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Public transportation systems are an essential component of major
cities. The widespread use of smart cards for automated fare
collection in these systems offers a unique opportunity to under-
stand passenger behavior at a massive scale. In this study, we use
network-wide data obtained from smart cards in the London
transport system to predict future traffic volumes, and to estimate
the effects of disruptions due to unplanned closures of stations or
lines. Disruptions, or shocks, force passengers to make different
decisions concerning which stations to enter or exit. We describe
how these changes in passenger behavior lead to possible over-
crowding and model how stations will be affected by given
disruptions. This information can then be used to mitigate the
effects of these shocks because transport authorities may prepare
in advance alternative solutions such as additional buses near the
most affected stations. We describe statistical methods that lever-
age the large amount of smart-card data collected under the natural
state of the system, where no shocks take place, as variables that
are indicative of behavior under disruptions. We find that features
extracted from the natural regime data can be successfully exploited
to describe different disruption regimes, and that our framework
can be used as a general tool for any similar complex transporta-
tion system.
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Well-designed transportation systems are a key element in
the economic welfare of major cities. Design and planning

of these systems requires a quantitative understanding of traffic
patterns and relies on the ability to predict the effects of dis-
ruptions to such patterns, both planned and unplanned (1).
There is a long history of analytic and modeling approaches to

the study of traffic patterns (2), for example using simulated
scenarios in simple transportation systems (3), and analysis of
real traffic data in complex systems, either focusing on a small
samples (4) or using more aggregate data (5, 6). Here we take
this approach to the next level by making use of smart-card data
and incident logs to (i) predict traffic patterns and (ii) estimate
the effect of unplanned disruptions on these patterns. We ana-
lyzed 70 d of smart-card transactions from the London trans-
portation network, composed of ∼10 million unique IDs and
6 million transactions per day on average, resulting in one of the
largest statistical analyses of transportation systems to date.
A related literature deals with various aspects of dynamics in

complex networks and complex systems in general (7–9), using a
variety of data sources, from emails (10) to the circulation of bank
notes (11) to online experiments on Amazon Turk (12). More
recently, a number of analyses have leveraged mobile phone data
as proxies for mobility (4, 13–15).
However, smart-card technology allows us to obtain large

samples of passenger location and movements without requiring
noisy and potentially unreliable proxies such as mobile Global
Positioning System traces (16), while also leveraging a more
structured environment that imposes hard constraints on pat-
terns of urban mobility (17). In particular, these constraints of
the system allow us to identify a global model of passenger be-
havior under local line and station closures.

Transport for London Data
The London transportation system is composed of several con-
nected subsystems. We focus on the Underground, Overground,
and Docklands Light Rail (DLR), all of which are train services
aimed at fast commuting within the Greater London area only. A
map of the system is provided in Fig. S1.
Transport for London (TfL) provided us with smart-card

readings covering 70 d, from February 2011 to February 2012.
Smart-card readings comprise more than 80% of the total number
of journeys (18). Each reading consists of a time stamp, a location
code, and an event code. The location code uniquely identifies
each of the 374 stations of the system that were active during the
months covered by our data. The two events of our interest are
generated when a passenger touches the smart-card reader at the
entrance (“tap-in” event) or at the exit (“tap-out” event) of a sta-
tion. Passenger IDs are anonymized and ignored in our analysis. We
discarded all tap-in readings that are not matched to a tap-out, and
vice-versa. Time resolution of the recorded time stamps is 1 min.
Each day is composed of 1,200 min, starting at 5:00 AM until 1:00
AM of the next calendar day. Our analysis covers weekdays
only. Weekdays are assumed to be exchangeable (see Fig. S2).

Overview of Analysis
We show that we can reliably predict passenger origin–destina-
tion ðODÞ traffic by combining around 140,000 nonparametric
statistical models with hundreds of millions of smart-card data
events. We also show that the same model provides features that
explain behavior under a shock (or “disruption”) to the system,
defined as an unanticipated period during which a station or a
line is (partially) closed down. The resulting model allows us to
predict the outcome of disruptions and to evaluate stations by how
prone to overcrowding they are given disruptions at peak time.

Significance

We propose a new approach to analyzing massive transportation
systems that leverages traffic information about individual trav-
elers. The goals of the analysis are to quantify the effects of
shocks in the system, such as line and station closures, and to
predict traffic volumes. We conduct an in-depth statistical analysis
of the Transport for London railway traffic system. The proposed
methodology is unique in the way that past disruptions are used
to predict unseen scenarios, by relying on simple physical
assumptions of passenger flow and a system-wide model for
origin–destination movement. The method is scalable, more
accurate than blackbox approaches, and generalizable to other
complex transportation systems. It therefore offers important
insights to inform policies on urban transportation.
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Let Nijt be the number of tap-out events at station Sj at time
t∈ f1,2, . . . , 1200g, caused by passengers who started their journey
at station Si (at possibly different starting times). Station Si is the
entering station, where a journey starts, and Sj is the exit station. We
call Njt the sum of fNijtg over all possible entering stations, a
quantity of interest for potential policies to deal with an excess
number of passengers exiting through a particular destination.
Our approach can be divided into two steps. First, we develop a

predictive model for Nijt for all 374× 374ð≈ 140,000Þ possible pairs
of stations at any minute of the day. This model represents the
natural regime, where no planned or unplanned disruptions take
place. Second, we create a model for Njt under a disruption,
knowing the type of disruption and the time period in which it
occurs. Data on disruptions is provided by logs maintained by
TfL, complementing the smart-card data. The model for the
natural regime plays an important role here, because it is used to
generate expected values of Nijt according to what would have
happened if no disruption had taken place. Such estimates of
counterfactual variables are used as covariates (inputs) for the
model for the factual outcomes, along with other structural
features derived from the topology of the transportation net-
work, where stations are vertices and edges connect stations that
are directly physically linked by train tracks. A linear model pro-
vides a simple description of the relationship between topological
structures, the natural regime, and the regime under disruption.
Intuitively, our disruption model is motivated by the following

postulated relationship between NS
jt , the number of exits from

station Sj at time t under a disruption, and N0
jt, the number under

the natural regime:

NS
jt =N0

jt − Injt +Outjt, [1]

where Injt is the missing inflow, the number of passengers who
cannot reach Sj because of the disruption but would have exited
through Sj otherwise, and Outjt is missing outflow, the number of
passengers who cannot progress in their journeys in the usual
way and will exit early at station Sj. Under a disruption, the
variables in the right-hand side are unobservable, but their ex-
pectations can be estimated and used as covariates in a model
of NS

jt .

Modeling the Natural Regime: Results
We modeled E½Nijt

��PAST�, the expected value of Nijt given all
past tap-in and tap-out events up to the given time in that par-
ticular day. This model was designed to predict three unknowns:
(i) entering (tap-in) counts, (ii) the rate at which passengers
remain inside the transportation system given these counts, and
(iii) the rate at which passengers exit (tap-out) given the number
of passengers inside the system and the length of their stay,
according to origin. For each of these we used nonparametric
regression models to account for the nonstationarity of the
process over time (Supporting Information). We call our method
the tracking model, because it keeps track of the number of
passengers inside the network.
To assess the adequacy of this model, we performed a cross-

validation procedure for predicting the overall aggregations fNjtg
for all stations Sj. With our model, this is obtained simply by
summing over the predicted Nijt for each origin, for a fixed Sj. In
Supporting Information and Figs. S3 and S4 we provide an illus-
tration of predicting Njt for the Oxford Circus station and also
report a sensitivity analysis on how predictions change under
different aggregations of origins and destinations.
The tracking model consists of tens of thousands of compo-

nents, so there is a danger of overfitting. One way of assessing its
adequacy is by comparing our predictions against blackbox models
fitted directly to the aggregated data. We assessed a blackbox
spline model regressingNjt on the time index t. Notice that, for this
model, E½Njt

��PAST�=E½Njt�. A second competing model is a
standard linear autoregressive (AR) model, where each Njt de-
pends on Njðt−30Þ,Njðt−29Þ, . . . ,Njðt−1Þ (Supporting Information).
The cross-validation procedure is fivefold, implying 14 d (70 d/5)

of test data for each fold. For the tracking model, we calculated the
root mean squared error (RMSE) averaged over all stations,
time points, and test days. We obtained an RMSE of 6.76± 0.08
tap-outs per minute for a 1-min-ahead forecast and 6.82± 0.09
for a 30-min-ahead forecast.
To aid the interpretability of the comparisons, we define the

RMSE difference per load as the average difference between the
RMSE of our model and a competitor, first calculated at a station
level and then aggregated by taking a weighted average across
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Fig. 1. RMSE difference per load between (i) the AR model and the tracking
model and (ii) spline model and the tracking model. Fivefold cross-validation
averages for 1-min- and 30-min-ahead predictions. Higher numbers mean an
improvement given by the tracking model. Error bars show a 95% confidence
interval (3 SEs).
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Fig. 2. Average number of exits per minute at Victoria LU station on
Tuesday, January 17, 2012. The blue curve represents the 1-min-ahead pre-
diction under the natural regime using the tracking model. Given a disrup-
tion from 6:00 PM to 7:00 PM between Victoria station and Brixton station in
the Victoria line, the blue horizontal line indicates the average expected exit
rate given by the tracking model under the natural regime, the red line the
averaged observed exit count, and the black line the prediction given by the
disruption model (Eq. 5).
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stations (weighted by the inverse of tap-out traffic volumes at
that station). We discarded stations that have fewer than 10 tap-
outs in the entire day.
We summarize the results of the fivefold cross-validation in

Fig. 1. For instance, the RMSE per load against the AR model
using all stations for a 1-min-ahead forecast is 0.07. This means that
the difference of RMSEs between the AR and tracking methods
has a magnitude that is ∼7% of the total traffic on average. We
also assessed how predictions change when looking at subsets of
the population. After discarding all stations with fewer than
10,000 exits per test day, the difference between our method and
the time-independent spline method is essentially zero. For
smaller stations (≤1,000 exits per test day), the difference is
substantial. Thus, our model does not suffer from overfitting
when compared against a blackbox model that estimates the
aggregated counts directly, and it also improves the performance
for the smaller stations.

Modeling the Effect of Shocks
We modeled the behavior of passengers under two types of dis-
ruption: bidirectional line segment closures and station closures. A
line segment is a sequence of adjacent stations in one of the lines
of the system (e.g., Piccadilly Line, see Table S1). Lines in the
London system typically allow trains to go in two directions, and
closures in a single direction have a weaker effect compared with
closures in both directions so are of less interest when modeling
larger changes. Here, stations are assumed not to close during a
line segment closure, but because of the lack of trains, disrupted
stations without any connection outside of the affected line
segment will typically display a dramatic reduction in the number
of tap-outs. During station closures trains will not stop, so pas-
sengers who planned to exit through that station will not be able
to do so. Line segments are not closed during these events.

Outcome Variable. We assume that, for a given time interval
½t1, tF �= ft1, t2, . . . , tFg in which a disruption takes place, we have
observed the behavior of the whole system up to time t1 − 1. Our
goal is to model the average expected tap-out count per minute,
within the provided time interval, in each station of a given re-
gion of interest (ROI). A ROI is a subset of stations, selected
independently of the data, in which a priori we expect to observe
nontrivial changes in tap-out rate as a function of the topology of
the network and type of disruption.
Although our model can predict the expected tap-out count at

each minute individually, we modeled the average over ½t1, tF �
because this quantity suffices to inform policy on station over-
crowding and excess demand for alternative transportation. We
assumed that the time interval is sufficiently short so that pas-
senger behavior is not affected over time as a function of our
covariates. As such, we define the outcome

N
S½j�
t1: tF ≡

Xt=tF
t=t1

NS
jt

.
F, [2]

for each station Sj in the chosen ROI. Here NS
jt is the number of

tap-outs from station Sj at time t under disruption S, excluding
exits originated in Sj itself. Modeling this type of exit is straight-
forward and therefore we did not include it in the study. Fig. 2
provides an example of the prediction given by our model at
Victoria Underground station.

Covariates for Line Segment Disruption. Consider the case where
the disruption event S is the bidirectional disruption of line
segment l along the sequence of stations Kl ≡ ðSkð1Þ, . . . , SkðMÞÞ.
Given this, we can define the set of covariates in the regression
model for N

S½j�
t1: tF . To distinguish between the natural regime and

the regime under disruption S, let N0
ijt be the corresponding OD

count at time t under the natural regime. Moreover, let μ0ijt;t1 be the

expected value of N0
ijt conditioned on observing all events of the

day up to time t1 − 1. Our set of covariates are functions of μ0ijt;t1.
Ideally, for each station SkðnÞ ∈Kl, the disruption will be related

to the amount of traffic for each ODpair ðSO, SDÞ that passes either
through the links SkðnÞ → Skðn+1Þ or SkðnÞ → Skðn−1Þ in the natural
regime. However, only a fraction of the flow SO →⋯SkðnÞ →
Skðn−1Þ → SD might exit early at SkðnÞ if there are routes from the
origin that do not necessarily use SkðnÞ or that might continue
from SkðnÞ in a different line.
Given the target station SkðnÞ, the expected missing outflow

ϕOUTðnÞ for SkðnÞ at time t is defined as

ϕOUTðnÞ≡
Xt=tF
t=t1

ϕOUT
u ðn, tÞ�F, [3]

where

ϕOUTðn, tÞ≡
X

SD∈KlnSkðnÞ

X
SO≠SD

X
Sv∈NKl

ðnÞ
πOD
kðnÞ,v,l × μ0ODt;t1 .

In this equation, NKlðnÞ are the neighboring stations to SkðnÞ in
the set Kl, and πOD

h,i,l is the probability (under the natural regime)
of passing first through Sh then Si at line l during a journey from
SO to SD (regardless of time). We restrict SD to belong to Kl,
because these are the most difficult destinations to reach by an
alternative route.
These probabilities are not directly identifiable from the smart-

card data. The problem of estimating unobservable trajectories
between two stations is a type of network tomography problem
(19). However, TfL has survey data on passenger route choice, the
Rolling Origin and Destination Survey (RODS) (20). Combined
with prior information on likely routes using structural information
of the network topology, we are able to produce Bayesian posterior
expected values for πOD

h,i,l (Supporting Information). The use of
RODS data minimizes the need for more sophisticated network
tomography models (21–24), for which no software is readily
available for the scale of the problem we are operating at (to the
best of our knowledge).
A potential difficulty with using the missing outflow as a

covariate for our regression model for N
S½kðnÞ�
t1: tF is that, the more

distant a destination is, the more likely a passenger will try a
different route instead of tapping out early at SkðnÞ. To control
for this, we added as a second covariate ϕDISTðnÞ, the average
physical distance (in kilometers) between SkðnÞ and each SkðmÞ ∈
Kl, n≠m. This covariate is used in our model through a variety of
nonlinear transformations (see Fig. S5 for an illustration).
A third covariate in this model is the missing inflow, the amount

of traffic that would have exited through SkðnÞ but will not if the
usual route would be through a vertex in the disrupted segment:

ϕINðn, tÞ≡
X

SO≠SkðnÞ

X
Sv∈NKl ðnÞ

π
OkðnÞ
v,kðnÞ,l × μ0OkðnÞt;t1 ,

with ϕINðnÞ defined analogously.
The fourth covariate is just the expected outcome under the

natural state,

ϕNATðn, tÞ≡
X

SO≠SkðnÞ

μ0OkðnÞ t;t1

and, again, ϕNATðnÞ is defined analogously.
Finally, a fifth covariate, ϕDELAY, is a binary indicator of whether

there were delays elsewhere happening in the same line during the
disruption event. We extracted this covariate from the textual de-
scription of the disruption events according to TfL logs (Supporting
Information).
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Covariates for Station Disruption. Consider the disruption now
being the closure of a single station SK, with no interruption of
service except for the fact that no trains stop at SK. Our expec-
tation is that, once SK closes, passengers will have an increased
probability of leaving at one of the stations Sh adjacent to it. We
estimated the expected number of exits at each Sh with a re-
gression model.
Define πOK

h as the probability of passing through Sh on a
journey that starts at SO and ends at SK, regardless of which line
is taken. We again used RODS data to estimate this quantity
(Supporting Information). We define the expected missing out-
flow of Sh into SK as

ϕOUTðh, tÞ≡
X
SO≠SK

X
Sv∈NKlðSkðnÞÞ

πOK
h × μ0OKt;t1 [4]

with ϕOUTðhÞ defined analogously.
This covariate is meant to capture the excess tap-outs in Sh

because of passengers leaving one station earlier than their
intended destination SK. However, passengers might tap-out one
station past SK, a role that can also be played by Sh with respect to
other origins SO. For this we define πOK′

h as the probability of Sh
being in the same line of the final leg of the journey between SO
and SK, but coming after SK. Covariate ϕOUT′ðhÞ is defined as in
Eq. 4, but using πOK′

h instead.
We also define the covariate ϕNATðhÞ, analogous to the case of

line segment closure, and distance covariate ϕDISTðhÞ, the dis-
tance between Sh and SK in kilometers.

Results
For the period of 70 d, we obtained the corresponding two-way
line segment disruption events with 768 data points, and the
station closure events with 191 data points (see Fig. S6 for raw
data plots). Each data point corresponds to the outcome of a
particular station at a particular disruption. The least-squares
method was used to fit all models.

Disruptions of Line Segments. The ROIs for the line segment
problems are stations within each affected segment K=
fSkð1Þ, . . . , SkðMÞg having other connections outside K. Stations
without other connections have very few tap-outs or none
because no trains can reach them. Stations elsewhere in the
system show weaker effects that we did not consider in
this study.
We define the model for expected outcomes as

Ex

�
N

S½kðnÞ�
t1: tF

�
≡E

�
N

S½kðnÞ�
t1: tF

����PAST,ϕDELAY = x
�

≡β0x + β1xϕ
NAT + β2xϕ

IN + fx
�
ϕDIST	×ϕOUT,

[5]

where the second-order polynomial

fx
�
ϕDIST	≡ β3x + β4xϕ

DIST + β5xϕ
DIST2

captures the impact of ϕOUT regulated by the average distance
between SkðnÞ and the remaining elements of the ROI; x∈ f0,1g,
and we omit the indexing ðnÞ for clarity.

Table 1. Estimates of model for exit counts in affected line
segments

Parameter

ϕDELAY =0 (N = 344,
R2 = 0.93)

ϕDELAY = 1 (N = 424,
R2 = 0.92)

Estimate ± SE P value Estimate ± SE P value

Intercept −0.05 ± 0.33 0.88 0.07 ± 0.38 0.85
ϕNAT 1.16 ± 0.02 <10−15 1.25 ± 0.02 <10−15

ϕIN −1.21 ± 0.11 <10−15 −1.27 ± 0.07 <10−15

ϕOUT −0.05 ± 0.06 0.51 0.21 ± 0.06 <10−3

ϕOUT :ϕDIST 0.10 ± 0.04 <0.01 −0.05 ± 0.02 0.05
ϕOUT :ϕDIST2 −0.001 ± 0.004 <0.01 0.004 ± 0.002 0.11
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Fig. 3. Reduction in error provided by the model in Eq. 5 compared with baselines (i) natural regime covariate only and (ii) uniform flow probabilities.
Dashed lines show the pointwise 95% confidence intervals on the error reduction. Each point considers test cases with minimum number of tap-outs per
minute indicated in the horizontal axis. The number in brackets indicates the number of test cases. (A) Relative errors for line segment events. The absolute
error of tracking model for the line segment disruption varies from 3.0 (all stations) to 12.2 (stations with 85 tap-outs per minute or more) persons per minute.
(B) Relative errors for station events. The absolute error varies from 3.5 (all stations) to 10.5 (stations with 75 tap-outs per minute or more) persons per minute.
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Before fitting the model in Eq. 5, we show models obtained
without the distance covariate ϕDIST,

E0

�
N

S½kðnÞ�
t1: tF

�
= 1.15ϕNAT − 1.28ϕIN + 0.16ϕOUT, [6]

E1

�
N

S½kðnÞ�
t1: tF

�
= 1.24ϕNAT − 1.23ϕIN + 0.09ϕOUT, [7]

because they are easier to interpret than Eq. 5 [standard errors
of coefficients: 0.02, 0.11, and 0.02 for the no-delay case and
0.02, 0.07, and 0.02 for the delay case, respectively (P < 10−7

each). Intercepts were removed (P > 0.75 each)]. This supports
the postulated qualitative contributions of flows in Eq. 1, where
the signs match the postulated contribution of the respective
flows and the magnitude of the ϕNAT component is not substantially
different from unity. We conclude that, structurally, there is a sig-
nificant contribution of missing inflows and outflows to the expected
tap-out rate, which cannot be explained by a linear rescaling of the
natural expected tap-out rate only. Most of the variability in the
outcome can be explained by the natural regime and passenger
flows ðR2 > 0.9Þ.
As a matter of fact, the counterfactual flow ϕNAT was the cova-

riate with the strongest contribution to the model: Fitting a model
with this covariate only gives E0ðNS½kðnÞ�

t1: tF Þ=−0.29+ 1.10ϕNAT and

E1ðNS½kðnÞ�
t1: tF Þ=−0.22+ϕNAT (with R2 = 0.9 and 0.88, respectively).

Interestingly, this model seems to hide the impact of closures in the
ϕDELAY = 1 case.
Table 1 presents the fitted models of Eq. 5. The entries of

fxðϕDISTÞ×ϕOUT can be interpreted as interaction terms in a
linear model. The evidence suggests that the distance from af-
fected stations to other affected stations matters in both cases.
For the case with delays, discarding the nonsignificant quadratic
term, the results agree with the intuition that as distance grows
passengers may feel compelled to find alternative routes, and as
such the missing outflow will be penalized. In the case without
delays, the result seems contrary to intuition. We propose as an
explanation that disruptions without delays are positively asso-
ciated with line segments that offer fewer alternatives to reach
their destinations. In fact, around 53% of the no-delay disruption
events we observed included the end of the line (a feature which,
on its turn, is associated with longer distances among stations and
lack of alternative routes). In contrast, only 38%of the events with
delays included the end of a line (Supporting Information).
We evaluated our framework by its predictive power using

leave-one-out cross-validation (LOOCV). This consists of fitting
a model with a training set containing all points but one, which is
used for testing. For each fold, the error metric is the absolute
difference between the predicted average number of tap-outs per
minute against the true average in the test point.
We compare our performance against two baselines. The first

is the model with ϕNAT as the only covariate, and the second a

model where flow probabilities πOD
kðnÞ,v,l are defined to be constant

(that is, they are removed from the definition in Eq. 3). We focused
on fitting models that aggregate both delayed and nondelayed
events. To better compare models, we report the difference in
the test error averaged over a decreasing subset of test points.
Because the amount of tap-outs per station has a skewed dis-
tribution, a large number of small-traffic stations will mask the
benefits achieved at larger stations. Results are shown in Fig. 3A.
We report the difference in error between each baseline and our
model, for each subset of the test folds considered. As we assess
stations of larger traffic, the difference among our method and
the baselines becomes more evident. The absolute error of our
disruption model for the line segment case varies from 3.0 (all
stations) to 12.2 (stations with 85 tap-outs per minute or more)
persons per minute. See Tables S2–S5 and Fig. S7 for the ab-
solute error in each class of station, prediction and error scat-
terplots, and for sensitivity analyses assessing variations of the
model in Eq. 5.

Disruptions of Single Stations. Our ROI for a station closure SK
consists of its neighbors Sh. The model for N

S½h�
t1: tF , the average tap-

count at each Sh, is

E
�
N

S½h�
t1: tF

���PAST
�
≡ β0 + β1ϕ

NAT + f
�
ϕDIST	×ϕOUT

+f ′
�
ϕDIST	×ϕOUT′,

[8]

where f ðϕDISTÞ≡ β2 + β3ϕ
DIST + β4ϕ

DIST2
and f ′ðϕDISTÞ≡ β2′ +

β3′ϕ
DIST + β4′ϕ

DIST2
. The fitted model is shown in Table 2.

We performed a LOOCV comparison against two baseline
models (Fig. 3B) analogous to the line disruption case. The ab-
solute error varies from 3.5 (all stations) to 10.5 (stations with 75
tap-outs per minute or more) persons per minute (see Table S3
for further details). Although there is no strong evidence our
model outperforms the uniform flow model statistically (Sup-
porting Information), and the improvement over the natural re-
gime baseline is very small, the model is competitive while also
revealing insights on passenger behavior. In particular, it suggests
that passengers who tap-out at a station Sh immediately after SK
will do it less often as the distance between the two stations in-
creases. This is a way of providing evidence of rational behavior of
passengers, which can be used to validate whether announcements
of station closures are being properly used by passengers—this

Table 2. Estimates of model for exit counts in affected
neighboring stations

Estimate ± SE (N = 191,
R2 = 0.95) P value

Intercept −0.07 ± 0.59 0.90
ϕNAT 1.07 ± 0.02 <10−15

ϕOUT 0.59 ± 0.22 <0.01
ϕOUT :ϕDIST −0.32 ± 0.20 0.11
ϕOUT :ϕDIST2 0.01 ± 0.02 0.32
ϕOUT′ 0.89 ± 0.23 <0.01
ϕOUT′ :ϕDIST −0.86 ± 0.29 <0.01
ϕOUT′ :ϕDIST2 0.17 ± 0.07 0.02
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might not be true if communication between staff and passengers is
poor (i.e., if closures are announced only as the train passes
through the closed station). This type of analysis can be applied to
networks other than the London Underground as a validation of
good communication between train drivers and passengers.

Station Sensitivity Index. Besides solving prediction tasks, the
models described here allow for a structural understanding of the
London transportation system. We provide, as an illustration of
information extraction from the fitted models, a categorization
of stations by how sensitive they are to closures at line segments
containing them, information that is crucial when analyzing the
vulnerable points of a transportation network. In particular, for any
given station S, consider all sequences of four stations ðS, S1, S2, S3Þ,
all in the same line, which start at S and follow the physical
adjacencies (if the line ends before four stations or if there is a
bifurcation at a particular point, stop at the end or bifurcation
instead). Consider the scaled expected change in exit numbers
ðE½NS

S,t1: tF �−ϕNATðSÞÞ=ϕNATðSÞ as predicted by the model for
endpoints without delays, where t1: tF is the peak period from 8:30
AM to 9:30 AM. The station sensitivity index for each S is defined
as the maximum over the corresponding normalized expected
changes. Notice that the index can be negative, meaning that a
station is expected to have fewer passengers tapping out com-
pared with the natural regime. This is the case when missing
inflows outnumber other factors, which cannot be captured by
the simpler models with only ϕNAT (Supporting Information).
The station sensivity index is the implicit result of several

factors, including the degree by which station S is the final des-
tination of passengers who reach at least S in their journey—a
“sinkness” factor. The sinkness factor of a station S is given by
the ratio NS=MS, defined as follows: for each OD pair ðSO, SDÞ
such that S lies in the shortest path between these two endpoints
(as measured by the graph given by the union of all lines), add
to NS the total number of ðSO, SDÞ journeys seen in our data,
and add to MS the total number of journeys between SO and
SD′ where SD′ lies between S and SD in the shortest path
SO⋯→ S→⋯→ SD′ →⋯SD. Notice that the ratio NS=MS is
large if S is the final destination point of a substantial fraction of
journeys traversing it, and is equal to 1 if S is the end of a line.
Fig. 4 shows a scatterplot between the station sensitivity index
and the sinkness factor. The association is nonlinear and strong,
summarized by a correlation coefficient of −0.44. In particular,

the nonlinearity seems to be due to an interaction between sta-
tion size with station sensitivity index and sinkness factor. We
highlight the top 10% stations in Fig. 4, defined by their total
volume of tap-outs in our data. In this case, the correlation co-
efficient is −0.60.

Discussion
We have shown that it is possible to predict traffic in a complex,
real-world transportation network using a model consisting of
tens of thousands of nonparametric statistical components. We
have also shown how data from the London system provides
overwhelming evidence for our hypothesis that traffic under
disruption can be decomposed by contrasting it to a counter-
factual output and flows that are split among over 100,000 OD
pairs. This decomposition is validated by predictive performance
under natural and disrupted regimes, and by structural insights that
can be extracted from the model, of which we presented only a small
sample of possibilities. The analysis presented, to the best of our
knowledge, is the largest system-wide predictive study of a complex
real urban railway network to date and integrates data from several
sources, including smart-card data and passenger surveys.
In particular, our analysis introduces novel ideas on how to

combine data from different regimes. Assumptions linking dif-
ferent regimes allow for estimating the effects of a particular shock
using only observational data and natural experiments (25–27).
Although our shocks are random and should not be strictly
interpreted as nonrandom regime indicators, in the usual coun-
terfactual sense (28), we believe that the work presented here
provides an entirely novel way of modeling complex transportation
networks. It explicitly makes use of modularity assumptions that
allow structural claims from a relatively small set of unplanned
shocks. Although we used the London transportation system as
our case study, similar analyses can be undertaken in any trans-
portation systems where smart-card data and disruption logs
are available.
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