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Merging of vortices and antivortices in polariton superfluids
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Quantized vortices are remarkable manifestations on a macroscopic scale of the coherent nature of quantum
fluids, and the study of their properties is of fundamental importance for the understanding of this peculiar state
of matter. Cavity polaritons, due to their double light-matter nature, offer a unique controllable environment to
investigate these properties. In this paper we theoretically investigate the possibility to deterministically achieve
the annihilation of a vortex with an antivortex through an increase of the polariton density in the region surrounding
the vortices. Moreover, we demonstrate that by means of this mechanism an array of vortex-antivortex pairs can
be completely washed out.
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I. INTRODUCTION

Topological excitations such as quantized vortices, char-
acterized by a phase winding from 0 to 2πm (with m an
integer number) around a vortex core, have been extensively
studied in several systems such as nonlinear optical sys-
tems [1], superconductors [2], superfluid 4He [3], vertical-
cavity surface-emitting lasers [4], and, more recently, in
cold atoms [5–7]. Finally, in recent years, the study of
vortices and vortex lattices has attracted much attention
also in the field of coherent cavity-polariton fluids, first,
because, being intrinsically out of equilibrium, they constitute
a novel system to study Bose-Einstein condensation phenom-
ena, and second, because, due to their light-matter nature,
polaritonic systems are fully controllable by optical tech-
niques and therefore allow very detailed studies of quantum
turbulence.

In particular, in the context of cavity-polariton systems, it
has been shown that stable vortices and half vortices [8–10]
as well as single vortex-antivortex (V-AV) pairs [11–14]
can be generated. The formation of lattices of vortices and
of vortex-antivortex pairs has also been theoretically and
experimentally studied in several different configurations:
in the optical parametrical oscillator configuration [15],
in nonresonantly generated condensates [16–18], and in
the case of patterns induced by metallic deposition on
the surface of the cavity [19]. However, the mechanisms
lying beneath vortex-antivortex annihilation and vortex-
vortex interactions are still not fully understood. This is
related to the high degree of control needed to study such
interactions.

For example, in the first experimental observations of
vortex-antivortex lattices [17–19] the formation and the prop-
erties of the array were only partially controllable due to either
the presence of a strong exciton reservoir, which influences the
position of the formed vortex array and its disappearance, or
due to the fact that the formed array depends on the structure

of the metallic depositions over the cavity surface. To achieve
a higher degree of control, resonant pumping schemes have
been proposed [20]. By using masks in the pumping beam,
the formation of vortex-antivortex arrays with controllable
shapes and vortex distributions was achieved [21], and the
evolution of the arrays was studied in correlation with the
local onset of the superfluid regime. However, in this study
the case of high-polariton densities was not experimentally
achievable since the masks used to generate the vortex array
were blocking most of the laser power, and therefore were not
theoretically investigated.

In this paper we theoretically study the annihilation of a
vortex with an antivortex when injecting polaritons resonantly,
in a broad range of polariton densities. In our model we assume
an excitation with four coherent laser beams resonant with
the lower-polariton branch similarly to Refs. [17,18] where,
however, polaritons were injected nonresonantly. The four
pump spots are supposed to have the same energy and k-vector
modulus and to generate polaritons propagating toward the
center of a common area. The advantage of our model is that
in the resonant configuration it is well known that there is no
exciton reservoir and that, since the entire pump intensity is
used to inject the coherent fluid, high-polariton densities can
be achieved. Moreover, since the pumps set the momentum
and the density of the injected fluid, we can directly correlate
the vortex-antivortex annihilation and the washing out of an
array of vortices with an increase of the regions where the fluid
is subsonic and with a change in the polariton flow that comes
with it.

The paper is structured as follows: In Sec. II we introduce
the theoretical model used to simulate the system, describe
in more detail the setup we have in mind, and introduce
the generalized local speed of sound that will be needed for
the analysis of the results. In Sec. III we demonstrate the
annihilation of V-AV pairs and correlate this annihilation with
the change in the polariton flow caused by the widening of the
regions where the fluid is subsonic. Finally, in Sec. IV we draw
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some conclusions and give prospects for future developments
of the work.

II. MODEL

A standard way to model the dynamics of resonantly driven
polaritons in a planar microcavity is to use a Gross-Pitaevskii
(GP) equation [22] for coupled cavity and exciton fields (�C

and �X) generalized to include the effects of the resonant
pumping and decay (� = 1):

∂t

(
�X

�C

)
=

(
0
F

)
+

[
H0 +

(
gX |�X|2 0

0 VC

)](
�X

�C

)
,

where the single particle polariton Hamiltonian H0 is given by

H0 =
(

ωX − iκX/2 �R/2
�R/2 ωC (−i∇) − iκC/2

)
,

and

ωC (−i∇) = ωC(0) − ∇2

2mc

is the cavity dispersion, with the photon mass mC = 5 ×
10−5m0 and m0 the bare electron mass. For our simulations
we assumed a flat exciton dispersion relation ωX(k) = ωX(0),
set the exciton-photon detuning to zero, δex-ph = ωX(0) −
ωC(0) = 0, and set this energy value as the reference of the zero
energy. The parameters �R , κX, and κC are the Rabi frequency
and the excitonic and photonic decay rates, respectively, and
have been given values close to the usual experimental ones:
�R = 5.1 meV, κX = 0.05 meV, and κC = 0.08 meV [21].
In this model polaritons are injected into the cavity by four
coherent and monochromatic laser fields with pump intensity
fp and Gaussian spatial profiles with σp of 20 μm: F (x) =∑4

i=1 fpeikpi xe−(x−xi)2/2σ 2
p , where kpi are the four wave vectors

of the four pumps that we fix to have the same modulus,
|kpi | = |k|. In order to ensure that the phase of the polariton
fluid is not imposed by the laser pumps in the central region of
the system, we set to zero the pump intensity outside of a σpin =
9 μm radius circle. The exciton-exciton interaction strength
gX is set to one by rescaling both the cavity and excitonic
fields and the pump intensities. The numerical solution of
the GP equation is obtained over a two-dimensional grid (of
512 × 512 points) in a box with sides of 150 × 150 μm2 using
a fifth-order adaptive-step Runge-Kutta algorithm. All the
analyzed quantities are taken when the system has reached
a steady state condition after a transient period of 200 ps.

To understand the role of the subsonic character of the
fluid in the annihilation of a vortex-antivortex pair, we define
the local fluid velocity vf (x) = �|k(x)|/mLP, where mLP is
the lower-polariton mass and k(x) is the locally evaluated
derivative of the phase at the point x. Moreover, we define
the quantity cs(x) =

√
�gLP|�LP(x)|2/mLP, where |�LP(x)|2

and gLP are the local density and the polariton-polariton
interaction constant. Since in the local density approximation
cs(x) corresponds to the speed of sound defined in the case
of high densities [23,24], we can take it as the definition
of a generalized local speed of sound that is valid also for
low-polariton densities and we define a generalized Mach

number:

M(x) = vf (x)

cs(x)
= �|k(x)|/mLP√

�gLP|�LP(x)|2/mLP

. (1)

This will allow one to establish a direct correlation between the
subsonic or supersonic character of the fluid and the annihila-
tion of a V-AV pair. Since the subsonic character of the fluid is
induced by a polariton-polariton interaction, this corresponds
to studying the role of polariton-polariton interactions in the
annihilation of the pairs and of the vortex array. Although
other techniques, such as the study of the vortex-antivortex
correlation function [25] or Reynolds-averaged Navier-Stokes
equations [26], can be used to address this problem, we chose
to focus on the study of the Mach number since it allows a
simple and clear physical understanding of the V-AV merging
process.

III. RESULTS

The mechanism lying beneath the annihilation of V-AV
pairs and the role of polariton-polariton interactions in this
annihilation can be better highlighted by studying the system
behavior as a function of the pump intensity and therefore of
the polariton density. We start by studying the system in the
two limiting cases of very low and very high pump intensities.

In the low intensity case the polariton density lies on the
lower branch of the bistability curve everywhere in space and
the system behavior is purely linear. In this regime [Figs. 1(a)–
1(c)], the formation of an array of vortices and antivortices is
observed as in Refs. [17,18,21]. Here, as in Ref. [21], the shape
and size of the unit cell only depend on the geometry of the
pumping configuration and on the angle of incidence of the
laser beams. Since we use four pumps with |k| = 0.7 μm−1,
the formed array has square unit cells with a unit cell size
of approximately 9 μm [Figs. 1(a)–1(c)]. This interference
pattern generates an array of vortices (with a clockwise phase
winding from −π to π ) and antivortices (with an anticlockwise
phase winding from −π to π ) that is therefore due to a purely
linear mechanism [see Fig. 1(c) and the inset for the definition
of vortices and antivortices].

In the opposite limit the pump intensity is strong and
polariton-polariton interactions play a dominant role. This
regime is characterized by a polariton density everywhere
lying on the upper branch of the bistability curve. As can
be seen in Figs. 1(d)–1(f), in this regime the array of
vortices and antivortices has completely disappeared due to
the renormalization of the lower-polariton branch.

From this, we can deduce that in the transition region
between the low and the high density regimes the vortices and
antivortices either are expelled from the fluid or annihilate each
other. In order to investigate this transition, we vary the pump
intensity around the threshold value (fth) at which the V-AV
pairs disappear. Note that in this nonhomogeneous system
the density is different in the regions within and outside the
pumping spot, resulting in four threshold intensities: two for
increasing and two for decreasing pump intensities. When
the intensity of the four pumps increases, the regions directly
pumped by the lasers jump from the lower to the upper branch
of the bistability curve (first threshold). At this point, since
polaritons have a finite lifetime, the central region between
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(a) (d)

(e)
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(b)

(c)

FIG. 1. (Color online) Numerical real-space emission intensity,
phase, and vortex distribution in the low and high density regimes. The
four polariton ensembles are generated by pumps at kpump = 0.7 μm−1

in different directions (yellow arrows) with ωpump = −2.25 meV.
(a) Real-space image in the low density regime with pump intensity
fp = 0.07fth: A square interference pattern with a unit cell of about
9 μm is formed. (d) Real-space image in the high density regime
fp = 3.33fth. (b), (e) Phases corresponding to (a) and (d) showing an
array of vortices and antivortices (b) and no phase modulations (e).
(c), (f) Vortice (red) and antivortice (blue) distributions in real space
corresponding to phase diagrams (b)–(e).

the four laser spots is still in the lower part of the bistability
curve. As the pump intensity is further increased, the central
region also eventually jumps from the lower to the upper
branch (second threshold). This threshold corresponds to the
intensity fth at which the V-AV pairs disappear. Similarly, one
can observe two thresholds for decreasing pump intensity.

Figures 2(a)–2(c) [Figs. 2(d)–2(f)] represent the polariton
distribution (phase) for increasing pump intensity from just
below to just above fth. In Fig. 2(a) (fp = 0.66fth) some
remainder of the interference pattern of Fig. 1(a) is still visible,
together with four dark segments surrounding the center
of the image that correspond to four V-AV pairs. In this plot of
the intensity distribution of each V-AV pair resembles a straight
dark segment rather than as two separated vortices because
the core of the vortex is extremely close to the core of the
antivortex. The fact that these four dark segments correspond

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(l) (m) (n)

FIG. 2. (Color online) (a)–(c) Numerical real-space emission in-
tensity for three different pump intensities. (d)–(f) Real-space phase
diagrams corresponding to the pumping condition of (a)–(c). (g)–(i)
Enlargement of the red squared area in (d)–(f). (l)–(n) Mach charts
corresponding to (a)–(c): Where the fluid is supersonic, the Mach
chart shows the real-space emission intensity at that point, and when
the fluid is subsonic, the Mach chart is blue. A V-AV pair is clearly
visible in (g), V and AV have almost merged in (h), and the vortex pair
is no longer present in (i). The pump parameters are the same as in
Fig. 1 and the pump intensities (from left to right) are fp = 0.66fth,
0.8fth, and 1.0fth.

to V-AV pairs is confirmed by the phase distribution of
Fig. 2(d), where the two phase rotations of the vortex and of the
antivortex are visible, in correspondence to each dark segment
of Fig. 2(a). For the sake of clarity the phase distribution
of the V-AV pair delimited by the red square in Fig. 2(d)
is also reported and enlarged in Fig. 2(g). When the pump
intensity is increased [Fig. 2(b) (fp = 0.8fth) and Fig. 2(c)
(fp = 1.0fth)], the vortex and the antivortex cores get closer
(i.e., the dark segments become shorter) until the four V-AV
pairs disappear. For even higher pump intensities the density
distribution becomes homogeneous, as in Fig. 1(d). Again,
this moving closer and merging of the V-AV is confirmed by
the corresponding phase distributions [Figs. 2(d)–2(f)], and by
the corresponding zoom of the regions delimited by the red
squares [Figs. 2(g)–2(i)].

This detailed analysis of the density and phase distributions
and of the “on-site” annihilation of V-AV pairs shows that the
disappearance of the vortex array is not due to the expulsion
of the vortices from the fluid. Therefore, the mechanism lying
beneath the V-AV annihilation cannot be ascribed to a simple
renormalization of the lower-polariton branch. First, the effect
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of the renormalization is to decrease the wave vector of the
injected polaritons and correspondingly to increase the size of
the interference pattern of the array, therefore leading to the
expulsion of vortices from the fluid rather than the observed
merging. Second, it can be seen in Fig. 2(c) that when V-AV
annihilation takes place, part of the interference pattern is still
visible. Third, vortices and antivortices can exist in a fluid
at rest, so the renormalization of the lower-polariton branch
cannot justify per se the disappearance of the array.

Moreover, since all the plots show the system steady state
for a given pump intensity, the fact that vortices coexist with
antivortices means that their position is the result of a tradeoff
between vortex-vortex and vortex-antivortex interactions, the
direction of the polariton flow, and the relative phase of the
four pumps. In other words, this means that vortices and
antivortices are not completely free to move in the system
and therefore V-AV annihilation cannot be simply ascribed
to a V-AV attraction. In fact, if vortices and antivortices are
completely free to move, due to their mutual attraction they
must always annihilate, and the only possible steady state
must be completely free of vortex dislocations, independently
from the intensity of the laser pumps. Finally, it is worth
noting that due to the choice of the continuous-wave resonant
pumping setup, no exciton reservoir is present in the system
and all polaritons have the same energy, therefore no trapping
mechanism can be advocated to explain this annihilation as in
Ref. [18].

To have physical insights into the mechanism lying beneath
V-AV annihilation it is useful to study the Mach-number
charts in Figs. 2(l)–2(n), where blue regions correspond to
a subsonic character of the fluid and gray regions correspond
to a supersonic character. Clearly, as the pump intensity is
increased (from left to right), the polariton density increases
and the regions where the fluid is subsonic it becomes wider
and wider. This spreading of the subsonic regions rearranges
the polariton flow, therefore changing the steady state position
of vortices and antivortices until, when the pump threshold
fth is reached, the vortices and antivortices annihilate. This
mechanism can also be understood by observing that vortices
cannot enter subsonic regions since they are intrinsically
related to regions where the fluid is supersonic, because at
the center of their core the fluid density vanishes while the
fluid velocity does not, and because a subsonic fluid tends
to avoid strong phase modulations [27]. Since in our system
the subsonic regions surround the V-AV distribution, when
the pump intensity changes, the polariton flows rearrange,
letting vortices overlap and annihilate with antivortices. This
is different from the case of atomic Bose-Einstein condensates
where a single vortex cannot be destroyed by the superfluid
character of a quantum fluid since the total angular momentum
of the system must be conserved. Here, polariton-polariton
interactions can affect the fluid distribution and make a
vortex overlap with an antivortex, so that V-AV pairs can be
completely suppressed in the fluid.

An additional proof of the correlation between the subsonic
character of the fluid and the disappearance of V-AV pairs is
given by the fact that higher sound velocities (i.e., higher-
polariton densities) are needed to destroy the array when
polaritons have higher velocities. Figures 3(a)–3(c) show the
real-space distribution of the photonic field for three different

(a) (b) (c)

(d) (e) (f)

FIG. 3. (Color online) (a)–(c) Numerical real-space emission in-
tensity (in linear grayscale). (d)–(f) Real-space phase diagram (color
scale) corresponding to (a)–(c). The red squares indicate the regions
where vortex and antivortex pairs have been annihilated. The plots
correspond to pumps with increasing in-plane momenta from left to
right: kpump = 0.5, 0.7, and 0.9 μm−1. In each case the pump intensity
is chosen in order to drive the system at the threshold at which V-AV
annihilation occurs [fp(b) = 4.33fp(a), fp(c) = 8.66fp(a)].

increasing velocities of the injected polaritons (kpump = 0.5,
0.7, and 0.9 μm−1) and a pump intensity corresponding to
the threshold (fp = fth) where V-AV pairs disappear. We find
that the polariton density, and therefore the sound velocity, at
which V-AV pairs annihilate is higher when the velocity of
the injected polaritons is higher [see Figs. 3(d)–3(f), where no
phase cut corresponding to a V-AV pair can be observed in
the four regions delimited by the red squares]. This confirms
that polariton-polariton interactions, causing the widening of
the subsonic regions and the consequent rearrangement of the
polariton flows, induce the disappearance of V-AV pairs.

IV. CONCLUSIONS

We have investigated the washing out of vortex-antivortex
lattices in exciton-polariton systems as a function of the polari-
ton density. Our detailed analysis shows that V-AV annihilation
and the washing out of the vortex lattice is due to polariton-
polariton interactions that, through the renormalization of the
lower-polariton branch, induce the widening of the regions
where the fluid is subsonic as the pump intensity is increased.
This widening induces a modification in the polariton flows,
therefore changing the steady state position of the vortices
and antivortices until a threshold pump intensity is reached at
which V-AV merging takes place. The complete washing out
of the V-AV array can take place because in our system the
number of vortices is equal to the number of antivortices, i.e.,
the system has zero angular momentum. Our analysis, when
applied to a system with net angular momentum, could open
a way to the study of vortex-vortex interactions.
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