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Local generalised method of moments: an
application to point process-based
rainfall models
Jo M. Kaczmarskaa*, Valerie S. Ishama and Paul Northropa

Long series of simulated rainfall are required at point locations for a range of applications, including hydrological stud-
ies. Clustered point process-based rainfall models have been used for generating such simulations for many decades. These
models suffer from a major limitation, however: their stationarity. Although seasonality can be allowed by fitting separate
models for each calendar month or season, the models are unsuitable in their basic form for climate impact studies. In this
paper, we develop new methodology to address this limitation. We extend the current fitting approach by allowing the dis-
crete covariate, calendar month, to be replaced or supplemented with continuous covariates that are more directly related
to the incidence and nature of rainfall. The covariate-dependent model parameters are estimated for each time interval
using a kernel-based nonparametric approach within a generalised method-of-moments framework. An empirical study
demonstrates the new methodology using a time series of 5-min rainfall data. The study considers both local mean and
local linear approaches. While asymptotic results are included, the focus is on developing useable methodology for a com-
plex model that can only be solved numerically. Issues including the choice of weighting matrix, estimation of parameter
uncertainty and bandwidth and model selection are considered from this perspective. © 2015 The Authors. Environmetrics
published by John Wiley & Sons Ltd.
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1. INTRODUCTION
Rainfall series are required at a range of spatial and temporal scales by hydrologists, telecommunications engineers and those involved
in the modelling of climate impacts on agriculture and the environment. These series typically need to cover very long periods into
the future, and climate change is increasingly a concern. Observed series reflect only the historical climate, are generally too short to
meet requirements and may suffer from quality issues. There is thus a need for models from which realistic artificial rainfall series can
be simulated.

Generalised circulation models (GCMs) are the main tools for predicting future climate impacts resulting from the increase of greenhouse
gases in the atmosphere. They model large-scale movements over the entire globe over tens to hundreds of years using a set of physical
equations. GCMs cannot reliably model precipitation, however, primarily because the low resolution means that details of local topography
(such as mountains and coastline), which are important for rainfall, are lost. Even with the use of embedded regional climate models
(RCMs), which cover smaller areas in more detail, the accuracy of these physical models is limited because of outstanding deficiencies in
understanding of cloud formation and precipitation processes.

GCMs and RCMs can, however, be used to produce high-resolution rainfall projections using a technique known as ‘statistical down-
scaling’, whereby observed relationships between the large-scale climate variables of the GCM (or RCM) and local climate are exploited.
For example, one such approach relates daily rainfall occurrence and conditional wet-day rainfall amounts to climate variables using
generalised linear models (Chandler and Wheater, 2002). This is effectively an extension of the two-state (wet/dry) first-order Markov
chain model of Katz (1977) or Stern and Coe (1984) and is appropriate when rainfall series are required at a daily timescale. How-
ever, it is not feasible at subdaily resolution, as the complicated dependency structure of rainfall would require an excessive number
of parameters.
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Figure 1. A sample of the Bochum series of 5-min rainfall totals over January 1981

Data at subhourly resolution are required at point locations for various applications. For example, ‘rain fade’ is one of the main causes of
outage of radio telecommunications networks, requiring mitigation strategies such as the incorporation of route diversity. In the hydrological
field, data at fine-scale are required for sewer systems and urban drainage design. Clustered point process-based rainfall models have been
used to address this requirement, particularly in the field of hydrology, since a seminal paper by Rodriguez-Iturbe et al. (1987). There are
two basic clustering mechanisms used and numerous versions of the models. All consist of a clustered point process of rain cell arrivals,
together with a set of random variables that determine the durations and intensity profiles of the rain cells. This model structure is appealing
as it reflects important aspects of the physical process: the fact that rainfall totals over short intervals are very often exactly zero (as can be
seen in Figure 1), and the clustering exhibited by rainfall in both space and time (Austin and Houze, 1972). Because the underlying process
runs in continuous time, another advantage of this type of model is that simulations can be generated that aggregate to different timescales
in a consistent way. The models are fitted to discrete data from rain-gauges using the generalised method of moments (GMM), a maximum
likelihood method being impracticable. Such a model is used in the Weather Generator tool of the UK Climate Projections (UKCP09)
project (Jones et al., 2009), and examples of other applications are numerous (e.g. Khaliq and Cunnane (1996); Smithers et al. (2002); and
Vandenberghe et al. (2011)).

However, a key limitation of existing point process-based rainfall models is their assumed stationarity. The only nonstationary feature
that these models can incorporate is seasonality, which is achieved by fitting separate models for each calendar month or season. In this
paper, we improve upon existing methods by enabling covariate information to be incorporated, thereby allowing the models to be used for
climate impact studies. The covariates used in practice within our method are simulated from advanced climate models, such as GCMs. We
develop a new statistical downscaling method suitable for fine-scale resolution by using a nonparametric kernel-based approach to relate
the parameters of a clustered point process-based model to large-scale atmospheric covariates, such as sea-level pressure and temperature.
These may be used because, unlike rainfall, the local variation in these variables is small, and their modelled values are considered reliable.
Calendar month can still be included within the new framework, but may become redundant given the inclusion of the atmospheric variables,
or be deliberately excluded if it is believed that seasonality in the future will be different from the past. The new methodology proposed
combines a local mean or Nadaraya–Watson (Nadaraya, 1964; Watson, 1964) estimator with the GMM fitting approach. Extension to a local
linear or higher dimension polynomial is possible and also considered.

The idea of local polynomial regression has been around for a long time, proposed originally by Cleveland (1979) and other authors,
and there is a wealth of literature in the field [e.g. Fan and Gijbels (1996) and Wand and Jones (1995)]. Extensions to the original idea that
have been useful in developing our methodology include local likelihood-based methods (Tibshirani and Hastie, 1987) and local estimating
equations (Carroll et al., 1998). Our local mean method is effectively an application of the local mean GMM approach of Lewbel (2007),
except that we do not assume that the bias term is zero in the asymptotic distribution of the parameter estimators. The local linear model
requires a slightly different approach.

The new method is demonstrated here using a time series of 5-min rainfall data from Bochum in Germany, a monthly sample of which is
illustrated in Figure 1.
In order to focus on the fitting methodology, we consider the simplest version of the Bartlett-Lewis clustered model at a single site. However,
the methodology can readily be extended to the slightly more complex models in current use and potentially also to the spatial-temporal
domain.

2. SPECIFICATION OF THE POINT PROCESS-BASED RAINFALL MODEL
In the basic Bartlett-Lewis rectangular pulse (BLRP) model (Rodriguez-Iturbe et al., 1987), the point process is a clustered Poisson process.
Rain-events or ‘storms’ arrive in a Poisson process of rate �, and each event generates a cluster of cell arrivals, with the time intervals between
successive cells assumed to be independent, identically distributed random variables. It is normally assumed that the intervals between cells
are exponentially distributed, so that the cell arrivals constitute a secondary Poisson process of rate ˇ.

Each cell has a random duration, during which it rains with a constant intensity, X , hence the description of the cells as
‘rectangular’. In the simplest version of the model, both the duration and the intensity are assumed to be exponentially distributed with
parameters � and 1=�X , respectively, and are independent of each other. The cell arrival process terminates after a time that is also expo-
nentially distributed, with rate � . This basic version thus has five parameters in total, (summarised in Table 1). Both storms and cells may
overlap, and the total intensity of rain at any point in time is given by the sum of the intensities of all cells active at that time. The pro-
cess in respect of a single storm is illustrated in Figure 2. Additional flexibility can be added by allowing a different distribution for cell
intensities.
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Table 1. Parameters of the Bartlett-Lewis
rectangular pulse model

Parameter Definition

� Storm arrival rate
ˇ Cell arrival rate
� Storm termination rate
� Cell termination rate
�X Mean cell intensity

Figure 2. Illustration of a single storm of the Bartlett-Lewis rectangular pulse model

3. FITTING METHODOLOGY
3.1. Existing fitting approach, using GMM

GMM estimation requires a set of ‘population moment conditions’. For the rainfall models, these relate a vector of summary statistics of
the time series of rainfall totals to the vector of their expected values under the model, with the dimension of the vector greater than or
equal to the number of model parameters. The summary statistics are typically second-order and third-order sample moments at various
temporal scales.

Because of seasonality, it is common to fit a separate model for each calendar month, treating the data from different years for a given
calendar month as independent replicates. Assume we have a time-series of, say 5-minute, rainfall totals over a period of n months, with Y t
defined as the vector of all the rainfall data in month t . We first calculate separate vectors of summary statistics, T.Y1/ : : :T.Yn/, for each
of the n months of the data. The estimator, O�m, in respect of calendar month, m, is then given by

O�m D argmin�m

2
4
(

1Pn
tD1 I.mtDm/

nX
tD1

I.mt D m/ ŒT .Y t / � �.�m/�

)T

�W n.m/

(
1Pn

tD1 I.mtDm/

nX
tD1

I.mt D m/ŒT .Y t / � �.�m/�

)# (1)

where argmin� means the value of � that minimises the expression, mt is the calendar month of the t th month, �.�m/ is the vector of
expected values for calendar monthm andW n.m/ is a positive-definite weighting matrix for calendar monthm, which ensures that we put a
positive nonzero weight on all the moment conditions. I is the indicator function, such that I.x/ D 1 if x is true, and 0 otherwise, so that we
have

Pn
tD1 I.mt D m/ months of data for calendar month m. This sum is just equal to n=12 if the data span a whole number of years, but

in this form, the equation anticipates the extension to a more general covariate. The matrix, W n.m/, may depend on the data, but in order
for the estimator to be well-defined, it is required to converge in probability to a positive-definite matrix of constants.

The estimator is consistent, provided certain regularity conditions are met (Hansen (1982); Hall (2005)). It can be shown that the optimal
weights matrix,W n.m/ (in terms of minimising the variance of the parameter estimates), is the inverse of the covariance matrix of the fitting
properties, which here must be estimated empirically due to the complexity of the analytical expressions. The approach of first calculating
the fitting statistics separately for each month allows estimation of the required sample covariance matrix for each calendar month, as

VarŒT .Y /j m� D

Pn
tD1 I.mt D m/ŒT .Y t / �

NTm�ŒT .Y t / � NTm�
TPn

tD1 I.mt D m/ � 1
(2)
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where NTm is the mean of the statistics over calendar monthm. Jesus and Chandler (2011) find that a two-step approach is required in order to
derive a reliable sample estimate of the full covariance matrix, but that the diagonal matrix of inverse variances (i.e. ignoring the correlations
between the fitting statistics), calculated using just a single step, is close to optimal. The two-step approach would involve simulating a large
set of artificial data using an initial estimate of �m (obtained using the simpler diagonal weighting matrix), then refitting the model using a
full weighting matrix calculated from the simulated data. The drawback with this approach is the significant addition to computation time.

The choice of which and how many statistics to include is a fairly subjective one, although in practice rather restricted if it is deemed
essential that analytical expressions be available for �.�/. Statistics are required at a range of aggregation levels, in order to reflect the
observed structure of the rainfall process. In the empirical work of this paper described in Section 4, models are fitted using the mean hourly
rainfall, plus the coefficient of variation, lag-1 autocorrelation and skewness of rainfall totals at resolutions of 5 min and 1, 6 and 24 h (using
analytical expressions derived by Rodriguez-Iturbe et al. (1987) and Wheater et al. (2006)). Thus, T and � are vectors of dimension 13.

Equation (1) is solved using numerical optimisation techniques, and the objective function is parameterized with the logarithms of the
rainfall model parameters. This ensures that the fitted parameters are positive and has also been found to improve the stability of the numerical
optimisation. Thus, for the five-parameter BLRP model, the parameter vector is given by � D .log�; log�X ; logˇ; log �; log �/T.

3.2. Local modelling

In this section, we show how the method may be adapted for one or more continuous covariates. Initially, and for the asymptotic derivations,
we consider a single covariate, with extension to multiple covariates considered in Section 3.7. To motivate the development, we assume
that this single covariate, denoted Xt , is temperature, and that Y t is a time-series of 5-min rainfall totals over month t , as before. First, a
suitable time interval needs to be determined over which to measure the covariates and calculate the corresponding rainfall statistics. It is
already common practice to calculate statistics separately for each month (denoted by t in the equations), as discussed earlier, and this is a
natural choice, which has many advantages. It is short enough that it is reasonable to treat the series within each interval as stationary. On
the other hand, sample autocorrelations for monthly rainfall series tend to be very small, so a month is long enough to permit treatment of
the data as independent between intervals. It is also long enough for any small sample biases in the statistics to be negligible, which is an
issue primarily for statistics at the daily timescale. Additionally, mean monthly values of many atmospheric variables are readily available.
Although detail of individual weather systems is clearly lost at a monthly timescale, this is not important as the aim is for the simulations to
exhibit realistic rainfall behaviour within a gradually changing climate, rather than to reproduce actual historical rainfall patterns.

Assuming a single monthly continuous covariate (here temperature) at the evaluation point, x0, a natural extension of the existing method
replaces the indicator functions of Equation (1) with kernel weights, which allow the parameter estimates to change smoothly with the value
of the covariate. Thus, the estimator of the parameter vector at a given covariate value X D x0 is given by

O�.x0/ D argmin�x0

"�
1Pn

tD1Kh.Xt � x0/

nX
tD1

Kh.Xt � x0/ ŒT .Y t / � �.�.x0//�

�T

�W n.x0/

(
1Pn

tD1Kh.Xt � x0/

nX
tD1

Kh.Xt � x0/ ŒT .Y t / � �.�.x0//�

)# (3)

whereKh.Xt �x0/ D h
�1Kf.Xt �x0/=hg, andK.�/ is a kernel function, which is usually chosen to be a symmetric density function which

integrates to 1, and is scaled to have a variance of 1. The expression has been written with the scaling factor 1=
Pn
tD1Kh.Xt � x0/ in order

to highlight the similarity with Equation (1), but this is usually replaced by 1=n which does not affect the solution. The ‘tuning parameter’ or
‘bandwidth’, h, determines the size of the local neighbourhood and thus controls the amount of smoothing. The matrix W n.x0/ (discussed
further in Section 3.4) depends on the covariate value X D x0, and converges to a positive-definite matrix of constants, which we denote
by W .x0/. The evaluation points can coincide with the observed covariate values, which permits an assessment of the goodness of fit.
Alternatively, an arbitrary set of points can be used, for example the set of future values projected by a GCM or other climate model. In the
latter case, though, care should be taken over any parts of the range that are sparsely represented in the observed data.

The choice of kernel function is relatively unimportant compared with the choice of h (Wand and Jones, 1995), and the Gaussian kernel

function, given by K.t/ D
�p

2�
��1

exp.�t2=2/, is often used for convenience (and has been used in the empirical investigation in this
paper), so that Kh.Xt � x0/ is the normal density function with mean x0 and standard deviation h. The tuning parameter may alternatively
be defined as a ‘span’, that is a fixed percentage of the data that contributes a positive weight to each local fit, in which case the kernel
function must have compact support.

Kernel estimators are biased, with the bandwidth (or span) controlling the bias–variance trade-off. Equation (3) assumes that the parame-
ters are locally constant, but the approach may be extended to local linear or indeed to any order of polynomial. The complexity of the model
is determined both by the bandwidth (the smaller the neighbourhood, the greater the effective number of parameters in the model) and by
the order of the polynomial chosen. Ultimately, an appropriate compromise must be reached, and much of the kernel smoothing literature
addresses the issues of selection of the optimal order and bandwidth. For the point process-based rainfall models, although there are potential
advantages to assuming a local linear approach, the additional complexities involved make order zero a sensible starting point. In the next
section, we consider the asymptotic distribution of the local mean estimator, with the choice of weighting matrix and bandwidth discussed
in Sections 3.4 and 3.5, respectively. Extension to local linear GMM is then considered in Section 3.6. The results of applying the proposed
methodology will be discussed in Section 4. 315
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3.3. Asymptotic distribution

In the Supporting information, we show that the local mean estimator, O�.x0/, is consistent for �0.x0/, the true value of the parameter vector,
and derive the asymptotic variance and bias. From these and appealing to a form of the central limit theorem (Schuster, 1972), it follows that
the asymptotic distribution of O�.x0/ is given by

.nh/1=2
n
O�.x0/ � �0.x0/ � h

2B.x0/
o
!D N.0;VarŒ O�.x0/�/ (4)

where the variance, VarŒ O�.x0/�, at xo is given by

VarŒ O�.x0/� D
1

f .x0/

Z
K2.´/ d´

(�
@�.�0.x0//

@�

�T

W .x0/
@�.�0.x0//

@�

)�1 �
@�.�0.x0//

@�

�T
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@�.�0.x0//

@�

(�
@�.�0.x0//

@�

�T

W .x0/
@�.�0.x0//

@�

)�1 (5)

and the bias, h2B.x0/, by
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�
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1
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where V .x0/ D VarŒT .Y /jX D x0�, and f .x/ denotes the probability density function of the covariate x.
Although of interest in identifying the key drivers behind the behaviour of the local estimators and in informing the choice of bandwidth

(discussed in Section 3.5), these asymptotic derivations are not directly useful in practical applications. The problem is that the expressions
involve a number of unknown terms, including the ‘design density’, f , and its derivative and the first and second derivatives of � with
respect to x. Obtaining estimates of these is challenging even in the context of a simple local mean scatterplot smoother, and infeasible for
the far more complex point process-based models.

For the fit described subsequently, we adopt an alternative ‘quasi-asymptotic’ approach, which involves replacing expressions in the
asymptotic bias and variance with appropriate sample summations. This approach is advocated by both Fan and Gijbels (1995) (in the context
of local polynomial regression) and Carroll et al. (1998) (in the context of local estimating equations), for making no more use of asymptotics
than needed. Replacing �0.x0/ with O�.x0/ andW .x0/ withW n.x0/ in the asymptotic variance, we get the ‘sandwich’ formula:

VarŒ O�.x0/� �

Pn
tD1K
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h
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2
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3
5
�1 "

@�. O�.x0//

@�

#T

W n.x0/ VarŒT .Y /jX D x0�

�W n.x0/
@�. O�.x0//

@�

2
4"@�. O�.x0//

@�

#T

W n.x0/
@�. O�.x0//
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3
5
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(7)

The conditional variance of T .Y / can be estimated at each required value of X using a local mean estimator with some fixed bandwidth h�

as follows:

VarŒT .Y /j X D x0� �

Pn
tD1Kh� .Xt � x0/

h
T .Y t / � �. M�.xt //

i h
T .Y t / � �. M�.xt //

iT

Pn
tD1Kh� .Xt � x0/

(8)

where M� denotes the parameter vector fitted with the bandwidth h�.
A similar approach may be taken for the bias, to give

BiasŒ O�.x0/� �

2
4
"
@�. O�.x0//

@�

#T

W n.x0/
@�. O�.x0//

@�

3
5
�1 "

@�. O�.x0//

@�

#T

W n.x0/

�

Pn
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h
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i
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tD1Kh.Xt � x0/

(9)
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This fairly crude approach to the calculation of bias is similar to that used in deriving the bias-corrected ‘twicing estimator’ of Stuetzle and
Mittal (1979) for ordinary kernel regression and of Kauermann et al. (1998) for local estimating equations. Ruppert (1997) proposes a more
sophisticated empirical approach based on the asymptotic theory, which involves approximating the bias by a polynomial function f .h; �/,
the parameters of which are found using least-squares estimation.

The ‘quasi-asymptotic’ estimate of the variance, together with the asymptotic normality of the estimators, can be used to calculate approx-
imate pointwise confidence intervals, although these will be for E. O�.x0// rather than �.x0/ itself, due to the bias. In order to avoid confusion,
such intervals are referred to as ‘variability bands’, rather than confidence intervals (Bowman and Azzalini, 1997). Although it is possible to
estimate the bias term, as we have seen, this would itself involve terms in O� , and so would increase the variance of the estimator from that
given in Equation (4).

3.4. The weighting matrix

So far, we have assumed only that the weighting matrix W n.x0/ may depend on the data, and that it converges to the positive-definite
nonrandom matrix, W .x0/. If, however, the weighting matrix is the inverse of the conditional covariance matrix of the statistics, that is
W .x0/ D V .x0/

�1, then the expression for the variance of the asymptotic distribution of O�.x0/ simplifies, giving

.nh/1=2
n
O�.x0/ � �0.x0/ � h

2B.x0/
o
!D

N

0
@0; 1

f .x0/

Z
K2.´/ d´

(�
@�.�0.x0//

@�

�T

V .x0/
�1 @�.�0.x0//

@�

)�11A (10)

This choice for the weighting matrix gives optimal efficiency, and a two-step procedure can be used, as described in Section 3.1, in respect
of standard GMM. However, as discussed, the conclusions of Jesus and Chandler’s (2011) simulation study justify using just a single step
with the diagonal matrix of inverse variances. In order to reduce the computational burden (which is more onerous for local estimation), we
have therefore chosen to use this simpler choice in estimatingW .x0/ here. With a continuous covariate, there is only a single observation at
each evaluation point, so a straightforward sample estimate cannot be used (as is possible with month as covariate). The practical approach
used here involves grouping the data into a number of bins based on the value of the covariate, calculating sample variances within each bin
(as in Equation (2), but now conditioning on the covariate bin, rather than the calendar month) and treating these as the sample variances
conditional on the mean covariate value of each of the bins. Variances conditional on other values of the covariate are then derived using
a Nadaraya–Watson estimator. The fits were not found to be overly sensitive to the bandwidth used in this smoothing, which was thus
selected subjectively.

3.5. Choosing a bandwidth

The issues involved in choosing a bandwidth for our model are the same as for local regression, although the greater complexity tends to
suggest one of the simpler approaches. For the empirical study, for simplicity, we use a global bandwidth, which means that h is constant
across the whole data range. A constant global bandwidth should be adequate for relatively smooth curves or where the amount of data is
not sufficient to justify a local approach (see Fan and Gijbels (1995) for details of an approach to selecting a variable bandwidth).

How should a suitable global bandwidth be chosen? In the case of local regression, the choice is often subjective. More formally, automatic
bandwidth selection methods generally aim to minimise the integrated mean squared error (IMSE) or a proxy for this, where the IMSE is
given by IMSE D

R
ŒBias. O�.x//2 C Var. O�.x//� f .x/dx. The main options include the ‘plug-in’ method, which involves the minimisation

of the asymptotic expression for the IMSE, and some form of cross-validation. We have chosen to use the latter as it is straightforward to
apply and, unlike the ‘plug-in’ method, does not require estimation of any additional parameters. The subject of bandwidth selection has
been much discussed in the literature—see, for example (Loader, 1999) for more details and a comparison of these two methods.

Because of computational time constraints, repeated random subsampling is preferred to leave-one-out cross-validation. This involves
randomly splitting the data into test and training sets a number of times. For each such split, the model is fitted to the test data points using
just the training observations and the bandwidth identified that gives the lowest error over the test data. The error here is defined as the mean
weighted sum of squared residuals, that is as

n�1ts

ntsX
tD1

kX
iD1

h
T i .Y t / � �i . O� th;tr /

i2
wti (11)

where nts is the number of observations in the test set, with O� based on observations in the training set (denoted tr) and with the weights,wti ,
based on the smoothed sample variances of the statistics as before. The optimal bandwidth is calculated for each such split—a histogram or
density plot of the results across all the splits then also provides useful insight, which is another appealing feature of this method. The final
choice of bandwidth is based on consideration of the mean or the median, in conjunction with subjective assessment.

3.6. Extension to local linear estimation

The Nadaraya–Watson or local mean approach suffers from some well-known limitations. ‘Boundary bias’ arises at (or near) the boundaries
where the observation points in the local neighbourhood lie only (or primarily) to one side, and the fitted curve tends to be too flat as a
result. Another problem, ‘design bias’, arises when the design is not equi-spaced. These types of bias are eliminated, at least asymptotically, 317

Environmetrics 2015; 26: 312–325 © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd. wileyonlinelibrary.com/journal/environmetrics



Environmetrics J. M. KACZMARSKA, V. S. ISHAM AND P. J. NORTHROP

by extending to a local linear approach, described by Fan (1992) as ‘design adaptive’. However, Ruppert and Wand (1994) caution against
taking the local linear estimator as the automatic benchmark. While the two methods have identical asymptotic variances at interior points,
at the boundaries and in finite samples, the Nadaraya–Watson estimator tends to have a smaller variance. Thus, in cases where the regression
function is fairly flat, the Nadaraya–Watson estimator may have the advantage.

For the local mean estimator at the evaluation point x0, the approximation for �.Xt / in the local neighbourhood of x0 is given by the
constant �.x0/. For the local linear case, the approximation is given instead by .Xt / D �.x0/C� 0.x0/.Xt�x0/. For ease of manipulation,
we write the parameter set as a vector of length 2q given by b.x/ D .�.x/T;� 0.x/T/T. The first set of q elements of Ob.x0/ estimate the
components of � at x0, while the second set provide estimates of the gradients of the curves at x0.

In order to specify conditions for the gradient, as well as the value, of � at x0, we apply the kernel weights to the quadratic form, rather
than to the statistics, to give

O�.x0/ D argmin�.x0/

(
1

n

nX
tD1

Kh.Xt � x0/ ŒT .Y t / � �. .Xt //�
T W n.x0/ ŒT .Y t / � �. .Xt //�

)
(12)

where  .Xt / D �.x0/C � 0.x0/.Xt � x0/. Differentiating this equation with respect to b gives the following two sets of equations:

0 D
1

n

nX
tD1

Kh.Xt � x0/

�
@�. .Xt //

@�

�T

W n.x0/ ŒT .Y t / � �. .Xt //� (13)

0 D
1

n

nX
tD1

Kh.Xt � x0/ .Xt � x0/

�
@�. .Xt //

@�

�T

W n.x0/ ŒT .Y t / � �. .Xt //� (14)

These equations exactly identify the 2q parameters and are effectively the sample equivalents of the required moment conditions.
Derivations of the asymptotic variance and bias follow a similar approach to the local mean case, using Taylor series expansions, and are

not shown here. The asymptotic variance of O�.x0/ is found to be the same as for the local mean case, whereas the asymptotic bias is now
given by

BiasŒ O�.x0/� �

(�
@�.�0.x0//

@�

�T

W .x0/
@�.�0.x0//

@�

)�1

�
1

2
h2
Z
K.´/´2d´

�
@�.�0.x0//

@�

�T

W .x0/

�
@�.�0.x0//

@�
� 000.x0/

� (15)

It can be seen that the expression for the bias is much simpler, with the bias no longer dependent on the gradient of � , nor on the design
density.

3.7. Multiple covariates

So far, a univariate covariate has been assumed. In principle at least, generalisation to multidimensional X is straightforward (see, e.g.
Ruppert and Wand (1994) who consider multivariate local regression). The local mean model can be expressed as before, but now X is a d -
dimensional vector, that is X t D .Xt1 ; : : : ; Xtd /

T. In order to define neighbourhoods in d dimensions, a d � d symmetric positive-definite
smoothing matrix, H , and a d -dimensional kernel function, K , are required. Wand and Jones (1995; Chapter 4) discuss various levels of
sophistication when specifying the bandwidth matrix H , which controls both the size and the direction of smoothing. A straightforward,
but still flexible, approach is taken here with H constrained to be diagonal. This allows different degrees of smoothing to be applied to the
different covariates in the directions of the coordinate axes. We can then take KH .X t � x0/ as a ‘product kernel’ of the form

KH .X t � x0/ D Kh1.Xt1 � x01/Kh2 .Xt2 � x02/::: Khd .Xtd � x0d / (16)

To find an optimal bandwidth matrix, cross-validation techniques can be used, as for a single covariate.
The main problem with multiple polynomial regression is what has been termed the ‘curse of dimensionality’ (Bellman, 1961), which

simply means that as the dimension of the covariate vector increases for a fixed data set, the data become increasingly sparse in the sense that
there are either very few points in the local neighbourhood or the neighbourhood ceases to be very ‘local’. The dimension therefore either
needs to be kept appropriately low (typically limited in practice to two or three variables) or constraints need to be introduced in the model
to reduce the effective dimensionality.

The asymptotic expressions for the variance and bias could in principle be derived. However, rather than using asymptotic expressions,
we recommend estimating the variance using the sandwich method. No additional theory is then required, and the single Gaussian kernel in
our equations is simply replaced by the product of individual kernels in respect of each required covariate, as in Equation (16). Extension to
the local linear case is also possible.318
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4. EMPIRICAL INVESTIGATION
4.1. Motivation

In this section, we demonstrate the fitting methodology. The empirical investigation relates to a time series of 5-min rainfall totals from
Bochum in Germany, running over the 69 years from January 1931 to December 1999. In order for the methodology to be of practical use,
it is important that any predictors selected will be well represented by climate models. The fitted rainfall model may then be conditioned on
series of the covariates output under different greenhouse gas emission scenarios, allowing design implications of changing rainfall patterns
to be assessed. For the modelling methodology to be successful, there must also exist reasonably strong relationships between at least some
of our fitting properties and the predictors. An implicit assumption (common to all statistical downscaling techniques) is that these observed,
empirical relationships remain valid under future climate conditions. The covariates we consider, in addition to calendar month, are monthly
mean values from the National Centre for Environmental Prediction reanalysis data (Kalnay et al., 1996; Kistler et al., 2001) for the grid point
with latitude 52:50N and longitude 7:50E. The reanalysis project uses an analysis/forecast system to perform data assimilation using historical
data from 1948 to the present. This includes an extensive set of weather variables at a range of heights in the atmosphere on a 2:5ı � 2:5ı

grid covering the whole globe. These are available from January 1948, giving a total of 624 monthly observations (52 years) when combined
with the time span of the Bochum rainfall series. Combinations of one, two or three covariates from the following were considered: sea-level
pressure, surface temperature, relative humidity at the surface, specific humidity at 700 hPa and the zonal (west–east) component of wind
velocity. These were selected for more detailed investigation, after consideration of the statistical downscaling literature, the physical rainfall
process, correlations between potential covariates and the fitting statistics and correlations between the potential covariates themselves. Given
that seasonal behaviour is expected to change under the impact of climate change, we would prefer to capture seasonal behaviour implicitly
through the atmospheric covariates. However, calendar month has also been included in the evaluation, using the von Mises distribution for
smoothing instead of the Gaussian, to allow for its periodic nature.

4.2. Local mean v local linear, single covariate

Initial analysis focused on the single covariate, temperature, in order to validate and refine the methodology and to decide between the local
mean and local linear approaches. In order to keep run times relatively short, this initial comparison was carried out over an equally spaced
grid of 60 temperature values, rather than over all 624 observed data points. Figure 3 shows the fitted parameters (plus the fitted mean
hourly rainfall) for the two different orders of fit. Variability bands of˙2 standard errors, calculated using the sandwich method described in
Section 3.3, are also shown. The standard errors for the fitted mean hourly rainfall have been calculated using the delta method approximation.
The bandwidth at this stage has been chosen subjectively. The results are broadly in line with expectations, with the local linear and local
mean fitted curves similar for interior points, but the local linear curve generally much steeper near the boundaries. Parameter uncertainty is
relatively high close to the boundaries because of the low number of observation points, and particularly so for the local linear fit.
Computation times for the 60 evaluation points were of the order of an hour for the local linear estimator, compared with less than a minute
for the local mean approach (both sets run on a laptop with a 2.10 GHz processor).

However, it is not obvious that the local linear fit is preferable here, even if the computation speed were not an issue. This is because the
sparsity of observation points at very low and very high mean temperatures, coupled with the high variability of the statistics themselves,
means that our confidence that the observed statistics at the boundaries are representative is fairly low. In the local linear approach, the
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effective sample sizes close to the boundaries are substantially lower, dramatically increasing the parameter uncertainty, as we have seen. In
such cases, assuming a flatter curve may actually be preferable. Of course, this decision may depend on location and climate. However, it
is also likely that computation time and difficulties with numerical optimisation will increase with the number of covariates, and/or with a
more complex model. For these reasons, our preference here is for the local mean approach.

4.3. Choice of bandwidths

In order to choose optimal bandwidths, we initially considered each of the univariate predictors and used repeated random subsampling with
25 repetitions, as described in Section 3.5. For each repetition, the 624 observations were randomly split into 225 in the test data set and 399
in the training set. This split of 36%/64% is in line with the recommendations of Hengartner and Wegkamp (2002), who suggest taking the
size of the testing sample as nˇ where n is the size of the training sample and ˇ is in the range 0.8–0.95.

For each covariate, a grid of potential values of the bandwidth is required. Such grids typically have a geometric progression. Here, we
first took a wide, but relatively coarse grid over a single sample to get an idea of the approximate location of the optimal bandwidth and the
shape and steepness of the curve. We then carried out the 25 repetitions over a finer, but narrower grid. The finer grid had 27 points, with
hmin D 10� .X.n/ �X.1//=n, hmax D .X.n/ �X.1//=5 and hj D 1:1j hmin for j D 1; : : : ; 25. Histograms of the optimal bandwidth based
on the 25 hold-out samples are given in Figure 4 for two of the potential predictors, temperature and sea-level pressure.

Given the high level of noise in the observed data, it is to be expected that there will be a certain amount of variability in the ‘optimal’
bandwidth, derived over different subsets of the data and, as can be seen, this varies with the predictor. Nevertheless, the appropriate ballpark
levels for all the predictors are reasonably clear. After inspection of the resulting curves, we select bandwidths of 1.3ıC and 1.5 mb for
temperature and sea-level pressure, respectively.

For fits with multiple covariates, the optimal bandwidths are found in a similar way, but, in order to ensure manageable computation
times, selection was restricted to a simple rescaling of the diagonal bandwidth matrix containing the optimal bandwidths for the appropriate
univariate predictors. For a fit with the two covariates, temperature and sea-level pressure, the bandwidths ultimately selected were 1.75ıC
and 2 mb, respectively.

4.4. Model selection and performance

In order to determine the optimal choice of covariates (and bearing in mind the requirement to keep the covariate dimension relatively low),
our model selection approach broadly follows that used in the selection of the optimal bandwidth, that is we compare the mean weighted
sum of squared errors of the 13 estimated statistics, over the 25 hold-out samples, with the ‘optimal’ bandwidths used for each covariate
set. Now, however, the weights, wti , used in the calculation of the error statistic are based on the unconditional empirical variances of the
statistics, because a fair comparison requires the same weights to be used for all covariate options. In order to assess the impact of the local
fitting methodology compared with current practice, results for a global model (i.e. with no covariates) and with calendar month as a discrete
covariate are also considered.

We are interested in the relative differences between the error statistics, rather than their actual values (and these cannot be taken as
estimates of prediction error, as they are not based on an independent dataset). The model comparison indicates that using month as a
covariate, as is common practice, reduces the median error statistic over the 25 samples by around 13% compared with just fitting a global
model. Using an optimal bandwidth and the von Mises kernel, we found an improved reduction of 16%, just behind the optimal single
covariate, temperature, which gave an improved reduction of 17% compared with no covariates. However, once temperature is already
included in the model, month is found to add no further benefit, and the best second covariate is sea-level pressure, giving a substantial further
improvement: an overall reduction of 25% compared to the global model. Further improvement from the addition of a third covariate, is more
limited, reducing the error by a further 2%. The optimal third choice, the zonal wind component, reflects its low correlation with the other
covariates. Adding month as a third covariate was actually found to increase the error slightly. These are encouraging results. The ability to
replace month with other covariates potentially has value even if the level of prediction error is broadly the same, because it allows climate
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change impacts to be modelled with different future seasonal behaviours. Here, we have shown that this approach can in fact also lead to a
notable improvement in fit, allowing more realistic simulations to be generated from the model even if climate change is not a concern.

In the hydrological literature, the fit of the point process-based rainfall models is usually assessed by plotting mean values of various
statistics of interest over each calendar month. Here, as well as considering the performance by month, we are also interested in how the
observed and fitted properties vary over the atmospheric covariates. In order to produce comparable plots, both the observed and fitted
statistics of interest are averaged over binned values of each of the continuous covariates in turn (using 12 bins with equal numbers in each
bin). As an example, the plots in respect of the mean rainfall intensity are shown in Figure 5. All four plots in the figure show the two
different models—one with the discrete covariate calendar month (dashed line) and the other with the three optimal covariates (dot-dashed
line). In each case, in order to permit comparison against the observations (o circles), the values of covariates not shown on the plot are at
their observed values.

The current practice of a separate model for each calendar month reproduces the monthly means exactly. It also gives a reasonable fit
across the temperature bands, except at the lowest and highest values. If, however, the seasonal pattern of temperatures in the future is
different to that in the data, then simulations from this model will not correctly reflect this. The mean rainfall can be seen to show much
greater variation over the sea-level pressure bins than over calendar month or the temperature bins, and this variation is not reflected at all
in the current approach. The model with the optimal three covariates: sea-level pressure, temperature and zonal wind velocity reflects the
variation in mean rainfall intensity well across the temperature, sea-level pressure and wind velocity bands, in addition to capturing the broad
seasonal effect. Plots of other fitting statistics are not included for the sake of brevity—the fit of the basic point process-based models against
various rainfall properties, including for example the moments, rainfall event profiles and extremes at varying resolutions have been well-
documented in the literature [e.g. Rodriguez-Iturbe et al. (1988); Khaliq and Cunnane (1996); Smithers et al. (2002); Onof et al. (1996)].
All such properties will be more realistically modelled under potential climate change, with the inclusion of atmospheric covariates.

Finally in this section, we consider interannual variability, the underestimation of which is one of the criticisms of many rainfall models.
Figure 6 shows a range of percentiles between the 5th and the 95th in respect of the mean hourly rainfall, based on 200 simulations, over
52 years. In the first graph, the simulations have been based on the 12 monthly sets of parameters, sampling from the appropriate calendar
month’s parameter distribution for each observation month in turn. In the second graph, a different parameter distribution has been used for
each observation month, reflecting that month’s covariate values. It can be seen that allowing the parameters to depend on these covariates
gives a much improved representation of the interannual variability.

4.5. Parameter estimates and uncertainty: higher dimensions

Fitted parameters with the best combination of two covariates, sea-level pressure and temperature are shown in Figure 7. Scatterplots are
preferred here as a means of illustrating the relationships, as they also highlight where data are sparse, and do not show fits at unobserved
covariate points. In order to make it easier to identify interesting relationships, the axes should also be exchanged, but here only a single set
of graphs is shown.

Examining the results from the plotted fits in the context of physical weather processes, we recall that the covariates are monthly means,
and so details of individual weather events are not captured. Rainfall intensity, �X , can be seen to increase with temperature, which is in
line with intuition, because increased temperatures lead to greater moisture content in the atmosphere and increased convective activity. 321
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Higher temperatures affect convective rainfall, not just because of increased moisture in the air, but also because the strength of updraughts
is increased as the land is subject to greater heating. As temperatures increase, we also see that storms are generally shorter (� tends to be
higher). There are also fewer cells expected per rain event (given by 1C ˇ=� in the BLRP model), and the cells are shorter. These effects
occur at all levels of sea-level pressure and tie in with the fact that convective storms tend to have fewer cells than the alternative lighter, long-
duration ‘stratiform’ rainfall. The storm arrival rate, �, decreases almost linearly with increasing sea-level pressure, at all temperatures, that
is increased pressure tends to result in fewer storms. Again, this is in line with intuition, because rainfall is related to low-pressure systems.

In higher dimensions, although pointwise variability bands are straightforward to calculate, it is harder to show the uncertainty in a way
that is readily interpretable. One useful approach is to consider the ‘effective sample size’ in respect of each fit. Consider again the equation
for the variance, given by Equation (7). In the case of the discrete covariate, calendar month, the sample size in respect of monthm is clearly
just nm. The equation for the variance in this case is given by

VarŒ O�.x0/� �
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By analogy, comparing with Equation (7), the inverse of the expression
Pn
tD1K

2
h
.Xt � x0/=

˚Pn
tD1Kh.Xt � x0/

�2 can be treated as the
effective sample size for a continuous covariate at the observation with covariate value x0.

Figure 8 shows a boxplot of the results using this approach, across all observation points for each of the models. This shows that, at the
(approximately) mean-square optimal bandwidths, the effective sample sizes are generally reasonable for the majority of points and indeed
higher than for the current approach of fitting by month. Clearly, some care needs to be taken with the fits at some observation points,
particularly those with two or three dimensional covariates, but it should be clear which these are. Possibly, fitted models from other locations
with slightly different ranges of the covariates could be used to supplement the sparse information here, or alternatively the bandwidth close
to the boundaries could be increased (although of course this would lead to a corresponding increase in bias).

5. DISCUSSION AND CONCLUSIONS
In this paper, we have demonstrated how local smoothing ideas may be applied to relate the parameters of a complex multiparameter model
to one or more continuous covariates. In particular, we have shown that a local GMM methodology offers a useful new approach to fitting
point process-based rainfall models. With just two or three covariates, we can produce a model with better explanatory power than the current
approach, with more realistic interannual variation and with the ability to generate simulations that reflect future climate change scenarios.
Our method could thus be used to explore the effects of climate change on rainfall and run-off by simulating rainfall under a specific climate
change scenario and comparing statistics of interest with a control period. We believe that this development will be useful to the hydrological
community and to other practitioners who require artificial rainfall simulations for their applications.

We chose to use kernel smoothing, as local averaging is conceptually a natural extension of the current approach of averaging over a dis-
crete covariate. The local mean method is simple and intuitive, may be implemented fairly quickly using existing software for fitting rainfall
models and gives reasonable computation times. Further, the theoretical analysis and inference are straightforward, and the methodology
allows estimation of uncertainty. We found that the local linear method, usually preferred for its superior performance at the boundaries,
was not viable for our rainfall models, because of significantly increased computation speeds, coupled with sparse observations near the
boundaries leading to extremely high parameter uncertainty.

An alternative approach to kernel smoothing would be to estimate � as a linear combination of a collection (or ‘basis set’) of local functions
of one or more covariates. Splines are typically chosen as the local functions. These are piecewise polynomials, with smoothness constraints
at the joins or ‘knots’. An advantage of this approach is that it allows additive terms (without any need for backfitting), thus addressing the
curse of dimensionality, which is a constraint for the local mean model, limiting the number of covariates that we can reasonably incorporate
to a maximum of three. The idea of penalised splines is to use a large number of functions in the basis set to allow flexibility, but combine
this with a roughness penalty to control the degree of smoothness. A choice of basis set and penalty is required. We have carried out some
initial investigations using the approach of Eilers and Marx (1996). This uses equally spaced knots with a B-spline (de Boor, 2001) basis
set, which has desirable properties in terms of numerical stability. The roughness penalty is a multiple of the (usually second-order) squared
differences between coefficients. This multiple is effectively the smoothing parameter, playing a similar role to the bandwidth in the local
mean method, although it is less easy to interpret intuitively.

Using this alternative spline-based approach, much of the methodology described in the paper remains valid, but now the fitted values
at the observed points are all found simultaneously, and the objective function includes a penalty term. The objective function must be
minimised numerically, as before, and cross validation can be used to determine smoothing parameters. Our initial investigation has been
promising, with results for one or two covariates similar to the local mean fits. Another potential advantage of the spline-based approach is
the ability to allow a different level of smoothing for different parameters, or indeed to fit some parameters parametrically. However, there is
a cost to increased flexibility in terms of computational time, numerical stability and ease of implementation. Fitting times were found to be
much slower than for the local mean method, although, unlike the local linear fits, not to such an extent as to make this a nonviable approach, 323
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particularly if the number of knots was not too large. A more detailed comparison between the two methods as well as consideration of
uncertainty estimation for the spline-based model would be an interesting topic for further research.

It should be noted, however, that our principal aim is for a modelling methodology that is useful to practitioners and straightforward to
implement. Therefore, any additional complexity, particularly where it leads to significantly increased computation times, should be carefully
considered against any additional benefit that it generates. In the current context, given the uncertainties associated with future climate
projections and the strong correlations between climate variables, it is not clear that more than three covariates are required. If increased
complexity adds only marginal improvements to the explanatory power of the model, then our current approach would be preferred.

Rainfall data are often collected at a network of rain gauges. For simplicity, we have demonstrated the use of continuous covariates in
fitting models for rainfall at a single spatial location. However, it should be computationally feasible to apply it in a spatial-temporal context,
using simple models for spatial-temporal rainfall such as those discussed in Wheater et al. (2000; Chapter 5) or Cowpertwait (2006).
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