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ABSTRACT 
Effective and intelligent path planning algorithms designed for operation in a dynamic marine 

environment are essential for the safe operation of unmanned surface vehicles (USVs). Most of the 

current research deals with the “dynamic problem” by basing solutions on the non-practical assumption 

that each USV has a robust communication channel to obtain essential information such as position and 

velocity of marine vehicles. In this paper, a Kalman Filter based predictive path planning algorithm is 

proposed. The algorithm has been designed to predict the trajectories of moving ships as well as the 

USV’s own position in real time and accordingly assesses collision risk. For path planning a weighted 

fast marching square method is proposed and developed to search for the optimal path. The path can be 

optimised for mission requirements, such as minimum distance to travel and the most safety path by 

adjusting weighting parameters. The proposed algorithm has been validated using a number of 

simulations that include practical environmental aspects. The results show that the algorithms can 

sufficiently deal with complex traffic environments and that the generated practical path is suited for 

both unmanned and manned vessels. 
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1. INTRODUCTION 

Unmanned surface vehicles (USVs) are receiving increasing attention due to their wide 

deployment in both military and civilian applications. As there is no human operator on board, 

a USV’s autonomous navigation system plays a critical role. Figure 1 depicts the system 

structure of a typical USV navigation system. It consists of three different modules, i.e. the 

data acquisition module (DAM), the path planning module (PPM) and the advanced control 

module (ACM). A USV perceives its surrounding environment using the DAM, which acquires 

navigation information using a range of different sensors such as GPS, Inertial Measurement 
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Unit (IMU), Automatic Identification System (AIS) and marine radar. Using the data obtained, 

the algorithm in the PPM determines a safe path for the USV. The safe path includes a set of 

waypoints, which are used by the controller in the ACM as reference points to safely navigate 

the USV. 

 

 

Figure 1. The system structure of the autonomous navigation system for a USV. 

 

Of the three modules, the PPM plays the most important role in the autonomous navigation 

system. The aim of path planning is to plan an optimised trajectory connecting mission start 

and end points without colliding with any obstacle en route. It should be noted that collision 

avoidance, especially for USV navigation, is one of the most important requirements since it 

ensures the safe operation of USV. In maritime environment, both static obstacles (buoys and 

rocks) and dynamic obstacles (moving ships) present potential collision risk for the USV.  Any 

path planning algorithm should be capable of intelligently and autonomously avoiding these 

obstacles by maintaining a safe distance. 

A number of different approaches have been proposed by many researchers in the past decade 

for autonomous marine path planning. Smierzchalski [1] first used the genetic algorithms to 

search navigational paths in maritime traffic areas. The proposed algorithm was able to steer a 

ship to avoid both static and dynamic obstacles. Tam and Bucknall [2,3] also implemented the 

evolutionary algorithm for ship path planning with specific emphasis on improving the 

algorithm’s consistency and a vector field was constructed to direct the search routine towards 

the regions of interest. However, both of these research efforts suffered the problem of output 

incompleteness, a disadvantage of using this type of algorithm. To overcome this, the 

deterministic path planning algorithm has dominated USV path planning research in recent 

years. Xue et al [4] proposed an algorithm using the artificial potential field (APF) method. 

The algorithm created attractive potential fields over the planning space referring to the mission 

end point. For collision avoidance, repulsive fields surrounding each obstacle were generated. 

The final path was calculated by following the gradient of the total potential field. Another 

study undertaken by Naeem et al [5] solved searching incompleteness by adopting an improved 

A* algorithm and the line-of-sight guidance theory. Kim et al [6] reported work of USV path 

planning in a real environment by using the Theta* algorithm. This algorithm was an improved 

version of the A*, which specifically took the turning rates of the USV into consideration and 

improved the practicability of the output trajectory. However, there are also two main 

disadvantages for the deterministic path planning algorithms which prevent its wide adoption 

for applications in practical USV navigation systems. For the APF, the local minima problem 
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is the most common issue, which could lead to the failure of finding a path in a complex 

environment. In terms of the A*, a grid based searching algorithm, the non-smoothness of 

generated path also restricts implementation for USVs. 

In recent years, the Fast Marching Method (FMM) has been intensively used in robot path 

planning research. The FMM is a method that overcomes the shortcomings of the APF and the 

A* and is able to search for path with fast computational speed. A number of different 

improvements have been made to the FMM to increase its performance in various applications. 

Garrido et al [7, 8] first proposed a Voronoi Fast Marching (VFM) method, which combined 

the Voronoi graph based searching method with the FMM, to improve the safety of the path in 

cluttered environment for robot navigation. Gomez et al [9] then expanded the VFM method 

to the Fast Marching Square (FMS) in robot formation navigation application. Garrido et al 

[10] again explored the possibility of using the FMM in outdoor path planning problems. A 

weighted cost matrix was calculated before running the algorithm, and the generated path could 

be optimised for different optimisation requirements. Besides the application in robot 

navigation, the FMM has also been studied in other path planning problems. Petres et al [11] 

used the anisotropic fast marching to solve the problem of autonomous underwater vehicle in 

ocean environment with current. Xu et al [12] investigated the application of the FMM in 

inaccurate partial static environment for USVs. The algorithm had a path re-planning capability 

and can effectively plan a new path by largely maintaining the existing path.  

It is worth mentioning that although the above mentioned research effort has successfully 

achieved using the FMM in various applications with improved performance, they considered 

only a static environment or a simple dynamic environment. To implement the FMM for USV 

navigation, a dynamic path planning problem, which is mainly focused on solving the collision 

avoidance with moving obstacles, it is necessary to address the possibility of a large number 

of moving vessels in the area of interest. In [9] and [10], even though the algorithm is capable 

of avoiding obstacles collision risk was not assessed. 

Another important issue associated with the USV when dealing with the dynamic path problem 

is the uncertainty of the position of the moving obstacles [13]. Detecting other ships’ 

movements AIS, RADAR, LIDAR, etc. can be used but these systems are not infallible. For 

instance, it has been reported that AIS information is sometimes partially or fully interrupted 

meaning it is not received properly [14], making dependence impractical. It is therefore 

necessary to make the navigation system capable of predicting the trajectory of the moving 

ship (dynamic obstacle) based on current information when data is lost or delayed, and to keep 

searching for the path according to the predicted trajectory until the data connection can be re-

established.  

In this paper, a new predictive path planning algorithm is proposed to specifically address the 

dynamic path planning of USVs using a predictive methodology. The algorithm consists of two 

functionalities, i.e. the collision risk assessment (CRA) function and the path planning function. 

It is assumed that the dynamic information of moving ships, such as velocities and 

instantaneous positions, can be obtained by using on-board sensors or navigation devices. 

Based on such information, the CRA first employs the Kalman Filter (KF) algorithm to predict 

the movements of moving ships in defined time steps, and assesses the collision risks. If it is 

required to avoid the moving ship, a safe area around the ship will be generated to assist with 

collision avoidance. When planning the trajectory, a new method named weighted FMS 
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algorithm is used which follows the FMS method but with modifications allowing the 

generated path to be optimised.   

The organisation structure of this paper is as follows. Section 2 first introduces the 

fundamentals of the FMM and explains its implementation for the path planning problem. Then, 

the proposed weighted FMS method is described and compared against the conventional FMS. 

Section 3 explains the KF based position updating and estimation and the uncertainty modelling 

of moving ships. The detailed predictive path planning algorithm is described in Section 4 with 

simulation results presented in Section 5. Section 6 concludes the paper with discussion of 

future work.  

 

2. PATH PLANNING AND THE FAST MARCHING METHOD 

2.1. Problem formulation 

Consider a USV navigating in a 2D configuration space C, which contains two different spaces, 

i.e. the free space (𝐶𝑓𝑟𝑒𝑒) and the obstacle space (𝐶𝑜𝑏𝑠). The start point and end point are 

denoted as 𝒔 ∈ 𝐶𝑓𝑟𝑒𝑒 and 𝒛 ∈ 𝐶𝑓𝑟𝑒𝑒. The USV path planning problem can be formalised as to 

find a continuous collision free path with optimal cost: 

                                   𝜏 ∶ [0,1] → 𝐶𝑓𝑟𝑒𝑒,      𝜏(0) = 𝒔 and 𝜏(1) = 𝒛        (1) 

The cost here can be any measurements such as distance, safety or energy consumption. To 

calculate the path cost, a local cost function representing the cost of point 𝒙 is first defined as 

𝑤(𝒙). Hence, the optimal path cost D(𝒛) indicating the path cost from point 𝒔 to point 𝒛 is 

defined as: 

                                         D(𝒛) =  min
𝜏

∫ 𝑤(𝜏(𝑡))𝑑(𝑤(𝜏(𝑡)))
1

0
        (2)                                    

2.2. Eikonal equation and the fast marching method (FMM) 

The analytical solution of (2) is difficult to find however it is proved in [15] that D(𝒛) can be 

approximated by using the viscosity solution of the Eikonal equation:  

                                           ‖∇(𝐷(𝒛))‖ = 𝑤(𝒛)  (3)                                                                         

To solve the Eikonal equation, the FMM method can be used. The details of using the FMM 

in path planning are illustrated as follows. Assume the original environment map (𝑾𝑜) is 

represented in Figure 2(a). For path planning, the map is first discretised into a 2D Cartesian 

grid 𝑾𝑔. The grid is a binary distance map where each grid in collision free space has a value 

1 and grids in an obstacle area have a value 0. 

Given 𝑥𝑖,𝑗 is one of the grid points, the cost 𝐷(𝑥𝑖,𝑗) needs to be solved. The neighbour of 𝑥𝑖,𝑗 

is the point set containing four elements 𝑥𝑖+1,𝑗, 𝑥𝑖−1,𝑗, 𝑥𝑖,𝑗+1 and 𝑥𝑖,𝑗−1 (shown in Figure 2(b)). 

By using the Upwind Finite Difference approximation scheme, (3) can become: 
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max (
𝐷(𝑥𝑖,𝑗) − min (𝐷(𝑥𝑖+1,𝑗), 𝐷(𝑥𝑖−1,𝑗))

∆𝑥
, 0)

2

+ max(
𝐷(𝑥𝑖,𝑗) − min (𝐷(𝑥𝑖,𝑗+1), 𝐷(𝑥𝑖,𝑗−1))

∆𝑦
, 0)

2

=  𝑤(𝑥𝑖,𝑗) 

  (4) 

where ∆𝑥 and ∆𝑦 are the grid sizes in x and y directions respectively.  

Because the cost function  𝑤(𝑥𝑖,𝑗)  represents the distance between the current point and its 

neighbouring point, the total cost 𝐷(𝑥𝑖,𝑗)  only represents the total distance so the final 

generated path has the minimum distance cost. When running the algorithm, the cost of start 

point is first assigned with an initial value (0 in this example). Then the FMM iteratively solves 

(4) to update the distance cost for each neighbouring point to the start point. Once all neighbour 

points are updated, the point with smallest cost will be selected as the new start point and the 

FMM will continue to calculate the cost associated with the new neighbouring points. Such an 

updating scheme is the same as the Dijkstra’s updating method and will terminate until all 

points have been assigned with costs. 

 

 

(a) 

 

 

(b) 

Figure 2. (a) The original environment map 𝑾𝑜, where black area stands for obstacles and has binary value of 0, 

white area stands for collision free area and has binary value of 1. (b) Grid point 𝑥𝑖,𝑗 and its neighbours. The grid 

map has four connectivity; hence, each point has four neighbour points. ∆𝑥 and ∆𝑦 are the grid sizes in x and y 

directions respectively. 
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The updating result is shown in Figure 3(a), where a potential field has been created. The 

potential value at each point indicates local distance to the start point with the lowest potential 

located at the starting point with cost value 0. Potential values at other points increase with 

distance, with the exception of obstacles for which the potentials are infinite. The highest 

potential value is set at the end point, which indicates that the end point has the farthest distance 

to the start point. Note that potential values are only indications of distance instead of actual 

distance values. Compared with the potential field generated by other methods such as the APF, 

the potential field of the FMM has features of global minimum, which avoids local minima 

problems and increases the completeness of algorithm. Based on the potential field obtained, 

the gradient descent method is then applied to find the shortest collision-free path (shown as a 

red line in Figure 3(b)) by following the gradient of the potential field.  

 

(a) 

 

(b) 

Figure 3. (a) The potential field generated by the FMM. Potential value represents distance cost. (b) The path 

generated by following the gradient of the potential field.  
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2.3. Weighted fast marching square method 

One of the problems associated with path planning when directly using the FMM is that the 

generated path gets too close to obstacles.  Such a drawback is especially impractical for USVs, 

because near distance areas around obstacles (mainly islands and coastlines) are usually 

shallow water, which is not suitable for marine vehicles to navigate. Hence, it is important to 

keep the planned path a certain distant away from obstacles.  
 

To tackle this problem the FMS method proposed by [9] for indoor mobile robots is used and 

modified in this paper. A difference between the FMM and the FMS is that the FMS takes the 

safety cost of path into consideration by running the FMM twice. When running the FMM for 

the first time, the algorithm chooses all the points representing obstacles as start points and 

generates a safety map 𝑾𝑠 (Figure 4(a)). In the 𝑾𝑠, each point has been given a value ranging 

from 0 to 1, and the further the distance to the obstacle is, the higher the value. Such values can 

be viewed as indices to indicate the safety of local points. Low values represent current 

locations may be too close to obstacles and consequently may not be safe to proceed; hence 

USVs should be encouraged to keep travelling in the areas with high index value. After the 

generation of 𝑾𝑠, the FMM will be used again on the 𝑾𝑠 to search for the safest path. However, 

such method is done at the sacrifice of total distance cost since it can only maximise the safety 

of path. 

Hence, in this paper, a weighted synthetic map W is proposed to replace the 𝑾𝑠 in the FMS to 

improve the optimisation result. The W is calculated as the weighted combination of distance 

map 𝑾𝑑 and safety map 𝑾𝑠:  

 𝑾 =  𝛼 ∗ 𝑾𝑠 + 𝛽 ∗ 𝑾𝑑  (5)                                                         

and 

                                                        𝛼 + 𝛽 = 1  (6)                                                                       

where 𝛼  and 𝛽  are two weighting values called distance map weighting and safety map 

weighting. By adjusting these two weighting values, the algorithm can generate the path 

according to different task requirements. For example, in the case that USV is equipped with 

limited energy, minimum total distance is the primary requirement; hence, distance map 

weighing 𝛼 is larger than safety map weighting 𝛽 when synthetic map W is generated. It should 

be noted that apart from these two maps, other maps specifying task requirements can also be 

added into the synthetic map W to increase the algorithm’s capability.  

Then, over the synthetic map W, the FMM is run for the second time to search for the final 

trajectory. Figure 4(b) shows the path generated by selecting different weightings. The path in 

blue has two equal weightings, which makes the trajectory have both a balanced distance and 

safety cost and it therefore chooses to stay further away from the central island; whereas the 

path in green has more emphasis on distance cost in achieving the shorter distance with the 

cost of being closer to the obstacle.  
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(a) 

 

(b) 

Figure 4. (a) Safety map 𝑾𝑠. In the map, the higher the value is, the safer the area will be. (b) Two different 

paths by using different weighting values.  

3. STATES PREDICTION AND COLLISION RISK ASSESSMENT OF MOVING 

SHIPS 

It is assumed in this paper that moving ship’s information is obtained via AIS, which is one of 

the most effective and widely used devices in maritime navigation. The broadcasting 

mechanism of AIS is illustrated in Figure 5. In practice, AIS automatically broadcast 

information at regular intervals with the transmission consisting of two sections, i.e. the data 

receiving point and the data waiting period. At the data receiving point, information including 

velocity, position and navigational status can be obtained; whereas during the data waiting 

period, no information is exchanged. The length of the data waiting period is various based on 

different AIS classes, and for a class B AIS device default waiting time is 30 seconds.  
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Figure 5. AIS broadcasting mechanism. The transmission is consisting of two different periods. At the data 

receiving point, AIS information is received and updated. During data waiting period, AIS information is in 

absence. 

 

It should be noted that a certain degree of information uncertainty is associated with AIS 

transmission. This is because at each data receiving point, information is inaccurate as signal 

noise is apparent, which is especially evident in harsh environment. Also, during the data 

waiting period, such uncertainty is more serve as there is no awareness of moving ships. 

Therefore, to increase the accuracy of moving ship’s information, a Kalman Filter (KF) based 

predictor is proposed in this paper. There are two processes composing the predictor, i.e. the 

updating process and the estimating process (Figure 6). The updating process works at each 

data receiving point by using the KF algorithm to filter information noise. When AIS data is 

not received, the estimating process based on the KF’s prediction function will be employed to 

continue provide an estimation of moving ships. Therefore, by using the proposed position 

predictor, it is possible to be aware of the moving ship’s situation in anytime, which facilitates 

the path planning algorithm to determine an optimal trajectory. Specific explanations of such 

predictor will be provided in following sections. 

 

 

Figure 6. KF based predictor algorithm. 
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3.1. Kalman filter algorithm 

As a linear recursion algorithm, the KF is able to estimate the state of a dynamic system by 

following the least mean square error principle. Compared with other filters such as the 

Bayesian estimation, the KF has faster computational speed, which makes it more suitable to 

be implemented for USV path planning, where a quick decision making system is always 

preferred. In addition, the KF employs a recursive principle only requiring the current and 

previous time step states to make the estimation, which makes it as a resource efficient 

algorithm suitable for online real time application. The recursive estimation process of the KF 

mainly involves two different equations, i.e. the state transition equation and the observation 

equation: 

                                                    𝑋𝑘+1 = 𝐴𝑘𝑋𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘,                           (7)   

                                                     𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑣𝑘                                              (8) 

where in (7) 𝑋𝑘 is the system state vector at time k, 𝐴𝑘 is the state transition matrix and 𝐵𝑘 is 

the control input matrix applied on the control input 𝑢𝑘. In (8), 𝑍𝑘 is the system observation 

vector at time k and 𝐻𝑘  is the observation matrix. 𝑤𝑘  and 𝑣𝑘  are the transition noise and 

observation noise respectively. 

The KF algorithm is summarised in Figure 7, which consists of two main processes, i.e. the 

Prediction Process and the Update Process. The algorithm starts by taking the inputs of the 

initial estimation of the system 𝑥̂0 and the associated system uncertainty 𝑃0. Based on these 

two values, the Prediction Process is first employed to predict the system state (𝑥̂𝑘|𝑘−1) and the 

according system uncertainty (𝑃𝑘|𝑘−1 ) for next time step. Then, a KF gain (𝐾𝑘 ) can be 

calculated and used as the input for the Update Process together with system measurement 𝑍𝑘. 

The Update Process updates and corrects 𝑥̂𝑘|𝑘−1and 𝑃𝑘|𝑘−1  to 𝑥̂𝑘|𝑘  and 𝑃𝑘|𝑘  with improved 

accuracy and passes them back to Prediction Process as new inputs for next time step. 

 

 

Figure 7. Kalman filter recursive process. 
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3.2. Position update of moving ships 

When implementing the KF for a position update in the maritime environment, the system state 

vector can be expressed as: 

                                                             𝑋 = [𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦] 𝑇                                            (9) 

where 𝑥 and 𝑦 represent the position in x direction and y direction, 𝑣𝑥 and 𝑣𝑦 are velocities in 

x and y direction. The movement of the ship is assumed to belong to the constant velocity 

model (CVM), which is one of the most common models used for marine vessel. The 

movement equation is: 

                                                          𝑋𝑘+1 = 𝐴𝑘𝑋𝑘 + 𝐺𝑘𝑎𝑘                                                 (10) 

with 

                                                         𝐴𝑘 =

[
 
 
 
 
1   0    ∆𝑇  0

0   1    ∆𝑇  0

0   0     1    0

 0   0     0    1 ]
 
 
 
 

                                             (11)  

and 

                                                           𝐺𝑘 =

[
 
 
 
 
∆𝑇2

2
0

0
∆𝑇2

2

𝑇 0
0 𝑇 ]

 
 
 
 

                                                   (12) 

where ∆𝑇 is the sampling period and 𝑎𝑘 is defined as: 

                                                              𝑎𝑘 ~ 𝑁(0, 𝜎2)                                                  (13) 

which is a zero-mean white noise to model the uncertain accelerations in x and y directions. 

Note that there is no 𝐵𝑘 term in (10) as the control input of the moving ship is unknown. Instead 

𝛼𝑥 and 𝛼𝑦 with small values are put into the system to model the effect of the unknown input, 

which cause small deviation for the velocities in according direction; the ship modelled by (10) 

will have nearly constant velocity and is hence called the CVM. Now, (7) can be rewritten as: 

                                                         𝑋𝑘+1 = 𝐴𝑘𝑋𝑘 + 𝑤𝑘,                                                    (14) 

with 

                                                             𝑤𝑘 ~ 𝑁(0, 𝑸)                                                          (15) 

and 

                                          𝑸 =

[
 
 
 
 
 
 
∆𝑇4

4
0

0
∆𝑇4

4

∆𝑇3

2
0

0
∆𝑇3

2

∆𝑇3

2
0

0
∆𝑇3

2

∆𝑇2 0
0 ∆𝑇2

]
 
 
 
 
 
 

𝜎2                                          (16) 
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Because only the position coordinates of the moving ship need to be estimated, the observation 

vector 𝑍𝑘 is now in the form of [𝑥 , 𝑦]𝑇 and (8) is written as: 

                                             [
𝑥(𝑘)
𝑦(𝑘)

] = [
1 0 0 0
0 1 0 0

] 

[
 
 
 
𝑥(𝑘)
𝑦(𝑘)
𝑣𝑥(𝑘)
𝑣𝑦(𝑘)]

 
 
 

+ 𝑣𝑘                              (17) 

where 𝑣𝑘 is used to simulate the measurement noises as a Gussian noise with zero mean and 

standard deviation 𝜎𝑧. Based on (14) and (17), the KF can be used at each position update point 

to track moving ships.  

3.3. Position prediction of moving ships 

During the transmission interval (the data waiting period), the perception of the moving ship’s 

positions is still of importance to ensure the safe navigation of USV. However, since there is 

no accurate information established during this period, the USV can only make a prediction of 

ship’s travel information, and therefore only the Prediction Process of the KF algorithm loop 

(See Figure 7) is repeatedly executed to calculate the possible positions of moving ship based 

on latest known information. It should be noted that such prediction process has no corrections 

and will possibly accumulate large errors if the prediction time is too long. Therefore, it is 

important to carefully select the prediction time. Additionally, as new moving ship’s 

information is received the KF loop continues to be employed to compensate for the generated 

errors. 

3.4. Collision risk assessment and modelling of moving ships 

Once the path of the moving ship in next time periods have been predicted, to assess the 

collision risk the trajectory of USV itself will need to be estimated. Assume that USV is 

navigating in a 2D space and has access to its own travel information such as current position, 

velocity, heading angle and turning rate; according to the kinematic equations of USV, the 

nonlinear estimation model of USV itself is established as: 

 {
𝑥(𝑘 + 1) = 𝑥(𝑘) + ∆𝑡 ∗ 𝑣(𝑘) cos𝜑(𝑘)

𝑦(𝑘 + 1) = 𝑦(𝑘) + ∆𝑡 ∗ 𝑣(𝑘) sin𝜑(𝑘)
 (18) 

 𝜑(𝑘 + 1) = 𝜑(𝑘) + ∆𝑡 ∗ 𝛼(𝑘) (19) 

where 𝑥(𝑘) and 𝑦(𝑘) represent the position in x and y directions at time step k, 𝑣(𝑘) is the 

velocity magnitude at time step k with heading angle as 𝜑(𝑘) and 𝛼(𝑘) is the heading angle 

turning rate. Then, as shown in Figure 8 based on these two predicted paths, the smallest 

distance between them can be calculated. If this distance is less than the predefined safety 

distance two ships will have the possibility of clashing, hence appropriate collision avoidance 

manoeuvres are needed.  
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Figure 8. Collision risk assessment. Minima distance between two predicted paths are calculated. Such distance 

will be compared with predefined safety distance to determine the possibility of collision.  

 

To prevent collision with dynamic obstacles, most studies in path planning research have 

adopted the concept of a ‘safety area’ (SA) (‘ship domain’ in marine vessels collision 

avoidance) to model the area from which all other vehicles are prohibited. The shape of such 

an area is normally circular and the centre of the area is located on the obstacle’s instantaneous 

position. However, in USV path planning, a circular shape area is not always the most practical, 

especially when a ship is travelling at high speed, which tends to hold greater risk at the bow. 

It is more realistic to assign the shape of safety area of a moving ship according to its velocity.  

Another important feature of SA is the area which should be consistent with the static obstacles’ 

representation in the planning space so that a reasonable map W can be constructed and used 

by the algorithm to search for the path. When dealing with the dynamic obstacle avoidance 

problem, the whole planning time period is discretised into several infinitesimal time periods, 

∆t, and during each time step the moving ship is regarded as a ‘static’ obstacle. Hence, the SA 

should be formed to have the dynamic safety map 𝑾𝑑 indicating the degree of collision risk 

within the area i.e. in same way the safety map (𝑾𝑠) maps representing static obstacles, such 

that dynamic obstacles could be integrated with the static obstacles to generate a synthetic 

safety map.  

Therefore, the two-dimensional Gaussian distribution is selected to represent SA with the form 

𝐩~𝒩(μ, Σ). The mean vector μ is set to be zero so that the Gaussian distribution can be centred 

at the position of the moving ship. The covariance matrix Σ is the diagonal matrix with non-

diagonal elements to be zero. The shape of Gaussian distribution is determined by two diagonal 

elements 𝜎11and 𝜎22, and they will change according to the ship’s velocity as: 

                              𝜎11 = {
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝐴𝑟𝑒𝑎𝑆𝑐𝑎𝑙𝑎𝑟,        𝑖𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ≥ 𝑉𝑚𝑖𝑛

𝑉𝑚𝑖𝑛 ∗ 𝐴𝑟𝑒𝑎𝑆𝑐𝑎𝑙𝑎𝑟,               𝑖𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 < 𝑉𝑚𝑖𝑛
’  (20) 
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                       𝜎22 = { 

𝑉𝑚𝑎𝑥 ∗ 𝐴𝑟𝑒𝑎𝑆𝑐𝑎𝑙𝑎𝑟,                 𝑖𝑓 𝑉𝑚𝑎𝑥 < 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝐴𝑟𝑒𝑎𝑆𝑐𝑎𝑙𝑎𝑟,        𝑖𝑓 𝑉𝑚𝑖𝑛 ≤ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ≤ 𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛 ∗ 𝐴𝑟𝑒𝑎𝑆𝑐𝑎𝑙𝑎𝑟,               𝑖𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 < 𝑉𝑚𝑖𝑛

  (21) 

where 𝐴𝑟𝑒𝑎𝑆𝑐𝑎𝑙𝑎𝑟 is a scalar factor to control area’s size, 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are two thresholds 

to regulate the shape of the area. It can be deduced that when the ship is moving with low 

velocity, a near circular shape will be assigned to it. For example, if the ship is travelling with 

a velocity less than 𝑉𝑚𝑎𝑥, then 𝜎11 and 𝜎22belong to the same equation according to (20) and 

(21). The values of these two elements increase according to the velocity, which further makes 

the radius of the generated SA increase relatively to the velocity’s magnitude and direction.  If 

the ship’s velocity is higher than 𝑉𝑚𝑎𝑥, an elliptical shape is generated to model the safety area. 

In this time the major axis (𝜎11) is increasing proportionally to the velocity; whereas the minor 

axis (𝜎22) is settled. Once the area has been determined, the centre of it will be placed at the 

moving ship’s position(𝑥𝑖, 𝑦𝑖), and if the elliptical is in use, the long axis will be in the direction 

of velocity with the short axis orthogonal to it.   

It should be noted that the 𝑾𝑑  constructed by conventional two-dimensional Gaussian 

distribution is still different from 𝑾𝑠. This is because in two-dimensional Gaussian distribution, 

the highest probability density is located at the centre point. This means the points close to the 

moving ship have higher safety values, which is the opposite to the safety map 𝑾𝑠, where high 

safety index values are located away from obstacles. Therefore, to address it, a reverse 

smoother function 𝑾𝑑 = −𝑾𝑑 + 1 is used to scale the 𝑾𝑑  to the same range as 𝑾𝑠’s. In 

Figure 9(a) and 9(b), two different safety areas for high speed ship and low speed ship are 

represented respectively. It can be observed that the safety index within the area is the same to 

𝑾𝑠’s, i.e. the centre area (points closer to ships) has a lower index value than the edge. 

 

 

(a) 
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(b) 

Figure 9. Two different safety areas for (a) high speed ship and (b) low speed ship. Low value means the area is 

more dangerous.  

 

4. PREDICTIVE PATH PLANNING FOR USV 

Based on the weighted FMS method and the collision risk assessment algorithm introduced in 

the previous two sections, the predictive path planning algorithm for USV can now be 

developed. Compared with other maritime path planning algorithms, the algorithm in this work 

has the following features: 

• Completeness: As mentioned in the introduction section, some path planning 

algorithms developed by using the evolutionary searching algorithm suffer from the 

problem of searching incompleteness, which means the algorithm may fail to find a 

path in complex environment. The algorithm developed in this paper is based the FMM, 

which adopts a deterministic searching scheme ensuring  a path can always be found as 

long as it exists.  

• Fast computational time: the FMM, as the base method for this algorithm, is fast in 

dealing with searching problem due to its low computation complexity (𝒪(Nlog(N)) 

for a grid map having total grid number of N). Such a feature is especially ideal for 

practical path planning, where a fast decision making process is preferred to ensure 

safety. 

• On-line planning scheme: The algorithm in this paper implements a true on-line 

reactive planning scheme. An optimal path is first calculated as the guidance trajectory, 

and USV will keep tracking it as long as no new collision risk is determined by the 

prediction algorithm. Such schemes will, to a large extent, maintain navigation route 

and reduce unnecessary manoeuvres. 
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The detail of the algorithm is described here with flow chart shown in Figure 10: 

1. The algorithm first takes in the navigation map, where static obstacles have been clearly 

represented and stored as an original binary map 𝑾𝑜 . Such a map can be obtained 

through commercial charts, such as marine navigation charts. Also, advanced sensor 

technology, such as the Simultaneous Localisation and Mapping (SLAM), can be used 

to construct the map of the unknown environment while the USV is navigating. 

2. Based on the map received, the safety map 𝑾𝑠 will be first generated and combined 

with 𝑾𝑜 to have an initial map 𝑾𝑖𝑛𝑖. A collision free path 𝝉𝑖𝑛𝑖 in such environment 

will be sought by using the FMM and stored as the guidance route. By following 𝝉𝑖𝑛𝑖, 

the USV will start to proceed towards the end point.  

3. While following the path, the USV will simultaneously monitor the positions and 

velocities of itself as well as other moving ships. The prediction algorithm will now be 

called to estimate the trajectory of the USV and other ships in next few time steps, and 

determine if there will be a collision within such time period. 

4. If the collision risk exits, a new path should be generated. The dynamic safety map 𝑾𝑑 

will be constructed around each moving obstacle.  

5. The 𝑾𝑑 will then be merged with the safety map 𝑾𝑠 as well as the original binary map 

𝑾𝑜 to generate a new synthetic map W. Based on W, a new path 𝝉𝑛𝑒𝑤 will be sought 

by applying FMM again. 𝝉𝑛𝑒𝑤 is the optimised trajectory without colliding with both 

static and dynamic obstacles in time step t, and the USV will follow it until the next 

waypoint has been reached.  

6. When the new waypoint is reached, the algorithm will determine if it is the final target 

point. If it is not, the algorithm will jump back to step 3 and move towards the next 

waypoint.  
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Figure 10. Algorithm flow chart of the predictive path planning. 
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5. SIMULATIONS AND DISCUSSIONS 

In this section, simulations have been carried out in three different cases to validate the 

algorithm proposed. First, the proposed predictor is used to process a series of inaccurate 

position information based on real AIS data from Marine Traffic service available at 

http://www.marinetraffic.com/. Then, to illustrate the capability of the predictive path planning 

algorithm, simulations have been carried out in two different testing environments. The aim of 

the first test is to validate the fundamentals of the predictive path planning algorithm; hence, a 

self-constructing area is used as the simulation environment with one moving obstacle involved. 

To further test the capability of the algorithm dealing with a practical navigation problem, the 

second test is run in a real maritime environment. Multiple moving obstacles with different 

transverse velocities have been added into the environment to construct a complex traffic 

situation. The algorithm has been coded in Matlab 2013(b) and simulations are run on the 

computer with a Pentium i7 3.4 Ghz processor and 4Gb of RAM.  

5.1. Simulation of the proposed predictor by using AIS information 

The aim of this simulation is to test the capability of the proposed predictor processing AIS 

information. Real AIS information from Marine Traffic online service has been used as the 

input data. In Figure 11(a), a vessel is travelling to Portsmouth harbour through a channel with 

the speed of 9.2 knots and the course of 334°.  

5.1.1. Coordinate transformation of AIS position information 

The AIS’s position information is coded in longitude and latitude based on WGS84 (World 

Geodesic System 1984); whereas the speed of the vessel is determined in knots. To facilitate 

the implementation of the KF, it is important to first convert the longitude and latitude position 

onto the Cartesian coordinate. Assume that the vessel’s longitude and latitude coordinate is 

(𝜆, 𝜑), the origin point of Cartesian coordinate is (𝜆𝑜 , 𝜑𝑜) and the vessel’s Cartesian coordinate 

is (𝑥, 𝑦), the coordinate transformation can be achieved by using the Gauss-Kruger Projection 

as: 

            𝑥 = 𝑋 + 𝑁𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑Δ𝜆2[
1

2𝜌2
+

𝑐𝑜𝑠𝜑Δ𝜆2

24𝜌4
∙ (5 − 𝑡𝑎𝑛2𝜑 + 9𝜂2 + 4𝜂4) +

𝑐𝑜𝑠4𝜑Δ𝜆4

720𝜌6
∙

                                                           (61 − 58𝑡𝑎𝑛2𝜑 + 𝑡𝑎𝑛4𝜑)]                                              (22) 

            𝑦 = 𝑁𝑐𝑜𝑠𝜑[
∆𝜆

𝜌
+

𝑐𝑜𝑠𝜑2

6𝜌3
∙ (1 − 𝑡𝑎𝑛2𝜑 + 𝜂2) ∙ ∆𝜆3 +

𝑐𝑜𝑠4𝜑

120𝜌5
∙ (5 − 18𝑡𝑎𝑛2𝜑 + 𝑡𝑎𝑛4𝜑 +

                                                        14𝜂2 − 58𝜂2𝑡𝑎𝑛2𝜑) ∙ ∆𝜆3]                                                 (23) 

where ∆𝜆 =  𝜆 − 𝜆𝑜, 𝑋 =  𝑋(𝜑) − 𝑋(𝜑𝑜) and other parameters can be referred to [16]. 

5.1.2. Simulation results 

The simulation area has first been converted into a binary map, which has the dimension of 

500 pixels * 500 pixels representing a 2.5 km * 2.5 km area (1 pixels = 5 m). The vessel keeps 

to an unaltered course thereby forming a straight line trajectory. The AIS transmission interval 

is 1 minute, during which the vessel’s navigation information is unknown. To simulate the fact 

that AIS is inaccurate due to transmission disturbance, the observation noise has been modelled 

as a white Gaussian noise sequence with a covariance matrix 𝑹 = 1.52𝑰2×2 . In addition, the 

system state disturbance is also modelled as a zero-mean white Gaussian noise with a 

covariance matrix 𝑸 = 0.012𝑮𝒌𝑮𝒌
𝑻.  
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Simulation results showing how vessel’s position information is updated and predicted in 10 

minutes are presented in Figure 11(b). Since the simulation covers a time period of 10 minutes, 

10 consecutive data receiving points are plotted with the vessel’s true position drawn as black 

square markers and the inaccurate observed position as red circle makers. Positions obtained 

by using the KF are plotted with blue star makers. From an enlarged observation in Figure 

11(b), it can be observed that the KF can evidently increase the accuracy by providing a 

position closer to the true position point. Such observation can further be verified in Figure 

11(c), which shows the position errors by using the KF in x and y axis. In the beginning, errors 

in both x and y axis are as big as 9 metres. However, after the KF is iteratively employed, the 

errors are decreasing, and after 3 minutes they become stable under 4 metres, which 

demonstrates that accurate positions can be obtained by using the proposed algorithm. 

During each AIS transmission interval, the vessel’s information is unknown, and the predictor 

uses previous updated position information to calculate the possible positions of the vessel. It 

is assumed in this paper that the predictor makes the predictions every 12 seconds, and the 

predicted results are plotted with green dot makers in Figure 11(b). It can be observed that the 

predicted positions stay close to the true trajectory of the vessel, which means that the predictor 

is able to continue to provide the vessel’s positions even though the AIS data is absent.  

 

 

(a) 



20 

 

 
(b) 

 

 
(c) 

Figure 11. Simulation results of the proposed predictor processing AIS information. (a) AIS information with the 

vessel having the speed of 9.2 knots and the course of 334°. (b) Simulation results with true position plotted with 

black square markers, observed position plotted with red circle markers, position provided by the KF plotted with 

start markers and predicted positions with green dot markers. (c) Position errors in x and y axis by using the KF.  
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5.2. Simulation in self-constructing map 

The self-constructing environment is a binary map shown in Figure 12(a) with one ‘island’ in 

the middle and landmass located at the top and bottom corner. The area has been built to 

simulate a close range encounter situation with the dimension being 500 m * 500 m. The 

simulation configurations of the USV and the moving ship (MS) are listed in Table 1. 

Algorithm’s prediction time period is set as 10, which means that the USV is able to estimate 

its own the movements as well as the MS for the next 10 time steps. Also, it is assumed the 

AIS’s transmission interval is every 5 time steps, which makes the USV unable to continuously 

perceive the MS’s position information thereby requiring position estimation.  

 

Table 1 Simulation configurations for the USV and the moving ship (MS) 

 USV Moving ship (MS) 

Start point (m) (26, 241) (478,123) 

End point (m) (476,241) (403,123) 

Speed (knots) 10 9 

Course  Depends on the path 180 degrees 

 

When the USV is launched from the start point, it first reads in the environment map 𝑾𝑜 and 

calculates the safety map 𝑾𝑠. Equal weightings (𝛼 = 0.5, 𝛽 = 0.5) for these two maps are 

used to generate the synthetic map 𝑾𝑖𝑛𝑖 resulting a ‘balanced’ optimised path. As represented 

by the black line in Figure 12(a), the initial path generated by the algorithm is able to avoid 

obstacles and reach the target point. Figure 12(b) illustrates the synthetic map 𝑾𝑖𝑛𝑖, where it 

is shown that the path tends to stay in the ‘brighter’ area, which is much safer. At initial time 

step, the instantaneous navigation information is assumed to be available to the USV via AIS. 

In Figure 12(a), the position produced by the KF is plotted with the blue square marker. It stays 

close to the red circle marker representing the MS’s true position, which proves that the 

algorithm provides accurate positional information. Also, possible positions of the MS in next 

10 time steps are estimated by the algorithm as small blue markers plotted in Figure 12(a). 

Based on this, the algorithm determines that the MS currently has no collision risk to the USV, 

hence the dynamic safety map 𝑾𝑑 is not integrated with 𝑾𝑖𝑛𝑖 at this point.  

Figure 12(c) and Figure 12(d) show how the algorithm works during the data waiting period 

when the AIS signal is unavailable. As presented in Figure 12(c), since there is no MS’s 

position information, the algorithm makes an estimation and therefore only estimated positions 

are plotted. Collision risk has yet to be presented hence the path is unchanged. Figure 12(d) 

illustrates the synthetic map. 

Figure 12(e) represents the navigation situation at time step 40. The algorithm now determines 

that if the USV keeps tracking the current path, it will possibly collide with the MS sometime 

within the next 10 time steps. Hence, the current path needs must change to avoid the collision 

and in Figure 12(f) a small dynamic safety map 𝑾𝑑_40 is generated by the method described in 

Section 3 and has been integrated with 𝑾40. The path is now re-calculated by the algorithm to 

avoid the MS as plotted with black line in Figure 12(e).  

Figure 12(g) and Figure 12(h) make a record of how the USV passes by the MS at time step 

52. In Figure 12(h), it shows that the USV is able to find the safest path by choosing to pass 

through the edge of the dynamic safety area, which maintains a satisfactory distance from the 
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MS. Once the USV clears all collision risks, the path is altered again to seek an optimal path 

towards the target point with no dynamic safety map adding onto the synthetic map any more 

(Figure 8(i), Figure 8(j)). The USV can eventually arrive at the target point at time step 97 (See 

Figure 8(k) and Figure 8(l)).  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) (h) 

  
(i) (j) 

  

(k) (l) 

 

Figure 12. Simulation results in the self-constructing area. Results are represented in both binary maps and 

according synthetic maps. (a) – (b) Time step = 5. (c) – (d) Time step = 8. (e) – (f) Time step = 40. (g) – (h) Time 

step = 52. (i) – (j) Time step = 57. (k) – (l) Time step = 97. 
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5.3. Simulation in practical environment 

The second test considers a practical maritime environment. The area near Plymouth harbour 

shown in Figure 13(a) is selected as the testing area, which has 2.5km*2.5km dimension. The 

selected area is first converted into a binary map shown in Figure 13(b) with 500*500 pixels 

dimension. To validate the capability of the algorithm dealing with complex traffic situations, 

three moving ships are added into the environment. 

Similar to the first case, an initial guidance path is first generated by the algorithm and shown 

in Figure 13(b) as the black line. At time step 18 (Figure 13(d)), the collision risk with MS1 is 

identified by the USV; hence the dynamic safety area of MS1 is created and added into the 

synthetic map as 𝑾18(Figure 13(e)).The USV now re-plans its path to avoid the MS1. At time 

step 43, collision risk with MS1 no longer exists, but there is now a new possible collision risk 

with MS2. Therefore, only the dynamic safety area of MS2 emerges in the map as 𝑾43 (shown 

in Figure 13(g)). As the USV proceeds, the traffic becomes more complicated, and at time step 

52, MS3 starts to present a collision threat to the USV while MS2 is still collision risk, which 

makes the USV need to take actions to avoid both of these two ships. As shown in Figure 13(i), 

dynamic safety areas for both MS2 and MS3 are integrated with  𝑾52 . Based on 𝑾52 , a 

collision free path avoiding both static and dynamic threats can be sought, which is shown as 

a black line in Figure 13(i). Figure 13(j) - Figure 13(m) show how the USV avoids the MS3 

and reaches the final target point.  

The simulation results show that our algorithm is able to safely navigate the USV in a practical 

environment. When avoiding the moving ships, the algorithm can ‘intelligently’ identify the 

collision risks in real-time and appropriately adjust the path to guarantee safe passage. In terms 

of the computational time, due to the ‘reactive’ avoidance scheme mentioned previously, the 

whole process can be finished in 11.61s. However, it should be noted that such computation 

time only refers to the simulation time not the actual journey time. 

 

 
(a) 
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(b) (c) 

  

(d) (e) 

 

 
 

(f) (g) 
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(j) (k) 

 

 

 

 

(l) (m) 
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Figure 13. Simulation results in the practical area. (a) The simulation area near Plymouth harbour. (b) - (m) The 

sequence of movements of USV and its synthetic map at according time step. 

 

6. CONCLUSTIONS AND FUTURE WORK 

6.1. Conclusions  

This paper represents a new predictive path planning algorithm for USV navigation. To achieve 

fast computational time and to produce a smooth trajectory, the FMM is used as the base 

algorithm. A weighted FMS algorithm has been proposed to improve the optimisation 

performance. By using the algorithm, the generated path can be optimised in terms of both total 

distance and path safety by adjusting corresponding weightings. Such method makes the path 

more adaptive in various applications, where the minimum distance has higher priority, and in 

other cases safety requirement is more important.  

Another feature of the algorithm is its capability for dealing with dynamic obstacles. Fully 

reactive dynamic path planning has been achieved in this paper by using the KF algorithm. 

Based on the path predicted, the algorithm is able to alert the coming collision risk immediately 

and generate a new path in shorter time. In order to deal with different dynamics of the moving 

ship, a variable two-dimensional Gaussian distribution is used to model the dynamic safety 

area (𝑾𝑑).  

The algorithm developed in this paper furthers the development of the research effort for 

autonomous navigation of USVs. Due to the integration of the KF and the path planning 

algorithm, the newly developed algorithm improves robustness of the received information and 

predicts the movement of dynamic obstacles for the case of loss of data or disturbed 

communications hence overcoming  AIS signal blockage and excessive signal noise problems.  

6.2. Future work  

In terms of future work, several improvements can be done as: 

1. Multiple optimisations: Currently, only two optimisation disciplines (total distance 

and path safety) are used. In the next work, more disciplines such as energy 

consumptions, average speed and ocean current, can be employed to make the path 

capable of dealing with different requirements. Fortunately, this is not difficult to 

achieve. Based on the idea in [9], different optimisation requirements can be converted 

into a sort of ‘weighted map’ and added above the existing synthetic map W, which is 

the input of the FMM. The possible problem is how to use reasonable values to 

represent different optimisation requirements.  

2. Algorithm’s practicability: Even though the algorithm has been tested in a practical 

environment in this paper, the output path can further be improved in terms of the 

practicability. COLREGS (International collision avoidance rules for marine vehicles) 

should be used to guide the direction of the path. In the COLREGS, collision avoidance 

manoeuvres have been specified according to different encounter situations. Since most 

vessels still adopt rules in COLREGS when actions are needed, it is better for the USV’s 

path planning algorithm implement these rules.  

3. Dynamic obstacles: In this paper, only CVM has been used to model the movement of 

moving ship. This is based on the situation that vessels normally keep a constant speed 

en route due to the manoeuvrability issue. However, in reality, more complicated 
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movement could also be taken by vessels, course change being one of the most common. 

A coordinated turning model can be used to model such movement. It should be noted 

that with the change of the movement model, different dynamic models could be used 

in state transition equation of the KF.  

 

 

ACKNOWLEDGEMENT 

This work is supported by the ACCeSS group.The Atlantic Centre for the innovative design 

and Control of Small Ships (ACCeSS) is an ONR-NNRNE programme with Grant no. N0014-

10-1-0652, the group consists of universities and industry partners conducting small ships 

related researches. The first author would like to thank the China Scholarship Council (CSC) 

for supporting his Studies at the University College London, UK. The authors are also indebted 

to Konrad Yearwood for his valuable critique of this paper. 

 

 

 

 

 

REFERENCES 

1. Smierzchalski R. Evolutionary trajectory planning of ships in navigating traffic areas. 

Journal of Marine Science and Technology 1999; 4: 1–6. 

2. Tam C, Bucknall R. Collision risk assessment for ships. Journal of Marine Science and 

Technology 2010a; 15 (3): 257-270. DOI: 10.1007/s00773-010-0089-7.  

3. Tam C, Bucknall R. Path planning algorithm for ships in close range encounters. 

Journal of Marine Science and Technology 2010b; 15 (4): 395-407. DOI: 

10.1007/s00773-010-0094-x. 

4. Xue Y, Clelland D, Lee B.S, Han D. Automatic simulation of ship navigation. Ocean 

Engineering 2011; 38 (17-18): 2290–2305. 

5. Naeem W, Irwin GW, Yang A. COLREGs-based collision avoidance strategies for 

unmanned surface vehicles. Mechatronics 2012; 22 (6): 669-678. DOI: 

http://dx.doi.org/10.1016/j.mechatronics.2011.09.012. 

6. Kim H, Kim D, Shin JU, Kim H, Myung H. Angular rate-constrained path planning 

algorithm for unmanned surface vehicles. Ocean Engineering 2014; 84: 37-44. DOI: 

http://dx.doi.org/10.1016/j.oceaneng.2014.03.034. 

7. Garrido S, Moreno L, Blanco D. Exploration of a cluttered environment using Voronoi 

Transform and Fast Marching. Robotics and Autonomous Systems 2008; 56 (12): 1069-

1081. DOI: http://dx.doi.org/10.1016/j.robot.2008.02.003. 

8. S. Garrido, L. Moreno, D. Blanco and M. L. Munoz. Sensor-based global planning for 

mobile robot navigation. Robotica 2007; 25: 189-199. 

DOI:10.1017/S0263574707003384. 

9. Gómez JV, Lumbier A, Garrido S, Moreno L. Planning robot formations with fast 

marching square including uncertainty conditions. Robotics and Autonomous Systems 

2013; 61 (2): 137-152. DOI: http://dx.doi.org/10.1016/j.robot.2012.10.009. 

10. Garrido S, Malfaz M, Blanco D. Application of the fast marching method for outdoor 

motion planning in robotics. Robotics and Autonomous Systems 2013; 61 (2): 106-114, 

ISSN 0921-8890. DOI: http://dx.doi.org/10.1016/j.robot.2012.10.012. 

http://dx.doi.org/10.1016/j.mechatronics.2011.09.012
http://dx.doi.org/10.1016/j.oceaneng.2014.03.034
http://dx.doi.org/10.1016/j.robot.2008.02.003
http://dx.doi.org/10.1016/j.robot.2012.10.009
http://dx.doi.org/10.1016/j.robot.2012.10.012


29 

 

11. Petres, Clement; Pailhas, Y.; Patron, P.; Petillot, Y.; Evans, J.; Lane, D. Path Planning 

for Autonomous Underwater Vehicles. IEEE Transactions on Robotics 2007; 23 (2): 

331-341. doi: 10.1109/TRO.2007.895057 

12. Xu B, Stilwell DJ, Kurdila AJ. Fast Path Re-planning Based on Fast Marching and 

Level Sets. Journal of Intelligent and Robotic Systems 2013; 71 (3-4): 303-317. 

13. Liu YC, Song R, Liu WW, Bucknall R. Autonomous navigation system for unmanned 

surface vehicles, in Proceedings of 13th International Conference on Computer and IT 

Application in the Maritime Industries, May 12 -14 2014, Redworth, UK. 123-135.  

14. Last P, Bahlke C, Hering-Bertram M, Linsen L. Comprehensive Analysis of Automatic 

Identification System (AIS) Data in Regard to Vessel Movement Prediction. Journal of 

Navigation 2014; 67 (5): 791-809. 

DOI: http://dx.doi.org/10.1017/S0373463314000253 

15. Sethian JA. A fast marching level set method for monotonically advancing fronts. Proc 

Natl Acad Sci USA 1996; 93 (4): 1591-1595.  

16. Liu J, Liu G. Algorithm of Coordinates Conversion in Gauss -Kruger Projection. 

Journal of Computer Simulation 2005; 22 (10): 119-121. 

 

 

http://dx.doi.org/10.1017/S0373463314000253

