
Supplement to:

Local Generalised Method of Moments: An application to point
process-based rainfall models

Jo Kaczmarska, Valerie Isham, Paul Northrop
Department of Statistical Science

University College London, Gower Street, London WC1E 6BT, UK.

S1 Introduction

This supplement provides the asymptotic derivations for the paper ‘Local Generalised Method
of Moments: An application to point process-based rainfall models’. We demonstrate the
consistency of the local mean GMM estimator of the parameter vector of the point process-
based rainfall model, and derive the asymptotic variance and bias. For ease of reference, we
start by briefly restating the notation.

We assume we have a time-series of, say 5-minute, rainfall totals over a period of n months,
with Yt defined as the vector of all the rainfall data in month t. T (Y1) . . .T (Yn) represent
vectors of summary statistics for each of the n months of the data. The parameter vector,
denoted θ, is assumed to be a function of a single covariate, X. The vector of expected values
of the statistics at the covariate value x under the model is denoted τ (θ(x)). K() is a kernel
function, with Kh(Xt − x) = h−1K{(Xt − x)/h}, where h is the bandwidth.

S2 Asymptotic derivations: consistency, variance and bias

Throughout the derivations, we assume that the regularity conditions required for standard
GMM hold (see, for example, Jesus and Chandler (2011)), except that now we condition on
the covariate, X. Conditions on τ are that it is twice differentiable with respect to θ, the
parameter vector, and that the derivatives are bounded, for all θ such that θ(x) ∈ Θ(x), a
compact subset of Rq. It is also required that ∂τ/∂θ be of full rank.

In addition, various smoothness conditions are required in order to allow local averaging.
Here we assume that the following functions are sufficiently smooth in a neighbourhood of
x0 to permit differentiation as required, and that the functions and derivatives are finite at
x0: the parameter vector function, θ(x), the design density, f(x), the conditional variance
Var[T (Y )|X = x], and the composite function τ (θ(x)). The last of these requires similar
smoothness for τ in θ. We assume also that f(x0) > 0.

The kernel function is assumed to be a continuous, symmetric density function with
∫
z2K(z) dz =

k2 6= 0 and
∫
z2rK(z) dz <∞, r = 1, 2. The kernel function does not need to be compactly

supported, but should decay fast enough to eliminate the impact of a remote data point (Fan
and Gijbels, 1996). Additional assumptions in order to simplify the asymptotic derivations
are that X is scalar, and that the evaluation point, x0, does not lie near the boundary of the
design region.
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We assume that there exists a unique, true value of the parameter vector, θ0(x) ∈ Θ(x), such
that E[T (Y )|X = x] = τ (θ0(x)) and define:

Gn(θ(x)) =
1

n

n∑
t=1

Kh(Xt − x) [T (Yt)− τ (θ(x))], (S1)

where t is the observation month, and the pairs (Xt,Yt) are assumed to be independent and
identically distributed as (X,Y ). The bandwidth is assumed to be a function of the sample
size, n, although for notational simplicity we write h rather than hn. Then the local GMM
estimator at x = x0 is given by:

θ̂(x0) = argmin{θ(x0)} Gn(θ(x0))TWn(x0)Gn(θ(x0)), (S2)

where Wn(x0) is a k × k positive-definite weighting matrix, with Wn(x0) →p W (x0). For
convenience, the sum of weights divisor of Equation (3) in the main paper is replaced by n
here, which does not affect the solution. At θ(x0) = θ̂(x0) the derivative of the minimand
in Equation (S2) is equal to zero. In this form, the equation is an example of an estimating
equation, and is given by:

0 =

[
∂Gn(θ̂(x0))

∂θ

]T

Wn(x0) Gn(θ̂(x0)) (S3)

=

{
1

n

n∑
t=1

Kh(Xt − x0)

[
∂τ (θ̂(x0))

∂θ

]}T

Wn(x0)

{
1

n

n∑
t=1

Kh(Xt − x0)[T (Yt)− τ (θ̂(x0))]

}
,

where the notation ∂Gn(θ̂(x0))/∂θ and ∂τ (θ̂(x0))/∂θ is used to represent ∂Gn/∂θ|θ=θ̂(x0)

and ∂τ/∂θ|θ=θ̂(x0) respectively (i.e. the Jacobian matrices of Gn and τ , evaluated at θ =

θ̂(x0) ).

In order for there to exist a unique value to which the estimator converges as the sample size
increases, we require that Gn(θ(x0))TWn(x0)Gn(θ(x0)) converges uniformly in probability
to a non-random function which has a unique minimum at the true value θ(x0) = θ0(x0).

Consider first the asymptotic behaviour of Gn(θ(x0)). We have:

E[Gn(θ(x0))] = E {Kh(X − x0) [T (Y )− τ (θ(x0))]}

=

∫
1

h
K

(
x− x0

h

)
E[T (Y )− τ (θ(x0))|X = x] f(x) dx. (S4)

Letting Rθ(x) = E[T (Y )− τ (θ(x0))|X = x] and making the substitution z = (x− x0)/h:

E[Gn(θ(x0))] =

∫
K(z) Rθ(x0 + zh) f(x0 + zh)dz

= Rθ(x0)f(x0) + h2

∫
K(z)z2 dz

{
1

2
R′′θ(x0)f(x0) +R′θ(x0)f ′(x0)

+
1

2
Rθ(x0)f ′′(x0)

}
+ o(h2), (S5)

where we have taken a Taylor series expansion of the product Rθ(x0 + zh) f(x0 + zh) about
x0, and noted that

∫
K(z) dz = 1 and

∫
K(z)z dz = 0. The expectation converges converges

to Rθ(x0)f(x0) provided h→ 0.
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Taking a similar approach for the variance of Gn(θ(x0)):

Var[Gn(θ(x0))]

=
1

n
Var {Kh(X − x0) [T (Y )− τ (θ(x0))]}

=
1

n
E
{
K2

h(X − x0)[T (Y )− τ (θ(x0))] [T (Y )− τ (θ(x0))]T
}

− 1

n
E
{
Kh(X − x0)[T (Y )− τ (θ(x0))]

}
E
{
Kh(X − x0)[T (Y )− τ (θ(x0))]

}T

=
1

n

∫ ∫
K2

h(x− x0) [T (y)− τ (θ(x0))] [T (y)− τ (θ(x0))]T f(y|x) f(x) dydx + O
( 1

n

)
=

1

n

∫
1

h2
K2

(
x− x0

h

) [
Var[T (Y )|X = x] +Rθ(x)Rθ(x)T

]
f(x) dx + O

( 1

n

)
=

f(x0)

nh

∫
K2(z) dz

[
Var[T (Y )|X = x0] +Rθ(x0)Rθ(x0)T

]
+ O

( 1

n

)
, (S6)

where the last line follows using a zeroth order approximation of
[
Var[T (Y )|X = x0 + zh] +

Rθ(x0 + zh)Rθ(x0 + zh)T
]
f(x0 + zh) about x0.

The variance converges to zero provided that nh→∞ as n→∞. Therefore, by the weak law
of large numbers, Gn(θ(x0)) is a consistent estimator of Rθ(x0)f(x0) if h→ 0 and nh→∞.

Since Wn(x0) →p W (x0), then, by Slutsky’s theorem, Gn(θ(x0))TWn(x0)Gn(θ(x0)) tends
to a non-random function of θ, given by:

f2(x0)Rθ(x0)T W (x0)Rθ(x0). (S7)

We have shown pointwise convergence and assumed compactness of Θ. Stochastic equicon-
tinuity is then a sufficient condition for the convergence to be uniform (Newey, 1991). Now
∂Gn(θ(x0))/∂θ is Op(1) and converges to −∂τ (θ0(x0))/∂θ f(x0), since ∂τ (θ(x0))/∂θ is a
finite matrix of constants and n−1

∑n
t=1 Kh(Xt − x0) is just the standard density estimator

of f(x0).

Then, by the Mean Value Theorem for vector valued functions of several variables (see, for
example, Apelian and Surace (2009)):

Gn(θ̃(x0))−Gn(θ(x0)) =


∂Gn1 (ϑ1(x0))

∂θ
...

∂Gnk
(ϑk(x0))

∂θ

 [θ̃(x0)− θ(x0)] (S8)

= DG(ϑ1,ϑ2, . . .ϑk) [θ̃(x0)− θ(x0)],

say, where ∂Gni(ϑi(x0))/∂θ represents the ith row of the matrix ∂Gn/∂θ evaluated at the
point ϑi, which lies on the segment (θ̃,θ) (which is assumed to be entirely contained within
Θ). So:

||Gn(θ̃(x0))−Gn(θ(x0))|| =
∣∣∣∣∣∣DG(ϑ1,ϑ2, . . .ϑk)[θ̃(x0)− θ(x0)]

∣∣∣∣∣∣
≤ ||DG(ϑ1,ϑ2, . . .ϑk)|| ||θ̃(x0)− θ(x0)||
≤M ||θ̃(x0)− θ(x0)||, (S9)
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where M = maxϑ1...ϑk∈Θ ||DG(ϑ1,ϑ2, . . .ϑk)|| is Op(1), as demonstrated earlier, and ||A|| =√∑
i,j |aij |2 (i.e. ||·|| represents the Euclidean matrix norm). This Lipschitz condition is suffi-

cient for stochastic equicontinuity (Newey, 1991), and therefore implies uniform convergence,
as required.

The limiting function (S7) (which only takes values greater than or equal to zero) has a
unique minimum at the true value θ = θ0, since Rθ0(x0) = 0, and Rθ(x0) 6= 0 for θ 6= θ0 (by
the initial moment condition). These conditions mean that as n → ∞ (with the additional
proviso that h→ 0 and nh→∞), our estimating equation defines a unique estimator θ̂ that
is consistent for θ.

S2.1 Asymptotic Variance

Now we consider the asymptotic variance of the estimator. We apply the mean value theorem
again, now for the line segment (θ̂,θ0), so we have:

Gn(θ̂(x0)) = Gn(θ0(x0)) +


∂Gn1 (θ̌1(x0))

∂θ
...

∂Gnk
(θ̌k(x0))

∂θ

 [θ̂(x0)− θ0(x0)] (S10)

= Gn(θ0(x0)) +DG(θ̌1, θ̌2, . . . θ̌k) [θ̂(x0)− θ0(x0)],

where the points θ̌1, θ̌2, . . . θ̌k lie on the line segment (θ̂,θ0). Substituting this into Equation
(S3) gives:

0 =

[
∂Gn(θ̂(x0))

∂θ

]T

Wn(x0)
[
Gn(θ0(x0)) +DG(θ̌1, θ̌2, . . . θ̌k) [θ̂(x0)− θ0(x0)]

]
. (S11)

Since θ̂ is consistent and converges to θ0, then so do θ̌1, θ̌2, . . . θ̌k, as they lie on the segment
(θ̂,θ0). We have also shown that ∂Gn(θ(x0))/∂θ converges in probability to the non-random
function −∂τ (θ0(x0))/∂θ f(x0), and we have Wn(x0) →p W (x0) (by appropriate selection)
and so this may be restated as:

−f(x0)

[
∂τ (θ0(x0))

∂θ

]T

W (x0)

[
Gn(θ0(x0))− f(x0)

[
∂τ (θ0(x0))

∂θ

]
[θ̂(x0)− θ0(x0)]

]
= op(1).

(S12)

Since ∂τ (θ0(x0))/∂θ is of full rank, andW (x0) is positive-definite, then [∂τ (θ0(x0))/∂θ]T W (x0)
[∂τ (θ0(x0))/∂θ] is invertible, and we have:

θ̂(x0)− θ0(x0) ≈ 1

f(x0)

{[
∂τ (θ0(x0))

∂θ

]T

W (x0)
∂τ (θ0(x0))

∂θ

}−1

×
[
∂τ (θ0(x0))

∂θ

]T

W (x0)Gn(θ0(x0)). (S13)

From Equation (S6) above, noting that Rθ0(x0) = 0 by the moment condition:

Var[Gn(θ0(x0))] ≈ f(x0)

nh
Var[T (Y )|X = x0]

∫
K2(z)dz.
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So, returning to Equation (S13), the asymptotic expression for the variance of the estimator
is given by:

Var[θ̂(x0)] ≈ 1

nhf(x0)

∫
K2(z) dz

×
{[

∂τ (θ0(x0))

∂θ

]T

W (x0)
∂τ (θ0(x0))

∂θ

}−1 [∂τ (θ0(x0))

∂θ

]T

W (x0)

×Var[T (Y )|X = x0]W (x0)
∂τ (θ0(x0))

∂θ

{[
∂τ (θ0(x0))

∂θ

]T

W (x0)
∂τ (θ0(x0))

∂θ

}−1

.

(S14)

S2.2 Asymptotic bias

Next we consider the bias, taking the expectation of both sides of Equation (S13) to get:

Bias[θ̂(x0)] ≈ 1

f(x0)

{[
∂τ (θ0(x0))

∂θ

]T

W (x0)
∂τ (θ0(x0))

∂θ

}−1

×
[
∂τ (θ0(x0))

∂θ

]T

W (x0) E[Gn(θ0(x0))]. (S15)

From Equation (S5), now putting Rθ0(x0) = 0:

E[Gn(θ0(x0))] ≈ h2

∫
K(z)z2 dz

{
1

2
R′′θ0(x0)f(x0) +R′θ0(x0)f ′(x0)

}
. (S16)

We have:

Rθ0(x) = E[T (Y )− τ (θ0(x0)) |X = x]

= τ (θ0(x))− τ (θ0(x0)). (S17)

Also:

R′θ0(x) =
∂τ (θ0(x))

∂θ
θ′0(x) (S18)

and

R′′θ0(x) =
d

dx

[
∂τ (θ0(x))

∂θ

]
θ′0(x) +

∂τ (θ0(x))

∂θ
θ′′0(x). (S19)

Substituting back:

E[Gn(θ0(x0))] ≈ h2

∫
K(z)z2 dz

×
{[

1

2

d

dx

[
∂τ (θ0(x0))

∂θ

]
f(x0) +

∂τ (θ0(x0))

∂θ
f ′(x0)

]
θ′0(x0)

+
1

2

∂τ (θ0(x0))

∂θ
f(x0) θ′′0(x0)

}
. (S20)
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We leave the first term in this form for ease of notation, since the second differential of τ (θ)
with respect to θ would give a three-dimensional array and consequent notational complexity.
So finally, the asymptotic expression for the bias is given by:

Bias[θ̂(x0)] ≈ h2

∫
K(z)z2 dz

{[
∂τ (θ0(x0))

∂θ

]T

W (x0)
∂τ (θ0(x0))

∂θ

}−1 [∂τ (θ0(x0))

∂θ

]T

W (x0)

×
{[

1

2

d

dx

[
∂τ (θ0(x0))

∂θ

]
+

∂τ (θ0(x0))

∂θ

f ′(x0)

f(x0)

]
θ′0(x0) +

1

2

∂τ (θ0(x0))

∂θ
θ′′0(x0)

}
.

(S21)
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