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Abstract: 

Parkinson’s disease (PD) is an incurable neurodegenerative disease. Although 

the majority of PD cases are sporadic, 5-10% of cases are inherited. Studies of 

sporadic and genetic forms of PD suggest shared pathogenesis such as 

mitochondrial dysfunction. Mutations in the gene encoding Parkin are the most 

common cause of autosomal recessive, young-onset PD. Parkin has been shown 

to regulate mitochondrial quality control (mitophagy), however the molecular 

pathways that regulate Parkin activity remain poorly characterised. 

MEKK3/p38, MAPK/ERK, and PI3K/Akt signalling pathways have been 

described in association with Parkin regulation.  In this thesis, I have 

investigated whether activation of any of these pathways could lead to Parkin 

phosphorylation by utilising inducible cell lines overexpressing MEKK3-ER, Raf-

ER or Akt-ER genes. I found that Parkin was not phosphorylated following the 

activation of the p38, ERK and Akt pathways. In an attempt to depolarise 

mitochondria in neuroblastoma SH-SY5Y cells lines by mitochondrial uncoupler 

carbonyl cyanide m-chlorophenyl hydrazone (CCCP), I found that Parkin was 

phosphorylated at serine 101 (S101). In order to investigate the role of 

phosphorylation of Parkin S101 in mitochondrial quality control, I established 

SH-SY5Y clones stably expressing wild type (WT), non-phosphorylatable 

(S101A), or phosphomimetic (S101D) FLAG-Parkin. I found that this 

phosphorylation is associated with increased Parkin’s E3 ligase activity. S101A 

cells showed deficiencies in translocation of Parkin to depolarised mitochondria, 

ubiquitination of outer mitochondrial membrane proteins, p62 (an autophagy 

adaptor) recruitment, perinuclear mitochondrial clustering and mitophagy. 

Overall the work presented in this thesis demonstrates that Parkin is activated 

during mitochondrial depolarisation, and that the regulation of Parkin function 

via phosphorylation at S101 plays an important role in mitochondrial quality 

control associated with PD pathophysiology. 
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Chapter 1 Introduction 

1.1 Parkinson’s disease 

Parkinson’s disease (PD) is the second most common neurodegenerative 

disorder, affecting about 2% of the population above 65 years old. The 

prevalence of PD increases with age (de Lau and Breteler, 2006).  When the 

symptoms present before the age of 40, the disorder is called young-onset 

Parkinson’s disease (YOPD) (Quinn et al., 1987). 

The clinical presentations of the disease were first described in 1817 by James 

Parkinson, whose monograph ‘’An Essay on the Shaking Palsy’’ portrayed the 

principal clinical symptoms of the disease, such as involuntary tremor in rest, 

stooped posture and festinating gait (Parkinson, 1817). The intellects and 

senses were not affected. The French neurologist Jean Martin Charcot brought 

the term ‘Parkinson’s disease’ into describing these associated symptoms in 

1877 in order to conferring the honour to Parkinson (Lees, 2007). According to 

the criteria established by UK Parkinson’s Disease Society Brain Bank, PD is 

diagnosed with presentation of bradykinesia plus at least one of the following 

symptoms: rigidity, resting tremor at between 4-6 Hz, or postural instability 

(Table 1-1 summary of clinical diagnosis of PD). 

Brain computed tomography (CT) and magnetic resonance imaging (MRI) scans 

of PD patients are usually normal, the measurement of dopaminergic function in 

basal ganglia by positron emission topography (PET) or single-photon emission 

computed tomography (SPECT) scan can aid in diagnosing PD when dopamine 
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activity is decreased (Brooks, 2010; Brooks et al., 2003). The definite diagnosis 

of idiopathic PD, however, requires histological demonstration of Lewy bodies 

(LB) inclusions in surviving neurons of the substantia nigra compacta (SNc), 

which is one of the main characteristics of the disease (Hughes et al., 1992). The 

main component of LB is α-synuclein, and many other molecules such as 

ubiquitin and tubulin have also been found in these eosinophilic cytoplasmic 

inclusions (Shults, 2006). Another prominent neuropathological hallmark of PD 

is a progressive loss of dopaminergic neurons in SNc and locus coeruleus (LC), 

and these pathological changes could present preclinically (Hughes et al., 1992). 

By the time PD symptoms appear, at least 50% of dopaminergic neurons are 

dead, along with an 80% reduction of dopamine levels (Marsden, 1990). 

The aetiology of PD remains elusive; both environmental and genetic risk 

factors have been identified. Environmental factors such as rural residency 

(Behari et al., 2001; Rajput and Uitti, 1988; Rajput et al., 1986), agricultural 

industry (Barbeau et al., 1987; Fall et al., 1999; Gorrell et al., 1996), or 

consumption of well water (Tanner and Goldman, 1996) have been reported to 

increase the risk of PD. In addition, exposure to some herbicides, 

organochloride pesticides, paraquat, annonacin, manganese, 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) , or rotenone has been found to 

associate with PD (Schapira, 2006). Rapid onset of parkinsonism was first 

discovered in uses of illegal drugs containing MPTP (Langston et al., 1984). 

Although MPTP is not toxic itself, its metabolite cation, 1-methyl-4-

phenylpyridinium (MPP+), interferes with Complex I of electron transport chain 

(ETC) in mitochondria (Schapira et al., 1990). This results in gross 

dopaminergic neuronal death. Rotenone, another Complex I inhibitor, also 

produces parkinsonism in experimental animals by causing dopaminergic 

neuronal death (Schapira et al., 1990). Conversely, two environmental factors 

have been reported to reduce the risk of PD: caffeine (Ascherio et al., 2001) 

(Ascherio et al., 2001) and smoking (Baron, 1986; Quik, 2004). The molecular 

mechanism by which these factors modify the risk of PD is unclear.  
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Over the last two decades, the role of genetic factors in PD pathogenesis has 

been unravelled by studies such as linkage analysis and genome–wide 

association studies. The details will be described in the next section. Genetic 

advances have enormous impact on the understanding of molecular pathways 

implicated in PD pathogenesis, such as  mitochondrial dysfunction, oxidative 

stress, and misfolded proteins accumulation (reviewed in (Dawson and Dawson, 

2010; Devine and Lewis, 2008; Exner et al., 2012; Fitzgerald and Plun-Favreau, 

2008; Martin et al., 2011; Shulman et al., 2011)). Notably, there is increasing 

evidence that mitochondrial dysfunction may be a common pathogenic 

mechanism for both sporadic and familial PD. As mentioned above, the two ETC 

Complex I inhibitors, MPTP and rotenone, cause parkinsonian pathology in 

animal models (Schapira et al., 1990). Reduced Complex I activity in the SNc and 

frontal cortex of PD patients at autopsy further supports the role of Complex I 

dysfunction in sporadic PD (Schapira et al., 1989). Additionally, a dopaminergic 

neuron-specific deletion of the mitochondrial DNA (mtDNA) transcription factor 

TFAM in mice cause parkinsonian features. In the SNc of post mortem human 

brain, there is also an age-dependent increase in mtDNA deletion (Bender et al., 

2006). Although there is no strong evidence that mtDNA mutations are major 

risk for PD, Complex I is particularly vulnerable to mtDNA damage (Exner et al., 

2012). When mtDNA mutations surpass a critical threshold, the respiratory 

deficiency may contribute to dopaminergic neuronal death. 



21 

 

  

Diagnosis of Parkinsonian syndrome 

    Bradykinesia and at least one of the following:  
      1. muscular rigidity;  
      2. 4-6 Hz resting tremor;  
      3. postural instability not caused by primary visual, vestibular cerebellar, or     
                       proprioceptive dysfunction. 

Exclusion criteria for Parkinson’s disease 

 History of: 
    1. repeated strokes with stepwise progression of parkinsonian features, 
    2. repeated head injury 
    3. definite encephalitis 
 Oculogyric crises 
 Neuroleptic treatment at onset of symptoms 
 More than one affected relative 
 Sustained remission 
 Strictly unilateral features after 3 years 
 Supranuclear gaze palsy 
 Cerebellar signs 
 Early severe autonomic involvement 
 Early severe dementia with disturbance of memory, language and prexia 
 Babinski sign 
 Presence of cerebral tumour or communicating hydrocephalus on computed  
         tomography scan 
 Negative response to large doses of levodopa (if malabsorption excluded) 
 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine hydrochloride (MPTP) exposure 

Supportive prospective positive criteria for Parkinson’s disease (three or 
more required for diagnosis of definite Parkinson’s disease) 

    Unilateral onset 
    Resting tremor present 
    Progressive disorder 
    Persistent symmetry affecting side of onset most 
    Excellent response (70-100%) to levodopa 
    Severe levodopa-induced chorea 
    Levodopa response for 5 years or more 
    Clinical course of 10 years or more 

Table 1-1 UK Parkinson’s Disease Society Brain Bank Clinical Diagnostic Criteria. 

(Adapted from (Twelves et al., 2003)) 
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1.2 Genetics of Parkinson’s disease 

PD has long been considered as a sporadic disease. Over the past two decades, 

however, a number of genes have been identified to be associated with PD 

(Table 1-2), and these familial PD cases account for about 5-10% of all PD cases 

(Gasser, 2001). The genes with conclusive evidence of disease association are 

SNCA, LRRK2 (leucine-rich repeat kinase 2), Parkin, PINK1 (phosphatase and 

tensin homologue (PTEN)-induced putative kinase 1), DJ-1 and ATP13A2 (ATPase 

type 13A2). The first reported gene, SNCA, is associated with to autosomal 

dominant PD. It encodes α-synuclein which is found abundantly in LB 

(Polymeropoulos et al., 1997; Singleton et al., 2003). Mutations in LRKK2, which 

encodes a large protein with a kinase and a GTPase function, also lead to 

autosomal dominant early-onset PD (EOPD) (Paisan-Ruiz et al., 2004; Zimprich 

et al., 2004). The four other PD genes are inherited in an autosomal recessive 

fashion. Parkin encodes an E3 ubiquitin ligase (Kitada et al., 1998), PINK1 

encodes a mitochondrial kinase (Valente et al., 2004), DJ-1 encodes a redox 

sensor (Bonifati et al., 2003), and ATP13A2 encodes lysosomal pump (Ramirez 

et al., 2006)  

Several genes or loci have also been identified as susceptibility factors for PD 

(Table 1-3). A multicentre study demonstrated that mutations in GBA, which 

encodes a lysosomal glycosylceramidase, is strongly associated with PD (odds 

ratio 5.43) (Bras et al., 2008; Sidransky et al., 2009). Genome-wide association 

studies (GWASs), on the other hand, identified several common, low risk 

variants (odds ratio < 2) in association with sporadic PD. These loci locate in 

SNCA, MAPT, and HLA (Hamza et al., 2010; Simon-Sanchez et al., 2009). The 

association between LRRK2 and sporadic PD seen in GWAS remains unclear 

(Hardy, 2010). The investigation on the functions of these PD-associated genes 

has considerably improved our understanding of PD pathogenesis.  
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Park locus Map position Gene Functions Forms of PD Reference 

Autosomal dominant 

PARK1/4 4q21 SNCA Synaptic protein LOPD (Polymeropoulos et al., 1997; Singleton et 
al., 2003) 

PARK3 2p13 unknown unknown LOPD (Gasser et al., 1998) 

PARK5 4p14 UCHL-1 Ubiquitin C-terminal 
hydroxylase 

LOPD (Leroy et al., 1998) 

PARK8 12q12 LRRK2 Kinase / GTPase LOPD (Paisan-Ruiz et al., 2004; Zimprich et al., 
2004) 

PARK11 2q36-37 GIGYF2 Regulation of tyrosine 
receptor kinase signalling? 

LOPD (Lautier et al., 2008) 

Autosomal recessive 

PARK2 6q25-27 Parkin E3 ubiquitin ligase Juvenile and EOPD (Kitada et al., 1998) 

PARK6 1p35-36 PINK1 Mitochondrial kinase EOPD (Valente et al., 2004) 

PARK7 1p36 DJ-1 Redox sensor EOPD (Bonifati et al., 2003) 

PARK9 1p36 ATP13A2 Lysosomal ATPase Juvenile Kufor-Rakeb syndrome and 
EOPD 

(Ramirez et al., 2006) 

PARK14 22q13.1 PLA2G6 A2 phospholipase Juvenile levodopa-responsive 
dystonia- parkinsonism 

(Paisan-Ruiz et al., 2009) 
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PARK15 22q12-13 FBXO7 E3 ubiquitin ligase EO parkinsonism-pyramidal 
syndrome 

(Di Fonzo et al., 2009b; Shojaee et al., 2008) 

Unclear 

PARK10 1p32 Unknown Unknown LOPD (Li et al., 2002) 

PARK12 Xq21-25 Unknown Unknown Not clear (Pankratz et al., 2002) 

PARK13 2p13 Omi/HtrA2 Mitochondrial protease Not clear (Bogaerts et al., 2008; Strauss et al., 2005) 

PARK16 1q32 unknown unknown Not clear (Satake et al., 2009) 

Table 1-2 Genes and loci associated with monogenic parkinsonism 
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PARK Locus Gene  Map 
Position 

Risk variants  Approximate Odds 
Ratio for PD 
 

Reference 

Not assigned GBA 1q21 >300 mutations including; N370S and 
L444P 
 

5.4 (Sidransky et al., 2009) 

PARK1/ 
PARK4 

SNCA 4q21 REP1 repeat polymorphism, multiple SNPs 
in 3’ half of gene 
 

1.2-1.4 (Simon-Sanchez et al., 2009) 

Not assigned MAPT 17q21.1 H1 haplotype 1.4 (Simon-Sanchez et al., 2009) 
 

PARK18 HLA-DRA 6p21.3 Multiple SNPs from GWASs 
 

1.3 (Hamza et al., 2010) 

PARK8 LRRK2 12q12 G2385R, R1628P 2.0-2.2 (Kachergus et al., 2005) 

Table 1-3 Susceptibility genes/loci for Parkinson’s disease 



 

26 

 

1.2.1 Autosomal dominant PD: α-synuclein and LRRK2 

Mutations in SNCA, the gene encoding α-synuclein, was the first gene locus 

found to associate with dominantly inherited EOPD (Polymeropoulos et al., 

1997). Both missense mutations and genomic multiplications in SNCA cause 

EOPD and lead to dementia (Kruger et al., 1998; Polymeropoulos et al., 1997; 

Ross et al., 2008a; Zarranz et al., 2004). A gain of toxic function mechanism was 

suggested by the dominant inheritance pattern of SNCA mutations, although the 

precise function of α-synuclein remains poorly understood. The finding of α-

synuclein as a major component of LB suggests an important role of α-synuclein 

in the pathogenesis of sporadic PD (Spillantini et al., 1997). Studies in sporadic 

and familial PD patients have revealed susceptibility variants located in the 

SNCA gene (Dickson et al., 2009; Ross et al., 2007). Several recent studies 

suggest that the accumulation of mutant α-synuclein alters mitochondrial 

morphology or fission/fusion process (Banerjee et al., 2010; Calì et al., 2012; 

Devi et al., 2008; Kamp et al., 2010; Nakamura et al., 2011; Xie and Chung, 2012). 

However, the precise relationship between aggregation, mitochondrial 

dysfunction and cell death caused by mutant α-synuclein remains largely 

unknown. 

Mutations in LRRK2 also cause EOPD with clinical features indistinguishable 

from the sporadic form of PD. The encoded multidomain protein, has 2527 

amino acids. More than 40 different LRRK2 mutations have been reported. To 

date, six missense mutations (R1441C, R1441G, R1441H. Y1699C, G2019S and 

I2020T) have been identified as pathogenic and all are highly penetrant (Li et al., 

2014; Manzoni et al., 2013; Wider et al., 2010). Amongst them, kinase domain-

located G2019S is the most common disease linked mutation in European 

(Kachergus et al., 2005). Both R1629P (Ross et al., 2008b) and G2385R (Di 

Fonzo et al., 2006) have been described as risk factors associated with PD in 

eastern Asian populations. Mutations in the kinase domain has been 

consistently associated with  an increased kinase activity (Greggio et al., 2006), 

whereas mutations in ROC (Ras of complex proteins) or COR (C-terminal of ROC) 

domains display a reduced GTPase activity (Daniels et al., 2011; Greggio and 
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Cookson, 2009; Lewis et al., 2007; Li et al., 2007; West et al., 2005). LRRK2 has 

been implicated in several cellular process , including the neurite branching 

regulation, autophagy , protein synthesis through the mTOR (mammalian target 

of rapamycin) pathway, and mitochondrial quality control (Alegre-Abarrategui 

et al., 2009; Cherra et al., 2013; Cookson, 2010; Manzoni et al., 2013).  

1.2.2 Autosomal recessive PD: PINK1, Parkin, DJ-1, ATP13A2, FBXO7 

and HtrA2 

Mutation in Parkin are the most common cause of EOPD (Kitada et al., 1998), 

particularly in patient with recessive inheritance (Lucking et al., 2000). Parkin is 

a cytosolic E3 ubiquitin ligase (Shimura et al., 2000) with multiple functions. In 

addition to facilitating proteasomal degradation of target proteins, recent 

studies have suggested that Parkin acts downstream of PINK1 in the common 

pathway of mitochondrial quality control process (Clark et al., 2006; Exner et al., 

2007; Park et al., 2006; Poole et al., 2008; Yang et al., 2006; Yang et al., 2008), 

indicating the important role of mitochondrial dysfunction in PD pathogenesis. 

Details of Parkin will be further described in 1.3. 

Mutations in PINK1, although much rarer than Parkin, also causes autosomal 

recessive EOPD with clinical features indistinguishable to those caused by 

Parkin mutations (Valente et al., 2004). The neuropathological investigation of 

persons with homozygous pathogenic mutations has never been reported, 

although heterozygous cases reported demonstrate LB pathology of unclear 

pathogenic relevance (Gandhi et al., 2006). The majority of PINK1 mutations 

occur in the kinase domain or otherwise impair kinase activity (Deas et al., 

2009). PINK1 is a protein kinase located in mitochondrial membranes (Gandhi 

et al., 2006). In healthy mitochondria where membrane potential is high, PINK1 

is imported into inner mitochondrial membrane (IMM) where it is cleaved by 

presenilins-associated rhomboid-like protein (PARL) and the ~53kDa cleaved-

form PINK1 is cleared from the outer mitochondrial membrane (OMM) (Deas et 

al., 2011b). In damaged mitochondria where membrane potential is low, the 63 

kDa full-length PINK1 is accumulated on OMM to recruit Parkin for the 
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subsequent mitophagy process (Narendra et al., 2008). The exact activators of 

PINK1 are currently unknown. PINK1 has been shown to phosphorylate TNF 

receptor-associated protein 1 (TRAP1) (Pridgeon et al., 2007), High 

temperature requirement protein A2 (HtrA2) (Plun-Favreau et al., 2007), and 

Parkin (Kondapalli et al., 2012; Shiba-Fukushima et al., 2012), further 

supporting its important role in maintaining mitochondrial integrity. 

 Mutations in DJ-1 are a rare cause of autosomal recessive EOPD (Abou-Sleiman 

et al., 2003; Bonifati et al., 2003; Haque et al., 2008; Hedrich et al., 2004). No 

neuropathological examination of homozygous pathogenic DJ-1 patient has 

been described yet, so it is uncertain whether this is a LB disorder or not. The 

precise function of the protein is not clear, although it translocates to 

mitochondria in response to oxidative stress (Canet-Aviles et al., 2004). 

Mitochondrial oxidative damage, depolarisation and fragmentation have been 

associated with DJ-1 loss-of-function mutations (Irrcher et al., 2010; Thomas et 

al., 2011), suggesting a protective function of DJ-1 to safeguard neurons from 

oxidative stress (Zhou et al., 2006). However, its physiological function and the 

mechanism by which it exerts this protective effect remain to be determined 

(Cookson and Bandmann, 2010).  

Mutations in ATP13A2 have been found in families with Kufor-Rakeb syndrome, 

characterised by atypical juvenile-onset parkinsonism with pyramidal 

degeneration and cognitive dysfunction (Ramirez et al., 2006). A homozygous 

mutation was later described in a sporadic patient presenting juvenile-onset 

parkinsonism, impaired upward gaze and moderate brain atrophy (Di Fonzo et 

al., 2007). This gene encodes a lysosomal ATPase, but it is not clear what its 

substrate is. Since α-synuclein aggregates are cleared by lysosomal degradation, 

it is likely that lysosomal dysfunction caused by mutations in ATP13A2 or other 

PD-associated lysosomal gene GBA contributes to the pathogenesis of 

parkinsonism (Pan et al., 2008). 

Mutations in FBXO7 cause parkinsonism with the combination of 

extrapyramidal and pyramidal symptoms. A number of mutations haven been 
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reported in families from Europe and Asia (Di Fonzo et al., 2009a; Paisán-Ruiz et 

al., 2010; Shojaee et al., 2008). FBXO7 is a member of the F-box family of 

proteins that functions as adaptors for E3 ubiquitin ligase complex named SCF 

(Skp1-Cul1-F-box) complex (Skowyra et al., 1997). Pathogenic mutations in 

FBXO7 have been reported to affect mitophagy process, thereby reducing Parkin 

recruitment to depolarised mitochondria and mitofusin 1 (Mfn1) ubiquitination 

for subsequent mitophagy (Burchell et al., 2013). 

Mutations in HtrA2 have been reported to associate with PD since a 

heterozygous mutation has been found in four patients and a genetic 

polymorphism has been associated with PD (Strauss et al., 2005). HtrA2 

encodes a mitochondria-located protease (Bogaerts et al., 2008; Strauss et al., 

2005). It was first described as a pro-apoptotic factor when few groups 

reported that HtrA2 is released from mitochondrial intermembrane space 

where it binds a number of inhibitors of apoptosis (IAPs) (Jones et al., 2003; 

Martins et al., 2002; Verhagen et al., 2002). This releases the inhibitory effects of 

IAPs on caspases and induces subsequent cell death. On the contrary, HtrA2 

knockout (KO) mice or mice carrying a loss-of-function mutation were found to 

exhibit severe neurodegeneration, supporting an neuroprotective role for HtrA2 

(Jones et al., 2003; Martins et al., 2004). As described earlier, upon activation of 

the p38 signalling pathway, HtrA2 is phosphorylated by PINK1 at S142 (Plun-

Favreau et al., 2007) whereby protease activity is enhanced, as well as by cyclin-

dependent kinase-5 (Cdk5) at S400 (Fitzgerald et al., 2012) whereby 

mitochondrial health is maintained.  However, the downstream function of 

HtrA2 remains largely unclear. Due to the genetic association study has not 

been reproducible, mutations in HtrA2 are likely to be a risk factor for PD. 
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1.3 Parkin: an E3 ubiquitin ligase 

1.3.1 Gene structure and pathogenic mutations 

Parkin is encoded by a gene of 12 exons that spans 1.38 Mb in the long arm of 

chromosome 6 (6q25.2-q27) (Kitada et al., 1998). Mutations in Parkin are most 

commonly identified in early onset Parkinson's disease (EOPD) (Hedrich et al., 

2002; Lucking et al., 2000). About 50% of EOPD patients with a family history of 

autosomal recessive inheritance carry mutations in the Parkin gene (Lucking et 

al., 2000). Mutations in this gene have also been identified in 15% to 18% of 

sporadic EOPD cases (Broussolle et al., 2000; Hedrich et al., 2002; Periquet et al., 

2003), suggesting that Parkin plays an important role in the pathogenesis of 

both familial and sporadic PD. 

A large number of mutations, including exonic copy number variations 

(deletions/duplications), sequence substitutions, and insertions, have been 

reported in Parkin (Marder et al., 2010; West et al., 2002). Copy number 

variation (CNV) mutations commonly occur between exons 2 and 7 (Marder et 

al., 2010; West et al., 2002). The exon rearrangements in Parkin gene are 

summarised in Figure 1-1 (Figure 1-1 A), whist the missense and nonsense 

mutations are summarised in Figure 1-1(Figure 1-1B) (Mizuno et al., 2006). The 

pathogenic mutations in Parkin are usually homozygous or compound 

heterozygous, whilst the role of heterozygous mutations in increasing the risk 

for PD remains controversial (Klein et al., 2007). Hypotheses that support the 

heterozygous mutations as a risk of PD include haploinsufficiency (Foroud et al., 

2003; Sun et al., 2006), and a subclinical reduction in dopamine metabolism in 

sporadic PD patients with heterozygous mutations in Parkin (Hilker et al., 2001). 
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(A) Schematic presentation of exons of Parkin and its exon rearrangement. (B) Schematic 

presentation of exons of Parkin and missense mutations, nonsense mutations, and small 

deletions (Figures adapted from (Mizuno et al., 2006)) 

 

A 

B 

Figure 1-1 Parkin gene structure 
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1.3.2 Protein structure and localisation 

Parkin is a 465-amino acid RING (Really Interesting New Gene)-in-between-

RING (RBR) type E3 ubiquitin ligase that consists of an N-terminus ubiquitin-

like (Ubl) domain, a linker and four RING finger domains, namely RING0, RING1, 

in-between-RING (IBR), and RING2 (Kitada et al., 1998; Trempe et al., 2013) 

(Figure 1-2 A).  Recent resolution of full-length Parkin crystal structure reveals 

that RING1 is the only domain with classical C3HC4 (C: cysteine, H: histidine) 

cross-brace zinc-coordination topology characteristic of a canonical RING. 

RING0 demonstrates an atypical hairpin topology, and IBR and RING2 display 

sequential topologies (Trempe et al., 2013) (Figure 1-2 B).  

Parkin is expressed abundantly in the brain, heart, skeletal muscles, testis 

(http://www.uniprot.org/uniprot/O60260), and at lower level in fibroblasts 

and peripheral leukocytes (Kasap et al., 2009; Nakaso et al., 2006). Although the 

Parkin subcellular localisation is mainly cytosolic (Shimura et al., 2000),  Parkin 

was observed in Golgi apparatus (Huynh et al., 2007; Kubo et al., 2001), 

endoplasmic reticulum (ER) (Imai et al., 2001), mitochondria (Darios et al., 

2003; Narendra et al., 2008), aggresomes (Muqit et al., 2004), neurites (Huynh 

et al., 2001), and synaptic vesicles (Kubo et al., 2001; Zhang et al., 2000). Some 

pathogenic mutations in Parkin, of which the catalytic activity is retained, have 

been reported to alter Parkin localisation, thereby forming aggresome-like 

structures (Cookson et al., 2003; Sriram et al., 2005; Wang et al., 2005b).  

http://www.uniprot.org/uniprot/O60260
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(A) Diagram of Parkin domains with domain names on the top and amino acid 

numbers for domain boundary at the bottom. (B) Cysteine (C) or Histidine (H) zinc-

finger domains are shown in blue circles connecting by lines from the N- to the C-

terminus. (Figure 1-2 B adapted from (Wauer and Komander, 2013)) 

A 

B 

Figure 1-2 Domains of full-length Parkin and topology of its zinc-finger 

domains. 
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1.3.2.1 Effects of protein domains on Parkin’s E3 ubiquitin ligase activity 

A number of studies have also shown that Parkin is tightly folded, hence auto-

inhibited (Chaugule et al., 2011; Trempe et al., 2013; Wauer and Komander, 

2013). This is suggested by two major structural features: first the 

RING0:RING2 interface that buries the catalytic Cys431 on RING2, and second 

the REP (Repressor element of Parkin):RING1 interface that occludes E2 

ubiquitin-conjugating enzyme binding site on RING1 (Trempe et al., 2013; 

Wauer and Komander, 2013) (Figure 1-3 A&B). Large-scale conformational 

changes appear to be required to open up these two interfaces and further 

activate Parkin. 
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A B 

(A) Full-length Parkin domain structures are rendered in ribbon with colour by domain. Ubl: red. REP: yellow. RING0: green. RING1: 

blue. IBR: purple. RING2: pink. Zinc atoms: grey spheres. The REP α-helix is flanked by unstructured regions (yellow dashed lines). 

(B) Schematic representation of full-length Parkin in the same colour scheme as (A), showing the occluded E2 binding site on RING1 

and catalytic site on RING2. (Figures adapted from (Wauer and Komander, 2013)) 

Figure 1-3 Structure of Parkin. 
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1.3.2.2 Alteration of protein characteristics by pathogenic mutations 

Mutations in Parkin change its solubility, subcellular localisation, and activity 

(Hampe et al., 2006; Henn et al., 2005; Matsuda et al., 2006; Sriram et al., 2005; 

Wang et al., 2005b). Altered parkin solubility has been suggested as a potential 

mechanism of parkin dysfunction in both familial and sporadic PD. For instance, 

deletion of Parkin N-terminal Ubl domain has been shown to reduce Parkin 

stability, whereas C-terminal deletion either induce misfolding and aggregation 

of Parkin or impair the association of parkin with cellular membranes, hence 

changing its cellular localization (Henn et al., 2005). Similarly, pathogenic 

mutations in the Ubl domain were shown to cause rapid degradation of parkin 

(Finney et al., 2003; Henn et al., 2005). Parkin solubility is reduced by several 

pathogenic mutations, most of which have been reported to reside in the RING 

domains (Cookson et al., 2003; Hampe et al., 2006; Henn et al., 2005; Sriram et 

al., 2005) (Figure 1-4) . Several studies show that oxidative stress also reduces 

parkin solubility (Jensen et al., 2006; Wang et al., 2005a; Wong et al., 2007).  

Whilst most pathogenic Parkin point mutations reduce or abolish its catalytic 

activity, point mutations in the RING0 (F146A) or RING2 (F463A) potentially 

interrupt the RING0:RING2 interface, thus increasing Parkin autoubiquitination 

activity (Trempe et al., 2013; Wauer and Komander, 2013). Similarly, a W403A 

mutation in the REP increases Parkin mitochondrial recruitment, which is likely 

due to a reduced auto-inhibition by REP (Trempe et al., 2013). 
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 Parkin mutants examined can be categorized into 3 groups: Group I – Soluble; II – 

Insoluble with low tendency to form inclusions; and III – Insoluble with high 

tendency to form inclusions. S and P fractions refer to Triton-X-100 and SDS 

extractable fractions, respectively. (Figure adapted from (Wang et al., 2005b)) 

Figure 1-4 Altered Parkin solubility in pathogenic Parkin mutation. 
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1.3.3 Functions of Parkin 

1.3.3.1 E3 ubiquitin ligase 

The E3 ubiquitin ligase Parkin, as described earlier, is a component of the 

ubiquitin proteasome system (UPS) (Figure 1-5). Parkin is involved in the 

ubiquitin-dependent degradation of proteins by assembling lysine48- (K48)-

linked polyubiquitin chains (Pickart and Fushman, 2004). Parkin can also 

catalyse K63 polyubiquitination or multiple monoubiquitination, which are 

implicated in various cellular processes including signal transduction, 

membrane trafficking, DNA repair, histone regulation or endocytosis (Doss-

Pepe et al., 2005; Fallon et al., 2006; Winklhofer, 2007). Upon mitochondria 

depolarisation, Parkin catalyses K27 ubiquitination of voltage-dependent anion 

channel 1 (VDAC1) and Miro1 (Birsa et al., 2014; Geisler et al., 2010). An 

absolute quantitative proteomics study recently demonstrates that 

mitochondrial depolarisation leads to the assembly of K6, K11, K48, and K63 

ubiquitin chains on damaged mitochondria in a manner that requires 

phosphorylation of Parkin S65 and Parkin’s catalytic activity (Ordureau et al., 

2014). USP30, which is a type of mitochondrion-localised deubiquitinating 

enzymes (DUBs), has been shown to preferentially remove Parkin-catalysed K6- 

and K11-linked ubiquitin chains on depolarised mitochondria (Cunningham et 

al., 2015). It is not as yet clear how Parkin-mediated noncanonical 

ubiquitination (K6 and K11) is relevant to the PD pathogenesis. 
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Schematic cartoon of Parkin binds to E2 to mediate ubiquitination of its substrate. K48-

linked ubiquitination leads to proteasomal degradation of the substrate. K63-linked 

ubiquitination functions in subsequent signal transduction, DNA repair, or endocytosis. 

 

Figure 1-1 Parkin as an E3 ubiquitin ligase.Schematic cartoon of Parkin binds to E2 

to mediate ubiquitination of its substrate. K48-linked ubiquitination leads to proteasomal 

degradation of the substrate. K63-linked ubiquitination functions in subsequent signal 

transduction, DNA repair, or endocytosis. 

 

Figure 1-2 Parkin as an E3 ubiquitin ligase. 

 

Figure 1-3 Parkin as an E3 ubiquitin ligase.Schematic cartoon of Parkin binds to E2 

to mediate ubiquitination of its substrate. K48-linked ubiquitination leads to proteasomal 

degradation of the substrate. K63-linked ubiquitination functions in subsequent signal 

transduction, DNA repair, or endocytosis. 

Figure 1-5 Parkin as an E3 ubiquitin ligase. 
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Overview of UPS: 

Ubiquitin is a highly conserved peptide of 76 amino acids. The covalent binding 

of chains of ubiquitin molecules to cytoplasmic or nuclear proteins elicits a 

signal that directs these ubiquitinated proteins to the 26S proteasome for 

further degradation (Wilkinson, 1995). This cellular process, named 

ubiquitination, is an enzymatic cascade involving three classes of enzymes: E1s 

(ubiquitin-activating enzymes), E2s (ubiquitin-conjugating enzymes), and E3s 

(ubiquitin ligases) (Hochstrasser, 1996). The E1 activates ubiquitin by forming a 

thiol-ester bond between the carboxyl terminus of ubiquitin and the E1. This 

ATP-dependent process is then followed by the transfer of the activated 

ubiquitin from the E1 to the E2. The E3 ligase then interacts with its specific 

substrate and ubiquitin-linked E2 and facilitates the transferral of ubiquitin 

from the E2 to the substrate. The specificity of substrate recognition depends 

largely on the E3 level or the E2-E3 interaction (Hershko and Ciechanover, 1998; 

Weissman, 1997).  Ubiquitin can be attached to target proteins as a single 

molecule on one or multiple sites, yielding mono- and multi-monoubiquitinated 

proteins, respectively. Polyubiquitination refers to the formation of an ubiquitin 

chain on target proteins by multiple ubiquitin molecules that are linked through 

one of the seven ubiquitin lysine (K) residues (which are K6, K11, K27, K29, K33, 

K48 and K63) or through the ubiquitin amino terminal methionine1 residue 

(which generates linear chains) (Figure 1-6 A). Linkage types have been 

classified as having either ‘compact’ (K6-, K11-, and K48-linked) (Bremm et al., 

2010; Bremm and Komander, 2011; Cook et al., 1992; Eddins et al., 2007; 

Matsumoto et al., 2010; Virdee et al., 2010) or ‘open’ (K63- and Met1-linked) 

(Datta et al., 2009; Komander et al., 2009) conformations. In the compact 

conformations the distal (that is, linked via its C terminus) and the next 

proximal (that is, linked via its Lys residue) ubiquitin moieties form an 

intramolecular interface, whereas in the open conformation the linkage point is 

the only contact (Kulathu and Komander, 2012) (Figure 1-6 B). 
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(A) Schematic representation of ubiquitin. Location of candidate residues for ubiquitination linkage were labelled. (Figure 

adapted from (Kulathu and Komander, 2012)) (B) Different types of ubiquitin chains (figure adapted from (Kravtsova-Ivantsiv 

and Ciechanover, 2012)) 

 

Figure 1-13 Ubiquitin structure and ubiquitination.(A) Schematic representation of ubiquitin. Location of candidate residues for 

ubiquitination linkage were labelled. (Figure adapted from (Kulathu and Komander, 2012)) (B) Different types of ubiquitin 

chains (figure adapted from (Kravtsova-Ivantsiv and Ciechanover, 2012)) 

 

Figure 1-6 Ubiquitin structure and ubiquitination.  
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Ubiquitin-activating enzyme (E1) catalyses the adenosine triphosphate (ATP)-

dependent first step of ubiquitination. It first catalyses ubiquitin C-terminal acyl 

adenylation (Tokgoz et al., 2006), and the catalytic cysteine of E1 forms a 

thioester bond with this ubiquitin (Schulman and Harper, 2009). A second 

ubiquitin molecule is then adenylated and bound to a different site of the same 

E1 enzyme. The E1 enzyme then transfers the first ubiquitin molecule to the 

ubiquitin-conjugating enzyme E2 through a transthioesterification reaction (Lee 

and Schindelin, 2008). The second ubiquitin does not form the same thioester 

complex with E1 and the significance of this second ubiquitin molecule remains 

largely unknown (Schulman and Harper, 2009).  

The activated ubiquitin is transferred to the cysteine residue on a ubiquitin-

conjugating enzyme (E2). Subsequently, the E2 binds to its specifically 

corresponding ubiquitin ligase (E3) via a structurally conserved binding region 

(Nandi et al., 2006). Whilst E3s are involved in substrate selection, E2s are the 

main determinants for the selection of ubiquitin chain varieties formed on the 

substrate, thereby directly control the cellular fate of the substrate. To date, 

there has been 35 active E2 enzymes described in human (van Wijk and 

Timmers, 2010). 

The ubiquitin ligase (E3) is responsible for binding the target protein substrate 

and transferring the ubiquitin from the E2 cysteine to a lysine residue on the 

target protein, acting as both molecular matchmaker and catalyst (Berndsen 

and Wolberger, 2014). More than 600 human E3 ligases have been described to 

date due to the need for specifically targeting a broad range of diverse 

substrates (Li et al., 2008). These E3 ligases are classified into three groups 

according to their conserved structural domains and the mechanism whereby 

ubiquitin is transferred from the E2 to the substrate. The RING family binds 

both E2 and substrates simultaneously, and catalyses a direct transfer of 

ubiquitin from E2 to its substrate (Budhidarmo et al., 2012; Deshaies and 

Joazeiro, 2009). On the other hand, the homology to E6AP C terminus (HECT) 

and RBR E3 families adapt a two-step ubiquitin transfer, thereby the ubiquitin is 

transferred to an active cysteine residue on E3 by forming an thioester bond,  

http://en.wikipedia.org/wiki/Conservation_(genetics)
http://en.wikipedia.org/wiki/Protein-protein_interaction
http://en.wikipedia.org/wiki/Substrate_(biochemistry)
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and then from the E3 to the substrate (Huibregtse et al., 1995; Wenzel and 

Klevit, 2012) (Figure 1-7).  

The mechanism by which ubiquitin molecule was transferred from E2 to E3 depends 

on the type of E3 ubiquitin ligases. (Figure adapted from (Berndsen and Wolberger, 

2014)). 

 

The mechanism by which ubiquitin molecule was transferred from E2 to E3 depends 

on the type of E3 ubiquitin ligases. (Figure adapted from (Berndsen and Wolberger, 

2014)). 

 

The mechanism by which ubiquitin molecule was transferred from E2 to E3 depends 

on the type of E3 ubiquitin ligases. (Figure adapted from (Berndsen and Wolberger, 

2014)). 

Figure 1-7 Mechanism of ubiquitination by different E3 ligase. 



 

44 

 

As described earlier, the types of ubiquitin chains determine how the 

ubiquitinated substrate is degraded. If the linkage to the target protein is via 

K48 on the ubiquitin, this will lead to a degradation of the polyubiquitinated 

protein by the proteasome. Of note, a minimum of four ubiquitins attached are 

required to trigger degradation (O'Neill, 2009). Non-degradative ubiquitination, 

on the other hand, has been observed in ubiquitinated proteins with ubiquitin 

chains other than K48-linked (Ikeda and Dikic, 2008). For instance, K63-linked 

polyubiquitination, the most studied atypical ubiquitination, directs 

ubiquitinated proteins to lysosome (Tan et al., 2008). It also mediates receptor 

endocytosis, NF-κB activation, DNA-repair process, and possibly mitophagy 

(Bennett and Harper, 2008; Geisler et al., 2010; Haglund and Dikic, 2005; 

Hayden and Ghosh, 2008; Narendra et al., 2010a; Nathan et al., 2013). K27-

linked ubiquitination has been shown to inhibit TIEG1 nuclear translocation 

(Peng et al., 2011). Parkin-mediated mitophagy involves both K27- and K63-

linked mitochondrial ubiquitination (Geisler et al., 2010). However K27-linked 

ubiquitination still facilitates the proteasomal degradation of Miro1 (Birsa et al., 

2014). K29-/33-linked mixed chains have been implicated in blocking the 

activity of AMP-activated protein kinase (AMPK)-related kinase (Al-Hakim et al., 

2008). Additionally, K29-linked ubiquitination has also been implicated in 

lysosomal protein degradation (Chastagner et al., 2006). These noncanonical 

ubiquitin chains represent new, albeit poorly understood, molecular signals. 
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1.3.3.2 Mitochondrial quality control 

Mitochondria continuously undergo fission-fusion process to maintain the 

appropriate shape and function (Sheridan and Martin, 2010). When the damage   

reaches a level that the mitochondria can no longer be repaired by the 

fission/fusion process, it will be degraded by autophagy (Ashrafi and Schwarz, 

2013). Parkin was first linked to mitochondrial function when the parkin-null 

Drosophila model was described. Parkin-null flies exhibited locomotor defects, 

reduced lifespan, male sterility, and mitochondrial pathology (swelling and 

disintegrated cristae) (Greene et al., 2003). This suggests that parkin plays a 

role in mitochondrial abnormalities. Similar mitochondrial dysfunction noted in 

autosomal recessive PD may result in selective neuronal loss (Greene et al., 

2003; Pesah et al., 2004). This evidence is strengthened by the fact that parkin 

KO mice exhibit mild mitochondrial dysfunction, although these mitochondria 

appeared pathologically normal (Palacino et al., 2004). Fibroblasts from PD 

patients carrying parkin mutations display mitochondrial abnormalities 

including impaired mitochondrial function and morphology (Mortiboys et al., 

2008), and decreased Complex I activity (Muftuoglu et al., 2004). Mitochondrial 

dysfunction in PINK1 null Drosophila model is complemented by Parkin (Clark 

et al., 2006; Park et al., 2006). Recent research further suggests that both parkin 

and PINK1 play a role in the selective degradation of damaged mitochondria by 

autophagy, a process called mitophagy (Deas et al., 2009).  

It has been suggested that following mitochondrial depolarisation, full-length 

PINK1 accumulates to the OMM. This subsequently recruits and activates parkin 

to the mitochondrial surface where it ubiquitinates a number of OMM proteins, 

such as mitofusins 1 and 2 (Mfn1 and Mfn2) via K48- or K63-linked 

ubiquitination (Gegg et al., 2010; Glauser et al., 2011; Rakovic et al., 2011; 

Tanaka et al., 2010; Ziviani and Whitworth, 2010), and VDAC1 and Miro1 via 

formation of K27-linked polyubiquitination (Birsa et al., 2014; Geisler et al., 

2010). A study conducted by quantitative diGly capture proteomics identified 

numerous mitochondrial proteins being ubiquitinated by Parkin upon 

mitochondrial depolarisation (Sarraf et al., 2013). Some of them, such as Mfn1/2 
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and Miro1/2, undergo rapid proteasomal turnover (Chan et al., 2011; Liu et al., 

2012; Narendra et al., 2012; Tanaka et al., 2010; Wang et al., 2011b). It has been 

shown that proteasomal degradation of ubiquitinated Mfn1 and Mfn2 is a 

prerequisite for mitophagy (Anton et al., 2013; Gegg et al., 2010; Glauser et al., 

2011; Leboucher et al., 2012; Wiedemann et al., 2013). Valosin-containing 

protein (VCP) was shown to relocalise to ubiquitinated mitochondria where it 

extracted ubiquitinated Mfns for further proteasomal degradation (Kim et al., 

2013; Tanaka et al., 2010).  The highly ubiquitinated mitochondria also recruit 

the autophagic adaptor proteins, such as p62 (Ding et al., 2010; Geisler et al., 

2010; Narendra et al., 2010a; Okatsu et al., 2010; Seibenhener et al., 2013), 

which links ubiquitinated cargo to the autophagic machinery by binding both 

ubiquitin and membrane-bound LC3 II (Figure 1-8) (Deas et al., 2011b; Lim and 

Lim, 2011; Pankiv et al., 2007). However whether p62 is required in this step 

remains controversial, since fibroblasts from p62 KO mice demonstrate 

impairment only in mitochondrial perinuclear clustering but not mitophagy 

(Narendra et al., 2010a; Okatsu et al., 2010). On the other hand, the ubiquitin-

binding deacetylase HDAC6 has been implicated in mitophagy by enhancing 

autophagosome-lysosome fusion via assembly of local actin network (Lee et al., 

2010a; Lee et al., 2010b). Of note, fibroblasts from HDAC6 KO mice demonstrate 

impaired perinuclear mitochondrial clustering and mitophagy (Lee et al., 

2010b). Nevertheless, the detailed molecular pathways associated with each 

step in mitophagy process remain to be fully elucidated. 
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Under normal cell homeostasis PINK1 is imported in a membrane potential dependent 

manner. It localises to the IMM where it is cleaved by PARL. Loss of membrane potential 

(dashed red line) ensures PINK1 cannot be imported and is trapped at the TOM complex. 

This recruits the E3 ubiquitin ligase Parkin which ubiquitinates proteins on the cytoplasmic 

surface of the mitochondria. Ubiquitination of VDAC1 recruits the adaptor protein 

p62/SQSTM1 which further binds LC3 and mediates recruitment of the phagophore. This 

mitochondrion is subsequently degraded by the autophagic pathway.  (Figure adapted from 

(Kotiadis et al., 2014)) 

 

Figure 1-31 Mechanism of PINK1/Parkin-induced mitophagy.Under normal cell 

homeostasis PINK1 is imported in a membrane potential dependent manner. It localises to 

the IMM where it is cleaved by PARL. Loss of membrane potential (dashed red line) ensures 

Figure 1-8 Mechanism of PINK1/Parkin-induced mitophagy. 
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1.3.3.3 Neuronal protection 

The absence of parkin and degeneration of dopaminergic neurons in patients 

carrying Parkin mutations suggest that Parkin has an important 

neuroprotective function (Shimura et al., 1999), which is also demonstrated in 

studies using cellular or animal models (Darios et al., 2003; Higashi et al., 2004; 

Jiang et al., 2004; Staropoli et al., 2003). Parkin mediates neuroprotection by 

activating the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B 

cells) signalling pathway that plays a crucial role in neuronal integrity and 

synaptic plasticity (Henn et al., 2007; Karin and Lin, 2002). It was shown that 

the linear ubiquitin chain assembly complex (LUBAC) recruits Parkin upon 

cellular stress. Parkin then ubiquitinates IKKγ (IκB kinase γ)/NEMO (NF-κB 

essential modifier) complex, which leads to proteasomal degradation of NFκB 

inhibitor IκBα and release NFκB to further regulate transcription of target genes 

such as OPA1 (optic atrophy 1) that maintains mitochondrial integrity (Figure 

1-9) (Winklhofer, 2014). Parkin has also been implicated in enhancing 

phosphoinositide 3-kinase (PI3K)/Akt signalling by reducing epidermal growth 

factor receptor (EGFR) internalisation (Fallon et al., 2006). It has also been 

shown that Parkin protects dopaminergic neurons from neurotoxins and 

oxidative stress by attenuating stress-activated protein kinase pathways 

(Hasegawa et al., 2008; Jiang et al., 2004; Petrucelli et al., 2002), although 

Parkin’s cytosolic substrates associated with these stress-activated kinase 

pathways are yet to be identified (Details of Parkin substrates will be described 

in section 1.3.4). Therefore, Parkin is likely to protect the cells by enhancing 

neuroprotective signals such as NFκB or PI3K/Akt pathways, or by attenuating 

stress-activated signals such as the MAPK pathway.   

http://en.wikipedia.org/wiki/Phosphoinositide_3-kinase
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Upon cell stress, LUBAC recruits Parkin and this increases linear 

ubiquitination of NEMO, which leads to proteasomal degradation of 

NFκB inhibitor IκBα. NFκB is released to further regulate 

transcription of target genes such as OPA1 (optic atrophy 1) that 

maintains mitochondrial integrity. (Figure adapted from (Berndsen 

and Wolberger, 2014)) 

 

Figure 1-43 Parkin prevents stress-induced cell death by 

activating NF-κB signalling.Upon cell stress, LUBAC recruits 

Parkin and this increases linear ubiquitination of NEMO, which leads 

to proteasomal degradation of NFκB inhibitor IκBα. NFκB is released 

to further regulate transcription of target genes such as OPA1 (optic 

atrophy 1) that maintains mitochondrial integrity. (Figure adapted 

from (Berndsen and Wolberger, 2014)) 

 

Figure 1-44 Parkin prevents stress-induced cell death by 

activating NF-κB signalling. 

Figure 1-9 Parkin prevents stress-induced cell death by 

activating NF-κB signalling. 
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1.3.3.4 Tumour suppression 

Parkin has been shown to display tumour suppressive function (Cesari et al., 

2003; Denison et al., 2003b; Picchio et al., 2004; Wang et al., 2004), whereby 

whole exon deletions and duplications of this gene identified in ovarian and 

other cancers support this hypothesis (Denison et al., 2003a; Denison et al., 

2003b). It may also negatively regulate the proliferation of breast cancer (Tay et 

al., 2010). More recently, Parkin somatic mutations and intragenic deletions 

have been identified by chromosomal microarray analysis in glioblastoma, colon 

cancer, and lung cancer (Figure 1-10) (Poulogiannis et al., 2010; Veeriah et al., 

2010). Viotti and colleague demonstrated that p53-regulated Parkin 

transcription is decreased in oligodendroglioma, mixed glioma and glioblastoma 

(Viotti et al., 2014). Nevertheless, the Parkin gene spans a considerable length 

on the most fragile segment of chromosome 6, thereby is prone to mutations. 

Whether somatic mutations in Parkin are a primary cause of tumour requires 

further investigation. 
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Somatic mutations in Parkin gene (top panel) and PD pathogenic gene in Parkin gene (bottom panel) (Figure 

adapted from (Veeriah et al., 2010)). 

 

Figure 1-55 Mutations in Parkin gene in Cancer and EOPD.Somatic mutations in Parkin gene (top panel) 

and PD pathogenic gene in Parkin gene (bottom panel) (Figure adapted from (Veeriah et al., 2010)). 

 

Figure 1-56 Mutations in Parkin gene in Cancer and EOPD. 

 

Figure 1-10 Mutations in Parkin gene in Cancer and EOPD. 
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1.3.4 Parkin substrates 

Mutations in Parkin can alter its ubiquitin ligase function and subsequently 

impair degradation of its substrates. It is thought that the toxicity caused by the 

accumulation of Parkin substrates results in dopaminergic neuronal death in 

Parkin-related PD (Zhang et al., 2000). A number of Parkin substrates have been 

reported (Table 1-4), most of them are cytosolic. Whilst a robust in vivo 

evidence is still lacking in confirming any of the described cytosolic proteins is 

the true Parkin substrate, mounting evidences indicate that Parkin ubiquitinates 

numerous mitochondrial proteins in response to mitochondrial depolarisation 

(Figure 1-11) (Sarraf et al., 2013) by producing various ubiquitin chains 

(Ordureau et al., 2014). These data suggest Parkin conducts variable 

ubiquitinations on different substrates upon different stimulations. This argues 

the classical notion that Parkin substrates are to be K48-ubiquitinated and to 

accumulate in Parkin KO mice, in conditions where Parkin is inactivated and in 

sporadic PD (Dawson and Dawson, 2010). In conditions where the substrates 

are not ubiquitinated for the degradation purpose, their accumulation might not 

be detected.   
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Substrate Physiological function Ubiquitination Degradation Ref 

Hsp70 Molecular chaperone Mono No (Moore et al., 2008) 

α-Sp22 Lewy body component Poly Yes (Schlossmacher et al., 2002) 

Synphilin-1 Interact with α-synuclein Poly No (Chung et al., 2001) 

PICK1 Synaptic scaffolding protein Mono No (Joch et al., 2007) 

Ataxin-3 Polyglutamine Poly Yes (Tsai et al., 2003) 

Ataxin-2 Polyglutamine Poly Yes (Huynh et al., 2007) 

CDCrel-1 Synaptic vesicle associated GTPase Poly Yes (Zhang et al., 2000) 

CDCrel-2a Synaptic vesicle associated GTPase Poly Yes (Choi et al., 2003) 

SynaptotagminXI Membrane trafficking protein Poly Yes (Huynh et al., 2003) 

AIMP2/p38 Aminoacyl t-RNA synthetase cofactor Poly Yes (Corti et al., 2003) 

FBP1 Regulates c-myc mRNA Yes Yes (Ko et al., 2006) 

Cyclin E Cell cycle regulating protein Poly Yes (Staropoli et al., 2003) 

β-catenin Component in Wnt signalling Unknown Yes (Rawal et al., 2009) 

RanBP2 Interact with nuclear pore complex Poly Yes (Um et al., 2006) 

PDCD2-1 Involved in apoptosis, inflammation and 
proliferation 

Poly Yes (Fukae et al., 2009) 

α/β-tubulin Cytoskeletal components Unknown Yes (Ren et al., 2003) 

Lim Kinase 1 Phosphorylates cofilin Poly Yes (Lim et al., 2007) 

Iκκγ Component in NFκB signalling Poly No (Henn et al., 2007) 

TRAF2 Component in NFκB signalling Yes No (Henn et al., 2007) 

Pael-R G-protein coupled receptor Poly Yes (Imai et al., 2001) 

PLCγ1 Hydrolyses lipids Unknown Yes (Dehvari et al., 2009) 

Eps15 Internalizes EGF-R Mono No (Fallon et al., 2006) 

VDAC Mitochondrial ion channel Poly No (Geisler et al., 2010) 
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Bcl-2 Anti-apoptotic protein Mono No (Chen et al., 2010) 

Mitofusin-1/-2 Mitochondrial fusion protein Poly Yes (Tanaka et al., 2010) 

Drp1 Mitochondrial fusion protein Poly Yes (Wang et al., 2011a) 

Miro 
Mitochondrial anchor protein Unknown Yes 

(Birsa et al., 2014; Wang et al., 
2011b) 

Table 1-4 Parkin substrates  

(Adapted from (Sandebring A and A, 2012)). 

 

 

(Adapted from (Sandebring A and A, 2012)). 

 

 

(Adapted from (Sandebring A and A, 2012)). 

 

 

(Adapted from (Sandebring A and A, 2012)). 
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Mitochondrial depolarisation related substrate (Figure adapted from (Sarraf et al., 

2013)) 

 

Figure 1-67 Possible Parkin substrates detected upon mitochondrial 

depolarisation.Mitochondrial depolarisartion related substrate (Figure adapted 

Figure 1-11 Possible Parkin substrates detected upon mitochondrial 

depolarisation. 
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1.3.5 Models for investigating Parkin function 

1.3.5.1 Genetic animal models 

A robust animal model for PD would recapitulate histopathological 

characteristics of progressive and significant loss of dopaminergic neurons, LB 

pathology, an onset during adulthood, presence of clinical symptoms of human 

disease, and improved motor features sensitive to dopamine treatment. None of 

the Parkin KO rodent models currently available fully recapitulate the above-

mentioned principal clinical and neuropathological hallmarks of PD (Beal, 2010). 

Bacterial artificial chromosome (BAC) transgenic mice expressing C-terminal 

truncated human mutant Parkin (Parkin Q311X) in dopaminergic neurons 

exhibit progressive hypokinetic motor deficits and age-dependent dopaminergic 

neuron degeneration with α-synuclein accumulation (Lu et al., 2009). 

Nevertheless, this model suggests dominant toxic effect by the overexpressed C-

terminal truncated Parkin but does not necessarily recapitulate the features 

caused by reduced Parkin function. 

Parkin null Drosophila, on the other hand, exhibits lower body weight and 

reduced cell size, locomotor defects accompanied by mitochondrial structural 

abnormalities, a reduced life span, and  male sterility, and dopaminergic 

neuronal loss (Greene et al., 2003; Pesah et al., 2004; Pienaar et al., 2010). 

Differences that contribute to interspecies variation between man and animals 

could explain the discrepancies of “PD phenotype” in rodents and flies. 

1.3.5.2 Cell models 

Many cell models have been used for studying Parkin function in normal and 

pathophysiological conditions. Most of them are human cancer cell lines. These 

rapidly-dividing cells are usually an easier and cheaper alternative as compared 

to animal models. Moreover they can easily be genetically manipulated. These 

genetic manipulations include overexpression and knockdown experiments.  
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1.3.5.3 Parkin-patient derived cell lines as potential models 

Primary human dopaminergic neurons carrying pathological mutations would 

appear to be a very good model for studying parkin function. However, it is 

impossible to obtain such neurons directly from parkin patients. In 2007, 

Yamanaka and Thomson (Takahashi et al., 2007; Yu et al., 2007) first derived 

human induced pluripotent stem cells (iPSC) from skin fibroblasts using a 

cocktail of designated transcription factors. Parkin-iPSC and neuronal models 

derived from them would have the advantage of expressing endogenous Parkin 

carrying exactly the same mutations as patients. This Parkin-patient derived 

model would provide a great opportunity for observing a kinetic change of the 

parkin function through all stages of neuronal differentiation 

1.3.6 Post-translational modification (PTM) of Parkin 

1.3.6.1 S-nitrosylation 

Nitric oxide (NO) produced by neuronal nitric oxide synthetase (nNOS) in 

neurons functions as an excitatory signalling molecule. However NO is also a 

free radical whose excessive production leads to oxidative stress. Upon 

inflammatory insult expression of the inducible isoform of NOS (iNOS) is 

enhanced, thereby producing excessive NO that in turn reacts with other free 

radicals such as superoxide anion to form a more reactive nitrogen species 

peroxynitrite.  These free radicals can damage protein, lipid and DNA, which 

eventually leads to neuronal degeneration (Ischiropoulos and Beckman, 2003) 

It has been shown that nitrated protein aggregates are a prominent feature of 

brain tissue in PD patients (Giasson et al., 2000). Chung and colleague showed 

increased level of Parkin S-nitrosylation both in vitro and in the brain tissue of 

PD animal models and PD patients (Chung et al., 2004). S-nitrosylation is a 

process of adding NO to the sulfur residue of cysteine in proteins. The effect of 

Parkin S-nitrosylation remains controversial as S-nitrosylation of cysteine 

residues in the IBR and RING2 domains of Parkin inhibit its E3 ubiquitin ligase 

activity (Chung et al., 2004; Chung et al., 2005; Lipton et al., 2005; Sunico et al., 

2013; Yao et al., 2004), whereas Cys323 S-nitrosylation has been demonstrated 
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to increase its activity (Ozawa et al., 2013). How this PTM is relevant to PD 

pathogenesis requires further investigation.  

1.3.6.2 Dopamine modification 

Dopamine is also a highly reactive molecule that is synthesized in the SNc and 

LC. It can oxidize to form dopamine quinone (Stokes et al., 1999), which is a 

reactive metabolite of dopamine that prone to bind reduced cysteine residues 

within polypeptides (Hastings et al., 1996; LaVoie and Hastings, 1999). 

Dopamine quinone has also been shown to bind to a number of proteins 

covalently in vivo or in vitro (Hastings et al., 1996; LaVoie and Hastings, 1999), 

and to inactivate thiol-dependent enzymes (Berman and Hastings, 1997; 

Berman et al., 1996; Kuhn and Arthur, 1998; Kuhn et al., 1999; Xu et al., 1998). 

LaVoie and colleagues demonstrated that dopamine quinone irreversibly binds 

to cysteine residues in Parkin RING domain, leading to conformational change 

that reduce Parkin’s solubility and E3 ubiquitin ligase activity (Figure 1-12) 

(LaVoie et al., 2005). 

 

Schematic of the oxidation of dopamine and the irreversible 

chemical reaction between the dopamine quinone and the amino 

acid cysteine. (Figure adapted from (LaVoie et al., 2005)) 

 

 

Figure 1-79 Schematic representation of the oxidated 

Figure 1-12 Schematic representation of the oxidated 

dopamine modifying amino acid cysteine. 
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1.3.6.3 SUMOylation 

Small ubiquitin-related modifier (SUMO) is a 97-amino acid protein that 

covalently binds to lysine residues on target proteins via a similar cascade to 

ubiquitin pathway (Geiss-Friedlander and Melchior, 2007). A number of studies 

have shown that the SUMO family of proteins plays a key role in neuronal 

function. For example, both tau and amyloid precursor protein were suggested 

to be regulated by SUMO (Dorval and Fraser, 2006; Gocke et al., 2005; Zhang 

and Sarge, 2008). LB from patient of dementia with LB (DLB) have been 

reported to stain positively for SUMO-1 (Pountney et al., 2005). Additionally, 

inclusion bodies from multiple system atrophy (MSA) have also been stained 

positively for SUMO-1 (Pountney et al., 2005). A non-covalent interaction 

between Parkin and SUMO-1 has been reported in vitro and in vivo, enhancing 

Parkin’s E3 ligase activity (Um and Chung, 2006). However the significance of 

the reported SUMOylation in neurodegenerative diseases has not yet been fully 

established. 

1.3.6.4 Neddylation 

NEDD8 is another ubiquitin-like small molecule that regulates the function of 

target proteins by covalent conjugation, a process called neddylation that is via 

a cascade similar to ubiquitination (Huang et al., 2009; Kurz et al., 2008; Meyer-

Schaller et al., 2009). Both PINK1 and Parkin have been shown to be modified 

by neddylation, resulting in stabilization of 55 kDa PINK1 cleaved fragment and 

increased Parkin’s E3 ubiquitin ligase activity (Choo et al., 2012; Um et al., 

2012). In addition, endogenous Parkin neddylation has also been detected in the 

brain of PD patient (Choo et al., 2012).  

1.3.6.5 Phosphorylation 

Another PTM, phosphorylation, has also been implicated in the pathogenesis of 

PD. Endoplasmic reticulum (ER) stress caused by increased unfolded protein 

has been shown to reduce parkin phosphorylation, which in turn has been 

shown to increase Parkin activity (Yamamoto et al., 2005). A number of Parkin 
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phosphorylation sites have been identified, mostly through in vitro methods 

(Figure 1-13). Several kinases are shown to phosphorylate parkin, including 

casein kinase-1 (CK-1), protein kinase A (PKA), cyclin-dependent kinase 5 

(Cdk5), and c-Abl (Avraham et al., 2007; Ko et al., 2010; Yamamoto et al., 2005). 

In vitro kinase assays show that PKA phosphorylates parkin at S101, S131, and 

136 (Yamamoto et al., 2005). CK-1 and Cdk5 are shown to phosphorylate parkin 

at S101 and S131 respectively in vitro and at overexpressed level in cell, and 

these two kinases enhance each other’s ability to phosphorylate parkin. These in 

vitro studies reveal that Parkin phosphorylation increases its aggregation and 

reduces Parkin’s ligase function (Avraham et al., 2007; Rubio de la Torre et al., 

2009; Yamamoto et al., 2005). Another in vitro kinase assay has shown that the 

non-receptor tyrosine kinase c-Abl phosphorylates parkin on Y143. This 

phosphorylation event also decreases parkin E3 ubiquitin ligase activity, leading 

to the accumulation of Parkin putative substrates, and ultimately cell death. 

These data have been further confirmed using conditional c-Abl KO neurons (Ko 

et al., 2010), but no other group has yet reproduced this result.  

PINK1 has also been observed to phosphorylate Parkin on T175 in vitro, and a 

non-phosphorylatable Parkin mutant (T175A) fails to translocate to depolarised 

mitochondria (Kim et al., 2008). However, Parkin T175 phosphorylation 

following CCCP-induced mitochondrial depolarisation was not observed in vivo 

by Kondapalli and colleagues (Kondapalli et al., 2012). On the other hand, they 

showed that Parkin S65 can be phosphorylated by PINK1 both in vitro and in 

vivo upon CCCP-induced mitochondrial depolarisation, which is also confirmed 

by another independent group (Kondapalli et al., 2012; Shiba-Fukushima et al., 

2012). It is still not clear whether parkin is phosphorylated under pathological 

conditions. The kinase signalling pathways associated with parkin, the 

functional consequences of parkin phosphorylation, and the possible role of 

parkin phosphorylation in the selective death of dopaminergic neurons all 

remain to be determined. 
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Reported Parkin phosphorylation sites and the methods by which each site was 

assessed. *in vivo phosphorylation assay. #In vitro phosphorylation assay. ^In vitro 

kinase assay. † in vivo phosphorylation assay following CCCP treatment. 

 

Figure 1-91 A schematic representation of reported Parkin 

phosphorylation sites.Reported Parkin phosphorylation sites and the methods by 

which each site was assessed. *in vivo phosphorylation assay. #In vitro phosphorylation 

assay. ^In vitro kinase assay. † in vivo phosphorylation assay following CCCP treatment. 

 

Figure 1-92 A schematic representation of reported Parkin phosphorylation sites. 

 

Figure 1-93 MAPK signalling pathways.Figure 1-94 A schematic 

representation of reported Parkin phosphorylation sites.Reported Parkin 

phosphorylation sites and the methods by which each site was assessed. *in vivo 

phosphorylation assay. #In vitro phosphorylation assay. ^In vitro kinase assay. † in vivo 

phosphorylation assay following CCCP treatment. 

 

Figure 1-95 A schematic representation of reported Parkin 

phosphorylation sites.Reported Parkin phosphorylation sites and the methods by 

which each site was assessed. *in vivo phosphorylation assay. #In vitro phosphorylation 

assay. ^In vitro kinase assay. † in vivo phosphorylation assay following CCCP treatment. 

Figure 1-13 A schematic representation of reported Parkin phosphorylation sites. 
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1.3.7 Signalling pathways associated with Parkin regulation 

1.3.7.1 Mitogen-activated protein kinase (MAPK) signalling pathways 

The mammalian MAPK family consists of extracellular signal-related kinases 

(ERK), Jun N-terminal kinases (JNK), and p38 proteins (Chang and Karin, 2001). 

These highly conserved three-tiered signalling cascades are activated in 

response to a variety of stimuli, such as mitogens, stress, and pro-inflammatory 

cytokines to regulate important cellular processes including gene expression, 

cell proliferation, cell survival and cell death (Chang and Karin, 2001) (Figure 1-

14). 

A striatal overactivated ERK1/2 in PD animal model has been described to 

potentially relate to L-DOPA-associated dyskinesia (Fieblinger et al., 2014; 

Girault et al., 2007). Previous reports have shown that ERK1/2 signalling is 

dysregulated in PD patients (Kurup et al., 2015; Ren et al., 2009). ERK1/2 

activation by microtubule depolymerising agents rotenone or colchicine can be 

attenuated by Parkin, and Parkin mutation such as exon 4 deletion results in 

activated ERK1/2 signal in various cell models (Ren et al., 2009). On the other 

hand, sporadic and autosomal recessive PD (mutation not described) patients 

show striatal accumulation of STEP61 (striatal-enriched protein tyrosine 

phosphatase 61) and reduced phosphorylation of ERK1/2 and CREB (cAMP 

response element-binding protein), whereby synaptic function is disrupted 

(Kurup et al., 2015).  

ETC Complex I toxin rotenone has been reported to induce apoptosis in SH-

SY5Y neuroblastoma cells through the activation of JNK and p38 MAPKs 

(Newhouse et al., 2004). Upregulation of JNK and p38 signalling pathways has 

also been shown in the striatum of PD animal model treated with MPTP 

(Karunakaran et al., 2008). Overactivated JNK pathway has been described in 

Drosophila dopaminergic neurons expressing loss-of-function Parkin mutant 

(Cha et al., 2005). Activation of the p38 signalling pathway is involved in 

mediating cellular stress and inflammatory responses (Corrêa and Eales, 2012). 
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A previous report demonstrated that the p38 signalling induced by microtubule 

depolymerising agents in cell models can be attenuated by overexpressing 

Parkin (Ren et al., 2009). 

The mammalian MAPK family includes ERK, p38, and JNK. In the ERK signalling 

pathway, ERK1/2 is activated by MEK1/2, which is activated by Raf. Raf is 

activated by the Ras GTPase, whose activation is induced by RTKs such as the 

epidermal growth factor receptor. The p38 and JNK pathways consist of a 

MAP3K such as ASK1, MEKK1, or MLK3 as well as a MAP2K such as MKK3 or 

MKK6 for the p38 pathway or MKK4 or MKK7 for the JNK pathway. (Figure 

adapted from (Kim and Choi, 2010)) 

 

The mammalian MAPK family includes ERK, p38, and JNK. In the ERK signalling 

pathway, ERK1/2 is activated by MEK1/2, which is activated by Raf. Raf is 

activated by the Ras GTPase, whose activation is induced by RTKs such as the 

epidermal growth factor receptor. The p38 and JNK pathways consist of a 

MAP3K such as ASK1, MEKK1, or MLK3 as well as a MAP2K such as MKK3 or 

MKK6 for the p38 pathway or MKK4 or MKK7 for the JNK pathway. (Figure 

adapted from (Kim and Choi, 2010)) 

 

Figure 1-14 MAPK signalling pathways. 
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1.3.7.2 PI3K/Akt signalling pathway 

The PI3K/Akt signalling pathway plays an important role in regulating cell 

growth, metabolism and survival (Sheppard et al., 2012).  Akt is the major 

downstream target of PI3K (Kirkegaard et al., 2010) and activation of Akt by 

phosphorylation further activates mTOR (Bartolome et al., 2010). Activation of 

Akt has been reported as neuroprotective (Burke, 2007; Levy et al., 2009). A 

specific Akt haplotype also demonstrates neuroprotection against PD 

(Xiromerisiou et al., 2008). Both Parkin (Fallon et al., 2006) and DJ-1 (Kim et al., 

2005; Yang et al., 2005) have been shown to enhance Akt signalling. 

1.3.7.3 NF-κB signalling pathway 

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a 

family of inducible transcription factors. Expression of NF-κB has been 

described in a variety of cells and tissues, including microglia, astrocytes, and 

neurons. Of note, NF-κB shows diverse functions in different cellular contexts. 

Whilst regulating inflammatory mediators production during inflammation in 

glial cells (Jenner, 1998; Qian and Flood, 2008; Zielasek and Hartung, 1996), 

activation of NF-κB in neurons demonstrates neuroprotective function (Henn et 

al., 2007; Kaltschmidt and Kaltschmidt, 2009). It has been shown that PINK1-

mediated Parkin phosphorylation activates catalysing K63-linked 

polyubiquitination and enhances Parkin-mediated ubiquitin signalling through 

the NF-κB pathway (Sha et al., 2010). 
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1.4 Objectives of this thesis 

As described earlier in this chapter, mutations in Parkin are the most frequent 

cause of EOPD. However the upstream molecular pathways activating Parkin 

remain poorly understood. The overall objective of this thesis is to unravel the 

molecular pathways associated with Parkin activation in cell models 

overexpressing exogenous Parkin and in Parkin patient-derived cell model. The 

specific aims of my thesis are:   

1. To validate the specificity of available Parkin antibodies. 

2. To characterise Parkin patient fibroblasts and generate patient-derived 

iPSCs. 

3. To investigate signalling pathways regulating Parkin phosphorylation. 

4. To identify the role of Parkin phosphorylation in the mitophagy process. 
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Chapter 2 Materials and Methods 

2.1 Materials 

2.1.1 Bioinformatics 

Human DNA sequence of PARK2 (MIM: 600116) and protein sequence of Parkin 

(gi: 3063388) were obtained from National Institute of Health (NIH) National 

Center for Biotechnology Information (NCBI) server. The protein sequence was 

first published in (Kitada et al., 1998).  

2.1.1.1 Amino acid sequence homology 

Amino acid sequences of Parkin of human, chimpanzee, macaque, cow, pig, 

chicken, mouse, and rat were obtained from NCBI database.  The multiple 

sequence alignment result was produced by ClustralW2 or T-COFFEE online 

programmes on the following websites: 

http://www.ebi.ac.uk/Tools/msa/clustalw2/ 

http://tcoffee.crg.cat/apps/tcoffee/do:regular 

The conservation of amino acid sequence of Parkin is examined by these 

programmes as well. 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://tcoffee.crg.cat/apps/tcoffee/do:regular
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2.1.1.2 Prediction of phosphorylation sites 

Amino acid sequence of Parkin was examined for putative phosphorylation sites 

and corresponding kinase(s) using online algorithms KinasePhos2.0.  

(http://kinasephos2.mbc.nctu.edu.tw/) 

2.1.2 Reagents and consumables 

2.1.2.1 Molecular biology 

Buffers for competent E. coli (Escherichia coli) production: 

TF buffer I (sterile filtered) 

Final concentration  MW For 1L 
100mM KCl 74.55 7.46g 
50mM RbCl 120.92 6.05g 
10mM CaCl2 110.99 1.11g 
30mM KAc 98.14 2.99g 
15% glycerin   
pH adjusted to 5.8 with acetic acid  

TF buffer II (Sterile filtered) 

Final concentration  MW For 1L 
10mM MOPS 209.26 2.08g 
10mM RbCl2 120.92 1.21g 
75mM CaCl2 110.99 8.32g 
15% glycerin   
pH adjusted to 7.0 with NaOH  

Bacterial growth medium: Luria broth (LB) powder (10 g/l tryptone, 5 g/l yeast 

extract, 5 g/l NaCl) was purchased from Sigma-Aldrich, diluted in distilled water 

according to the manufacturer’s protocol and sterilised by autoclaving.  

LB agar plates: LB-agar powder (as for LB broth plus 15 g/l agar powder) was 

purchased from Sigma-Aldrich, diluted in distilled water according to the 
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manufacturer’s protocol and sterilised by autoclaving, Ampicillin sodium salt 

was purchased from Sigma-Aldrich, diluted in deionised water to a 

concentration of 100 mg/ml and sterilised by 0.22μm syringe filtered. LB-agar 

was allowed to cool to 50°C before addition of ampicillin to a final concentration 

of 100 μg/ml. The LB agar-ampicillin was then poured into 10 cm dishes and 

allowed to set at room temperature before storage at 4°C. 

DNA constructs: All DNA constructs used in this thesis are shown in Table 2-1 

below. 

Name of construct  Vector backbone  Obtained from  

FLAG-pcDNA3 pcDNA3  Helen Ardley (Leeds)  

FLAG-Parkin  pcDNA3  Helen Ardley (Leeds)  

FLAG-Parkin S101A pcDNA3  This thesis  

FLAG-Parkin S101D pcDNA3  This thesis  

FLAG-Parkin S378A pcDNA3  This thesis  

FLAG-Parkin S378D pcDNA3  This thesis  

FLAG-Parkin S65A pcDNA3  This thesis  

FLAG-Parkin S65D pcDNA3  This thesis  

FLAG-Parkin S65A/S101A pcDNA3  This thesis  

FLAG-Parkin S65D/S101D pcDNA3  This thesis  

Table 2-1 DNA constructs used in this thesis. 

Kits: (all the following kits were purchased from Qiagen) QIAprep spin miniprep, 

QIAfilter plasmid maxiprep, QIAquick gel extraxtion, Qiashredder columns and 

RNease mini kits. 

Electrophoresis regents: TBE (Tris-borate-ethylenediaminetetraacetic acid 

(EDTA)) buffer was prepared as follows: 89 mM Tris base, 89 mM boric acid, 2 

mM EDTA (pH 8). 10x Orange G loading buffer was prepared by dissolving 2.5 

g/l Orange G in 30% (v/v) glycerol. GelRed nucleic acid stain was purchased 

from Biotium (CA, USA). Agarose powder was purchased from Sigma-Aldrich. 
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Reverse transcription: (all reagents were purchased from Invitrogen) 

Reagents and their category numbers are listed in Table 2-2 below. 

dNTP mix   Cat No. 18427-013 

Random primer   Cat No. 48190-011 

5X FX buffer   P/N: Y02321 

0.1M DTT   P/N : Y00147 

RNase OUT   Cat No. 10777-019 

SuperScript III   P/N : 56576 

Table 2-2 Material for reverse transcription. 

Site-direct mutagenesis: AccuPrime Pfx SuperMix and Dpn1 endonuclease were 

both purchased from Invitrogen.  

Quantitative polymerase chain reaction (qPCR): Universal mastermix and 

TaqMan probes were purchased from Applied Biosystems. A FAM-labelled 

probe was used for Parkin (TagMan gene expression assay, Parkin: 

Hs00247755_m1), A VIC-labelled probe was used for GAPDH.  

PCR primers: 

Primers used for Parkin exon sequencing were listed in Table 2-3, for plasmid 

construct sequencing were listed in Table 2-4, for truncated cDNA amplification 

were listed in Table 2-5, and for site-direct mutagenesis were listed in Table 2-6. 
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PCR primers:   

Exon 1 PARK2EX1AF: 

GTAAAACGACGGCCAGTGAGGCCTGGAGGATTTAACC 

PARK2EX1AR: 

CAGGAAACAGCTATGACCGCCCCGTCATTGACAGTT 

Exon 2 ParkinEX2F-M13:  

TGTAAAACGACGGCCAGTATGTTGCTATCACCATTTAAGGG 

ParkinEX2R-M13: 

CAGGAAACAGCTATGACCAGATTGGCAGCGCAGGCGGCATG 

Exon 3 ParkinEX3F-M13: 

TGTAAAACGACGGCCAGTTCTCGCATTTCATGTTTGACA 

ParkinEX3R-M13: 

CAGGAAACAGCTATGACCTAAATATGCACCCGGTGAGG 

ParkinEx3FNew-M13: 

TGTAAAACGACGGCCAGTTGTGACCTGGATCAGCAGAG 

Exon 4 ParkinEX4F-M13: 

TGTAAAACGACGGCCAGTACAAGCTTTTAAAGAGTTTCTTGT 

ParkinEX4R-M13: 

CAGGAAACAGCTATGACCAGGCAATGTGTTAGTACACA 

Exon 5 ParkinEX5F-M13: 

TGTAAAACGACGGCCAGTTGGAAACATGTCTTAAGGAGTACA 

ParkinEX5R-M13: 

CAGGAAACAGCTATGACCTTCCTGGCAAACAGTGAAGA 

Exon 6 ParkinEX6F-M13: 

TGTAAAACGACGGCCAGTAGAGATTGTTTACTGTGGAAACA 

ParkinEX6Rnew-M13: 

CAGGAAACAGCTATGACCGTCCGTGGAGGGAAGTGAC 

Exon 7 ParkinEX7F-M13: 

TGTAAAACGACGGCCAGTTGCCTTTCCACACTGACAGGTACT 

ParkinEX7R-M13: 

CAGGAAACAGCTATGACCTCTGTTCTTCATTAGCATTAGAGA 
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Exon 8 ParkinEX8F-M13: 

TGTAAAACGACGGCCAGTTGATAGTCATAACTCTGTGTAAG 

ParkinEX8R-M13: 

CAGGAAACAGCTATGACCACTGTCTCATTAGCGTCTATCTT 

Exon 9 ParkinEX9F-M13: 

TGTAAAACGACGGCCAGTTTGCAGTCAGTTTGAAAGCTC 

ParkinEX9R-M13: 

CAGGAAACAGCTATGACCAATATAATCCCAGCCCATGTGCA 

Exon 10 Parkin10FC1-M13: 

TGTAAAACGACGGCCAGTTGTTATTGCCAAATGCAACC 

ParkinEX10R-M13: 

CAGGAAACAGCTATGACCGGAACTCTCCATGACCTCCAG 

Exon 11 ParkinEX11F-M13: 

TGTAAAACGACGGCCAGTACAGGGAACATAAACTCTGATCC 

ParkinEX11R-M13: 

CAGGAAACAGCTATGACCCAACACACCAGGCACCTTCAGA 

Exon 12 ParkinEX12F-M13: 

TGTAAAACGACGGCCAGTGTTTGGGAATGCGTGTTTT 

ParkinEX12R-M13: 

CAGGAAACAGCTATGACCAGAATTAGAAAATGAAGGTAGACA 

M13 

sequencing 

primers 

M13F: TGTAAAACGACGGCCAGT 

M13R: CAGGAAACAGCTATGACC 

Table 2-3 Primers for Parkin exon sequencing used in this thesis. 
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Primer 

name 

Sequence Tm (˚C) 

Parkin 

HindIII Koz 

5’-GCAAGCTTGCCACCATGATAGTGTTTGTCAGG-3’ 69.5 

PSq1 5’-GCTCA GTCCTCCCAGGAG-3’ 60.5 

PSq2 5’-GCACAGACGTCAGGAGC-3’ 57.6 

PSq3 5‘-GTGGGTTTGCCTTCTGCCG-3‘ 61.0 

Parkin stop 

BamHI rev 

3’-CCCCTGGTGACCAAGCTGCACATCCCTAGGCG-5’ 72.3 

Table 2-4 Primers for plasmid construct sequencing used in this thesis. 

cDNA 

amplicon 

range 

Sequence (5’-3’) Tm (˚C) 

Full length p-FL-Fw: GCAGGGAAGGAGCTGAGGAATGACTG 

p-FL-Rv: CTGCACTCCCCTTCATGGTACGCTT 

68.0 

66.3 

Exon 1-6 p-16-Fw: GACCATGATAGTGTT 

p-16-Rv: GATGTTCCGACTATTTGTTGCGATCAGGT 

42.4 

65.3 

Exon 3-4 p-34-Fw: TGCAGAATTGTGACCTGGAT 

p-34-Rv: AAGATGGACCCTGGGTC 

55.3 

56.7 

Exon 2-7 p-27-Fw: TGATAGTGTTTGTCAGGTTCAACTC 

p-27-Rv: GGACAGCCAGCCACACAAG 

59.7 

61.0 

Table 2-5 Primers for truncated cDNA amplification. 
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Mutation Sequence (5’-3’) Tm (˚C) 

S101A Fw: CGGGAGCCCCAGGCGTTGACTCGGGTG 

Rv: CACCCGAGTCAACGCCTGGGGCTCCCG 

>75 

>75 

S101D FW: GCGGGAGCCCCAGGACTTGACTCGGGTG 

Rv: CACCCGAGTCAAGTCCTGGGGCTCCCGC 

>75 

>75 

S378A Fw: CATGAAGGGGAGTGCGCTGCCGTATTTGAAGCC 

Rv: GGCTTCAAATACGGCAGCGCACTCCCCTTCATG 

73.2 

732. 

S378D Fw: CCATGAAGGGGAGTGCGATGCCGTATTTGAAGCC 

Rv: GGCTTCAAATACGGCATCGCACTCCCCTTCATGG 

73.1 

73.1 

S65A FW: CTGGATCAGCAGGCCATTGTTCACATTGTG 

RV: CACAATGTGAACAATGGCCTGCTGATCCAG 

68.1 

68.1 

S65D Fw: CTGGATCAGCAGGATATTGTTCACATTGTGCAG 

Rv: CTGCACAATGTGAACAATATCCTGCTGATCCAG 

68.2 

68.2 

Table 2-6 Primers for site-direct mutagenesis used in this thesis. 

MLPA (Multiplex ligation-dependent probe amplification): MLPA kits were 

provided by IoN Department of Neurogenetics Diagnostic Lab (purchased from 

MRC-Holland). Parkin MLPA used SALSA MLPA P052-C1 Parkinson mix 2 which 

was able to detect PARK2 6q25.2, UCHL1 4p14, GCH1 14q22.1, and LRRK2 

12q12.  

siRNA knockdown: 

siRNA used in this thesis were listed in Table 2-7 below 

SMARTpool: siGENOME PKN2 siRNA  M-004612-03 

SMARTpool: siGENOME PINK1 siRNA M-004030-02 

siGENOME Non-Targeting siRNA Pool D-001206-13 

Table 2-7 List of siRNA used in this thesis. 

Parkin shRNA knockdown: 
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The vector backbone pGIPZ was obtained from Open Biosystems. The parkin 

shRNA insert is a pool of three constructs (numbers 84517, 84518 and 84520) 

targeting the Parkin gene at different sites. The three hairpin sequences are 

listed in Table 2-8 below. 

84517 CGAGAGAGTTCTCACATTTAAT 

84520 AACGTTTAGAAATGATTTCAAA 

84518 CACTCACTAGAATATTCCTTAT 

Table 2-8 Parkin shRNA sequences used in this thesis. 

2.1.2.2 Biochemistry 

The growth media for cell lines and human primary fibroblasts used in this 

thesis were summarised in Table 2-9. 

0.25% trypsin-EDTA and sterile phosphate buffered saline (PBS) were 

purchased from Sigma-Aldrich, UK. 4-hydroxytamoxifen (4OH-Tx) and insulin 

were purchased from Sigma Adrich (Poole, UK). Epidermal growth factor (EGF) 

was purchased from PeproTech (NJ, USA). CK1 inhibitors (LH846, D4476, 

IC261), CCCP, DMSO, puromycin and G418 were purchased from Sigma-Aldrich).   

Transfection reagent: Effectene Kit was purchased from Qiagen. Lipofectamine 

2000 Kit was purchased from Invitrogen. DharmaFECT was purchased from 

Thermo Scientific  

Western blot: NuPAGE 4-12% Bis-Tris protein gels and Novex Sharp Standard 

protein ladder were purchased from Invitrogen. Immobilon-P transfer 

membrane was purchased from Millipore (Billerica, MA, USA). Amersham 

chemiluminescent substrate was purchased from GE Healthcare (Bucks, UK). 

CL-Xposure X-ray film was purchased from Thermo Scientific. RG Universal X-

ray fixer and developer were purchased from Champion Photochemistry 

(Chelmsford, Essex, UK). All the antibody used in Western blot were list in Table 

2-10. 
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Medium Supplement Cell types grown with this medium 

Dulbecco’s modified eagle medium 

(DMEM) containing high glucose and 

2mM L-glutamine (Life Technology, 

UK) 

10% heat inactivated foetal bovine serum 

(FBS; Gibco/Life Technology, UK ) 

All immortalised cell lines and mouse embryonic 

fibroblasts (MEFs) unless stated otherwise. 

DMEM containing high glucose and 

2mM L-glutamine (Life Technology, 

UK) 

10% FBS (Gibco/Life Technology, UK) and 

G418 disulfate salt 750ug/ml (Sigma-

Aldrich, UK). 

SH-SY5Y, only for clonal selection. 

DMEM containing high glucose and 

2mM L-glutamine (Life Technology, 

UK) 

10% donor calf serum (DCS; PAA). NIH-3T3 cells lines 

DMEM containing high glucose, 

sodium pyruvate, and GlutaMAX-1 

(Life Technology, UK) 

10% FBS (Gibco/Life Technology, 

UK),Penicillin 50I.U/ml, and Streptomycin 

50 ug/ml (Sigma-Aldrich, UK). 

Human skin fibroblasts. (Antibiotics were only 

supplemented when culturing chunks of skin biopsy, 

and were tapered after fibroblasts appeared. 

Table 2-9 Growth medium used in this thesis and cells grown with them.
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Protein Species Dilution Obtained from 

Parkin Rabbit 1:1000 Abcam 

Parkin Rabbit 1:1000 Cell Signalling 

Parkin Mouse 1:1000 Cell Signalling 

Parkin Mouse 1:1000 Santa Cruz 

Parkin Rabbit 1:1000 Enzo Life Science 

FLAG M2 peroxidase 

(HRP) 

Mouse 1:5000 Sigma-Aldrich 

FLAG Rabbit 1:5000 Sigma-Aldrich 

Phospho-Parkin 

(S101) 

Rabbit 1:1000 AbD Serotec 

Phospho-Parkin 

(S378) 

Rabbit 1:1000 AbD Serotec 

Phospho-Parkin 

(S131) 

Rabbit 1:1000 AAT Bioquest 

Phospho-Parkin 

(S65) 

Sheep 1:1000 Dr Miratul Muqit 

(University of 

Dundee, UK) 

PINK1 Rabbit 1:1000 Novus 

Phospho-Akt (T308) Rabbit 1:1000 Cell Signalling 

Phospho-Akt (S473) Rabbit 1:1000 Cell Signalling 

phospho-ERK1/2 

(Thr202/Tyr204 

Mouse 1:1000 Cell Signalling 

ERK1/2 Rabbit 1:1000 Cell Signalling 

phospho-S6 

ribosomal protein 

(Ser235/236)  

Rabbit 1:1000 Cell Signalling 

S6 ribosomal protein Rabbit 1:1000 Cell Signalling 

phospho-p38 

(Thr180/Tyr182), 

Rabbit 1:1000 Cell Signalling 

p38 Rabbit 1:1000 Cell Signalling 

phospho-JNK 

(Thr183/Tyr185) 

Rabbit 1:1000 Cell Signalling 
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JNK Rabbit 1:1000 Cell Signalling 

Mitofusin 1 Mouse 1:1000 Abcam 

Mitofusin 2 Mouse 1:1000 Abcam 

MIRO1 Rabbit 1:1000 Atlas Antibodies 

VDAC1 Mouse 1:1000 Meuro-Mab 

Mono-/poly-linkage 

ubiquitin 

Mouse 1:1000 Enzo Life Science 

K48-linked ubiquitin Rabbit  1:1000 Millipore 

K63-linked ubiquitin Rabbit  1:1000 Millipore 

LC3 Rabbit 1:1000 Novus 

HtrA2 Rabbit  1:1000 R&D Systems 

GAPDH Mouse 1:1000 Abcam 

ApoTrack cocktail Mouse 1:1000 MitoScience 

ATP synthase β 

subunit 

Mouse  1:1000 Abcam 

Table 2-10 List of antibodies used in Western blotting.
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When not stated, all chemicals were purchased from Sigma (UK) 

1x NuPAGE gel sample buffer (Invitrogen) containing 10mM of DTT as cell lysis 

buffer. 

2% CHAPS lysis buffer: 10mM Tris (pH8), 150 mM NaCl, 2% CHAPS. EDTA-free 

protease inhibitor cocktail tablets (Roche) were added immediately before use.  

Additional PhosSTOP phosphatase inhibitor cocktail tablets (Roche) were added 

if phosphorylated proteins were to be analysed.  

RIPA lysis buffer: 50 nM Tris HCl (pH7.5), 1% Triton X-100, 0.5 % deoxycholic 

acid, 0.1 % SDS, 100 mM NaCl, 1mM EDTA. 

Triton lysis buffer: 50 nM Tris HCl (pH7.5), 150 mM NaCl, 1% Triton X-100, 

10% Glycerol. 

NP-40 lysis buffer: 50 nM Tris HCl (pH7.5), 150 mM NaCl, 0.5% NP-40, 1mM 

EDTA 

Sample loading buffer: NuPAGE 4x LDS sample buffer (Invitrogen) plus DTT to a 

final concentration of 10 mM. 

PBS Tween-20 0.1%: PBS tablets x 2, ddH2O 1000 ml, Tween-20 0.1%.  

Gel running buffer: NuPAGE MES SDS running buffer (Invitrogen) 

Transfer buffer: Tris-Glycine (National Diagnostic, Georgia, USA), 20% methanol 

PBST: 1x phosphate buffered solution (PBS) was made from tablets (Invitrogen) 

diluted in deionised ultrapure water containing 0.1% Tween-20 (Sigma, UK) 

Skimmed milk: Marvel milk powder was dissolved in PBST to the appropriate 

concentration. 
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Immunoprecipitation: ANTI-FLAG® M2 Affinity Gel and FLAG® Peptide 

lyophilized powder were purchased from Sigma (UK).  

Mitochondrial isolation: 

Buffers for short protocol: Mitochondrial isolation buffer: 70 mM Tris base 

(mw 121.14), 0.25 M sucrose (mw 342.3) and 1 mM EDTA, pH 7.4. MES buffer:  

19.8 mM EDTA, 0.25 M D-mannitol (mw 182.172) and 19.8 mM MES (mw 

195.2), pH 7.4. Both buffers were used at 1:1 ratio when used.  

 
Buffers for long protocol: 10 mM TrisHCl (pH 7.4), 1 mM sodium EDTA, 250 mM 

sucrose. Protease inhibitors cocktail tablets and phosphatase inhibitor cocktail 

tablets were added to the ice-cold buffer shortly before use. 

Immunofluorescence: Fix: 4% PFA (paraformaldihide) in PBS. Permeabilise: 

0.5% Triton X-100 in PBS. ProLong® Gold Antifade Reagent with DAPI, Alexa 

Fluor® 568 Goat Anti-Mouse IgG (H+L), Alexa Fluor® 488 Goat Anti-Rabbit IgG 

(H+L) were purchased from Invitrogen. Coverslips and glass slides were 

purchased from VWR.  

2.1.3 Cell models 

2.1.3.1 Immortalised cell lines 

Human embryonic kidney (HEK293T) cells and human neuroblastoma SH-SY5Y 

cells were obtained from the European Collection of Cell Cultures (ECACC).  

SH-SY5Y cells stably expressing wild-type (WT) FLAG-Parkin were kind gifts 

from Dr Helen Ardley (University of Leeds, UK) (Ardley et al., 2003). SH-SY5Y 

cells stably expressing FLAG-pcDNA3.1 were generated within the laboratory by 

Dr Emma Deas (UCL, UK). 



 

80 

 

SH-SY5Y cells stably expressing FLAG-Parkin mutants (S101A, S101D, S378A, 

S378D, S65A, S65A/S101A) were generated in lab as a part of the work in this 

thesis.  

HEK293T cells stably expressing ∆MEKK3:ER were generated by Dr Plun-

Favreau (Plun-Favreau et al., 2007). NIH-3T3 cells stably expressing myrAkt:ER 

or ∆Raf-DD:ER were all obtained from Dr Julian Downward and Dr Almut 

Schulze (Cancer Research UK).  

2.1.3.2 Mouse embryonic fibroblasts 

Immortalised HtrA2 WT MEFs were obtained in collaboration with Dr Miguel 

Martins (Leicester University, UK). 

Cell lysates of WT and Parkin KO mouse MEF were kindly provided by Dr 

Matthew Gegg in UCL Royal Free Hospital for characterisation of anti-Parkin 

antibody by Western blotting. 

2.1.3.3 Human skin fibroblasts 

Control human primary skin fibroblasts: 

Fibroblasts were isolated by punch biopsy following informed consent from 

healthy volunteers at the Royal Free Hospital by Dr Jan-Willem Taanman (UCL, 

UK), using the protocol previously described by Sly and Grubb lab (Sly and 

Grubb, 1979).      

Human primary skin fibroblasts from parkin-mutant patients: 

Skin puncture biopsies were performed following informed consent from 

parkin-mutant patients by Dr Una-Marie Sheerin. Fibroblasts were 

subsequently isolated at the Queen Square as a part of the work in this thesis, 

following the protocol previously described by Sly and Grubb lab (Sly and Grubb, 

1979).Human induced pluripotent stem cells. 
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The skin biopsy was immediately transferred to our lab in Institute of 

Neurology in sterile falcon tube filled with culture medium at room 

temperature. The skin was then cut into smaller pieces of about 0.5 mm3 in size. 

Each skin piece was placed in one 6 cm petri dish for development of fibroblasts 

in the incubator at 37˚C. The fibroblasts started to grow in a single layer around 

the skin piece after 7 to 10 days 

2.2 Methods 

2.2.1 Molecular biology 

2.2.1.1 Parkin patient genotyping 

DNA extractions were performed using Flexi Gene DNA Kits (Qiagen). PCR 

primers (Table 2-3), provided by the diagnostic lab of Department of 

Neurogenetics, were used for analysing all 12 exons of the parkin gene. All PCR 

primers contained sequences of M13 sequencing primers (18mer). The 

sequences were analysed using Sequencher version 4.9. 

2.2.1.2 Multiplex Ligation-dependent Probe Amplification (MLPA) for 

analysis of whole exon deletions/duplications 

MLPA was performed in the diagnostic lab of Department of Neurogenetics, 

using SALSA MLPA kit for detecting familial PD (P052-Parkinson mix 2) from 

MRC-Holland (Amsterdam, the Netherlands) and following the manufacturer’s 

protocol. 

2.2.1.3 Quantitative PCR 

RNA extraction: 

After rinsed with cold PBS, cells were harvested by scraping down in PBS, 

transferred to an Eppendorf and pelleted by centrifugation at 16,000 g for 5 min 

in a benchtop centrifuge. The supernatant was removed and the cell pellet 

either stored at -80°C, or immediately lysed for RNA extraction by resuspension 
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in lysis buffer provided with the Qiagen RNeasy mini RNA extraction kit, 

according to the manufacturer’s protocol. Lysates were homogenised using 

Qiagen QIAshredder columns before the RNA was further extracted using the 

RNA extraction kit. 

Reverse transcription: 

For production of cDNA, 1 μg extracted RNA was reverse transcribed using 

Superscript III reverse transcriptase, according to the manufacturer’s protocol. 

Briefly, 1 ug RNA was combined with random hexamer primers (final 

concentration 2.5 μM) and dNTP mix (final concentration 0.5 mM) in an initial 

volume of 12 μl and incubated at 65°C for 5 min. The mixture was immediately 

ice-shocked and then incubated on ice for 1 min before addition of the provided 

First-Strand 5x buffer, 5 mM DTT and RNAse out. The tube was then incubated 

at 42°C for 2 min. Before the 2 min was up, add 200 U Superscript III reverse 

transcriptase, bringing the total reaction volume to 20 μl. The reaction was 

incubated at 42°C for further 70 min, then the reaction was inactivated at 70°C 

for 15 min. The RT reaction can be kept at 4°C for further concentration 

measurement or for storage at -20°C. 

Quantitative real-time PCR (qPCR): 

mRNA expression of Parkin in SH-SY5Y, SH-SY5Y stably expressing FLAG-Parkin, 

SH-SY5Y stably expression Parkin shRNA was measured using TaqMan 

quantitative PCR, performed on a Rotor-gene 6000 (Corbett). 10 ng cDNA was 

combined with 2X Taqman Universal Mastermix and 20X probe sets for the gene 

of interest and GAPDH in a total reaction volume of 6.5 μl. Assay conditions are 

shown in Table 2-11  below. 

Step Cycles  Temperature Time 

Initialisation 1 95 °C 10 min 

Denaturing  
35 

95 °C 30 sec 

Annealing  60 °C 45 sec 
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Table 2-11 Thermal cycling protocol for qPCR (TagMan). 

Data were acquired on the green (FAM) and yellow (VIC) channels during the 

60°C extension step (gain = 10). Data were analysed using the 2-ΔΔCT method 

(Livak and Schmittgen, 2001), using GAPDH as an internal standard. 

2.2.1.4 Plasmid amplification and purification 

Production of competent E.coli: 

One vial of chemically competent Top10 E. coli was diluted in 5 ml LB and 

cultured overnight in a shaking incubator at 37°C and 220 rpm. Next morning 1 

ml of this pre-culture was transferred into 200 ml LB and incubated with 

shaking for ~ 4 h until the bacteria were dividing exponentially (OD580 = 0.3-0.5). 

The bacteria were pelleted in a pre-cooled (4°C) centrifuge for 7 min at 5000 g, 

resuspended in 30 ml filter-sterilised TF buffer I and incubated on ice for 15 

min. The bacteria were then pelleted for a second time at 5000 g for 7 min, 

resuspended in 7.5 ml filter-sterilised TF buffer II and incubated for 15 min on 

ice before aliquoting into pre-chilled autoclaved Eppendorfs. Aliquots of 50 μl 

were snap frozen in liquid nitrogen and stored at -80°C until needed.  

Transformation/Re-transformation: 

DNA (1 μg purified DNA for re-transformation) was added to 50 μl chemically 

competent Top10 E. coli on ice, mixed gently by flicking and incubated on ice for 30 min. 

Bacteria were heat-shocked at 42°C for 30 s before returning to ice for a further 5 min. 

200 μl pre-warmed LB medium without antibiotic was added and the bacteria 

incubated for 1 h shaking at 37°C and 225 rpm. 50 to 100 μl bacteria (in the case of 

DNA re-transformation) were spread on pre-warmed LB-agar plates containing the 

appropriate antibiotic selection and incubated overnight at 37°C. 

Glycerol stock storage: 

Pick one colony from the LB-agar culture mentioned above and cultured in 3 ml 

LB broth for 6-8 h. Prepare sterilised 80% glycerol by autoclaving. Then in a 
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sterile 2 ml screw-cap tube add 0.5 ml of 80% glycerol and the same amount of 

bacteria stock from the 3 ml culture, to reach final concentration of 40% 

glycerol. Snap freeze the glycerol stock tubes in liquid nitrogen and then stored 

at -80°C until needed.  

Utilisation of glycerol stock: Scrape the surface of the frozen glycerol stock, then 

streak out onto a fresh LB agar plate. Then in the next morning pick a single 

colony as usual. Alternatively thaw half of the glycerol stock and add it straight 

into a 200ml culture for further incubation. 

Plasmid purification: 

For preparation of small quantities of DNA (Miniprep), single bacterial colonies 

were picked using a sterile Gilson pipette tip into 4 ml LB broth containing the 

appropriate antibiotic selection and incubated at 37°C shaking at 220 rpm 

overnight. The resulting bacteria were pelleted by centrifugation at 16,000 g for 

1 min in a 2 ml Eppendorf, resuspended in 250 μl Qiagen buffer P1 and DNA 

extracted using a QIAprep spin miniprep kit according to the manufacturer’s 

instructions.  

For the preparation of larger quantities of DNA (Maxiprep), bacterial colonies 

were picked as described above into 3 ml LB broth containing the appropriate 

antibiotic, and incubated at 37°C at 220 rpm for approximately 8 h. After this 

time, 1 ml bacterial culture was transferred into 200 ml LB containing antibiotic 

and incubated overnight at 37°C, shaking at 220 rpm. The resulting bacteria 

were pelleted by centrifugation at 6000 g for 15 min, resuspended in 10 ml 

Qiagen buffer P1, and DNA extracted using a QiaFilter Plasmid Maxiprep kit, 

according to the manufacturer’s protocol. Upon elution of the DNA in buffer QF, 

DNA was precipitated using isopropanol according to the manufacturer’s 

instruction, but at this point the recommended purification of DNA using 70% 

ethanol was replaced with sodium acetate precipitation. The precipitated DNA 

was resuspended in 100 μl deionised water and transferred to an Eppendorf 

containing 1 ml 100% ethanol and 40 μl 3 M NaAc (pH 5.2). The Eppendorf was 
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kept at -80°C overnight to facilitate precipitation of DNA. The DNA was pelleted 

by centrifugation at 16,000 g for 30 min in a cooled benchtop centrifuge. The 

supernatant was aspirated and the pellet allowed to air dry before resuspension 

in an appropriate volume of sterile deionised water. Plasmid concentration and 

quality was measured spectrophotometrically using a NanoDrop 2000. 

2.2.1.5 Sequencing: 

For each construct generated, 6-12 colonies were picked, mini-prepped and 

sent for Sanger sequencing at the UCL Scientific Support Service. Sequencing 

primers were designed across exon boundaries to exclude the possibility of 

genomic DNA contamination, at intervals of approximately 500 bp. The program 

Primer3 (http://frodo.wi.mit.edu/) was used to generate primer sequences, 

using an optimal primer length of 20 residues (acceptable range 18-27) and an 

optimal Tm of 60°C (acceptable range 57-63°C). All sequences returned were 

analysed by aligning the sequenced sense and antisense fragments with the 

expected sequence for Parkin using Sequencher software (GeneCodes, MI, USA). 

This compilation was analysed by eye to check for mutations or changes to the 

open reading frame. 

2.2.1.6 Mutagenesis 

Full-length human Parkin was inserted into FLAG-pcDNA3 as backbone unless 

otherwise specified. FLAG-pcDNA3 empty vector and FLAG-Parkin pcDNA3 

were gifts from Dr Helen Ardley (Leeds Institute of Molecular Medicine) and 

have been previously described (Ardley et al., 2003). FLAG-Parkin S101A, 

S101D, S65A, S65D, S65A/S101A, S65D/S101D mutations were generated by 

site-direct mutagenesis on the FLAG-Parkin pcDNA3 backbone.  

Mix the follow material for PCR reaction: 50ng of DNA, 1.25 ul of forward 

primer, 1.25 ul of reverse primer, 2.5ul DMSO, and add AccuPrime Pfx 

mastermix up to 25 ul as final volume. The mixtures were then subjected to PCR 

reaction. 
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The PCR thermal cycling protocol for mutagenesis is listed in Table 2-12 below: 

Segment  Cycles Temperature  Time 

1 1 95 ˚C 30 sec 

2 18 95 ˚C 30 sec 

  55 ˚C 1 min 

  68 ˚C 2 min/kb 

3 Standby 4 ˚C  

Table 2-12 PCR thermal cycling protocol for mutagenesis. 

The PCR reactions were than subjected to Dpn1 digestion for remove the 

methylated, non-mutated parental DNA templates. Add 1 ul of Dpn1 restriction 

enzyme to each PCR reaction product. Mix well and then spin down the mixture. 

Then incubate the mixture at 37 ˚C for 1 h. The products were then ready for 

subsequent plasmid amplification procedures. 

2.2.2 Cellular biology 

2.2.2.1 Cell culture and transfection 

Target cells were obtained from European Collection of Cell Cultures (ECACC) 

and cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 4.5 g/L 

glucose and L-glutamine, and supplemented with 10% heat-inactivated FBS in a 

humidified chamber at 37˚C with 5 % CO2. SH-SY5Y cells stably expressing 

FLAG-Parkin WT or mutants were generated by transfecting the SH-SY5Y cells 

using Effectene reagent (Qiagen) following manufacturer’s instruction. 

Transfected cells were selected by appropriate antibiotics (G418, 0.75 mg/ml or 

puromycin 2 μg/ml) 48 h after transfection. Monoclonal cell lines were obtained 

by limiting dilution procedure.  

2.2.2.2 Stable cell line generation 

Transfection reagent: 
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Effectene transfection reagent was used according to the manufacturer’s 

instruction (Qiagen, UK). Appropriate amount of SH-SY5Y cells were seeded in 

10 cm dishes the day before the transfection and incubated under normal 

growth condition, and the cells were transfected at 60% confluence 

(approximately). 

Limiting dilution: 

Forty-eight hours after transfection, the cells were subjected to 2μg/ml 

puromycin (or G418, depending on plasmid types) selection. After 10 days of 

antibiotics selection, the cells were trypsinised and seeded in 96-well plates at 

the concentration of ½ cell/well, 1 cell/well, and 2 cells/well. A month later 

single colonies were picked for further expansion. The colonies were 

successively seeded in 24-well, 12-well and then 6-well plate. Only the colonies 

with moderate expressing GFP were kept. The final clones were then subjected 

to Western blotting and q-PCR to confirm the knockdown. 

2.2.2.3 Activation of ∆MEKK3:ER,  myrAkt:ER or ∆Raf-DD:ER cell lines 

∆MEKK3:ER HEK293T cells, or myrAkt:ER or ∆Raf-DD:ER NIH3T3 cells were 

seeded in 6-well plates. Confluent cells were then starved overnight with serum 

free DMEM. These cells were then stimulated with 100 nM 4OH-Tx for the time 

indicated. 100% ethanol was added as a control vehicle. Finally cells were 

harvested and samples were prepared for Western blottings. 

2.2.2.4 Activation of endogenous PI3K/Akt signalling pathway 

HEK293t cells were seeded into 6-well plates and then transfected with FLAG-

parkin and FLAG-pcDNA3 (vector control), respectively, using Effectene 

transfection reagent. The transfection continued for 60 hours before the media 

were replaced by serum free DMEM for another 16 hours. MEFs or control 

human primary fibroblasts were seeded in 6-well plates. Confluent cells were 

then starved overnight with serum free DMEM. All serum-starved cells were 
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then stimulated with 10 to 100 ng/ml of EGF and  50 to 100 nM insulin diluted 

in serum free DMEM. 

2.2.2.5 iPSC generation 

The viral packaging and fibroblast transduction protocol were simplified in 

Table 2-13 below. 
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Day 1 1. Coat 4x10cm dishes with 1.2ml Poly-d-lysine, incubate RT for 2 hours 

2. Wash 3x PBS 

3. Seed 3.6x10^6 Plat-A cells per plate in 12ml DMEM+FCS without antibiotics 

Day 2 1. One hour before transduction, change medium to Optimem, 12ml/dish 

2. Dilute 16ug DNA with 1.5ml Optimem 

3. Dilute 60μl Lipofectamine 2000 in 1.5ml Optimem, incubate RT for 5 min 

4. Mix DNA + Lipofectamine together, incubate RT for 20 min 

5. Add mixture to appropriate dish 

Day 3 1. Change medium to DMEM+FCS, 6ml per plate 

2. Seed fibroblasts: 100,000 per well of 3 – 6/well 

Day 4 1. Collect and combine 4 viral supernatants, filter 0.45um 

2. Add to cells to be transduced (24ml total, ~4ml per well, 6 wells) 

3. Supplement with 8 ug/ml polybrene per well 

4. 2 of 3 wells of each target lines (3rd being untransfected control) 

5. Replenish media on transfected cells 

Day 5 1. Repeat steps 1-5 of day 4 

2. Discard packaging cells 

3. Seed feeders (irradiated SNL or MEF), 900,000 per 10cm dish x4 

Day 6 1. Lift transduced fibs, with accutase (no need for ROCK inhibitor) 

2. Count 

3. Seed cells on 10cm dish of feeders (range 60,000 to 500,000 cells per dish) 

4. Freeze down remainder 

Day 7 1. Change media on plates to hES media + 0.5mM valproic acid + 20ng/μl bFGF 

2. Replace media alternate days thereafter, until colonies form 

3. Then, withdraw valproic acid and feed daily with hES media 

Table 2-13 Viral packaging and fibroblast transduction protocol for iPSC generation. 
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2.2.3 Biochemistry 

2.2.3.1 Harvesting cells and protein extraction from cultured cells 

By sample buffer 

The cells were kept on ice throughout the all the steps of the procedure. Growth 

media was removed and then the cells were washed once with cold PBS. PBS 

was removed and 1X NuPAGE sample loading buffer supplemented with 10mM 

DTT was added to the cells. Cells were then scraped to tubes, boiled for 10 min, 

and then sonicated briefly. The homogenates were then centrifuged at 4˚C at 

13,000 rpm for 10 min, and the supernatants were transferred to new 

Eppendorf tubes for further western blot analysis, 

By lysis buffer 

The cells were kept on ice throughout the all the steps of the procedure. They 

were first washed with cold PBS, than harvested by adding appropriate lysis 

buffer (2% CHAPS buffer, RIPA buffer, NP-40 buffer, or Triton X-100 buffer. See 

material) supplemented with protease inhibitors and phosphatase inhibitors 

and scraped in to Eppendorf tubes. Lysates were snap frozen in liquid nitrogen 

or frozen in -80˚C overnight. They were then thawed on ice, incubated at 4˚C in a 

rotatory wheel for 1 h to ensure complete lysis. Insoluble cellular components 

were removed by centrifugation at 16,000 g for 10 min at 4˚C. The supernatant 

was transferred to a fresh Eppendorf tube and stored at -20˚C if not used 

immediately. 

2.2.3.2 Mitochondrial isolation (short protocol) 

To isolate mitochondria from cultured cells for the analysis of mitochondria-

associated protein, a protocol was followed from (Samali et al., 1999). Briefly, 

the growth media was aspirated from the cells and the cell monolayer rinsed 

once with PBS. An appropriate volume of mitochondrial isolation buffer (100 μl 

for one well of a 6 well plate) was added directly to the cells, then an equal 
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volume of MES buffer with 0.2 mg/ml digitonin added and incubated at room 

temperature for 10 min. The cells were scraped into an Eppendorf and pelleted 

at 900 g for 2 min to remove intact cells and debris. The supernatant was then 

centrifuged at 16,000 g for 10 min to separate the mitochondrial pellet from the 

cytosolic fraction (the supernatant). The cytosolic fraction was removed and 

diluted directly in sample buffer for Western blot analysis, while the 

mitochondrial pellet was rinsed once with PBS, resuspended in diluted sample 

buffer and sonicated before loading. 

2.2.3.3 Mitochondrial isolation from SH-SY5Y cells (long protocol) 

Permeabilisation of the cells by digitonin in the previous method may strip 

loosely associated proteins (for example, Parkin) from the outer mitochondrial 

membrane. For this reason, an alternative protocol was followed from (Gegg et 

al., 2010) with few modification to reduce cross contamination. Harvest cells 

from one confluent 10-cm plate by aspirating the media, washing the plate with 

ice cold PBS, adding 1 ml mitochondrial homogenisation buffer (MHB) 

supplemented with freshly-added protease inhibitor and phosphatase inhibitor, 

and then freezing the plate in -80˚C freezer for at least 1 h. Then thaw the plates 

on ice, scrape the cells (in MHB) to 2 ml tubes, and store the tube in -80˚C 

freezer overnight. Next day, thaw the tubes on ice. Homogenise the cells by 

resuspending the mixture with p200 micropipettor carefully (20 pipetting per 

sample), then pellet nuclei, cell debris and unbroken cells by centrifugation at 

1,500 g for 10 min at 4˚C. Transfer the supernatant to a new 2-ml tube, repeat 

centrifugation at 1,500 g for 10 min at 4˚C to remove any residual nuclei, cell 

debris and unbroken cells. Transfer the supernatant to a new 2-ml tube and 

pellet mitochondrial by centrifugation at 12,000 g for 20 min at 4˚C. Transfer 

the supernatant to a new 1.5 ml tube. Resuspend the mitochondrial pellet with 1 

ml of MHB supplemented with protease inhibitors and phosphatase inhibitors 

and transfer all to a new 2-ml tube. Centrifuge both 1.5 ml and 2 ml tubes at 

12,000 g for 30 min at 4˚C. From the 1.5-ml tube, transfer the supernatant 

(cleaned cytosolic fraction) to fresh 1.5 ml tube. For the 2 ml tube, remove and 

discard the supernatant carefully by pipette. The cleaned mitochondrial pellet 
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was resuspended in 100 ul 1x sample buffer supplemented with 10 uM DDT 

(mitochondria-enriched fraction) and sonicated for further Western blot 

analysis. 

2.2.3.4 Western blotting 

The cell lysates were loaded onto a 4-12% NuPAGE gel. Proteins were separated 

by electrophoresis at 80 to 100V and then were transferred to Polyvinylidene 

fluoride (PVDF) microporous membrane for 80 minutes at 80V at 4˚C. The 

membrane was blocked in 3% skimmed milk in PBS-Tween20 for 1 h at room 

temperature and further incubated with the primary antibody diluted in 

blocking buffer either overnight (16 h) at 4˚C or for 1 h at room temperature. 

The membrane was washed 6 times for a total 1 h in PBS-Tween 20, incubated 

with appropriate secondary antibody diluted in blocking buffer for 1 hr at the 

room temperature, and further washed 6 times for a total 1 h in PBS-Tween 20. 

Membrane was developed by incubation with 1 ml of ECL (enhanced 

chemiluminescence) (Pierce, UK) for 1 minute, and then exposed to X-ray film 

for an appropriate period of time to record the resultant chemiluminescence. 

Proteins bands were scanned and the intensities were quantified and analysed 

using Image J software. 

2.2.3.5 Immunoprecipitation: 

Prepare CHAPS lysis buffer (CHAPS 2%, NaCl 150mM, Tris-HCl (pH8.0) 10mM), 

by adding protease inhibitors and phosphatase inhibitors freshly before use. 

After harvesting cells, resuspend each dry cell pallet with 1mL of icy cold CHAPS 

lysis buffer. Samples were incubated on a rotation mixer at 4C for 1 h, and then 

centrifuged at 13,200 rpm for 10 min at 4C. While centrifuge is occurring, 

prepare FLAG beads (ANTI-FLAG M2 Affinity Gel), Wash 25ul/sample of packed 

FLAG bead with CHAPS lysis buffer and remove the buffer carefully after wash. 

Resuspend the washed beads with equal volume (25ul/sample) of CHAPS lysis 

buffer (with protease inhibitor) to achieve 50% v/v bead suspension. Apply 

50ul/sample of bead suspension to each fresh 1.5 mL Eppendorf for further use. 
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Transfer the supernatants (cell lysates) after centrifuge into fresh 1.5mL 

Eppendorfs. Transfer 9/10 of lysate into the 1.5mL Eppendorf containing 50ul 

of FLAG beads suspension (‘IP samples’). The rest 1/10 can be stored as ‘input’ 

(later load 10 ul of each input sample for SDS-PAGE). The ‘IP samples’ were 

incubated on a rotation mixer at 4C for a minimum of 2 h, to facilitate binding 

of the FLAG-tagged protein to the antibody. After reaction, the IP sample was 

centrifuged at 1,000 rpm for 2 min at 4C, and the supernatant was removed 

carefully. The pelleted FLAG-beads were then washed by adding 1 ml/sample of 

CHAPS lysis buffer and gently inverting the tubes for 6 times. Then centrifuge IP 

samples at 1,000 rpm for 2 min at 4C and remove supernatant carefully. The 

FLAG-beads were washed for total three times. Finally, elute FLAG-tagged 

protein from FLAG beads by FLAG-peptide. Prepare FLAG-peptide to working 

concentration of 150 ug/ml. Add 100 ul of 150 ug/ml FLAG-peptide to each 

sample. Agitate the sample by scratching the Eppendorfs against the tube rack 

for 30 min. Centrifuge at maximum speed (13,200 rpm) for 2 min. Transfer 80ul 

of eluted solution to a fresh Eppendorf. Load 10ul of eluted IP sample for SDS-

PAGE. 

2.2.3.6 Immunofluorescence and confocal imaging 

Cells plated on 13mm glass coverslips were fixed with 4% 

Paraformaldehyde/phosphate buffered saline (PBS) solution for 20 min at room 

temperature, then permeabilised using 0.5% Triton X-100/PBS for 15 min. 

Samples were blocked for 30 min in 10% FBS/0.5% Triton X-100/PBS solution 

before addition of the primary antibody for 2 h in 10% FBS/PBS solution. The 

appropriate secondary antibodies were added in 10% FBS/PBS for 1 h and then 

the coverslips were mounted to glass slides using ProLong® Gold Antifade 

Reagent with DAPI (Life Technologies P36931). Primary antibodies were used 

as follows: rabbit anti-FLAG (Sigma F7425, 1:2,000), mouse anti-FLAG (Sigma 

F3165, 1:2,000), anti-Parkin (pSer101) (AbD AHP 1304, 1:1,000), anti-

mono/poly-ubiquitinated conjugates (FK2) (Enzo Life Sciences PW8810, 

1:1,000), anti-K48 polyubiquitinated protein (clone Apu2; Millipore 05-1307; 

1:1000), anti-K63 polyubiquitinated protein (clone Apu3; Millipore 05-1308; 
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1:1000), anti-p62 (Abcam ab56416, 1:1,000), rabbit HtrA2 (R&D AF1458, 

1:1,000), mouse anti-complex V β subunit (Abcam as4730, 1:2,000). Secondary 

antibodies were used as follows: Alexia Fluor® 568 anti-mouse (Life 

Technologies A-11004, 1:2,000), and Alexia Fluor® 488 anti-rabbit (Life 

Technologies A11008, 1:2,000). Confocal images were obtained with Zeiss 710 

via CLSM equipped with a META detection system using 63x oil immersion 

objective, with excitation/emission at 495/515 nm for detecting primary 

antibodies raised in rabbit and 558/583 nm for primary antibodies raised in 

mouse. Images were processed with Zen software (Carl Zeiss) or Volocity image 

analysis software (PerkinElmer). 

For quantification of Parkin mitochondrial translocation, mitochondrial 

ubiquitination, p62 recruitment and mitochondrial clearance, approximately 

150 cells per coverslip were acquired. Cells were scored visually by one non-

blinded and two blinded observers independently, and final cell numbers were 

calculated by the average of results by three observers. For Parkin 

mitochondrial translocation (or mitochondrial ubiquitination), cells were 

categorized into no, partial or complete Parkin translocation (or mitochondrial 

ubiquitination) according to the levels of Parkin (or ubiquitin) co-localizing with 

mitochondria. A cell with no Parkin (or ubiquitin) signal co-localized with 

mitochondria was classified as no Parkin translocation (or mitochondrial 

ubiquitination), and a cell with all Parkin (or ubiquitin) signals co-localized with 

all mitochondria, regardless of mitochondrial morphology, was complete Parkin 

translocation (or mitochondrial ubiquitination). Any cells that fail to fulfil the 

criteria for no or complete Parkin translocation (or mitochondrial 

ubiquitination) were categorized as partial. For p62 recruitment experiment, 

only cells with complete co-localization of p62 and mitochondria were scored as 

positive. For mitophagy experiment, only cells with no staining for the 

mitochondria were scored positive for mitochondria clearance. In all cases, a 

minimum of 150 cells were scored per coverslip and each experiment was 

performed at least three times. 
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2.2.3.7 Compaction index of mitochondrial calculation 

Compaction index is defined by the ratio of the shortest possible perimeter of an 

object (which is a perimeter of a circle) with the same area as the object of 

interest divided by the actual perimeter of the object of interest. To measure the 

perimeter and area of mitochondria in an individual cell, the confocal images 

were exported as single-channel (CVβ) only images. CVβ channel was then 

converted into binary in ImageJ program (NIH). The individual cell was selected 

using the ‘’region of interest’’ tool and the accumulated perimeter and area of 

mitochondrial within this selected cell were measured using ‘’analyse particles’’ 

tool. Compaction index of mitochondria was calculated by the following formula 

(P: actual perimeter; A: area of object of interest): 

           (2π*((A/π)1/2))/P. 

At least six cells were selected per coverslip and the experiment was performed 

at least three times. 

2.2.3.8 In-silico modelling of pS101 with human full-length Parkin 

structure 

(This part of work was perform in collaboration with Dr Wolfdieter Springer’s 

lab in Department of Neuroscience Mayo Clinic.) 

Computational modelling: Modelling of the human full-length Parkin structure 

has been described elsewhere. Initial modelling for P-S101 was performed 

using the Schrödinger software suite (Schrödinger, LLC) (Loving et al., 2009; 

Schrödinger, 2013). The starting conformation of all residues within 12 Å of 

pS101 was obtained by the method of Polak-Ribière conjugate gradient (PRCG) 

energy minimization with the Optimized Potentials for Liquid Simulations 

(OPLS) 2005 force field (Jorgensen and Tiradorives, 1988) for 5000 steps, or 

until the energy difference between subsequent structures was less than 0.001 

kJ/(mol-Å) (Mohamadi et al., 1990). Our methodology has been described 

previously (Caulfield and Devkota, 2012; Caulfield et al., 2011; Friesner et al., 
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2006; Loving et al., 2009). Briefly, in order to generate the protein with the 

protein preparation wizard module, which uses Schrödinger’s builder module 

for manipulation and modification of residues, we relaxed the region 

surrounding residues pS101 of Parkin at a distance of 12 Å following model 

building and minimization. Then, we prepared grids for the region surrounding 

pS101 for future Glide docking experiments scanning for small molecule binders 

in this region (Loving et al., 2009; Salam et al., 2009). Site hydroxyls, such as in 

serines and threonines, were allowed to move with rotational freedom. 

Hydrophobic patches were utilized within the Van der Waals (VdW) as an 

enhancement.  Structural refinement with molecular dynamics: Yasara-based 

molecular dynamics was next implemented for refining the structure under the 

Amber04 force field (D.A. Pearlman, 1995; Krieger et al., 2009). Molecular 

modelling for importing and refining the X-ray structure and generation of 

pS101 modification, as well as, rendering of figure images were completed with 

Maestro, the built-in graphical user interface of the Schrödinger chemistry 

package (v. 5.6) (Schrödinger, 2013). Molecular dynamics was run for over 100 

ns as previously described (Caulfield and Devkota, 2012; Zhang et al., 2013). 
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Chapter 3 Characterisation of Parkin 

fibroblasts and generation of induced 

pluripotent stem cell model from 

Parkin fibroblasts 

3.1 Introduction 

As described in Chapter 1, Parkin is an E3 ubiquitin ligase with multiple  cellular 

functions (Clark et al., 2006; Darios et al., 2003; Henn et al., 2007; Higashi et al., 

2004; Jiang et al., 2004; Park et al., 2006; Petrucelli et al., 2002; Poulogiannis et 

al., 2010; Staropoli et al., 2003; Tay et al., 2010; Veeriah et al., 2010). Parkin 

pathogenic mutations cause a loss of function of this protein in familial PD 

through various mechanisms (Dawson and Dawson, 2010). Deletions which 

span several exons usually eliminate normal protein function. Nonsense 

mutations result in a truncated protein, which may be degraded more easily, 

causing reduced or complete loss of function (Dawson and Dawson, 2010). 

Missense mutations may still produce full-length protein with substituted 

amino acids; however, the resulting mutant protein may have reduced stability, 

decreased solubility and therefore altered intracellular localisation, reduced 

enzyme activity, or aberrant ubiquitination (Hampe et al., 2006; Matsuda et al., 

2006; McNaught et al., 2003; Wang et al., 2005b; Winklhofer et al., 2003). 

Furthermore, various environmental stresses have been reported to alter or 

inactivate Parkin functions in sporadic PD cases. These stress include 
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nitrosative stress, oxidative stress and dopaminergic stress (Chung et al., 2004; 

Yao et al., 2004). 

How Parkin mutations cause PD remains poorly understood. Investigation of 

Parkin functions has been initiated in various cellular and animal models. 

However, most of the currently available Parkin animal models (described in 

1.3.6) do not show robust phenotypes that simulate the human disease (Perez 

and Palmiter, 2005). As for the immortalised cancer cell lines, they do not fully 

recapitulate the physiological environment of Parkin mutations due to their cell 

cycle regulation and bioenergetics differs considerably from neuronal cells. 

Recent cellular biology breakthrough in generating induced pluripotent stem 

cells (iPSC) from patient’s fibroblasts sheds light on the research for 

neurological diseases like PD wherein pathological neurons are almost 

impossible to be obtained for further investigation. This chapter aims to 

generate Parkin-mutant iPSC by reprogramming the skin fibroblasts from PD 

patients carrying mutations in the Parkin gene and apply this model for further 

investigation of Parkin molecular pathways. The work described in the first 

section of this chapter starts with validating antibodies against Parkin. A 

number of commercially available Parkin antibodies will be assessed for their 

specificity in detecting Parkin in cell lysates extracted from several cell lines by 

various lysis buffers. 

According to UniProt database (http://www.uniprot.org/uniprot/O60260), the 

Parkin protein is widely expressed, more abundantly in the brain, heart, 

skeleton muscles and testis. Fibroblasts and peripheral leukocytes also 

demonstrate detectable Parkin protein (Kasap et al., 2009; Nakaso et al., 2006). 

Therefore, the patient’s fibroblast itself can potentially be a good model for the 

research if the antibody is specific enough to detect endogenous Parkin. In the 

second section of this chapter, human fibroblasts from Parkin patients in UCL, 

Royal Free Hospital were validated to confirm the mutation as well as the 

protein expression level. Another skin biopsy from the Parkin patient in 

National Hospital for Neurology and Neurosurgery, Queen Square, was obtained 

and skin fibroblasts culture was set up on site in our lab before characterisation 

http://www.uniprot.org/uniprot/O60260
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of the fibroblast line. Finally, the attempt to generate Parkin-iPSC was described 

in the third section of this chapter.  

3.2 Results 

3.2.1 Characterisation of anti-Parkin antibody 

Although a considerable amount of studies show the detection of endogenous 

Parkin by Western blotting using various anti-Parkin antibodies, non-specific 

bands in the blots were frequently observed in the many of these studies. With 

this in mind, I first assessed the specificity of several anti-Parkin antibodies. 

3.2.1.1 Information of Parkin antibodies tested 

A number of commercially available Parkin antibodies were purchased. Five 

antibodies were selected for further validation, namely Cell Signalling (mouse, 

CS4211), Cell Signalling (rabbit, CS2132), Abcam (rabbit, ab15954), Santa Cruz 

(mouse, SC-32282) and Enzo (rabbit, BML-PW9365). Their product 

informations are listed below (Table 3-1). The product category numbers were 

used throughout this thesis to specify the various antibodies. 
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Make Spices Cat No Epitope Applications 

Cell 
Signalling 

Mouse (Prk8) CS4211 Human recombinant Parkin maps to the carboxy terminus of 
Parkin 

WB, IP 

Cell 
Signalling 

Rabbit CS2132 Synthetic peptide correspond to residues  surrounding aa 400 
of human Parkin  

WB 

Abcam Rabbit ab15954 Synthetic peptide corresponding to aa 304-322 of mouse 
Parkin. 

WB, IP, IF 

Santa Cruz Mouse (Prk8) SC-32282 Human recombinant Parkin maps to the carboxy terminus of 
Parkin 

WB, IP, IF 

Enzo Rabbit BML-PW9365 Synthetic peptide (PP9366) aa 399-412 of human Parkin  WB, IP, IF 

Table 3-1 Information of Parkin antibodies tested.  

Details of the five Parkin antibodies used in this project.  Information of epitope were provided by manufacturer‘s datasheet. (Abbreviations: aa, amino acid. 

WB: Western blotting. IP: immunoprecipitation. IF: immunofluorescence.)  

 

 

Details of the five Parkin antibodies used in this project.  Information of epitope were provided by manufacturer‘s datasheet. (Abbreviations: aa, amino acid. 

WB: Western blotting. IP: immunoprecipitation. IF: immunofluorescence.)  

 

 

Details of the five Parkin antibodies used in this project.  Information of epitope were provided by manufacturer‘s datasheet. (Abbreviations: aa, amino acid. 
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3.2.1.2 Validation of Parkin antibodies by transient knockdown of Parkin 

with siRNA in SH-SY5Y cells stably expressing FLAG-Parkin 

In order to assess the specificity of the different antibodies, PARK2 (Psi) and 

scrambled (Ssi) small interfering RNA (siRNA) were used to transiently 

knockdown Parkin expression in SH-SY5Y neuroblastoma cells stably 

expressing FLAG-Parkin (Ardley et al., 2003). Untransfected SH-SY5Y cells and 

control human primary fibroblasts were used as controls for endogenous Parkin 

expression.  Cells were harvest and lysed 72 h post transfection using RIPA 

buffer. The lysates were further analysed by SDS-PAGE and Western blotting 

(Figure 3-1). Anti-FLAG antibody detected strong FLAG-Parkin expression in 

untransfected and Ssi-transfected FLAG-Parkin SH-SY5Y cells, whereas FLAG-

Parkin expression was almost completely inhibited in Psi-transfected cells, 

indicating a satisfactory knockdown efficiency. However, when probing with the 

ab15954 anti-Parkin antibody, Parkin knockdown appeared to be less efficient 

compared to the anti-FLAG antibody. The ab15954 antibody detected both 

FLAG-tagged and endogenous Parkin. Finally this preliminary experiment 

suggested that endogenous Parkin expressed at lower levels in control human 

primary fibroblasts as compared to SH-SY5Y cells. 
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SH-SY5Y cells stably expression FLAG-Parkin were transfected 

with Parkin and non-targeting pool siRNA. The Western 

blotting membranes were probed with anti-Parkin (ab15954) 

and anti-FLAG antibodies, respectively. (Abbreviations: U, 

untransfected. Psi: Parkin siRNA. Ssi: non-targeting siRNA. 5Y: 

SH-SY5Y. Fib: control human fibroblast.) 

Figure 3-1 FLAG-Parkin knockdown by Parkin siRNA. 
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3.2.1.3 Generation of stable Parkin knockdown SH-SY5Y cell lines by short 

hairpin RNA 

Given that endogenous Parkin was detectable with the ab15954 antibody, I have 

then generated a stable Parkin knockdown cell line that can be used as a control 

and a model for investigating Parkin molecular pathways at the later stage of 

this project. Three human Parkin shRNAs were selected and mixed as a pool for 

transfection. The pGIPZ vector encodes a GFP marker that enables the 

identification of shRNA–expressing cells by fluorescence microscopy, and a 

puromycin resistance for further generation of stable knockdown cell lines. 

Stable cell lines transfected with empty pGPIZ vector or a non-targeting shRNA 

sequence (scrambled) were also generated as negative controls. Effectene 

transfection reagent was used in accordance with the manufacturer’s protocol. 

Cells were selected by puromycin 48 h post transfection and clones were 

generated by limiting dilution protocol (See 2.2.2.1 for details). Finally, the 

clones were chosen under fluorescence microscope for their moderate GFP 

expression and similar cell duplication speed as to the untransfected SH-SY5Y 

cells.  

3.2.1.4 Validation of Parkin antibodies by Parkin knockdown cell lines 

Six knockdown (K1 to K6), five empty-vector (E1 to E5), and 3 scrambled 

shRNA (S1 o S3) clones were chosen for further validation of Parkin knockdown. 

Cells lysates from all the clones were collected for analysing protein expression 

by Western blotting (Figure 3-2 A). Parkin was knocked down in three of the six 

clones (K3, K4, K5). Due to limited number of wells in each gel, the two best 

knockdowns (K4, K5) as well as one empty-vector (E2) and one scrambled 

shRNA (S1) clones were analysed again with untransfected SH-SY5Y and FLAG-

Parkin SH-SY5Y cells at the same protein amount (Figure 3-2 B). Although K5 

still showed good knockdown, E2 also demonstrated reduced Parkin expression. 

Real-time polymerase chain reaction (qPCR) was performed to further assess 

the knockdown. The three knockdown clones (K3, K4, and K5) showed 65% to 
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85% reduction of Parkin expression, with K4 and K5 clones giving the best 

knockdowns (Figure 3-2 C). Inexplicably, a slightly increased Parkin expression 

was observed in the E2 clone. The S1 clone, on the other hand, revealed mild 

(18%) but significant reduction of Parkin expression, suggesting possible non-

specific inhibition caused by scrambled shRNAs. 

K5 Parkin knockdown clone was then chosen for further Parkin antibody 

validation. Three different Parkin antibodies (CS4211, SC-32282 and ab15954) 

were used for testing four different cell lines (MEFs, untransfected SH-SY5Y, 

Parkin knockdown SH-SY5Y K5, and FLAG-Parkin SH-SY5Y). Two different 

protein amounts were loaded in order to better distinguish antibodies with 

higher specificity (Figure 3-3).  The two Parkin antibodies raised in mouse 

(SC4211 and SC-32282) showed a strong sensitivity to FLAG-Parkin but 

detected no Parkin in MEFs. SC4211 apparently detected endogenous Parkin 

more efficiently in SH-SY5Ys as compared to SC-32282. The rabbit antibody 

(ab15954) apparently detected Parkin in all cell lines tested.  
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(A) SH-SY5Y cells transfected Parkin shRNA (K1 to K6), pGIPZ empty vector (Empty) (E1 to E5) and non-targeting shRNA (Scr) (S1 to S3) were compared 

with untransfected SH-SY5Y (5Y), SH-SY5Y stably expressing FLAG-Parkin (5Y FLAG-Parkin, 1/3 amount protein loaded) and control human primary 

fibroblasts (fib). (B) Selective Parkin knockdown lines and the negative controls were compared again with 5Y and 5Y FLAG-Parkin on the same Western 

blotting membrane. (C) q-PCR result of Parkin knockdown by shRNA. Histogram indicates mean±S.E.M. Significance was determined by t-test (*** indicates 

p<0.001) and one-way ANOVA with Bonferroni correction (p<0.001). N=3. 

 

Figure 3-1 Endogenous Parkin knockdown by Parkin shRNA.(A) SH-SY5Y cells transfected Parkin shRNA (K1 to K6), pGIPZ empty vector 

(Empty) (E1 to E5) and non-targeting shRNA (Scr) (S1 to S3) were compared with untransfected SH-SY5Y (5Y), SH-SY5Y stably expressing FLAG-Parkin (5Y 

FLAG-Parkin, 1/3 amount protein loaded) and control human primary fibroblasts (fib). (B) Selective Parkin knockdown lines and the negative controls were 

compared again with 5Y and 5Y FLAG-Parkin on the same Western blotting membrane. (C) q-PCR result of Parkin knockdown by shRNA. Histogram 

Figure 3-2 Endogenous Parkin knockdown by Parkin shRNA. 
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Proteins from MEF, SH-SY5Y (5Y) and SH-SY5Y Parkin knockdown (5Y Parkin shRNA) at 50 or 

100 ug, and from SH-SY5Y stably expressing FLAG-Parkin (5Y FLAG-Parkin) at 5 or 50 ug were 

loaded to the gel for validating four Parkin antibodies. 

 

Figure 3-13 Validating Parkin antibodies by four cell lines at two different 

protein amounts.Proteins from MEF, SH-SY5Y (5Y) and SH-SY5Y Parkin knockdown (5Y 

Parkin shRNA) at 50 or 100 ug, and from SH-SY5Y stably expressing FLAG-Parkin (5Y FLAG-

Figure 3-3 Validating Parkin antibodies by four cell lines at two different protein amounts. 
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3.2.1.5 Validation of Parkin antibodies by Parkin KO MEFs 

I then used WT and Parkin KO MEFs to further validate the antibodies. FLAG-

Parkin SH-SY5Y and its empty-vector control (SH-SY5Y stably expressing FLAG-

pcDNA3), untransfected SH-SY5Y, Parkin knockdown SH-SY5Y (K5) and its 

scrambled-shRNA control (S1) were used as controls (Figure 3-4). Two mouse 

antibodies (CS4211 and SC-32282) and two rabbit antibodies (ab15954 and 

BML-PW9365) against Parkin were assessed. However, whatever antibodies 

used, multiple bands around Parkin molecular weight size (52 kDa) were 

detected in Parkin KO MEFs, calling the specificity of the antibodies into 

question.

MEFs from WT and Parkin KO mice were utilised for validating four 

different Parkin antibodies. Untransfected 5Y, 5Y FLAG-Parkin, 5Y FLAG-

pcDNA3, 5Y Parkin shRNA, and 5Y pGIPZ-Scr were tested along as controls. 

The Left panel showed images of shorter exposure to the blot 

corresponding to the images at the right panel. (M) indicates the molecular 

weight marker. 

 

Figure 3-25 Four Parkin antibodies tested by WT and Parkin 

KO MEFs.MEFs from WT and Parkin KO mice were utilised for validating 

Figure 3-4 Four Parkin antibodies tested by WT and Parkin KO MEFs. 
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3.2.1.6 Validation of Parkin antibodies by control human primary 

fibroblasts harvested in various lysis buffers 

I then test different lysis buffers to see whether antibody specificity would be 

improved. Control human primary fibroblasts were lysed in five different lysis 

buffer respectively. Untransfected SH-SY5Y and FLAG-Parkin SH-SY5Y (both in 

RIPA buffer) were used as controls (Figure 3-5). Parkin expression appeared 

almost identical when the cells were lysed in CHAPS, NP-40, RIPA, or Triton X-

100, although two Parkin bands were observed.  A single Parkin band was 

observed when cells were lysed in 1x LDS loading buffer and both SH-SY5Y cells 

lysed in RIPA. 

Control human primary fibroblasts were harvested by five different lysis 

buffers (L: LDS sample loading buffer. C: CHAPS lysis buffer. N: NP-40 

buffer. R: RIPA buffer. T: Triton X-100 lysis buffer). 5Y and 5Y FLAG-

Parkin (both harvested in RIPA buffer) were also used as control.  

 

Figure 3-37 Validation of Parkin antibodies by control 

human primary fibroblasts harvested in various lysis 

buffersControl human primary fibroblasts were harvested by five 

different lysis buffers (L: LDS sample loading buffer. C: CHAPS lysis 

buffer. N: NP-40 buffer. R: RIPA buffer. T: Triton X-100 lysis buffer). 5Y 

and 5Y FLAG-Parkin (both harvested in RIPA buffer) were also used as 

control.  

Figure 3-5 Validation of Parkin antibodies by control human primary 

fibroblasts harvested in various lysis buffers. 
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3.2.2 Characterisation of fibroblasts from PD patients carrying 

parkin mutations, sample P1, P2, P3, P6 and P7 

We then took steps to establish fibroblast lines from patients carrying Parkin 

mutations. We first obtained five skin biopsies along with blood samples of 

patients carrying Parkin mutations. All of them carried either homozygous 

mutations or compound heterozygous mutations in the Parkin gene. The 

fibroblast culture was set up in UCL Royal Free Hospital by Dr Jan-Willem 

Taanman (Figure 3-6). Fibroblasts of early passage were then transferred to our 

lab for further use. Whilst waiting for the expansion of fibroblast culture, 

resequencing of all samples were performed using the DNA extracted from 

patients’ blood samples.  
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The mutation details of the five Parkin patients (refereed as P1, P2, P3, P6, and P7) were demonstrated as coloured bars (red: deletion; blue: 

duplication) at the corresponding locations of Parkin cDNA sequence. The predicted protein length translated by each of mutant Parkin were also 

described. (Abbreviations: ex, exon. del, deletion. dup, duplication. nt: nucleotide.) 

 

Figure 3-49 Parkin mutation details of five Parkin fibroblasts.The mutation details of the five Parkin patients (refereed as P1, P2, P3, 

P6, and P7) were demonstrated as coloured bars (red: deletion; blue: duplication) at the corresponding locations of Parkin cDNA sequence. The 

predicted protein length translated by each of mutant Parkin were also described. (Abbreviations: ex, exon. del, deletion. dup, duplication. nt: 

nucleotide.) 

Figure 3-6 Parkin mutation details of five Parkin fibroblasts. 
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3.2.2.1 Exon sequencing, sample P1, P2, P3, P6 and P7 

Leukocytes DNA from these five patients’ frozen blood samples were subjected 

to sequence analysis of all exons of the parkin gene. The exon sequencing results 

were summarised in    Table 3-2. Exon sequencing detected a 40-bp deletion in 

exon 3 of P2 and P6 samples, as well as a c.823C>T (p.R275W) in P2. Therefore, 

only P2 can be confirmed as compound heterozygous mutations in Parkin by the 

sequencing result. No exon deletion can be detected by exon sequencing, raising 

the suspicion that Parkin mutations in the rest four samples might be 

heterozygous. In order to confirm the whole exon deletion/duplication in these 

samples, the DNA of these samples were subjected to multiplex ligation-

dependent probe amplification (MLPA). MLPA result also supported this 

impression, as exon deletion was demonstrated in P1, P3 and P7, but the peak 

ratio is about 50% of normal, suggesting the deletion was not complete in these 

samples, most likely to be a loss of single allele. A possible duplication of exon 3 

in P6, however, was also revealed by MLPA, confirming P6 sample is also a 

compound heterozygous Parkin mutation. As it’s difficult to contact the original 

physician who’s recorded the clinical data, further information about patients’ 

family histories was unavailable. It could only be concluded that two samples 

(P2 and P6) carried compound heterozygous mutations in Parkin, whilst the 

rest three (P1, P3, P7) might be heterozygous Parkin mutation. 
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Parkin 
sample 

Exon sequence analysis MLPA (Peak ratio of exon DNA) Conclusion of Parkin mutation after 
resequencing 

P1 No mutations detected Exon 4-5 deletion (exon 4: 0.546. 

exon 5: 0.510)  

Exon 4-5 deletion. Heterozygous 

P2 Deletion of 40 bp in the exon 3, 

heterozygous point mutation c.823C>T 

No whole exon 

deletions/duplications detected 

Exon 3 (40-bp deletion) / R275W. 

Compound heterozygous 

P3 No mutations detected Exon 4-5 deletion (exon 4: 0.507. 

exon 5: 0.454) 

Exon 4-5 deletion. Heterozygous 

P6 Deletion of 40 bp in the exon 3 Heterozygous duplication of exon 

3 (exon 3: 1.329) 

Exon 3 (40-bp deletion) / exon 3 

duplication. Compound heterozygous 

P7 No mutations detected Exon 2-3 deletion (exon 2: 0.565. 

exon 3: 0.505) 

Exon 2-3 deletion. Heterozygous 

   Table 3-2 Resequencing result of leukocyte DNA from the five Parkin patients 

 

Leukocyte DNA of five Parkin patients were subjected to repeated exon sequencing and MLPA. The results from these two resequencing procedures were 

concluded in the first column at the right. 

 

Leukocyte DNA of five Parkin patients were subjected to repeated exon sequencing and MLPA. The results from these two resequencing procedures were 

concluded in the first column at the right. 

 

Leukocyte DNA of five Parkin patients were subjected to repeated exon sequencing and MLPA. The results from these two resequencing procedures were 
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3.2.2.2 Protein expression by Western blotting, sample P1, P2, P3, P6 and 

P7 

Fibroblasts of these five Parkin patients as well as one control were lysed in 

RIPA buffer. Western blotting with the ab15954 anti-Parkin antibody revealed 

two bands in all patient lines (Figure 3-7). P1, P3 and P6 fibroblasts were 

expected to produce no Parkin protein at all, whilst P7, whose deletion of exons 

2-3 resulting in an in-frame mutation, was expected to produce a truncated 

protein of 330 amino acids. P2 was expected to produce a lower amount of non-

functioning full-length Parkin. However, due to the presence of double bands in 

all Parkin samples, it was unable to conclude the Parkin protein expression. The 

discrepancies between sequencing and protein expression results limited the 

further use of these fibroblasts. 

The Parkin protein expression level of the five Parkin fibroblasts and one control 

fibroblasts were validated by Western blotting. The mutation of each sample was 

denoted below the figure.  

 

Figure 3-61 Characterisation of Parkin fibroblasts by protein 

expression level.The Parkin protein expression level of the five Parkin fibroblasts 

and one control fibroblasts were validated by Western blotting. The mutation of each 

sample was denoted below the figure.  

Figure 3-7 Characterisation of Parkin fibroblasts by protein expression level. 
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3.2.2.3 Establishing new Parkin fibroblasts culture from patient carry 

Parkin mutation (P8) 

To try and make sense of the discrepancies between DNA and protein results, a 

new skin biopsy was requested from a patient carrying a homozygous deletion 

of exons 3 and 4. The homozygous in-frame exon deletion is preferable in view 

of that both sequencing and protein expression results should match 

indisputably. The biopsy was performed in National Hospital for Neurology and 

Neurosurgery (NHNN) with the consent from the patient. The skin biopsy was 

immediately transferred to our lab in Institute of Neurology for developing the 

culture. Fibroblasts started to grow in a single layer around the skin piece 7 to 

10 days after the biopsy (Figure 3-8).        

         
Light microscopy images of Parkin fibroblast (P8) culture established from skin biopsy. 

Fibroblasts (Fib) started to appear near the edge of skin approximately 7-10 days after the 

skin piece was place in the plate (left panel). The expanding fibroblasts formed a single layer 

around the skin piece after 20 days (right panel). 

 

Light microscopy images of Parkin fibroblast (P8) culture established from skin biopsy. 

Fibroblasts (Fib) started to appear near the edge of skin approximately 7-10 days after the 

skin piece was place in the plate (left panel). The expanding fibroblasts formed a single layer 

around the skin piece after 20 days (right panel). 

 

Light microscopy images of Parkin fibroblast (P8) culture established from skin biopsy. 

Fibroblasts (Fib) started to appear near the edge of skin approximately 7-10 days after the 

Figure 3-8 Establishing new Parking fibroblast culture from skin biopsy. 
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3.2.2.4 Characterisation of Parkin fibroblasts P8 

Dried pellets of the fibroblasts (P8) and an age/sex-matched control were 

divided into three parts: one for DNA extraction, one for RNA extraction, and the 

last one for lysis in RIPA buffer and further protein expression analysis.  

The whole genome DNA was extracted from P8 and control cell pellets and a 

PCR was performed, using primers for exons 3, 4 and 7. The PCR products were 

run out on an agarose gel alongside with a 1 Kb ladder (Figure 3-9A). The gel 

was checked under ultra-violet (UV) light, demonstrating no amplification of 

exons 3 and 4 in P8 fibroblasts, suggesting homozygous deletion of exons 3 and 

4 by analysing the whole genome DNA. 

RNA was extracted from both P8 and control fibroblast (C) for further 

generation of cDNA by the reversed transcription-PCR (RT-PCR). The cDNA 

products were first amplified by PCR with various combination of primers 

designed specially to recognise sequences at the boundary of neighbouring 

exons. The primer pairs and estimated sizes of their corresponding amplicons 

were depicted in Figure 3-9 B. The PCR of cDNA also supported the diagnosis of 

homozygous deletion of exons 3 and 4 in P8 fibroblasts. 

As a deletion of exons 3 and 4 is an in-frame mutation, thereby a truncated 

mRNA will still be transcribed, and its cDNA product should demonstrate a 

linkage between 3’ end of exon 2 and the 5’ end of exon 5.  To prove this, cDNA 

was sequenced by the forward primer recognising exons 1-2 boundary and 

reversed primer for exons 7-8 boundary. The result clearly demonstrated that 

exon 2 was followed by exon 5 in cDNA from P8 (Figure 3-10).  
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Figure 3-9 PCR results from (A) genomic DNA and (B) cDNA of P8 Parkin fibroblasts. 
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The cDNA obtained from reversed transcription of P8 Parkin fibroblast RNA was subjected to sequencing using forward primer for exon 1-2 boundary and 

reversed primer for exon 7-8 boundary. The result was analysed by Sequencher and the segment demonstrating exon 2 and 5 boundary was showed at the 

bottom part of this figure. The reference sequence of exon 1 (in blue), exon 2 (in red), and exon 5 (in green) was shown at the top. The first six bases were 

highlighted to point out the boundary between exons 2 and 5. 

 

Figure 3-91 Sequencing result of cDNA from P8 Parkin fibroblastThe cDNA obtained from reversed transcription of P8 Parkin fibroblast RNA was 

subjected to sequencing using forward primer for exon 1-2 boundary and reversed primer for exon 7-8 boundary. The result was analysed by Sequencher and 

the segment demonstrating exon 2 and 5 boundary was showed at the bottom part of this figure. The reference sequence of exon 1 (in blue), exon 2 (in red), and 

exon 5 (in green) was shown at the top. The first six bases were highlighted to point out the boundary between exons 2 and 5. 

Figure 3-10 Sequencing result of cDNA from P8 Parkin fibroblast. 
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With the mutation in P8 fibroblasts confirmed by genomic DNA PCR and cDNA 

sequence analysis, protein lysates from the control and P8 fibroblasts were 

subjected to Western blotting. Three Parkin antibodies (ab15954, BML-PW9365 

and CS4211) as well as two phospho-Parkin antibodies (P-Parkin S101, P-

Parkin S378) were used to characterise the protein expression of P8 fibroblasts 

(Figure 3-11 A&B). According to the cDNA sequencing result, a truncated 

protein of 330 a.a (approximately 35 kDa) would be produced in P8 fibroblasts. 

Surprisingly, all five antibodies labelled a band in P8 fibroblasts at around 50 

kDa as control fibroblasts did. Of note, a smaller protein (approximately 35 kDa) 

was detected by ab15954. It presented in both control and Parkin fibroblasts, 

although this band was stronger in the latter. The two phospho-Parkin 

antibodies detected the protein at the same size (around 50-52 kDa) in both 

control and Parkin fibroblasts. However, a smaller protein of around 35 kDa 

was detected in P8 by both phospho-antibodies. Western blotting with the same 

lysates was repeated again using a non-gradient 12% Tris-Glycine gel in order 

to reveal details between 30 and 40 kDa (Figure 3-11 C). The smaller protein 

(approximately 35 kDa) in P8 was detected by ab15954. However, the possible 

full-length Parkin at around 50 kDa was also stronger in P8 Parkin fibroblasts. 

Once again, the result raise the issue of inadequate specificity of these Parkin 

antibodies. 
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P8 Parkin fibroblast were characterised by (A) 

three Parkin antibodies (ab15954, BML-PW9365, 

and CS4211) and (B) two phospho-Parkin 

antibodies (P-Parkin S101, P-Parkin S378). (C) 

Repeated Western blotting using the same lysates 

as in (A) separated by the non-gradient 12% Tris-

Glycine gel.  

 

 

P8 Parkin fibroblast were characterised by (A) 

three Parkin antibodies (ab15954, BML-PW9365, 

and CS4211) and (B) two phospho-Parkin 

antibodies (P-Parkin S101, P-Parkin S378). (C) 

Repeated Western blotting using the same lysates 

as in (A) separated by the non-gradient 12% Tris-

Glycine gel.  

Figure 3-11 Characterisation of P8 Parkin 

fibroblast by Parkin and phospho-Parkin 

antibodies. 
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3.2.3 Parkin fibroblasts-derived induced pluripotent stem cells 

3.2.3.1 Viral transduction to reprograme the target fibroblasts 

The four mouse reprogramming factors were a generous gift from Dr Michael 

Devine and their use has been described before (Devine et al., 2011). Those 

factors were inserted into the pMXs vector backbone from Addgene (pMXs-

cMyc #13375, pMXs-Klf4 #13370, pMXs-Oct4 #13366, pMXs-Sox2 #13367). 

The reprogramming method has also been described (Devine et al., 2011) (See 

chapter 2 for details). The P8 Parkin fibroblast and the age/sex-matched control 

fibroblast were subjected for reprogramming.  

3.2.3.2 Maintenance of stem cell colony after reprogramming  

Stem cell-like colonies in both transduced control and P8 fibroblasts started to 

appear approximately 3.5 weeks after viral transduction of reprogramming 

factors.  Each colony was mechanically picked to the 24-well plates pre-coated 

with irradiated SNL fibroblast feeders (Figure 3-12). Differentiated cells at the 

edge of the colonies were also removed mechanically in order to avoid 

uncontrolled spontaneous differentiation of the entire colony. The colonies in 

each well were split on the conditions that daughter colonies counted more than 

six, presence of connecting colony edges, or rapid increasing of differentiated 

cells. 

Further characterisation of stem cell colonies were not performed due to 

uncertainty of whether this model can be fully characterised on the grounds of 

poor Parkin antibody specificity. The colonies were thus frozen and this part of 

project would be continued provided Parkin antibody of high specificity can be 

obtained.  
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The stem cell-like colonies appeared approximately 3.5 weeks after viral transduction of reprogramming factors. (A) and (B) demonstrated colonies with 

primitive cell in major, whereas the colony in (C) revealed differentiated cells at its periphery. The cells surrounded the colonies were irradiated SNL fibroblast 

feeders. 

 

The stem cell-like colonies appeared approximately 3.5 weeks after viral transduction of reprogramming factors. (A) and (B) demonstrated colonies with 

primitive cell in major, whereas the colony in (C) revealed differentiated cells at its periphery. The cells surrounded the colonies were irradiated SNL fibroblast 

feeders. 

 

The stem cell-like colonies appeared approximately 3.5 weeks after viral transduction of reprogramming factors. (A) and (B) demonstrated colonies with 

primitive cell in major, whereas the colony in (C) revealed differentiated cells at its periphery. The cells surrounded the colonies were irradiated SNL fibroblast 

Figure 3-12 iPSC-like colonies derived from Parkin fibroblasts. 
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3.3 Discussion 

3.3.1 The sensitivity and specificity of Parkin antibody 

Both sensitivity and specificity of Parkin antibodies to endogenous Parkin have 

been reported as very poor (Seibler et al., 2011; Vives-Bauza et al., 2010). 

Although a number of studies show endogenous Parkin detection in Western 

blotting by various anti-Parkin antibodies, non-specific bands are frequently 

observed. (LaVoie et al., 2007; Scuderi et al., 2014; Seibler et al., 2011; Um et al., 

2009; Van Humbeeck et al., 2011; Vives-Bauza et al., 2010). In this project five 

Parkin antibodies as well as two phospho-Parkin antibodies were tested. None 

of them gave satisfactory results. Whenever tagged Parkin could be accurately 

detected in FLAG-Parkin overexpressing SH-SY5Y cells, endogenous Parkin was 

not reliably detected with any of the five antibodies tested, mainly due to the 

presence of multiple unspecific bands in Western blotting.  

The protein extraction efficiency and the presence of unspecific bands on the 

Western blot were barely affected by the type of detergent used to lyse the cells. 

Harvesting cells directly in loading buffer appeared to resolve the issue of the 

unspecific bands, however this buffer was of limited utility as lysates harvested 

this way couldn’t be used for subsequent protein assay or immunoprecipitation. 

The specificity of the five anti-Parkin antibodies was further questioned using 

Parkin siRNA knockdown SH-SY5Y cells or Parkin KO MEFs. Again a number of 

unspecific bands were detected in these cells that were meant to be devoid of 

full-length Parkin. 

One possible reason to explain the low specificity of Parkin antibodies is the 

frequent alternative splicing in the Parkin gene. Sequencing from Parkin cDNA 

shows that it includes 12 exons (Kitada et al., 1998; Matsumine et al., 1997). It 

was once thought that only one transcript was encoded by these 12 exons. 

However, at least 21 Parkin alternative splice variants have been described to 

date (Table 3-3) (Beyer et al., 2008; Dagata and Cavallaro, 2004; Humbert et al., 

2007; Ikeuchi et al., 2009; Kitada et al., 2000; Sunada et al., 1998; Tan et al., 
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2005). Distinct Parkin transcripts can be found in different human tissues. For 

instance, exons 3-5, the exons most prone to deletion, have been shown to be 

alternative spliced in peripheral leukocytes (Scuderi et al., 2014; Sunada et al., 

1998). It was further shown that every antibody recognised a pool of different 

isoforms (Table 3-4) (Scuderi et al., 2014). The anti-Parkin antibodies used in 

this project can be roughly divided into three groups according to this table. The 

ab15954 antibody recognises a slightly different amino acid sequence, as 

compared to the other four antibodies. Accordingly, my data showed a unique 

band pattern in Western blotting, when compared to the other four. A similar 

band pattern was observed by other groups using the same antibody (Geisler et 

al., 2010; Vives-Bauza et al., 2010).  



 

124 

 

New 
code 
identifier 

GI Protein accession number Predicted 
MW 

pI aa 
sequence 

      

H20 469609976 AGH62057.1 58,127 6,41 530 aa 

H1 3063387 BAA25751.1  BAF43729.1 51,65 6,71 465 aa 

 121308969 BAF85279.1  NP_004553.2    

 158258616 ABN46990.1    

 169790968     

 125630744     

H5 284468410 ADB90270.1 48,713 7,12 437 aa 

 169790970 NP_054642.2    

H10 284468412 ADB90271.1 46,412 6,91 415 aa 

H14 284516985 ADB91979.1 43,485 7,43 387 aa 

H4 34191069 AAH22014.1 42,407 8,15 387 aa 

H8 284468407 * 42,52 6,65 386 aa 

H17 284516991 * 42,52 6,65 386 aa 

H21 520845529 AGP25366.1 39,592 7,08 358 aa 

H6 169790972 NP_054643.2 35,63 6,45 316 aa 

H11 284516981 * 30,615 6,3 274 aa 

H2 20385797 AAM21457.1 30,155 6,05 270 aa 

H3 20385801 AAM21459.1 22,192 5,68 203 aa 

H12 284516982 * 19,201 6,09 172 aa 

H9 284468408 ADB90269.1 15,521 5,54 143 aa 

H13 284516983 ADB91978.1 15,521 5,54 143 aa 

H7 194378189 BAG57845.1 15,407 6,41 139 aa 

H18 284516993 * 15,393 6,41 139 aa 

H15 284516987 ADB91980.1 10,531 8,74 95 aa 

H19 469609974 AGH62056.1 6,832 10,09 61 aa 

H16 284516989 ADB91981.1 5,348 7,79 51 aa 

Table 3-3 Homo sapiens Parkin isoform 

Summary of all Parkin isoform described to date. H1 represents the canonical sequence 

cloned by Kitada et al. (Kitada et al., 1998). * indicates the protein accession number is not 

present in database. This table was adapted from (Scuderi et al., 2014). 

 

Summary of all Parkin isoform described to date. H1 represents the canonical sequence 

cloned by Kitada et al. (Kitada et al., 1998). * indicates the protein accession number is not 

present in database. This table was adapted from (Scuderi et al., 2014). 

 

Summary of all Parkin isoform described to date. H1 represents the canonical sequence 

cloned by Kitada et al. (Kitada et al., 1998). * indicates the protein accession number is not 

present in database. This table was adapted from (Scuderi et al., 2014). 
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Name Target Recognised Parkin isoforms Potential isoforms pool recognised 
by Parkin antibodies used in this 
project 

    

M73 (Shimura et al., 1999) 124–137 H1, H4, H5, H8, H9, H10, H13, H14, H17, H20, H21  

M74 (Shimura et al., 1999) 293–306 H1, H2, H3, H4, H5, H6, H8, H10, H11, H14, H17, H20, H21 ab15954 (304-322) 

ParkA (Huynh et al., 2000) 96–109 H1, H2, H3, H4, H5, H6, H8, H9, H10, H11, H13, H14, H17, H20, H21  

ParkB (Huynh et al., 2000) 401-417 H1, H2, H5, H6, H7, H8, H10, H11, H12, H14, H17, H18, H20, H21 CS2132 (around 400), BML-
PW9365 (399-412) 

HP6A (Schlossmacher et al., 
2002) 

6–15 H1, H4, H5, H6, H9, H10, H13, H14, H16, H20  

HP7A (Schlossmacher et al., 
2002) 

51–62 H1, H4, H5, H6, H9, H10, H13, H14, H15, H20  

HP1A (Schlossmacher et al., 
2002) 

84–98 H1, H2, H3, H4, H5, H6, H8, H9, H10, H11, H13, H14, H17, H20, H21  

HP2A (Schlossmacher et al., 
2002) 

342–353 H1, H2, H3, H4, H5, H6, H7, H8, H11, H12, H17, H18, H20, H21  

HP5A (Schlossmacher et al., 
2002) 

453–465 H1, H2, H5, H6, H7, H8, H10, H11, H12, H14, H17, H18, H20, H21 CS4211 (C-terminus), SC-32282 (C-
terminus) 

Table 3-4 Parkin isoforms recognised by antibodies used by others and in this project

The Parkin isoform pools recognised by Parkin antibodies described in some studies. Based on the target amino acid sequence, antibodies used in this project 

were listed in the first column at the right showing the potential isoform pool that each antibody could recognise. A part of this table was adapted from (Scuderi 

et al., 2014). 

 

Figure 3-121 P8 Parkin fibroblast demonstrated decreased ubiquitination of Mfn1 and Mfn2 upon mitochondrial depolarisation.The 

Parkin isoform pools recognised by Parkin antibodies described in some studies. Based on the target amino acid sequence, antibodies used in this project were 

listed in the first column at the right showing the potential isoform pool that each antibody could recognise. A part of this table was adapted from (Scuderi et al., 

2014). 
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3.3.2 Characterisation of Parkin fibroblasts 

Although the Parkin contains only 12 exons, the gene spans more than 1.38 Mb 

in the long arm of chromosome 6 (6q25.2-q27) (Kitada et al., 1998). The long 

segment of introns between exons makes sequencing Parkin from the whole 

genome a challenging task. The original report of the mutations in the first five 

Parkin fibroblasts provided by the clinician indicated that all the fibroblasts had 

either homozygous mutation or compound heterozygous mutations in Parkin. 

However, repeated sequencing was not able to reproduce the original results. 

The exon sequencing done in our lab detected only the 40-bp deletion in 2 

samples and one point mutation in one of them. No whole exon deletion was 

detected by the exon sequencing. Further MLPA also demonstrated that all exon 

deletions mentioned in the original report were possibly heterozygous, as the 

peak ratio of the deleted exon was only 50% less than the exons that were not 

deleted.  Both exon sequencing and MLPA results suggested the exon deletions 

mentioned in P1, P3 and P7 fibroblasts were likely to be heterozygous. 

Nevertheless, the exon 3 duplication in one allele of P2 was confirmed by the 

MLPA done in the lab. In addition, data from the protein expression assay by 

Western blotting was not convincing enough to support the mutations 

described in the original report, owing to low sensitive of Parkin antibodies. Due 

to uncertainty in the mutation details, these five Parkin fibroblasts were not 

suitable to be used as target fibroblasts for the reprogramming. It was later 

when another Parkin fibroblast line with confirmed mutation was obtained then 

the reprogramming was commenced. 

3.3.3 Reprogramming Parkin fibroblasts 

This part of the project was delayed until another Parkin fibroblast with 

confirmed homozygous mutation was acquired. Several reprogramming 

strategies had been reported. The reprogramming factors can be delivered to 

the target cells by retroviral system such as retroviral (Takahashi et al., 2007) 

or lentiviral (Yu et al., 2007) transduction, or alternative methods including 

adenoviral transduction (Zhou and Freed, 2009), small molecule 
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compounds(Shi et al.), plasmids (Okita et al., 2008) or piggyBac transposon 

(Woltjen et al., 2009). Recombinant proteins (Zhou et al., 2009) or microRNAs 

(Judson et al., 2009) have also been shown to achieve iPSC generation. Generally, 

the retroviral or lentiviral system demonstrated higher efficiency than the rest 

of the methods to accomplish reprogramming. The disadvantage of 

retroviral/lentiviral transduction is the risk of mutagenesis of the target cells 

caused by the incorporation of viral genes into the host genome, namely 

insertional mutagenesis. Nevertheless the non-retroviral methods, though much 

safer, all come with a drawback of low reprogramming efficiency. Considering 

the time-frame issue, retroviral system was chosen for reprogramming the 

Parkin fibroblasts. 

In addition to the original ‘Yamanaka factors’ (Oct4, Sox2, Klf4, and c-myc) 

(Takahashi et al., 2007), different combinations of transcription factors have 

also been described. For instance, the Thomson group used Oct4, Sox2, Nanog, 

and Lin28 for reprogramming (Yu et al., 2007). Whilst Oct4, Sox2 are both 

essential for reprogramming, Klf4, c-myc, Nanog, and Lin28 have been described 

to increase the efficiency in the induction of pluripotency (Takahashi et al., 2007; 

Yu et al., 2007). Considering the viral system chosen for this project is retrovirus 

which has been described by Yamanaka group, therefore Yamanaka factors 

were also selected for pluripotency induction. 

The transduced fibroblasts were transferred onto SNL fibroblast feeder layer 

three days after transduction. Formation of small colonies started to appear 

approximately three weeks after replating and a small amount of stem-cell like 

colonies were then stored in liquid nitrogen before characterisation. This 

project went parallel with the project investigating Parkin molecular pathway 

(Chapter 4). By the time the possible iPSC colonies appeared, all the rest 

experiments still suffered from low sensitivity of Parkin antibodies toward 

endogenous Parkin.  Fearing that this potential Parkin-iPSC model will still be 

less useful if endogenous Parkin can’t be recognised in it, the colonies were thus 

stored before further characterisation and application. 
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3.3.4 Experimental difficulties 

Two major difficulties were encountered in this project. First, the original 

sequencing data from the first five Parkin fibroblast lines couldn’t be 

reproduced in our lab. Second, the low sensitivity and specificity of anti-Parkin 

antibodies made characterisation of these fibroblasts at Parkin protein 

expression level almost impossible. For these reasons we didn’t carry out full 

reprogramming of Parkin fibroblasts. 

As mentioned in section 3.3.2, the Parkin gene spans a considerable length along 

the long arm of chromosome 6, thereby making sequencing the full length 

Parkin rather challenging. Although the primers for sequencing, provided by the 

genetic diagnostic lab in NHNN, had great fidelity ensured, the exon sequencing 

and the subsequent MLPA results mismatched mostly with the original 

mutation data provided by original clinician, namely the three lines with exons 

deletions. Unfortunately protein expression assay provided no better 

supportive evidence as the specificity of Parkin antibodies was also low. 

Therefore these five Parkin fibroblast lines could not be used until another new 

line was acquired and mutations were ascertained.  

The low sensitivity and specificity of Parkin antibodies demonstrated in this 

project indicates that detecting endogenous Parkin remains challenging. 

Although the functional study can indirectly demonstrate the protein expression 

level, in this part of project it is essential to match the protein expression level 

to the corresponding Parkin mutation in order to select appropriate cell models 

as well as antibodies for the subsequent work.  This leads to the reconsideration 

of using overexpressed Parkin in the following projects. 

3.3.5 Conclusions 

In this chapter, five anti-Parkin antibodies have been characterised using a 

neuroblastoma cell line (overexpressing Parkin, WT, transiently or stably Parkin 

knockdown), MEFs (WT or Parkin KO) and human primary fibroblasts. None of 

the antibodies tested showed strong enough sensitivity or specificity, possibly 
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due to the number of Parkin isoforms recognised by the antibodies. As a result, 

we decided to pursue our study of molecular pathways associated with Parkin 

using overexpression cell models. 

The five Parkin fibroblasts originally used in this study were not further used 

due to conflicting sequencing data. The last Parkin fibroblast line was confirmed 

to carry a homozygous deletion of exons 3-4 and was then selected for Parkin-

iPSC generation. Nevertheless, the iPSC colonies couldn’t be characterised due 

to the Parkin protein detection problem.  

3.3.6 Future perspectives  

Few more experimental conditions can be further tested for anti-Parkin 

antibodies characterisation within timeframe available. For instance, Western 

blotting conditions such as different types of blocking reagents and lysis buffer 

salt concentrations can be assessed more systematically. Alternatively, 

immunoprecipitation of the endogenous Parkin for further analysis could 

possibly increase the quality. Another consideration is the utility of 

overexpressed Parkin. 

Detecting a decreased Parkin activity can indirectly support the existence of 

mutations in Parkin fibroblasts. The Parkin fibroblast line with homozygous 

mutation (P8) has been used in a side project for evaluating Mfn1 and Mfn2 

ubiquitination following mitochondrial depolarisation (Figure 3-13) and by a 

collaborating group for assessing Miro1 regulation in the mitophagy process 

(Birsa et al., 2014). As Parkin has been implicated in regulating mitophagy 

process, assessing mitochondrial physiology and metabolism by a live cell 

analysis is another alternative assay for evaluating Parkin fibroblasts 

dysfunction in the future work. 

Parkin-iPSC, although yet to be characterised, is still a promising model for 

studying Parkin dysfunction.  If one more step forward is taken to differentiate 

Parkin iPSC into Parkin iPSC-derived dopaminergic neurons, this can be the 



 

130 

 

most relevant disease-affected model of invaluable contribution for 

investigating Parkin molecular pathways. Another important contribution that 

this iPSC-derived neuronal model can provide in the future is the chance to 

observe both morphological and physiological changes of Parkin neurons 

during the developing and senescing process. It would also be ideal to further 

exploit the genome-editing technique by correcting the causal mutation in these 

patient-derived models, which is of great therapeutic potential.

Both Parkin (P8) and the age-sex matched control (C) fibroblasts were treated 

with carbonyl cyanide m-chlorophenyl hydrazone (CCCP).  There was no 

ubiquitinated Mfn1 or Mfn2 in P8 comparing to C after CCCP-induced 

mitochondrial depolarisation. (Figure was provided by Dr Marta Delgado 

Camprubi) 

 

Both Parkin (P8) and the age-sex matched control (C) fibroblasts were treated 

with carbonyl cyanide m-chlorophenyl hydrazone (CCCP).  There was no 

ubiquitinated Mfn1 or Mfn2 in P8 comparing to C after CCCP-induced 

mitochondrial depolarisation. (Figure was provided by Dr Marta Delgado 

Camprubi) 

 

Both Parkin (P8) and the age-sex matched control (C) fibroblasts were treated 

with carbonyl cyanide m-chlorophenyl hydrazone (CCCP).  There was no 

ubiquitinated Mfn1 or Mfn2 in P8 comparing to C after CCCP-induced 

Figure 3-13 P8 Parkin fibroblast demonstrated decreased ubiquitination of 

Mfn1 and Mfn2 upon mitochondrial depolarisation. 
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Chapter 4 Investigation of molecular 

pathways associated with Parkin 

regulation 

4.1 Introduction 

Various PTM might play an important role in regulating Parkin’s E3 ubiquitin 

ligase activity (Avraham et al., 2007; Birsa et al., 2014; Chung et al., 2004; Imam 

et al., 2011; Kazlauskaite et al., 2014; Kim et al., 2008; Ko et al., 2010; Kondapalli 

et al., 2012; LaVoie et al., 2005; Rubio de la Torre et al., 2009; Sha et al., 2010; 

Shiba-Fukushima et al., 2012; Yamamoto et al., 2005). However, the underlying 

molecular pathways that regulate these modifications are not clear. Of these 

PTMs, Parkin phosphorylation has gained increasing attention in the last decade. 

Several phosphorylation sites of Parkin have been recognised but the role of 

Parkin phosphorylation remains poorly understood (Avraham et al., 2007; Birsa 

et al., 2014; Imam et al., 2011; Kazlauskaite et al., 2014; Kim et al., 2008; Ko et al., 

2010; Kondapalli et al., 2012; Rubio de la Torre et al., 2009; Sha et al., 2010; 

Shiba-Fukushima et al., 2012; Yamamoto et al., 2005).  

Dysfunction of mitogen activated protein kinase (MAPK) or PI3K/Akt signalling 

pathways have been implicated in potential PD pathophysiology. A number of 

Parkin mutations have also been shown to associate with dysregulation of these 

signalling pathways. For instance, increased MAPK activity is observed in 

patients with Parkin mutations such as exon 4 deletion (Ren et al., 2009). 
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Drosophila dopaminergic neurons expressing loss-of-function Parkin mutations 

demonstrate highly activated JNK-1 (Cha et al., 2005; Kim and Choi, 2010). 

Parkin has been shown to promote class I PI3K/Akt signalling by interacting 

with ubiquitin-interacting motif (UIM) of Eps15, an epidermal growth factor 

receptor (EGFR) adaptor, thus delaying the internalisation and degradation of 

EGFR (Fallon et al., 2006). It is also suggested that Parkin binds to class III PI3K 

complex activator Ambra1 to induce mitophagy (Van Humbeeck et al., 2011).  

Given that MAPK and Akt are serine/threonine protein kinases and most of 

putative parkin phosphorylation sites are serine residues, we sought to 

determine whether parkin can be phosphorylated following MAPK or Akt 

activation and to dissect the upstream molecular signalling pathway leading to 

parkin phosphorylation. Amid all the described Parkin phosphorylation sites, 

the N-terminal S101 is a highly conserved residue amongst many spices, whilst 

the C-terminal S378 is also conserved amongst primates (Figure 4-1). 

Phosphorylation at these two sites will be used as readout for this project. Cell 

lines expressing 4-hydroxytamoxifen (4OH-Tx)-inducible versions of MAP 

kinases/ERK kinase kinase kinase (MEKK3), Raf or Akt (ΔMEKK3:ER, ΔRaf –

DD:ER or myrAkt:ER) (Figure 4-2), as well as activators that trigger these 

signalling cascades will be used. Wherever possible, selective inhibitors will be 

utilised for dissecting the Parkin regulatory pathway. 
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Putative Parkin phosphorylation site S101 is highly conserved amongst different species. 

S378 is also conserved among primates, pigs and chickens. 

 

Figure 4-1 Alignment of Parkin homologues in different species.Putative 

Parkin phosphorylation site S101 is highly conserved amongst different species. S378 is 

also conserved among primates, pigs and chickens. 

 

Figure 4-2 Alignment of Parkin homologues in different species. 

 

Figure 4-3 Alignment of Parkin homologues in different species.Putative 

Figure 4-1 Alignment of Parkin homologues in different species. 
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Three cell lines stably expressing inducible kinases were used in this project. Upon treatment with 

4OH-Tx, there is a strong phosohorylation of p38 and weaker phosphorylations of JNK and ERK1/2 in 

ΔMEKK3:ER cells, phosphorylation of Akt only in myrAkt:ER cells, and phosphorylation of ERK1/2 in 

ΔRaf-DD:ER cells. (Figure is adapted from (Plun-Favreau et al., 2007)) 

 

 

Figure 4-13 Kinases that can be activate upon 4OH-Tx treatment in ΔMEKK3:ER (MEKK3:ER), 

myrAkt:ER (Akt:ER) and ΔRaf-DD:ER (Raf: ER) stable cell lines.Three cell lines stably expressing 

inducible kinases were used in this project. Upon treatment with 4OH-Tx, there is a strong 

phosohorylation of p38 and weaker phosphorylations of JNK and ERK1/2 in ΔMEKK3:ER cells, 

Figure 4-2 Kinases that can be activate upon 4OH-Tx treatment in ΔMEKK3:ER (MEKK3:ER), 

myrAkt:ER (Akt:ER) and ΔRaf-DD:ER (Raf: ER) stable cell lines. 
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4.2 Results 

4.2.1 Parkin phosphorylation is not detected upon activation of p38 

signalling pathway 

To study whether Parkin is phosphorylated following activation of p38 

signalling pathway, full-length human Parkin inserted in FLAG-pcDNA3 vector 

(Ardley et al., 2003) and the empty vector control were transfected in to human 

embryonic kidney (HEK)293t cells stably expressing ΔMEKK3:ER for 48 h. 

ΔMEKK3:ER is a 4OH-Tx-inducible version of MEKK3 in which the kinase 

domain of human MEKK3 is fused in-frame to a modified hormone binding 

domain of oestrogen receptor (ER). Activation of ΔMEKK3:ER by treatment of 

4OH-Tx results in strong activation of endogenous p38, weaker activation of JNK 

and ERK1/2, and no activation of Akt (Figure 4-2) (Plun-Favreau et al., 2007). 

The transiently transfected ΔMEKK3:ER cells, together with the untransfected 

control, were treated with 100 nM 4OH-Tx in order to induce the MEKK3 

signalling pathway. The whole cell lysates were analysed by SDS-PAGE, followed 

by Western blotting and detection by total and phosphorylation site-specific 

antibodies of p38 and Parkin (Figure 4-3 A). Phosphorylation of p38 (P-p38) 

was equally strong in un-transfected, FLAG-Parkin transfected, or empty vector 

transfected ΔMEKK3:ER cells following 4OH-Tx treatment. Although the 

transfection efficiency of FLAG-Parkin was good, phospho-Parkin S101 (P-

Parkin S101) was not detected at the predicted 52-kDa site, even with longer 

exposure time of the x-ray film to the membrane. On the other hand, Parkin was 

constitutively phosphorylated at S378 (P-Parkin S378), although several cross-

reacting bands were also observed.  

In order to ascertain whether Parkin was phosphorylated at 378, the 

experiment was repeated in FLAG-Parkin and empty vector-transfected 

ΔMEKK3:ER cells. After the cells were lysed, 90% of the whole cell lysate of each 

sample was subjected to immunoprecipitation (IP) by anti-FLAG antibody-

coupled agarose beads and subsequently eluted by FLAG-peptide. Both original 
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lysates (input) and peptide-eluted samples (FLAG-IP) were separated by SDS-

PAGE and analysed by Western blotting (Figure 4-3 B). P-p38 was observed 

upon treatment of 4OH-Tx in the input fraction. In the input P-Parkin S378 

antibody detected bands in both FLAG-Parkin and empty vector-expressing cells, 

strongly arguing for the non-specificity of the antibody. In the FLAG-IP fraction, 

P-Parkin S378 was activated constitutively. These data suggest that Parkin 

phosphorylation at S378 can only be detected following IP, and that Parkin is 

constitutively phosphorylated at S378, independent of p38 activation. 
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(A) ΔMEKK3:ER-expressing HEK293t cells were transiently transfected with FLAG-Parkin and FLAG-pcDNA3. Whilst 

phosphorylation of p38 (P-p38) was induced following 4OH-Tx treatment, no phosphorylation of Parkin at S101 or S378 was 

detected, even with longer exposure of Western blot membranes to x-ray films. (* represents possible phospho-Parkin at 

S378 (P-Parkin S378) located at the same molecular weight as FLAG-Parkin) (B) Same experiments were repeated and part 

of the lysates were subjected to immunoprecipitation with anti-FLAG antibody-coupled agarose beads (FLAG-IP). Parkin was 

constitutively phosphorylated at S378, independent of p38 signalling pathway activation. 

 

(A) ΔMEKK3:ER-expressing HEK293t cells were transiently transfected with FLAG-Parkin and FLAG-pcDNA3. Whilst 

phosphorylation of p38 (P-p38) was induced following 4OH-Tx treatment, no phosphorylation of Parkin at S101 or S378 was 

detected, even with longer exposure of Western blot membranes to x-ray films. (* represents possible phospho-Parkin at 

S378 (P-Parkin S378) located at the same molecular weight as FLAG-Parkin) (B) Same experiments were repeated and part 

of the lysates were subjected to immunoprecipitation with anti-FLAG antibody-coupled agarose beads (FLAG-IP). Parkin was 

Figure 4-3 Parkin was not phosphorylated upon activation of p38 signalling pathway.  
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4.2.2 Parkin phosphorylation is not detected upon activation of 

ERK1/2 signalling pathway 

Next I tested whether Parkin can be phosphorylated following ERK1/2 

signalling activation by using NIH-3T3 cells stably expressing ΔRaf-DD:ER. ΔRaf-

DD:ER is a 4OH-Tx-inducible version of the human Raf protein kinase in which 

Raf is activated by deletion of its N terminus and substitution of aspirate (D) 

residues at Tyr-340 and -341, and fused in-frame to a modified hormone 

binding domain of oestrogen receptor (Bagowski et al., 2001; Bosch et al., 1997). 

Activation of ΔRaf-DD:ER by treatment of 4OH-Tx results in specific activation of 

endogenous ERK1/2 (Figure 4-2).  

FLAG-Parkin and FLAG-pcDNA3 were transfected in ΔRaf-DD:ER cells for 48 h 

prior to Raf signalling pathway induction by 100 nM 4OH-Tx. Cells were lysed 

and each reaction was divided, with 90% subjected to FLAG-IP. Both the original 

lysates (input) and FLAG-peptide eluted lysates (FLAG-IP) were analysed by 

SDS-PAGE and Western blotting (Figure 4-4). Phosphorylated ERK1/2 (P-

ERK1/2 T202/Y204) was detected upon treatment of 4OH-Tx in the input 

fraction, although it was slightly weaker in FLAG-Parkin expressing in ΔRaf-

DD:ER cells. In the input the anti-P-Parkin S378 antibody detected several 

bands, most of which were likely to be non-specific. The weak FLAG-Parkin 

bands detected by anti-Parkin antibody suggested that the transfection 

efficiency of FLAG-Parkin in the ΔRaf-DD:ER cells was low, as NIH-3T3 cells 

were relatively resistant to the transfection of additional constructs comparing 

to ΔMEKK3:ER-expressing HEK293 cells. The expression of FLAG-Parkin was so 

low that it was only inconsistently detected in FLAG-IP fraction, whereas P-

Parkin S378 was undetectable (FLAG-IP data not shown). Although the 

phosphorylation of ERK1/2 was slightly reduced in FLAG-Parkin-expressing 

ΔRaf-DD:ER cells, more studies with robust Parkin expression in the cells will be 

needed before this finding is to be confirmed. In conclusion, whether activation 

of ERK1/2 signalling pathway results in Parkin phosphorylation remains 

inconclusive.  
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ΔRaf-DD:ER-expressing NIH-3T3 cells were transiently transfected with FLAG-

Parkin and FLAG-pcDNA3. Phosphorylation of ERK1/2 (P-ERK1/2 T202/Y204) 

was induced by 4OH-Tx. Transfection efficiency of FLAG-Parkin was poor and no 

P-Parkin S378 was detectable upon ERK1/2 signalling activation. (* represents 

FLAG-Parkin bands detected by anti-Parkin antibody. The bands below FLAG-

Parkin in all samples were likely to be non-specific.) 

 

 

Figure 4-37 Parkin was not phosphorylated upon activation of ERK1/2 

signalling pathway.ΔRaf-DD:ER-expressing NIH-3T3 cells were transiently 

transfected with FLAG-Parkin and FLAG-pcDNA3. Phosphorylation of ERK1/2 (P-

ERK1/2 T202/Y204) was induced by 4OH-Tx. Transfection efficiency of FLAG-

Parkin was poor and no P-Parkin S378 was detectable upon ERK1/2 signalling 

activation. (* represents FLAG-Parkin bands detected by anti-Parkin antibody. The 

bands below FLAG-Parkin in all samples were likely to be non-specific.) 

 

 

Figure 4-38 Parkin was not phosphorylated upon activation of ERK1/2 

signalling pathway. 

Figure 4-4 Parkin was not phosphorylated upon activation of ERK1/2 

signalling pathway. 
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4.2.3 Parkin is weakly phosphorylated upon Akt activation 

4.2.3.1 Investigating Parkin phosphorylation by using myrAkt:ER cell 

model 

A weak Parkin phosphorylation at S378 upon activation of Akt signalling has 

been shown by the preliminary experiment in our lab (Figure 4-5 A). To further 

confirm this finding, NIH-3T3 cells stably expressing inducible myrAkt:ER were 

utilised. MyrAkt:ER is a constitutively active form of Akt (myrAkt) that fuses to 

the hormone binding domain of the oestrogen receptor. Treating myrAkt:ER 

cells with 4OH-Tx activates myrAkt directly, instead of activating the whole 

phosphatidylinositide 3-kinases (PI3K)/Akt signalling cascade like what 

happens in 4OH-Tx-treated ΔMEKK3:ER or ΔRaf-DD:ER cells. The activated 

myrAkt was detectable by anti-phospho-Akt S473 (P-Akt S473) antibody at 75 

kDa (Figure 4-2). 

FLAG-Parkin and FLAG-pcDNA3 were transfected into myrAkt:ER cells for 48 h 

prior to treatment with 100 nM 4OH-Tx. The Western blot of whole cell lysates 

demonstrated activated myrAkt detected by P-Akt S473 antibody at 75 kDa 

following 4OH-Tx treatment, equally in both FLAG-Parkin and empty-vector 

transfected myrAkt:ER cells (Figure 4-5 B). The expression of FLAG-Parkin in 

myrAkt:ER cells was weak and anti-P-Parkin S378 antibody only detected non-

specific bands. Repeated experiments had been attempted several times in 

order to IP FLAG-Parkin but the transfection efficiency was extremely low that 

hardly any FLAG-Parkin was detectable in the FLAG-IP fraction (Data not 

shown). Due to poor transfection efficiency of FLAG-Parkin and low specificity 

of P-Parkin S378 antibody, whether Parkin can be phosphorylated upon Akt 

activation is inconclusive in this model. 
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(A) Preliminary data in our lab demonstrated a weak phosphorylation of Parkin at S378 in myrAkt:ER cells upon 

4OH-Tx treatment (Dr Helene Plun Favreau, unpublished data). (B) MyrAkt:ER-expressing NIH-3T3 cells were 

transiently transfected with FLAG-Parkin and FLAG-pcDNA3. Activated myrAkt (detected by P-Akt S473) was 

induced by 4OH-Tx. Transfection efficiency of FLAG-Parkin was poor and P-Parkin S378 antibody detected 

several non-specific bands. (* represents FLAG-Parkin bands detected by anti-Parkin antibody. The bands below 

FLAG-Parkin in all samples were likely to be non-specific.) 

 

 

 

Figure 4-49 Parkin can be weakly phosphorylated upon activation of Akt signalling pathway.(A) 

Preliminary data in our lab demonstrated a weak phosphorylation of Parkin at S378 in myrAkt:ER cells upon 
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Figure 4-5 Parkin can be weakly phosphorylated upon activation of Akt signalling pathway. 
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4.2.3.2 FLAG-Parkin was not phosphorylated upon endogenous Akt 

activation in HEK293t cells 

As a result of the low transfection efficiency of FLAG-Parkin into NIH-3T3 cells, I 

sought to activate the endogenous Akt signalling pathway in cells that are more 

transfectable. Endogenous Akt is the major effector in phosphatidylinositide 3-

kinases (PI3K)/Akt signalling pathway, which can be activated by epidermal 

growth factor (EGF) (Ojeda et al., 2011) or insulin (Rafalski and Brunet, 2011).  

HEK293t cells were transfected with FLAG-Parkin or FLAG-pcDNA3, serum 

starved, and then treated with 100 ng/ml EGF. The Western blotting of whole 

cell lysates showed Akt was phosphorylated at S473 after 5 min of EGF 

treatment (Figure 4-6). Although transfection efficiency of FLAG-Parkin was 

good in this model, P-Parkin S101 was undetectable. P-Parkin S378 antibody 

still detected multiple non-specific bands, although in one out of three 

experiments the strongest bands (at approximately 50 kDa) detected by P-

Parkin S378 increased slightly following EGF stimulation.  The whole cell lysates 

were not further subjected to FLAG-IP due to the consideration that EGF 

receptors are only weakly expressed in HEK293t cells. Although these 

experiments confirm endogenous Akt could be phosphorylated upon EGF 

treatment, whether Parkin is phosphorylated in this model remains 

inconclusive. 
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HEK293t cells transfected with FLAG-Parkin or FLAG-pcDNA3 transiently were treated 

with EGF to activate endogenous Akt signalling pathway. Transfection efficiency of FLAG-

Parkin was good. No phosphorylation of Parkin at S101 was observed. P-Parkin S378 

antibody detected multiple non-specific bands in both transfected cells. (^ represents 

stripping process-related protein loss before reprobing the membrane with anti-Parkin 

and anti-FLAG antibodies respectively.) 

 

 

Figure 4-61 Parkin was not phosphorylated upon activation of Akt in HEK293t cells 

by epidermal growth factor (EGF).HEK293t cells transfected with FLAG-Parkin or FLAG-

pcDNA3 transiently were treated with EGF to activate endogenous Akt signalling pathway. 

Transfection efficiency of FLAG-Parkin was good. No phosphorylation of Parkin at S101 

was observed. P-Parkin S378 antibody detected multiple non-specific bands in both 

transfected cells. (^ represents stripping process-related protein loss before reprobing the 

membrane with anti-Parkin and anti-FLAG antibodies respectively.) 

 

 

Figure 4-62 Parkin was not phosphorylated upon activation of Akt in HEK293t cells 

by epidermal growth factor (EGF). 

Figure 4-6 Parkin was not phosphorylated upon activation of Akt in HEK293t cells by 

epidermal growth factor (EGF). 
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4.2.3.3 FLAG-Parkin was not phosphorylated in SH-SY5Y cells upon 

activation of endogenous PI3K/Akt signalling pathway 

The aforementioned experiments regarding Parkin phosphorylation following 

induction of the PI3K/Akt signalling pathway showed discrepancies in results 

obtained from different cell models. These cell models are less representative as 

PD pathology presents mainly in Dopaminergic neurons. Furthermore, 

phospho-Parkin was not reliably detected by commercially available antibodies 

at the endogenous level. As a result, the dopaminergic human neuroblastoma 

cell line SH-SY5Y stably expressing FLAG-Parkin or FLAG-pcDNA3 were then 

utilised to overcome the problems in the abovementioned cell models. 

SH-SY5Y cells stably expressing were a gift from Dr Helen Ardley (Ardley et al., 

2003) and SH-SY5Y cells stably expressing FLAG-pcDNA3 were produced in the 

lab by Dr Emma Deas. These cells were cultured in serum-free medium for 16 h 

before they were treated with 100 ng/ml EGF. The cells were lysed and each 

sample was divided by a 1:9 ratio, with 10% remained as input whilst 90% was 

subjected to IP with FLAG-beads. The latter fraction was then eluted by FLAG-

peptide. Both fractions (input and FLAG-IP) were analysed by SDS-PAGE 

Western blotting (Figure 4-7). EGF induced a strong and early activation of 

PI3K/Akt and ERK1/2 signalling pathways in both FLAG-Parkin SH-SY5Y cells 

and the empty vector control, by the presence of P-Akt S473, P-S6 S235/S236, 

and P-ERK1/2 T202/Y204 in the input fraction. However, in the FLAG-IP 

fraction, Parkin was constitutively phosphorylated at either S101 or S378 

following activation of these two pathways by EGF.  

The experiment was repeated with the same cell model at the same condition 

except using 50 nM insulin to activate PI3K/Akt and ERK1/2 signalling 

pathways (Figure 4-8). In the input fraction, insulin activated PI3K/Akt 

signalling pathway at similar time point and same efficiency as EGF did, whilst 

insulin activated an overall weaker ERK1/2 phosphorylation than EGF did. 

Nevertheless, constitutive phosphorylations at S101 and S378 of Parkin were 

still observed in FLAG-IP fraction upon the treatment of insulin. 
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Although EGF or insulin used in this section activated endogenous PI3K/Akt 

signalling pathway in extremely high efficiency, phosphorylation of ERK1/2 was 

also observed in FLAG-Parkin 5Y as well empty vector control. Since Akt 

activated mTOR as its downstream effector in PI3K/Akt pathway, amino acid 

was then used to selectively activate mTOR and its downstream pathway. SH-

SY5Y cells stably expressing FLAG-Parkin or FLAG-pcDNA3 were first serum 

starved for 16 h and then the medium were replaced by Earl’s balanced solution 

(EBS) for amino acid-starvation for 2 h, followed by treating 20 ul/ml amino 

acid at designated durations. Western blotting showed that phosphorylation of 

mTOR at S2448 (P-mTOR S2488) was observed after 15 min of amino acid 

stimulation in the input fraction, whilst P-S6 S235/S236 was observed 1 h after 

stimulation (Figure 4-9). Phosphorylation of Akt but not ERK1/2 was observed 

upon amino acid treatment. In FLAG-IP fraction, constitutive phosphorylation of 

Parkin, however, was observed at either S101 or S378 following activation of 

mTOR signalling pathway by amino acid. These experiments suggest Parkin is 

not phosphorylated upon activation of Akt or ERK signalling pathways induced 

by EGF or insulin.  
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In the input fraction (left panel), Akt, S6, and ERK1/2 were phosphorylated upon treatment of EGF. The bands detected by P-

Parkin S378 antibody were likely to be non-specific. The expression of FLAG-Parkin in the SH-SY5Y cells was good. Constitutive 

Parkin phosphorylation at S101 and S378 was detected in the FLAG-IP fraction (right panel), independent of EGF treatment. 

 

 

In the input fraction (left panel), Akt, S6, and ERK1/2 were phosphorylated upon treatment of EGF. The bands detected by P-

Parkin S378 antibody were likely to be non-specific. The expression of FLAG-Parkin in the SH-SY5Y cells was good. Constitutive 

Parkin phosphorylation at S101 and S378 was detected in the FLAG-IP fraction (right panel), independent of EGF treatment. 

Figure 4-7 Immunoprecipitation of FLAG-Parkin from SH-SY5Y cells stably expressing FLAG-Parkin or FLAG-pcDNA3 

following EGF treatment. 
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In the input fraction (left panel), Akt, S6, and ERK1/2 were phosphorylated upon treatment of insulin. P-Parkin S378 antibody 

detected only non-specific bands in the input fraction. Constitutive Parkin phosphorylation at S101 and S378 was detected in the 

FLAG-IP fraction (right panel), independent of insulin treatment. 

 

 

Figure 4-85 Immunoprecipitation of FLAG-Parkin from SH-SY5Y cells stably expressing FLAG-Parkin or FLAG-pcDNA3 

following insulin treatment.In the input fraction (left panel), Akt, S6, and ERK1/2 were phosphorylated upon treatment of 

Figure 4-8 Immunoprecipitation of FLAG-Parkin from SH-SY5Y cells stably expressing FLAG-Parkin or FLAG-pcDNA3 

following insulin treatment.  
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In the input fraction (left panel), Akt and S6 were phosphorylated upon treatment of amino acid, whilst ERK1/ was not. P-Parkin S378 

antibody detected only non-specific bands in the input fraction. Constitutive phosphorylation at S101 and S378 of Parkin was observed 

in the FLAG-IP fraction (right panel), independent of amino acid treatment. 

 

 

Figure 4-97 Immunoprecipitation of FLAG-Parkin from SH-SY5Y cells stably expressing FLAG-Parkin or FLAG-pcDNA3 

following treatment with amino acid to activate mTOR.In the input fraction (left panel), Akt and S6 were phosphorylated upon 

Figure 4-9 Immunoprecipitation of FLAG-Parkin from SH-SY5Y cells stably expressing FLAG-Parkin or FLAG-pcDNA3 

following treatment with amino acid to activate mTOR.  



 

149 

 

4.3 Discussion 

Several Parkin phosphorylation sites have been reported (Avraham et al., 2007; 

Imam et al., 2011; Kazlauskaite et al., 2014; Kim et al., 2008; Ko et al., 2010; 

Kondapalli et al., 2012; Rubio de la Torre et al., 2009; Sha et al., 2010; Shiba-

Fukushima et al., 2012; Yamamoto et al., 2005), however the kinases that 

modulate these post-translational modifications of Parkin remain elusive. 

PINK1 has been shown to phosphorylate Parkin (Kazlauskaite et al., 2014; Kim 

et al., 2008; Kondapalli et al., 2012; Shiba-Fukushima et al., 2012), nevertheless 

the detailed signalling pathway leading to PINK1 phosphorylation of Parkin is 

still unclear. Previous reports suggest MAPK and PI3K/Akt signalling pathways 

are dysregulated in PD brain (Dzamko et al., 2014; Kim and Choi, 2010; Ren et 

al., 2009). The highly activated MAPK signal and attenuated Akt signal in PD 

pathology may increase the neurotoxicity (Dzamko et al., 2014). Thus these 

pathways were selected in this thesis for testing whether any of them involves 

Parkin regulation.  
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4.3.1 Parkin phosphorylation is not observed upon activation of 

MAPK signalling pathways 

The mammalian MAPK family consists of JNK, p38 and ERK (Chang and Karin, 

2001). The two cell lines with inducible mitogen-activated protein kinase kinase 

kinase (MAP3K) utilised in this part of work possess the advantage to activate 

either p38 or ERK1/2 specifically following induction. In theHEK293t cells 

expressing ΔMEKK3:ER, Parkin was constitutively phosphorylated at S378, 

independent of p38 signalling pathway activation. The anti-P-Parkin S101 

antibody, on the other hand, was less sensitive in detecting FLAG-Parkin in 

either whole cell lysates or FLAG-peptide eluted Parkin from FLAG-IP samples 

in this model. Since the activation of p38 MAPK in this cell line is only induced 

upon 4OH-Tx treatment, the background p38 activity is low and less likely to 

cause Parkin S378 phosphorylation. Therefore, it can only be concluded here 

that Parkin S378 is constitutively phosphorylated and this phosphorylation is 

independent of p38 MAPK signalling pathway activation. Previous report 

demonstrated that the p38 signalling induced by microtubule depolymerising 

agents in cell models can be attenuated by overexpressing Parkin, suggesting 

Parkin might act upstream of p38 MAPK (Ren et al., 2009), instead of being 

activated by p38. 

The ΔRaf-DD:ER-expressing NIH-3T3 cell model used in this project is more 

resistant to FLAG-Parkin transfection compared to ΔMEKK3:ER-expressing 

HEK293t cells. FLAG-Parkin is only weakly overexpressed in ΔRaf-DD:ER cells 

after trying various transfection reagents and conditions. Although the anti-P-

Parkin S378 antibody detects several bands at various molecular weights and 

densities in the whole cell lysates, these bands are likely to be non-specific. In 

addition, the location of the strongest band detected by P-Parkin S378 antibody 

is slightly lower than the FLAG-Parkin band detected by anti-FLAG antibody. 

Not only Parkin phosphorylation at S378 is inconclusive, but the specificity of P-

Parkin S378 antibody is questionable. The attempt to immunoprecipitate the 

samples with FLAG-beads does not seem to improve the FLAG-Parkin signal 

strength. Therefore it is not possible to conclude whether Parkin can be 
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phosphorylated upon ERK1/2 signalling pathway activation by ΔRaf-DD:ER-

expressing NIH-3T3 cell model. That said, when endogenous ERK1/2 signalling 

pathway is activated in FLAG-Parkin-expressing SH-SY5Y cells, Parkin is not 

phosphorylated at either S101 or S378. This SH-SY5Y cell model demonstrates 

strong Parkin expression level, and in the FLAG-IP fraction the Parkin bands 

detected by antibodies against both total and phosphorylated Parkin are of the 

same molecular weight, suggesting a more reliable result in this SH-SY5Y model.  

Previous reports have shown that ERK1/2 signalling is dysregulated in PD 

patients (Kurup et al., 2015; Ren et al., 2009). For instance, the ERK1/2 

activation by microtubule depolymerising agent such as colchicine can be 

attenuated by Parkin, and mutation in Parkin results in activated ERK1/2 signal 

in cell models (Ren et al., 2009). On the contrary, Parkin mutant patients show 

striatal accumulation of STEP61 (striatal-enriched protein tyrosine phosphatase) 

and reduced phosphorylation of ERK1/2 and CREB (cAMP response element-

binding protein), whereby synaptic function is disrupted (Kurup et al., 2015). 

These reports suggest Parkin might act upstream of the ERK1/2 signalling 

pathway. The discrepancy of Parkin’s influence on ERK1/2 activation in these 

reports, however, indicates Parkin could influence ERK1/2 signalling via 

diverse processes, resulting activation of different downstream effectors 

accordingly. In this project, P-ERK1/2 activation was slightly reduced in FLAG-

Parkin-expressing ΔRaf-DD:ER  NIH-3T3 cells, although the expression level of 

FLAG-Parkin was extremely low. In the SH-SY5Y cell model, on the other hand, 

P-ERK1/2 activation following EGF or insulin treatment was not altered by 

overexpression of FLAG-Parkin. This suggests different cell models might have 

different influences on how the signalling pathways are regulated. 

These previous reports regarding Parkin dysfunction alters p38 or ERK1/2 

signalling could explain why Parkin phosphorylation was not observed upon 

activation of p38 or ERK1/2 signalling pathway in this project. Nevertheless, 

overexpression of Parkin in the cell model used here did not alter the 

phosphorylation of p38 or ERK1/2 markedly, neither does the activation of p38 

or ERK1/2 negatively affect the constitutive phosphorylation of Parkin S378. 
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4.3.2 Parkin might be phosphorylated upon activation of PI3K/Akt 

signalling pathway 

A weak Parkin phosphorylation at S378 upon myrAkt activation in myrAkt:ER-

expressing NIH-3T3 cells has been demonstrated in the preliminary experiment. 

I have since tried to verify this finding and dissect the associated pathways in 

various cell models, including myrAkt:ER-expressing NIH-3T3 cells (with or 

without overexpressing FLAG-Parkin), and SH-SY5Y (with or without 

overexpressing FLAG-Parkin). The attempt to reproduce the result in 

myrAkt:ER-expressing NIH-3T3 cells was unsuccessful. Despite trying various 

transfection reagents and protocols, the expression of FLAG-Parkin in 

myrAkt:ER-expressing NIH-3T3 cells is still low.  

The alternative ways to activate endogenous Akt signal can be achieved by EGF 

or insulin (Galbaugh et al., 2006; Hermann et al., 2000; Lizcano and Alessi, 2002; 

Yip and Seow, 2012).  An inconsistent, weak phosphorylation of Parkin S378 

was detected in HEK293t cells expressing FLAG-Parkin transiently upon EGF 

stimulation. However, the phosphorylation of Akt is not as strong as expected, 

which might be explained by low expression of EGF receptor in HEK293t cells 

(Carter and Sorkin, 1998; Huang et al., 2008). Fibroblasts, on the other hand, 

have higher EGFR expression (Wells, 1999), but are less easy to be transfected. 

Activation of endogenous Akt and ERK1/2 in MEFs and human primary 

fibroblasts following treatment with EGF or insulin had been attempted (Data 

not shown), but Parkin phosphorylation was not detected at the endogenous 

level in MEFs. In control human fibroblasts, however, the signal intensity of the 

band detected by P-Parkin S378 antibody waxed and waned throughout the 

time of insulin stimulation, assuming the band observed was the true 

endogenous Parkin. The low sensitivity and specificity of these antibodies 

against phosphorylated/total Parkin at the endogenous level resulted in the 

difficulty in analysing the readout at this part of project. 

In order to ensure a robust endogenous Akt signalling activation as well as a 

clear phosphorylated and total Parkin signal, neuroblastoma cells SH-SY5Y 
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stably expressing FLAG-Parkin were then utilised. This cell model also 

possesses the advantage that it mimics the in vivo environment of neurons 

better, as PD pathology present mainly in neurons. Both S101 and S378 seem to 

be constitutively phosphorylated in this model, independent of activation of Akt 

signalling pathway.  

Activation of Akt signalling pathway is neuroprotective (Alessi et al., 1997; 

Thomas and Beal, 2007) and reduced Akt activity has been reported in PD 

pathology (Dzamko et al., 2014; Timmons et al., 2009; Yang et al., 2005). Despite 

molecular pathways remain elusive; compiling evidences demonstrate Parkin is 

also neuroprotective. Parkin overexpression increases resistance to cellular 

apoptosis and knocking down Parkin in SH-SY5Y cells causes apoptotic death of 

cells (Burke, 2008). By enhancing ubiquitination of TRAF2 (tumor necrosis 

factor (TNF) receptor-associated factor2) and IKKγ (IκB kinase γ)/NEMO (NF-

κB essential modifier) complex, which leads to proteasomal degradation of 

NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) inhibitor 

IκBα, Parkin activates IKK/NFκB signalling that promotes the transcription of 

pro-survival genes (Henn et al., 2007; Sha et al., 2010). Parkin suppresses 

stress-activated protein kinase pathways (Hasegawa et al., 2008). Furthermore, 

Parkin is linked with Akt signalling with respect to neuroprotection function. 

Parkin can enhance Akt signalling by promoting ubiquitination of Eps15 UIM 

(ubiquitin-interacting motifs) and eventually delaying the endocytosis of EGF 

receptors (Fallon et al., 2006). This suggests Parkin might regulate Akt 

signalling pathway, which seems to discord with my hypothesis that Parkin 

could be regulated by Akt signalling via phosphorylation. Of note, EGF-induced 

Parkin-Eps15 interaction also reciprocally activates Parkin E3 ligase activity 

(Fallon et al., 2006). Additionally, the kinase prediction result by KinasePhos2.0 

(http://kinasephos2.mbc.nctu.edu.tw/) shows Akt is one of the possible kinases 

that phosphorylate Parkin. However, all the models used in this part of work 

failed to demonstrate that Parkin can be phosphorylated at S101 or S378 

following Akt signalling activation. Whether Akt can phosphorylate Parkin at 

serine sites other than S101 and S378 is yet to be confirmed. 
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4.3.3 Experimental difficulties and critical evaluation of study 

design 

There has been two major difficulties while commencing this project: the low 

sensitivity and low specificity of commercial antibodies against endogenous 

total or phosphorylated Parkin, and the poor transfection efficiency in some of 

the cell models utilised. 

It has been described in Chapter 3 that almost all anti-Parkin antibodies tested 

detect multiple bands in Western blotting. The bands possibly corresponding to 

Parkin located at variable positions between 50 and 55 kDa, depending on 

different antibody used. Additionally, the sensitivity of anti-P-Parkin S101 

antibody was lower than the S378 one, as it hardly detected any band at the 

endogenous level, whilst the S378 one detected a weak band sandwiched 

between another two stronger bands at 50 and 60 kDa respectively. 

The attempt to solve this protein detection issue was to overexpress Parkin in 

the cell models used in this experiment. This was where the second difficulty 

was encountered. The three cell models utilised in the first part of this project 

were the cells lines stably expressing inducible ΔMEKK3:ER, ΔRaf-DD:ER and 

myrAkt-ER. Whilst ΔMEKK3:ER is expressed in HEK293t cells, both ΔRaf-DD:ER 

and myrAkt-ER are expressed in NIH-3T3 cells. HEK293t cells can be 

transfected with 10-time higher efficiency than NIH-3T3 cells (Plautz et al., 

2011). In this project, FLAG-Parkin expressed well inΔMEKK3:ER cells but was 

hardly detectable in ΔRaf-DD:ER and myrAkt-ER cells after attempting various 

transfection reagents and protocols. 

The hypothesis of this study was initiated in view of the preliminary experiment 

showing Parkin was phosphorylated upon activation of Akt and the evidence 

supporting a number of signal pathways were dysregulated in PD pathology. At 

the time, the study was designed based on the abovementioned information. 

However in retrospect, it is useful to adjust the study design in accordance with 

the experimental outcomes as the project proceeded. 
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The PD-associated MAPK and PI3K/Akt signalling pathways were selected for 

testing whether any of them is associated with Parkin phosphorylation. Cell 

models expressing inducible ΔMEKK3:ER, ΔRaf-DD:ER and myrAkt-ER were 

readily available in lab. The advantage of using these cell models is to ensure a 

robust activation of the signalling pathways of interest. The generation of 

ΔMEKK1:ER-expressing stable NIH-3T3 cell line, in which P-JNK can be induced, 

has been attempted twice. However, no cells expressed adequate ΔMEKK1:ER 

level to resist the antibiotics selection following the transfection. Therefore, the 

experiments were only commenced in models with inducible p38, ERK1/2 or 

Akt signalling pathways. Nevertheless, the cellular backgrounds of these cell 

lines were not identical, as ΔMEKK3:ER was expressed in HEK293t cells whilst 

both ΔRaf-DD:ER and myrAkt-ER were in NIH-3T3 cells. The possible variations 

of the endogenous Parkin expression level in different cell lines could lead to 

misinterpretation of experimental readouts. Considering the time-consuming 

procedure it takes for generating stable cell lines of the same cellular 

background, it would be worth trying to do a preliminary experiment by 

transiently expressing the construct of inducible kinase in a single cell type to 

avoid background variation, and then generate the stable cell line from it if 

necessary. Activation of endogenous MAPK or Akt signalling pathways could be 

an alternative option. Although activating endogenous PI3K/Akt signalling 

pathway by EGF and insulin has been attempted, this project would be more 

completed if each endogenous MAPK signalling pathway (p38, ERK1/2 or JNK) 

can also be tested individually within timeframe available. Furthermore, it 

would be ideal to scale up the analysis to a high-throughput system, for instance 

RNAi-based screening. 

The decision to detect Parkin at the endogenous level in some of the cell models 

utilised in this project is not ideal but alternative choices are little. As described 

in Chapter 3, the detection of endogenous Parkin remains challenging. Most of 

commercially available antibodies against phosphorylated or total Parkin used 

currently are not specific enough to detect a clear band at the correct molecular 

weight. A straightforward strategy to overcome this difficulty is thus to further 
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overexpress Parkin in the cell model with inducible kinase. However this is far 

from ideal, as this makes the cell model less physiological, and the susceptibility 

of each cell line toward a second construct transfection differs greatly in this 

project. It would be ideal to generate the models with the same cellular 

backgrounds by transfection methods of higher transfer rate, for instance the 

viral transduction. The alternative strategy taken in this project was to utilise 

the SH-SY5Y cells stably expressing FLAG-Parkin and FALG-pcDNA3. To avoid 

the difficulty of transfecting these cells with a second construct, endogenous 

signalling pathways were activated. In this project PI3K/Akt and ERK1/2 were 

activated by EGF or insulin at the dosage and duration optimised by preliminary 

experiments. As stated previously it would be interesting to test other signalling 

pathways at endogenous level within available timeframe or even scale up to a 

high-throughput assay to derive the architecture of possible Parkin-associated 

signalling pathway faster than traditional approaches. 

Immunoprecipitating the lysates with anti-FLAG conjugated agarose beads was 

essential in this project because clear Parkin bands were only detectable in the 

FLAG-IP fraction. One possible bias when analysing the readout could be 

encountered with this method. Provided that P-Parkin antibodies were not 

specific enough against their phosphorylated protein targets, they might 

actually detect a higher fraction of total protein than the phosphorylated form 

since the FLAG-IP fraction contained a large amount of FLAG-Parkin, giving a 

false interpretation that these two serine sites (S101 and S378) were 

constitutively phosphorylated. Moreover, although these two serine sites are 

more conserved than others in Parkin, it would be ideal to test as many 

conserved sites as possible upon activation of selected signalling pathways. One 

of the alternative approaches to achieve this is to separate the lysates on the 

Phos-tag acrylamide gel (Kinoshita et al., 2006). Its Western blotting membrane 

is then probed with antibody against the protein of interest in order to obtain a 

shifted protein band which indicates a probable phosphorylation. The protein 

extracted from this shifted band can subsequently be subjected to the analysis 

by Mass Spectrometry for identification of the relevant phosphorylated site(s) 

in a more accurate way. 
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A final consideration is whether it was adequate to just observe the 

phosphorylation of Parkin following activation of selective signalling pathways. 

A number of previous reports implied dysregulation of these signalling 

pathways in models with Parkin dysfunction (Dzamko et al., 2014; Kim and Choi, 

2010; Ren et al., 2009), pointing out the possibility that Parkin might actually 

act upstream of the target kinases observed in this project. However, there was 

no alteration of Akt or ERK1/2 activation observed in Parkin-expressing SH-

SY5Y cells comparing to empty-vector controls or untransfected cells. The 

balanced signalling pathways might somehow be achieved by other 

compensatory mechanism following long-term expression of Parkin in the cells. 

The other way to observe the effect of Parkin dysfunction on these signalling 

pathways is to knock down Parkin in the cells. However due to the low 

specificity of antibody against endogenous Parkin, the knock-down of Parkin is 

even harder to be proved at the protein level, despite RT-qPCR could 

demonstrate efficient knockdown. Parkin patient fibroblasts might be a more 

reliable model comparing to knockdown cell lines. When protein expression 

data is unable to acquired, patient’s clinical symptoms can offer another 

evidence of Parkin mutation on top of the genotyping result. It would also be 

very interesting to dissect these PD-associated signalling pathways using the 

human primary Parkin-mutant fibroblasts, iPSC derived from these fibroblasts, 

or even Parkin iPSC-derived dopaminergic neurons as the model if the 

timeframe permitted. 

4.3.4 Conclusion 

In this chapter, three PD-associated signalling pathways, p38, ERK1/2 and 

PI3K/Akt, were activated in order to detect possible Parkin phosphorylation. 

Although the preliminary experiment demonstrated weak Parkin 

phosphorylation at S378 upon activation of Akt signalling pathway, this result 

was not recapitulated in this project. By using the overexpressed Parkin in 

neuroblastoma cell model it is concluded that Parkin might not be 

phosphorylated upon Akt signalling pathway activation, provided that the 

specificity of P-Parkin antibodies are reliable. The difficulty to proceed this 
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project at the endogenous level of Parkin leads the next project to be 

commenced at the overexpressed level of Parkin (Chapter 5).  

4.3.5 Future perspectives 

The work presented in this chapter proceeded parallel to the project in Chapter 

3, therefore the decision to work on Parkin at overexpressed level was made 

after several failed experiments in detecting Parkin at the endogenous level. 

Since Parkin could be detected more reliably in the SH-SY5Y cell stably 

expressing FLAG-Parkin, it would be reasonable to use this model to test all the 

PD-associated signalling pathways. Additional studies by treating the cells with 

specific activators to activate each pathways or even individual molecule will be 

needed before making the conclusion that Parkin is not phosphorylated upon 

activation of these signalling pathways.  

In the meantime, the efficiency in detecting Parkin phosphorylation can be 

improved by methods other than site-specific phospho-Parkin antibodies in the 

future work. For instance, a robust evidence of Parkin phosphorylation can be 

supported by the Phos-tag gel system plus the subsequent Mass Spectrometry 

analysis, whereby a more specific and reliable information regarding 

phosphorylation sites over the full length of Parkin can be provided.  

Although SH-SY5Y cell line is a neuronal cell model, it is not a differentiated 

neuron after all. A model with overexpressed Parkin in the relatively primitive 

neuronal cell is less likely to recapitulate the physiological condition. If the 

signalling pathway that regulates Parkin phosphorylation can be determined by 

the abovementioned methods, it is then worth reproducing the result in a more 

physiological model. The human skin fibroblasts from the patient carrying 

Parkin mutations and the cells derived from these fibroblasts could potentially 

be a more reliable cell model system. The Parkin iPSC-derived neurons should 

be a cell model that is closely resembling the physiological background.  Any 

signalling pathway shown to regulate Parkin phosphorylation in this model will 

therefore have enormous therapeutic value. 
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Chapter 5 The role of Parkin 

phosphorylation in mitochondrial 

quality control 

5.1 Introduction 

Whilst studies of both sporadic and genetic cases of PD show that mitochondrial 

dysfunction is an important feature of pathogenesis (Burchell et al., 2010a, b; 

Narendra et al., 2010b), much of what is known about the disease process, in 

particular mitophagy, comes from the study of the rare genetic forms of the 

disease. In particular, two of the proteins associated with early-onset autosomal 

recessive PD, PINK1 (mitochondrial kinase) and Parkin (E3 ubiquitin ligase) 

(Kitada et al., 1998; Valente et al., 2004), act in a common pathway to regulate 

mitochondrial turnover (Youle and Narendra, 2011). 

Under normal conditions, nuclear encoded PINK1 is imported into the inner 

membrane of healthy, polarised mitochondria via its mitochondrial targeting 

sequence, where it is cleaved by the protease Presenilins-associated rhomboid-

like protein (PARL). Cleaved PINK1 is further released in the cytosol and 

degraded (Deas et al., 2011a; Narendra et al., 2010b). Upon mitochondrial 

depolarisation (Narendra et al., 2008; Narendra et al., 2010b; Vives-Bauza et al., 

2010), accumulation of mitochondrial DNA mutations (Suen et al., 2010) or 

unfolded proteins in the mitochondrial matrix (Jin and Youle, 2013), PINK1 is 

no longer cleaved by PARL and full length PINK1 accumulates in the outer 

http://en.wikipedia.org/wiki/Presenilins
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mitochondrial membrane (OMM). This accumulation acts as a molecular sensor 

of damaged mitochondria to mediate the recruitment of Parkin (Narendra et al., 

2008; Narendra et al., 2010b; Vives-Bauza et al., 2010). In addition to PINK1, a 

number of proteins have been shown to regulate Parkin translocation (Hasson 

et al., 2013; McCoy et al., 2014; Sato et al., 2006), in particular the F-box domain-

containing protein Fbxo7, which is also associated with early-onset PD (Burchell 

et al., 2013; Di Fonzo et al., 2009a). Following its translocation to the surface of 

damaged mitochondria, Parkin ubiquitinates numerous OMM proteins (Chan et 

al., 2011; Sarraf et al., 2013), which in turn leads to proteasome and autophagy-

associated degradation of damaged mitochondria (Jin and Youle, 2012). 

Despite intensive research, several steps in the mitophagy process remain 

poorly understood. Some important questions needing to be addressed are: how 

is Parkin’s E3 ubiquitin ligase activity regulated, and what is the precise 

mechanism by which Parkin is recruited to damaged mitochondria. Several 

studies suggest that Parkin is regulated via post-translational modifications 

such as phosphorylation (Avraham et al., 2007; Birsa et al., 2014; Imam et al., 

2011; Kazlauskaite et al., 2014; Kim et al., 2008; Ko et al., 2010; Kondapalli et al., 

2012; Rubio de la Torre et al., 2009; Sha et al., 2010; Shiba-Fukushima et al., 

2012; Shiba-Fukushima et al., 2014; Yamamoto et al., 2005). In this project I 

show that Parkin is phosphorylated at S101 upon carbonyl cyanide m-

chlorophenyl hydrazone (CCCP)-induced mitochondrial depolarisation, and the 

non-phosphorylatable S101 Parkin mutant decreases Parkin mitochondrial 

translocation, perinuclear clustering of mitochondria, OMM proteins 

ubiquitination, and autophagic mitochondrial clearance. This study reveals new 

insights into the regulation of Parkin function via phosphorylation at S101 that 

plays an important role in modulating mitophagy. 
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5.2 Results 

5.2.1 Parkin is phosphorylated at S101 following mitochondrial 

depolarisation induced by CCCP 

A number of Parkin phosphorylation sites have been identified in vitro 

(Avraham et al., 2007; Imam et al., 2011; Kim et al., 2008; Ko et al., 2010; 

Kondapalli et al., 2012; Rubio de la Torre et al., 2009; Sha et al., 2010; Shiba-

Fukushima et al., 2012; Shiba-Fukushima et al., 2014; Yamamoto et al., 2005). In 

this study I focus on the S101 phosphorylation site, an evolutionary conserved 

residue amongst many species (Figure 4-1). S101 is located in a flexible linker 

domain between the ubiquitin-like (Ubl) domain and the first Really Interesting 

New Gene (RING) domain (RING0) of Parkin (Figure 5-1 A). I first investigated 

whether Parkin could be phosphorylated over a time course of CCCP treatment. 

Following CCCP-induced mitochondrial depolarisation, P-Parkin S101 was 

detected after FLAG-IP of Parkin from SH-SY5Y neuroblastoma cells stably 

expressing wild-type FLAG-Parkin (hereafter referred to as WT cells), but not in 

SH-SY5Y cells stably expressing FLAG-pcDNA3 (hereafter referred to as control) 

(Figure 5-1 B). Two other Parkin phosphorylation sites, S131 and S378, locating 

in the linker domain and in the in-between-RING (IBR) domain of Parkin, 

respectively (Wauer and Komander, 2013), were also phosphorylated. However, 

phosphorylation at these sites appeared to be constitutive, as opposed to CCCP-

induced (Figure 5-1 C and D). Parkin phosphorylation at S101 was induced after 

1 h of CCCP treatment, and decreased after 5 h.  

Specificity of the P-Parkin S101 antibody was validated using SH-SY5Y cells 

stably expressing exogenous S101A (non-phosphorylatable, hereafter referred 

to as S101A cells) and S101D (phosphomimetic, hereafter referred to as S101D 

cells) FLAG-Parkin mutants, respectively (Figure 5-2 A). Consistent with 

previous reports, IP of FLAG-Parkin from cytosolic fraction (CF) and 

mitochondria-enriched fraction (MF) revealed that although Parkin localized 

predominantly in the cytosol, it is recruited to the mitochondria upon CCCP 

treatment. Parkin phosphorylation at S101 occurred in both the CF and the MF 
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(Figure 5-2 B). These data were further confirmed by immunofluorescence (IF), 

as P-Parkin S101 punctae staining co-localized with mitochondria in response 

to CCCP treatment in WT and S101D cells but not S101A cells (Figure 5-2 C). 
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(A) Diagram of Parkin structural domains, showing the location of the S101 phosphorylation site within the linker region. (Ubl: ubiquitin-

like, RING: Really Interesting New Gene, IBR: in-between-RING) (B) Immunoblot (IB) of Parkin phosphorylation at S101 in FLAG-Parkin 

complexes immunoprecipitated (IP) from whole cell lysates of SH-SY5Y cells stably expressing FLAG-Parkin or FLAG-pcDNA3 (control) 

following 0, 1, 3 or 5 h treatment with CCCP (10 μM). (C and D ) IB of Parkin phosphorylation at S131 (C) and S378 (D) in FLAG-Parkin 

complexes IP from whole cell lysates of FLAG-Parkin or control cells following 0 or 3 h treatment with CCCP (10 μM). 

 

(A) Diagram of Parkin structural domains, showing the location of the S101 phosphorylation site within the linker region. (Ubl: ubiquitin-

like, RING: Really Interesting New Gene, IBR: in-between-RING) (B) Immunoblot (IB) of Parkin phosphorylation at S101 in FLAG-Parkin 

complexes immunoprecipitated (IP) from whole cell lysates of SH-SY5Y cells stably expressing FLAG-Parkin or FLAG-pcDNA3 (control) 

following 0, 1, 3 or 5 h treatment with CCCP (10 μM). (C and D ) IB of Parkin phosphorylation at S131 (C) and S378 (D) in FLAG-Parkin 

Figure 5-1 Parkin is phosphorylated at S101 following CCCP treatment. 
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(A) Parkin is phosphorylated at S101 in FLAG-Parkin complexes IP from CCCP-treated (10 M, 3 h) SH-SY5Y cells stably expressing wild-type (WT) or 

S101D FLAG-Parkin, but not S101A FLAG-Parkin or control. (B) Parkin is phosphorylated at S101 in FLAG-Parkin complexes IP from cytosolic 

fraction (CF) and mitochondria-enriched fraction (MF) of WT and S101D cells, but not S101A cells. IBs are representative of at least three 

independent experiments.  (C) Immunofluorescence (IF) of SH-SY5Y cells stably expressing either WT, S101A or S101D FLAG-Parkin following 3 h 

treatment of CCCP (10 μM). Cells were immunostained for Parkin phosphorylated at S101 (P-S101), for mitochondria (Complex V  subunit, CV), 

and for nuclei (DAPI, blue). Scale bar, 10 μm. 

 

 

Figure 5-13 Parkin S101 phosphorylation is not detected in non-phosphorylatable mutant (S101A cells)(A) Parkin is 

Figure 5-2 Parkin S101 phosphorylation is not detected in non-phosphorylatable mutant (S101A cells). 
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5.2.2 S101 Phosphorylation modulates Parkin recruitment to 

depolarised mitochondria and affects mitochondrial 

perinuclear clustering 

I next examined whether Parkin phosphorylation at S101 regulates its 

translocation to depolarised mitochondria. Over a time course of CCCP 

treatment, FLAG-Parkin level increased in the MF of WT and S101D cells, but to 

a lesser extent in the S101A cells. Parkin levels were consistently elevated in the 

two clonal populations of S101D cells we have generated (Figure 5-3 A and data 

not shown), suggesting that this mutation could impact on the protein stability. 

The reduction of FLAG-Parkin S101A mitochondrial recruitment was further 

supported by IF result. Consistently at 1 and 3 h CCCP treatment, the number of 

cells displaying partial and complete Parkin translocation to depolarised 

mitochondria was significantly reduced in S101A cells as compared to WT and 

S101D (Figure 5-3 B and C; see representative images of partial and complete 

Parkin translocation in Figure 5-3 D).  

The reduction of Parkin translocation was associated with a disruption of the 

CCCP-induced perinuclear mitochondrial clustering in the S101A cells, as 

compared with the WT and S101D cells (see representative pictures in  Figure 

5-4 A). To evaluate the distribution of depolarised mitochondria within the cells, 

the fluorescence intensity peaks of FLAG-Parkin and mitochondria were 

analysed. These peaks overlapped around the edge of nuclei in both WT and 

S101D cells. However, in the S101A cells, Parkin and mitochondria fluorescence 

peaks showed variable degrees of overlapping and located at various distance 

from the edge of the nucleus, confirming that mitochondria are more scattered 

throughout the cytoplasm in S101A cells as compared to WT and S101D cells 

(Figure 5-4 B). In order to further confirm these data, the compaction index of 

mitochondria, as previously described by Narendra and colleagues (Narendra et 

al., 2010a), was calculated. In essence, for a given cellular mitochondrial 

network, the shorter the cumulative circumference the more compact/the less 

dispersed the mitochondria are (Figure 5-4 C). Consistent with above data, the 

compaction index of mitochondria was significantly reduced in S101A cells 
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(Figure 5-4 D). Altogether these data show that Parkin mitochondrial 

translocation and perinuclear mitochondrial clustering are decreased in S101A 

cells. 
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(A) Parkin translocation from the cytosolic fraction (CF) to the mitochondria-enriched fraction (MF) of S101A cells following 0, 1 or 3 h of 10 μM CCCP treatment 

is decreased as compared to WT and S101D cells. Complex V α subunit (CVα) and E1α subunit of pyruvate dehydrogenase (PDHE1α) are markers for 

mitochondria. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a cytosolic marker. IBs are representative of at least three independent experiments. (B) 

Mitochondrial translocation of FLAG-Parkin was assessed by IF in WT, S101A and S101D cells following 0, 1 or 3 h treatment with CCCP (10 μM). Nuclei were 

stained with DAPI (blue). Scale bar, 10μm. (C) Cells in (B) were scored for partial and complete co-localization of FLAG-Parkin with High temperature 

requirement protein A2 (HtrA2), a mitochondrial marker. Data are presented as mean of three experiments ± s.e.m. Significance was determined using two-

tailed Student’s t-test (asterisks above individual column) and one-way ANOVA with Bonferroni correction (asterisks above the bar) (* p< 0.05, ** p< 0.01, *** 

p< 0.001). (D) Representative images exhibiting the morphology of various levels of Parkin-mitochondria partial and complete co-localization following 3 h of 

CCCP treatment (10 μM). 

 

(A) Parkin translocation from the cytosolic fraction (CF) to the mitochondria-enriched fraction (MF) of S101A cells following 0, 1 or 3 h of 10 μM CCCP treatment 

is decreased as compared to WT and S101D cells. Complex V α subunit (CVα) and E1α subunit of pyruvate dehydrogenase (PDHE1α) are markers for 

mitochondria. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a cytosolic marker. IBs are representative of at least three independent experiments. (B) 

Figure 5-3 Mutation of S101 phosphorylation site alters Parkin translocation to depolarised mitochondria. 
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(A) Representative IF images of FLAG-Parkin co-localization with mitochondria in WT, 

S101A and S101D cells following 3 h CCCP treatment (10 μM). (B) The relative intensity 

profiles of FLAG-Parkin (green) and mitochondria (red) fluorescence show that Parkin 

and mitochondria co-localize but are more scattered in S101A CCCP-treated cells (3 h, 10 

μM), as compared to WT and S101D. (C) Compaction index of mitochondria was 

calculated by measuring mitochondrial area and perimeters within the cells after 3 h 

CCCP treatment. Representative drawings of mitochondrial aggregate perimeter of WT, 

S101A and S101D cells. (D) Data in (C) are presented as mean of three independent 

experiments (6 cells per experiment) ± s.e.m. Significance was determined by one-way 

ANOVA with Bonferroni correction (*** p< 0.001). N=3. 

 

 

(A) Representative IF images of FLAG-Parkin co-localization with mitochondria in WT, 

S101A and S101D cells following 3 h CCCP treatment (10 μM). (B) The relative intensity 

profiles of FLAG-Parkin (green) and mitochondria (red) fluorescence show that Parkin 

Figure 5-4 Mutation of S101 phosphorylation site alters mitochondrial perinuclear 

clustering. 
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5.2.3 Parkin phosphorylation at S101 leads to conformational 

change 

Parkin has long been regarded as a member of the RING-in-between-RING (RBR) 

E3 ligase family that consists of a Ubl domain, a linker, and four RING domains 

(Trempe et al., 2013). To gain additional structural insights, we used a full 

length human Parkin model (Caulfield et al., 2014) that has been built from 

several partial x-ray crystal structures (Riley et al., 2013; Trempe et al., 2013; 

Wauer and Komander, 2013). This all atom resolution model of human Parkin 

showed that the S101 site is buried within a cleft formed by the Ubl domain and 

the linker region (Figure 5-5 A). In-silico phosphorylation of S101 slightly 

perturbed the α-helix from residues 100-110 and resulted in a reorganization of 

the surrounding pocket to accommodate the interfacing residues nearby pS101 

(Figure 5-5 B). Subsequent molecular dynamics simulations (MDS) revealed a 

hinge-like movement at residues 110-114 that allowed the α-helix containing 

S101 to move away from the Ubl domain over time (Figure 5-5 C and D). Of note, 

an adjusted orientation (Figure 5-5 E—H) revealed this movement also 

increased the distance between the REP (repressor element of Parkin) region 

and RING1, particularly at longer times of MDS (compare Figure 5-5 G and 

Figure 5-5 H). In the auto-inhibited state of Parkin, the REP region blocks the 

putative E2 ubiquitin conjugating enzyme binding site in RING1 (Trempe et al., 

2013; Wauer and Komander, 2013). The noticeable increase in the distance 

between both domains upon phosphorylation of S101 would better allow for 

the accommodation of an E2 enzyme during activation of Parkin’s E3 ubiquitin 

ligase functions. 
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Carbon, nitrogen, oxygen, and sulfur are coloured grey, blue, red and yellow, respectively. Domain structures are rendered in ribbon with 

colour by domain: Ubl is red, linker is white, RING0 is green, RING1 is cyan, IBR is purple, REP is yellow, and RING2 is pink. (A) Model for 

human Parkin with S101 is shown. S101 is rendered in Van der Waals (VdW) for emphasis. Methionine 1 (Met1), phenylalanine 4 (Phe4), 

serine 65 (Ser65), serine 110 (Ser110) are shown in licorice style. Distances are given in Å (ångström) between key residue pS101 sulfur to: 

Met1 sulfur, Phe4 carbon, Ser65 backbone, and Ser110 oxygen. (B—D) Model for human Parkin with pS101 modification is shown. Key 

residues are indicated as in panel (A) and with distances labelled. (B) Time equals zero, (C) 50 ns or (D) 150 ns of molecular dynamics 

simulation. (E) Model for human Parkin with S101 is shown. The orientation is rotated 90° in both X-/Y-plane allowing a view of the inhibitory 

REP region that blocks the E2 binding site in RING1. Cysteine 238 (Cys238), tyrosine 391 (Tyr391), and Glutamine 400 (Gln400) are shown in 

licorice style. Distances are given in Å between key residue pSer101 sulfur to: Cys328 sulfur, Tyr391 carbon, and Gln400 nitrogen. (F—H) 

Model for human Parkin with pS101 modification is shown. Key residues are indicated as in panel A and with distances labelled. (F) Time 

equals zero, (G) 50 ns or (H) 150 ns of molecular dynamics simulation. Experiment performed by Wolfdieter Spinger. 

 

Figure 5-49 Effect of S101 phosphorylation on a structural model of human full-length Parkin.Carbon, nitrogen, oxygen, and 

sulfur are coloured grey, blue, red and yellow, respectively. Domain structures are rendered in ribbon with colour by domain: Ubl is red, linker 

is white, RING0 is green, RING1 is cyan, IBR is purple, REP is yellow, and RING2 is pink. (A) Model for human Parkin with S101 is shown. S101 

is rendered in Van der Waals (VdW) for emphasis. Methionine 1 (Met1), phenylalanine 4 (Phe4), serine 65 (Ser65), serine 110 (Ser110) are 

shown in licorice style. Distances are given in Å (ångström) between key residue pS101 sulfur to: Met1 sulfur, Phe4 carbon, Ser65 backbone, 

and Ser110 oxygen. (B—D) Model for human Parkin with pS101 modification is shown. Key residues are indicated as in panel (A) and with 

distances labelled. (B) Time equals zero, (C) 50 ns or (D) 150 ns of molecular dynamics simulation. (E) Model for human Parkin with S101 is 

shown. The orientation is rotated 90° in both X-/Y-plane allowing a view of the inhibitory REP region that blocks the E2 binding site in RING1. 

Cysteine 238 (Cys238), tyrosine 391 (Tyr391), and Glutamine 400 (Gln400) are shown in licorice style. Distances are given in Å between key 

residue pSer101 sulfur to: Cys328 sulfur, Tyr391 carbon, and Gln400 nitrogen. (F—H) Model for human Parkin with pS101 modification is 

shown. Key residues are indicated as in panel A and with distances labelled. (F) Time equals zero, (G) 50 ns or (H) 150 ns of molecular 

Figure 5-5 Effect of S101 phosphorylation on a structural model of human full-length Parkin. 
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5.2.4 Parkin Phosphorylation S101 regulates ubiquitination of OMM 

proteins 

We next assessed whether phosphorylation at S101 is important for 

ubiquitination of Parkin itself and OMM proteins. Self-ubiquitination of WT, 

S101A and S101D Parkin after CCCP treatment was assessed by FLAG-IP and 

subsequent immunoblotting. Total (mono/poly-) ubiquitinated Parkin in 

response to CCCP treatment was decreased in S101A cells compared to WT and 

S101D (Figure 5-6 A). Mitofusin1 (Mfn1) and mitofusin2 (Mfn2) have 

previously been shown to be target substrates of Parkin, and they are rapidly 

degraded following mitochondrial depolarisation (Chan et al., 2011; Gegg et al., 

2010; Poole et al., 2010; Rakovic et al., 2011; Sarraf et al., 2013; Tanaka, 2010; 

Ziviani et al., 2010). Accordingly, treatment of SH-SY5Y cells with CCCP resulted 

in ubiquitination and degradation of mitofusins. Relative ubiquitination (Figure 

5-6 B—D) and subsequent degradation (Figure 5-6 B, E and F) of Mfn1 and 

Mfn2 were significantly decreased in MF of S101A cells, compared to WT and 

S101D. Similarly, ubiquitination of Miro1, another Parkin substrate (Birsa et al., 

2014; Geisler et al., 2010; Sarraf et al., 2013; Yoshii et al., 2011), was decreased 

in S101A cells, as compared to WT and S101D (Figure 5-7 A). Furthermore, 

Miro1 degradation was significantly reduced in S101A cells, as compared to WT 

and S101D (Figure 5-7 A and B). 
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(A) Mono/poly- ubiquitination in FLAG-Parkin complexes immunoprecipitated (IP) from SH-SY5Y cells stably expressing S101A FLAG-Parkin (S101A cells) 

following 0 or 3 h CCCP treatment (10 M) is considerably decreased, as compared to WT and S101D cells. IB, immunoblot. (B) Ubiquitination and degradation 

of Mitofusin (Mfn) 1 and 2 following 1 or 3 h of CCCP treatment (10 M) are reduced in the mitochondria-enriched fractions (MF) of S101A cells compared to 

WT and S101D. Short and long arrows indicate non-ubiquitinated and ubiquitinated proteins, respectively. CVα is a marker for mitochondria. (C—F) Histograms 

show mean ± s.e.m. of densitometry analysis of relative Mfn1 (C) and Mfn2 (D) ubiquitination and relative Mfn1 (E) and Mfn2 (F). For relative ubiquitination, 

Mfn1 or Mfn2 ubiquitination bands of immunoblots in (B) were normalized to Mfn1 or Mfn2 levels. For each experiment results were then normalized to the 0 h 

CCCP response in WT cells. For relative Mfn1 and Mfn2 levels, data were normalized to CVα. For each experiment results were then normalized to the 0 h CCCP 

response in WT cells. Significance was determined by one-way ANOVA with Bonferroni correction (ns indicates not significant, * p<0.05, ** p<0.01). N=3. 

 

(A) Mono/poly- ubiquitination in FLAG-Parkin complexes immunoprecipitated (IP) from SH-SY5Y cells stably expressing S101A FLAG-Parkin (S101A cells) 

following 0 or 3 h CCCP treatment (10 M) is considerably decreased, as compared to WT and S101D cells. IB, immunoblot. (B) Ubiquitination and degradation 

of Mitofusin (Mfn) 1 and 2 following 1 or 3 h of CCCP treatment (10 M) are reduced in the mitochondria-enriched fractions (MF) of S101A cells compared to 

WT and S101D. Short and long arrows indicate non-ubiquitinated and ubiquitinated proteins, respectively. CVα is a marker for mitochondria. (C—F) Histograms 

Figure 5-6 Parkin S101 phosphorylation promotes Mfns ubiquitination. 
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(A) Ubiquitination and degradation of Miro1 following 0, 1 or 3 h of CCCP treatment 

(10 M) in the mitochondria-enriched fractions (MF) of WT, S101A and S101D 

cells. Short and long arrows indicate non-ubiquitinated and ubiquitinated proteins, 

respectively. CVα is a marker for mitochondria. Immunoblot, IB. (B) Histogram 

shows mean of three independent experiments ± s.e.m. of densitometry analysis of 

Miro1 levels in immunoblots in (A). Data were normalized to CVα as a loading 

control then compared to the 0 h CCCP response in WT cells. Significance was 

determined by one-way ANOVA with Bonferroni correction (ns indicates not 

significant, * p<0.05). N=3. 

 

 

Figure 5-73 Parkin S101 phosphorylation promotes Miro1 

ubiquitination.(A) Ubiquitination and degradation of Miro1 following 0, 1 or 3 h 

of CCCP treatment (10 M) in the mitochondria-enriched fractions (MF) of WT, 

S101A and S101D cells. Short and long arrows indicate non-ubiquitinated and 

ubiquitinated proteins, respectively. CVα is a marker for mitochondria. 

Immunoblot, IB. (B) Histogram shows mean of three independent experiments ± 

s.e.m. of densitometry analysis of Miro1 levels in immunoblots in (A). Data were 

Figure 5-7 Parkin S101 phosphorylation promotes Miro1 ubiquitination. 
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5.2.5 Both K48- and K63- linked ubiquitinations were regulated by 

Parkin Phosphorylation S101 

Previous reports have shown that Parkin recruitment to depolarised 

mitochondria leads to widespread K48- and K63-linked ubiquitination of the 

OMM (Chan et al., 2011; Sarraf et al., 2013). Therefore mono/poly-, K48- and 

K63-linked ubiquitination of mitochondria in WT, S101A and S101D SH-SY5Y 

cells was assessed by IF. Without CCCP treatment, the antibodies for 

mono/poly-, K48- and K63-linked chains displayed a diffuse cytosolic staining 

in WT, S101A and S101D cells (Figure 5-8 A—C, CCCP 0 h). In line with previous 

report (Okatsu et al., 2010), mono/poly-, K48- and K63- linked ubiquitination 

punctae staining co-localized with mitochondria in all cell lines following CCCP-

induced depolarisation (Figure 5-8 A—C, CCCP 1 h;Fiugre 5-9, CCCP 3 h). 

However, mono/poly-, K48-linked and K63-linked ubiquitination of 

mitochondria were significantly reduced in S101A cells compared to WT and 

S101D (Figure 5-10 A—C; Figure 5-10 D—F). These experiments confirm that 

Parkin is important for both K48- and K63-linked ubiquitination of depolarised 

mitochondria following CCCP treatment. Yet in this project, K63-ubiquitination 

of mitochondria was more prominent than K48-ubiquitination upon CCCP-

induced mitochondrial depolarisation (Figure 5-11 A—C), as shown per 

percentage of cells with complete mitochondrial ubiquitination. 



 

 

176
 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

B 

 

B 

 

B 

 

B 

 

C 

 

C 

 

C 

 

C 

 

(A—C) Immunofluorescence of WT, S101A and S101D cells 

following 0 or 1 h treatment with 10 μM CCCP. Cells were 

immunostained with (A) anti-mono/poly-, (B) K48- or (C) K63-

linked ubiquitin antibodies. Mitochondria were immunostained 

with anti-HtrA2 or CVβ antibodies. Nuclei were stained with DAPI. 

Representative images are displayed for cells transfected as 

indicated, following 0 or 1 h CCCP. Scale bar = 10μm. 

 

(A—C) Immunofluorescence of WT, S101A and S101D cells 

following 0 or 1 h treatment with 10 μM CCCP. Cells were 

immunostained with (A) anti-mono/poly-, (B) K48- or (C) K63-

linked ubiquitin antibodies. Mitochondria were immunostained 

with anti-HtrA2 or CVβ antibodies. Nuclei were stained with DAPI. 

Representative images are displayed for cells transfected as 

indicated, following 0 or 1 h CCCP. Scale bar = 10μm. 

 

(A—C) Immunofluorescence of WT, S101A and S101D cells 

following 0 or 1 h treatment with 10 μM CCCP. Cells were 

immunostained with (A) anti-mono/poly-, (B) K48- or (C) K63-

linked ubiquitin antibodies. Mitochondria were immunostained 

with anti-HtrA2 or CVβ antibodies. Nuclei were stained with DAPI. 

Figure 5-8 Mitochondrial ubiquitination following 0 or 1 h of 

CCCP treatment. 
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Mono/poly-, K48- and K63- ubiquitination of mitochondria, assessed by immunofluorescence (IF), is decreased in SH-SY5Y cells stably 

expressing S101A FLAG-Parkin (S101A cells) following 3 h CCCP treatment (10 M), as compared to WT and S101D cells. Nuclei were stained 

with DAPI (blue). Scale bar, 10μm 

 

Figure 5-97 Mitochondrial ubiquitination following 3 h of CCCP treatment.Mono/poly-, K48- and K63- ubiquitination of 

mitochondria, assessed by immunofluorescence (IF), is decreased in SH-SY5Y cells stably expressing S101A FLAG-Parkin (S101A cells) following 

3 h CCCP treatment (10 M), as compared to WT and S101D cells. Nuclei were stained with DAPI (blue). Scale bar, 10μm 

 

Figure 5-98 Mitochondrial ubiquitination following 3 h of CCCP treatment. 

Figure 5-9 Mitochondrial ubiquitination following 3 h of CCCP treatment. 



 

178 

 

178
 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

B 

 

B 

 

B 

 

B 

 

B 

 

B 

 

B 

 

C 

 

C 

 

C 

 

C 

 

C 

 

C 

 

C 

 

D 

 

D 

 

D 

 

D 

 

D 

 

D 

E 

 

E 

 

E 

 

E 

 

E 

 

E 

F 

 

F 

 

F 

 

F 

 

F 

 

F 

(A-C) Cells in Fig. 5-8 were scored for partial and complete co-localization of mono/poly-, K48- and K63- ubiquitination with HtrA2 or CVβ, two mitochondrial 

markers after 1 h of CCCP treatment (10 μM). Data are presented as mean of four independent experiments ± s.e.m. Significance was determined using two-

tailed Student’s t-test (asterisks above individual column) and one-way ANOVA with Bonferroni correction (asterisks above the bar) (* p<0.05, ** p<0.01, *** p< 

0.001). (D-F). Cells in Fig. 5-9 were scored for partial and complete co-localization of mono/poly-, K48- and K63- ubiquitination with HtrA2 or CVβ, two 

mitochondrial markers after 3 h of CCCP treatment. Data are presented as mean of four independent experiments ± s.e.m. Significance was determined using 

two-tailed Student’s t-test (asterisks above individual column) and one-way ANOVA with Bonferroni correction (asterisks above the bar) (* p<0.05, *** p< 

0.001). N=3 

 

 

(A-C) Cells in Fig. 5-8 were scored for partial and complete co-localization of mono/poly-, K48- and K63- ubiquitination with HtrA2 or CVβ, two mitochondrial 

markers after 1 h of CCCP treatment (10 μM). Data are presented as mean of four independent experiments ± s.e.m. Significance was determined using two-

Figure 5-10 Parkin S101 phosphorylation promotes mitochondrial ubiquitination. 
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Histograms summarise mitochondrial ubiquitination results of 1 h (Fig. 5-10 A—C) and 3 h (Fig. 5-10 D—F) 

CCCP. Each column represents percentages of cells with no, partial or complete mitochondrial ubiquitination 

in each cell line at time point as indicated. 

 

Figure 5-115 Parkin S101 phosphorylation promotes more K63- than K48-linked 

mitochondrial ubiquitination and S101A reduces both.Histograms summarise mitochondrial 

ubiquitination results of 1 h (Fig. 5-10 A—C) and 3 h (Fig. 5-10 D—F) CCCP. Each column represents 

percentages of cells with no, partial or complete mitochondrial ubiquitination in each cell line at time point as 

indicated. 

 

Figure 5-11 Parkin S101 phosphorylation promotes more K63- than K48-linked mitochondrial 

ubiquitination and S101A reduces both. 
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5.2.6 Parkin Phosphorylation at S101 modulates p62 recruitment to 

mitochondria and mitophagy 

K63-linked ubiquitinated OMM substrates have been previously shown to 

recruit the autophagy adaptor p62 which in turn recruits autophagosomes, thus 

promoting lysosomal-mediated degradation of damaged mitochondria (Geisler 

et al., 2010; Lee et al., 2010b; Tanaka et al., 2010). In this project, the p62 

recruitment to damaged mitochondria following 6 h CCCP treatment was 

considerably reduced in S101A cells, and significantly increased in S101D cells, 

as compared to WT cells (Figure 5-12 A and B). Finally to specifically investigate 

mitochondrial clearance (mitophagy), the proportion of FLAG-Parkin 

overexpressing SH-SY5Y cells with no remaining mitochondria after 24 h CCCP 

treatment was measured. In line with the p62 data, the percentage of cells 

containing no remaining mitochondria following CCCP treatment were 

significantly lower in S101A and higher in S101D cells, as compared to WT cells 

(Figure 5-13 A and B). Taken together, these data suggest that Parkin 

phosphorylation at S101 mediates p62 recruitment to depolarised 

mitochondria, and subsequent mitophagy. 
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(A) Mitochondrial translocation of p62 was assessed by immunofluorescence (IF) in WT, S101A 

and S101D cells following 6 h treatment with CCCP (10 μM). Cells were scored for co-localization 

of p62 with HtrA2, a mitochondrial marker. On the right hand side, representative images of 

magnified cells showing p62 recruitment to mitochondria. Nuclei were stained with DAPI (blue). 

Scale bar, 10μm. (B) Histogram shows the percentage of cells in which p62 co-localised to 

mitochondria. Data are presented as mean of three experiments ± s.e.m. Significance was 

determined by one-way ANOVA with Bonferroni correction (*** p< 0.001). N=3. 

 

Figure 5-127 Parkin S101 phosphorylation modulates p62 recruitment to 

depolarised mitochondria.(A) Mitochondrial translocation of p62 was assessed by 

immunofluorescence (IF) in WT, S101A and S101D cells following 6 h treatment with CCCP (10 

μM). Cells were scored for co-localization of p62 with HtrA2, a mitochondrial marker. On the right 

Figure 5-12 Parkin S101 phosphorylation modulates p62 recruitment to depolarised 

mitochondria. 
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(A) Mitophagy was analysed by IF in WT, S101A and S101D cells. On the right hand side, 

representative images of magnified cells undergoing mitophagy. CVβ was used as a 

mitochondrial marker. Nuclei were stained with DAPI (blue). Scale bar, 10μm. (D) Histogram 

indicates the percentage of cells with no remaining mitochondria following 24 h treatment with 

10 μM CCCP. Data are presented as mean of three independent experiments ± s.e.m. Significance 

was determined by one-way ANOVA with Bonferroni correction (*** p< 0.001). N=3. 

 

Figure 5-139 Parkin S101 phosphorylation is important for mitophagy.(A) 

Mitophagy was analysed by IF in WT, S101A and S101D cells. On the right hand side, 

representative images of magnified cells undergoing mitophagy. CVβ was used as a 

mitochondrial marker. Nuclei were stained with DAPI (blue). Scale bar, 10μm. (D) Histogram 

indicates the percentage of cells with no remaining mitochondria following 24 h treatment with 

10 μM CCCP. Data are presented as mean of three independent experiments ± s.e.m. Significance 

Figure 5-13 Parkin S101 phosphorylation is important for mitophagy. 
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5.2.7 Phosphorylation at Parkin S101 is still detected in S65A 

mutant upon mitochondrial depolarisation 

During my work on Parkin S101 phosphorylation, it was shown that S101 is 

located in the same cleft formed by the Ubl domain and the linker region as 

another reported Parkin phosphorylation site, S65 (Kondapalli et al., 2012; 

Shiba-Fukushima et al., 2012). MDS suggested that phosphorylation of either 

S65 or S101 would open this cleft to unfold Parkin (Caulfield et al., 2014).   SH-

SY5Y stably expressing FLAG-Parkin S65A (hereafter referred to as S65A cells) 

and S65A/S101A (hereafter referred to as S65A/S101A cells) were generated. 

The WT, S65A, S101A, and S65A/S101A cells were treated with CCCP. 

Phosphorylation of Parkin at S101 was detected in WT and S65A cells but not in 

S101A and S65A/S101A cells (Figure 5-14). These data further confirm the 

specificity of P-Parkin S101 antibody as it does not recognise the S65 site. 

Parkin is phosphorylated at S101 in FLAG-Parkin complexes IP from CCCP-

treated (10 M, 3 h) SH-SY5Y cells stably expressing WT or S65A FLAG-

Parkin, but not S101A or S65A/S101A FLAG-Parkin. 

 

Figure 5-151 Parkin S101 phosphorylation can be detected 

inS65A cellsParkin is phosphorylated at S101 in FLAG-Parkin complexes IP 

from CCCP-treated (10 M, 3 h) SH-SY5Y cells stably expressing WT or S65A 

FLAG-Parkin, but not S101A or S65A/S101A FLAG-Parkin. 

 

Figure 5-14 Parkin S101 phosphorylation can be detected inS65A cells. 



 

184 

 

5.2.8 Phosphorylation at Parkin S65 has only little additive effect on 

pS101 in regulating mitophagy process  

To further investigate whether phosphorylation at these two sites had an 

additive effect on mitophagy process, Parkin mitochondrial translocation and 

mitophagy were assessed by IF. The FLAG-Parkin WT, S65A, S101A, and 

S65A/S101A cells were seeded on coverslips prior to CCCP treatment. The 

preliminary result for Parkin translocation following 3 h CCCP treatment 

revealed that the number of cells displaying partial and complete Parkin 

translocation to depolarised mitochondria was reduced in S101A and 

S65A/S101A cells to a similar extent (Figure 5-15 A). This result suggests that 

S65A has no additive effect on S101A.  

Regulation of mitophagy following phosphorylation of these two sites were 

further assessed by treating the aforementioned cells with CCCP for 24 h. 

Similar to the result in 5.2.2, the percentage of cells containing no remaining 

mitochondria following CCCP treatment was significantly lower in S101A as 

compared to WT cells (Figure 5-15 B). Likewise, both S65A and S65A/S101A 

cells demonstrated significantly lower mitophagy as compared to WT cells. This 

suggests that these two serine sites are important for mitophagy, and S65A has 

a small additive effect on S101A.  
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(A) Parkin translocation in SH-SY5Y cells transiently expressing WT, S101A, S65A 

and S65A/S101A FLAG-Parkin following 3 h of CCCP treatment was assessed by 

immunofluorescence (IF) (image not shown). Histogram shows the preliminary data 

of percentage of cells in which Parkin co-localised to mitochondria. (B) Mitophagy in 

abovementioned cells following 24 h of CCCP treatment was analysed by IF (image 

not shown). Histogram shows data presented as mean of three independent 

experiments ± s.e.m. Significance was determined by one-way ANOVA with 

Bonferroni correction (*** p< 0.001). N=3. 

 

Figure 5-163 Parkin S101 and S65 phosphorylation are both 

important in modulating mitophagy process.(A) Parkin translocation in SH-

SY5Y cells transiently expressing WT, S101A, S65A and S65A/S101A FLAG-Parkin 

following 3 h of CCCP treatment was assessed by immunofluorescence (IF) (image 

not shown). Histogram shows the preliminary data of percentage of cells in which 

Parkin co-localised to mitochondria. (B) Mitophagy in abovementioned cells 

Figure 5-15 Parkin S101 and S65 phosphorylation are both important in 

modulating mitophagy process. 
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5.3 Discussion 

In the last few years, mounting evidence has shown that PINK1 and Parkin, two 

proteins associated with autosomal recessive PD, act together to regulate 

mitophagy. Yet, a number of steps in this process remain poorly characterised. 

One important question is how Parkin mediates mitophagy? In this study I show 

that phosphorylation of Parkin at S101 can modulate Parkin recruitment to 

mitochondria, ubiquitination of OMM proteins, p62 recruitment and subsequent 

mitophagy. 

5.3.1 Parkin phosphorylation at S101 modulates its translocation to 

depolarised mitochondria 

Translocation of the non-phosphorylatable mutant S101A to depolarised 

mitochondria is decreased as opposed to abolished, suggesting that 

phosphorylation at S101 is important, but not indispensable, for Parkin 

translocation. Recently Parkin was shown to be activated by PINK1-dependent 

phosphorylation at S65 (Kondapalli et al., 2012; Shiba-Fukushima et al., 2012). 

Translocation of S65A Parkin to trifluoro carbonyl cyanide phenylhydrazone 

(FCCP)-induced depolarised mitochondria was delayed (Birsa et al., 2014), 

which is recapitulated in the S101A mutant. Both S101 and S65 phosphorylation 

sites locate within the same cleft formed by the Ubl and the linker domain of 

Parkin. Their close spatial relationship, together with our biochemistry data, 

suggests that Parkin may need to be phosphorylated at both sites in order to 

facilitate its mitochondrial translocation. We have assessed Parkin 

phosphorylation at S131 and S378 following CCCP treatment, however these 

sites appeared to be constitutively phosphorylated. 

5.3.2 Parkin phosphorylation at S101 increases its E3 ligase activity 

Previous studies have shown that in vitro phosphorylation of recombinant 

Parkin at S101 by casein kinase 1 (CK1) either reduces (Yamamoto et al., 2005) 

or has no significant effect (Rubio de la Torre et al., 2009) on Parkin’s E3 ligase 

activity. In these experiments basal levels of Parkin auto-ubiquitination were 
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measured following inhibition of phosphoprotein phosphatase 1, 2A and 2B by 

okadaic acid using an in vitro auto-ubiquitination assay. Whilst these studies 

were performed in vitro using recombinant Parkin, our study measures CCCP-

induced ubiquitination of Parkin and OMM proteins in SH-SY5Y cells. Our data 

strongly suggest that Parkin phosphorylation at S101 is associated with 

increased, rather than decreased, E3 ligase activity. The diversity in 

experimental models and conditions is likely to explain the discrepancies 

between the different studies. It remains to be clarified whether CK1 is the 

genuine kinase responsible for the phosphorylation of S101 in our model. Aside 

from S101, previous reports have suggested that phosphorylation at other sites, 

including S131 or Y143, could reduce Parkin’s E3 ligase activity (Imam et al., 

2011; Ko et al., 2010; Yamamoto et al., 2005). Conversely, Parkin 

phosphorylation at S65 (or its Drosophila Parkin analogue S94) or T175 by 

PINK1 has been shown to either increase Parkin’s E3 ligase activity (S65 or 

Drosophila Parkin S94) or rescue the mitochondrial morphology in parkin-null 

Drosophila model (T175) (Birsa et al., 2014; Kazlauskaite et al., 2014; Kim et al., 

2008; Kondapalli et al., 2012; Sha et al., 2010; Shiba-Fukushima et al., 2012; 

Shiba-Fukushima et al., 2014). All together these reports suggest that Parkin 

phosphorylation at various sites across the protein is important for modulating, 

either positively or negatively, its E3 ligase activity. 

5.3.3 Parkin S101 phosphorylation results in conformational 

change of Parkin and enhances Parkin’s E3 ligase activity 

Recently, several studies have suggested a model in which Parkin may use a 

two-step mechanism to ligate ubiquitin to target proteins (Smit et al., 2012; 

Stieglitz et al., 2012; Wenzel et al., 2011; Winklhofer, 2014). This model suggests 

ubiquitin would first be transferred from an E2 conjugating enzyme to an 

acceptor cysteine on Parkin, most likely to be C431, thus forming a thioester 

bond in a similar mechanism used by HECT type E3 ligases. This ubiquitin 

would then be transferred to Parkin’s substrate by forming an isopeptide bond, 

in a similar mechanism used by other RING E3 ubiquitin ligases (Lazarou et al., 

2013; Riley et al., 2013; Wenzel et al., 2011). The mechanism by which Parkin 
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accomplishes this RING/HECT hybrid reaction remains yet to be described 

(Trempe et al., 2013; Wauer and Komander, 2013). However, X-ray 

crystallography has recently shed light on our understanding of how Parkin’s 

biological function is determined by its structure. These studies modelled a low 

resolution structure of full-length rat Parkin (Trempe et al., 2013) and a higher 

resolution structure of RING0-RBR domains of human Parkin (Wauer and 

Komander, 2013; Wenzel et al., 2011). These studies suggest that the 

RING0:RING2 interaction buries the catalytic C431, and that the short linker 

(REP) between IBR and RING2 blocks the E2 binding site (beside Ubl binding 

site) on RING1 (Trempe et al., 2013; Wauer and Komander, 2013), keeping 

Parkin in an autoinhibited conformation. Of note, the linker domain, where S101 

is located, is not visible in the model of full-length rat Parkin (Trempe et al., 

2013). Our modelling, focusing on the linker domain, suggests that 

phosphorylation at S101 may induce a conformational change in Parkin 

structure that increases the accessibility of E2 enzyme binding site, thus 

enhancing its E3 ligase activity.   

5.3.4 Phosphorylated Parkin ubiquitinates OMM proteins and 

facilitate their degradation  

A number of studies, including ours, show that the ubiquitination of OMM 

proteins (e.g. mitofusins and Miro1) following mitochondrial depolarisation 

(Birsa et al., 2014; Gegg et al., 2010; Poole et al., 2010; Rakovic et al., 2011; 

Sarraf et al., 2013; Tanaka, 2010; Ziviani et al., 2010) is an important step for the 

arrest of damaged mitochondria, autophagosome formation and subsequent 

mitophagy (Geisler et al., 2010; Lee et al., 2010b; Tanaka et al., 2010; Wang et al., 

2011b). Ubiquitinated mitofusins were shown to be degraded by the 

proteasome in a p97/valosin containing protein (VCP)-dependent manner (Kim 

et al., 2013; Tanaka et al., 2010). Damaged mitochondria now lacking mitofusins 

are less likely to fuse with the healthy mitochondrial network, and are instead 

sequestered and targeted for autophagy (Pallanck, 2010; Tanaka et al., 2010). 

As for Miro1, the adaptor that couples mitochondria to microtubules, its 

ubiquitination results in the arrest of damaged mitochondria by blocking 
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mitochondrial trafficking (Wang et al., 2011b). Our study shows that Parkin 

S101 phosphorylation can influence Mfn1, Mfn2 and Miro1 ubiquitination status, 

thus affecting the efficiency of subsequent mitochondria clearance. 

5.3.5 Parkin linked proteasomal to lysosomal degradation system in 

mitophagy process by mediating mitochondrial ubiquitination  

Parkin is known to carryout mono-ubiquitination (Hampe et al., 2006; Matsuda 

et al., 2006) as well as K6-, K11-, K27-, K29-, K48-, and K63-linked poly-

ubiquitination (Chan et al., 2011; Doss-Pepe et al., 2005; Durcan et al., 2012; 

Durcan et al., 2011; Lim et al., 2013; Lim et al., 2005; Manzanillo et al., 2013; 

Olzmann and Chin, 2008). Parkin-dependent K27-, K48- and K63-ubiquitination 

of depolarised mitochondria supports a role for both proteasomal and 

lysosomal degradations of damaged mitochondria during the mitophagy 

process (Birsa et al., 2014; Chan et al., 2011; Geisler et al., 2010; Lazarou et al., 

2013). Our study confirms that depolarised mitochondria are labelled with 

endogenous ubiquitin molecules in a variety of chain formations. We show that 

phosphorylation at S101 activates Parkin, catalysing both K48- and K63-linked 

ubiquitination during the mitophagy process. In line with previous reports, our 

data show more abundant K63-linked chains on mitochondrial substrates 

compared to K48-linked chains (Narendra et al., 2010a; Okatsu et al., 2010). One 

possible reason for this is that the K48-labeled OMM proteins are removed from 

mitochondria for further degradation, whilst K63-linked chains remain on 

mitochondria for further p62 recruitment. Overall our data show that both 

mono/poly-ubiquitination and K48-/K63-linked ubiquitination are significantly 

reduced in S101A cells, leading to reduction of OMM proteins degradation and 

p62 recruitment. 

5.3.6 Parkin is essential in for depolarised mitochondria 

perinuclear clustering 

Following 6 h CCCP treatment, S101A cells display a diffuse distribution of 

mitochondria throughout the cytoplasm, whilst depolarised mitochondria 
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cluster around the nucleus in WT and S101D cells. This is corroborated by a 

considerably smaller compaction index of mitochondria compared to the WT 

and S101D cells. This suggests that Parkin phosphorylation at S101 plays a role 

in perinuclear mitochondrial clustering. The mitochondrial network 

morphology in S101A cells resembles that seen in HeLa cells expressing 

exogenous pathogenic Parkin R275W, and in p62 KO mouse embryonic 

fibroblasts (MEFs) (Narendra et al., 2010a; Okatsu et al., 2010). Perinuclear 

mitochondrial clustering is markedly decreased in p62 KO MEFs, suggesting 

that p62 is required for mitochondrial positioning (Narendra et al., 2010a). In 

line with previous reports (Burchell et al., 2013; Geisler et al., 2010), our study 

shows that perinuclear mitochondrial clustering occurs before p62 recruitment, 

suggesting that factors other than p62 may be involved in mitochondria 

positioning. Phosphorylation and subsequent degradation of Miro1 were shown 

to be important for mitochondrial arrest and perinuclear mitochondrial 

clustering (Fransson et al., 2003, 2006; Liu et al., 2012; Wang et al., 2011b). 

Miro1 degradation is decreased in S101A cells and thus could partially explain 

mitochondrial mis-localisation in our model.  

Mitophagy is thought to generally occur in the perinuclear (Vives-Bauza et al., 

2010). However, whether perinuclear mitochondrial clustering is required for 

mitophagy is unclear. Although perinuclear mitochondrial clustering is 

impaired in p62 KO MEFs, similar levels of mitophagy are observed in these 

cells as compared to control (Narendra et al., 2010a). In our study, 

mitochondrial clustering is considerably reduced in S101A cells, however some 

mitophagy still remains. All together these data suggest that mitochondrial 

clustering is not indispensable for clearance of damaged mitochondria. 

5.3.7 Parkin S101 phosphorylation modulates mitophagy 

S101 and S65 are the only known sites to be phosphorylated upon CCCP-

induced mitochondrial depolarisation. Our data demonstrates that converting 

S65 into non-phosphorylatable S65A mutant does not abolish S101 

phosphorylation, suggesting S65 phosphorylation is not required for S101 
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phosphorylation in response to mitochondrial depolarisation. The S101 

remodelling data in this project and S65 remodelling result described recently 

(Caulfield et al., 2014) suggest phosphorylation on either site is likely to induce 

similar conformational change that opens up the same cleft formed by Ubl and 

the linker domains. This can further explain why phosphorylation at S65 has no 

additive effect to S101 on Parkin translocation or only little additive effect on 

mitophagy. The double non-phosphorylatable mutant displays remaining Parkin 

activity, suggesting Parkin may be regulated by other PTMs.  

5.3.8 Conclusion 

In conclusion, our study suggests that Parkin phosphorylation at S101 releases 

the E3 ubiquitin ligase from its auto-inhibited state. We show that Parkin 

phosphorylation can further regulate its translocation to depolarised 

mitochondria, ubiquitination of OMM proteins, p62 recruitment and mitophagy. 

Modulating Parkin phosphorylation may open new avenues for potential 

therapeutics that may be beneficial for PD patients in the future. 

5.3.9 Future perspectives 

This work represents the first evidence that Parkin S101 can be phosphorylated 

upon mitochondrial depolarisation in cells. However few questions remain to be 

answered. For instance, which kinase is responsible for this phosphorylation 

remains to be determined. CK1 has been shown to phosphorylate Parkin at 

S101 by in vitro kinase assay from two independent groups (Rubio de la Torre 

et al., 2009; Yamamoto et al., 2005). However both groups suggested Parkin 

S101 phosphorylation reduced its ligase activity from the results of in vitro 

autoubiquitination assay or autoubiquitination of Parkin in okadaic acid- 

treated cells. Of note, the phosphomimetic S101E mutant from one of these two 

studies also showed a marked increase in autoubiquitination, pointing out the 

conflicting result in the in vitro observation of S101 phosphorylation. Our in vivo 

system demonstrates consistent outcomes amongst all readouts selected. 

Indeed, it would be ideal to further investigate whether Parkin S101 can be 

phosphorylated by CK1 in this in vivo model and what underlying molecular 
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pathway associates with this process. A preliminary experiment has been done 

and shown CCCP-induced Parkin S101 and S65 phosphorylation were both 

blocked by CK1δ inhibitor LH846 (Figure 5-16 A). However, further 

confirmation by repeating experiments with other inhibition methods, for 

example CK1 knockdown, is essential.  

Our preliminary data show that Parkin phosphorylation at S101 is PINK1-

dependent (Figure 5-16 B) (S65 is used as a positive control in the experiment). 

These data will need to be confirmed.  To assess whether PINK1 directly 

phosphorylates Parkin at S101, an in vitro kinase assay will need to be done. 

Further dissecting the signalling pathways associated with phosphorylation of 

these two serine sites will be of great value to a better understanding of Parkin 

pathophysiology.  

As described earlier, the data presented in this chapter earlier was generated 

using Parkin overexpressed in SH-SY5Y cells due to absence of good Parkin 

antibodies, making it difficult to reliably detect endogenous protein. Further 

studies would include the use of a human iPSC-derived neuronal model to 

investigate the S101 phosphorylation in a more physiological setting. A genome-

editing technique can be used to customise a non-phosphorylatable mutation in 

the control iPSC-derived neurons (Ding et al., 2013) to create a model without 

the need of transfection. Investigating the potential alternation of S101 

phosphorylation in Parkin iPSC-derived neurons of Parkin would further 

broaden the knowledge regarding how the particular Parkin mutation leads to 

PD. 
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(A) FLAG-Parkin complexes IP from SH-SY5Y cells stably expressing FLAG-Parkin following 0 or 1 h CCCP treatment (10 M) in the 

presence or absence of 48 h CK1 inhibitor (LH846, 10 M). IB, immunoblot. (B) FLAG-Parkin complexes IP, input and mitochondria-

enriched fraction (MF) from SH-SY5Y cells stably expressing FLAG-Parkin, transiently expressing scrambled siRNA (Scr-siRNA) and 

PINK1 siRNA, followed by 0 or 1 h CCCP treatment (10 M). > indicates full-length PINK1 at approximately 63 kDa. (Figure 5-16 (B) 

was provided by Dr Hélène Plun-Favreau) 

 

Figure 5-175 Both Parkin S101 and S65 phosphorylation upon CCCP treatment are diminished by CK1 

inhibition or PINK1 knockdown.(A) FLAG-Parkin complexes IP from SH-SY5Y cells stably expressing FLAG-Parkin following 0 

or 1 h CCCP treatment (10 M) in the presence or absence of 48 h CK1 inhibitor (LH846, 10 M). IB, immunoblot. (B) FLAG-Parkin 

complexes IP, input and mitochondria-enriched fraction (MF) from SH-SY5Y cells stably expressing FLAG-Parkin, transiently 

Figure 5-16 Both Parkin S101 and S65 phosphorylation upon CCCP treatment are diminished by CK1 inhibition or 

PINK1 knockdown. 
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Chapter 6 Discussion 

This thesis investigated molecular mechanisms of Parkin regulation. The main 

conclusions from the data presented are: Firstly, Parkin is not phosphorylated 

upon activation of p38 or ERK1/2 MAPK signalling pathways, however Akt may 

have a small role in the regulation of S378 phosphorylation. Secondly, Parkin is 

phosphorylated at S101 and S65 upon mitochondrial depolarisation and this 

phosphorylation is likely to play a critical role in the regulation of the mitophagy 

pathway (Figure 6-1). The implications of these results have been discussed 

previously. This chapter seeks to address the broader implications related to 

this work. 

Figure 6-1 Summary of Parkin molecular pathways. 
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6.1 Implications of Parkin phosphorylation in the mitophagy 

pathway 

Three mitophagy pathways have been described in mammalian cells (Ashrafi 

and Schwarz, 2013). Two of them occur in physiological conditions and involve 

the removal of all mitochondria in developing reticulocytes and sperm-derived 

mitochondria from fertilised oocytes (Figure 6-2). To date, the only known 

selective removal of damaged mitochondria in mammalian cells remains the 

PINK1/Parkin-regulated mitophagy pathway (Narendra et al., 2008; Poole et al., 

2008). Several studies have shown Parkin activation is an essential step in the 

mitophagy process. it was recently shown that PINK1 phosphorylates Parkin at 

S65 to enhance Parkin mitochondrial translocation and its E3 ligase activity 

(Birsa et al., 2014; Kondapalli et al., 2012; Shiba-Fukushima et al., 2012). The 

regulatory role of Parkin phosphorylation at S101 on mitophagy however, until 

now, had not been described.  

This thesis demonstrates that Parkin S101 phosphorylation can regulate the 

mitophagy pathway. To date no pathogenic mutations are reported at this S101. 

The closest pathogenic mutation to S101 is A82E (Wang et al., 2005b). The A82E 

pathogenic mutant appears to retain Parkin’s catalytic activity and is not prone 

to form intracellular inclusions (Wang et al., 2005b). Furthermore, a Q100H 

polymorphism has been reported (Chen et al., 2003), however the effect on 

Parkin recruitment to damaged mitochondria and subsequent mitophagy 

remains to be determined. 

As previously mentioned, PINK1 phosphorylates Parkin at S65. Our preliminary 

experiment shows that S101 phosphorylation is PINK1-dependent. However, 

whether S101 is also phosphorylated by PINK1 would require further 

investigations. Studies involving in vitro kinase assays using recombinant 

human full-length human PINK1 are technically challenging as this displays no 

significant kinase activity (Woodroof et al., 2011). As a result of this the majority 

of studies use the insect orthologue  TcPINK1 as an alternative for PINK1 kinase 

assay (Woodroof et al., 2011). However recently an human full-length active 
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PINK1 has been purified and utilised in  in vitro kinase assays (Aerts et al., 

2015), allowing for the possibility of performing in vitro kinases using this 

kinase to study S101 in the future. Our data suggests that S101 phosphorylation 

takes place in the cytosol. Other cytosolic kinases, such as CK1 or Akt, may also 

be responsible for S101 phosphorylation however this has not been confirmed.  

The work described in this thesis builds upon our previously published data 

showing that Parkin S101 phosphorylation and S65 (Birsa et al., 2014) can 

regulate mitophagy at various steps.  These data show that non-

phosphorylatable mutations at either or both sites do not completely disrupt 

Parkin mitochondrial translocation to depolarised mitochondria and 

subsequent mitophagy, suggesting other unknown factors contribute to this. 

Simulation of human Parkin phosphorylation at S101 (see section 5.2.3) and 

S65 (Caulfield et al., 2014) suggest that phosphorylation at either of the two 

sites induces similar conformational change, opening the cleft formed by 

Parkin’s Ubl and linker domains. A number of studies suggest the removal of 

Parkin Ubl domain may disrupt its autoinhibited conformation thus activating 

Parkin E3 ligase activity (Chaugule et al., 2011; Spratt et al., 2013). Our work 

further suggests that phosphorylation at the linker domain is also important in 

activating Parkin E3 ligase activity. The ‘priming’ function of Parkin 

phosphorylation at the Ubl and the linker domain may be instrumental in 

initiating its E3 ubiquitin ligase activity, with additional regulatory mechanisms 

required for full activation. 
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(A) Removal of damaged mitochondria upon cellular stress via PINK1/Parkin 

mitophagy pathway. (B) Mitophagy to remove all mitochondria during 

reticulocyte development. (C) Mitophagy to remove sperm-derived 

mitochondria in fertilised oocytes. (Figure adapted from (Ashrafi and Schwarz, 

2013)) 

 

Figure 6-1 Mitophagy pathways in mammalian cells(A) Removal of 

damaged mitochondria upon cellular stress via PINK1/Parkin mitophagy 

pathway. (B) Mitophagy to remove all mitochondria during reticulocyte 

development. (C) Mitophagy to remove sperm-derived mitochondria in 

fertilised oocytes. (Figure adapted from (Ashrafi and Schwarz, 2013)) 

 

Figure 6-2 Mitophagy pathways in mammalian cells 

 

Figure 6-3 Mitophagy pathways in mammalian cells(A) Removal of 

damaged mitochondria upon cellular stress via PINK1/Parkin mitophagy 

pathway. (B) Mitophagy to remove all mitochondria during reticulocyte 

development. (C) Mitophagy to remove sperm-derived mitochondria in 

Figure 6-2 Mitophagy pathways in mammalian cells. 
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6.2 Model for Parkin molecular pathways investigation 

The data presented in this thesis raises a number of interesting questions.  

6.2.1 Primary neurons vs. cancer cell lines 

Most of the PINK1/Parkin mitophagy studies have been performed in cancer 

cell lines, with a limited number of studies using human primary fibroblasts or 

mice neurons. However, none of these models recapitulate the main clinical 

features of the disease. (Gispert et al., 2009; Perez and Palmiter, 2005). 

Functional differences between neurons and non-neuronal cells includes their 

modes of energy production. Oxidative phosphorylation (OXPHOS) in the 

mitochondria and glycolysis in the cytosol are the two main pathways to 

generate ATP in mammalian cells. Under physiological conditions, the majority 

of healthy cells use the more energy-efficient OXPHOS as the main source of 

generating ATP. However neurons rely predominantly, if not exclusively, on 

OXPHOS, and are unable to upregulate glycolysis even during the time of 

metabolic stress (Almeida et al., 2001; Herrero-Mendez et al., 2009; Whalley, 

2009). Neurons metabolise the majority of glucose through the pentose 

phosphate pathway (PPP), used to regenerate reduced glutathione that helps to 

protect neurons against oxidative stress, rather than energy production 

(Kletzien et al., 1994). It was shown that yeast readily undergo mitophagy under 

starved conditions (Kanki and Klionsky, 2008). However, when yeast cells are 

grown to depend on OXPHOS for energy production, mitophagy levels are 

considerably lowered, even under starved conditions. (McCoy et al., 2014; Van 

Laar et al., 2011). This may explain why mitophagy rates are low in OXPHOS-

dependent neurons, and even overexpressed Parkin was unable to be recruited 

to depolarised mitochondrial in primary neurons (Van Laar et al., 2011). 

6.2.2 Overexpressed vs. endogenous Parkin 

The majority of studies relies on overexpressed Parkin to assess mitophagy, 

which is another limitation. In order to address this, Rokvic and colleagues used 

human control iPSC-derived neurons to compare mitophagy in the presence or 
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absence of overexpressed Parkin upon valinomycin treatment. The only 

observation they noted was the reduction of VDAC1 when Parkin is 

overexpressed, albeit mitophagy is not observed (Rakovic et al., 2013). The data 

presented in this thesis shows SH-SY5Y with endogenous levels of Parkin also 

show low mitophagy levels following CCCP. Interestingly, the overexpressed 

Parkin protein containing pathogenic mutants, such as R275W, translocates to 

damaged mitochondria (Narendra et al., 2010b) and retains the ability to induce 

mitophagy to the same level as overexpressed WT Parkin dose (Geisler et al., 

2010). Taken together, these data suggests that endogenous Parkin levels are 

not sufficient to allow a detectable reduction in mitochondrial proteins upon 

depolarisation. Whether endogenous Parkin is recruited to depolarised 

mitochondria in neurons, and whether translocated endogenous Parkin 

promotes mitophagy or may even plays another role in neurons are important 

questions to be addressed. Improving methods will be essential to improve 

mitophagy detection in more physiological condition.   

6.2.3 Physiological relevance on mitochondrial depolarising agent 

The majority of studies investigating the roles of the PINK1/Parkin pathway 

employ chronic exposure of cells to a protonophore, such as CCCP to depolarise 

the mitochondria and study their subsequent clearance by mitophagy 

(Narendra et al., 2008). However other mitochondrial stressors, such as 

ionophores (valinomycin), complex I inhibitors (rotenone), complex II 

inhibitors (thenoyltrifluoroacetone, TTFA), complex III inhibitors (antimycin A), 

complex IV inhibitors (cyanide), or combination of antimycin A with ATP 

synthase inhibitors (oligomycin) have also been used (Ashrafi et al., 2014; 

Bartolome et al., 2013; Chen et al., 2007; Exner et al., 2012; Jin and Youle, 2012). 

These compounds cause profound mitochondrial depolarisation, but efficient 

Parkin translocation only occurs in cancer cell line models, not in primary 

neurons with endogenous level of Parkin (Van Laar et al., 2011). Additionally, 

primary neurons usually require higher concentrations and longer CCCP 

incubation times than cancer cell models (Imaizumi et al., 2012; Rakovic et al., 

2013). Interestingly, recently an alternative physiological trigger of mitophagy 
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has been described.  This system acts by activating the mitochondrial unfolded 

protein response (UPRmt) pathway via the accumulation of the deletion mutant 

ornithine transcarbamylase (dOTC) within the mitochondrial matrix (Jin and 

Youle, 2013; Moisoi et al., 2014). This dOTC-induced mitochondrial stress 

causes PINK1 accumulation on polarised mitochondria and subsequent 

mitophagy (Jin and Youle, 2013). This study also described a combined 

transgenic animal model where dOTC is overexpressed in a PINK1 KO 

background, which demonstrates an accelerated neurodegeneration induced by 

the UPRmt (Moisoi et al., 2014). Adapting a more physiological trigger for 

mitophagy research will enable a better understanding of PINK1/Parkin’s role 

in PD pathogenesis. 

6.3 Future perspectives 

6.3.1 Future of Parkin mitophagy pathway research 

There are still many unknown questions to be answered regarding the 

regulation of mitophagy. It would be imperative to further dissect the 

PINK/Parkin mitophagy pathway. This thesis describes the upstream pathway 

regulation of Parkin S101 phosphorylation is important in priming the damaged 

mitochondria for mitophagy process. It is essential to identify the true kinase(s) 

responsible for phosphorylating this site as well as other upstream modulators 

of this pathway. Other groups have attempted to address these issues of 

identifying both upstream and downstream molecules to improve knowledge 

linking the different steps of mitophagy. For instance, genome-wide RNAi 

(Hasson et al., 2013) or shRNA (McCoy et al., 2014) knockdown screen have 

identified several putative molecules that regulates Parkin translocation. For 

downstream pathways, quantitative proteomics studies have identified a 

number of  regulators of Parkin-dependent ubiquitin chain synthesis on 

substrate proteins (Parkin ubiquilome) (Sarraf et al., 2013) and a feedforward 

mechanism for mitochondrial Parkin translocation and ubiquitin chain 

synthesis (Ordureau et al., 2014). The result from these assays will greatly 
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improve our mechanistic understanding that could be translated into future 

therapeutic targets. 

As compelling evidence suggests Parkin is associated with a more general 

function such as neuroprotection, developing a more physiological mitophagy 

inducer is also crucial for a better understanding into how Parkin regulates 

mitophagy at the physiological level. Furthermore, an appropriate model that 

can recapitulate PD phenotypes and enable the detection of mitophagy with 

endogenous Parkin in neurons would provide an important step to identify 

genuine pathways more relevant to PD pathophysiology. Although iPSC-neurons 

are invaluable models for investigating neurodegenerative diseases, animal 

models presenting neurodegeneration will still provide reliable in vivo 

information of mitophagy research. Finally, by combining big 

genetic/proteomic/metabolomic databases will improve our understanding of 

new pathways regulating mitophagy. For example, lipogenesis pathway 

component sterol regulatory element binding transcription factor 1 (SREBF1) 

has been identified to regulate Parkin translocation (Ivatt et al., 2014), whereas 

Rab7L1 (RAB7, member RAS oncogene family-like 1), promoting the clearance 

of Golgi-derived vesicles through the autophagy–lysosome system, has been 

found as binding partner of LRRK2 (Beilina et al., 2014). These two examples 

provide strong evidence that supports a common pathway for both sporadic 

and familial PD.  

6.3.2 Mitophagy pathway as a therapeutic target  

6.3.2.1 Increasing Parkin expression or activity 

As described in chapter 1, Parkin has been shown to display a wide range of 

neuroprotective functions. Parkin has also been shown to display tumour 

suppressive function (Cesari et al., 2003; Denison et al., 2003b; Picchio et al., 

2004; Wang et al., 2004). A recent chemogenomic profiling analysis applied a 

genome-editing method to integrate a carefully-designed reporter pair for 

Parkin expression, and then a quantitative high-throughput screening assay to 

detect potential compounds that could enhance endogenous Parkin expression 
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(Hasson et al., 2015). If the target pathways found in this study can be further 

validated, this could potentially be a powerful drug screening system for 

developing a more effective therapy 

6.3.2.2 Early disease detection 

To date, PD diagnosis usually depends on clinical presentations and in most case 

early diagnosis is impossible. A better understanding of the signalling pathways 

important for the disease pathogenesis will be essential to help developing 

biomarkers and allow early diagnosis. This may also help delaying the disease 

progression, increasing the response to medical therapy, and, above all, 

improving patients’ quality of life. 
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