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ABSTRACT 

This paper describes two Doppler only indoor passive Wi-Fi 

tracking methods based on high Doppler resolution passive 

radar. Two filters are investigated in this paper, the extended 

Kalman filter and the sequential importance resampling 

(SIR) particle filter. Experimental results for these two 

tracking filters are presented using results from software 

defined passive Wi-Fi radar using a standard 802.11 access 

point as an illuminator. The experimental results show that 

the SIR particle filter performs well using Wi-Fi signals for 

indoor tracking with a high degree of accuracy. Proposals 

for simplifying the SIR particle and application to multiple 

target tracking are also discussed.  

Index Terms— Passive Wi-Fi Radar, Indoor Tracking, 

Doppler, Kalman Filter, Particle Filter 

 

1. INTRODUCTION 

 

Passive radar is a class of radar system for detection and 

tracking of targets using reflected signals from a non-

cooperative illuminator. A wide range of commercial 

broadcast and communications signals have been used in a 

range of passive radar applications. For example, FM 

airborne radar [1], WiMAX maritime radar [2], passive 

GSM radar for vehicle detection [3] as well as DAB+ and 

DVB-T [4]. The current popularity of the passive concept is 

related strongly to the increasing pressure on spectrum 

usage making the use of already available transmitters 

commercially attractive. In addition the continuing roll out 

of a wide range of freely available transmissions such as 

wireless networks means that increasing numbers of 

potential illuminators of opportunity are available [5]. As in 

the case of active systems passive radar can also be used for 

tracking purposes. For example, an FM passive system has 

been used for tracking airborne targets in [6] by using 

Gauss-Newton filter. Generally, the tracking methods used 

in conventional passive radar takes advantage of the bistatic 

range information [7].  

 

In this paper, a passive radar based on 802.11 (Wi-Fi) 

transmissions is used to gather data for investigation of 

indoor target tracking.  Use of Wi-Fi signals for indoor 

positioning is a topic of significant recent interest driven by 

the increasing public customer marketing demand [8], 

industrial applications [9] and Internet of Things (IOT)  

 

scenarios [10]. So far, there have been a variety of 

approaches for indoor positioning using Wi-Fi signals. The 

most widely used method is Wi-Fi fingerprinting [11] which 

leverages the geographical distribution characteristics of 

receiving signal strength (RSS) from multiple transmitters to 

estimate the most likely target location. Apart from RSS, 

measurement of the time of flight (ToF) or round-trip time 

(RTT) of an 802.11x package will also be an index of 

distant between two terminals. Examples of localizing with 

timing measurements are given in the 802.11v standard [12] 

using the hyperbolic method. The angle of arrival (AoA) 

method has also been used for locating transmission sources 

normally using antenna arrays as described in [13], [14]. In 

[15], an outdoor vehicle tracking function is demonstrated 

using a Wi-Fi AP transmitter and a corresponding receiver 

array in a passive radar set up by using range and angle 

information. For the above Wi-Fi tracking approaches, the 

RSS based methods can reach 1~2 meter accuracy with pre-

restored RSS database. The localization resolution of the 

timing based approaches depends on the timing accuracy 

which can be achieved by software or hardware. The AoA 

solution generally gives better accuracy, up to 0.5 meters 

but requires the use of specially designed array antennas and 

complex signal processing algorithms.  

 

In this paper, a Doppler only tracking approach is proposed 

for indoor target tracking using transmissions from standard 

commercial Wi-Fi access points. Doppler only location 

tracking has mostly been reported for passive airborne 

targets [6] [16]. In the latter paper a recursive Gauss-

Newton filter is applied for airborne tracking using FM 

signals. For indoor tracking with Wi-Fi signals, the main 

concern is the range resolution which is determined by the 

bandwidth of illuminating of the signal. In the case of Wi-Fi 

signal, the range resolution could be of the order of 10 to 15 

meters which is too coarse for most indoor scenarios. A high 

Doppler resolution passive Wi-Fi radar using multiple 

receivers is introduced here for improving this target 

localization. By fusing the high resolution velocity data 

from different receivers, high accuracy target detection and 

tracking can be achieved. There are many important 

applications for this technique including security, healthcare 

and retail tracking 

 



 

2. DOPPLER TRACKING USING PASSIVE WIFI 

RADAR 

2.1. High Doppler Resolution Passive Wi-Fi Radar  
Most passive radar systems are deployed in a bistatic 

geometry as shown in Fig. 1. The Doppler in a bistatic 

system is generated as the target moves between the range 

ellipse contours. 

 
Figure. 1 Bistatic Doppler Generation  

As shown in Fig. 1, when the target moves from P1 to P2, 

the Doppler will be generated as shown in equation (1):  

𝑓𝑑 =
1

𝜆

𝑑

𝑑𝑡
(𝑅𝑇𝑥 + 𝑅𝑅𝑥)                                 (1) 

As described in [17], [18], the authors have developed a 

real-time high Doppler resolution passive Wi-Fi system for 

indoor target detection. The main components of the system 

are reference and surveillance antennas ADC modules for 

each channel and a computing unit for signal processing. In 

this study we have extended the hardware to use multiple 

transmit receive pairs and developed and tested algorithms 

suitable for indoor target tracking. 

 

The system hardware is built around an adaptable software 

defined radio design. In the computing unit, a down 

sampling pipelined processing flow is used. This includes 

normalized least-mean squares (NLMS) DSI filter, batch 

processing, cell averaging and constant false alarm 

rate  (CFAR) processing. After cross ambiguity function 

(CAF) processing a range-Doppler matrix is produced.  The 

strongest pixel on this matrix after CFAR application can be 

extracted and identified as a target. A normalized CAF is 

used in this work and a target search is perfomed on each 

sequential CAF matrix  generated. The corresponding target 

Doppler frequency shifts from each CAF are then used for 

target tracking as described in this paper. The range bins 

containing the detected target from each CAF are connected 

together along with a time stamp to form a real time plot of 

Doppler versus time which can be used for activity 

classification that is out of the scaope of this paper. The 

methods in [19] and [20] can be applied to enhance the 

sharpness of this Doppler record by jointly using the 

backward and forward detection information. 

 

2.2. Doppler Only Tracking 
The scenario and the model used in this work are shown in 

Fig 2. A transmitter, TX, (a Wi-Fi Access Point (AP) ) is 

transmitting a signal with a carrier frequency of fc and 

several receivers RXi are receiving signals reflected by the 

moving targets. It is assumed that the location of TX and the 

RXi  are known. The state vector of the target at time k is 

𝑥𝑘 = [𝑥𝑘, 𝑦𝑘 , 𝑣𝑥,𝑘 , 𝑣𝑦,𝑘]
𝑇

, where [𝑥𝑘 , 𝑦𝑘]  is the position, 

[𝑣𝑥,𝑘 , 𝑣𝑦,𝑘] is the velocity and T is the transpose operation. 

 

 
Figure. 2 A target is moving in the state of xk and the signal 

transmitted from TX is received by each 𝑅𝑋𝑖, 𝑖 = 1,… , 𝑁𝑅𝑋.  𝑁𝑅𝑋  

is the total number of receivers   

 

For the state transition function, the constant velocity 

Gaussian model is used, denoted as follows:  

𝑥𝑘 = 𝐹𝑘|𝑘−1 ∗ 𝑥𝑘−1 + 𝑉𝑘                      (2) 

where Fk|k-1, the transition matrix can be denoted as: 

𝐹𝑘|𝑘−1 = [

1 0
0 1

∆ 0
0 ∆

0 0
0 0

1 0
0 1

]                         (3) 

The delta is the sampling time interval and 𝑉𝑘~𝑁(𝑣; 0. 𝑄) is 

the noise of the transition process and the Q is the 

covariance matrix denoted as:  

𝑄 = 𝜎𝑣
2 ∗
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             (4) 

where 𝜎𝑣
2 is standard deviation of the transition model noise.   

The observation model to measure the Doppler information 

is based on the bistatic radar scenario. Given the position of 

the transmitter and the ith receiver, 𝑖 = 1,… , 𝑁𝑅𝑋 , the 

Doppler shifts measured at ith receiver at time k, located at 
[𝑥𝑖 , 𝑦𝑖], can be calculated as the following:  

𝑍𝑘,𝑖 = ℎ𝑖(𝑥𝑘) + 𝜀𝑘,𝑖                                    (5) 

where 

ℎ𝑖(𝑋𝑘) = {
𝑣𝑥,𝑘(𝑥𝑘−𝑥𝑇)+𝑣𝑦,𝑘(𝑦𝑘−𝑦𝑇)

𝜆𝑑𝑘,𝑇
} + {

𝑣𝑥,𝑘(𝑥𝑘−𝑥𝑖)+𝑣𝑦,𝑘(𝑦𝑘−𝑦𝑖)

𝜆𝑑𝑘,𝑖
}   

is the Doppler shift measurement, λ is the wavelength of the 

transmitted signal and 𝜀𝑘,𝑖~𝑁(𝜀; 𝜎𝜖
2). Distances between the 

target and the transmitter and ith receiver are denoted as: 

𝑑𝑘,𝑇 = √(𝑥𝑘 − 𝑥𝑇)
2 + (𝑦𝑘 − 𝑦𝑇)2 and 𝑑𝑘,𝑖 =

√(𝑥𝑘 − 𝑥𝑇)
2 + (𝑦𝑘 − 𝑦𝑇)2. 

 



2.2.1. Tracking with Extended Kalman Filter (EKF) 

As the observation model is non-linear, EKF is implemented 

in this work. For transforming the non-linear observation 

model into the linear one, the first order Taylor expansion is 

used [21] and the Jacobian matrix of ℎ𝑖(𝑥𝑘) is denoted as: 

𝐻𝑘,𝑖 = {
𝜕ℎ𝑖(𝑋𝑘)

𝜕𝑥𝑘
,
𝜕ℎ𝑖(𝑋𝑘)

𝜕𝑦𝑘
,
𝜕ℎ𝑖(𝑥𝑘)

𝜕𝑣𝑥,𝑘
,
𝜕ℎ𝑖(𝑥𝑘)

𝜕𝑣𝑦,𝑘
}              (6) 

where  
𝜕ℎ𝑖(𝑋𝑘)

𝜕𝑥𝑘
= {

𝑣𝑥,𝑘𝑑𝑘,𝑇−(𝑥𝑘−𝑥𝑇)𝑑𝑘,𝑇̇

𝜆𝑑𝑘,𝑇
2 } + {

𝑣𝑥,𝑘𝑑𝑘,𝑖−(𝑥𝑘−𝑥𝑖)𝑑𝑘,𝑖̇

𝜆𝑑𝑘,𝑖
2 },  

𝜕ℎ𝑖(𝑋𝑘)

𝜕𝑦𝑘
= {

𝑣𝑦,𝑘𝑑𝑘,𝑇−(𝑦𝑘−𝑦𝑇)𝑑𝑘,𝑇̇

𝜆𝑑𝑘,𝑇
2 } + {

𝑣𝑦,𝑘𝑑𝑘,𝑖−(𝑦𝑘−𝑦𝑖)𝑑𝑘,𝑖̇

𝜆𝑑𝑘,𝑖
2 },  

𝜕ℎ𝑖(𝑥𝑘)

𝜕𝑣𝑥,𝑘
= {

(𝑥𝑘−𝑥𝑇)

𝜆𝑑𝑘,𝑇
} + {

𝑥𝑘−𝑥𝑖

𝜆𝑑𝑘,𝑖
} , 

𝜕ℎ𝑖(𝑋𝑘)

𝜕𝑣𝑦,𝑘
= {

(𝑦𝑘−𝑦𝑇)

𝜆𝑑𝑘,𝑇
} + {

𝑦𝑘−𝑦𝑖

𝜆𝑑𝑘,𝑖
}. 

The total derivatives of 𝑑𝑘,𝑇 and 𝑑𝑘,𝑖  illustrated in the 

previous equation are 𝑑𝑘,𝑇
̇  and 𝑑𝑘,𝑖

̇  respectively, represented 

as the following:  

𝑑𝑘,𝑇
̇ =

𝑣𝑥,𝑘(𝑥𝑘−𝑥𝑇)+𝑣𝑦,𝑘(𝑦𝑘−𝑦𝑇)

𝑑𝑘,𝑇
, 𝑑𝑘,𝑖

̇ =
𝑣𝑥,𝑘(𝑥𝑘−𝑥𝑖)+𝑣𝑦,𝑘(𝑦𝑘−𝑦𝑖)

𝑑𝑘,𝑖
. 

After calculating the 𝐻𝑘,𝑖(𝑋𝑘), the EKF can be implemented 

as the following pseudo code. Here, the initial state vector of 

the target is assumed known in this scenario, denoted as  

𝑋0 = [𝑥0, 𝑦0 , 𝑣𝑥,0, 𝑣𝑦,0]
𝑇
and the mean and covariance matrix 

of the target’s state vector X at time k are denoted as μk and 

Σk. The pseudo code of the EKF is shown in Fig. 3. 

 

2.2.2. Tracking with Sequential Importance Resampling 

Particle Filter (SIR PF) 

For the implementation of a particle filter, the SIR method is 

adopted. The initial state vector of the target is 𝑋0 =

[𝑥0, 𝑦0, 𝑣𝑥,0, 𝑣𝑦,0]
𝑇
. Here, the state vector is predicted by M 

particles according to the transition function Fk|k-1 and the 

update step is aimed to filter out the particles with the higher 

weights. Finally, the weighted average state of the particles 

is the estimated state and the particles are resampled to 

prepare for the next iteration process [22]. The pseudo code 

of the SIR particle filter is shown in Fig. 4.  

 

3. TRACKING EXPERIMENT AND RESULTS 

 

In this section, the indoor passive Wi-Fi radar based 

tracking experiments are described. The equipment, 

experimental scenario and system parameters are described 

and tracking results for both EKF and SIR PF are presented.  

 

3.1. Experimental Setup  
The experiments were conducted in a standard meeting 

room within the Engineering Building at UCL. The layout 

of the experiment is illustrated Figure 2. RX1, RX2, RXref 

and TX are in at relative positions (0,0), (3.8, 2.6), (3.4, 0) 

and (3.8, 0) respectively. In the experiments the person 

target walked from point A at (3.4, 2.3) to point C at (0.4, 

0.3) via point B at (0.4, 2.3) along the red line shown. For 

the CAF processing, 0.1s of data is used and the FFT length 

is approximately 0.3s, that is, the delta in state transition 

function is 0.1s. 𝜎𝑣  is chosen as 0.1 and  𝜎𝜀 is chosen as 0.1, 

0.5 and 1. The detailed information about the equipment 

used in this experiment can be found in [17]. 

 
Figure. 3 The pseudo code of EKF tracking 

 

 
Figure. 4 The pseudo code of SIR PF tracking 

 

3.2. Tracking Result with Wi-Fi Signal 

3.2.1. Extended Kalman Filter (EKF) 

The results using EKF are shown in Figure 6 (a). It can be 

seen that when the target is walking in a straight line in the 

X direction, the estimation works well. However, when the 

target changes direction, the track begins to be lost.  This is 

because of using a linear Gaussian prediction model with 

EKF which is a combination of Gaussian processes. This is 

not very suitable for the changes of velocity vector.  So in 

the process of velocity vector adjustment a large amount of 

noise is generated, especially in the X-axis. The 

comparatively large track deviation in the X-axis is because 

when target changes direction suddenly, the velocity in the 

X direction is too large to change in one update process 

while the smaller Y velocity change can be accommodated. 

 



3.2.2. SIR Particle Filter 

The SIR particle filter results are shown in Figures 6 (b), (c) 

and (d) using 20, 100 and 500 particles. Three tracking 

results with the same data as the EKF tracking in the 

previous section are presented. When the target is walking 

in a straight line from A to B, the estimation works well and 

seems as good as the EKF. However, In this case the use of 

the SIR PF eliminates the need for an assumed probability 

density function for the Gaussian based prediction and 

observation process. This means when the target changes 

direction there is much less track deviation than seen with 

EKF. As a result, the SIR PF method  shows better 

performance than EKF. As shown in Fig.6 (b), (c) the 

performance of SIR PF is very dependent upon the number 

of particles used.  It can be seen in  Table 1 that using the 

same parameters, the more particles used in estimation the 

less the Mean Square Error (MSE). In Table. 1 shows, a 

comparison between the SIR PF and the EKF results based 

on the Mean Square Error (MSE). It is concluded that with 

more measurement noise, the MSE of the filtered results, 

whether of EKF or PF, is much larger. In addition, with the 

same covariance, the EKF has a much larger MSE than the 

SIR PF. 
 EKF 

 

SIR PF 
(N=20) 

SIR PF 
(N=100) 

SIR PF 
(N=500) 

σv = 0.1     ε=0.1 0.2567 0.0889 0.571 0.0502 

σv = 0.1     ε=0.5 0.2626 0.0939 0.0799 0.0743 

σv = 0.1     ε=1 0.2660 0.1031 0.0855 0.0815 

 
Table. 1: MSE of the results between the EKF and SIR PF, with 

different measurement noise. 

  
Figure. 6.: (a)Tracking Result Using EKF  (b) SIR PF, Particle 

Number = 20 (c) SIR PF, Particle Number = 100 (d) SIR PF, 

Particle Number = 500 

 

3.3 DISCUSSION ON FUTURE WORK 

3.3.1  Simplification of Particle Filtering 

As can be seen from the above experimental results, the SIR 

particle filter outperformed the extended Kalman filter in 

this scenario. This is due to the particle filter avoiding some 

of the requirements of the Gaussian prediction and 

measuring processes. The particle filtering mechanism is 

however constrained by the heavy computing load due to 

the large number of particles that are required for high 

performance indoor tracking. As many tracking application 

will require real-time data, simplifying the SIR particle 

filtering method should be considered. To achieve this goal, 

adjusting the resampling mechanism is being considered. In 

contrast to current resampling methods, the new method 

uses the rejection mechanism to reduce the particles in each 

iteration. To keep the performance constant, additional re-

sampling particles are introduced, only when a significant 

large deviationis observed. For example, when the Doppler 

measurement changes between samples exceeds a certain 

threshold the system adds new samples. 
 

3.3.2 Multiple Indoor Targets 

Multiple target tracking is required in many practical 

scenarios. Range resolution in long range outdoor scenarios 

can be quite coarse but needs to be very fine on indoor 

tracking situations. As previously mentioned, due to the 

bandwidth of the Wi-Fi signal range resolution is not 

adequate to identify and localize single targets accurately.  

Therefore to detect and track multiple targets, two 

approaches could be investigated, secondary elimination of 

weaker non-target Doppler and the use of the probability 

hypothesis density (PHD) filter for multiple targets tracking. 

The secondary elimination is a post processing method 

which complements the pre NLMS DSI filtering and helps 

to discover the Doppler generated by the weaker targets 

which may mask the wanted target. The proposed secondary 

elimination method can be the scaled frequency shifted 

CLEAN algorithm [23]. Based on multiple Doppler 

detections, the PHD is proposed for tracking different 

targets by selecting from a set of target traces hypothesis. 

 

5. CONCLUSION 
In this paper we have reported on experimental indoor 

tracking results using a Wi-Fi based passive radar. A 

Doppler only method has been applied for an indoor 

scenario to achieve high accuracy tracking in the absence of 

accurate range information. Doppler only tracking has been 

demonstrated using both Kalman and Particle filters with 

data from a software define radio (SDR) passive radar 

system using genuine Wi-Fi transmissions. The SIR particle 

filter has been shown to outperform the EKF filter when 

tracking targets with abrupt velocity vector changes.  Other 

new signal processing methods for improving tracking 

performance for rapidly changing target directions and 

multiple targets have been suggested. New algorithms for 

reduction of the signal processing overhead when using 

particle filtering are being investigated as well as PHD 

filtering for multiple target tracking. These results represent 

one of the first detailed studies of indoor target tracking 

using real passive wireless radar data. 
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