2):M-1;

triangleVert1r(M*n+m+1) = (r+h) - (2.*(m - M/2 ).*h/M); %setting the spike

\%points (r) (back in again)

end
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end

for n = 0:N-1

for m = 0:M/2

triangleVert1theta(M*n+m+1) = [(pi()/2 + n.*(2*pi()/N)) -

(Ga*6.249).*exp(-(((t riangleVert1r(M*n+m+1)./100) -

(r/100)-Gb).^2)./(2.*Gc^2)).*(pi()/N*0.4)]; \%theta_0 + theta-n -

Theta_w + Theta_g

end

for m = (M/2)+1:M-1

triangleVert1theta(M*n+m+1) = [(pi()/2 + n.*(2*pi()/N)) +

(Ga*6.249).*exp(-((triangleVert1r(M*n+m+1)./100) -

(r/100)-Gb).^2./(2.*Gc^2)).*(pi()/N*0.4)]; \%theta_0 + theta-n +

Theta_g

end

end

%calculating the vertex

%points in rectilinear coords

triangleVert1x = triangleVert1r.*cos(triangleVert1theta);

triangleVert1y = triangleVert1r.*sin(triangleVert1theta);

%x = cat(2, triangleA1x, triangleB1x, triangleC1x, triangleA1x);

%y = cat(2, triangleA1y, triangleB1y, triangleC1y, triangleA1y);
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Appendix D

Spergel Mask code example

clear all;

close all;

Factor1024 =2;

d = 1024*Factor1024; %Resolution

R = 25;

xmin = -R; %-R-(R/10);

xmax = R; %R+(R/10);

ymin = -30; %-R-(R/10);

ymax = 30; %R+(R/10);

%perturbations of a, b and alpha

perta = rand/10;

pertb = rand/10;

pertalpha = rand/10;

a = 0.4 * (1 + perta); %aperture parameters

b = 0.4 * (1 + pertb);

alpha = 3.7 * (1 + pertalpha);

103



104

y_s = linspace(ymax,ymin,d)’; %vector 1 x d

Y_s = repmat(y_s,1,d); % matrix d x d

x_a = linspace(xmin,xmax,d); % vector d x 1

y_a = a*R*(exp(-(x_a.*(alpha/R)).^2)-exp(-alpha^2)); %top edge; vector d x 1

x_b = linspace(xmin,xmax,d); % vector d x 1

y_b = -b*R*(exp(-(x_a.*(alpha/R)).^2)-exp(-alpha^2)); %bottom edge vector d x 1

%plot(x_a,y_a);

Y_a = repmat(y_a,d,1); % repeats topedge function for each row

Y_b = repmat(y_b,d,1); % repeats bottomedge function for each row

%the above produces two matrices, largely similar. they repeat f(x) for

%each y row, as y(x) is not a function of y.

% imagesc(Y_s); colorbar

% imagesc(Y_a); colorbar

% imagesc(Y_b); colorbar

twodm = logical(Y_a > Y_s ) + logical(Y_b < Y_s) - 1 ;

%binary 2D function f(x,y)

%This quries whether each pixel location is located within the open region

twoDM = twodm./100; %to reduce the influence of the aperture function.

figure(1);

imagesc(twoDM) ; axis off;

fftr = (fft2(fftshift(twoDM),1024*Factor1024,1024*Factor1024));

fftR = (fftr); %Fourier transform of f(x,y)

fftZ = fftshift(fftR);

%manipulates output to put zero frequency in centre of plot

%normalZ = fftZ/max(fftZ);
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figure(2);

imagesc(log(abs(fftZ))); axis off; colormap(hot); colorbar;

%figure(3);

%plot(fftZ(:,d/2))

par = [a, b, alpha];

%plot(x_a,y_a)

%hold on

%plot(x_a,y_b)

% flipx_b = flipud(x_b’);

% flipy_b = flipud(y_b’);

% allx = cat(1,x_a’,flipx_b);

% ally = cat(1,y_a’,flipy_b);

% output = cat(2,allx,ally);

%dlmwrite(’spergelmask.uda’,output,’ ’)

Fieldsize = 1024*2;

screen6464 = zeros(Fieldsize,Fieldsize);

Ysep = 30;

Xsep = 30;

starsize = 1;

starbrightness = 10^2;

starY1 = Fieldsize/2+Ysep; %Fieldsize/2 - starsize;

starY2 = starY1 + starsize; %Fieldsize/2 + starsize;

starX1 = Fieldsize/2+Xsep; %Fieldsize/2 - starsize;

starX2 = starX1 + starsize; %Fieldsize/2 + starsize;

size = 1;

brightness = 1;
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PlanetY1 = Fieldsize/2-Ysep;

PlanetY2 = PlanetY1+size;

PlanetX1 = starX1; %512-Xsep;

PlanetX2 = starX2; %PlanetX1+size;

size2 = 1;

brightness2 = 1;

Planet2Y1 = starY1; %512;

Planet2Y2 = starY2;

Planet2X1 = Fieldsize/2-Xsep;

Planet2X2 = Planet2X1+size2;

% On axis Star

screen6464(starY1:starY2,starX1:starX2) = starbrightness;

% Off axis object 1

screen6464(PlanetY1:PlanetY2,PlanetX1:PlanetX2) = brightness;

% Off axis object 2

screen6464(Planet2Y1:Planet2Y2,Planet2X1:Planet2X2) = brightness2;

figure(4);

imagesc(screen6464); %Star field

fftscreen = fft2(fftshift(screen6464),1024*Factor1024,1024*Factor1024);

fftScreen = fftshift(fftscreen);

figure(5);

imagesc(abs(fftScreen)) %FT of star field

Result = (twoDM).*(fftScreen)’; %Product of (Ap) and FT(Field)

figure(6);

imagesc(log(abs(Result)));
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image = ifft2(fftshift(Result),1024*Factor1024,1024*Factor1024);

Image = fftshift(image);

figure(7);

imagesc(log(abs(Image))); colorbar;

closeupLOImage = (abs(Image(PlanetX1-50:PlanetX2+50,PlanetY1-50:PlanetY2+50)));

closeupLOMax = max(max(closeupLOImage));

figure(8)

surf(log(closeupLOImage));

closeupHIImage = (abs(Image(Planet2X1-50:Planet2X2+50,Planet2Y1-50:Planet2Y2+50)));

closeupHiMax = max(max(closeupHIImage));

figure(9)

surf(log(closeupHIImage));

closeupHI = (abs(Image(Planet2X1-10:Planet2X2+10,Planet2Y1-10:Planet2Y2+10)));

closeupLO = (abs(Image(PlanetX1-10:PlanetX2+10,PlanetY1-10:PlanetY2+10)));

averagehi = mean(closeupHI);

averageHi = mean(averagehi);

averagelo = mean(closeupLO);

averageLO = mean(averagelo);

ratioHI = closeupHiMax/averageHi;

ratioLO = closeupLOMax/averageLO;
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