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Abstract 
GABAA receptors are the major inhibitory ligand-gated ion channels in the 

mammalian CNS. They mediate their physiological effects via two temporally 

and spatially distinct forms of signalling, denoted as phasic and tonic inhibition. 

These two forms of inhibition are mediated by distinct GABAA receptor 

subtypes, with phasic inhibition relying on the activation of synaptically-located 

γ2 subunit-containing receptors, and tonic inhibition requiring the activation of 

extrasynaptic receptors, predominantly thought to contain δ-subunits.  

The importance of tonic inhibition in regulating cell and network excitability has 

become increasingly apparent. Moreover, elevated tonic currents accompany 

neurological disorders such as stroke and absence epilepsy, suggesting that 

selectively reducing tonic inhibition might be therapeutically useful. Due to a 

lack of δ-selective antagonists, the theoretically predominant antagonist profile 

of the weak partial agonist, 4-PIOL, was studied as a potential mechanism for 

selectively reducing tonic inhibition. 

The functional effects of 4-PIOL were investigated firstly on whole-cell GABA-

activated currents of several recombinant γ2- and δ-containing receptors 

expressed in HEK293 cells. As expected for a partial agonist, 4-PIOL exhibited 

both agonist- (at γ2-subunit GABAA receptors) and antagonist-type (at δ-subunit 

receptors) behaviours, depending on the GABA concentration. 4-PIOL was then 

assessed on tonic and phasic currents of cerebellar granule cells (CGCs), 

hippocampal pyramidal neurons and thalamic relay-neurons. In CGCs, 4-PIOL 

inhibited tonic currents, without affecting spontaneous inhibitory postsynaptic 

currents (sIPSCs); whereas in hippocampal and thalamic relay neurons, 4-PIOL 

enhanced, or reduced, tonic currents depending on the extrasynaptic GABA 

concentration, consistent with an action at extrasynaptic γ2-containing 

receptors. Moreover, 4-PIOL antagonised sIPSCs in these two brain regions, in 

accord with targeting presynaptic and postsynaptic GABAA receptors. 

In conclusion, the therapeutic potential of GABAA receptor partial agonists, such 

as 4-PIOL will be critically dependent on not only the ambient GABA 

concentration, but also on the relative expression of different GABAA receptor 

subtypes.  
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Chapter 1: Introduction 

 

1.1. GABAA receptors 

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the 

mammalian central nervous system (CNS). GABA mediates its actions through 

two distinct classes of receptor: ionotropic GABA type-A (GABAA) and 

metabotropic GABA type-B (GABAB) receptors. The main focus of this thesis 

will be the GABAA receptor family, which are the main class of inhibitory ligand-

gated ion channels (LGIC) in the mammalian CNS. GABAA receptors are 

pentameric complexes comprised of five subunits arranged around a central Cl- 

and HCO3
- permeable pore (Fig. 1.1 A). GABAA receptors, along with glycine, 

nicotinic acetylcholine (nACh), 5-hydroxytryptamine3 (5-HT3; serotonin) and 

zinc-activated channels (ZAC), belong to the Cys-loop containing LGIC family, 

which together with their bacterial homologues from G. violaceus (GLIC) and E. 

chrysanthemi (ELIC), and eukaryotic glutamate-gated chloride channels from C. 

elegans (GluCl), form part of the pentameric LGIC (pLGIC) super family (Miller 

and Smart, 2010; Corringer et al., 2012). Structural information for Cys-loop-

containing receptors comes from the electron microscope studies of nACh 

receptors (Unwin, 2005), and high-resolution X-ray structures of ELIC (Hilf and 

Dutzler, 2008), GLIC (Bocquet et al., 2009), GluCl (Hibbs and Gouaux, 2011; 

Althoff et al., 2014), mouse 5-HT3 receptors (Hassaine et al., 2014) and human 

homomeric β3 GABAA receptors (Miller and Aricescu, 2014).  
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1.1.1. GABAA receptor structure 

To date, 8 classes of GABAA receptor subunits have been identified, half of 

which have multiple isoforms: α(1-6), β(1-3), γ(1-3), δ, ε, θ, π, ρ(1-3). Further 

subunit diversity can arise from alternative splicing of RNA (Farrant and Nusser, 

2005; Möhler, 2006). For instance, the γ2 subunit can exist as a short (γ2S) or 

long (γ2L) splice variant, with the latter isoform containing an eight amino acid 

cassette in the M3 - M4 intracellular loop that is absent in the γ2S isoform 

(Whiting et al., 1990; Kofuji et al., 1991). Each receptor subunit comprises a 

large extracellular N-terminus, four transmembrane domains (M1 – M4), a short 

extracellular C-terminus, and a large intracellular M3 – M4 domain (Fig. 1.1 B). 

While the N-terminus contributes to the orthosteric binding site and contains a 

Cys-loop formed by a disulphide bond between two cysteine residues (a 

characteristic of all Cys-loop LGICs), the M2 region forms the channel pore. The 

large intracellular loop between M3 and M4 is important for protein-protein 

interactions and contains phosphorylation consensus sequences (discussed in 

Section 1.1.4).  

In recombinant expression systems, functional GABAA receptors can 

sometimes be formed by expressing a single subunit (e.g. ρ or β3 subunits), or 

more typically, two (e.g. α and β subunits), or three subunit classes (e.g. α, β 

and γ subunits). Despite this potentially huge structural diversity, it appears that 

only a limited number of native subunit combinations exist within the CNS. The 

expression profile of each subunit varies between, and within, brain regions and 

also within single cells, and can vary during development (Laurie et al., 1992b; 

Pirker et al., 2000; Hörtnagl et al., 2013). Protein and mRNA co-distribution 

studies (assessed by immunostaining and in situ hybridisation respectively), 

combined with co-immunoprecipitation studies, indicate that the majority of 

native GABAA receptors are composed of α1β2γ2 subunits (~ 40 – 60 %), with 

the other, less common subunit combinations being α2β2γ2 (15 - 20 %), 

α4βδ/α4βγ2 (< 5 %) and α6βδ/α6βγ2 (< 5 %) subunits (McKernan and Whiting, 

1996; Sieghart and Sperk, 2002; Möhler, 2006). There is also evidence from co-

immunoprecipitation studies that different α isoforms may co-assemble within 

the same receptor complex (e.g. α1α6βγ2 receptors in the cerebellum; Pollard 
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et al., 1995). Subunit composition appears to be an important determinant of 

subcellular localisation in neurons. For instance, δ-containing receptors seem to 

be located exclusively at extrasynaptic sites in several brain regions (see 

Section 1.3.1), while γ2-containing receptors typically accumulate at inhibitory 

synapses (Sieghart and Sperk, 2002). However, these rules may vary, since 

typical synaptic subunits (e.g. α1 and γ2) have also been detected at 

extrasynaptic sites in several neuronal cell types (e.g. cerebellar granule cells, 

hippocampal pyramidal neurons and thalamic relay neurons; Soltesz et al., 

1990; Nusser et al., 1998; Mangan et al., 2005; Thomas et al., 2005; Kasugai et 

al., 2010). 

Although the precise subunit stoichiometry of native GABAA receptors is yet to 

be elucidated, recombinant αβγ GABAA receptors are widely believed to have a 

subunit stoichiometry of 2α: 2β: 1γ, with a likely βαβαγ anticlockwise subunit 

arrangement in the pentamer when viewed externally (Fig. 1.1 C; Backus et al., 

1993; Chang et al., 1996; Tretter et al., 1997). For the other GABAA receptor 

isoforms, it is generally assumed that the δ, ε, or π subunits simply replace the 

γ2 subunit within the receptor complex (Sieghart and Sperk, 2002; Olsen and 

Sieghart, 2008). However, this may not be a firm assembly rule, since at least 

for δ-containing receptors, there is some debate regarding their precise subunit 

stoichiometry. While one study demonstrated a subunit stoichiometry of 2α: 2β: 

1δ for recombinant α4β3δ receptors using atomic force microscopy (Barrera et 

al., 2008), another co-immunoprecipitation-based study revealed that the 

number of incorporated δ subunits could be varied by increasing the relative 

amount of δ-encoding cDNA during transfection (Wagoner and Czajkowski, 

2010). Moreover, studies using concatamers indicate that the δ subunit can also 

assume multiple positions within the αβδ receptor pentamer, and may 

potentially also contribute to a novel GABA binding site (Baur et al., 2009; Kaur 

et al., 2009). Thus, subunit composition critically defines the functional and 

pharmacological properties of GABAA receptors, a feature that will be further 

discussed in Sections 1.1.5 and 1.2.3. 
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Figure 1.1 – Structure of GABAA receptors  

A. GABAA receptors are pentameric assemblies of five subunits arranged around a central Cl--

(and HCO3
--) permeable pore region. B. Each GABAA receptor subunit is composed of a large 

extracellular amino (-NH2) terminus, four transmembrane helices (M1 – M4), a large intracellular 

loop between M3 and M4, and a short carboxy (-COOH) terminus. The M2 region forms the 

pore-lining domain, while the M3-M4 intracellular loop is a major site for protein-protein 

interactions and phosphorylation. C. The proposed subunit stoichiometry and subunit 

arrangement of αβγ receptors, as viewed from the extracellular space. Subunits show a subunit 

stoichiometry of 2α: 2β: 1γ, with an anticlockwise subunit arrangement of βαβαγ. The respective 

binding sites for GABA  and benzodiazepine (BDZ) ligands are also indicated, at the β/α (the 

orthosteric binding site) and α/γ interfaces (an example of an allosteric binding site).  
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1.1.2. Assembly of GABAA receptors 

GABAA receptor assembly occurs in the endoplasmic reticulum (ER), and the 

specificity of this process limits the diversity of GABAA receptors expressed at 

the cell surface. For α, β and γ subunits, sequences in the N-terminus have 

been identified as important determinants of subunit oligomerization (Lüscher et 

al., 2011), which appear to promote specific subunit partnerships. For instance, 

four amino acids (G171, K173, E179 and R180) in the N-terminus of β3 

subunits are required for the formation of β3 homo-oligomers in recombinant 

expression systems, but not for the formation of α1 and β3 heteromers (Taylor 

et al., 1999). Moreover, an N-terminal residue (R66A) in the α1 subunit is 

important for the formation of binary α1β2 subunits, but not α1β1 or α1β3 

receptors (Bollan et al., 2003). An insight into the preferred subunit partnerships 

of native GABAA receptors comes from gene knockout studies. For instance, in 

cerebellar granule cells (CGCs), genetic knockdown of the α6 subunit produces 

a concomitant loss of δ subunit protein levels (Jones et al., 1997), while in the 

forebrain, δ knockout (δ-/-) mice show a significantly reduced α4 

immunoreactivity (Peng et al., 2002). Thus, δ appears to preferentially co-

assemble with α4 and α6 subunits, although a compensatory association of α4 

and γ2 subunits has also been detected in δ-/- knockout mice (Peng et al., 

2002), indicating that other subunit combinations can occur in the absence of 

preferred oligomerization partners. 

 

1.1.3. Trafficking of GABAA receptors 

GABAA receptor trafficking is a dynamic and complex process that regulates the 

efficacy of GABAergic neurotransmission. Several receptor-associated proteins 

alter the number and distribution of GABAA receptors on the cell surface of 

neurons, by regulating the delivery, internalisation and lateral mobility of cell 

surface GABAA receptors (Fig. 1.2). Although an extensive discussion of these 

processes is beyond the scope of this thesis, some key components will be 

described below. Many of these proteins associate with the intracellular M3 – 
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M4 loop of GABAA receptor subunits (Lüscher and Keller, 2004; Lüscher et al., 

2011; Vithlani et al., 2011).  

PLIC-1 (Protein that Links Integrin-associated protein with the Cytoskeleton-1), 

a ubiquitin-like protein, appears to be critical for forward trafficking of receptors, 

since it appears to increase the stability of GABAA receptors in the secretory 

pathway and prevents their degradation, probably by inhibiting ubiquitin-

dependent degradation (Lüscher et al., 2011; Vithlani et al., 2011). In accord 

with this, blocking the interaction of PLIC-1 with the intracellular domains of α 

and β subunits reduces cell surface receptor expression levels of GABAA 

receptors (Bedford et al., 2001). Other proteins that facilitate the delivery of 

GABAA receptors to the cell surface include the HAP1/KIF5 (Huntingtin-

Associated Protein-1/kinesin motor protein 5) complex, GABARAP (GABAA 

receptor associated protein) and PRIP1/2 (Phospholipase-C Related Inactive 

Protein 1 and 2). The KIF5/HAP1 complex is important for the fast delivery of 

GABAA receptors to synapses (Kittler et al., 2004; Twelvetrees et al., 2010), 

since disrupting this complex causes a rapid (within minutes) reduction in 

synaptic cluster size, and synaptic current amplitude (Twelvetrees et al., 2010). 

GABARAP also appears to promote the cell surface expression of GABAA 

receptors, since its overexpression in hippocampal neurons also enhances 

surface expression of the γ2 subunit (Leil et al., 2004). Originally, GABARAP 

was implicated in synaptic clustering, due to its ability to directly interact with the 

γ2 subunit, tubulin, and gephyrin (a synaptic scaffolding protein) in vitro (Wang 

et al., 1999; Kneussel et al., 2000). However, due to its absence from synaptic 

sites, and predominant intracellular location in neurons (Kneussel et al., 2000; 

Kittler et al., 2001), GABARAP is now thought to be involved in the intracellular 

trafficking of GABAA receptors. Consistent with this role, genetic knockdown of 

PRIP1/2, proteins which seem to facilitate the interaction of GABARAP with γ2 

subunits, produces a reduction in cell surface expression of γ2-containing 

receptors (Mizokami et al., 2007), although it is important to note that PRIP1/2 

may also alter receptor trafficking through other mechanisms (see Section 

1.1.4). 

The number of GABAA receptors on the cell surface is also critically dependent 

on the dynamics of receptor internalization and membrane insertion. In both 
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recombinant expression systems, and neuronal preparations, GABAA receptors 

undergo constitutive endocytosis via a clathrin-dependent mechanism (Kittler et 

al., 2000). This process requires the direct interaction of β and γ subunits with 

clathrin-adaptor protein 2 (AP2; Kittler et al., 2000; Smith et al., 2008), and is 

regulated by the phosphorylation state of these subunits (see Section 1.2.1; 

Lüscher et al., 2011).  

In addition, GABAA receptors also show lateral mobility within the plasma 

membrane, allowing them to move into and out of synapses (Thomas et al., 

2005; Bogdanov et al., 2006). The synaptic and extrasynaptic distribution of 

GABAA receptors is critically dependent on both subunit composition (discussed 

in Section 1.2.1), and specific interactions with post-synaptic scaffolding 

proteins. One scaffolding protein that appears to be important for the synaptic 

clustering of GABAA (and glycine) receptors, is gephyrin. Clustering of gephyrin 

itself is also critically dependent on the γ2 subunit, since γ2 knockout mice show 

a concomitant loss of gephyrin clustering (Essrich et al., 1998). However, since 

no direct interaction between gephyrin and γ2 subunits has yet been identified, 

the mechanisms that underlie this interdependence are unknown. In fact, the 

only GABAA receptor subunits known to directly interact with gephyrin in vitro, 

are α(1 – 3) subunits (Tyagarajan and Fritschy, 2014). Intriguingly, gephyrin 

knockout mice show a subtype selective loss of α2βγ2 and α3βγ2 GABAA 

receptors from GABAergic synapses (Kneussel et al., 1999; Lévi et al., 2004), 

which might in part, be explained by the specific interactions of gephyrin with 

different α subunits (Tyagarajan and Fritschy, 2014). The existence of gephyrin- 

independent clustering mechanisms have also been proposed, since GABAA 

receptor synaptic clustering, and miniature inhibitory post-synaptic currents 

(IPSCs) are still detected in gephyrin knockout mice (Kneussel et al., 1999; Lévi 

et al., 2004). Intriguingly, the actin binding protein, radixin was shown to 

promote clustering of α5 subunit-containing receptors in hippocampal neurons 

(Loebrich et al., 2006). However, unlike gephyrin-dependent clustering, radixin-

dependent clustering occurs only at extrasynaptic sites (Loebrich et al., 2006), 

indicating that GABAA receptors may also be specifically anchored to 

extrasynaptic sites to support tonic inhibition. 
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Figure 1.2 – Schematic of the major GABAA receptor trafficking processes 

GABAA receptors are assembled as pentameric complexes in the endoplasmic reticulum (ER). 

The forward trafficking of correctly assembled GABAA receptors is facilitated by PLIC-1, which 

prevents GABAA receptor degradation, and promotes receptor stability through the secretory 

pathway. Other key proteins that are implicated in the trafficking of GABAA receptors to the cell 

surface are GABARAP and PRIP1/2 and the HAP1/KIF5 complex. GABAA receptors at the cell 

surface are subject to lateral diffusion, and can interact with scaffolding proteins such as 

gephyrin (α1 -3 subunits) and radixin (α5 subunits), which promote receptor clustering at 

synaptic and extrasynaptic sites respectively. Receptor internalisation largely occurs via a direct 

interaction of β and γ subunits with the clathrin-adaptor protein 2 (AP2), an interaction that is 

regulated by phosphorylation. Following clathrin-mediated endocytosis into clathrin-coated 

vesicles (CCV), receptors are recycled back to the cell surface or targeted for lysosomal 

degradation. Figure was compiled using reviews by (Lüscher and Keller, 2004; Lüscher et al., 

2011; Vithlani et al., 2011). 
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1.1.4. GABAA receptor modulation: Phosphorylation 

Several phosphorylation consensus sequences have been identified in the M3 – 

M4 intracellular loops of α4, β(1-3) and γ2 subunits, which act as substrates for 

several different serine-threonine and tyrosine kinases (Fig. 1.3). 

Phosphorylation at these sites can differentially regulate the biophysical 

properties, pharmacology and trafficking of GABAA receptors (Lüscher et al., 

2011; Vithlani et al., 2011). However, the functional outcome of phosphorylation 

will depend on which GABAA receptor subunits are modified, the identity of the 

kinase, the experimental conditions used (e.g. the expression system used), 

and the compartment in which phosphorylation occurs. For instance, 

Ca2+/calmodulin-dependent kinase II (CaMKII)-mediated potentiation of α1β3- 

or α1β3γ2-GABA currents was only supported in a neuroblastoma (NG108-15) 

cell line, but not in a human embryonic kidney 293 (HEK293) expression system 

(Houston and Smart, 2006). Moreover, this modulation was dependent on the 

β3 subunit since no effect of CaMKII activation was observed on α1β2- or 

α1β2γ2-GABA currents (Houston and Smart, 2006), even though a CaMKII 

phosphorylation site has been identified on the β2 subunit (S410; Fig. 1.3; 

Lüscher et al., 2011; Vithlani et al., 2011). However, it must be noted that a lack 

of effect in recombinant expression systems does not exclude the possibility 

that β2-containing receptors may undergo CaMKII-mediated modulation in 

neurons. 

Protein kinase C (PKC) phosphorylation of β and γ2 subunits disrupts their 

interaction with AP2, leading to reduced clathrin-mediated endocytosis, and 

consequently, increased GABA currents in recombinant expression systems, 

and cortical neurons (Kittler et al., 2005; Vithlani et al., 2011). More recently, it 

was demonstrated that phosphorylation of S443 on α4 subunits prevents run 

down of GABA currents by promoting plasma membrane insertion rates of 

recombinant α4β3 receptors in HEK293 cells (Abramian et al., 2010). However, 

PKC activation has also been shown to decrease cell surface expression levels 

of recombinant α4β2δ receptors via the S410 residue on the β2 subunit (Bright 

and Smart, 2013). Given that the δ subunit does not appear to be 

phosphorylated by PKC in recombinant expression systems (Abramian et al., 
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2010), the discrepancy between these studies might arise from the use of 

different β isoforms, which may be differentially regulated by PKC in α4-

containing receptors. Moreover, the subcellular compartment in which 

phosphorylation occurs may also be important, since phosphorylation at the 

same site on the β subunit can have opposing effects on GABAA receptor 

trafficking in different subcellular compartments (Lüscher et al., 2011). Indeed, it 

is unclear whether the reduced cell surface expression of α4β2δ receptors 

following PKC phosphorylation is attributable to reduced cell surface delivery, or 

increased endocytosis of GABAA receptors (Bright and Smart, 2013). 

 

Figure 1.3  – Phosphorylation sites on GABAA receptors 

A diagram showing the phosphorylation sites (serine (S), threonine (T) or tyrosine (Y) residues) 

identified on GABAA receptor subunits, along with the kinases capable of phosphorylating them. 

The M3 - M4 intracellular loop of all three β subunits contain phosphorylation consensus 

sequences for Ca2+/calmodulin-dependent kinase II and Protein kinases A, B, C and G (PKA, 

PKB, PKC, PKG), whereas the γ2 subunit contains consensus sequences for PKC, CaMKII and 

tyrosine kinase-mediated phosphorylation. *Note that S343 is present in the γ2L isoform, but not 

the γ2S isoform. For α subunits, only one serine residue has been identified to date on the α4 

subunit that can act as a substrate for PKC-mediated phosphorylation. This figure was 

constructed using reviews by (Houston et al., 2009; Abramian et al., 2010; Lüscher et al., 2011; 

Vithlani et al., 2011). 
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The phosphorylation of GABAA receptors in vivo may be dynamically regulated 

by endogenous factors. For instance, acute treatment of cultured cortical and 

hippocampal neurons with brain-derived neurotrophic factor (BDNF) induces a 

transient increase, followed by a prolonged depression of mIPSC amplitudes 

(Jovanovic et al., 2004). Moreover, this effect is achieved by indirectly 

influencing the phosphorylation state of recombinant and native GABAA 

receptors (Lüscher et al., 2011; Vithlani et al., 2011). The enhancement of 

mIPSC amplitude coincides with increased β3 subunit expression at the cell 

surface, and is temporally associated with an increase and subsequent 

decrease in PKC-mediated phosphorylation of β3 subunits (Jovanovic et al., 

2004; Kanematsu et al., 2006). The latter reduction in mIPSC amplitude is 

thought to involve the recruitment of protein phosphatases 1 and 2A 

(PP1/PP2A) by the phosphatase adaptor protein, PRIP, and a subsequent 

dephosphorylation of β3 subunits. However, it is uncertain whether this 

prolonged depression of mIPSCs arises from reduced cell surface expression of 

β3-containing receptors (Kanematsu et al., 2006), or reduced currents without 

altered cell surface expression (Jovanovic et al., 2004). 

 

1.1.5. GABAA receptor modulation: Pharmacology  

As discussed in Section 1.1, GABA mediates its actions via two distinct classes 

of receptor: ionotropic GABAA and metabotropic GABAB receptors. These two 

receptor classes display distinct functional properties; GABAA receptors are Cl- 

permeable ion channels, whereas GABAB receptors couple to Ca2+ and K+ 

channels via G-proteins and second messenger systems (Bowery et al., 2002; 

Bettler et al., 2004; Olsen and Sieghart, 2008). In addition, these two receptor 

isoforms show distinct pharmacological profiles. GABAA receptors, but not 

GABAB receptors are sensitive to the inhibitory actions of the GABAA receptor 

antagonists, bicuculline, gabazine and picrotoxin, although GABAA receptors 

containing the ρ subunit (previously termed GABAC receptors), are insensitive 

to bicuculline and gabazine (Chebib and Johnston, 1999; Olsen and Sieghart, 

2008). Conversely, the GABA analogue, β-(4-chloro-phenyl)-γ-aminobutyric 
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acid (baclofen) is a potent agonist at GABAB but not GABAA receptors (Bowery 

et al., 2002; Olsen and Sieghart, 2008). 

GABAA receptors are modulated by a wide range of endogenous and synthetic 

compounds, including Zn2+, barbiturates, benzodiazepines, neurosteroids and 

general anaesthetics (e.g. propofol). The best characterised of these, are 

benzodiazepine agonists, which represent the most widely prescribed drugs for 

the treatment of anxiety and insomnia disorders (Rudolph and Knoflach, 2011). 

Benzodiazepine agonists (e.g. diazepam) act as positive allosteric modulators 

of the GABAA receptor, by increasing the apparent affinity of receptors to GABA 

(Rogers et al., 1994), and promoting the creation of a pre-activation state prior 

to receptor gating (Gielen et al., 2012). Classical benzodiazepines require the 

presence of an α/γ interface, and absence of the benzodiazepine-insensitive α 

subunit variants (α4 and α6). Therefore, only α(1, 2, 3 or 5)-containing receptors 

can be modulated by classical benzodiazepines, since they contain the N-

terminal histidine residue (α1H101, α2H101, α3H126 or α5H105) that is crucial for 

benzodiazepine binding (Wieland et al., 1992) and potentiation (Benson et al., 

1998). By generating benzodiazepine-insensitive knock-in mice, which carry a 

histidine to arginine (H to R) mutation in selected α subunits, the behavioural 

effects of benzodiazepines have been attributed to individual α isoforms. For 

instance, the α1 subunit largely mediates the sedative and muscle relaxant 

properties of benzodiazepine agonists, while the α2 subunit significantly 

contributes to their anxiolytic actions (Rudolph and Knoflach, 2011). Thus 

generating α-selective benzodiazepine agonists may provide more condition-

specific treatments, with fewer unwanted side effects. Indeed, there has been a 

recent drive to develop α5-selective benzodiazepine-site inverse agonists, since 

they may promote recovery following stroke (Clarkson et al., 2010), and 

improve learning and memory deficits in Down’s syndrome (DS) and 

Alzheimer’s disease (AD; discussed in detail in Section 1.3.1; Brickley and 

Mody, 2012).  

Neurosteroids (e.g. allopregnanolone and tetrahydrodeoxycorticosterone 

(THDOC)) represent an important class of endogenous compounds that can 

biphasically modulate GABAA receptor function. At low (nM) concentrations, 

neurosteroids have been demonstrated to potentiate GABA currents via a 
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conserved glutamine residue in the α subunit (e.g. α1Q241; Hosie et al., 2006, 

2009), while higher (µM) concentrations are capable of directly activating 

GABAA receptors via a distinct site at the α/β interface (Belelli and Lambert, 

2005). The potentiating profile of neurosteroids is only minimally affected by 

which α or β isoform is incorporated into the receptor complex (Lambert et al., 

2003). By comparison, neurosteroids produce a greater enhancement in 

efficacy at δ-containing receptors compared to their γ2-containing counterparts 

(Belelli et al., 2002; Brown et al., 2002; Wohlfarth et al., 2002), thus conferring 

some degree of selectivity between these two receptor isoforms, at least when 

studied in recombinant expression systems. However, since the potentiating 

neurosteroid binding site is entirely confined to the α subunit (Hosie et al., 

2009), this selectivity profile is unlikely to reflect a direct interaction of 

neurosteroids with the δ subunit. Instead, it is thought to reflect the relative 

ability of neurosteroids to increase the efficacy of a full agonist verses a partial 

agonist (Bianchi and Macdonald, 2003), since GABA is considered a partial 

agonist at δ-containing receptors, but a full agonist at γ2-containg receptors 

(Ebert et al., 1994; Mortensen et al., 2004). However, factors independent of 

subunit composition may also influence the modulatory actions of 

neurosteroids, as will be discussed in Section 1.2.3. 
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1.2. Tonic and Phasic currents in the CNS 

GABAA receptors play a crucial role in controlling neuronal excitability. The 

functional outcome of GABAA receptor activation largely depends on the 

transmembrane electrochemical gradient of Cl-, since GABAA receptors are 

significantly more permeable to Cl- than HCO3
- (by ~ 5 – fold; Bormann et al., 

1987). In most mature neurons, the potassium-chloride co-transporter 2, KCC2, 

extrudes Cl- to produce a chloride equilibrium potential (ECl) that is usually more 

negative than the resting membrane potential. Consequently, the activation of 

GABAA receptors produces a net influx of Cl- ions, leading to membrane 

hyperpolarisation away from action potential threshold. However, in most 

immature (Ben-Ari et al., 2012), and some mature neurons (e.g. in hippocampal 

interneurons; Michelson and Wong, 1991; Banke and McBain, 2006; Song et 

al., 2011), the activation of GABAA receptors can lead to membrane 

depolarisation, due to the presence of a depolarising Cl- electrochemical 

gradient set by the sodium, potassium and chloride co-transporter 1 (NKCC1; 

Ben-Ari et al., 2012). In both cases (whether Cl- is depolarising or 

hyperpolarising), the activation of GABAA receptors can cause an increase in 

membrane conductance giving rise to a shunting of excitatory potentials, 

depending on their incoming temporal profile (Mitchell and Silver, 2003). Thus, 

GABAA receptors can reduce neuronal excitability via two main mechanisms: 

either by membrane hyperpolarisation and/or shunting inhibition (Farrant and 

Nusser, 2005). 

GABAA receptor mediated signalling can occur via two main, spatially and 

temporally distinct forms of receptor activation: phasic and tonic. Phasic 

inhibition, involves the activation of synaptically located GABAA receptors by 

transiently high concentrations of GABA (in the mM range; Maconochie et al., 

1994; Jones and Westbrook, 1995), released from presynaptic nerve terminals. 

This gives rise to inhibitory post-synaptic currents (IPSCs; see Fig. 1.4). In 

contrast, tonic inhibition involves the continuous activation of GABAA receptors 

residing outside inhibitory synapses (extrasynaptic), by low ambient GABA 

concentrations (ranging from nanomolar to low micromolar; Farrant and Nusser, 

2005). Thus, whilst phasic currents provide a brief but intense inhibition of cell 
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excitation, tonic currents provide a low intensity, persistent inhibition, important 

for fine-tuning the ability of neurons to generate action potentials, but also for 

altering the input-output relationship, and gain (slope) of neuronal firing rates 

(Mitchell and Silver, 2003; Farrant and Nusser, 2005; Lee and Maguire, 2014). 

 

 

Figure 1.4 – A schematic of GABAergic transmission in the CNS 

GABA is released from presynaptic nerve terminals, where it can activate ionotropic GABAA or 

metabotropic GABAB receptors. Activation of postsynaptic GABAA receptors residing in the 

synapse, gives rise to inhibitory post-synaptic currents (IPSCs), whereas a continuous activation 

of extrasynaptically located GABAA receptors by ambient GABA, can give rise to tonic currents. 

Note that the magnitude of a GABAA-receptor mediated tonic current can be revealed by 

measuring the change in holding current induced by applying a GABAA receptor antagonist (e.g. 

for the duration indicated by the red horizontal line). 
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1.2.1. Subunit composition of synaptic and extrasynaptic GABAA receptors 

Evidence indicates that distinct GABAA receptor isoforms mediate tonic and 

phasic currents in the CNS, and the identity of these receptors varies between 

different brain regions. Although tonic currents have been detected in several 

neuronal cell types (see Lee and Maguire, 2014; depicted in Fig. 1.5), the 

ensuing section will discuss the identities of tonic and phasic mediating GABAA 

receptors expressed in hippocampal pyramidal neurons, thalamocortical (TC) 

relay neurons and CGCs. These specific cell types were chosen since they 

demonstrate well-characterised tonic and phasic GABAA receptor 

conductances, which will be the main focus of this thesis (see Section 1.4). 

CGCs were the first cell-type in which a GABAA receptor mediated tonic current 

was demonstrated (Kaneda et al., 1995). Protein and mRNA co-distribution 

studies indicated that mature CGCs showed a strong expression pattern for α1, 

α6, β2/3, γ2 and δ subunits (Laurie et al., 1992a; Wisden et al., 1992; Pirker et 

al., 2000; Hörtnagl et al., 2013). By analysing the subcellular distribution of 

these subunits using electron microscopy (EM) and immunofluorescence 

techniques, the δ subunit was demonstrated to reside exclusively at 

extrasynaptic sites, while the α1, α6, β2/3 and γ2 subunits were found to be 

concentrated at synaptic sites, but could also be detected at extrasynaptic sites 

(Fritschy et al., 1992; Somogyi et al., 1996; Nusser et al., 1998). These data, 

combined with co-immunoprecipitation studies (Khan et al., 1994; Pollard et al., 

1995), indicated that CGCs most likely express α1βγ2, α6βγ2, α6βδ, and 

α1α6βγ2 receptors (Sieghart and Sperk, 2002). The synaptic location of α1βγ2, 

α6βγ2, and α1α6βγ2 receptors indicates that these receptor isoforms are likely 

to mediate phasic currents in CGCs, while tonic currents are likely to be 

mediated by α6βδ receptors, since this receptor isoform is found exclusively at 

extrasynaptic sites, and exhibits a high sensitivity to GABA (Saxena and 

Macdonald, 1996). In accord with this, CGCs from α6 knockout (α6-/-) mice, 

which also lack the δ subunit (Jones et al., 1997), show a complete ablation of 

the GABAA receptor mediated tonic currents (Brickley et al., 2001).  
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In pyramidal neurons of the Cornu ammonis (CA) regions 1 and 3 of the 

hippocampus, α5-containing receptors may contribute to both tonic and phasic 

currents. In CA1/CA3 pyramidal neurons, immunostaining and in situ 

hybridisation studies suggest that α5 subunits localise to both synaptic 

(Serwanski et al., 2006), and extrasynaptic sites (Fritschy et al., 1998; Brünig et 

al., 2002; Crestani et al., 2002), thus making them ideally situated to mediate 

both types of inhibitory neurotransmission. However, knocking out the α5 

subunit has little effect on either miniature, or spontaneous IPSCs, suggesting 

that α5-containing receptors do not significantly contribute to phasic inhibitory 

currents (Caraiscos et al., 2004; Glykys et al., 2008). However, this lack of 

effect on IPSCs might also arise from compensatory changes in receptor 

expression, which is a major caveat of gene knockout studies. Indeed, Prenosil 

et al. (2006) demonstrated that slow IPSCs (but not fast IPSCs) from wild-type 

(WT) mice were partially inhibited by 11,12,13,13a-Tetrahydro-7-methoxy-9-

oxo-9H-imidazo[1,5-a]pyrrolo[2,1-c][1,4]benzodiazepine-1-carboxylic acid (L-

655,708; an α5-selective benzodiazepine inverse agonist), while another study 

demonstrated that the diazepam sensitivity of slow IPSCs was ablated in mice 

expressing a diazepam-insensitive α5 subunit (Zarnowska et al., 2009). Thus, 

α5-containing receptors appear to mediate slow, but not fast IPSCs.  

CA1 pyramidal neurons from α5 knockout (α5-/-) mice exhibit reduced tonic 

currents (Caraiscos et al., 2004; Glykys et al., 2008), indicating that α5-

containing receptors contribute to tonic currents. However, by using a 

pharmacological approach, CA1 tonic currents were demonstrated to be either 

inhibited (Caraiscos et al., 2004), or unaffected (Prenosil et al., 2006) by L-

655,708, indicating that although they are present at extrasynaptic sites, α5-

containing receptors may not contribute to CA1 tonic currents. However, some 

of these conflicting observations may be explained by differing ambient GABA 

levels between different slice preparations, which may influence the GABAA 

receptor isoforms that contribute to tonic currents, and the inhibitory profile of L-

655,708 (Scimemi et al., 2005). Moreover, other GABAA receptor subtype(s) 

may also contribute to CA1/CA3 tonic currents, especially since α5-/- mice 

display a residual tonic current (Caraiscos et al., 2004; Glykys et al., 2008). 

Given the extrasynaptic distribution of δ subunits on hippocampal pyramidal 
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neurons (Mangan et al., 2005), and that double α5-/-, δ-/- knockout mice show a 

complete loss of the residual tonic currents present in α5-/- single mutant mice 

(Glykys et al., 2008), it is likely that δ-containing receptors also contribute to 

CA1/CA3 tonic currents. However, there is also evidence that αβ receptors may 

partly mediate CA1/CA3 tonic currents (Mortensen and Smart, 2006), and so 

contributions by other GABAA receptor subtypes cannot be discounted. 

In mature thalamic relay neurons, phasic currents are largely thought to be 

mediated by α1βγ2 receptors since these subunits have been detected at 

synaptic (and extrasynaptic) sites by EM (Soltesz et al., 1990). In accord, the 

IPSCs recorded from adult mice expressing a diazepam-insensitive α1 subunit 

mice appear to be largely insensitive to diazepam (Peden et al., 2008). 

However, α2βγ2 receptors may also contribute to phasic currents within the first 

month of postnatal development (Okada et al., 2000; Peden et al., 2008). Tonic 

currents have only been reported in a few thalamic nuclei, including the 

ventrobasal nucleus (VB; the somatosensory thalamus; Belelli et al., 2005; Jia 

et al., 2005; Herd et al., 2009), the medial geniculate body (the auditory 

thalamus; Richardson et al., 2011)) and the dorsal lateral geniculate nucleus 

(dLGN; the visual thalamus; Cope et al., 2005; Bright et al., 2007; Nani et al., 

2013; Ye et al., 2013). Several studies indicate that tonic currents in the 

thalamus are restricted to thalamic relay neurons, and are predominantly 

mediated by α4βδ receptors. This GABAA receptor isoform appears to be ideally 

suited to mediating tonic currents, owing to its high GABA sensitivity (Brown et 

al., 2002; Stórustovu and Ebert, 2006; Mortensen et al., 2010), and slower 

desensitisation profile, relative to synaptic γ2-containing receptors (Brown et al., 

2002; Feng et al., 2009; Mortensen et al., 2010; Bright et al., 2011). Indeed, 

high expression levels of α4 and δ subunits have been detected in the thalamus 

(Wisden et al., 1992; Pirker et al., 2000; Hörtnagl et al., 2013), and co-

immunoprecipitation studies indicate that δ subunits only co-assemble with α4 

subunits in this brain region (Sur et al., 1999). Moreover, thalamic relay neurons 

from α4 knockout mice show a complete loss of GABAA receptor mediated tonic 

currents (Chandra et al., 2006), and δ knockout mice show considerably 

diminished responses to the δ subunit-selective agents, 4,5,6,7-
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tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; Herd et al., 2009) and 4-Chloro-N-

[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]benzamide (DS2; Jensen et al., 2013). 

 

 

 

Figure 1.5  – Extrasynaptic GABAA receptor isoforms 

Schematic showing the major GABAA receptor isoforms found at extrasynaptic sites in the CNS, 

along with their cellular distributions. Isoforms highlighted with a red astrix (*) represent high 

affinity extrasynaptic GABAA receptors that are proposed to mediate tonic currents in the CNS. 

Tonic currents have been identified in several cell types, including hippocampal pyramidal (PY) 

neurons, cerebellar granule cells (CGCs), dentate gyrus granule cells (DGGCs), thalamocortical 

(TC) relay neurons, neocortical PY neurons and striatal medium spiny neurons (Farrant and 

Nusser, 2005; Brickley and Mody, 2012; Lee and Maguire, 2014). 
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1.2.2. Sources and estimates of ambient GABA levels 

The magnitude of tonic currents is critically defined by the extracellular 

concentration of GABA. On the basis of microdialysis studies, in vivo estimates 

of ambient GABA range from 30 nM to 2.9 μM (Glaeser and Hare, 1975; Lerma 

et al., 1986; de Groote and Linthorst, 2007; Wlodarczyk et al., 2013). However, 

these estimates may reflect conditions under pathological rather than 

physiological states, since microdialysis probes can induce extensive tissue 

damage and inflammation, which may alter local neurotransmitter levels (van 

der Zeyden et al., 2008). Moreover, the chromatographic method that is 

commonly used to quantify dialysate GABA levels is sensitive to changes in pH, 

which may influence the levels of GABA detected (van der Zeyden et al., 2008). 

In addition, GABA levels may vary between tissue compartments, and indeed 

during different behavioural states. For instance, in the cat thalamus, GABA 

levels are higher during non-rapid eye movement (NREM) sleep relative to 

waking states (Kékesi et al., 1997), while GABA levels in the rat hippocampus 

are elevated during stressful situations (e.g. exposure to an unfamiliar cage; de 

Groote and Linthorst, 2007). 

There is debate regarding the source of ambient GABA responsible for the 

activation of extrasynaptic GABAA receptors. Although a neuronal origin is 

likely, agents that affect neurotransmitter release (e.g. tetrodotoxin (TTX), or low 

Ca2+) have yielded inconsistent results in microdialysis studies, making it 

difficult to confirm, or rule out, other sources (Timmerman and Westerink, 1997; 

van der Zeyden et al., 2008). In vitro, ambient GABA appears to be 

predominantly derived from synaptic spillover, since reducing neurotransmitter 

release with TTX or low Ca2+, also reduces GABAA receptor mediated tonic 

currents in CA1 pyramidal neurons, CGCs and TC relay neurons (Kaneda et al., 

1995; Brickley et al., 1996; Rossi et al., 2003; Bright et al., 2007, 2011; Glykys 

and Mody, 2007). However, some studies have also demonstrated TTX-

insensitive tonic currents in adult CGCs and CA1 interneurons (Kaneda et al., 

1995; Wall and Usowicz, 1997; Hamann et al., 2002; Song et al., 2013), leading 

to suggestions that non-vesicular derived GABA may also contribute to tonic 

currents (Rossi et al., 2003). In accord, it was recently suggested that GABA 
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release through bestrophin 1 (Best1) anion channels (Lee et al., 2010), or the 

reversal of GABA transporters (see below; Wu et al., 2007; Héja et al., 2012) 

may also contribute to ambient GABA levels, although it is unclear whether this 

occurs under physiological conditions (see Diaz et al., 2011; Kersanté et al., 

2013), or just during pathological disease states (see Section 1.3.1).  

Under physiological conditions, GABA transporters (GATs) can tightly regulate 

ambient GABA levels, by bidirectionally transporting GABA into or out of the 

extracellular space. The direction of transport is dependent on the 

electrochemical gradients of co-transported solutes (GABA, Na+ and Cl-; 

Scimemi, 2014), which can be transported with a stoichiometry of 2Na+: 1Cl-: 

1GABA. Based on this stoichiometry, GATs are predicted to reach equilibrium 

when extracellular GABA levels are 0.1 to 0.4 µM (Attwell et al., 1993; 

Richerson and Wu, 2003), indicating that ambient GABA levels will be 

maintained within this small range.  

To date, six GABA transporters, which are members of the solute carrier 6 

(SLC6) family, have been identified, which in humans and rats, are defined as 

GAT1, GAT2, GAT3, betaine-GABA transporter 1 (BGT1), taurine transporter 

(TauT) and creatine transporter 1 (CT1; Scimemi, 2014). In mice, the 

nomenclature for BGT1, GAT2 and GAT3 is different, and are assigned as 

GAT2, GAT3 and GAT4, respectively. The best characterised of these are 

GAT1, GAT2 and GAT3, although GAT1 and GAT3 represent the major 

isoforms expressed in the brain (GAT2 is found almost exclusively in the 

leptomeninges; Scimemi, 2014). Immunohistochemical and in situ hybridisation 

studies indicate that GAT1 and GAT3 are widely distributed throughout the 

brain (Borden, 1996; Minelli et al., 1996), although they show distinct cellular 

and subcellular distributions. While GAT1 is mainly confined to axonal terminals 

in the neocortex (Minelli et al., 1995; Ribak et al., 1996; Yan et al., 1997), GAT3 

is predominantly localised to astrocytes (Minelli et al., 1996; Ribak et al., 1996). 

However, these distributions may vary between brain regions, since GAT1 is 

exclusively localised to astrocytes in the thalamus (De Biasi et al., 1998; 

Vitellaro-Zuccarello et al., 2003), and is additionally found on both astrocytic cell 

membranes in the cortex and hippocampus (Minelli et al., 1995; Ribak et al., 

1996; Vitellaro-Zuccarello et al., 2003).  
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GAT1 and GAT3 appear to play distinct roles in regulating tonic and phasic 

currents. The largely synaptic location of GAT1 indicates that it may be involved 

in regulating the time course of GABAergic synaptic transmission and/or limiting 

the spatial and temporal extent of GABA spillover from the synaptic cleft 

(Scimemi, 2014). Indeed, evidence suggests that GAT1 inhibitors (e.g. 1,2,5,6-

Tetrahydro-1-[2-[[(diphenylmethylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid 

hydrochloride (NNC-711) and tiagabine) can alter the time course of GABAergic 

synaptic currents, although this modulation is heavily dependent on a number of 

factors, including the density of transporters, the magnitude and duration of the 

synaptic GABA transient, and the number of simultaneously active synapses 

(Dalby, 2003; Overstreet and Westbrook, 2003; Scimemi, 2014). Recent 

evidence indicates that GAT1 also plays a critical role in regulating ambient 

GABA levels derived from vesicular sources (Kersanté et al., 2013; Song et al., 

2013). By contrast, GAT3 appears to be more important for regulating ambient 

GABA derived from non-vesicular sources (Kersanté et al., 2013; Song et al., 

2013), although it may also regulate GABA levels derived from vesicular 

sources when GAT1 function is compromised, or during sustained neuronal 

activity (Keros and Hablitz, 2005; Kersanté et al., 2013). Thus, GAT1 and GAT3 

appear to act synergistically to control ambient GABA derived from vesicular 

and non-vesicular sources (Keros and Hablitz, 2005; Kersanté et al., 2013; 

Song et al., 2013). 

 

1.2.3. Pharmacology of tonic and phasic currents 

Given that extrasynaptic GABAA receptors are the main mediators of tonic 

inhibition in the CNS, and may contribute to the pathology of several 

neurological disorders (Brickley and Mody, 2012; Egawa and Fukuda, 2013; 

Rudolph and Möhler, 2014; Whissell et al., 2014), there has been a huge drive 

in recent years to identify compounds that can preferentially modulate their 

activities. Several synthetic and endogenously expressed compounds have 

been identified as functional modulators of either α5 or δ subunit-containing 

receptors, some of which are described below, and also listed in Table 1.1. 
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Several α5-selective benzodiazepine site inverse agonists have been 

developed in recent years, including 1,2,4-Triazolo[3,4-a]phthalazine, 3-(5-

methyl-3-isoxazolyl)-6-[(1-methyl-1H-1,2,3-triazol-4-yl)methoxy]-,3-(5-

Methylisoxazol-3-yl)-6-(1-methyl-1,2,3-triazol-4-yl)methoxy-1,2,4-triazolo[3,4-

a]phthalazine (α5IA), L-655,708, and 3-bromo-10-(difluoromethyl)-9H-

benzo[f]imidazo[1,5-a][1,2,4]triazolo[1,5-d][1,4]diazepine (RO-493851; Atack et 

al., 2006; Ballard et al., 2009; Atack, 2010). The α5-selective profile of these 

compounds is largely based on their relatively low affinities and/or efficacies for 

other α(1 - 3)βγ2 isoforms. For instance, α5IA binds to recombinant α(1,2,3 or 

5)βγ2 receptors with similar affinities, but modulates α5-containing receptors to 

a greater extent (~ 40 % inhibition; Atack, 2010). By comparison, L-655,708 

modulates α2βγ2 and α5βγ2 receptors to a similar extent (~ 20% inhibition), but 

at a maximally effective concentration, is classed as an α5-selective agent 

based on its higher affinity for α5βγ2 receptors (Ki values: α5βγ2 ~ 1 nM and 

α2βγ2 ~ 50 nM; Atack et al., 2006). Varying effects of these compounds have 

been observed in hippocampal neurons in slice preparations (Caraiscos et al., 

2004; Prenosil et al., 2006), possibly due to low ambient GABA concentrations 

in vitro. Nonetheless, α5-selective negative allosteric modulators may be 

therapeutically useful as cognitive enhancers, or improving functional recovery 

after stroke (see Section 1.3).  

The orthosteric agonist, THIP, is often described as a ‘super-agonist’ at 

recombinant αβδ and αβ receptors (Brown et al., 2002; Stórustovu and Ebert, 

2006; Mortensen et al., 2010), due to its higher macroscopic efficacy at these 

two receptor isoforms, relative to GABA. By comparison, THIP only acts as a 

partial agonist at γ2-containing receptors (Brown et al., 2002; Mortensen et al., 

2010), and also appears to act as a partial agonist at αβδ receptors under 

steady-state conditions (Houston et al., 2012). The δ-selective profile of THIP 

arises from its low apparent affinity for γ2-containing receptors (EC50 ~ 100 µM) 

relative to δ-containing receptors (EC50 ~ 10 µM), leading to low concentrations 

of THIP (500 nM – 1 µM) being selective for δ-containing receptors (Brown et 

al., 2002; Stórustovu and Ebert, 2006; Mortensen et al., 2010). In accord, low δ-

selective concentrations of THIP enhance tonic currents, but not phasic 

currents, in WT, but not δ-/- mice (Cope et al., 2005; Herd et al., 2009), 
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indicating that THIP can selectively activate δ-containing receptors in neurons, 

as well as in heterologous expression systems. Of therapeutic interest, THIP 

was demonstrated to act as a hypnotic in humans (Faulhaber et al., 1997), 

which was attributable to its selective actions on δ-containing receptors 

(Winsky-Sommerer et al., 2007). Unfortunately, THIP failed Phase III clinical 

trials as a hypnotic, due to adverse effects (Table 1.1.1; Brickley and Mody, 

2012), but remains a widely used tool for the identification and characterisation 

of δ-mediated tonic currents (e.g. Cope et al., 2005; Drasbek and Jensen, 

2006). 

As discussed in Section 1.1.5 potentiating neurosteroids exert their effects on 

all major GABAA receptor isoforms, but can enhance the efficacy of δ-containing 

receptors to a far greater extent than γ2-containing receptors (Belelli et al., 

2002; Brown et al., 2002; Wohlfarth et al., 2002). In neurons, neurosteroids can 

enhance both phasic and tonic GABA-evoked currents, by respectively 

prolonging IPSC decay times (Belelli and Herd, 2003), and/or increasing the 

magnitude of tonic currents (Stell et al., 2003). However, the relative 

neurosteroid sensitivities of tonic and phasic currents appears to vary between 

different cell types, with some cells displaying tonic currents that are more 

sensitive than synaptic currents (e.g. DGGCs and CGCs; Stell et al., 2003; 

Bright and Smart, 2013), whereas other cells display synaptic currents more, or 

equally as sensitive, to neurosteroid modulation (e.g. VB and dLGN relay 

neurons; Porcello et al., 2003; Cope et al., 2005). These discrepancies do not 

necessarily correlate with differences in subunit composition. For instance, TC 

neurons and DGGCs show different neurosteroid sensitivities but are both 

proposed to express α4βδ-mediated tonic currents. Instead, neurosteroid 

sensitivity may be additionally influenced by a wide range of factors including 

the cell type studied, ambient GABA levels, the recording temperature and 

phosphorylation status (extensively reviewed by Herd et al., 2007). 

Nonetheless, neurosteroids are important endogenous modulators of GABAA 

receptor function, and the variability in neurosteroid sensitivity might mean that 

some cells are modulated under basal conditions, whereas others cell types 

might only be modulated when neurosteroid levels are increased (Harney et al., 

2003).  
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Only a couple of synthetic compounds have been identified as positive allosteric 

modulators of δ-containing GABAA receptors. Recently, N-[2-Amino-4-[[(2,4,6-

trimethylphenyl)methyl]amino]phenyl]-carbamic acid-ethyl ester (AA29504), an 

analogue of the anti-epileptic drug (AED) retigabine was shown to preferentially 

increase the macroscopic efficacy of αβδ receptors but not αβγ receptors, 

consistent with a δ-selective profile (Hoestgaard-Jensen et al., 2010). However, 

AA29504 also increased the GABA potency of both αβγ and αβδ receptors, and 

enhanced the activity of voltage gated K+ channels, indicating that its selectivity 

profile may be limited (Hoestgaard-Jensen et al., 2010). In neurons, a δ-

selective concentration of AA29504 (1 µM) showed no effect on tonic, or phasic, 

currents under control conditions, but could increase the magnitude of THIP-

induced currents (Hoestgaard-Jensen et al., 2010; Vardya et al., 2012). Thus, 

AA29504 can potentiate δ-mediated currents in neurons, but its modulatory 

actions may be dependent on ambient GABA levels, which may have been too 

low under control conditions (Hoestgaard-Jensen et al., 2010; Vardya et al., 

2012).  

Another recently identified δ-selective positive allosteric modulator is DS2 

(Wafford et al., 2009; Jensen et al., 2013). This compound was demonstrated to 

significantly increase the efficacy of GABA at α4/6βδ receptors (% control EC20 

GABA response ~ 1600 %), whilst only having modest effects on α1βγ2 

receptors (% EC20 GABA response: ~ 140 %). Since DS2 does not appear to 

act via the same site as muscimol (an orthosteric agonist), flumazenil (a 

benzodiazepine antagonist), etomidate, neurosteroids, or barbiturates (Jensen 

et al., 2013), its actions are likely to be mediated via a novel site, which has yet 

to be identified. Consistent with its δ-selective profile, DS2 has been 

demonstrated to enhance tonic but not phasic currents in TC neurons and 

CGCs (Wafford et al., 2009; Ye et al., 2013), and its actions are considerably 

diminished in TC neurons from δ-/- mice (Jensen et al., 2013).  

Thus, several δ-selective compounds exist that can enhance the activities of 

αβδ receptors. However, there is a significant lack of synthetic compounds that 

can selectively reduce δ-mediated tonic currents, without affecting γ2-mediated 

phasic currents. In fact, some groups have demonstrated that low 

concentrations of gabazine (SR-95531), a GABAA receptor competitive 
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antagonist, can paradoxically inhibit phasic currents over tonic currents (Bai et 

al., 2001; Yeung et al., 2003; McCartney et al., 2007; Park et al., 2007; Yamada 

et al., 2007; Bieda et al., 2009), although other groups have been unable to 

replicate these findings (e.g. Cope et al., 2005). Similarly, the open channel 

blocker, penicillin, has also been demonstrated to preferentially inhibit phasic 

currents (Yeung et al., 2003; Feng et al., 2009), indicating that both gabazine 

and penicillin are unsuitable for selectively inhibiting δ-mediated tonic currents. 

By contrast, the endogenously expressed cations, Zn2+ and Cu2+ have been 

shown to preferentially inhibit δ-containing receptors over γ2-containing 

receptors in recombinant expression systems and/or neurons (Saxena and 

Macdonald, 1994; Stórustovu and Ebert, 2006; McGee et al., 2013). 

Recombinant GABAA receptors containing the γ2 subunit show a low sensitivity 

to the inhibitory actions of Zn2+, as demonstrated by the relatively high 

concentration of Zn2+ required to produce half-maximal inhibition of GABA 

responses at αβγ receptors (IC50: 300 µM; Krishek et al., 1998; Hosie et al., 

2003). By contrast, αβ and αβδ receptors show a higher sensitivity to Zn2+ 

inhibition, displaying IC50s of ~ 100 nM and ~ 10 µM respectively (Krishek et al., 

1998; Hosie et al., 2003; Stórustovu and Ebert, 2006). Similarly, Cu2+ was also 

demonstrated to preferentially inhibit αβδ receptors (IC50 ~ 65 nM) over αβγ 

receptors (IC50 ~ 85 µM; McGee et al., 2013). However, it is important to note 

that the actions of Zn2+ and Cu2+ are not restricted to GABAA receptors, since 

they can also modulate the activities of other ion channels within the CNS (e.g. 

K+ channels; Mathie et al., 2006). Thus, their use as δ-selective GABAA 

receptor-inhibitors is limited. 
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Table 1.1 – The isoform selectivity of pharmacological agents 

Compound Mechanism of action Therapeutic implications/ References 

αβγ-selective   

Classical BDZ agonists 
e.g. diazepam 

PAM 
(α1, 2, 3 and 5) 

BDZs are widely (but with restrictions) prescribed for insomnia and anxiety disorders (Rudolph and 
Knoflach, 2011). 

δ-selective   

THIP (0.5 - 1 µM) Orthosteric agonist Hypnotic, failed Phase III clinical trials due to adverse effects e.g. hallucinations and disorientation 
(Brickley and Mody, 2012).  

AA29504 PAM Yet to be characterised (Hoestgaard-Jensen et al., 2010; Vardya et al., 2012). 

DS2 PAM 
 Poor BBB penetrability (Wafford et al., 2009; Jensen et al., 2013). 

α5-selective NAMs   

α5IA BDZ inverse agonist 
(max. efficacy ~ 40 %) 

Increases learning and memory, but also induced renal toxicity in pre-clinical screens (Dawson et al., 
2006; Atack, 2010) 

L-655,708 BDZ inverse agonist 
(max. efficacy ~ 20 %) Cognitive enhancer but also anxiogenic (Navarro et al., 2002; Atack et al., 2006). 

RO-493851 BDZ inverse agonist 
(max. efficacy ~ 40 %) 

Enhances cognitive function in Wistar rats (Ballard et al., 2009) and Ts65Dn mice (Braudeau et al., 2011; 
Martínez-Cué et al., 2013). Currently in Phase I clinical trial for DS (Rudolph and Möhler, 2014). 

A list of subtype-selective compounds for the different GABAA receptor isoforms. Abbreviations: BDZ (benzodiazepine); PAM (positive allosteric modulator); BBB 

(blood-brain barrier); NAM (negative allosteric modulator); DS (Down’s syndrome). 
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1.3. Pathophysiological conditions associated with elevated GABAA 
receptor tonic conductances 

Impaired GABAergic neurotransmission has been implicated in a wide range of 

neurological disorders, including epilepsy, affective and stress disorders, autism 

spectrum disorders (e.g. Fragile X syndrome) and cognitive disorders. Although 

many of these conditions are associated with alterations in phasic transmission, 

and/or reduced tonic currents (extensively reviewed by Brickley and Mody, 

2012; Egawa and Fukuda, 2013; Whissell et al., 2014), elevated tonic currents 

have also been implicated in the pathogenesis of several of these conditions.  

The following section will focus on neurological disorders in which elevated 

tonic currents have been implicated, since the aim of this thesis is to investigate 

a way of pharmacologically reducing tonic currents for such conditions (see 

Section 1.4). 

 

1.3.1. Learning and memory/Cognitive impairments 

Cognitive behaviours such as attention, learning, memory, and sensory 

encoding are thought to involve rhythmic γ-oscillations (30 – 120 Hz) in the 

activity of cortical networks (Mann and Mody, 2010; Rudolph and Möhler, 2014). 

The generation of these γ-oscillations is widely believed to depend on the 

rhythmic output of local GABAergic interneurons in the hippocampus, which 

modulate GABAA receptor-mediated phasic inhibition (Mann and Mody, 2010; 

Rudolph and Möhler, 2014). However, γ-oscillations are also modulated by 

extrasynaptic GABAA receptors, since δ-/- and α5-/- mice show altered γ-

oscillation profiles (Towers et al., 2004; Mann and Mody, 2010). In particular, 

the α5 subunit appears to be critical for regulating learning and memory, since 

α5-/- mice show an enhanced spatial learning profile (Collinson et al., 2002), 

while benzodiazepine insensitive α5H105R mice, which also show a partial 

reduction in α5 subunit expression, also show enhanced associative learning 

(Crestani et al., 2002; Yee et al., 2004). Similarly, pharmacological agents that 



45 
 

enhance, or inhibit, α5-mediated tonic currents also modulate learning and 

memory. The general anaesthetic etomidate, which acts as a positive allosteric 

modulator of GABAA receptors, was shown to impair hippocampal-dependent 

learning, and long-term potentiation (the main form of synaptic plasticity thought 

to underlie learning and memory; Bliss and Collingridge, 1993; Malenka and 

Bear, 2004) in WT mice, but not α5-/- mice, indicating that its amnesic actions 

occur via an α5-dependent mechanism (Cheng et al., 2006; Martin et al., 2009). 

Conversely, α5-selective benzodiazepine-site inverse agonists, such as α5IA, L-

655,708 and RO-493851 (listed in Table 1.1) have been demonstrated to 

improve learning and cognitive behaviours in rodents (Navarro et al., 2002; 

Atack et al., 2006; Ballard et al., 2009; Atack, 2010), indicating that α5-

containing receptors impair such processes. In addition, the selective activation 

of δ-containing receptors has also been demonstrated to impair cognitive 

functions, since THIP was found to impair LTP and memory behaviours in WT 

mice but not δ-/- mice (Whissell et al., 2014).  

It has been proposed that enhanced hippocampal tonic currents may contribute 

to cognitive deficits in Down’s syndrome (DS; Lott and Dierssen, 2010), 

although decreased tonic currents have also been reported in CGCs from 

Ts65Dn mice (Szemes et al., 2013). DS is the most common chromosomal 

disorder in humans, which gives rise to a broad range of physical and mental 

disabilities, caused by a third copy (trisomy) of chromosome 21 (Lott and 

Dierssen, 2010). The cellular and molecular mechanisms that underlie cognitive 

deficits have largely been studied using Ts65Dn mice, which possess an extra 

copy of chromosome 16, the murine ortholog of human chromosome 21 

(Davisson et al., 1990). Ts65Dn mice exhibit many of the features observed in 

DS, including deficits in LTP, and impaired spatial learning and object 

recognition (Kleschevnikov et al., 2004; Fernandez et al., 2007). It has been 

suggested that enhanced GABAA receptor-mediated inhibition may contribute to 

the cognitive deficits observed in these mice, since not only do they show an 

enhanced mIPSC frequency in dentate gyrus granule cells (DGGCs), but also, 

low (non-convulsive) concentrations of picrotoxin (a non-competitive GABAA 

receptor antagonist) restores LTP and improves object recognition in Ts65Dn 

mice (Kleschevnikov et al., 2004; Fernandez et al., 2007). Moreover, another 
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non-selective GABAA receptor antagonist, pentylenetetrazole (PTZ) was also 

shown to restore LTP and improve cognitive function in Ts65Dn mice, and 

promisingly, these effects persisted for up to two months after cessation of PTZ 

treatment (Fernandez et al., 2007; Colas et al., 2013). More specifically, α5-

containing receptors appear to be particularly important for regulating learning 

and memory processes in Ts65Dn mice, since α5-selective inverse agonists, 

such as α5IA or RO4838581 have been demonstrated to improve learning 

capabilities in this DS mouse model (Navarro et al., 2002; Atack et al., 2006; 

Ballard et al., 2009; Atack, 2010; Braudeau et al., 2011; Martínez-Cué et al., 

2013). Thus, selectively inhibiting α5-containing receptors may prove 

therapeutically useful for treating DS.  

Alzheimer’s disease (AD) represents another condition in which memory and 

cognitive function is greatly compromised. While β-amyloid (Aβ) and tau 

deposits represent the major pathological hallmarks of AD, the cellular 

mechanisms that underlie cognitive decline in AD patients have not yet been 

ascertained (although glutamate excitoxicity, Aβ-induced cell death, oxidative 

stress and lysosomal dysfunction have all been implicated; reviewed by 

Mattson, 2004). Intriguingly, recent studies have implicated excessive GABAA 

receptor activity as a contributory factor, since low (non-convulsive) 

concentrations of picrotoxin improve spatial learning and object recognition in 

the amyloid precursor protein/presenilin-1 (APP/PS1) mouse model of AD 

(Yoshiike et al., 2008). In particular, enhanced tonic currents may contribute to 

the cognitive deficits displayed by these mice, since enhanced GABAA receptor-

mediated tonic currents were observed in two AD mouse models (APP/PS1 and 

5xFAD mice; Jo et al., 2014; Wu et al., 2014), and L-655,708 not only reduced 

DGGC tonic currents, but also restored LTP and working memory in 5xFAD 

mice (Wu et al., 2014). The elevated tonic currents observed in APP/PS1 and 

5xFAD mice correlated with a specific dysfunction of bestrophin 1 channels (Jo 

et al., 2014) or GAT3 (Wu et al., 2014), contributing to elevated ambient GABA 

levels (Fig. 1.6). Indeed, a similar mechanism may exist in humans, since post-

mortem analysis of hippocampal tissue derived from AD patients showed 

elevated GABA expression levels (Jo et al., 2014; Wu et al., 2014). Thus, raised 

ambient GABA levels have been implicated in the pathology of AD, and 
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reducing tonic currents in the hippocampus may provide a useful way of 

improving cognitive function in AD patients.  

 

1.3.2. Motor recovery after stroke 

Recently, elevated tonic currents were also reported in a mouse model of 

cortical stroke, which could be attributed to impaired GABA uptake via GAT3 

(Clarkson et al., 2010; Fig. 1.6). The increased tonic current was located in the 

peri-infarct zone, a region adjacent to the site of stroke damage, which allows 

for re-mapping of sensory processes from damaged areas. Thus, these 

elevated tonic currents may inhibit recovery by impairing neuronal development 

(Clarkson et al., 2010; Clarkson, 2012). The motor deficits displayed by mice 

following stroke induction, could be partially reduced by the α5-selective inverse 

agonist, L655,708, or by genetic knockout of the δ or α5 subunits, indicating 

that extrasynaptic GABAA receptors may impede functional recovery following 

stroke. Thus, reducing the activity of extrasynaptic GABAA receptors may 

provide a way of alleviating motor deficits following stroke (Clarkson et al., 

2010).  

 

1.3.3. Absence epilepsy 

Absence seizures are non-convulsive epileptic seizures that are a defining 

feature of most idiopathic generalized epilepsies (IGE), including childhood 

absence epilepsy (CAE), juvenile myoclonic epilepsy (JME) and juvenile 

absence epilepsy (JAE; Crunelli and Leresche, 2002). The behavioural arrest 

and loss of consciousness exhibited during such seizures is accompanied by a 

characteristic 3Hz spike-wave discharge (SWD) in the electroencephalogram 

(EEG), which is thought to represent abnormal neuronal activity between the 

reciprocally connected thalamus and cortex (Crunelli and Leresche, 2002). The 

main cellular components implicated in the pathogenesis of absence seizures 
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are, pyramidal neurons in the cortex, TC relay neurons of the VB, and 

GABAergic interneurons of the thalamic reticular nucleus (NRT).  

Although the precise cellular mechanisms underlying absence seizures are not 

fully understood, impaired GABA function has been implicated in the aetiology 

of this disorder. Several GABAA receptor subunit mutations have been identified 

in IGE patients suffering from typical absence seizures (e.g. α1A322D and 

γ2R43Q), that when expressed in heterologous expression systems seem to 

mostly reduce the activity of GABAA receptors by impairing subunit 

oligomerization, receptor trafficking and/or receptor function (Macdonald et al., 

2010). Mice harbouring the best characterised γ2R43Q familial mutation exhibit 

absence seizures, and also demonstrate a region specific reduction of GABAA 

receptor mediated phasic currents in layer 2/3 cortical neurons (Tan et al., 

2007). Moreover, reduced GABAergic transmission in the cortex has been 

suggested to specifically contribute to seizure generation, since local cortical 

applications of bicuculline (a GABAA receptor antagonist) can induce SWDs in 

cats (Steriade and Contreras, 1998).   

In the thalamus, phasic currents show cell-type specific changes, which vary in 

different genetic models of absence seizures. For instance, the amplitudes of 

IPSCs recorded from NRT interneurons were either increased (Bessaïh et al., 

2006), or unchanged (Cope et al., 2009), in the Genetic Absence Epilepsy Rat 

from Strasbourg (GAERS), whereas they appeared reduced in β3 knockout (β3-

/-) mice (Huntsman et al., 1999). Moreover, γ2R43Q mice showed no change in 

NRT phasic currents (Tan et al., 2007). By contrast, TC neurons from rodent 

models of absence epilepsy show a more consistent lack of change in phasic 

currents (e.g. in GAERS, lethargic, tottering, γ2R43Q and β3-/- mice; Caddick et 

al., 1999; Huntsman et al., 1999; Bessaïh et al., 2006; Tan et al., 2007; Cope et 

al., 2009). Thus changes in thalamic phasic currents may not be necessary for 

the expression of seizures, since seizures can occur even in rodent models 

which exhibit normal phasic currents in NRT and TC neurons (e.g. γ2R43Q). 

By contrast, a robust enhancement of GABAA-receptor mediated tonic currents 

has been observed in the TC neurons of several genetic and pharmacological 

models of absence epilepsy (Cope et al., 2009). These elevated tonic currents 
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were attributed to elevated ambient GABA levels, arising from reduced GABA 

uptake, or non-vesicular release of GABA by GAT1 (Fig. 1.6). Importantly, 

genetic, or pharmacological, disruption of GAT1 using GAT1 knockout (GAT1-/-

) mice or, intrathalamically administered NNC-711, was sufficient for the 

expression of SWDs. Moreover, the expression of SWDs appeared to be 

dependent on thalamic δ-containing GABAA receptors since δ-/- mice were 

unaffected by pharmacological agents that typically induce seizures (e.g. γ-

butyrolactone) in WT mice. Notably, the intrathalamic administration of THIP 

was sufficient to induce absence seizures in WT rats (Cope et al., 2009); and 

intrathalamic knockdown of the δ subunit in GAERS significantly reduced the 

frequency and duration of absence seizures (Cope et al., 2009). These findings 

are consistent with previous reports showing that systemic, or intrathalamic, 

administration of GABAA receptor agonists, such as muscimol and THIP, can 

induce SWDs in rats (Fariello and Golden, 1987; Danober et al., 1998). 

Moreover, these observations might also explain why some typical AEDs which 

promote GABAergic neurotransmission, such as vigabatrin (a GABA 

transaminase inhibitor) and tiagabine (a GABA uptake blocker), actually 

exacerbate absence seizures in both humans (Perucca et al., 1998) and several 

rodent models of absence epilepsy (Marescaux et al., 1992; Hosford and Wang, 

1997). 

Overall, these findings indicate that enhanced tonic inhibition, but not phasic 

currents, in TC neurons is a pre-requisite for seizure genesis in both genetic 

and pharmacological models of absence epilepsy. Specifically reducing δ-

mediated tonic currents in TC neurons may provide a novel way of treating such 

absence seizures. 
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Figure 1.6 – Regulation of ambient GABA levels and CNS disorders 

Ambient GABA levels are defined by the level of vesicular release, and the activities of GABA 

transporters present on astrocytic (e.g. GAT1 and GAT3) or axonal membranes (e.g. GAT1). In 

addition, non-vesicular release of GABA, for instance via bestrophin 1 (Best1) anion channels, 

may also contribute to ambient GABA levels. Enhanced tonic currents have been reported in 

the pathology of several neurological disorders (indicated by the dashed arrows), which can be 

attributed to a specific dysfunction in GAT1, GAT3 and/or Best1. Thus, selectively inhibiting α5- 

or δ-mediated tonic currents may provide a novel way of treating such disorders.  
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1.4. Thesis Aims: 

As discussed in Section 1.3, selectively reducing tonic inhibition mediated by α5 

or δ subunit-containing receptors may provide a novel way of improving 

cognitive function in DS and AD, improving motor function following stroke, or 

treating absence seizures (Brickley and Mody, 2012; Egawa and Fukuda, 2013; 

Rudolph and Möhler, 2014). In addition, this strategy might also prove useful for 

treating alcohol- or general anaesthetic-induced amnesia, since α5-selective 

inverse agonists have been demonstrated to improve learning and memory 

deficits in these conditions (Nutt et al., 2007; Saab et al., 2010; Zurek et al., 

2012). Although one α5-selective inverse agonist, RO4938581, is currently in 

Phase I clinical trials for DS, clinical trials involving the other α5-selective 

inverse agonists (e.g. α5IA and L-655,708) have proved to be unsuccessful due 

to adverse effects (see Table 1.1; Rudolph and Möhler, 2014). Moreover, as 

discussed in Section 1.2.3, there is a significant lack of synthetic compounds 

that can selectively inhibit δ-containing GABAA receptors. 

As an alternative to using GABAA receptor antagonists, it occurred to us that 

low efficacy partial agonists may be used as functional competitive antagonists, 

given their ability to compete with GABA for the orthosteric binding site, and 

their reduced ability to activate GABAA receptors (Krogsgaard-Larsen et al., 

2002). Moreover, low efficacy partial agonists may be therapeutically useful, 

since they may show a reduced propensity to induce convulsions, or unwanted 

effects.  

Inspired by this prospect, we chose to explore the functionally competitive 

antagonist profile of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-

PIOL). This compound was initially identified as a weak partial agonist at 

GABAA receptors on cat spinal neurons (Byberg et al., 1987). Subsequently, it 

was demonstrated that 4-PIOL acted as a weak GABAA receptor agonist on 

cultured hippocampal neurons, cerebral cortical neurons, CGCs and on 

recombinant α1β2γ2 receptors (Falch et al., 1990; Kristiansen et al., 1991; 

Frølund et al., 1995; Hansen et al., 2001; Mortensen et al., 2002, 2004). 

However, given its low agonist efficacy (~ 1 – 2 % of the maximum GABA 
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response) and low agonist potency (EC50: ~ 100 – 300 μM) at recombinant and 

native GABAA receptors, 4-PIOL was shown to display a dominant antagonist 

profile (Kristiansen et al., 1991; Frølund et al., 1995; Hansen et al., 2001; Ebert 

et al., 2002; Mortensen et al., 2002, 2004). 

Given these observations and background, we chose to explore the functional 

profile of 4-PIOL on synaptic-type and extrasynaptic-type GABAA receptors 

expressed in a HEK293 recombinant expression system (Chapter 4), in addition 

to assessing the effects of 4-PIOL on tonic and phasic currents in hippocampal 

neurons (Chapter 5), CGCs (Chapter 5) and TC relay neurons (Chapter 6).  

Before assessing the effects of 4-PIOL on recombinant GABAA receptors, the 

functional expression of each receptor was validated using subtype-selective 

pharmacological tools (Chapter 3). Moreover, since some functional 

discrepancies have been observed for δ-containing receptors expressed in 

recombinant expression systems (e.g. variable GABA sensitivities; Wallner et 

al., 2003), which in part, have been proposed to arise from variable subunit 

stoichiometries (discussed in Section 1.1.1; Barrera et al., 2008; Baur et al., 

2009; Kaur et al., 2009; Wagoner and Czajkowski, 2010), we additionally 

probed the subunit stoichiometry of α4β3δ receptors (Chapter 3). 
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1.4.1. Summary of thesis aims 

1. To validate the functional expression of recombinant αβγ and αβδ 

receptors in a HEK293 expression system (Chapter 3). 

 

2. To determine the subunit stoichiometry of recombinant α4β3δ receptors 

(Chapter 3). 

 

3. To evaluate the functional profile of 4-PIOL at typical synaptic and 

extrasynaptic receptor isoforms expressed in HEK293 cells (Chapter 4). 

 

4. To characterise the effects of 4-PIOL on phasic and tonic currents in 

cultured hippocampal neurons (Chapter 5). 

 

5. To determine the effects of 4-PIOL on phasic and tonic currents in CGCs 

(Chapter 5). 

 

6. To characterise the effects of 4-PIOL on phasic and tonic inhibition in TC 

neurons (Chapter 6). 
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Chapter 2: Materials and Methods 

 

2.1. Site directed mutagenesis 

Site directed mutagenesis was performed to generate mutant cDNAs encoding 

α4L297S, β3L284S and δsep
L288S (Fig. 2.1). The δ subunit was tagged at the N-

terminus (between residues 13 and 14 of the mature protein) with a super-

ecliptic phluorin (sep; Ashby et al., 2004). Mutagenic oligonucleotides were 

designed (Table 2.1) and obtained from Sigma-Aldrich (Steinheim, Germany). 

 

Figure 2.1 - Primary amino acid sequence alignment for the second 

transmembrane region (M2) of α4, β3 and δ subunits. 

A. Prime notation (green) denotes the amino acids comprising the ion channel pore and is 

numbered from a conserved arginine residue at the base of M2, which is defined as 0’ (Miller 

and Smart, 2010). The conserved hydrophobic 9’ leucine residues (red) are boxed for α4, β3 

and δ subunits, with their numbering appropriate to the mature subunit proteins. B. Diagram 

showing the approximate location of the 9’ leucine residue (red) in the TM2 of a wild-type (WT) 

subunit. This residue was mutated to a hydrophobic serine residue (blue) in L9’S mutant 

subunits. 

 

α4 284 SVPARTVFGITTVLTMTTLSISARHSLP 311
β3 271 ASAARVALGITTVLTMTTINTHLRETLP   298
δ 275 AVPARVSLGITTVLTMTTLMVSARSSLP   302

0’ 9’3’ 6’ 12’ 15’ 18’-3’
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Table 2.1 – PCR primers used to generate L9’S mutants. 

 

Polymerase Chain Reactions (PCR) were assembled using a Phusion Hot Start 

High-Fidelity DNA Polymerase kit (Thermo Fischer Scientific, Rockford, Illinois, 

USA).  The PCR was performed using a Px2 Thermal Cycler (Thermo Fischer 

Scientific Inc) programmed with the following protocol:  

1. Activation: 98 °C for 30 s 

2. DNA denaturation: 98 °C for 10 s, 

3. Annealing: 65 °C for 30 s 

4. Extension: 72°C for 5 min 

5. Return to step 2, 40x 

6. Final extension: 72°C for 10 min. 

PCR products were run on a 1 % agarose gel, and successful PCR products 

were confirmed by the presence of a single band approximately 7 kb in size. 

The band for each construct was excised from the gel, and DNA purified using a 

QIAquick Gel Extraction Kit (Qiagen). The purified product was phosphorylated 

using T4 Polynucleotide Kinase (New England Biolabs, UK), and ligated 

overnight at 16  C, using T4 DNA Ligase (New England Biolabs). 

The ligation products were transformed into competent 5-alpha E.coli cells (New 

England Biolabs), plated onto Luria broth (LB) agar plates containing 50 μg/mL 

ampicillin and incubated overnight at 37  C. Selected bacterial colonies were 

subsequently grown up overnight (as mini bacterial cultures) in LB culture 

medium, supplemented with 50 μg/mL ampicillin. The mutant cDNAs were 

purified using a QIAprep Spin Miniprep Kit (Qiagen), and successful mutations 

Construct Forward primer sequence (5’ – 3’) Reverse primer sequence (5’ – 3’) 

α4L297S CACGATGACCACCCTAAGCATC GAGACTGTGGTTATTCCAAATACAG 

β3L284S CCACCATGACAACCATCAACACTC ACACGGTGGTAATCCCAAGGGCAA 

δsep
L288S CGACAATGACCACACTCATGGTTA ACACAGTGGTGATGCCTAGAGAT 
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were verified by DNA sequencing (DNA sequencing service, WIBR, UCL). 

Bacterial stocks expressing the desired mutant constructs were amplified 

further, by means of a maxi bacterial culture, and purified using a HiSpeed 

Plasmid Maxi Kit (Qiagen). The concentration of each cDNA was measured 

using a spectrophotometer (BioPhotometer; Eppendorf, Hamburg, Germany), 

prior to transfection in HEK293 cells. A summary of the cloning protocols used 

to generate L9’S mutants is shown in Fig. 2.2.  

 

 

 

Figure 2.2 - A summary of the main cloning protocols used to generate 

L9’S mutants.   
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2.2. Reagents 

Drugs solutions used for electrophysiological recordings were prepared, as 

described in Table 2.2. 

Compound Source [Stock] Stock solvent [Final] 

(+)-Bicuculline-methiodide Sigma1 50 mM Water 20 µM 

CNQX Abcam2 10 mM Water 10 µM 

D-AP5 Tocris3 20 mM Water 20 µM 

Diazepam Roche4 10 mM DMSO < 0.5 µM 

DS2 Tocris 10 mM DMSO 10 µM 

GABA Sigma 1 M Water < 10 mM 

Kynurenic acid Sigma - aCSF 2 mM 

NNC-711 Abcam 10 mM Water 10 µM 

Picrotoxin Sigma - DMSO/Krebs 1 mM 

4-PIOL 
Gift from Dr Bente 

Frølund5  
10 mM Water or Krebs* <1 mM 

(S)-SNAP-5114 Tocris 20 mM DMSO 20 µM 

THIP Tocris 1 mM Water 1 µM 

TTX Abcam 0.5 mM Water 0.5 µM 

Zinc chloride VWR6 1 M Water 1 µM 

 

Table 2.2 - List of compounds used during electrophysiological 
recordings. 
List of compounds used during electrophysiological recordings, their sources, and details 

regarding stock, and final concentrations. Where drugs were dissolved in dimethyl sulfoxide 

(DMSO), the final concentration of DMSO was always < 0.05 % (v/v). *4-PIOL was either 

dissolved directly into Krebs solution or artificial cerebrospinal fluid (aCSF), or prepared from a 

10 mM stock (in water). Concentrations of 4-PIOL > 100 µM reduced the pH of the Krebs 

solution, which was adjusted accordingly to pH 7.4 using 1 M NaOH. Manufacturer details: 
1Sigma-Aldrich Steinheim, Germany; 2Abcam Biochemicals, Cambridge, UK; 3Tocris 

Biosciences, Bristol, UK; 4Roche, Basel, Switzerland; 5University of Copenhagen, Copenhagen, 

Denmark; 6VWR International, Leuven, Belgium. 
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2.3. HEK293 cell culture and Electrophysiology 

2.3.1. HEK293 cell culture 

HEK293 cells were cultured on 10 cm dishes (Greiner-Bio-One GmbH, 

Frickenhausen, Germany) in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10 % v/v foetal calf serum (FCS), 100 U/mL penicillin-G, 100 

µg/mL streptomycin and 2 mM glutamine (all from Gibco, Invitrogen Ltd.). Cells 

were incubated at 37°C in humidified 95 % air and 5 % CO2 (BOC Healthcare, 

Manchester, UK). Upon reaching approximately 70 % confluency, cells were 

passaged at an appropriate dilution onto either 10 cm plates for maintenance, 

or onto 18 mm glass coverslips (VWR international) coated with 100 µg/mL 

poly-L-lysine (Sigma) for electrophysiology. 

For passaging, cells were washed with 5 mL Hank’s Balanced salt solution 

(HBSS; Gibco), and detached using 2 mL 0.05 % w/v trypsin-EDTA (Gibco). 

Cells were resuspended in 10 mL culture medium to quench the trypsin, and 

then pelleted at 1000 r.p.m for 2 min, using a MSE Mistral 2000 centrifuge 

(MSE, UK). The supernatant was aspirated, and the cell pellet was 

resuspended in 5 mL culture medium. Before plating, a single-cell suspension 

was achieved by tituration with a fire-polished glass Pasteur pipettes (VWR 

international). 

 

2.3.2. HEK293 cell transfection 

HEK293 cells were transfected approximately 4 hrs after plating, using a 

calcium phosphate protocol. A mixture of cDNAs encoding the required GABAA 

receptor subunits (α, β, γ or δ cDNA contained within a PRK5 plasmid vector) 

was mixed with cDNA encoding enhanced green-fluorescent protein (eGFP), 20 

µl 340 mM CaCl2 and 24 µl 2 x HBSS (50 mM HEPES, 280 mM NaCl and 2.8 

mM Na2HPO4, pH 7.2). 1 µg of each cDNA was used, and a total of 4 µg cDNA 
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was used for each transfection. The cDNA-calcium phosphate suspension was 

applied to cells, and these were used for electrophysiology 18 - 48 hrs after 

transfection. 

For transfections encoding WT α4, β3 and δsep subunits, and/or their L9’S 

mutants, cDNA transfection ratios of - 1:1:1, 1:1:10 or 10:1:10 were used. Since 

the δ subunit was tagged at the N-terminus (between residues 13 and 14 of the 

mature protein) with a super-ecliptic phluorin, eGFP was omitted from these 

transfections. Where WT and their respective L9’S cDNA’s were co-expressed 

in the same cells, these were transfected in equal amounts, and the overall 

transfection ratio remained at 10α: 1β: 10δ. The total amount of cDNA was a 

constant 4 µg. 

 

  

Figure 2.3 – A confocal image of δsep-positive HEK293 cells 

A confocal image of HEK293 cells transfected with the super-ecliptic phluorin-tagged δ-subunit 

(δsep). Confocal images were acquired, as detailed in Section 2.7.2. Scale bar: 10 μm 

 

 

 

 

α4β2δsep
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2.3.3. HEK293 whole-cell electrophysiology 

Transfected HEK293 cells were placed in a recording chamber and viewed with 

a Nikon Diaphot microscope and phase-contrast optics. Cells were continuously 

perfused at room temperature (RT) with Krebs solution containing (mM): 140 

NaCl, 4.7 KCl, 1.2 MgCl2, 2.52 CaCl2, 11 glucose and 5 HEPES, adjusted to pH 

7.4 with 1M NaOH.  Transfected (eGFP- or sep-positive) cells were visualised 

using epifluorescence optics (Nikon Eclipse TE300, Nikon Instruments Europe 

B.V. Surrey, UK). Whole-cell currents were recorded from transfected cells 

voltage-clamped between -20 and -60 mV, depending on peak current size. 

Whole-cell currents were filtered at 5 kHz (-36dB, 6-pole Bessel filter), digitized 

at 50 kHz via a Digidata 1332A (Molecular Devices), and recorded to disk (Dell 

Pentium Dual Core-Optiplex 960). Patch pipettes (thin-walled borosilicate glass; 

Harvard Apparatus, UK) were fire polished to 2 - 4 MΩ and filled with an 

intracellular solution containing (mM): 120 KCl, 1 MgCl2, 11 EGTA, 10 HEPES, 

1 CaCl2 and 2 adenosine triphosphate, adjusted to pH 7.2 with 1 M NaOH. The 

osmolarity of the internal solution was measured using a vapour pressure 

osmometer (Wescor Inc, Utah, USA), and was routinely 300 ± 20 

milliOsmoles/litre (mOsm/l). 

All drugs were applied locally via a Y-tube application system (Fig. 2.4; 

Mortensen and Smart, 2007), for both peak and steady-state recordings.  

For peak recordings, GABA was applied alone, or in combination with other 

(pre-applied) drugs for a brief 2 - 4 s period. For steady-state recordings, 

prolonged GABA applications were applied either via the Y-, or auxiliary-tube for 

1 - 2 min. A wash off period of 1, or 3 min was allowed between peak or steady-

state GABA applications respectively, to allow the receptors to recover from 

desensitisation. 



61 
 

 

Figure 2.4 - Schematic diagram of the Y-tube. 

Drugs were applied locally via a Y-tube (black), and washed off with an auxiliary tube (blue). 

During drug application, solenoids A and B remained closed, allowing drug to flow over the cell, 

in the absence of washing Krebs. Between drug applications, both solenoids remain open, 

allowing Krebs to perfuse the cell while the drug solution flows to waste under vacuum 

pressure. The fluid exchange time for solutions applied via the Y-tube, was approximately 100 

ms. 

 

To assess for current run-up, or run-down, a normalising concentration of GABA 

(routinely at a concentration of 1 mM) was applied to the same cell at regular 

intervals. Cell capacitance, series resistance and input resistance were 

measured from transient current changes induced by 10 mV hyperpolarising 

voltage steps. Series resistances (Rs) were monitored throughout each 

experiment and deviations >20 % resulted in the data being excluded from 

further analysis. 
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2.3.4. Analysis of GABA concentration-response curves 

The amplitudes of peak and steady-state currents were measured in relation to 

the baseline holding current, using Clampfit software (version 9.2; Molecular 

Devices, USA). To generate peak GABA concentration-response curves, the 

peak response to a given concentration of GABA was normalised to the peak 

response achieved by a saturating concentration of GABA. For steady-state 

concentration-response curves, the steady-state current elicited by a given 

concentration of GABA was normalised to steady-state response achieved by a 

saturating concentration of GABA. The GABA concentration-response curves 

were fitted with a (single- or multi-component) Hill equation (Equation 2.1), or 

modified Hill equation (Equation 2.2; for curves generated in the presence of 4-

PIOL), using a least-squares method. For the multi-component fits, some 

parameters were pre-fixed whilst others were allowed to free-run during the 

fitting process. This enabled better starting estimates of the parameters to be 

determined. When this was achieved, the final fit enabled most parameters to 

free run.   

 

Equation 2.1: Hill equation 
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Where IMax,GABA is the maximum response to a saturating concentration of 

GABA, EC50 is the concentration of GABA ([A]) inducing a half-maximal current, 

nH is the Hill coefficient and i is the number of components where j = 1 – 3. 
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Equation 2.2: Modified Hill equation 
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Where IMin,GABA is the minimum ‘plateau’ response induced by 4-PIOL (this is 

zero for GABA in the absence of 4-PIOL). 

 

2.3.5. Calculating Spontaneous Channel Activity 

The level of spontaneous receptor/channel activity (SA) was quantified 

according to Equation 2.3. The outward current induced by the GABA Cl-  

channel blocker, picrotoxin (IPTX; 1 mM) was expressed as a percentage of the 

maximum current, defined as the sum of the current induced by a saturating 

(maximal) concentration of GABA (IMax,GABA) and IPTX. No spontaneous activity 

was observed for WT α4β3δ receptors.  

 

Equation 2.3: Calculating spontaneous channel activity 
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2.4. Cerebellar granule cell cultures 

Cerebellar cultures were prepared as described previously (Houston and Smart, 

2006). Briefly, postnatal day 4 (P4) were Sprague-Dawley rats decapitated 

using a licensed procedure, in accordance with the Animals (Scientific 

Procedures) Act, 1986 (ASPA). The cerebella were removed, and dissociated 

into single cells using 0.1 % w/v trypsin (Sigma) and triturated with fire-polished 

glass Pasteur pipettes. Cells were plated onto 22 mm glass coverslips coated 

with 500 μg/mL poly-D-ornithine (Sigma), in Basal medium Eagle (BME; 

Invitrogen) supplemented with 10 % v/v heat-inactivated FCS. After 1 hr, the 

medium was replaced with BME containing 5 % v/v heat-inactivated horse 

serum (HS; Invitrogen), 20 U/mL penicillin G, 20 μg/mL streptomycin, 2 mM L-

glutamine, 0.5 % v/v glucose and a growth cocktail (5 mg/L insulin, 5 mgl/L 

transferrin, 5 mg/L selenium; Sigma). Electrophysiological recordings were 

performed from cultured CGCs, between 7 – 19 days in vitro (DIV). 

 

2.5. Hippocampal cultures 

Hippocampal cultures were prepared by Dr Philip Thomas. Briefly, cultured 

hippocampal neurons were prepared from E18 Sprague-Dawley rat embryos (a 

Schedule 1 procedure), as previously described (Thomas et al., 2005). The 

dissected hippocampi were dissociated into single cells using 0.1 % w/v trypsin 

and serially triturated with fire-polished glass Pasteur pipettes. Cells were plated 

onto 22 mm glass coverslips coated with 100 µg/mg poly-D-lysine (Sigma) in 

Minimum essential media (MEM; Invitrogen) supplemented with 5 % v/v FCS, 5 

% v/v HS, 10 U/mL penicillin-G, 10 μg/mL streptomycin, 2 mM L-glutamine and 

20 mM glucose. 2 hrs after plating, the media was replaced with Neurobasal-A 

(Invitrogen) media supplemented with 1 % v/v B-27 (Gibco), 50 U/mL penicillin-

G, 50 μg/mL streptomycin, 0.5 % v/v Glutamax (Invitrogen) and 35 mM glucose. 

Electrophysiological recordings were performed from cultured hippocampal 

neurons, between 11 – 21 DIV. 
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2.6. Brain Slice electrophysiology 

2.6.1. Animals 

Young rats (P14) were decapitated under terminal isoflurane anaesthesia, in 

accordance with the Animals (Scientific Procedures) Act, 1986 (ASPA). Given 

that GABAA receptors are a major molecular target of neurosteroids (Paul and 

Purdy, 1992), and neurosteroid levels are strongly influenced by the oestrus 

cycle in female mice (Corpéchot et al., 1997), only male mice were used for 

these experiments. 

 

2.6.2. Preparation of brain slices 

Following decapitation, the brain was rapidly removed and immersed in ice-cold 

slicing solution composed of (mM): 130 K-gluconate, 15 KCl, 0.05 EGTA, 20 

HEPES, 4 Na-pyruvate, 25 glucose and 2 kynurenic acid (pH 7.4). Coronal 

thalamic slices (250 µm) were obtained using a Leica VT 1200s vibroslicer 

(Leica Microsystems GmBH, Wetzlar, Germany), and subsequently transferred 

to a holding chamber incubated at 37 ºC. The solution was slowly exchanged to 

aCSF containing (mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 2 

CaCl2, 1 MgCl2, 25 glucose and 2 kynurenic acid (pH 7.4 when bubbled with 95 

% O2 and 5 % CO2; BOC Healthcare). Slices were maintained in the holding 

chamber at RT until they were used for electrophysiology. 
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2.6.3. Whole-cell electrophysiology in slices and neuronal cultures 

Neurons were visualised using a Slicescope Pro 6000 (Scientifica, UK) 

equipped with differential interference contrast (DIC) optics (Olympus, Tokyo, 

Japan) and a Basler scA750-60fm camera (Basler Vision Technologies, 

Ahrensburg, Germany).  

Whole-cell currents were recorded at RT, as detailed for HEK293 cells (Section 

2.3.3). Recordings were made using fire polished patch pipettes (2 - 4 MΩ) filled 

with an intracellular solution containing (mM): 140 CsCl, 2 NaCl, 10 HEPES, 5 

EGTA, 2 MgCl2, 0.5 CaCl2, 2 Na-ATP and 2 QX-314 bromide (Abcam 

Biochemicals). The pH of the intracellular solution was adjusted using 1 M 

CsOH.  

During recordings, slices, and neuronal cultures were perfused with recording 

solution at a flow rate of 4-6 mL/min. For slice recordings, the recording aCSF 

was supplemented with the glutamate receptor antagonist, kynurenic acid (2 

mM), to isolate GABA-mediated responses. When recording from neuronal 

cultures, the NMDA (N-Methyl-D-aspartate) and AMPA (2-amino-3-(3-hydroxy-

5-methyl-isoxazol-4-yl)propanoic acid)/ kainate receptor antagonists, D-AP5 (20 

µM) and CNQX (10 µM) were used to block excitatory responses. A saturating 

concentration of (-)-bicuculline (20 µM; Ueno et al., 1997) was bath-applied at 

the end of all electrophysiological recordings, to confirm that all synaptic events 

were GABAergic, and to unveil any GABAA-mediated tonic current. Some 

recordings were performed in the presence of 0.5 µM tetrodotoxin (TTX), to 

block spontaneous action potentials. 

In a subset of thalamic recordings, the slices were pre-incubated for at least 30 

min in aCSF containing the GAT uptake inhibitors NNC-711 (10 µM) and SNAP-

5114 (20 µM). Both compounds were subsequently present throughout 

electrophysiological recordings. NNC-711 is a potent and selective antagonist of 

GAT1 transporters (IC50: 0.38 µM at GAT1; 117 µM at GAT2; and 1700 µM at 

GAT3; Borden et al., 1994). By comparison, SNAP-5114 potently inhibits GABA 
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uptake by GAT2 and GAT3, with an IC50 of 21 µM and 5 µM respectively for 

each transporter (388 µM at GAT1; Borden, 1996).  

 

2.6.4. IPSC analysis 

The frequency (Hz) of sIPSCs was determined by detecting and manually 

selecting all events within 3 min epochs, using MiniAnalysis software 

(Synaptosoft Inc., Fort Lee, New Jersey, USA), and dividing this value by 180 s. 

During 4-PIOL application, a significant increase in root mean square (RMS) 

current noise was observed in hippocampal pyramidal and TC relay neurons, 

which might mask smaller sIPSCs, and introduce a bias towards larger events 

during 4-PIOL application compared to control. To limit this bias, only the 

largest hundred amplitude events from each condition were compared. 

 

 

Figure 2.5 – sIPSC fitted with a bi-exponential decay function 

The rise time was defined as the time taken for the synaptic event to rise from 10 (green dot) to 

90 % (red) of the maximum current response (red cross). The decay phase (90 - 10 %) of each 

IPSC was fitted with a bi-exponential decay function (see Equation 2.4; red curve). The green 

dashed line indicates the baseline current.   

 

150 pA
18 s

x
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The average decay kinetics for sIPSCs for each cell was determined by fitting 

the cleanest, uncontaminated events (> 50 events for each condition) with 

either a mono- or bi-exponential decay function (e.g. Fig. 2.5). The accuracy of 

each fit was determined visually, but also by increasing the coefficient of 

determination (R2). To combine data obtained for mono- or bi-exponentially 

fitted events, decay times were transformed to a weighted decay time, τw, 

according to Equation 2.4: 

 

Equation 2.4: Calculating Weighted tau 

τw = (A1.τ1 + A2.τ2) / (A1 + A2); 

 

Where τ1 and τ2 represent the time constants for a bi-exponential decay, and A1 

and A2 are the relative amplitude contributions of τ1 and τ2. For 

monoexponential decaying events, A2 and τ2 are zero. 

The average sIPSC frequency, amplitude, 10 – 90 % rise time and τw were 

calculated for each cell, and the mean data for each parameter is expressed as 

a percentage, relative to the control condition. 

An all-points histogram was generated for sIPSC amplitudes, before and after 

drug application. Each histogram was fitted with a Gaussian distribution 

function, according to Equation 2.5. Note that for each condition, equal numbers 

of sIPSCs were sampled, from the start of each recording, to limit sample 

number bias. 
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Equation 2.5: Gaussian distribution function 
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Where A is the amplitude of the histogram, C is a constant representing the 

pedestal of the histogram, μ is the Gaussian mean, and σ is the standard 

deviation. 

 

2.6.5. Analysis of tonic GABA currents 

Two main methods were used to quantify the changes in tonic currents. The 

average holding current for a 30 s epoch, in each drug condition, was measured 

using WinEDR software (version 3.1; John Dempster, University of Strathclyde, 

Glasgow, UK). Changes in holding current were calculated by subtracting the 

average holding current after drug application, from the average holding current 

before the drug application. In addition, the RMS baseline noise was measured 

over a 30 s epoch, sampled every 100 ms. Since sIPSCs increase RMS 

baseline noise, Microsoft Excel was used to calculate a threshold for eliminating 

contaminated 100 ms epochs. A running threshold (routinely the median) was 

calculated at 5 s time intervals, over a 30 s recording period, and any RMS 

value greater than the calculated threshold, was automatically excluded from 

further analysis. Effective thresholding was validated by manually analysing a 

small section of each recording (~ 10 s), and manually eliminating 100 ms 

epochs contaminated by synaptic currents.  
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2.7. Fluorescent Imaging of brain slices 

2.7.1. Preparation of brain slices for confocal imaging 

In some thalamic recordings, Lucifer yellow (1 mg/mL; Sigma) was included in 

the internal medium to allow for confocal imaging of neuronal morphology. In 

these instances, slices were fixed for 16 - 24 hrs in 4 % w/v paraformaldehyde 

(PFA) diluted in phosphate buffered saline (PBS). Fixed slices were washed 

three times in PBS, and mounted on microscope slides using Vectashield 

mounting medium (Vector Laboratories, Burlingame, CA). Imaging of slices was 

performed within a week.  

 

2.7.2. Image acquisition and analysis 

Images were acquired using a Zeiss Axioskope LSM510 confocal microscope 

(Carl Zeiss Ltd., Welwyn, Garden City, Hertfordshire, UK), equipped with a 488 

nM argon laser line, and a Plan Neofluor 40x oil-immersion DIC objective 

(numerical aperture (NA) 1.3; Carl Zeiss). Neurons were imaged as z-stacks, 

comprising of 2 µm optical sections. Each z-section was acquired as a mean of 

four scans in eight bits, and stored for analysis. Z-stack projections were 

constructed at a later date, using ImageJ (Version 1.42q). 
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2.8. Statistics 

All data are expressed as mean ± SEM. Graphical representations of data were 

plotted using Microcal OriginPro (version 6; OriginLab Corporation, 

Northampton, MA, USA), or Microsoft Excel.  

Where appropriate, statistical analyses were performed using a paired- or 

unpaired student t-test, or a one-way analysis of variance (ANOVA; InStat 3; 

GraphPad Software, La Jolla, California, USA). These statistical tests assume 

that the data is normally distributed, and that the variances of the compared 

groups do not vary significantly. The normality of each data set was assessed 

using a Kruskal-Wallis test, and where data did not meet the criteria for 

parametric analysis, a non-parametric t-test, or ANOVA, was performed. P-

values < 0.05 were considered statistically significant. 
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Chapter 3: Functional characterisation of recombinant γ2- and δ subunit-
containing receptors expressed in HEK293 cells 

 

3.1. Introduction 

In Chapter 4, the functional profile of 4-PIOL will be assessed on recombinant 

GABAA receptors expressed in HEK293 cells. HEK293 cells are a common 

expression system, used to study the pharmacology and biophysical properties 

of recombinant GABAA receptors. Due to their non-neuronal lineage, these cells 

are largely thought not to express endogenous GABAA receptors, although 

there is some evidence that β3, ε and γ3 subunits are expressed in low levels 

(Thomas and Smart, 2005). Nonetheless, despite frequent testing, we have 

consistently failed to detect the functional expression of these subunits in non-

transfected HEK293 cells, allowing us to control the expression of different 

GABAA-receptor subunits using the cDNA transfection protocol described in 

Section 2.3.2. 

Although several GABAA receptor subtypes have been described at synaptic, 

and extrasynaptic sites in native neurons (see Section 1.2.1), here, the study is 

focused on recombinant α1βγ2, α5βγ2, α4βδ and α6βδ receptors, since these 

are the major subtypes thought to exist in hippocampal pyramidal neurons, 

CGCs (both investigated in Chapter 5) and TC relay neurons (studied in 

Chapter 6). 

Before examining the functional profile of 4-PIOL on recombinant α1β3γ2, 

α5β3γ2, α6β2δ and α4β2δ receptors expressed in HEK293 cells, it was 

important to first validate the expression of these recombinant GABAA receptor 

subtypes in the HEK293-expression system. Evidence suggests that binary αβ 

subunits can efficiently co-assemble to form functional receptors in recombinant 

expression systems (Mortensen et al., 2011; Karim et al., 2013). To ensure that 

γ2 and δ were efficiently incorporated into functional heteropentamers, whole-
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cell electrophysiological recordings were performed on HEK293 cells 

expressing various αβ, αβγ and αβδ subunit combinations. The GABA 

sensitivity of each receptor subtype was determined, and their relative 

sensitivities to subtype selective modulators such as diazepam (a γ subunit-

selective potentiator (Pritchett et al., 1989) and zinc (αβ-selective inhibitor; 

Draguhn et al., 1990; Smart et al., 1991; Hosie et al., 2003) were assessed. 

In addition to verifying efficient δ-expression, we also examined the subunit 

stoichiometry of functional recombinant α4β3δ receptors. Although the 

stoichiometry of major synaptic αβγ GABAA receptor isoforms has broad 

consensus support for 2α: 2β: 1γ (Backus et al., 1993; Chang et al., 1996; 

Tretter et al., 1997), a definitive view of the stoichiometry for extrasynaptic δ 

containing receptors remains elusive. Previous reports note that some 

functional discrepancies have been observed for αβδ receptors (e.g. variable 

GABA EC50 and ethanol sensitivity; Wallner et al., 2003), which have been 

postulated to arise, in part, from differences in subunit stoichiometry (Borghese 

et al., 2006; Wagoner and Czajkowski, 2010). While the stoichiometry of 

recombinant αβδ receptors has been investigated using atomic force 

microscopy (Barrera et al., 2008), biochemical analysis of recombinant 

receptors (Wagoner and Czajkowski, 2010) and concatamers (Baur et al., 2009; 

Kaur et al., 2009), there appears to be some discrepancy regarding the number 

of δ subunits incorporated into functional channels.  

Using a similar approach to that adopted for nACh receptors (Filatov and White, 

1995; Labarca et al., 1995), 5-HT3 receptors (Yakel et al., 1993) and α1β2γ2 

GABAA receptors (Chang et al., 1996; Chang and Weiss, 1999), we introduced 

polar substitutions for the highly conserved 9’ leucine residue in the M2 region 

(see Fig. 2.1) of the α4, β3 and δ GABAA receptor subunits. These 9’ leucine to 

serine (L9’S) substitutions were used as reporter mutations, since they produce 

a profound increase in agonist potency and consequently induce a leftward shift 

in the GABA concentration-response curve. The extent of the curve shift is 

correlated with the number of polar substitutions per ion channel complex and is 

used here to demonstrate a subunit stoichiometry of 2α: 2β: 1δ for functional 

α4β3δ receptors. Much of the work presented in this chapter, has been 

published (Patel et al., 2014). 
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3.2. Results 

Using the cDNA transfection protocol described in Section 2.3.2, HEK293 cells 

were transfected with cDNAs encoding the specified subunit combinations (αβδ 

or αβγ), in combination with an expression plasmid encoding enhanced green 

fluorescent protein (eGFP). Note that the δ subunit was tagged at the N-

terminus (between residues 13 and 14 of the mature protein) with a super-

ecliptic phluorin, so eGFP was omitted from transfections including δsep. 

Transfected cells were identified by their green fluorescence, and whole-cell 

currents were recorded from these cells expressing recombinant GABAA 

receptors, in response to brief (2 - 4 s) drug applications (applied via a Y-tube 

application system; see Fig. 2.4).  

 

3.2.1. Functional verification of γ2 subunit expression in HEK293 cells 

The major GABAA receptor subtype(s) thought to exist at synaptic sites in the 

CNS are αβγ2 receptors (Farrant and Nusser, 2005). Although αβγ subunits 

have previously been shown to form functional receptors when expressed in 

heterologous expression systems (Sigel et al., 1990; Verdoorn et al., 1990; 

Angelotti and Macdonald, 1993), it was important to verify whether the γ2 

subunit was efficiently incorporated into functional receptors in HEK293 cells 

used in this study.  

Since αβ receptors have previously been shown to exhibit a higher sensitivity to 

GABA compared to αβγ receptors (Sigel et al., 1990; Mortensen et al., 2011), 

whole-cell currents were recorded from α1β3- or α1β3γ2L-expressing cells, in 

response to increasing concentrations of GABA (0.01 – 1000 µM; Fig. 3.1 A). 

The GABA concentration-response data generated for each cell was fitted using 

the Hill equation (Equation 2.1), and averaged to produce mean estimates of 

GABA potency (EC50) and the Hill coefficient (nH) for each receptor subtype 

(Table 3.1). Although the mean GABA EC50 for α1β3γ2L-expressing cells had a 
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tendency to be higher than that for α1β3 receptors (8.7 ± 2.3 µM and 3.3 ± 0.8 

μM respectively; Table 3.1), this difference was not statistically significant (p = 

0.06), possibly indicating that the γ2L subunit was not being efficiently 

incorporated into functional α1β3γ2L receptors. 

 

 

 

Figure 3.1 – Functional analysis of α1β3 and α1β3γ2L receptors 

expressed in HEK293 cells 

A. Average GABA concentration-response curves for cells expressing α1β3 (black) and 

α1β3γ2L (red) receptors (mean ± SEM; n = 4 – 5 cells). The data from each cell was fitted with 

a Hill equation (continuous curves), using a least-squares method, and the average parameters 

for each construct are listed in Table 3.1. B. Representative traces of whole cell currents elicited 

by an EC15 GABA concentration (1 µM) for α1β3γ2L receptors, in the absence, and presence of 

0.1 µM and 0.5 µM diazepam (DZP). The black and green horizontal bars respectively indicate 

the duration of GABA and diazepam applications. C. Bar graph showing the effect of 0.1 µM 

(black) and 0.5 µM (green) diazepam on GABA EC15 responses of α1β3- and α1β3γ2L-

expressing cells. For each cell, the GABA response in the presence of pre-applied (and co-

applied) diazepam was normalized to the GABA EC15 response measured in the absence of 

diazepam. 

 

 

 

α1β3γ2L
α1β3

0

20

40

60

80

100

[GABA] (µM)
10001001010.10.01G

A
B

A 
re

sp
on

se
 (%

 I M
ax

,G
AB

A)

100 pA
2 s

0.1 0.5
1 µM GABA

Diazepam (µM) 

α1β3γ2L

+ 0.5 μM DZP

α1β3

50

100

150

200

250

300

0

%
 E

C
15

G
A

B
A 

cu
rre

nt
 + 0.1 µM DZP

C.A.

B.



76 
 

To check, an alternative pharmacological tool was adopted to assess whether 

the γ2L was being efficiently expressed. It is long established that α(1,2,3 and 

5)βγ receptors, but not αβ receptors, undergo positive allosteric modulation by 

benzodiazepines, such as diazepam (Pritchett et al., 1989; Rudolph and 

Möhler, 2004). Therefore, we assessed the modulation of α1β3 and α1β3γ2L 

receptor mediated GABA-activated currents by diazepam.  Whole-cell currents 

elicited by EC15 concentrations of GABA (the concentration of GABA eliciting 15 

% of the maximal GABA response) were recorded from cells expressing α1β3 

and α1β3γ2L receptors, in the absence, and presence of 0.1 µM and 0.5 µM 

diazepam (Fig. 3.1 B). These concentrations of diazepam have previously been 

shown to potently potentiate αβγ receptors (Baur and Sigel, 2005).  While the 

responses of α1β3γ2L receptors were significantly potentiated by diazepam (% 

control (= 100 %) GABA EC15 current: 225 ± 1.3 and 263 ± 6.6 for 0.1 µM and 

0.5 µM diazepam respectively; Fig. 3.1 C), α1β3 receptors showed no 

discernible potentiation by diazepam (% control GABA EC15 current: 100.3 ± 

12.5 and 94.7 ± 12.2 for 0.1 µM and 0.5 µM diazepam respectively; Fig. 3.1 C). 

Thus, although we cannot exclude the possibility that some α1β3-heteromers 

were also present in α1β3γ2L-expressing cells, these data indicate that γ2L was 

efficiently incorporated into functional receptors.  
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Table 3.1 – Peak GABA concentration response parameters for synaptic 

and extrasynaptic GABAA receptors 

Subunit 
combination  GABA EC50 (μM)  nH  
α1β3  3.3 ± 0.8  1.3 ± 0.1  
α5β3  2.7 ± 0.5  1.0 ± 0.03  
α4β2  1.1 ± 0.02  0.9 ± 0.04  
α4β3  1.0 ± 0.1  1.5 ± 0.2  
α6β2  0.6 ± 0.04  1.0 ± 0.1  
α1β3γ2L  8.7 ± 2.3  1.3 ± 0.1  
α5β3γ2L  11.9 ±  3.6  1.1 ±  0.1  
α4β2δ  0.7 ± 0.1  1.3 ± 0.1  
α4β3δ  1.9 ± 0.5  1.1 ± 0.1  
α6β2δ  0.3 ± 0.03  1.1 ± 0.04  

 

The normalised GABA concentration-response curves for each subunit combination was fitted 

using a single component Hill equation (Equation 2.1) using a least-squares method. Listed are 

the mean values for GABA potency (EC50) and the Hill slope (nH) obtained, which are expressed 

as mean ± SEM (n = 4 – 7). 

 

As for α1β3 and α1β3γ2L receptors, the GABA and diazepam sensitivities of 

recombinant α5β3 and α5β3γ2L receptors were also investigated. GABA 

concentration-response curves generated for each subunit combination (Fig. 

3.2 A) revealed that recombinant α5β3γ2L receptors were apparently less 

sensitive to GABA than α5β3 receptors (EC50s: 11.9 ± 3.6 µM and 2.7 ± 0.5 µM 

respectively), although this difference was not statistically significant (p = 0.10). 

Moreover, the EC15 GABA responses of α5β3γ2L receptors showed appreciable 

potentiation by both 0.1 µM and 0.5 µM diazepam (% control GABA EC15 

current: 189 ± 2.9 and 225.7 ± 4.0 respectively; Fig. 3.2 B), unlike α5β3 

receptors, which showed no significant potentiation by diazepam (% control 

GABA EC15 current: 96.5 ± 17.3 and 97.3 ± 20.5 for 0.1 µM and 0.5 µM 

diazepam respectively; Fig. 3.2 B). Therefore, it appears that the γ2L subunit 

was also efficiently incorporated into functional α5β3γ2L heteropentamers. 
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Figure 3.2 – Functional analysis of α5β3 and α5β3γ2L receptors 
expressed in HEK293 cells 

A. Average GABA concentration-response curves for cells expressing α5β3 (black) and 

α5β3γ2L (red) receptors (mean ± SEM; n = 4 – 5 cells). The data from each cell was fitted with 

a Hill equation (continuous curves), using a least-squares method, and the average parameters 

for each construct are listed in Table 3.1. B. Bar graph showing the effect of 0.1 µM (black) and 

0.5 µM (green) diazepam on GABA EC15 responses of α5β3- and α5β3γ2L-expressing cells. For 

each cell, the GABA response in the presence of pre-applied (and co-applied) diazepam was 

normalized to the GABA EC15 current measured in the absence of diazepam. 
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3.2.2. Functional verification of δ subunit expression in HEK293 cells 

Whilst the γ2 subunit readily forms functional heteropentamers with αβ subunits, 

greater difficulty has been observed with the recombinant expression of the δ 

subunit. Therefore, to promote the expression of α6β2δ and α4β2δ receptors, a 

transfection ratio of 10α: 1β: 10δ was used, on the assumption that αδ pairs 

would form early in the assembly pathway, as is the case for α6δ pairs in the 

cerebellum (Jones et al., 1997). Cell surface expression of the δ subunit was 

initially confirmed by the presence of green fluorescence, arising from a super-

ecliptic phluorin (sep) tag on the N-terminus of the δ subunit (see Fig. 2.3). 

To assess whether the δ subunit was successfully incorporated into functional 

α6β2δ receptors, the GABA sensitivities of α6β2- and α6β2δ-expressing cells 

were first compared. The average GABA concentration-response curve for each 

receptor subtype (Fig. 3.3 A) revealed that α6β2δ receptors exhibited a 

significantly higher sensitivity to GABA compared to α6β2 receptors (0.3 ± 0.03 

µM and 0.6 ± 0.04 µM respectively; Table 3.1; p = 0.0012). Curiously, α6β2 

receptors displayed significantly smaller maximum currents compared to α6β2δ 

receptors (56.6 ± 9.5 pA and 589.7 ± 62.4 pA respectively; p = 0.0008). This 

difference was not attributable to any differences in cell size, since α6β2 

receptors also exhibited a smaller maximum current density (calculated by 

normalising a response to 1 mM GABA to the whole-cell capacitance) than 

α6β2δ-expressing cells (Fig. 3.3 B; p = 0.008). Although not specifically probed 

here, these differences could arise if α6β2 receptors possess a lower open 

state probability, or single channel conductance than α6β2δ receptors (as has 

been demonstrated for α1β receptors; Moss et al., 1990; Verdoorn et al., 1990; 

Angelotti and Macdonald, 1993; Mortensen and Smart, 2006), or if α6β2 

receptors are less efficiently assembled and/or trafficked to the cell surface. 

Nonetheless, the increased GABA sensitivity, and maximum current density of 

α6βδ-expressing cells (relative to α6β-expressing cells), is consistent with 

efficient δ-expression. Moreover, consistent with previous reports, α6β2δ 

receptors exhibit the highest sensitivity to GABA compared to all the other 

GABAA receptors listed in Table 3.1 (Mortensen et al., 2011). 
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Figure 3.3 - Functional analysis of α6β2 and α6β2δ receptors expressed in 

HEK293 cells 

A. Average (mean ± SEM) GABA concentration-response curves for cells expressing α6β2 

(black) and α6β2δ (red) receptors. The data from each cell was fitted with a Hill equation 

(continuous curves), using a least-squares method, and the average parameters for each 

construct are listed in Table 3.1. Each curve was generated by averaging data from 4 - 5 cells. 

B. Bar graph showing the maximum GABA current density (pA/pF) for α6β2- and α6β2δ-

expressing cells. For each cell, the peak response (pA) to a saturating concentration of GABA 

(1 mM) was normalized to the whole cell capacitance (pF). 

 

Similarly, the GABA sensitivities of α4β2 and α4β2δ receptors were also 

investigated. The average GABA concentration-response curves for α4β2- and 

α4β2δ-expressing cells (Fig. 3.4 A) revealed that α4β2δ receptors (GABA EC50: 

0.7 ± 0.1 µM) were significantly more sensitive to GABA than α4β2 receptors 

(GABA EC50: 1.1 ± 0.02 µM; p = 0.006; Table 3.1). This difference in GABA 

sensitivity suggests that the δ subunit is expressed, and can form functional 

heteropentamers when co-expressed with α4 and β2 subunits.  

To verify that α4β2δ-expressing cells did not contain a large population of 

binary αβ constructs, an alternative pharmacological approach was adopted. 

The subtype selective inhibitor, Zn2+ (Smart et al., 1991; Nagaya and 

Macdonald, 2001; Hosie et al., 2003) was used, since 1 µM Zn2+ has been 

shown to inhibit αβ receptors to a far greater extent than αβδ receptors (Krishek 

et al., 1998; Hosie et al., 2003; Stórustovu and Ebert, 2006). The EC50 current 
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responses for α4β2 and α4β2δ receptors were recorded in the absence, or 

presence of pre-applied (and co-applied) 1 µM Zn2+. As expected, this 

concentration of Zn2+ significantly inhibited EC50 GABA responses of α4β2 

receptors, by 80.0 ± 2.63 % (Fig. 3.4 B).  By contrast, Zn2+ only produced a 

modest inhibition (11.2 ± 1.13 %) of the EC50 GABA responses of α4β2δ 

receptors (Fig. 3.4 B). These data strongly indicate that a significant proportion 

of functional receptors present in α4β2δ-expressing cells contain the δ subunit, 

although we cannot exclude the expression of some α4β2 receptors. 

 

 

Figure 3.4 - Functional analysis of α4β2 and α4β2δ receptors expressed in 

HEK293 cells 

A. Average (mean ± SEM) GABA concentration-response curves for cells expressing α4β2 

(black) and α4β2δ (red) receptors. The data from each cell (n = 4 - 6) was fitted with a Hill 

equation (continuous curves), using a least-squares method, and the average parameters for 

each receptor type is listed in Table 3.1. B. Bar graph showing the inhibitory effects of 1 µM 

Zn2+ on the GABA EC50 responses of α4β2- and α4β2δ-expressing cells. For each cell, the peak 

response to 1 µM GABA (an approximate EC50 concentration for both α4β2 and α4β2δ 

receptors) was measured in the absence, or presence of pre-applied (and co-applied) Zn2+, and 

each response was normalized to that elicited by GABA alone. The inset shows example traces 

of whole-cell currents, elicited by GABA (1 μM), in the absence or presence of pre-applied Zn2+ 

(1 μM), for α4β2- and α4β2δ-expressing cells. Calibration bars: 2 s (horizontal) and 100 pA 

(vertical). 
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3.2.3. Functional expression of WT and L9’S mutant α4, β3 and δ subunits 

To examine the stoichiometry of α4β3δ receptors, we mutated the highly 

conserved 9’ leucine residues in α4, β3 and δ subunits (see Fig. 2.1) to serine 

residues, as described in Section 2.1. The resultant α4L297S, β3L284S and 

δsep
L288S will be referred to as: αm, βm and δm, for the remainder of this chapter, 

while their WT counterparts are designated as α, β and δ.  

Previous studies have demonstrated that L9’S mutations confer a profound 

increase in agonist sensitivity, manifested by a leftward shift in the agonist 

concentration-response curve. To verify the functional expression of L9’S 

mutants, GABA activated currents were recorded from HEK293 cells expressing 

WT, αβδ, and mutant, αβδm, αmβδ and αβmδ, receptors (Fig. 3.5 A). Both WT 

and mutant expressing cells exhibited a concentration-dependent sensitivity to 

GABA, and notably, the currents recorded from mutant receptor expressing 

cells demonstrated prolonged deactivation phase compared to those for WT 

αβδ receptors (Fig. 3.5 A).  

αβδm, αmβδ and αβmδ, transfected with a 10α:1β:10δ transfection ratio but not 

αβδ receptors, exhibited spontaneous activity in the absence of exogenously-

applied GABA, which was blocked by the Cl- channel blocker, picrotoxin (1 mM; 

Fig. 3.5 B). Expressed as a proportion of the total GABA-activated plus 

spontaneous current (IPTX/(IPTX + IMax,GABA; Fig. 3.5 B inset)), the levels of 

spontaneous receptor activity for αmβδ and αβδm receptors were 21.9 ± 5.3 % 

and 16 ± 1 %, respectively. Notably, αβmδ-expressing cells exhibited the highest 

level of spontaneous receptor activation (76.6 ± 6.5 %), relative to αβδm (p < 

0.001) and αmβδ (p < 0.05) receptors (non-parametric ANOVA – Kruskal Wallis 

test). The increased degree of spontaneous activation observed for the β 

mutant, likely reflects the predominant role this subunit plays in stabilising the 

open-shut GABA channel conformation(s). It is also noteworthy that β 

homomers can form spontaneously-opening ion channels (Krishek et al., 1996; 

Davies et al., 1997; Wooltorton et al., 1997; Cestari et al., 2000) unlike their α, γ 

or δ subunit counterparts.   
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Slower deactivation kinetics, and spontaneous channel openings are 

characteristic of LGICs containing 9’ polar mutations (Revah et al., 1991; Filatov 

and White, 1995; Bianchi and Macdonald, 2001), and likely arise from receptor 

stabilisation in one or more open states (Filatov and White, 1995; Bianchi and 

Macdonald, 2001).  Taken together, the distinctive current profiles of L9’S 

expressing cells, suggests that each mutant is efficiently co-assembled into 

functional αβδ receptors.  
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Figure 3.5 - Functional expression of WT and L9’S mutant α4, β3 and δ 

subunits.  

A. Examples of whole cell currents recorded from HEK cells expressing recombinant αβδ, αβδm, 

αmβδ and αβmδ receptors, in response to increasing concentrations of GABA (0.001 - 1000 µM). 

The black horizontal bars indicate the duration of GABA application. Note the increased GABA 

sensitivity, and prolonged deactivation kinetics demonstrated by mutant expressing cells. A 

transfection ratio of 10α: 1β: 10δ was used. B. Bar graph showing the spontaneous activity for 

αβδ, αβδm, αmβδ, αβmδ and αmβδm receptors. Values were calculated by expressing the outward 

current induced by picrotoxin (IPTX; 1 mM) as a percentage of the maximum current, defined as 

the sum of IMax,GABA and IPTX (n = 4 - 11; mean ± SEM). No spontaneous activity (= 0 %) was 

observed for WT α4β3δ receptors. The inset shows example GABA-activated and picrotoxin-

sensitive currents (IMax,GABA and IPTX) for αβδ and αβδm receptors. Current calibration bars: 300 

pA (αβδ); 400 pA (αβδm). 
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3.2.4. L9’S mutations in α4, β3 and δ subunits increase GABA sensitivity 

GABA concentration-response curves were generated for cells expressing the 

subunit combinations, αβδ, αβδm, αmβδ, αβmδ, and αmβδm. The GABA 

concentration-response curve for αβmδ receptors was generated by Dr Martin 

Mortensen. Cells expressing δm, αm or βm subunits demonstrated an increased 

GABA sensitivity compared to WT αβδ receptors, manifest by leftward shifts in 

the GABA concentration-response curves for mutant receptor expressing cells 

(Fig. 3.6 A). Whereas WT αβδ receptors had a GABA EC50 of 1.91 ± 0.47 µM, 

single mutant subunit-containing receptors possessed lower EC50 values of: 

0.46 ± 0.11 µM (αβδm), 0.12 ± 0.03 µM (αmβδ) and 0.11 ± 0.04 µM (αβmδ; Table 

3.2). Notably, the GABA concentration-response curve for αβmδ receptors 

exhibited a significantly lower nH (0.6 ± 0.1; Table 3.2) than those obtained for 

αβδm (1.4 ± 0.1) and αmβδ (1.2 ± 0.2) receptors (p = 0.02 and p = 0.03 

respectively). Although we cannot simply transpose the change in nH to any 

physical attribute, it is possible that the L9’S mutations altered the gating 

kinetics of the receptor, which may account for the changes in nH. Moreover, the 

effects on gating kinetics may be highly dependent on the subunit in which the 

mutation is inserted.  

The αβδm receptors exhibited an ~ 4 - fold (4.2) increase in GABA sensitivity, 

relative to αβδ receptors. The increased GABA sensitivity of αβδm was not 

attributable to a large population of αβ receptors being present, since the EC50 

for αβδm receptors (0.46 ± 0.11 µM) is significantly lower than that obtained for 

αβ receptors (1.0 ± 0.1 µM; Table 3.2; p = 0.01). By comparison the GABA 

sensitivities of αmβδ and αβmδ receptors were even higher compared to δm-

containing receptors, causing shifts of 16- (15.9) and 17- (17.4) fold respectively 

in the GABA EC50.  
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Figure 3.6 - L9’S mutations in α4, β3 and δ subunits increase GABA 

sensitivity. 

A. GABA concentration-response curves for αβδ, αβδm, αmβδ, αβmδ and αmβδm receptors. Data 

represent the mean ± SEM from n = 5 - 9. The data from each cell was fitted with a Hill equation 

(continuous curves), using a least-squares method, and the average parameters for each 

construct are listed in Table 3.2. B. Relationship between the average GABA EC50 values and 

number of mutant receptors incorporated into the receptor pentamer (assuming a stoichiometry 

of 2α: 2β: 1δ).  
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Table 3.2 – Peak GABA concentration response curve parameters for WT, 

and L9’S containing α4β3δ receptors. 

 

*Number of mutants within the pentamer assuming a 2α: 2β: 1δ stoichiometry. GABA 

concentration-response curves were obtained from 5 - 9 HEK293 cells expressing αβδ, αβδm, 

αβmδ, αmβδ, or αmβδm receptors. The Hill equation was fitted to each data set, and the mean 

values for GABA potency (EC50) and the Hill slope (nH) are shown in the table as mean ± SEM.  

 

To estimate the number of subunits likely to exist within each αβδ 

heteropentamer, we must make some assumptions. First, we assume that each 

subunit mutation has an equivalent effect on GABA potency and that this effect 

is independent of the subunit class (α, β, or δ) in which the L9’S mutation is 

inserted. Secondly, it is assumed that each additional L9’S substitution within 

the receptor complex acts independently. For αmβδ receptors, if we further 

assume that the receptor contains two α subunits, then we would expect the 

shift in GABA EC50 induced by the αm to be approximately the square of the 

change produced by a single α subunit. Thus, the EC50 shift of 15.9 observed 

for αmβδ receptors suggests that each αm subunit induced a 4 - fold change in 

GABA EC50. Similarly for αβmδ receptors, a 17.4 - fold shift indicates that each 

βm subunit (if two copies are present in the receptor) caused a 4.2 – fold change 

in GABA sensitivity. Since these changes are equivalent to that caused by the δ 

subunit (4.2), the findings therefore suggest that relative to the δ subunit, twice 

the number of α4 and β3 subunits are likely to exist in each receptor complex. 

Thus, since GABAA receptors are assumed to form pentameric complexes, 

αmβδ, αβmδ and αβδm receptors most likely contained 2αm, 2βm and 1δm 

subunits, respectively. 

 

Subunit combination GABA EC50 (μM) nH No. of mutants* 

αβδ 1.91 ± 0.47 1.1 ± 0.04 0 

αβδm  0.46 ± 0.11 1.4 ± 0.1 1 

αβmδ 0.11 ± 0.04 0.6 ± 0.1  2 

αmβδ 0.12 ± 0.03 1.2 ± 0.2  2 

αmβδm  0.08 ± 0.02 1.0 ± 0.1  3 
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3.2.5. Increasing GABA sensitivity with the number of co-assembled L9’S 

mutant subunits 

For muscle, heteromeric nACh receptors, each 9’ polar substitution within the 

ion channel confers an additional ~ 10 – fold increase in agonist sensitivity 

(Filatov and White, 1995; Labarca et al., 1995). However, such a linear 

relationship has not been observed for recombinant α1β2γ2S GABAA receptors 

(Chang and Weiss, 1999), where mutations in α, β and γ subunits contribute 

unequally to the increased GABA sensitivity, thus precluding an estimate of αβγ 

stoichiometry (Chang and Weiss, 1999). For our α, β and δ subunit receptors, 

the EC50 shifts induced by each L9’S mutation appeared more consistent, with 

each mutation contributing an ~ 4 - fold increase in GABA sensitivity. We 

therefore investigated the relationship between GABA potency and the number 

of mutant substitutions within δ-containing receptors, by recording from αmβδm 

receptors. 

Based on our predictions, αmβδm receptors would be expected to contain three 

mutant subunits (i.e. two αm and one δm), and thus display an even greater 

sensitivity to GABA than αmβδ (double mutant) or αβδm (single mutant) 

receptors.  

The average GABA concentration-response curve for αmβδm receptors (Fig. 3.6 

A) was used to determine a GABA EC50 of 0.08 ± 0.02 µM (Table 3.2) for this 

receptor type. This equates to a 23.9 - fold increase in GABA sensitivity, relative 

to WT αβδ receptors. We would expect the shift in GABA EC50 produced by the 

triple mutant (αmβδm) to be approximately the cube of the change produced by a 

single mutant subunit. Thus for αmβδm receptors, the observed shift of 23.9 - 

fold approximates to a 3 - fold shift (2.9) per mutant subunit. 

However, based on the double mutant receptors, we predicted a ~ 4 - fold shift 

per subunit and thus for three mutant subunits, we might have expected a 64 - 

fold increase in GABA sensitivity. The discrepancy between the predicted and 

actual shift observed for αmβδm could arise from the δm subunit being absent 

from αmβδm receptor expressing cells, leaving cell surface receptors mainly 
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composed of αβ receptors containing just two mutant αm subunits. However, 

this seemed unlikely given that for αmβδm expressing cells, there was clear 

evidence of cell surface δm-GFP fluorescence. Furthermore, αmβδm expressing 

cells exhibited a level of spontaneous activity (49.4 ± 8.4 %) that was 

comparable to the combined spontaneous activities of αmβδ (21.9 ± 5.3 %) and 

αβδm receptors (15.7 ± 1.3 %; Fig. 3.5 B). Taken together, these data suggest 

that both αm and δm subunits were efficiently incorporated into functional αmβδm 

receptors.  

Indeed, our predicted shift of 64 - fold for αmβδm receptors was based on the 

assumption that each additional mutant subunit within the receptor complex 

acts independently. The lower, experimentally derived, GABA EC50 shift  

observed for αmβδm receptors (23.9) suggests that although this assumption 

might hold for receptors with two mutant subunits, three mutant substitutions 

within a receptor complex might result in some degree of interaction between 

adjacent mutant subunits, and possibly give rise to deviations between the 

predicted and observed curve shifts. 

 

3.2.6. cDNA transfection ratio has no effect on α4β3δ receptor stoichiometry 

Recently, it was demonstrated that the number of δ subunits incorporated into 

recombinant α4β2δ receptors could vary with the cDNA transfection ratio 

(Wagoner and Czajkowski, 2010). This was achieved by inserting α-

bungarotoxin binding sites into individual GABAA receptor subunits, and 

subsequently quantifying the bungarotoxin fluorescence of tagged cell surface 

receptors immunopurified from transfected HEK293 cells. The functional 

consequences of these stoichiometric changes were not directly analysed by 

Wagoner and Czajkowski (2010). Moreover, the functional significance of 

altering α:β:δ cDNA transfection ratio has, to date, been largely been assessed 

on recombinant α4β3δ receptors expressed in Xenopus laevis oocytes (another 

commonly used expression system used to study the function and 

pharmacology of recombinant receptors), yielding conflicting results. For 
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instance, while one group reported significantly higher GABA EC50 values from 

Xenopus oocytes injected with higher levels of δ cRNA (You and Dunn, 2007), 

another found no significant effect of altering transfection ratio on GABA, or 

Zn2+ sensitivity (Borghese and Harris, 2007).  

Therefore, we studied the effect of altering the cDNA transfection ratio on the 

function, and stoichiometry of α4β3δ receptors expressed in a HEK293 

expression system. Cells were transfected with one of the following three, 

commonly used, α:β:δ cDNA ratios - 1:1:1, 1:1:10 or 10:1:10 (Borghese et al., 

2006; Stórustovu and Ebert, 2006; Barrera et al., 2008; Hoestgaard-Jensen et 

al., 2010). 

 

Figure 3.7 - cDNA transfection ratio has no effect on α4β3δ receptor 

stoichiometry. 

A. GABA concentration-response curves for αβδ (filled circles) or αβδm (open circles) 

expressing cells, transfected with the α:β:δ cDNA ratios: 1:1:1, 1:1:10 and 10:1:10. The Hill 

equation was fitted to each data set using a least-squares method (continuous curves). B. 

Inhibition by 1 μM Zn2+ of GABA EC50 currents for αβ, or αβδ receptors expressed following 

transfection with one of three α:β:δ cDNA ratios: 1:1:1 (blue), 1:1:10 (black) and 10:1:10 (red; n 

= 4 - 5; mean ± SEM). The total amount of cDNA used for each transfection was 4 μg.  
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First, the effect of varying the transfection ratio was studied on the GABA 

sensitivities of αβδ and αβδm receptors. For WT αβδ receptors, altering the 

transfection ratio had no effect on GABA sensitivity (1.4 ± 0.2, 1.9 ± 0.3 and 1.9 

± 0.5 μM for α:β:δ ratios of 1:1:1, 1:1:10 and 10:1:10 respectively; one way 

ANOVA – Bonferroni: p = 0.56). Similarly, the GABA concentration-response 

curves for αβδm expressing cells transfected with different ratios were also 

indistinguishable (Fig. 3.7 A), and their GABA EC50 values (0.2 ± 0.01, 0.3 ± 0.1 

and 0.5 ± 0.1 μM for α:β:δm ratios of 1:1:1, 1:1:10 and 10:1:10 respectively) did 

not vary significantly (one way ANOVA – Bonferroni: p = 0.20). Although there 

appears to be a trend for αβδm expressing cells transfected with a 10:1:10 ratio 

to have higher nH (1.4 ± 0.2; Fig. 3.7 A) than those transfected with either a 

1:1:1 (0.8 ± 0.03) or 1:1:10 (0.9 ± 0.2) transfection ratio, this trend was not 

significant (p = 0.09 and p = 0.17 respectively).  

Next, we determined the sensitivity of α4β3δ expressing cells to the subtype 

selective blocker, Zn2+ (Smart et al., 1991; Nagaya and Macdonald, 2001; Hosie 

et al., 2003). GABA EC50 current responses for α4β3 and α4β3δ receptors were 

recorded in the absence, or presence of (pre-applied and) co-applied 1 µM 

Zn2+. Note that cells expressing α4β3 receptors were transfected with a cDNA 

transfection ratio of 1α: 1β. As with WT α4β2 receptors (see Fig. 3.4), 1 µM Zn2+ 

significantly inhibited the GABA EC50 response of α4β3 receptors by 75.5 ± 5.7 

% (Fig. 3.7 B). By contrast, the Zn2+ sensitivity of α4β3δ expressing cells did not 

vary significantly with the αβδ transfection ratio (13.1 ± 3.4, 17.0 ± 3.9 and 17.6 

± 0.7 %; One way ANOVA – Bonferroni: p = 0.5), but all were significantly 

reduced compared to Zn2+ inhibition of αβ receptors (Fig. 3.7 B; One way 

ANOVA – Dunnetts: p < 0.0001). 

Overall, these data indicate that altering cDNA transfection ratio has no 

significant effect on the GABA, or Zn2+, sensitivities of WT α4β3δ receptors. 

Moreover, since the relative GABA EC50 shifts between δ and δm expressing 

cells (Fig. 3.7 A) remain unchanged with different cDNA transfection ratios, it 

appears that, at least for the three transfection ratios investigated, the number 

of δ subunits incorporated into functional α4β3δ receptors remains relatively 

constant in this expression system. 
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3.2.7. Co-expressing WT and mutant subunits confirms α4β3δ receptor 

stoichiometry 

Our deductions so far, are based on the assumption that each subunit mutation 

has an equivalent effect on GABA potency, irrespective of the subunit in which 

the L9’S mutation is inserted. Although this holds for α4β3δ receptors, where 

mutations in α, β, or δ give rise to an ~ 4 - fold increase in GABA sensitivity, 

some deviation may occur when the number of mutant substitutions is 

increased above 1 - 2 per receptor pentamer, as noted for α1β2γ2S GABAA 

receptors (Chang et al., 1996), and heteromeric nACh receptors (Labarca et al., 

1995). To overcome this methodological limitation, Chang et al. (1996) 

proposed an alternative approach for deducing subunit stoichiometry that does 

not rely on the relative EC50 shifts induced by different classes of mutant 

subunits, but instead upon co-expressing L9’S mutants with their WT 

counterparts in the same cells, to generate multiple populations of receptors 

(Chang et al., 1996). 

In principle, the co-expression of WT subunits with their respective L9’S 

mutants (e.g. α and αm) should introduce discrete and discernible components 

into the GABA concentration-response curve of expressing cells. For example, 

assuming there are two α subunits per receptor pentamer, these components 

would represent distinct GABAA receptors of: ααβδ, αmαmβδ and ααmβδ and its 

equivalent, αmαβδ. Thus, the GABA sensitivity exhibited by each individual 

receptor population would give rise to an inflection in the concentration-

response curve, and the number of components displayed could be used to 

infer the subunit stoichiometry, as has been accomplished for α1β2γ2S GABAA 

receptors (Chang et al., 1996).  
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Figure 3.8 - Co-expression of WT and mutant L9’S α4, β3 and δ subunits. 

Co-expression of WT and mutant L9’S α4, β3 and δ subunits. GABA concentration-response 

curves (black continuous curves) for (A) α,αm,β,δ (n = 6); (B) α,β,βm,δ (n = 6); and (C) α,β,δ,δm. 

(n = 10), fitted using a two or three-component Hill equation (using Equation 2.1). Also shown 

for each receptor class, are the Hill equation fits for the GABA concentration-response curves of 

WT αβδ receptors (blue dashed lines), and their respective L9’S mutants (red dashed lines): 

αmβδ (A), αβmδ (B) and αβδm (C). For α,β,δ,δm, the GABA concentration-response curves of 

7/10 cells exhibited two discernible components. The inset is an example GABA concentration-

response curve from a cell exhibiting two such components. The total amount of cDNA used for 

each transfection was 4 µg, and equal amounts of WT, and their respective L9’S mutant cDNA 

were used. Data points are shown as mean ± SEM. 
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Table 3.3 –Peak GABA concentration response curve parameters for αmαβδ, αββmδ and αβδδm-expressing cells 

 

 

GABA concentration response curve Hill equation best-fit parameters derived from curve fitting data from 6 - 10 HEK293 cells expressing α,αm,β,δ, α,β,βm,δ or 

α,β,δ,δm.  Individual cells expressing, α,α,m,β,δ; α,β,βm,δ; or α,β,δ,δm were fit using a two- or three-component Hill equation. The relative component proportions 

(%), and GABA EC50 values are expressed as mean ± SEM. Cells were transfected with a cDNA transfection ratio of 10:1:10. 

 First component Second component Third component  

 

Receptor subunits 

 

EC50 (μM) 

 

Proportion (%) 

 

EC50 (μM) 

 

Proportion (%) 

 

EC50 (μM) 

 

Proportion (%) 

 

nH 

α,αm,β,δ 0.02 ± 0.005 34.0 ± 3.3 0.3  ± 0.03 48.7 ± 5.6 5.7  ± 0.9 17.5  ± 2.7 1.6  ± 0.4 

α,β,βm,δ 0.03 ± 0.01 24.7 ± 3.5 0.3  ± 0.1 43.9 ± 3.5 4.7  ± 0.7 31.5  ± 2.6 2.1  ± 0.3 

α,β,δ,δm 0.21 ± 0.01 75.8  ± 3.0 
- - 

2.1  ± 0.5 24.2  ± 2.8 0.9  ± 0.1 



95 
 

Taking a similar approach for α4β3δ receptors, we generated GABA 

concentration-response curves for cells co-transfected with β, δ and equal 

amounts of α and αm cDNAs. Note that the overall αβδ cDNA transfection ratio 

was 10:1:10. The GABA concentration-response curves for α,αm,β,δ-expressing 

cells exhibited three discernible components, which were described by the sum 

of three Hill equations (Fig. 3.8 A). The first and third components, accounted 

for 34.0 ± 3.3 % and 17.5 ± 2.7 % of the total receptor population, with GABA 

EC50 values of 0.02 ± 0.005 µM and 5.7 ± 0.9 µM, respectively (Table 3.3). 

These EC50 values are similar to those obtained for αmβδ (0.46 ± 0.11 µM) and 

αβδ (1.91 ± 0.47 µM) receptors, suggesting these two components in the 

α,αm,β,δ concentration-response curve (Fig. 3.8 A) are attributable to αmβδ and 

αβδ receptors. Moreover, the presence of an intermediary component with an 

EC50 of 0.3 ± 0.03 µM (48.7 ± 5.6 %) suggested the expression of a third 

receptor population, containing one WT and one mutant subunit (i.e. ααmβδ or 

αmαβδ). Similar to α,αm,β,δ expressing cells, the GABA concentration-response 

curves of α,β,βm,δ expressing cells revealed three discernible components (Fig. 

3.8 B). The first component (24.7 ± 3.5 %) had an EC50 of 0.03 ± 0.01 µM 

(Table 3.3), probably corresponding to the αβmδ receptor population. 

Approximately 31.5 ± 2.6 % of receptors exhibited an EC50 of 4.7 ± 0.7 µM, 

attributable to αβδ receptors. Again, the appearance of an intermediary 

component with an EC50 of 0.3 ± 0.1 µM (43.9 ± 3.5 %) was indicative of a third 

receptor population containing both β subtypes (i.e.  β and βm). 

By contrast, the mean GABA concentration-response curve for α,β,δ,δm 

receptors did not exhibit obvious multiple components (Fig. 3.8 C). However, 

detailed analysis of individual concentration-response curves revealed that for 

most cells sampled (7/10), two components were discerned (Fig. 3.8 C inset). 

For those cells exhibiting two components, the majority of receptors (75.8 ± 3.0 

%) exhibited a GABA EC50 of 0.21 ± 0.01 μM, while 24.2 ± 2.8 % of receptors 

exhibited an EC50 of 2.1 ± 0.5 μM. The GABA sensitivities of these two 

components are similar to those observed for αβδm (0.46 ± 0.11 µM; Table 3.2) 

and αβδ receptors (1.91 ± 0.47 µM; Table 3.2) respectively. Although the 

remaining cells (3/10) did not overtly display multiple components, their GABA 

sensitivities were intermediary to those of αβδ and αβδm expressing cells. The 
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absence of a third component suggested that α,β,δ,δm expressing cells exhibit 

only two receptor populations, likely αβδ and αβδm. This suggests that each αβδ 

receptor complex likely contains only one δ subunit. 

Collectively, these data demonstrate that α4β3δ receptors most likely possess a 

stoichiometry of two α, two β and one δ subunit. 
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3.3. Discussion 

Previous studies have demonstrated that binary αβ subunits can efficiently co-

assemble to form functional receptors in recombinant expression systems 

(Mortensen et al., 2011; Karim et al., 2013). Therefore, in this body of work, we 

compared the functional and pharmacological profiles of α1βγ2L, α5βγ2L, α4βδ 

and α6βδ receptors, with their respective αβ counterparts, to verify that γ2 and 

δ subunits were efficiently incorporated into functional heteropentamers in the 

HEK293 expression system.  

Additionally, whilst the stoichiometry of synaptic α1β2γ2 subunit-containing 

GABAA receptors has consensus support for 2α: 2β: 1γ (Backus et al., 1993; 

Chang et al., 1996; Tretter et al., 1997), the stoichiometry of extrasynaptic δ-

containing receptors remains unclear, and potentially variable depending on the 

experimental conditions (Baur et al., 2009; Kaur et al., 2009; Wagoner and 

Czajkowski, 2010). We therefore probed the stoichiometry of recombinant 

α4β3δ receptors by analysing the electrophysiological and pharmacological 

consequences of inserting a well characterised L9’S reporter mutation into the 

M2 regions of α4, β3, and δ subunits.  

 

3.3.1. γ2 subunits are efficiently incorporated into recombinant GABAA 

receptors 

The positive allosteric modulator, diazepam was used to pharmacologically 

confirm γ2 expression, since receptors lacking the γ2 subunit (i.e. binary αβ 

constructs) are insensitive to the potentiating actions of diazepam (Pritchett et 

al., 1989). Indeed, diazepam significantly potentiated (by approximately 2.5 - 

fold) the EC15 GABA responses of α1βγ2L and α5βγ2L receptors, but not α1β3 

or α5β3 receptors. Although we cannot exclude the possibility that some αβ-

heteromers were also present in α1β3γ2L- and α1β3γ2L-expressing cells, these 
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data indicate that in our recombinant expression system, γ2L was efficiently 

expressed and co-assembled into functional receptors.  

 

3.3.2. The δ subunit is efficiently incorporated into recombinant GABAA 

receptors 

To promote δ-expression in our HEK293 cells, we initially used a cDNA 

transfection ratio of 10α: 1β: 10δ, since this transfection ratio has previously 

conferred efficient δ-expression in oocytes (Stórustovu and Ebert, 2006; 

Hoestgaard-Jensen et al., 2010). However, at least for α4β3δ receptors, varying 

the cDNA transfection ratio by 10 - fold (i.e. 1:1:1, 1:1:10 or 10:1:10) had no 

significant effect on receptor function, or subunit stoichiometry, suggesting that 

this was not crucial to ensuring efficient δ-expression. 

Very few groups have compared the pharmacological differences between α6β 

and α6βδ receptors, largely due to the poor functional expression of α6β 

receptors in recombinant systems (Saxena and Macdonald, 1994; Stórustovu 

and Ebert, 2006). In our HEK293 expression system, both α6β2δ- and α6β2-

expressing cells displayed GABA activated currents, although the latter 

displayed significantly smaller maximal GABA currents. The reduced maximal 

GABA current observed for recombinant α6β2 receptors suggests that either 

binary α6β2 constructs co-assemble fairly inefficiently in recombinant 

expression systems (as reported by Saxena and Macdonald, 1994; Stórustovu 

and Ebert, 2006), or that they display a lower single channel conductance, as 

has been demonstrated for α1β receptors (Verdoorn et al., 1990; Mortensen 

and Smart, 2006). Nonetheless, by generating GABA-concentration-response 

curves for α6β2- and α6β2δ-expressing cells, we found that the GABA 

sensitivity for α6β2δ receptors (EC50: 0.3 ± 0.03) was significantly higher than 

that observed for α6β2 receptors (EC50: 0.6 ± 0.04). This increased GABA 

sensitivity, coupled with the higher maximum GABA current observed for α6β2δ 

receptors indicates that δ is expressed, and co-assembled into functional α6β2δ 

receptors.  
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Notably, α6β2δ receptors exhibited the highest GABA potency compared to the 

other synaptic- and extrasynaptic-GABAA subtypes investigated in this chapter 

(see Table 3.1). This intrinsic property makes them ideally suited to mediate 

tonic currents, as they can respond to low ambient GABA levels.  

Similarly both α4β2δ and α4β3δ receptors demonstrated high GABA potencies 

(0.7 ± 0.1 µM and 1.9 ± 0.5 µM respectively; Table 3.1). We confirmed that 

α4βδ-expressing cells did not contain a large population of αβ receptors, by 

using the subtype selective inhibitor, Zn2+ (Smart et al., 1991; Nagaya and 

Macdonald, 2001; Hosie et al., 2003). In our study, a subtype selective 

concentration of Zn2+ (1 µM; Krishek et al., 1998; Hosie et al., 2003; Stórustovu 

and Ebert, 2006) significantly inhibited the GABA EC50 responses of α4β 

receptors (by approximately 80 %), but produced relatively smaller inhibitions of 

the EC50 GABA responses for α4β3δ receptors, indicating again, that the δ 

subunit was efficiently incorporated into functional α4βδ heteropentamers. 

For α4β3δ receptors, we found that altering the cDNA transfection ratio had no 

significant effect on GABA sensitivity, or the level of inhibition produced by 1 µM 

Zn2+. The functional consequences of altering α:β:δ transfection ratios has 

previously been assessed on recombinant α4β3δ receptors expressed in 

oocytes, with conflicting outcomes. While one study demonstrated that 

increasing relative amounts of δ cRNA increased the GABA EC50 and 

decreased the Hill slopes for α4β3δ GABA concentration-response curves (You 

and Dunn, 2007), another study reported no significant effect of altering cRNA 

transfection ratio GABA, or Zn2+ sensitivity (Borghese and Harris, 2007). Since 

both studies were performed using the same oocyte expression system, the 

reasons for these discrepancies remain unclear. Nonetheless, by using a 

HEK293 expression system, no significant effect of altering cDNA transfection 

ratio was apparent on α4β3δ receptor function. 
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3.3.3. α4β3δ receptors display a subunit stoichiometry of 2α: 2β: 1δ 

The subunit composition of GABAA receptors is an important determinant of 

their functional properties, as demonstrated by the distinct Zn2+ sensitivities of 

αβ and αβδ receptors. Given that many orthosteric, and allosteric, binding sites 

on GABAA receptors are interfacial (Sieghart et al., 2012), it is important to 

understand the preferred subunit stoichiometries of such receptors, since this 

will critically define the nature of these interfaces, and thus the GABA receptor’s 

response to ligand binding.  

We probed α4β3δ stoichiometry, by introducing a well-characterized 9’ leucine-

to-serine substitution into the M2 domains of α4, β3 and δ subunits. Each polar 

substitution increased the GABA sensitivity of mutant subunit-containing 

receptors (by approximately 4 - fold), in relative proportion with the number of 

mutant subunits assembled in the receptor. This, in conjunction with data 

derived from cells co-expressing mutant and respective WT subunits, revealed 

a relatively consistent subunit stoichiometry by these methods, of 2α, 2β and 

1δ. Moreover, our data indicate that, at least for three commonly used α:β:δ 

transfection ratios 1:1:1, 1:1:10 or 10:1:10 (Borghese et al., 2006; Stórustovu 

and Ebert, 2006; Barrera et al., 2008; Hoestgaard-Jensen et al., 2010), the 

number of incorporated δ subunits seemingly remains fixed at one. 

Our deductions regarding the stoichiometry of recombinant α4β3δ receptors are 

predicated on the assumption that the L9’S mutations do not perturb the 

‘normal’ subunit stoichiometry of these receptors. Since N-terminal motifs are 

key determinants of GABAA receptor subunit assembly (Connolly et al., 1996; 

Taylor et al., 1999; Klausberger et al., 2001), it seems unlikely that a point 

mutation within the ion channel-lining, M2 region would alter receptor subunit 

stoichiometry. However, it is intriguing that for most α,β,δ,δm expressing cells, 

the component attributable to αβδm receptors was larger than that for αβδ 

receptors (~ 75 and 24 %, respectively; see Table 3.3), suggesting that δm 

might be more efficiently incorporated into functional receptors than δ.  
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Given the M2 location of the point mutation, a more likely explanation for the 

disproportionate percentage components is that the L9’S mutations may affect 

the gating kinetics of the receptor. Indeed, for nACh receptors (Filatov and 

White, 1995) and α1β3γ2L GABAA receptors (Bianchi and Macdonald, 2001), it 

has been demonstrated that 9’ mutant containing receptors can exhibit altered 

single channel conductances and/or open probabilities. This could cause the 

relative proportions attributable to αβδ and αβδm to vary (Chang et al., 1996). 

Nevertheless, since our conclusions rely on the number of observable 

components in the concentration-response curves and not on the relative 

contribution of each individual component, our conclusion that α4β3δ receptors 

contain only one δ subunit still remains valid. 

To date, only two studies have investigated the subunit stoichiometry of 

unconstrained recombinant α4β2/3δ receptors. While a stoichiometry of 2α: 2β: 

1δ has been demonstrated for recombinant α4β3δ receptors expressed in tsA 

cells, using atomic force microscopy (Barrera et al., 2008), the 

immunopurification of cell surface α4β2δ receptors from HEK293 cells has 

indicated that more than one δ can exist within the receptor complex (Wagoner 

and Czajkowski, 2010). Moreover, in the latter study, this increased δ 

incorporation coincided with a concomitant decrease in β2 incorporation, and 

was dependent on increasing the relative abundance of δ during transfection.  

Although the reasons for the discrepancies between our observations, and 

those reported by Wagoner and Czajkowski (2010) remain unclear, one 

explanation might be the use of different β isoforms, since β2 and β3 subunits 

have been demonstrated to have distinctive assembly properties (Taylor et al., 

1999). This might have important implications for their oligomerization with δ 

subunits. 
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3.3.4. The importance of subunit positioning 

Whilst we demonstrate a stoichiometry of 2α: 2β: 1δ for α4β3δ receptors, our 

data gives little indication of subunit arrangement within the pentamer, which 

could be an important determinant of αβδ receptor function (Baur et al., 2009; 

Kaur et al., 2009). The subunit positional arrangement of α1βγ2 receptors is 

widely accepted to be βαβαγ (anticlockwise; Baumann et al., 2001; Baur et al., 

2006; Smart and Paoletti, 2012). Given the conflicting evidence regarding the 

number of incorporated δ subunits, it is unsurprising that the subunit 

arrangement of recombinant αβδ also remains undefined. For α4β3δ receptors 

with a stoichiometry of 2α: 2β: 1δ, structural microscopic analysis has revealed 

a predominant βαβαδ anticlockwise arrangement (Barrera et al., 2008), 

suggesting δ can assume the position of the γ2 subunit in an αβγ receptor. 

However, in the same study, a minority of receptors (~ 21 %) were found to 

have an alternative βαβδα subunit arrangement, indicating more than one 

arrangement may be possible (Barrera et al., 2008). Indeed it has been recently 

demonstrated that δ can assume multiple positions when constrained within 

αβδ concatamers (Baur et al., 2009; Kaur et al., 2009). Intriguingly, 

concatameric α4β2δ receptors with the βαβαδ anticlockwise conformation (Shu 

et al., 2012) form functional receptors with similar pharmacological profiles to 

unconstrained recombinant α4β2δ receptors (Stórustovu and Ebert, 2006), 

whereas α1β3δ receptors formed from the alternative βαβδα anticlockwise 

arrangement, exhibit similar GABA and Zn2+ sensitivities to non-concatenated 

receptors (Kaur et al., 2009). Moreover, concatameric α1β3δ receptors with an 

βαβαδ (anticlockwise) subunit arrangement appear to be ~ 26 - fold less 

sensitive to GABA than receptors with the βαβδα (anticlockwise) subunit 

arrangement (Kaur et al., 2009), demonstrating the functional importance of 

subunit location within a receptor pentamer. 

The potentially variable subunit arrangements indicated for recombinant α4β2δ 

(Shu et al., 2012), α4β3δ (Barrera et al., 2008) and α1β3δ (Kaur et al., 2009) 

receptors may reflect different co-assembly properties of δ, with different α and 

β subunits, or differences in the type of expression system used (mammalian 

cell lines versus oocytes). Overall, these findings indicate that the subunit 
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arrangement of recombinant, and indeed native δ containing receptors, is still 

open to question. 
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3.4. Conclusion 

1. Diazepam selectively potentiates the GABA responses of α1β3γ2L and 

α5β3γ2L receptors, indicating that the γ2L subunit is efficiently co-

assembled into functional receptors overexpressed in HEK293 cells. 

 

 

2. The δ subunit is efficiently incorporated into functional α4β2/3δ and 

α6β2δ receptors overexpressed in HEK293 cells, assessed by receptor 

sensitivities to GABA and Zn2+. 

 

 

3. The subunit stoichiometry of heterologously-expressed α4β3δ receptors 

is 2α: 2β: 1δ. 

 

  

4. Varying the cDNA transfection ratio by 10 - fold has no significant effect 

on the function (GABA and Zn2+ sensitivity) or stoichiometry of α4β3δ 

receptors. 
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Chapter 4: Functional effects of 4-PIOL on synaptic- and extrasynaptic-
type, recombinant GABAA receptors 

 

4.1. Introduction 

As discussed in Section 1.3, elevated GABAA-receptor mediated tonic currents 

are observed in several neurological disorders, including absence epilepsy, 

stroke, cognitive disorders and Alzheimer’s disease (Brickley and Mody, 2012). 

Therefore, pharmacologically reducing tonic inhibition may offer a 

therapeutically useful approach for treating such disorders (Dawson et al., 2006; 

Clarkson et al., 2010; Errington et al., 2011; Martínez-Cué et al., 2013).  

Unfortunately, as discussed in Section 1.2.3, there is a significant lack of 

GABAA receptor antagonists that can selectively reduce δ-mediated tonic 

currents, without affecting other γ2-mediated phasic currents. As an alternative 

to using GABAA receptor antagonists, it has previously been suggested that low 

efficacy partial agonists may be therapeutically useful, largely due to their 

functionally competitive antagonist profile when compared to full agonists, and 

reduced propensity to induce convulsions, or unwanted side effects 

(Krogsgaard-Larsen et al., 2002). In this chapter, the GABAA receptor subtype 

selectivity of the weak partial agonist, 4-PIOL, was studied. 4-PIOL was initially 

developed as a non-ring fused THIP analogue (Fig. 4.1), which acted as a weak 

GABAA receptor agonist on cat spinal neurons, as assessed using extracellular 

electrophysiological recordings (Byberg et al., 1987). Subsequently, whole-cell 

patch clamp electrophysiology demonstrated that 4-PIOL acted as a weak 

GABAA receptor agonist on cultured hippocampal neurons, cerebral cortical 

neurons, cerebellar granule cells and on recombinant α1β2γ2 receptors (Falch 

et al., 1990; Kristiansen et al., 1991; Frølund et al., 1995; Hansen et al., 2001; 

Mortensen et al., 2002, 2004). However, the low agonist efficacy (~ 1 – 2 % of 

the maximum GABA response) and low agonist potency (EC50: ~ 100 – 300 μM) 

of 4-PIOL at recombinant and native GABAA receptors, resulted in 4-PIOL 
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exhibiting a dominant antagonist profile (Kristiansen et al., 1991; Frølund et al., 

1995; Hansen et al., 2001; Ebert et al., 2002; Mortensen et al., 2002, 2004). 

Therefore, we decided to explore this antagonist profile further, and assess 

whether 4-PIOL might be capable of selectively antagonising tonic currents 

without affecting phasic currents.  

 

 

Figure 4.1 – Molecular structures of GABA, THIP and 4-PIOL 

 

4-PIOL was chosen, based on a kinetic model that was devised using our 

knowledge about the biophysical parameters of GABAA receptors (Mortensen et 

al., 2002, 2010). Unfortunately, no kinetic data were available for the interaction 

of 4-PIOL with extrasynaptic-type δ-containing receptors. Therefore, we 

simulated how α1β3γ2 receptors would behave when activated by GABA alone, 

and when GABA was co-applied with 10, 100 or 1000 µM 4-PIOL (Fig. 4.2). As 

expected, 4-PIOL was predicted to displace the GABA concentration-response 

curve to the right in a concentration-dependent manner. Importantly for this 

synaptic GABAA receptor subtype, although 4-PIOL (1000 µM) was predicted to 

significantly inhibit the GABA responses to extrasynaptic concentrations of 

GABA (100 nM - 1 µM), we further predicted that there would be no significant 

inhibition of GABA responses to synaptic concentrations of GABA (> 1 mM; Fig. 

4.2).  

To validate this model experimentally, the functional effects of 4-PIOL were 

studied on recombinant α1β3γ2 receptors expressed in HEK293 cells. In 

addition, the agonist and antagonist profile of 4-PIOL was also studied on 

recombinant α5β3γ2, α4β2δ and α6β2δ receptors, since these represent the 

major extrasynaptic GABAA receptor isoforms expressed in hippocampal 

GABA THIP 4-PIOL
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neurons, thalamic relay neurons and cerebellar granule cells (Laurie et al., 

1992a; Wisden et al., 1992; Pirker et al., 2000; Caraiscos et al., 2004; Cope et 

al., 2005; Glykys et al., 2008; Hörtnagl et al., 2013). 

 

 

Figure 4.2 – Theoretical agonist and antagonist profiles of 4-PIOL at 
α1β3γ2 receptors. 

The theoretical GABA concentration-response curves, in the absence (black), or presence, of 

10 (red), 100 (blue), or 1000 μM (green) 4-PIOL were generated using a receptor model, and 

the biophysical parameters previously obtained for α1β3γ2 receptors (Mortensen et al., 2004, 

2010). The purple boxes (dashed lines) represent GABA concentrations proposed to exist at 

extrasynaptic (100 nM – 1 μM) and synaptic sites (> 1 mM). 
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4.2. Results 

4.2.1. 4-PIOL is a weak partial agonist at recombinant γ2-containing receptors 

Given the previously described weak partial agonist profile of 4-PIOL 

(Kristiansen et al., 1991; Rabe et al., 2000; Hansen et al., 2001; Ebert et al., 

2002; Mortensen et al., 2002, 2004), its agonist activity  was further investigated 

using recombinant α1β3γ2L, α5β3γ2L, α4β2δ and α6β2δ receptors expressed 

in HEK293 cells. 

Note that for some experiments, the short splice variant of the γ2 subunit (γ2S) 

was used, which differs from the γ2L variant (used in Chapter 3), by lacking an 

eight amino acid cassette in the M3 - M4 intracellular loop. Although the 

functional differences between γ2S and γ2L were not specifically probed here, 

previous data from our lab indicates both isoforms exhibit similar diazepam and 

GABA sensitivities, when expressed in recombinant expression systems 

(Mortensen et al., 2011; Gielen et al., 2012). 

For α1β3γ2L-expressing cells, whole-cell currents were measured in response 

to increasing concentrations of 4-PIOL (0.1 – 3000 µM; Fig. 4.3 A). Since GABA 

is considered a full agonist (i.e. has a near maximum efficacy) at γ2-containing 

receptors (Ebert et al., 1994; Mortensen et al., 2004), a saturating concentration 

of GABA (1 mM) was applied to each cell, to assess the macroscopic efficacy of 

4-PIOL, relative to GABA. Notably, 4-PIOL elicited significantly smaller whole-

cell currents in α1β3γ2L-expressing cells (Fig. 4.3 B inset) than GABA. By 

normalising the peak current elicited by 3 mM 4-PIOL (i.e. a saturating 4-PIOL 

concentration) to the peak current produced by 1 mM GABA, the macroscopic 

efficacy of 4-PIOL relative to GABA was estimated to be 2.2 ± 0.2 % for 

α1β3γ2L receptors (Fig. 4.3 B; Fig. 4.3 C; Table 4.1). 

The normalised concentration-response data for each cell was fitted using the 

Hill equation (Equation 2.1) to determine mean values for 4-PIOL potency 

(EC50: the 4-PIOL concentration producing 50 % of the maximal 4-PIOL 
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response) and the Hill coefficient (nH; Table 4.2). The mean 4-PIOL EC50 

determined for α1β3γ2L receptors was 185.9 ± 60.5 µM, the large error 

occurring because of the small nature of 4-PIOL currents (Fig. 4.3 C).  
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Figure 4.3 – Peak 4-PIOL and GABA concentration-response curves for 

recombinant α1β3γ2L receptors. 

A. Examples of 4-PIOL-gated whole-cell currents generated for α1β3γ2L receptors. Traces 

represent the peak currents elicited by increasing concentrations of 4-PIOL (0.1 - 3000 µM). B. 

Average peak GABA (black) and 4-PIOL (red) concentration-response curves constructed for 

α1β3γ2L receptors (n = 5; mean ± SEM). The normalised data from each cell was fitted with a 

Hill equation (continuous lines), using a least-squares method, and the mean EC50s calculated 

from these fits were 8.7 ± 2.3 µM and 185.9 ± 60.5 µM for GABA and 4-PIOL respectively. The 

continuous red and black lines represent Hill fits to the mean concentration-response data. Note 

that currents generated by 4-PIOL were normalised to the peak current elicited by a saturating 

concentration of GABA (1 mM) for each cell. The inset shows example traces of whole-cell 

currents elicited by 1 mM GABA and 3 mM 4-PIOL, both recorded from the same α1β3γ2L-

expressing cell. C. An expanded version of the 4-PIOL concentration-response curve from 

panel B. 
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Similarly, 4-PIOL elicited agonist-induced currents at α5β3γ2L-expressing cells. 

Concentration-response curves were generated, as before, by applying 

increasing concentrations of 4-PIOL (0.1 – 3000 µM; Fig. 4.4) to α5β3γ2L-

expressing cells. By fitting the 4-PIOL concentration-response data for each cell 

with the Hill equation (Equation 2.1), and averaging the resulting parameters 

(EC50 and nH), the mean 4-PIOL potency for α5β3γ2L receptors was determined 

to be 90.2 ± 16.8 µM (Fig. 4.4; Table 4.1). The peak current produced by 3 mM 

4-PIOL (a saturating concentration of 4-PIOL; Fig. 4.4) was normalised to the 

peak current elicited by a saturating 1 mM GABA concentration, revealing that 

the maximum 4-PIOL current for α5β3γ2L receptors was 8.3 % ± 2.2 % of the 

maximal GABA current (Table 4.1).  

 

Figure 4.4 – Peak 4-PIOL and GABA concentration-response curves for 

recombinant α5β3γ2L receptors. 

Average peak GABA (black) and 4-PIOL (red) concentration-response curves constructed for 

α5β3γ2L receptors. The normalised data from each cell (n = 4 - 5) were fitted with a Hill 

equation, using a least-squares method, and the mean EC50s calculated from these fits was 

11.9 ± 3.6 µM and 90.2 ± 16.8 µM for GABA and 4-PIOL, respectively. The continuous red and 

black curves represent Hill fits to the mean concentration-response data. Note that currents 

generated by 4-PIOL were normalised to the peak current elicited by a saturating concentration 

of GABA (1 mM) for each cell, revealing that the maximum 4-PIOL response was 8.3  ± 2.2 % of 

the maximum GABA response. Data are expressed as mean ± SEM. The inset is an expanded 

version of the 4-PIOL concentration-response curve. 
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Table 4.1 – 4-PIOL concentration-response curve parameters for 

recombinant α1β3γ2L and α5β3γ2L receptors. 

Subunit combination  4-PIOL EC50 (μM)  nH  4-PIOL efficacy 
(% IMax,GABA)  

α1β3γ2L  185.9 ± 60.5  1.4 ± 0.3  2.2 ± 0.2  
α5β3γ2L  90.2 ± 16.8  1.0 ± 0.2  8.3 ± 2.2  

4-PIOL concentration-response data from 4 – 5 cells expressing α1β3γ2L and α5β3γ2L 

receptors were normalised to the current elicited by 1 mM GABA (IMax,GABA), and fitted using the 

Hill equation (Equation 2.1). Mean (± sem) values for 4-PIOL potency (4-PIOL EC50), nH, and 

macroscopic efficacy of 4-PIOL (expressed as a percentage of IMax,GABA) are shown. 

 

Intriguingly, 4-PIOL exhibited no discernible agonist activity at δ-containing 

receptors, when applied alone. For α4β2δ receptors, brief (~ 4 s) applications of 

4-PIOL, at concentrations up to 1 mM, revealed no significant change in holding 

current (Fig. 4.5). In addition, using low to high 4-PIOL concentrations (10 or 

100 µM) on recombinant α6β2δ receptors failed to produce any discernible 

agonist activity at this receptor isoform. These findings concur with a previous 

study showing that 4-PIOL exhibited no resolvable agonist activity at 

recombinant α4β3δ receptors expressed in Xenopus oocytes (Stórustovu and 

Ebert, 2006). However, in Chapter 6 (Fig. 6.6), we will demonstrate that at least 

for α4β2δ receptors expressed in HEK293 cells, co-application of 10 µM 4-PIOL 

with the δ-selective positive allosteric modulator, DS2 (Wafford et al., 2009; 

Jensen et al., 2013), unveils a 4-PIOL-gated agonist current, indicating that at 

least for α4β2δ receptors, 4-PIOL is capable of activating the receptor. 
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Figure 4.5 – Peak 4-PIOL concentration-response curves for recombinant 

α4β2δ receptors.  

Examples of whole-cell currents elicited by GABA (1000 µM) or 4-PIOL (µM: 10, 100 or 1000) 

applied to α4β2δ-expressing HEK293 cells. The black and red horizontal bars indicate the 

duration of GABA and 4-PIOL applications, respectively.  

 

4.2.2. 4-PIOL acts as a functional antagonist at recombinant α1β3γ2 receptors 

Since synaptic receptors are activated by transiently high concentrations of 

GABA (in the low mM range; Maconochie et al., 1994; Jones and Westbrook, 

1995), using HEK293 cells, the effects of 4-PIOL were evaluated on the peak 

GABA currents of recombinant α1β2γ2 receptors. 

Our theoretical model, based on the kinetic profile of α1β3γ2 receptors (Fig. 

4.2), predicts that 4-PIOL will display a dominant antagonist profile, in accord 

with previous reports (Kristiansen et al., 1991; Mortensen et al., 2002). 

Therefore, we evaluated the antagonist profile of 4-PIOL at recombinant 

α1β3γ2S receptors. Peak GABA concentration-response curves were 

constructed for α1β3γS receptors, in the absence, and presence, of 10, 100 and 

1000 µM 4-PIOL (Fig. 4.6). 4-PIOL was pre-applied prior to GABA and 4-PIOL 

co-application (Fig. 4.6 A), to identify and include any 4-PIOL agonist activity in 

the analysis. More importantly, this ensured that 4-PIOL occupied the 

orthosteric binding site prior to GABA application. If 4-PIOL has a slower 

association rate than GABA, an inaccurately high current to GABA would be 

observed without a pre-application. Note that the peak response to each 

concentration of GABA was measured in relation to the holding current prior to 

4-PIOL pre-application, and each data set was normalized to the maximum 
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response achieved by a saturating concentration of GABA, in the absence of 4-

PIOL.  

As observed for recombinant α1β3γ2L receptors (Fig. 4.3), pre-application of 4-

PIOL to α1β3γ2S-expressing cells revealed a small agonist response, 

particularly when 100 µM or 1 mM 4-PIOL was applied (Fig. 4.6 A). This agonist 

activity manifested itself on the concentration-response curves, as an elevated 

minimum response (Fig. 4.6 B). To account for this elevated minimum, each 

data set was fitted using a modified Hill equation (Equation 2.2), which not only 

produced estimates of GABA potency (GABA EC50) and nH, but also the 

minimum response values reflecting the macroscopic efficacy of 4-PIOL. While 

10 µM 4-PIOL did not significantly elevate the curve minimum (Fig. 4.6 B), 100 

and 1000 µM 4-PIOL produced agonist currents that were 5.5 ± 3.2% and 6.8 ± 

1.3% of the maximum GABA response (Table 4.2). 

All three concentrations of 4-PIOL tested, (10, 100 and 1000 µM) induced a 

rightward shift in the GABA concentration-response curve (Fig. 4.6 B). The 

GABA EC50 value for α1β3γ2S receptors was increased from 4.5 ± 1.9 µM in 

the absence of 4-PIOL, to 9.4 ± 3.4 µM, 15.4 ± 5.4 µM and 126.7 ± 55.6 µM in 

the presence of 10, 100 or 1000 µM 4-PIOL respectively (Table 4.2).  
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Figure 4.6 – 4-PIOL acts as an antagonist at α1β3γ2S receptors.  

A. Examples of whole-cell currents produced by recombinant α1β3γ2S receptors expressed in 

HEK293 cells. The horizontal bars indicate the duration of GABA (black) and 1 mM 4-PIOL 

(green) application. Note the inward current generated by 1 mM 4-PIOL during the pre-

application step. B. Mean peak GABA concentration-response curves constructed in the 

absence (black), or presence of 10 μM (red), 100 μM (blue) or 1000 μM (green) 4-PIOL (n = 4 – 

13; mean ± SEM). The purple boxes (dashed lines) represent concentrations of GABA proposed 

to exist at extrasynaptic (100 nM -1 µM) and synaptic sites (>1mM).  
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Table 4.2 – Whole-cell current parameters for GABA in the absence and 

presence of 4-PIOL, at α1β3γ2S receptors. 

 

Curve Minimum  
(% IMax,GABA) 

GABA EC50  
(μM) nH 

GABA 0.4 ± 0.9 4.5 ± 1.9 1.6 ± 0.1 
+ 10 μM 4 PIOL -0.3 ± 0.5 9.4 ± 3.4* 1.3 ± 0.2 

+ 100 μM 4 PIOL 5.5 ± 3.2 15.4 ± 5.4* 1.2 ± 0.1 
+ 1000 μM 4 PIOL 6.8 ± 1.3 126.7 ± 55.6*** 1.1 ± 0.1 

For α1β3γ2S receptors, the normalised peak GABA concentration-response curves, in the 

absence or presence of 4-PIOL, were fitted using a modified Hill equation, in which the curve 

minimum value was a variable (Equation 2.2). Tabulated are the GABA potencies (EC50), Hill 

slopes (nH) and curve minima, with the latter being expressed as a percentage of the peak 

current elicited by 1 mM GABA (IMax,GABA). All parameters are expressed as mean ± SEM. 

Statistical analysis was performed relative to the control GABA concentration-response data. *P 

< 0.05 and ***P < 0.001. 

 

Our theoretical model predicted that 10 and 100 µM 4-PIOL would produce only 

a modest (< 5 %) inhibition of extrasynaptic responses to ambient 

concentrations of GABA (100 nM - 1 µM), while a higher concentration of 4-

PIOL (1 mM) would be required to more significantly inhibit α1β3γ2 receptors 

(by ~ 20 %, assuming an extracellular GABA concentration of 1 µM; see Fig. 

4.2). However, according to our experimental data (Fig. 4.6 B), 4-PIOL was 

more potent at displacing the GABA concentration-response curve than 

predicted. Just a low concentration of 10 µM 4-PIOL was sufficient to halve the 

normalised response to 1 µM GABA from 33.0 ± 5.5 % (in the absence of 4-

PIOL) to 14.5 ± 4.8 % (Fig. 4.6 B). More crucially for this synaptic receptor 

subtype, neither 10, nor 100, µM 4-PIOL produced any significant inhibition of 

peak responses to higher, synaptic concentrations of GABA (> 1 mM; Fig. 4.6 

B), indicating that these concentrations might be capable of inhibiting responses 

to extrasynaptic concentrations of GABA, without depressing synaptic GABA 

currents. However, since 100 µM 4-PIOL (but not 10 µM 4-PIOL) produced a 

small (5.5 ± 3.2 %), but significantly greater enhancement of whole-cell currents 

at lower ambient GABA concentrations (i.e. when GABA levels were lower than 

~ 100 nM; Fig. 4.6 B), these data indicate that 100 μM 4-PIOL may, 
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undesirably, enhance tonic currents in neurons, if a significant population of 

α1βγ2 receptors exist extrasynaptically. 

Given the minimal efficacy displayed by 10 µM 4-PIOL at α1βγ2S receptors, 

and its potential to not inhibit synaptic currents in neurons, only the effects of 10 

μM 4-PIOL were explored on steady-state GABA responses for extrasynaptic-

type recombinant α4β2δ, α6β2δ and α5β3γ2L receptors.  

 

4.2.3. 4-PIOL reduces GABA potency at recombinant α4β2δ receptors 

In contrast to the transiently high GABA concentrations experienced by synaptic 

GABAA receptors, extrasynaptic receptors are continuously exposed to low 

ambient concentrations of GABA, ranging from nanomolar to low micromolar 

(Farrant and Nusser, 2005; Glykys and Mody, 2007). Crucially recent evidence 

suggests that even these low concentrations of GABA can induce significant 

levels of desensitisation in δ-containing receptors (Feng et al., 2009; Mortensen 

et al., 2010; Bright et al., 2011; Houston et al., 2012; McGee et al., 2013), which 

influences their modulation by agents such as the ‘super-agonist’, THIP 

(Houston et al., 2012), and the open channel blocker, penicillin (Feng et al., 

2009). Therefore, when studying the effects of 4-PIOL on extrasynaptic-type 

α5β3γ2, α4β2δ and α6β2δ receptors, we specifically studied the effects of 4-

PIOL on the steady-state GABA currents of these receptor isoforms. In addition, 

the effects of 4-PIOL were also studied on the steady-state GABA currents of 

recombinant α1β3γ2L receptors, for reasons that will be discussed in Section 

4.2.6. 

To generate steady-state GABA concentration-response curves for α4β2δ-, 

α6β2δ-, α5β3γ2L- and α1β3γ2L-expressing cells, whole-cell currents were 

recorded in response to prolonged (> 30 s) applications of increasing 

concentrations of GABA (0.01 nM – 1000 µM; e.g. Fig. 4.7 A), either in the 

absence, or presence of pre- and co-applied 10 µM 4-PIOL. Steady-state 

current measurements were made relative to the holding current prior to 4-PIOL 
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pre-application, to include any 4-PIOL agonist activity in the analysis. For each 

cell, the steady-state GABA current elicited by each concentration of GABA 

(with or without 4-PIOL) was normalised to the steady-state current produced by 

1 mM GABA alone.  

The steady-state GABA concentration-response curve for α4β2δ receptors (Fig. 

4.7 B) was shifted significantly leftwards when compared to its respective peak 

current concentration-response curve (Fig. 4.7 B). Consequently, the GABA 

EC50 for steady-state currents was 4.5 - fold lower than that for peak responses 

(GABA EC50: 0.2 ± 0.02 μM and 0.7 ± 0.1 µM respectively; p = 0.0004; Table 

4.3 and Table 4.4). The increased steady-state GABA potencies meant that 

relative to the maximal steady-state response, much higher responses were 

achieved with lower concentrations of GABA. For instance, at α4β2δ receptors, 

1 μM GABA produced a near maximal steady-state response (95.2 ± 3.4 %; Fig. 

4.7 B), whereas this same concentration activated receptors to 61.4 ± 4.9 % of 

the maximum GABA peak response (Fig. 4.7 B). Notably, the steady-state 

GABA concentration-response curve for α4β2δ receptors (Fig. 4.7 B) appeared 

to be steeper than the peak GABA concentration-response curve. However, 

statistical analysis of the Hill slopes obtained for peak and steady-state GABA 

concentration-response curves (2.6 ± 0.3 and 1.3 ± 0.1 respectively), revealed 

this was not significant (p = 0.06).  

Pre- and co-application of 4-PIOL induced a rightward shift of the steady-state 

α4β2δ GABA concentration-response curve (Fig. 4.7 B). Accordingly, the GABA 

EC50 for steady-state currents was significantly increased from 0.2 ± 0.02 μM to 

0.3 ± 0.1 µM (Table 4.3; p = 0.03). More crucially, at GABA concentrations 

thought to underlie tonic inhibition, 4-PIOL could inhibit steady-state GABA 

responses by up to ~ 30 %, if for instance, the extracellular GABA concentration 

is 300 nM (Fig. 4.7 B).  
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Figure 4.7 – Steady-state GABA concentration-response data for 
recombinant α4β2δ receptors.  

A. Examples of whole-cell currents elicited by prolonged GABA applications applied to 

recombinant α4β2δ receptors expressed in HEK293 cells in the absence (left panel), or 

presence (right panel), of 10 µM 4-PIOL. The black and yellow horizontal bars indicate the 

duration of GABA (µM: 0.1 - blue; 1 - red; 10 - green; 1000 - black) and 4-PIOL application 

respectively. B. Mean steady-state GABA concentration-response curves in the absence (black 

continuous curve), or presence (red continuous curve) of 10 μM 4-PIOL (n = 4 – 8; mean ± 

SEM). Steady-state currents elicited by GABA (with or without 4-PIOL) were normalised to 

steady-state responses produced by 1000 μM GABA alone. The blue box (dashed lines) 

indicates GABA concentrations thought to underlie tonic inhibition (100 nM -1 µM). The Hill fit 

for the mean peak α4β2δ GABA concentration-response curve is also shown (black dashed 

curve). 
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4.2.4. 4-PIOL reduces steady-state GABA potency of recombinant α6β2δ 

receptors 

As for α4β2δ receptors, steady-state GABA concentration-response curves 

were generated for α6β2δ receptors. Whole-cell currents were recorded in 

response to prolonged applications of increasing concentrations of GABA (0.01 

– 1000 µM; Fig. 4.8 A), either in the absence, or presence of pre-applied 4-PIOL 

(10 µM). In the absence of 4-PIOL, the mean steady-state GABA concentration-

response curve (Fig. 4.8 B) was again shifted significantly leftwards when 

compared to its respective peak GABA concentration-response curve (Fig. 4.8 

B). Accordingly, steady-state currents mediated by α6β2δ receptors 

demonstrated a significantly higher sensitivity for GABA (EC50: 0.1 ± 0.01 µM; 

Table 4.3) when compared to peak responses (GABA EC50: 0.3 ± 0.03 µM; 

Table 4.4; p = 0.002). Intriguingly, at GABA concentrations thought to underlie 

tonic inhibition (100 nM – 1 µM), the steady-state current for α6β2δ receptors 

was found to be close to saturating (Fig. 4.8 B), indicating that steady-state 

currents of native α6β2δ receptors might also be close to saturating, if ambient 

GABA concentrations exceed 100 nM. 

Although 4-PIOL appeared to induce a rightward shift in the α6β2δ steady-state 

GABA concentration-response curve (Fig. 4.8 B), a comparison of their 

respective GABA EC50s revealed that this shift was not statistically significant (p 

= 0.19; Table 4.3).  
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Figure 4.8 – Steady-state GABA concentration-response data for 
recombinant α6β2δ receptors.  

A. Examples of whole-cell currents elicited by prolonged GABA applications applied to 

recombinant α6β2δ receptors expressed in HEK293 cells, in the presence of 10 µM 4-PIOL. 

The black and yellow horizontal bars indicate the duration of GABA (µM: 0.1 - blue; 1 - red; 10 - 

green; 1000 - black) and 4-PIOL applications respectively. B. Mean steady-state GABA 

concentration-response curves in the absence (black continuous curve), or presence (red 

continuous line) of 10 μM 4-PIOL (n = 4; mean ± SEM). Steady-state currents elicited by GABA 

(with or without 4-PIOL) were normalised to steady-state responses produced by 1000 μM 

GABA alone. The blue box (dashed lines) indicates GABA concentrations thought to underlie 

tonic inhibition (100 nM -1 µM). The Hill fit for the mean peak α6β2δ GABA concentration-

response curve is also shown (black dashed curve). 
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4.2.5. 4-PIOL (10 µM) has no effect on GABA potency at recombinant α5β3γ2L 

receptors 

Given the proposed synaptic and extrasynaptic locations of α5βγ2 receptors in 

hippocampal neurons (Fritschy et al., 1998; Brünig et al., 2002; Crestani et al., 

2002; Caraiscos et al., 2004; Serwanski et al., 2006), we assessed the effect of 

4-PIOL on both peak and steady-state currents of recombinant α5β3γ2L 

receptors.  

Whole-cell currents were recorded for α5β3γ2L receptors, in response to 

prolonged applications of increasing concentrations of GABA (0.1 nM – 1000 

µM; Fig. 4.9 A), either in the absence, or presence of pre-applied 4-PIOL (10 

µM). In the absence of 4-PIOL, the mean steady-state GABA concentration-

response curve was shifted significantly leftwards relative to the peak GABA 

concentration-response curve (Fig. 4.9 B). Consequently the GABA EC50 for 

steady-state responses was significantly lower (~ 6 - fold) than that obtained for 

peak responses (EC50s: 2.0 ± 0.4 and 11.9 ± 3.6 µM respectively; p = 0.02; 

Table 4.3 and Table 4.4). 

Pre-application of 10 µM 4-PIOL elicited an inward current (Fig. 4.8 A), 

consistent with the previously described agonist activity of 4-PIOL at this 

receptor subtype (Fig. 4.4). To include the agonist activity of 4-PIOL in the 

concentration-response analysis, both peak and steady-state current 

measurements were made relative to the holding current prior to 4-PIOL pre-

application. Moreover, the normalised concentration-response curves were 

fitted using a modified Hill equation (Equation 2.2), to account for the elevated 

curve minimum (Fig. 4.9 B).  

Curiously, pre-application (and co-application) of 10 µM 4-PIOL induced no 

significant displacement of either the peak, or steady-state, GABA 

concentration-response curves (Fig. 4.9 B). Accordingly, the GABA sensitivities 

of peak, and steady-state responses in the presence of 4-PIOL (GABA EC50: 

6.2 ± 1.1 µM and 1.3 ± 0.3 µM, respectively) were similar to their respective 

GABA sensitivities measured with GABA alone (11.9 ± 3.6 µM and 2.0 ± 0.4 µM 
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respectively; p = 0.19 and p = 0.21). In fact, pre-application of 4-PIOL elevated 

the curve minimum in the steady-state GABA concentration-response curve 

(Fig. 4.9 B), indicating that at low GABA concentrations (e.g. 100 nM GABA), 4-

PIOL may enhance tonic currents in native systems, where α5 subunit-

containing receptors are present.  

 

Figure 4.9 - Peak and steady-state GABA responses of recombinant 

α5β3γ2L receptors.  

A. Examples of whole-cell currents elicited by prolonged GABA applications applied to 

recombinant α5β3γ2L receptors expressed in HEK293 cells, in the presence of 10 µM 4-PIOL. 

The black and yellow horizontal bars indicate the duration of GABA (µM: 0.1 - blue; 1 - red; 10 - 

green; 1000 - black) and 4-PIOL applications respectively. B. Mean Peak (dashed curves) and 

steady-state (continuous curves) GABA concentration-response curves in the absence (black), 

or presence (red) of 10 μM 4-PIOL (n = 4 – 8; mean ± SEM). Peak and steady-state GABA 

responses were respectively normalized to peak and steady-state responses produced by a 

saturating concentration of GABA in the absence of 4-PIOL. The blue boxes (dashed lines) 

indicate GABA concentrations thought to underlie tonic (100 nM -1 µM) and phasic inhibition (> 

1 mM). 
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4.2.6. 4-PIOL can bidirectionally regulate extrasynaptic-type recombinant 

α1β3γ2L receptors 

Although α1βγ2 receptors are important mediators of phasic inhibition in several 

brain regions (Nusser et al., 1996; Somogyi et al., 1996; Okada et al., 2000; 

Crestani et al., 2002; Prenosil et al., 2006), their presence at extrasynaptic sites 

has also been suggested (Nusser et al., 1998; Mangan et al., 2005; Thomas et 

al., 2005; Kasugai et al., 2010). While it is unlikely that α1βγ2 receptors will 

significantly contribute to tonic inhibition, due to their low GABA sensitivity 

(Brown et al., 2002; Mortensen et al., 2010), their presence at extrasynaptic 

sites might make them amenable to 4-PIOL modulation in neuronal systems. 

Therefore, steady-state concentration-response curves were also generated for 

α1β3γ2L receptors. As for the other extrasynaptic receptor subtypes studied, 

the whole-cell currents elicited by prolonged applications of GABA were allowed 

to attain steady-state, either in the absence, or presence, of pre- and co-applied 

4-PIOL (10 µM; Fig. 4.10 A). The mean steady-state concentration-response 

curve (Fig. 4.10 B) to GABA alone was shifted significantly leftwards when 

compared to its respective peak concentration-response curve (Fig. 3.1). 

Accordingly, the GABA EC50 value determined for steady-state responses was 

significantly lower (~ 4 - fold) than that obtained for peak responses (1.9 ± 0.5 

µM and 8.7 ± 2.3 µM respectively; p = 0.03; Table 4.3 and Table 4.4).  

In these experiments, pre-application of 10 µM 4-PIOL induced no significant 

shift in the holding current (Fig. 4.10 A). This was unexpected, since we 

previously demonstrated that this low concentration of 4-PIOL can elicit small 

agonist responses at α1β3γ2L receptors (Fig. 4.3 A), even if it does only 

correspond to ~ 0.1 % of the current induced by a saturating concentration of 

GABA (Fig. 4.3 C). One explanation for this discrepancy might relate to the 

different ways that 4-PIOL was applied to cells in each experiment. In Figure 

4.3, 4-PIOL was rapidly applied to cells, whereas, in Figure 4.10, 4-PIOL was 

pre-applied more slowly. Given that the 10 μM 4-PIOL current is already very 

small 4-PIOL current, this slower application may make it unresolvable from the 

baseline holding current. 
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A lack of discernible 4-PIOL efficacy meant that the steady-state GABA 

concentration-response curve for α1β3γ2L receptors exhibited no elevated 

curve minimum (Fig. 4.10 B). However, as for the peak GABA responses (Fig. 

4.6 B), 4-PIOL induced a rightward shift in the steady-state GABA 

concentration-response curve (Fig. 4.10 B), causing the GABA EC50 value to 

increase significantly, from 1.9 ± 0.5 µM to 5.6 ± 0.6 µM (Table 4.3; p = 0.0012). 

Crucially, at GABA concentrations thought to mediate tonic inhibition, although 

4-PIOL did not significantly affect the steady-state response to 100 nM GABA, 

when the GABA concentration was raised to 1 µM, 4-PIOL significantly reduced 

the steady-state GABA current by ~ 30 % (Fig. 4.10 B; p = 0.005). 
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Figure 4.10 – Steady-state GABA responses of recombinant α1β3γ2L 

receptors.  

A. Examples of whole-cell currents elicited by prolonged GABA applications applied to 

recombinant α1β3γ2L receptors expressed in HEK293 cells, in the presence of 10 µM 4-PIOL. 

The black and yellow horizontal bars indicate the duration of GABA (µM: 1 - red; 10 - green; 

1000 - black) and 4-PIOL applications respectively. B. Mean steady-state GABA concentration-

response curves in the absence (black continuous line), or presence (red continuous curve) of 

10 μM 4-PIOL (n = 4; mean ± SEM). Steady-state GABA currents were normalized to the 

steady-state response achieved by 1 mM GABA alone. The blue box (dashed lines) indicates 

GABA concentrations thought to underlie tonic inhibition (100 nM -1 µM). The Hill fit for the peak 

α1β3γ2L GABA concentration-response curve is also shown (black dashed curve). 
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Table 4.3 – Steady-state GABA concentration-response curve parameters 

in the absence, or presence, of 10 μM 4-PIOL  

 GABA only (Steady-state)   + 10 µM 4-PIOL (Steady-state)  
Subunit combination  GABA EC50 (μM)  nH  

 
GABA EC50 (μM)  nH  

α1β3γ2L  1.9 ± 0.5  1.2 ± 0.1   5.6 ± 0.6**  1.2 ± 0.1  
α5β3γ2L  2.0 ± 0.4  1.3 ± 0.2    1.3 ± 0.3  1.1 ± 0.03  
α4β2δ  0.2 ± 0.02  2.6 ± 0.3   0.3 ± 0.1*  1.6 ± 0.1  
α6β2δ  0.1 ± 0.01  1.4 ± 0.2   0.1 ± 0.01  1.1 ± 0.1  
For α1β3γ2L, α4β2δ and α6β2δ receptors, the normalised steady-state GABA concentration-

response curves, in the absence or presence of 4-PIOL were fitted using the Hill equation 

(Equation 2.1). For α5β3γ2L receptors, the normalised data were fitted using a modified Hill 

equation (Equation 2.2). The GABA EC50s and nH obtained from these fits (mean ± SEM) are 

shown. For each subunit combination, statistical analysis was performed relative to the control 

GABA concentration-response data. *P < 0.05 and **P < 0.01. 
 

 

 

 

Table 4.4 – Peak GABA concentration-response curve parameters in the 

absence, or presence, of 10 μM 4-PIOL  

 GABA only (Peak)   + 10 µM 4-PIOL (Peak)  
Subunit combination  GABA EC50 (μM)  nH  

 
GABA EC50 (μM)  nH  

α1β3γ2S 4.5 ± 1.9 1.6 ± 0.1  9.4 ± 3.4* 1.3 ± 0.2 
α1β3γ2L  8.7 ± 2.3  1.3 ± 0.1   21.1 ± 3.5*  1.3 ± 0.1  
α5β3γ2L  11.9 ± 3.6  1.1 ± 0.1   6.2 ± 1.1  1.2  ± 0.1  
α4β2δ  0.7 ± 0.1  1.3 ± 0.1   2.2 ± 0.4 ** 1.0 ± 0.1  
α4β3δ  1.9 ± 0.5  1.1 ± 0.1   3.9 ± 0.7 ** 0.9 ± 0.03  
α6β2δ  0.3 ± 0.03  1.1 ± 0.04   0.7 ± 0.03 *** 1.0 ± 0.1  
For α1β3γ2(S or L), α4β2δ and α6β2δ receptors, the normalised peak GABA concentration-

response curves, in the absence or presence of 4-PIOL were fitted using the Hill equation 

(Equation 2.1). For α5β3γ2L receptors, the normalised data were fitted using a modified Hill 

equation (Equation 2.2). GABA EC50s and nH obtained from these fits (mean ± SEM) are shown. 

For each subunit combination, statistical analysis was performed relative to the control GABA 

concentration-response data. *P < 0.05, **P < 0.01 and ***P < 0.001. 
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4.2.7. 4-PIOL regulation of extrasynaptic-type GABAA receptors depends on the 

ambient GABA concentration 

In the nervous system, extrasynaptically-located GABAA receptors will be 

continuously activated by low, ambient concentrations of GABA. To evaluate 

the functional effects of 4-PIOL on pre-activated recombinant receptors, GABA 

(0.1, 0.3 and 1 µM) was pre-applied to α4β2δ-, α6β2δ-, α5β3γ2L- or α1β3γ2L-

expressing HEK293 cells for 1 - 2 min, until a steady-state response was 

achieved, and subsequently, GABA was co-applied with 10 µM 4-PIOL (Fig. 

4.11). 

Strikingly, for α4β2δ receptors, co-application of 4-PIOL significantly inhibited 

the steady-state GABA current at all three GABA concentrations tested (Fig. 

4.11 A). Co-application of 4-PIOL reduced the steady-state currents for 0.1, 0.3 

and 1 µM GABA, by 70.6 ± 2.7 %, 56.1 ± 4.5 % and 31.5 ± 1.3 %, respectively 

(Fig. 4.12; p = 0.03, 0.04 and 0.02, respectively). Thus, 4-PIOL potently inhibits 

extrasynaptic-type responses of recombinant α4β2δ receptors. Notably, the 

level of inhibition achieved by 4-PIOL appears to decrease with increasing 

GABA concentrations, possibly because GABA has a high apparent affinity (Fig. 

4.7 B) at this αβδ receptor isoform. Thus, at high GABA concentrations, 10 µM 

4-PIOL may be less effective at competing with GABA for its binding site.  

By contrast only a modest inhibition of steady-state currents was produced by 

4-PIOL at recombinant α6β2δ receptors (Fig. 4.11 B). While the steady-state 

currents elicited by 0.1, 0.3 and 1 µM GABA were reduced by 26.5 ± 3.9 %, 

20.9 ± 3.0 and 9.6 ± 4.0 % respectively by 4-PIOL co-application (Fig. 4.12), the 

shifts in the holding current induced by 4-PIOL were not statistically significant 

(p = 0.25, 0.23 and 0.32 respectively). Thus the extent of inhibition achieved by 

10 µM 4-PIOL appears to be significantly less than that observed for α4β2δ 

receptors. Given that desensitised α6β2δ receptors exhibit the highest GABA 

potency (relative to the other subtypes studied; Table 4.3; One-way ANOVA – p 

= 0.002), this concentration of 4-PIOL may be insufficient to efficiently compete 

with GABA for the orthosteric binding site. 
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In accord with the concentration-response curve data for α5β3γ2L receptors, 4-

PIOL exhibited minimal agonist, and antagonist effects at recombinant α5β3γ2L 

receptors (Fig. 4.11 C). 4-PIOL seemingly enhanced the steady-state current 

elicted by 0.1 µM GABA (Fig. 4.11 C) by 23.0 ± 1.5 % (Fig. 4.12), consistent 

with its previously described weak partial agonist profile at α5β3γ2L receptors 

(Fig. 4.4 and Fig. 4.9 A). Furthermore, in accord with the relative lack of 

antagonist activity observed previously (Fig. 4.9 B), 4-PIOL produced at most a 

very small inhibition of steady-state GABA currents elicited by 1 µM GABA (Fig. 

4.12; 6.8 ± 0.9 %; p = 0.01; one tailed paired t-test).  

Lastly, the effects of 4-PIOL were studied on the extrasynaptic-type responses 

elicited from recombinant α1β3γ2L receptors. Significantly, when co-applied, 4-

PIOL enhanced the response to 0.1 µM GABA (Fig. 4.11 D; p = 0.02) by 76.9 ± 

21.5 % (Fig. 4.12). However, when co-applied with 1 µM GABA, 4-PIOL 

produced only a small inhibition of the steady-state GABA current (12.9 ± 3.3 %; 

Fig. 4.12; p = 0.05). 

Overall, 4-PIOL potently inhibits the tonic-type currents of recombinant α4β2δ 

receptors, but not recombinant α6β2δ receptors. Conversely, 4-PIOL potently 

enhances the extrasynaptic-type responses of α1β3γ2L and α5β3γ2L receptors 

when GABA concentrations are low, but produces only a modest inhibition of 

steady-state GABA responses when GABA concentrations are raised (to 1 μM 

GABA). Thus, 4-PIOL modulation of α1β3γ2L and α5β3γ2L GABA responses 

will be highly dependent on the ambient GABA concentration. 
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Figure 4.11 – Functional effects of 4-PIOL on steady-state GABA currents  

Example traces of whole-cell currents elicited by prolonged applications (~ 3 min) of 0.1 µM 

(green horizontal bar) and 1 µM GABA (blue horizontal bar) at recombinant α4β2δ (A), α6β2δ 

(B), α5β3γ2L (C) and α1β3γ2L (D) receptors. As indicated by the red horizontal bars, 10 µM 4-

PIOL was co-applied for 4 s once a steady-state GABA current was achieved. 
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Figure 4.12 – Summary of 4-PIOL agonist and antagonist profiles at 

extrasynaptic-type receptors 

Quantitative analysis of data depicted in Fig. 4.11. The data for α4β2δ (magenta), α6β2δ (blue), 

α5β3γ2L (red) and α1β3γ2L (green) receptors were accrued from 4 - 5 cells, and are expressed 

as mean ± SEM. For each concentration (0.1, 0.3 and 1 µM) of pre-applied GABA, the change 

in holding current produced by 4-PIOL is expressed as a percentage of the steady-state current 

to GABA alone. Negative values represent an enhancement of the steady-state GABA current.  

 

 

 

%
 m

od
ul

at
io

n 
by

 1
0 

μM
 4

-P
IO

L

Pre-applied [GABA] (μM)

0

50

100

-50

-100

0.1
1

α4β2δ
α6β2δ
α5β3γ2L
α1β3γ2L

Enhancement

Inhibition



132 
 

4.3. Discussion 

In this chapter, the actions of 4-PIOL were assessed on recombinant synaptic- 

and extrasynaptic-type GABAA receptors expressed in HEK293 cells, to 

investigate whether 4-PIOL can inhibit tonic GABA currents without affecting 

synaptic GABA currents. The subtypes studied were: α1βγ2, α5βγ2, α4βδ and 

α6βδ receptors, since these are the major subtypes thought to exist at synaptic 

and extrasynaptic sites in several brain regions (Laurie et al., 1992a; Wisden et 

al., 1992; Pirker et al., 2000; Caraiscos et al., 2004; Cope et al., 2005; Bright et 

al., 2007; Glykys et al., 2008; Hörtnagl et al., 2013), including hippocampal 

pyramidal neurons, cerebellar granule cells and thalamic relay neurons (the 

three cell types that will be studied in Chapters 5 and 6).  

 

4.3.1. 4-PIOL acts as a weak partial agonist at α1β3γ2 and α5β3γ2 receptors  

At recombinant α1β3γ2 and α5β3γ2 receptors, 4-PIOL acted as a weak partial 

agonist generating whole-cell currents that were ~ 2 % and 8 % of the 

maximum GABA current. Although 4-PIOL has previously been demonstrated to 

exhibit weak partial agonist behaviour at recombinant α1β2γ2 receptors 

expressed in Xenopus oocytes (Mortensen et al., 2002) and HEK293 cells 

(Mortensen et al., 2004), there are no previous reports demonstrating the 

functional effects of 4-PIOL on α5β3γ2 receptors. It is intriguing to note that 4-

PIOL acts as a low efficacy partial agonist in hippocampal neurons (Kristiansen 

et al., 1991), and given that the α5 subunit is prominently expressed in the 

hippocampus (Sur et al., 1999; Pirker et al., 2000; Sieghart and Sperk, 2002), 

we would predict that the agonist effect of 4-PIOL in this cell type is probably, in 

part, mediated by α5-containing receptors (also see Chapter 5).  

The biophysical mechanisms underlying the low efficacy of 4-PIOL have 

previously been investigated by analysing whole-cell current fluctuations elicited 

by 4-PIOL in olfactory bulb neurons (Kristiansen et al., 1991), and by single 
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channel analysis of α1β2γ2 receptors expressed in HEK293 cells (Mortensen et 

al., 2004). Both studies indicated that the low efficacy of 4-PIOL likely reflects its 

inability to produce frequent and prolonged channel openings, especially given 

that the single channel conductances induced by 4-PIOL and the full agonist 

GABA, were indistinguishable at ~ 25 – 29 pS (Kristiansen et al., 1995; 

Mortensen et al., 2004).  

 

4.3.2. 4-PIOL does not activate α4β2δ and α6β2δ receptors 

Intriguingly, applications of 4-PIOL (10 µM or 100 µM) produced no discernible 

agonist activity at recombinant α4β2δ, or α6β2δ, receptors. Although the 

functional effects of 4-PIOL on recombinant α6β2δ receptors have not been 

previously studied, our data for α4β2δ receptors concurs with a previous study 

showing a lack of 4-PIOL agonist activity at recombinant α4β3δ receptors 

expressed in Xenopus oocytes (Stórustovu and Ebert, 2006). However, as will 

be discussed in Chapter 6, co-application of 4-PIOL with the δ-selective positive 

allosteric modulator, DS2 (Wafford et al., 2009; Jensen et al., 2013), unveils a 

small 4-PIOL activated current (see Fig. 6.6 A), indicating that at least for α4β2δ 

receptors expressed in HEK293 cells, 4-PIOL is capable of gating this receptor 

under certain conditions. 

The different agonist profiles of 4-PIOL at αβγ and αβδ receptors can be added 

to a range of pharmacological differences already known to exist between these 

two receptor subtypes. Perhaps the most important ligand to consider is GABA 

itself. While GABA acts as a full agonist at α1βγ2 receptors, its relatively lower 

efficacy at δ-containing receptors has resulted in its classification as a partial 

agonist at this receptor subtype (Bianchi and Macdonald, 2003). Conversely, 

whilst compounds such as THIP, muscimol and isoguvacine have been shown 

to exhibit ‘super-agonist’ activity at αβδ receptors (Brown et al., 2002; 

Stórustovu and Ebert, 2006; Mortensen et al., 2010), they act only as full, or 

partial, agonists at γ2-containing receptors (Möhler, 2006). Thus, our finding 

that 4-PIOL acts as a weak partial agonist on α1β3γ2 and α5β3γ2 receptors, 
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but not on α4β2δ, or α6β2δ receptors, is a different but unsurprising profile, 

especially considering that different α-subunits will contribute to the orthosteric 

binding site.  

With regards to the importance of the GABAA receptor β subunit, it has recently 

been demonstrated that β3-containing receptors expressed in Xenopus oocytes 

exhibit a higher efficacy when activated by thio-4-PIOL, a 4-PIOL analogue, 

when compared with β2-containing receptors (Hoestgaard-Jensen et al., 2010). 

Although the mechanistic reason(s) for this difference remain unclear, in our 

hands, applications of 4-PIOL (10, or 100 µM) to β2-, or β3-containing α4βδ 

receptors, revealed no discernible agonist activity at either receptor isoform, 

expressed in HEK293 cells. Moreover, for α4β2δ and α4β3δ receptors, the 

rightward shifts respectively induced by 10 and 100 µM 4-PIOL were 

comparable for both receptor isoforms (see Appendix 1), indicating that the 

identity of the β subunit has little effect on 4-PIOL function, in the HEK293 cell 

expression system. 

 

4.3.3. 4-PIOL antagonises GABA responses for αβγ and αβδ receptors  

As predicted by our theoretical model (Fig. 4.2), 4-PIOL induced a rightward 

shift in the GABA concentration-response curves of α1β3γ2 receptors. 

However, the potency of 4-PIOL inhibiting GABA responses was greater than 

anticipated, with 10 and 100 µM 4-PIOL both significantly inhibiting responses 

to extrasynaptic concentrations of GABA. Indeed, the more significant curve 

shift (~ 30 - fold) caused by 1000 µM 4-PIOL at α1β3γ2 receptors, produced a 

small (~ 5 %) inhibition of the 1 mM GABA response, clearly making it too high 

a concentration for the purpose of inhibiting tonic, but not phasic inhibition. 

Since our data demonstrated that 10 µM 4-PIOL inhibits responses to 

extrasynaptic concentrations of GABA, without affecting phasic currents, only 

this concentration of 4-PIOL was assessed at recombinant, α4β2δ, α6β2δ, 

α5β3γ2 and α1β3γ2 receptors. 
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All the recombinant receptors we studied demonstrated considerable levels of 

desensitisation, including α4βδ and α6βδ receptors, prompting us to study the 

effects of 4-PIOL on their steady-state currents. This is particularly important 

when considering extrasynaptic GABAA receptors, since in native neurons, they 

may be continuously exposed to low, but potentially desensitising 

concentrations of GABA (Feng et al., 2009; Mortensen et al., 2010; Bright et al., 

2011; Houston et al., 2012; McGee et al., 2013). For each receptor isoform, two 

forms of analysis were performed. First, steady-state GABA concentration-

response curves were generated to assess the potency of GABA in the 

absence and presence of pre-applied 4-PIOL (10 µM). Pre-application of 4-

PIOL induced a rightward shift in the steady-state GABA concentration-

response curve of α1β3γ2, α4β2δ and α6β2δ receptors, but not α5β3γ2 

receptors. Moreover, 10 µM 4-PIOL consistently produced a 10 – 30 % 

inhibition of steady-state responses to typical ‘extrasynaptic concentrations’ of 

GABA (100 nM – 1 µM) for each receptor isoform studied, except for α5β3γ2 

receptors. In fact, for α5β3γ2 receptors, 4-PIOL produced a small, but 

significant enhancement of GABA steady-state currents to low (100 nM) 

concentrations of GABA (Fig. 4.9 B). Thus, where α5 subunit-containing 

receptors are present (e.g. on hippocampal pyramidal neurons; Caraiscos et al., 

2004), 4-PIOL may actually enhance α5-mediated tonic currents in native 

systems. 

The effects of 10 µM 4-PIOL were additionally assessed on recombinant α4β2δ, 

α6β2δ, α5β3γ2 and α1β3γ2 receptors pre-exposed to low concentrations of 

GABA (100 nM – 1 µM), to more precisely emulate the situation experienced by 

native neuronal extrasynaptic receptors. While 4-PIOL potently inhibited the 

steady-state GABA currents of α4β2δ receptors (by ~ 40 – 80 %), no significant 

inhibition was observed for α6β2δ receptors, presumably due to the higher 

GABA apparent affinity displayed by the latter receptor subtype. For α1β3γ2 

and α5β3γ2 receptors, 10 μM 4-PIOL displayed a dominant agonist profile when 

the GABA concentration was low (0.1 µM GABA), and produced at most, a very 

small inhibition when the pre-applied GABA concentration was raised to 1 μM. 

These data are summarised in Fig. 4.13.  
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Overall, our data indicate that 10 µM 4-PIOL should potently inhibit α4β2δ-

mediated tonic currents, without significantly affecting α1β3γ2-mediated phasic 

currents. Moreover, 10 µM 4-PIOL is not expected to affect α6β2δ-mediated 

tonic currents (e.g. in the cerebellum), and any potential inhibition of 

extrasynaptic γ2-containing receptors will depend on the ambient GABA 

concentration in neuronal preparations, and may be minimal. Finally, where α5 

subunit-containing GABAA receptors predominate, 10 µM 4-PIOL is expected to 

produce only a small inhibition in the GABA response.  

 

 

Figure 4.13 – Summary: 10 µM 4-PIOL regulation of extrasynaptic-type 

receptors 

For each receptor isoform, the upwards and downwards arrows, respectively, represent a 10 

µM 4-PIOL mediated enhancement and reduction of the (pre-applied) steady-state GABA (0.1, 

0.3, or 1 μM) current. The number and width of the arrows represents the strength of effect. 

*Note that only a very modest inhibition was produced by 10 µM 4-PIOL at recombinant 

α1β3γ2L and α5β3γ2L receptors, when the pre-applied GABA concentration was 1 μM. 
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4.4. Conclusion 

1. 4-PIOL acts as weak partial agonist at recombinant α1β3γ2 and α5β3γ2 

receptors, but not α4β2δ and α6β2δ receptors. 

 

2. For α1β3γ2 receptors, 10 µM, 4-PIOL does not inhibit peak responses to 

synaptic concentrations of GABA (> 1 mM). 

 

3. At recombinant α4β2δ receptors, 10 µM 4-PIOL inhibits steady-state 

currents elicited by low ambient concentrations of GABA (0.1 – 1 µM). 

 

4. 4-PIOL (10 µM) does not significantly enhance, or inhibit, the steady-

state GABA currents of α6β2δ receptors. 

 

5. At recombinant α1β3γ2 and α5β3γ2 receptors, 4-PIOL (10 µM) exhibits a 

dominant agonist profile at low ambient GABA concentrations, although a 

small inhibition can be achieved by raising the ambient GABA 

concentration to 1 µM. 
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Chapter 5: Functional effects of 4-PIOL on hippocampal neurons and 
cerebellar granule cells 

 

5.1. Introduction 

In this chapter, the functional effects of 4-PIOL were assessed on the tonic, and 

phasic currents of CGCs and hippocampal neurons in culture, two neuronal 

populations which exhibit tonic currents mediated by different GABAA receptor 

isoforms. 

 

5.1.1.  GABAergic neurotransmission onto CGCs 

Traditionally, the cerebellum is viewed as the major processing centre for motor 

coordination and learning, although it has also been implicated in cognitive 

processing (Rochefort et al., 2013). The cellular architecture and circuitry of the 

cerebellum is well defined, and comprises a small number of neuronal subtypes 

(Purkinje, Golgi, stellate, basket and CGCs; Fig. 5.1). Sensory information is 

relayed into the cerebellum via mossy fibres, and is transmitted via CGCs, to 

Purkinje cells, which provide the final output from the cerebellar cortex (Fig. 

5.1). CGCs are the smallest (somata diameter: 5 - 8 μm), and most abundant 

neuronal cell type in the human brain (Wisden et al., 1996), and represent the 

only glutamatergic neurons within the cerebellum. While CGCs provide 

excitatory inputs on to Golgi cells (and indeed other neuronal subtypes in the 

cerebellum; Fig. 5.1) via parallel fibres, Golgi cells reciprocally provide 

GABAergic inputs onto the distal dendrites of CGCs (Fig. 5.1), giving rise to 

both GABAA receptor mediated sIPSCs, and tonic currents in CGCs (Kaneda et 

al., 1995; Brickley et al., 1996; Wall and Usowicz, 1997). 
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Studies indicate that mature CGCs in vivo, most likely express GABAA 

receptors with the subunit combinations: α1βγ2, α6βγ2, α6βδ, and α1α6βγ2 

(Wisden et al., 1992, 1996; Jones et al., 1997; Sieghart and Sperk, 2002); see 

Section 1.2.1). Here, we have studied the effects of 4-PIOL in CGCs maintained 

in culture. Before using cultures, one must also consider whether the GABAA 

receptors expressed in culture, reflect those expressed in vivo. Immunostaining 

studies suggest that cultured CGCs exhibit a similar developmental, and 

subcellular expression pattern for α1, α6, β2, β3, γ2 and δ subunits (Thompson 

and Stephenson, 1994; Caruncho et al., 1995; Gao and Fritschy, 1995) when 

compared to in vivo preparations (Laurie et al., 1992a; Wisden et al., 1992; 

Nusser et al., 1998; Hörtnagl et al., 2013). Moreover, CGCs in culture have 

previously been demonstrated to exhibit tonic currents (Leao et al., 2000). 

 

Figure 5.1 – Neurons and circuits of the cerebellum 

Mossy fibres enter the cerebellum and synapse onto cerebellar granule cells (CGCs). CGCs 

give rise to specialised axons, termed parallel fibres, which provide glutamatergic inputs onto 

Purkinje cells (PC), basket cells (BC), stellate cells (SC) and Golgi cells (GoC). GoCs 

reciprocally provide GABAergic inputs onto CGCs, while BCs and SCs provide inhibitory inputs 

onto PCs. PCs are GABAergic cells and provide the final output from the cerebellum. The red 

arrows indicate the flow of information through the cerebellum. 
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5.1.2. GABAergic neurotransmission in hippocampal neurons 

The hippocampus contributes to several psychological processes, including 

cognition, emotion, spatial memory formation and learning (Fanselow and 

Dong, 2010). Accordingly, hippocampal dysfunction is associated with many 

neurological disorders, including anxiety, depression, epilepsy and cognitive 

impairments (de Lanerolle et al., 2003; Bannerman et al., 2004; MacQueen and 

Frodl, 2011; Rudolph and Möhler, 2014). The hippocampus is a well defined 

structure, comprising of two interlocking parts, formed by the CA region, 

composed of the CA1, CA2 and CA3 sub-regions, and the dentate gyrus (Fig. 

5.2). Signals enter the hippocampus from the entorhinal cortex, and pass 

unidirectionally through the hippocampus via a ‘trisynaptic loop’, consisting of 

dentate gyrus granule cells, CA1 pyramidal neurons, and CA3 pyramidal 

neurons (Moser, 2011; Fig. 5.2). In addition to these principal neurons, the 

hippocampus contains a huge diversity of GABAergic interneurons, which 

control the spatial and temporal firing patterns of principal cells (Klausberger et 

al., 2002, 2003; Kullmann and Lamsa, 2011).  

Several neuronal subtypes in the hippocampus are reported to express tonic 

currents, including CA1 and CA3 pyramidal neurons (Bai et al., 2001; Caraiscos 

et al., 2004; Glykys et al., 2008), some CA1 inhibitory interneurons (Semyanov, 

2003; Mann and Mody, 2010) and dentate gyrus granule cells (DGGCs; Nusser 

and Mody, 2002). Fast inhibitory neurotransmission in the hippocampus is likely 

mediated primarily by α1βγ2 and α2βγ2 receptors (Prenosil et al., 2006), with a 

potential contribution from α5βγ2 receptors to ‘slow’ IPSCs (Pearce, 1993; 

Banks et al., 1998; Prenosil et al., 2006; Zarnowska et al., 2009). By contrast, 

tonic currents in CA1 and CA3 pyramidal cells are predominantly mediated by 

α5βγ2 and α4βδ receptors (Caraiscos et al., 2004; Glykys et al., 2008), 

although αβ (Mortensen and Smart, 2006) and α1βδ receptors (Glykys et al., 

2007) may also contribute in pyramidal cells and interneurons, respectively. 

The effects of 4-PIOL were studied on hippocampal neurons maintained in 

culture. Cultured hippocampal neurons express a similar array of GABAA 

receptor subunits as those expressed in vivo, including α1, α4, α5, γ2 and δ 
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subunits (Killisch et al., 1991; Sieghart and Sperk, 2002; Mangan et al., 2005). 

Moreover, tonic currents have also been detected in cultured hippocampal 

neurons (Bai et al., 2001; Caraiscos et al., 2004; Mortensen and Smart, 2006), 

which are predominantly thought to be mediated by α5βγ2 receptors (Bai et al., 

2001; Caraiscos et al., 2004).  

 

 

Figure 5.2 – Schematic of the hippocampal formation 

The hippocampus consists of two main subdivisions: the Cornu ammonis (CA) region and the 

dentate gyrus. The CA region can be further subdivided into the CA1, CA2 and CA3 sub-

regions, which contain the cell bodies of the pyramidal cells, while the dentate gyrus contains 

the cell bodies of granule cells. Both granule cells and pyramidal neurons are extensively 

innervated by inhibitory GABAergic interneurons. The red dashed arrows represent the classical 

trisynaptic loop, which transmits signals from the entorhinal cortex to CA1 pyramidal neurons, 

via dentate gyrus granule cells and CA3 pyramidal neurons. Note that this is a simplified 

schematic and many other reciprocal connections between the hippocampal sub-regions also 

exist.  
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5.2. Results  

Whole-cell currents were recorded from cultured CGCs and hippocampal 

neurons, in the presence of D-APV and CNQX, to isolate GABAergic currents. 

All experiments started with a period of stable baseline recording, and 

bicuculline (BIC; 20 µM) was applied at the end of each experiment to a) verify 

that all synaptic events were GABAergic, and b) to reveal any GABAA-mediated 

tonic current. The properties of sIPSCs were determined as detailed in Section 

2.6.4, providing mean estimates for sIPSC frequency, amplitude, rise time and 

weighted decay (τw). Changes in tonic current were determined as described in 

Section 2.6.5, by measuring the change in holding current induced by each drug 

condition. RMS baseline noise analysis was not performed on recordings from 

CGCs or hippocampal neurons, since control epochs were frequently 

contaminated by a high frequency of synaptic events (see Table 5.1 and Table 

5.2). 

 

5.2.1.  Effect of 4-PIOL on endogenous tonic and phasic currents of CGCs 

CGCs are characteristically small cells which display small whole-cell 

capacitances and high input resistances (Kaneda et al., 1995). Accordingly, 

CGCs in culture were identified by their soma size, and displayed a mean 

whole-cell capacitance of 9.9 ± 2.1 pF, and a mean input resistance of 15.2 ± 

7.9 GΩ. Under control conditions (i.e. in the presence of CNQX and D-APV), a 

high frequency of sIPSCs were recorded from CGCs (7.2 ± 1.01 Hz; Table 5.1), 

with an average amplitude, rise time and τw of 409 ± 113 pA, 1.1 ± 0.1 ms and 

17.7 ± 1.6 ms respectively (n = 8; Table 5.1). Application of BIC abolished all 

sIPSCs (Fig. 5.3 A), confirming their GABAergic origin. Moreover, BIC induced 

an outward current (Fig. 5.3 A), indicating the presence of an endogenous tonic 

current, with a mean magnitude of 22.8 ± 8.5 pA. 



143 
 

 
 

To verify the functional expression of δ-containing receptors, whole-cell currents 

were recorded from cultured CGCs, in response to brief applications of a δ-

selective concentration of the GABAA receptor agonist, THIP (1 µM; Brown et 

al., 2002; Cope et al., 2005; Stórustovu and Ebert, 2006; Herd et al., 2009). 

THIP enhanced the tonic currents of CGCs (Fig. 5.3 B) by an average of 67.5 ± 

21.7 pA, thus confirming that δ-containing receptors were present in these cells. 

 

 

Figure 5.3 – CGCs in culture exhibit tonic currents. 

Representative current traces from cultured CGCs in the presence of CNQX (10 μM) and D-

APV (20 μM). Bicuculline (20 μM BIC; A), or THIP (1 μM; B), were applied for the duration 

indicated by the black horizontal bars. All recordings were performed at room temperature, from 

CGCs maintained in culture for 7 – 17 days in vitro (DIV). The holding potential was -60 mV. 
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The effects of 4-PIOL (10 µM) were next investigated on the endogenous tonic 

and phasic currents of CGCs. Following a period of control recording, 4-PIOL 

was bath applied to cells (Fig. 5.4 A) revealing a small tendency to enhance 

tonic current (9.8 ± 4.0 pA), although this increase was not found to be 

statistically significant (P = 0.058). Similarly, 4-PIOL exerted no significant effect 

on sIPSC amplitude (% control: 93.2 ± 14.9; P = 0.66; Fig. 5.4 B), or rise time 

(% control: 107 ± 4.1; P = 0.24; Fig. 5.4 C). Moreover, although the frequency of 

sIPSCs appeared to be reduced in 4-PIOL (% control: 64.0 ± 14.2; Fig. 5.4 D), 

this reduction was also not quite significant (P = 0.057; one-tailed paired t-test). 

In addition, although 4-PIOL may appeared to have prolonged the τw of sIPSCs 

(% control: 112 ± 1.1; P = 0.0024), this effect was not reversed by washout of 4-

PIOL (P = 0.87; Fig. 5.4 E), indicating that factors independent of 4-PIOL 

application may underlie sIPSC prolongation, such as a washout of intracellular 

components.  

Overall, these data indicated that 10 µM 4-PIOL does not significantly alter the 

endogenous tonic, or phasic, currents of cultured CGCs.  
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Figure 5.4 – 4-PIOL (10 μM) does not modulate tonic, or phasic, currents in 

CGCs 

A. A representative current trace showing the effect of 10 μM 4-PIOL on sIPSCs and tonic 

GABAA receptor mediated currents in cultured CGCs. 4-PIOL was bath applied, for the duration 

indicated by the horizontal green bar. All recordings were performed at room temperature, in the 

presence of CNQX (10 μM) and D-APV (20 μM). The holding potential was -60 mV. Bar graphs 

showing the normalised data for sIPSC amplitude (B), 10-90 % rise time (C), frequency (D) and 

weighted decay (E), in control aCSF (black), or aCSF containing 10 μM 4-PIOL (green). Data 

represent mean ± SEM (n = 8) from CGCs maintained in culture for 7 – 17 DIV. Paired t-tests 

were used to compare sIPSC parameters in control or 10 μM 4-PIOL solution, and P>0.05 was 

considered as not statistically significant (ns). ***P < 0.001. 
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5.2.2. Effect of 4-PIOL on elevated CGC tonic currents 

Although CGCs in culture exhibited endogenous tonic currents, the GABA 

concentrations and origin of GABA mediating this tonic current remain 

undefined. Therefore, to standardise and control the unknown variable of the 

extracellular GABA concentration, low concentrations of GABA (0.3 µM and 1 

µM; Fig. 5.5 A and Fig. 5.5 B respectively) were pre-applied to CGCs, until 

steady-state currents were achieved, and subsequently, 4-PIOL was co-applied. 

Similar to its effects on endogenous CGC tonic currents, co-application of 4-

PIOL produced no significant shift in the holding current when the pre-applied 

GABA concentration was raised to 0.3 µM (Fig. 5.5 A) or 1 µM GABA (Fig. 5.5 

B). Taken together, these data indicate that 10 µM 4-PIOL acts neither as an 

agonist, nor an antagonist, on CGC tonic currents, at GABA concentrations 

thought to mediate tonic currents. 

 

Figure 5.5 – 4-PIOL (10 μM) does not modulate elevated GABA tonic 

currents in CGCs 

Representative traces of whole-cell currents elicited by prolonged applications of 0.3 (A) or 1 

μM (B) GABA (black horizontal bars). As indicated by the green horizontal bars, 10 μM 4-PIOL, 

was co-applied for 4 s once a steady-state GABA current was achieved. Note that 10 μM 4-

PIOL produced no significant change in the steady-state GABA currents. The holding potential 

was -60 mV. 
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5.2.3. 4-PIOL modulation of hippocampal tonic and phasic currents  

The effects of 4-PIOL were additionally assessed on whole-cell currents 

recorded from hippocampal neurons. Under control conditions, cultured 

hippocampal neurons displayed a high frequency of sIPSCs (6.9 ± 1.7 Hz; 

Table 5.2), with an average amplitude, rise time and τw of 2058 ± 672 pA, 2.0 ± 

0.3 ms and 31.4 ± 3.0 ms respectively (Table 5.2). All sIPSCs were abolished 

by bath application of 20 μM BIC (Fig. 5.6), thus confirming their GABAergic 

origin. Moreover, BIC produced an outward current, revealing an endogenous 

tonic current with a mean magnitude of 42.8 ± 6.3 pA (Fig. 5.6).  

To assess the effects of 4-PIOL on endogenous tonic and phasic currents of 

hippocampal neurons, 10 µM 4-PIOL was bath applied to cells following a 

period of control recording (Fig. 5.7 A). 4-PIOL significantly enhanced the 

GABAA receptor mediated tonic currents, by 72.0 ± 14.2 pA (P = 0.0025), 

consistent with the previously observed weak partial agonist profile of 4-PIOL 

on hippocampal neurons (Kristiansen et al., 1995). 

 

 

Figure 5.6 – Cultured Hippocampal neurons display a GABAA receptor 

mediated tonic current. 

An example (from n = 8 cells) whole-cell current trace recorded from a cultured hippocampal 

neuron, in the presence of CNQX (10 μM) and D-APV (20 μM). Bicuculline (20 μM BIC) was 

bath applied for the duration indicated by the black horizontal bar. All hippocampal recordings 

were performed at room temperature and the holding potential was -60 mV. Recordings were 

made from hippocampal neurons maintained in culture for 11 – 21 DIV. 

100 pA
10 s

20 μM BIC 
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Unexpectedly, 10 μM 4-PIOL also significantly inhibited both the frequency (% 

control: 49.8 ± 9.5 %; Fig. 5.7 B; P = 0.002) and amplitude of sIPSCs (% 

control: 58.6 ± 16.8 %; Fig. 5.7 C; P = 0.047 – Wilcoxon matched pairs test). 

However, 4-PIOL did not significantly affect the rise time (% control: 110 ± 12.1; 

Fig. 5.7 D; P = 0.50) or τw (% control: 100 ± 3.4; Fig. 5.7 E; P = 0.75) of sIPSCs. 

By generating a frequency histogram for sIPSC amplitudes (Fig. 5.7 F), under 

control conditions, and in 4-PIOL (Fig. 5.7 F), three sIPSC amplitude 

populations were detected, with mean amplitudes of 39.6 ± 1.0, 647.4 ± 26.4 

and 1989.7 ± 45.1 pA respectively (Fig. 5.7 F; control). Most notably, the 

highest amplitude population was shifted to a lower mean amplitude (1438.7 ± 

19.0) in 4-PIOL (Fig. 5.7 F; see arrows), and there was a higher frequency of 

the smallest amplitude events. The middle amplitude population appeared to be 

unchanged in 4-PIOL.  

 

5.2.4. 4-PIOL bidirectionally modulates elevated tonic currents of hippocampal 

neurons 

Given that hippocampal neurons express α5βγ receptors (Pirker et al., 2000; 

Bai et al., 2001; Caraiscos et al., 2004; Hörtnagl et al., 2013), and our 

recombinant expression studies indicate that 4-PIOL can enhance, or 

moderately inhibit, the steady-state GABA currents of recombinant α5β3γ2 

receptors, depending on the ambient GABA concentration (see Chapter 4; Fig. 

4.11 – Fig. 4.13), the effect of altering the ambient GABA concentration on 4-

PIOL behaviour was investigated. Low concentrations of GABA (0.3 µM and 1 

µM; Fig. 5.8 A and Fig. 5.8 B respectively) were pre-applied to hippocampal 

neurons, until steady-state currents were achieved, and subsequently, 4-PIOL 

was co-applied. Co-application of 10 μM 4-PIOL with 0.3 µM GABA significantly 

enhanced the tonic current by 62.8 ± 9.9 pA (P = 0.03 – Wilcoxon matched 

pairs test), similar to the enhancement observed under control conditions (72.0 

± 14.2 pA; P = 0.90). However, when the pre-applied GABA concentration was 

raised to 1 µM GABA, 10 μM 4-PIOL significantly reduced the steady-state 1 

µM GABA current, by 52.5 ± 7.1 pA (P = 0.0004 – paired t-test). This 
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corresponded to a 73.6 ± 28.1 % enhancement of the steady-state 0.3 µM 

GABA current, and a smaller 12.4 ± 2.0 % inhibition of the steady-state 1 µM 

GABA current (Fig. 5.8 C).  
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Figure 5.7 – 4-PIOL (10 μM) alters GABAergic currents in hippocampal 

neurons. 

A. A representative current trace showing the effect of 10 μM 4-PIOL on sIPSCs and tonic 

GABAA receptor mediated currents on cultured hippocampal neurons. 4-PIOL was bath applied, 

for the duration indicated by the horizontal green bar. All recordings were performed at room 

temperature, in the presence of CNQX (10 μM) and D-APV (20 μM), and cells were held at -60 

mV. Expanded recordings are shown below. Note that 4-PIOL induced an inward current. Bar 

graphs show the normalised data for sIPSC frequency (B), amplitude (C), 10-90 % rise time (D), 

and weighted decay (E), in control aCSF (ctrl; black), or aCSF containing 10 μM 4-PIOL 

(green). Data represent mean ± SEM (n = 8) from hippocampal neurons maintained in culture 

for 11 – 21 DIV. Paired t-tests were used to compare sIPSC parameters in control or 10 μM 4-

PIOL conditions. P > 0.05 was considered as not statistically significant (ns). *P < 0.05 and **P 

< 0.01. F. Frequency histograms were generated for sIPSC amplitudes, for the cell presented in 

panel A, and fitted with the Gaussian distribution function (red curves) as described in Section 

2.6.4. 
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Table 5.1 – sIPSC parameters for cultured CGCs 

 
Control + 10 μM 4-PIOL Recovery 

Frequency (Hz) 7.2 ± 1.0 4.5 ± 1.3 7.0 ± 1.4 
Amplitude (pA) 409 ± 113 374 ± 123 398 ± 104 

10-90 % rise time (ms) 1.1 ± 0.1 1.2 ± 0.1 1.2 ± 0.04 

Weighted tau (ms) 17.7 ± 1.6 19.8 ± 1.7 20.2 ± 1.6 

 

Each sIPSC parameter (mean ± SEM) was calculated, as detailed in Section 2.6.4. Note that the mean sIPSC amplitude for each cell, in each condition, was 

calculated using the largest 100 amplitude events. 

 

Table 5.2 – sIPSC parameters for cultured hippocampal neurons 

 
Control + 10 μM 4-PIOL Recovery 

Frequency (Hz) 6.9 ± 1.7 4.0 ±  1.6 * 8.0 ± 2.0 
Amplitude (pA) 2058 ± 672 872 ± 290 ** 1855 ± 701 

10-90 % rise time (ms) 2.0 ± 0.3 2.1 ± 0.3 1.8 ± 0.3 

Weighted tau (ms) 31.4 ± 3.0 31.7 ± 3.7 29.9 ± 3.1 

 

Each sIPSC parameter (mean ± SEM) was calculated as detailed in Section 2.6.4. Note that the mean sIPSC amplitude for each cell, in each condition, was 

calculated using the largest 100 amplitude events. *P < 0.05 and **P < 0.01.
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Figure 5.8 – 4-PIOL bidirectionally modulates elevated tonic currents in 

cultured hippocampal neurons. 

Representative traces of whole-cell currents elicited by prolonged applications of 0.3 (A) or 1 

μM (B) GABA (black horizontal bars). As indicated by the green horizontal bars, 10 μM 4-PIOL 

was co-applied, once a steady-state GABA current was achieved. The holding potential was -60 

mV. C. A Bar graph showing the percentage modulation induced by 10 μM 4-PIOL. Note that 

negative and positive values respectively represent an enhancement, or inhibition, of the 

steady-state GABA current.  
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5.3. Discussion  

In this chapter, the effects of 4-PIOL were assessed on tonic and phasic 

currents of cultured CGCs and hippocampal neurons, whose tonic currents are 

thought to be mediated by different GABAA receptor isoforms. 

 

5.3.1. 4-PIOL (10 μM) has no affect on tonic or phasic currents of CGCs 

As predicted from our recombinant expression studies, sIPSCs recorded from 

CGCs were unaffected by 10 μM 4-PIOL. Moreover, tonic currents were also 

unaffected by 10 μM 4-PIOL, even when ambient was GABA altered. These 

data concur with our recombinant expression studies, where 10 μM 4-PIOL did 

not significantly inhibit the ‘synaptic-type’ responses of α1β3γ2S receptors (Fig. 

4.6), or the ‘extrasynaptic-type’ responses of α6β2δ receptors (Fig. 4.10 B), the 

two main GABAA receptor isoforms likely to be expressed in CGCs (Laurie et 

al., 1992a; Thompson and Stephenson, 1994; Gao and Fritschy, 1995; Nusser 

et al., 1998).  

Only two studies have previously explored the agonist and antagonist profile of 

4-PIOL on CGCs. Though not measuring GABA currents and relying on an 

indirect binding assay, Rabe et al. (2000) demonstrated that a high 

concentration of 4-PIOL (300 μM) did not significantly alter the binding of 

[35S]TBPS (an open channel blocker) to CGC membranes, concluding a lack of 

4-PIOL agonist efficacy in this cell type. However, by using a more direct 

electrophysiological approach, Hansen et al. (2001) found that 4-PIOL acted as 

a weak partial agonist with a low potency (~ 300 μM). Thus, the low 4-PIOL 

agonist efficacy and potency might explain why no agonist profile was detected 

using the [35S]TBPS binding assay (Rabe et al., 2000), and also why 10 μM 4-

PIOL produced no enhancement of CGC tonic currents in this study.  
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5.3.2. 4-PIOL significantly inhibits phasic currents in hippocampal neurons 

By comparison with CGCs, in cultured hippocampal neurons, 10 μM 4-PIOL 

significantly reduced the amplitude and frequency of sIPSCs, which was 

coupled with an enhancement of tonic currents. The inhibition of sIPSC 

amplitude was particularly surprising, since 10 μM 4-PIOL did not significantly 

inhibit the ‘synaptic-type’ responses of recombinant α1β3γ2L receptors (Fig. 

4.3), or synaptic events in CGCs. The reduction in sIPSC amplitude might arise 

from 4-PIOL directly inhibiting a subset of synaptic GABAA receptors in 

hippocampal neurons, which are not expressed in CGCs. For instance, it is 

intriguing to note that the α2 subunit is prominently expressed in the 

hippocampus, but shows only low levels of expression in CGCs (Laurie et al., 

1992a; Sperk et al., 1997; Pirker et al., 2000; Hörtnagl et al., 2013). Moreover, 

although α1β3γ2 receptors significantly contribute to sIPSCs in CA1 pyramidal 

neurons (Prenosil et al., 2006), a significant, emerging role for α2βγ2 receptors 

has also been demonstrated (Prenosil et al., 2006). Therefore, it might be 

interesting to assess the effects of 4-PIOL on the peak GABA responses of 

recombinant α2βγ2L receptors expressed in HEK293 cells. 

The reduction in IPSC frequency most likely indicates that 4-PIOL also acts on 

presynaptic GABAA receptors. The simplest explanation is that 4-PIOL activates 

presynaptic GABAA receptors (Kullmann et al., 2005), which hyperpolarise 

presynaptic axon terminals or pre-terminal regions, and leads to a reduction in 

neuronal excitability and consequently, reduced GABA release. However, this is 

unlikely since Cl- appears to be largely depolarising in axonal and synaptic 

compartments (Zhang and Jackson, 1993; Ruiz et al., 2010). Indeed axonal 

depolarisation has been demonstrated to either increase, or decrease, 

neurotransmitter release (Zhang and Jackson, 1993; Turecek and Trussell, 

2002; Axmacher and Draguhn, 2004; Ruiz et al., 2010) depending on the 

synapse studied and presumably on the concentration of intracellular Cl- (Ruiz 

et al., 2003). At inhibitory synapses in the hippocampus, it was previously 

demonstrated that GABAA receptor agonists reduce the frequency of IPSCs 

recorded from CA3 pyramidal neurons (Axmacher and Draguhn, 2004), in 

accord with our findings, assuming that 4-PIOL is activating presynaptic GABAA 
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receptors. Although the precise mechanism(s) leading to reduced 

neurotransmitter release remain uncertain, possible explanations might include 

a depolarisation-induced inactivation of Na+ (or Ca2+) channels, and/or a 

shunting of excitatory potentials. 

It is important to note that although we found a prominent presynaptic effect of 

4-PIOL in vitro, it is unclear whether this presynaptic effect will be retained in 

vivo, especially since hippocampal neurons in culture have less well defined 

synaptic connections. Therefore, it would be interesting to assess whether the 

effects of 4-PIOL on phasic conductances differs in acute brain slices, where 

many more of the original synaptic inputs are conserved. 

 

5.3.3. 4-PIOL bidirectionally modulates the tonic currents of hippocampal 

neurons 

When the GABA concentration was low, 4-PIOL generated an inward current, 

which is consistent with the previously described weak partial agonist profile of 

4-PIOL on cultured hippocampal neurons (Kristiansen et al., 1995). However, 

when the ambient GABA concentration was raised to 1 μM GABA, 4-PIOL 

switched its action to that of an antagonist, albeit producing only a modest (~ 12 

%) inhibition of the steady-state 1 μM GABA current. These data emulate our 

findings for recombinant α1β3γ2L and α5β3γ2L receptors (Fig. 4.13), where 4-

PIOL exhibited a dominant agonist profile at low ambient GABA concentrations, 

but produced a modest inhibition when the ambient GABA concentration was 

raised to 1 μM. 

Although hippocampal neurons likely express an array of GABAA receptor 

isoforms, including α5βγ2L, α4βδ and αβ receptors (Mangan et al., 2005; 

Mortensen and Smart, 2006; Glykys et al., 2008), we would predict that the 

agonist profile of 4-PIOL in hippocampal neurons is predominantly mediated by 

γ2-containing receptors since the 4-PIOL current in hippocampal neurons was 

previously demonstrated to be positively modulated by the benzodiazepine 
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agonist, midazolam (Kristiansen et al., 1995). Moreover, our recombinant 

expression studies suggest that 4-PIOL shows no significant agonist efficacy at 

δ-containing receptors (Section 4.2.1). Given that α5β3γ2L receptors are 

proposed to be the major mediators of tonic conductances in hippocampal 

pyramidal neurons (Bai et al., 2001; Caraiscos et al., 2004; Glykys et al., 2008), 

4-PIOL may be activating this receptor isoform, especially since a small agonist 

response was observed with 10 μM 4-PIOL on recombinant  α5β3γ2L receptors 

(see Chapter 4). However, other γ2-receptor isoforms may also be involved, 

since tonic currents in CA1 pyramidal neurons have been demonstrated to be 

potentiated by the non-benzodiazepine agonist, zolpidem, indicating the 

additional presence of extrasynaptic α(1, 2 or 3)βγ2 receptors (Liang et al., 

2004).  

Overall, 10 μM 4-PIOL does not significantly affect phasic, or tonic, currents of 

cultured CGCs. By contrast, 10 μM 4-PIOL respectively enhances and inhibits 

the tonic and phasic currents of cultured hippocampal neurons, although a small 

inhibition of tonic currents can be achieved by raising ambient GABA to 1 μM.  
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5.4. Conclusion 

1. The sIPSC properties of cultured CGCs are unaltered by 10 μM 4-PIOL. 

 

2. 4-PIOL (10 μM) exhibits no discernible agonist, or antagonist, profile on 

CGC tonic currents. 

 

 

3. 4-PIOL (10 μM) significantly reduces the frequency and amplitude of 

sIPSCs in hippocampal cultures. 

 

 

4. In hippocampal neurons, 4-PIOL (10 µM) exhibits a dominant agonist 

profile at low ambient GABA concentrations, although a small inhibition 

can be achieved by raising the ambient GABA concentration to 1 µM 

GABA. 
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Chapter 6: Pharmacological characterisation of 4-PIOL in Thalamic relay 
neurons 

 

6.1. Introduction 

Our previous recombinant expression studies (see Chapter 4) indicated that by 

considering all the extrasynaptic GABAA receptor subtypes that were studied, 

α4βδ, α6βδ, α5βγ2L and α1βγ2L, only the GABA responses from extrasynaptic-

type α4βδ receptors were substantially inhibited by 10 µM 4-PIOL. The extent of 

the inhibition was ~ 30 – 70 % when the ambient GABA concentration ranged 

from 0.1 – 1 µM GABA (see Figs. 4.11 – 4.13).  

To further examine whether 10 µM 4-PIOL could selectively inhibit α4βδ-

mediated tonic currents in neurons, the functional effects of 4-PIOL were 

assessed on tonic and phasic currents of dLGN relay neurons. Relay neurons 

of the dLGN are reported to exhibit tonic currents that are mediated by 

extrasynaptic GABAA receptors composed of α4βδ subunits (Belelli et al., 2005; 

Cope et al., 2005; Bright et al., 2007; Nani et al., 2013; Ye et al., 2013). 

The dLGN receives sensory inputs from retinal ganglion cells, and acts as a 

processing centre for visual information. Signals are transmitted from the dLGN 

to the primary visual cortex and the RTN via TC relay neurons. These 

reciprocally provide excitatory and inhibitory inputs back onto the dLGN relay 

neurons (see Fig. 6.1). In rodents, the dLGN is the only thalamic nucleus in 

which relay neurons are additionally modulated by local GABAergic 

interneurons (Ohara et al., 1983). Thalamocortical networks are involved in the 

generation of normal behaviours such as sleep and arousal (Steriade et al., 

1993; McCormick and Bal, 1997), and abnormal activity in these circuits 

contributes towards the generation of absence seizures (see Section 1.3.3). 
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In addition to tonic currents in dLGN relay neurons that are largely mediated by 

α4βδ receptors, phasic currents are predominantly mediated by α1βγ2 

receptors. However, α2βγ2 receptors are also reported to mediate dLGN phasic 

currents during the first postnatal month of development (Soltesz et al., 1990; 

Okada et al., 2000; Peden et al., 2008). Here, the effects of 4-PIOL were 

assessed on phasic and tonic currents of dLGN relay neurons in coronal brain 

slices taken from young (postnatal day 14) rats. 

 

 

Figure 6.1 – Schematic of thalamocortical circuitry 

Thalamocortical (TC) relay neurons of the dorsal lateral geniculate nucleus (dLGN) receive 

sensory inputs from retinal ganglion cells, and send excitatory projections to the thalamic 

reticular nucleus (RTN), and the primary visual cortex (red). TC relay neurons reciprocally 

receive excitatory inputs from corticothalamic (CT) relay neurons, and inhibitory inputs from 

local and RTN interneurons (black). 

RTN
TC

CT

CORTEX
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6.2. Results  

Acute brain slices were prepared as described in Section 2.6.2, and maintained 

in control aCSF prior to experimentation. Whole-cell currents were recorded 

from a single dLGN relay neuron per brain slice at room temperature. All 

recordings were performed in the presence of kynurenic acid (2 mM) to isolate 

GABAergic currents, and BIC (20 μM) was bath applied at the end of each 

experiment, to confirm the GABAergic origin of all synaptic events, and unveil 

any GABAA receptor mediated tonic current. The frequency, amplitude and rise 

time of sIPSCs were determined as described in Section 2.6.4. To quantify 

changes in the tonic currents, drug-induced changes in holding current and 

RMS baseline noise were measured, as detailed in Section 2.6.5. To account 

for cell-to-cell variability in size, changes in holding current will be expressed as 

current density (pA/pF), which was calculated by normalising drug-induced 

changes in holding current (pA) to whole-cell capacitance (pF).  

 

6.2.1. Characterising tonic and phasic currents in dLGN neurons 

The dLGN was identified in coronal brain slices by its position relative to the 

hippocampus, and the ventral lateral geniculate nucleus (vLGN; Fig. 6.2 A). In 

rodents, the visual thalamus (dLGN) contains both thalamic relay neurons, and 

GABAergic interneurons (Ohara et al., 1983). Previous studies indicate that 

dLGN interneurons display far higher input resistances (> 500 MΩ), a smaller 

soma and distinct (bipolar) morphologies compared to thalamic relay neurons 

(Sherman and Koch, 1986; Williams et al., 1996; Zhu et al., 1999; Bright et al., 

2007; Krahe et al., 2011). Moreover, while dLGN relay neurons have been 

demonstrated to exhibit GABAA receptor mediated tonic currents (Cope et al., 

2005; Bright et al., 2007; Ye et al., 2013), this tonic conductance is absent in 

dLGN interneurons (Bright et al., 2007), which is a useful diagnostic identifier of 

this cell type. 
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To further distinguish between interneurons and relay neurons, the input 

resistance and whole-cell capacitance was determined for all dLGN neurons. 

However, in control aCSF, dLGN neurons displayed a wide range of input 

resistances and membrane capacitances, which showed no significant 

correlation (Fig. 6.2 B; P = 0.998). Thus, it was difficult to assign individual 

neurons as interneurons, or relay neurons, based purely on these parameters. 

As an alternative, the morphologies of some cells was investigated, by filling 

cells with the fluorescent dye, Lucifer yellow, via the recording electrode, and 

imaging the filled cells (Section 2.7). A representative image of a filled cell is 

shown in Fig. 6.2 C, demonstrating that that the dendrites of these cells were 

radially distributed (Fig. 6.2 C), which is consistent with the morphology of 

dLGN relay neurons (Williams et al., 1996; Bright et al., 2007; Krahe et al., 

2011).  

Thus, we had to rely on the presence, or absence, of a tonic current to identify 

thalamic relay cells. For all cells, the presence of a tonic current was probed 

using the GABAA receptor antagonist, BIC. BIC application induced an outward 

current (Fig. 6.2 D), relative to the holding current recorded in control aCSF (i.e. 

with no exogenously-added GABA). This shift had a mean magnitude of 23.8 ± 

2.08 pA (e.g. Fig. 6.2 D), which when normalised to whole-cell capacitance, 

corresponded to a tonic GABAA receptor current of 0.13 ± 0.01 pA/pF. 

Concurrently, BIC also reduced the RMS baseline noise, by 9.6 ± 1.5 pA, 

consistent with the closing of tonically-active GABAA receptors. A high 

frequency of IPSCs (11.5 ± 1.6 Hz) was detected from dLGN relay neurons, 

with a mean amplitude and rise time of 56.4 ± 4.3 pA and 2.5 ± 0.2 ms 

respectively. All sIPSCs were also abolished by BIC application, confirming 

GABAergic origin (Fig. 6.2 D). The mean values determined for each sIPSC 

parameter, and BIC-sensitive tonic currents, are listed in Table 6.1 and 6.2 

respectively. 
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Figure 6.2 – Characterisation of dLGN relay neurons 

A. Schematic diagram of a coronal brain slice, showing the location of the dorsal lateral 

geniculate nucleus (dLGN), the ventral lateral geniculate nucleus (vLGN) and the hippocampus. 

B. Scatter plot of the input resistance against membrane capacitance recorded for all cells from 

the dLGN bathed in control aCSF (n = 85). Linear regression analysis was performed on these 

data (red line), and R and P represent Pearson’s correlation coefficient and P-values 

respectively. Input resistance and membrane capacitance were measured from transient current 

changes induced by 10 mV hyperpolarising steps. C. Representative confocal image of a dLGN 

relay neuron filled with Lucifer yellow via the recording electrode. Image represents a Z-

projection of 45 (x 2 µm) stacks. D. Representative whole-cell current trace from a dLGN relay 

neuron. Bath application of BIC (20 µM) reveals a GABAA receptor mediated tonic current, and 

blocks all sIPSCs. All recordings were performed at room temperature in the presence of 

kynurenic acid (2 mM), and the holding potential was -60 mV. 
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6.2.2. 4-PIOL modulation of dLGN tonic and phasic currents  

According to our recombinant expression studies (Chapter 4), 10 µM 4-PIOL 

showed no discernible agonist activity at recombinant α4βδ receptors, but was 

predicted to reduce α4βδ-mediated tonic currents, assuming that the ambient 

GABA concentration in slices is 0.1 – 1 µM GABA (Figs. 4.11 – 4.13). Moreover, 

10 µM 4-PIOL did not inhibit the ‘synaptic-type’ responses of recombinant 

α1βγ2L receptors. Thus, we might expect 4-PIOL to exert similar effects on 

dLGN phasic and tonic currents, which are respectively thought to be mediated 

by α1βγ2L and α4βδ receptors respectively (Cope et al., 2005; Bright et al., 

2007; Ye et al., 2013).  

Therefore, it was unexpected that bath application of 10 µM 4-PIOL to dLGN 

slices significantly enhanced tonic currents by 57.4 ± 3.3 pA (Fig. 6.3 A), which 

corresponded to a current density of 0.34 ± 0.03 pA/pF. 4-PIOL also increased 

the RMS baseline noise by 13.2 ± 1.6 pA; Table 6.3). To verify that this 4-PIOL-

induced increase in tonic current was mediated by GABAA receptors, we 

assessed its sensitivity to BIC. For each cell, a control response to 10 μM 4-

PIOL was first recorded and washed out, prior to a second 4-PIOL application 

co-applied with BIC (Fig. 6.3 A). The 4-PIOL current was abolished in the 

presence of BIC (% control 4-PIOL response: 2.2 ± 0.5; Fig. 6.3 B), as was the 

4-PIOL-induced change in RMS baseline noise (Fig. 6.3 C), indicating that 4-

PIOL was indeed activating GABAA receptors.  

Notably, 4-PIOL also reduced both the frequency (% control: 13.3 ± 2.2 %; Fig. 

6.4 A and B; P = 0.001) and amplitude of sIPSCs (% control: 71.8 ± 2.7 %; Fig. 

6.4 A and C; P = 0.01) relative to those measured in control aCSF. Although 4-

PIOL appeared to reduce the 10 – 90 % rise time of sIPSCs (Fig. 6.4 D; P = 

0.0002), this effect was not reversed by washout of 4-PIOL (Fig. 6.4 D; P = 

0.09), indicating that factors independent of 4-PIOL application may underlie the 

slower activation profile of sIPSCs. Due to the low frequency of sIPSCs, and 

increased RMS baseline noise in 4-PIOL (13.2 ± 1.6 pA; Table 6.2), no detailed 

analysis of sIPSC decay times was performed. Taken together, these data 

indicate that 4-PIOL enhanced dLGN tonic currents, possibly by a direct agonist 
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action at extrasynaptic GABAA receptors, and simultaneously inhibited the 

frequency and amplitude of sIPSCs (discussed further in Section 6.3.1).  

 

 

 

Figure 6.3 – 4-PIOL enhances GABAergic tonic currents in dLGN relay 

neurons 

A. Representative membrane current trace recorded from a dLGN relay neuron in response to 

bath applied 4-PIOL (10 µM) in the absence, or presence, of BIC (20 µM). 4-PIOL and BIC were 

respectively applied for the durations indicated by the green and black horizontal bars. B. Bar 

chart of 4-PIOL response in BIC (green), expressed as a percentage of the control 4-PIOL 

response (black) recorded from the same dLGN relay neuron. C. Bar chart of the change in 

RMS baseline noise induced by 4-PIOL, in the absence (black) and presence (green) of BIC.  
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Figure 6.4 – sIPSC parameters for dLGN relay neurons 

A. Representative sIPSCs recorded from dLGN relay neurons, in control aCSF (black), or 

during 4-PIOL (10 µM) treatment. All recordings were performed at room temperature, in the 

presence of kynurenic acid (2 mM). Bar graphs showing the normalised data for sIPSC 

frequency (B), amplitude (C) and 10-90 % rise time (D) in control aCSF (black), or aCSF 

containing 4-PIOL (green). For each cell, sIPSC parameters were calculated as described in 

Section 2.6.4, and these data represent the mean (± SEM) data from 6 cells. Paired t-tests were 

used to compare sIPSC parameters and data were classified as not statistically significant (ns) if 

P > 0.05. *P < 0.05, **P < 0.01 and ***P < 0.001. Note that the non-normalised sIPSC 

parameters are listed in Table 6.1. 
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Table 6.1 – sIPSC parameters for dLGN relay neurons 

 

 

 

 

Each sIPSC parameter (mean ± SEM; n = 6) was calculated as detailed in Section 2.6.4.  Note that the mean sIPSC amplitude for each cell, in each condition, 

was calculated using the largest 100 amplitude events. Statistical analyses were performed relative to control, with *P < 0.05 and **P < 0.01. 

 
Control + 10 μM 4-PIOL Recovery 

Frequency (Hz) 11.5 ± 1.6 1.5 ± 0.3** 10.2 ± 1.6 

Amplitude (pA) 56.4 ± 4.3 40.2 ± 2.7* 49.0 ± 2.6 

10-90 % rise time (ms) 2.5 ± 0.2 3.1 ± 0.2 2.9 ± 0.3 
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6.2.3. DS2 modulation of the 4-PIOL current 

To investigate whether the 4-PIOL current in dLGN relay neurons was mediated 

by δ–containing receptors, we investigated whether the 4-PIOL current could be 

modulated by the δ-selective positive allosteric modulator, DS2 (Wafford et al., 

2009; Jensen et al., 2013). A concentration of 10 μM DS2 was chosen, since 

this concentration was reported previously to potentiate δ-mediated GABA 

currents in recombinant expression systems and thalamic relay neurons 

(Wafford et al., 2009; Jensen et al., 2013; Ye et al., 2013). For each cell, a 

control response to 10 μM 4-PIOL was first recorded (and washed out), followed 

by a second response to 10 μM 4-PIOL in the presence of pre-applied 10 μM 

DS2 (Fig. 6.5 A). As expected, DS2 significantly enhanced dLGN tonic currents 

(Fig. 6.5 A), giving rise to a BIC-sensitive tonic current that was significantly 

greater than that measured in control aCSF (1.0 ± 0.3 pA/pF; Fig. 6.5 B; P = 

0.002). Intriguingly, DS2 also potentiated the 4-PIOL current (% control 4-PIOL 

response: 236.3 ± 28.9; Fig. 6.5 C; P < 0.0001), indicating that the 4-PIOL 

current in dLGN relay neurons might also be mediated by δ-containing 

receptors.  

Since the modulatory actions of DS2 have only been characterised on GABA-

mediated currents (Wafford et al., 2009; Jensen et al., 2013), and not currents 

evoked by other GABAA receptor agonists, we investigated the DS2 modulation 

of the 4-PIOL current using recombinant α1β3γ2L and α4β2δ receptors. These 

two receptor isoforms were chosen because they represent the major synaptic 

and extrasynaptic GABAA receptor subtypes thought to be expressed in dLGN 

relay neurons (Soltesz et al., 1990; Okada et al., 2000; Pirker et al., 2000; Cope 

et al., 2005; Bright et al., 2007; Hörtnagl et al., 2013; Nani et al., 2013). 
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Figure 6.5 – DS2 modulation of dLGN tonic and 4-PIOL currents 

A. Representative membrane current trace recorded from a dLGN relay neuron, in response to 

bath applied 4-PIOL (10 µM) in the absence, or presence, of DS2 (10 µM). Bicuculline (BIC; 20 

µM) was applied at the end of each experiment. 4-PIOL, DS2 and BIC were respectively applied 

for the duration indicated by the green, yellow and black horizontal bars. B. Bar graph of BIC 

current density under control conditions (ctrl; black), or in the presence of DS2 (yellow). For 

each cell, the current change (pA) induced by BIC was normalised to the whole-cell capacitance 

(pF), and data represents the mean (± SEM) BIC current density (pA/pF) from 30 (control), or 5 

(+ DS2) cells. C. Bar graph of the 4-PIOL response in DS2 (green), expressed as a percentage 

of the control 4-PIOL response (black) recorded from the same dLGN relay neuron (n = 5). An 

unpaired (B), or a paired t-test (C) was used to assess for statistical significance. **P < 0.01 and 

***P < 0.001. 
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Whole-cell currents were recorded from HEK293 cells expressing recombinant 

α4β2δ (Fig. 6.6 A), or α1β3γ2L (Fig. 6.6 B) receptors, in response to brief 

applications of 10 μM 4-PIOL, in the absence, or presence, of pre-applied 10 

μM DS2. Under control conditions, 10 μM 4-PIOL elicited no discernible agonist 

response at α4β2δ receptors (Fig. 6.6 A), but produced a small inward current 

at α1β3γ2L receptors (Fig. 6.6 B), in accord with our previous findings (see 

Chapter 4). Strikingly however, 4-PIOL co-application with DS2, unveiled an 

agonist current at α4β2δ receptors, which was 8.9 ± 3.8 % (Fig. 6.6 A; P = 

0.047) of the response achieved by 1 mM GABA applied to the same cell. 

Unexpectedly, DS2 also potentiated the 4-PIOL current mediated at α1β3γ2L 

receptors (% control 4-PIOL current: 153.8 ± 24.7 %; Fig. 6.6 B; P = 0.017), 

albeit to a lesser extent than that observed for α4β2δ receptors. These findings 

make it difficult to interpret the DS2-mediated potentiation of the 4-PIOL current 

in dLGN relay neurons, since DS2 may be unveiling a δ-mediated component to 

the 4-PIOL current, which may not be present under control conditions. 
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Figure 6.6 – DS2 modulation of recombinant α4β2δ and α1β3γ2L 4-PIOL 

responses 

Example 10 μM 4-PIOL current traces (top panels) for recombinant α4β2δ (A) and α1β3γ2L (B) 

expressed in HEK293 cells, in the absence (black), or presence of DS2 (green; 10 μM). Bar 

graphs represent the mean (± SEM) normalised 4-PIOL response under control (ctrl; black) and 

DS2 (green) treated conditions. For α4β2δ-expressing cells, 4-PIOL current responses were 

normalised to the current response evoked by a saturating concentration of GABA (1 mM), 

which was applied to the same cell (n = 5). For α1β3γ2L receptors, the 4-PIOL response 

recorded in the presence of DS2 is expressed as a percentage of the control 4-PIOL response 

recorded from the same HEK293 cell (n = 6). Paired t-tests were used to assess statistical 

significance. *P < 0.05 and **P < 0.01.  
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6.2.4. THIP modulation of the 4-PIOL current 

To further investigate whether the 4-PIOL current in dLGN relay neurons was 

mediated by δ–containing receptors, we assessed the ability of 4-PIOL to 

compete with a δ-selective concentration of the GABAA receptor agonist, THIP 

(1 µM: Brown et al., 2002; Stórustovu and Ebert, 2006; Mortensen et al., 2010). 

If THIP and 4-PIOL are competing for the same orthosteric binding site, we 

might expect that the pre-application of THIP would reduce the 4-PIOL current, 

or vice versa. To investigate this possibility, 1 µM THIP was pre-applied to 

recombinant α4β2δ receptors expressed in HEK293 cells, until a steady-state 

current was achieved, and subsequently 10 μM 4-PIOL was co-applied with 

THIP (Fig. 6.7 A). Strikingly, 4-PIOL co-application reduced the steady-state 

THIP current, by 56.8 ± 5.7 %, suggesting that 4-PIOL can potently compete 

with THIP for the orthosteric binding site. It is unlikely that 4-PIOL is producing 

this effect via an allosteric binding site, since the structure of 4-PIOL suggests 

that it would fit the orthosteric binding site. Moreover, 4-PIOL induced a parallel 

rightward shift in the GABA concentration-response curve for recombinant α4βδ 

receptors, indicating that they both compete for the same (orthosteric) binding 

site (see Appendix 1). 

If 4-PIOL is acting on δ-containing receptors in dLGN relay neurons, we might 

also expect 4-PIOL (10 μM) to reduce the steady-state THIP (1 μM) current in 

dLGN relay neurons. To first confirm the presence of a δ-mediated THIP 

current, whole-cell currents were recorded from dLGN relay neurons, in 

response to 1 μM THIP (Fig. 6.7 B). As expected, THIP significantly enhanced 

the dLGN tonic current by 0.53 ± 0.06 pA/pF, confirming the functional 

expression of δ-containing receptors in dLGN relay neurons. Curiously, co-

application of 4-PIOL with THIP generated an inward current with a mean 

current that was similar to the control 4-PIOL current (0.35 ± 0.06 pA/pF and 

0.34 ± 0.03 pA/pF respectively; Fig. 6.7 C; Table 6.3; P = 0.67). These data 

indicate that THIP and 4-PIOL may not be competing for the same δ-containing 

receptor(s), in dLGN relay neurons. 
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Figure 6.7 –THIP modulation of 4-PIOL currents 

Representative membrane current trace recorded from an α4β2δ-expressing HEK293 cell (A) or 

a dLGN relay neuron (B) in response to THIP (1 µM) and 4-PIOL (10 µM). The yellow and green 

horizontal bars, respectively, indicate the duration of THIP and 4-PIOL application. C. Bar graph 

of 4-PIOL current recorded from dLGN relay neurons in the absence (black), or presence, of 

THIP. For each cell (n = 4), 4-PIOL-induced current changes were normalised to whole-cell 

capacitance (pF). Data represent mean ± SEM.   
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If THIP and 4-PIOL are acting on different GABAA receptors, no significant 

correlation would be expected between the THIP and 4-PIOL responses of 

different dLGN relay neurons. To explore this possibility, 10 μM 4-PIOL and 1 

μM THIP were individually applied to each dLGN relay neuron (Fig. 6.8 A), and 

a scatter plot was generated to compare the THIP and 4-PIOL currents for each 

cell (Fig. 6.8 B). Indeed, linear regression analysis revealed that there was no 

significant correlation between these two currents (Pearson’s correlation 

coefficient, R = -0.31; P = 0.28), indicating that 4-PIOL was activating a distinct 

receptor population from the δ-containing receptors activated by THIP. 

Given that tonic currents in dLGN relay neurons are largely mediated by δ-

containing receptors (Cope et al., 2005; Bright et al., 2007; Nani et al., 2013; Ye 

et al., 2013), we also investigated whether there was any correlation between 

the THIP and BIC currents for individual dLGN relay neurons. A new scatter plot 

comparing these currents revealed a positive correlation (Fig. 6.8 C; R = 0.61; P 

= 0.02), indicating that cells with a larger THIP induced current (and hence a 

higher expression of δ-containing receptors), also display a larger GABAA 

receptor mediated tonic current. These data indicate that a higher expression of 

δ-containing receptors may underlie the larger tonic currents, although other 

factors, such as the ambient GABA concentration, will also be important.  

Since 4-PIOL and THIP are likely to be acting on different GABAA receptors in 

dLGN relay neurons, it was intriguing to explore whether receptors mediating 

the 4-PIOL current, also contribute to dLGN tonic currents. Therefore, another 

scatter plot was generated to compare the 4-PIOL and BIC currents recorded 

from individual dLGN relay neurons (Fig. 6.8 D). No significant correlation was 

observed between 4-PIOL and BIC currents (Fig. 6.8 D; R = 0.32; P = 0.17), 

indicating that the receptors that mediate the 4-PIOL current, are unlikely to 

contribute significantly to GABAA receptor mediated tonic currents in dLGN 

relay neurons, under our experimental conditions. 
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Figure 6.8 – Correlational analysis of dLGN THIP, BIC and 4-PIOL currents 

A. Representative membrane current trace recorded from a dLGN relay neuron in response to 

individual applications of THIP (1 µM) and 4-PIOL (10 µM). The green and blue horizontal bars 

indicate the duration of 4-PIOL and THIP application respectively. Scatter plots of 4-PIOL 

current density versus the THIP current density (B), THIP current density versus BIC current 

density (C), and 4-PIOL current density versus BIC current density (D). Linear regression 

analysis was performed on these data (red lines), and R and P represent Pearson’s correlation 

coefficient and P-values, respectively. 
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6.2.5. Diazepam modulation of the 4-PIOL current 

Since 4-PIOL activated recombinant γ2-containing receptors, but not 

recombinant δ-containing receptors, the possibility that 4-PIOL was activating a 

population of γ2-containing receptors in dLGN relay neurons was explored. 

The presence of γ2-containing receptors was probed using the benzodiazepine 

agonist, diazepam (Pritchett et al., 1989). For each dLGN relay neuron, a 

control response to 10 μM 4-PIOL was first recorded (and subsequently washed 

out), followed by a second response to 10 μM 4-PIOL in the presence of pre-

applied 500 nM diazepam (Fig. 6.9 A). Unexpectedly, pre-application of 500 nM 

diazepam significantly increased the dLGN tonic current, giving rise to a BIC-

sensitive tonic current (0.24 ± 0.04 pA/pF) that was significantly greater than 

that measured in control aCSF (0.13 ± 0.01 pA/pF; Table 6.2; Fig. 6.9 B; P = 

0.003). These data will be discussed in more detail in Section 6.3.4. Diazepam 

also increased the amplitude of the IPSCs suggesting that GABA release at 

these inhibitory synapses was not saturating. 

Co-application of 4-PIOL with diazepam revealed a significantly larger inward 

current than the control 4-PIOL current (% control 4-PIOL response: 160.3 ± 

14.3 %; Fig. 6.9 C; P = 0.003), indicating that the 4-PIOL current is likely to be 

mediated by γ2-containing receptors in dLGN relay neurons. As a control, 

whole-cell currents were also recorded from dLGN relay neurons, exposed to 

two sequential applications of 4-PIOL (10 μM) in the absence of diazepam (Fig. 

6.9 A). No potentiation of the second 4-PIOL response was observed in the 

absence of diazepam (% control 4-PIOL response: 99.1 ± 7.6; P = 0.97).  
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Figure 6.9 – Diazepam modulation of dLGN tonic and 4-PIOL currents 

A. Representative membrane current trace recorded from a dLGN relay neuron in response to 

bath applied 4-PIOL (10 µM) in the absence, or presence, of diazepam (500 nM). Bicuculline 

(BIC; 20 µM) was applied at the end of each experiment. 4-PIOL, diazepam and BIC were 

respectively applied for the durations indicated by the green, yellow and black horizontal bars. 

B. Bar graph of BIC current density under control conditions (ctrl; black), or in the presence of 

diazepam (yellow). For each cell, the current change (pA) induced by BIC was normalised to 

whole-cell capacitance (pF), and data represents the mean (± SEM) BIC current density (pA/pF) 

from 30 (control), or 5 (+ DZP), cells. C. Bar graph of the 4-PIOL response in diazepam (green), 

expressed as a percentage of the control 4-PIOL response (black) recorded from the same 

dLGN relay neuron. An unpaired (B), or a paired t-test (C) was used to assess for statistical 

significance. **P < 0.01. 
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Although diazepam is established to only potentiate the agonist responses of 

γ2-containing GABAA receptors (Pritchett et al., 1989), this was verified using a 

recombinant HEK293 expression system. Whole-cell currents were recorded 

from α4β2δ- (Fig. 6.10 A) or α1β3γ2L- (Fig. 6.10 B) expressing cells in 

response to brief applications of 4-PIOL (10 μM), either in the absence, or 

presence, of pre-applied diazepam (500 nM). As expected, 4-PIOL (10 μM) 

elicited no discernible agonist response at α4β2δ receptors, either in the 

absence, or presence, of diazepam (Fig. 6.10 A). A saturating concentration of 

GABA (1 mM) was also applied to each α4β2δ-expressing cell, to confirm the 

functional expression of α4β2δ receptors (Fig. 6.10 A). By contrast, at α1β3γ2L 

receptors (Fig. 6.10 B), diazepam significantly potentiated the 4-PIOL response 

(% control response: 246.6 ± 50.1; Fig. 6.10 C).  

Thus, although δ-containing receptors are expressed in dLGN relay neurons, 

the 4-PIOL current appears to be largely mediated by γ2-containing receptors, 

with little, or no, contribution from δ-containing receptors. 
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Figure 6.10 – Diazepam modulation of 4-PIOL currents at recombinant 

α4β2δ and α1β3γ2L receptors  

A. Example whole-cell membrane current traces for recombinant α4β2δ receptors expressed in 

HEK293 cells, in response to GABA (1000 μM), or 4-PIOL (10 μM), in the absence, or 

presence, of diazepam (DZP; 500 nM). The durations of GABA, 4-PIOL and diazepam 

applications are respectively indicated by the blue, black and green horizontal bars. B. Example 

whole-cell membrane current traces for recombinant α1β3γ2L in the response to 4-PIOL (10 

μM) in the absence, or presence, of diazepam (500 nM). C. Bar graph of the 4-PIOL response 

in diazepam (green), expressed as a percentage of the control 4-PIOL response (black) 

recorded from the same α1β3γ2L-expressing HEK293 cell. Data represent mean ± SEM (n = 5; 

*P < 0.05).  
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6.2.6. 4-PIOL modulation of dLGN tonic currents is dependent on ambient 

GABA concentrations 

For recombinant α1β3γ2L receptors, 10 μM 4-PIOL enhanced the steady-state 

GABA current when the GABA concentration was low (~ 0.1 μM GABA), but 

produced a small inhibition of steady-state GABA current when the ambient 

GABA level was raised to 1 μM GABA (Fig. 4.11 – Fig. 4.13). In dLGN relay 

neurons, the robust 4-PIOL enhancement of baseline tonic currents (mainly via 

γ2-containing receptors) indicates that ambient GABA levels in the slice may be 

low. To determine whether 4-PIOL could switch from acting as an agonist (at 

low ambient GABA levels), to acting as an antagonist (at higher ambient GABA 

levels) in dLGN relay neurons, GABA levels were raised in slices, by inhibiting 

GABA uptake. Since GABA uptake in the thalamus is largely mediated by the 

GABA transporters, GAT1 and GAT3 (De Biasi et al., 1998), slices were pre-

incubated (for at least 30 min) in aCSF supplemented with the GAT1 inhibitor, 

NNC-711 (10 μM; Borden et al., 1994) and the GAT2/3 inhibitor, SNAP-5114 

(20 μM; Borden, 1996). These were both present throughout all subsequent 

electrophysiological recordings. Following a period of control recording (in the 

presence of the GAT inhibitors), 10 μM 4-PIOL was applied to dLGN relay 

neurons in treated slices, and subsequently washed out. BIC was applied to 

GAT-inhibited slices at the end of each experiment to measure the tonic current 

(Fig. 6.11 A). Notably, the BIC current was significantly larger in GAT blockers 

than in control aCSF (0.7 ± 0.1 pA/pF and 0.13 ± 0.01 pA/pF respectively; Fig. 

6.11 B; P < 0.0001), consistent with elevated ambient GABA levels in treated 

slices persistently activating extrasynaptic GABAA receptors. Curiously, cells 

from treated slices showed a lack of sIPSCs (Fig. 6.11 A). Although the 

mechanistic reason(s) for the lack of IPSCs remains unclear, the elevated 

GABA levels may have desensitised postsynaptic GABAA receptors, or reduced 

presynaptic release of GABA, via an activation of presynaptic GABAA and/or 

GABAB receptors. 
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Figure 6.11 – Increasing ambient GABA unveils the antagonist profile of 4-

PIOL 

A. Representative whole-cell membrane current traces recorded from a dLGN relay neurons, in 

response to bath applied 4-PIOL (10 µM) in the presence of GAT inhibitors (10 μM NNC-711 

and 20 μM SNAP-5114). Slices were incubated in aCSF supplemented with GAT inhibitors for 

at least 30 min prior to electrophysiological recordings. All recordings were performed at room 

temperature. B. Bar graph of BIC current in control aCSF (black; n = 30), or in the presence of 

GAT inhibitors (yellow; n = 25). For each cell, the current change (pA) induced by BIC was 

normalised to its whole-cell capacitance (pF), and data represents the mean ± SEM. C. Bar 

graph of the mean 4-PIOL current density measured in aCSF (black; n = 42), GAT inhibitors 

(yellow; n = 8), or GAT inhibitors supplemented with 1 μM (blue; n = 11), or 3 μM, GABA 

(magenta; n = 4). **P < 0.01 and ***P < 0.001. 
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Co-application of 4-PIOL with GAT inhibitors enhanced the tonic current by 0.29 

± 0.06 pA/pF (Fig. 6.11 A; Fig. 6.11 C). This 4-PIOL-induced current was similar 

to that observed in control aCSF (0.34 ± 0.03 pA/pF; Fig. 6.11 C; P = 0.47). This 

indicated that ambient GABA levels in the slice may still be too low to alter the 

response profile for 4-PIOL. To further increase ambient GABA levels, 1 μM and 

3 μM GABA were individually applied to GAT-inhibited slices, followed by co-

application with 10 μM 4-PIOL (Fig. 6.11 A). Both 1 μM and 3 μM GABA 

enhanced the baseline tonic current (Fig. 6.11 A) by 0.8 ± 0.1 and 1.6 ± 0.2 

pA/pF respectively. Co-application of 10 μM 4-PIOL with 1 μM GABA also 

elicited an inward current (Fig. 6.11 A), although the resultant 4-PIOL current 

was significantly smaller than that observed in control aCSF (0.19 ± 0.07 pA/pF; 

Fig. 6.11 C). By contrast, co-application of 10 μM 4-PIOL with 3 μM GABA 

produced an outward current (Fig. 6.11 A), with a mean current density of 8.4 ± 

4.1 pA/pF.  

Thus, as observed for recombinant α1β3γ2L receptors, 4-PIOL exhibited a 

dominant agonist profile at low GABA concentrations (< 1 μM), but produced a 

small inhibition of dLGN tonic currents when the ambient GABA concentration is 

increased. 
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Table 6.2 – Modulation of BIC-sensitive tonic currents in dLGN relay 

neurons 

Pre-applied drug BIC current density (pA/pF) Δ RMS noise (pA) 

Control aCSF 0.13 ± 0.01 (30) -9.6 ± 1.5 (41) 

DS2 (10 µM) 1.0 ± 0.3 (5) -23.4 ± 4.4 (5) 

Diazepam (0.5 µM) 0.24 ± 0.04 (9) -4.6 ± 0.5 (9) 

GAT inhibitors 0.7 ± 0.1 (25) -39.0 ± 7.5 (25) 

 

Values represent the change in tonic current density (pA/pF), or RMS baseline noise (pA) 

induced by BIC, relative to a control recording epoch in the presence of a pre-applied drug. 

Where GAT inhibitors were used, slices were incubated in 20 μM SNAP-5114 + 10 μM NNC-

711 for at least 30 min before patching onto a cell. Values are reported as mean ± SEM, and the 

number of cells for each condition, are indicated in parentheses.  

 

Table 6.3 – 4-PIOL regulation of dLGN tonic currents 

Pre-applied drug 4-PIOL current density 
(pA/pF) 

Δ RMS noise induced by 
4-PIOL (pA) 

Control aCSF -0.34 ± 0.03 (42) 13.2 ± 1.6 (42) 

+ Bicuculline (20 µM) -0.01 ± 0.002 (4) -0.8 ± 1.8 (4) 

+ THIP (1 µM) -0.35 ± 0.06 (4) 9.2 ± 1.3 (4) 

+ Diazepam (0.5 µM) -0.51 ± 0.06 (5) 10.6 ± 2.7 (5) 

+ DS2 (10 µM) -0.90 ± 0.18 (5) 21.6 ± 8.8 (5) 

+ GAT inhibitors -0.29 ± 0.06 (8) 4.8 ± 2.3 (8) 

+ GABA (1 µM) -0.19 ± 0.07 (11) 1.6 ± 1.6 (11) 

+ GABA (3 µM) 0.14 ± 0.04 (4) -8.4 ± 4.1 (4) 

 

Values represent the mean (± SEM) change in tonic current density (pA/pF) or RMS baseline 

noise (pA) induced by 4-PIOL (10 μM), relative to a control recording epoch in the presence of a 

pre-applied drug. For changes in holding current, negative values represent an inward current 

(i.e. enhancement of tonic current) and positive values indicate an outward current (reduction in 

tonic current). For changes in RMS baseline noise, positive values represent enhanced tonic 

currents and negative values signify a decrease.  
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6.3. Discussion 

In this chapter, the effects of 10 μM 4-PIOL were investigated on the tonic and 

phasic currents from dLGN relay neurons, to probe whether 4-PIOL could 

selectively inhibit tonic currents in the thalamus. Unexpectedly, 4-PIOL 

enhanced dLGN tonic currents (see Section 6.3.3), yet reduced both the 

frequency and amplitude of sIPSCs (see Section 6.3.1). Both effects were 

unexpected since our recombinant expression studies (see Chapter 4) indicated 

that 4-PIOL (10 μM) should clearly inhibit α4β2δ-mediated tonic currents, 

without significantly affecting α1β3γ2-mediated phasic currents.  

 

6.3.1. 4-PIOL inhibits phasic currents in dLGN relay neurons 

The reduced sIPSC amplitude was surprising, since 4-PIOL (10 μM) did not 

inhibit ‘synaptic-type’ responses of recombinant α1β3γ2L receptors (Fig. 4.3). 

This reduction in sIPSC amplitude might arise from 4-PIOL directly inhibiting 

synaptic receptor isoforms other than α1β3γ2L receptors. For instance, in the 

dLGN, the α2 subunit has been suggested to contribute to sIPSCs early in 

postnatal development (Okada et al., 2000; Peden et al., 2008). Since our 

experiments were conducted on the thalamic slices from young (postnatal day 

14) rats, α2-containing receptors may also have been present in our 

preparation, and 4-PIOL might differentially modulate this receptor isoform. It 

might therefore be interesting to assess the actions of 4-PIOL on recombinant 

α2-containing receptors. 

The effect on IPSC frequency by 4-PIOL indicates that 4-PIOL may act on 

presynaptic GABAA receptors to reduce GABA release (potential mechanisms 

are discussed in Section 5.3.2). However, this reduction in IPSC frequency 

might also reflect a reduced ability to detect lower amplitude IPSCs in 4-PIOL, 

since this compound increased the RMS baseline noise of dLGN relay neurons 
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(by ~ 13 pA). Thus it is difficult to distinguish between a presynaptic effect and a 

postsynaptic effect from these data.  

 

6.3.2. DS2 (10 μM) modulates both α4β2δ and α1β3γ2L receptors 

In dLGN relay neurons, the 4-PIOL current was potentiated by the δ-selective, 

positive allosteric modulator, DS2 (Wafford et al., 2009; Jensen et al., 2013). 

However, DS2 also unveiled a previously undetected 4-PIOL current at 

recombinant α4β2δ receptors, and unexpectedly, also potentiated the 4-PIOL 

current at recombinant α1β3γ2L receptors. Therefore, although α4β2δ 

receptors might contribute to the 4-PIOL response in dLGN relay neurons, DS2 

might also be unveiling a δ-mediated component to the 4-PIOL current, which 

may not have been present under control conditions, or it may also be 

potentiating the 4-PIOL current at γ2-containing receptors (discussed further in 

Section 6.3.3). The DS2 modulation of α1β3γ2L receptors was particularly 

surprising, given its reported δ-selective profile (Wafford et al., 2009; Jensen et 

al., 2013). However, it is interesting to note that DS2 did produce a small 

modulation of α1β3γ2L-GABA currents in a previous study, and a small residual 

DS2 current was still apparent in thalamic relay neurons from δ knockout mice 

(Jensen et al., 2013). Thus DS2 can also modulate γ2-containing receptors, 

albeit to a lesser extent than δ-containing receptors. 

 

6.3.3. 4-PIOL enhances dLGN tonic currents via γ2-containing receptors  

In dLGN relay neurons, 4-PIOL appeared not to compete for the same 

orthosteric binding sites as 1 µM THIP, which selectively activates δ-containing 

receptors (Brown et al., 2002; Stórustovu and Ebert, 2006; Mortensen et al., 

2010). Moreover, no correlation was observed between the THIP and 4-PIOL 

induced currents of different dLGN relay neurons, indicating that 4-PIOL was 

unlikely to be acting on the same δ-containing receptors as THIP. Indeed, the 4-
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PIOL current in dLGN relay neurons was potentiated by the benzodiazepine 

agonist, diazepam, suggesting that the 4-PIOL current was unlikely to be 

mediated by δ-containing receptors, but instead, was predominantly mediated 

by synaptic and/or extrasynaptic γ2-containing receptors. Since α1 and α4 

subunits are the most prevalent α isoforms expressed in the dLGN (Soltesz et 

al., 1990; Wisden et al., 1992; Pirker et al., 2000; Hörtnagl et al., 2013) and 

α4βγ2 should be insensitive to modulation by diazepam (Pritchett et al., 1989), 

it is more likely that 4-PIOL was acting at α1βγ2 receptors. However, other αβγ2 

receptor isoforms may conceivably contribute, and the use of more subtype 

selective benzodiazepines would be required to probe their presence in dLGN 

relay neurons.   

Given that δ-containing receptors are proposed to be the main mediators of 

tonic currents in dLGN relay neurons, the significant presence of γ2-containing 

receptors was unexpected. However, a previous study indicated that only ~ 13 

% of GABAA receptors expressed in the thalamus contain δ subunits, whereas 

~ 50 % of thalamic GABAA receptors contain the γ2 subunit (Sur et al., 1999). 

However, it is important to note that these data represent the pooled data from 

several thalamic nuclei, and include both cell surface, and intracellular receptor 

populations. Indeed, in situ hybridisation and immunocytochemical studies have 

only detected very low levels of γ2 subunit expression in the dLGN of adult 

rodents (Wisden et al., 1992; Pirker et al., 2000; Hörtnagl et al., 2013). 

However, expression of the γ2 subunit appears to be developmentally 

regulated, since γ2 mRNA levels decline during development (Laurie et al., 

1992b). Thus, the significant population of γ2-containing receptors detected in 

our study, might arise from our use of relatively young (P14) rats.  
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6.3.4. Ambient GABA levels in thalamic slices are low (< 1 μM GABA)  

According to our recombinant expression studies, the dominant agonist profile 

of 4-PIOL at γ2-containing receptors prevails at low ambient GABA 

concentrations, an indicator that ambient GABA levels in the slice were also 

low. In accord with this, dLGN tonic currents were significantly enhanced by 1 

μM GABA when GABA uptake was blocked. Thus, under our experimental 

conditions, the ambient GABA concentration in the slice is predicted to be 

significantly lower than 1 μM GABA. Microdialysis studies indicate that ambient 

GABA concentrations in vivo range from 30 nM to 2.9 μM (Glaeser and Hare, 

1975; Lerma et al., 1986; de Groote and Linthorst, 2007; Wlodarczyk et al., 

2013), while the use of ‘sniffer patches’ has indicated that ambient GABA levels 

in hippocampal slices is ~ 100 nM (Wlodarczyk et al., 2013). Moreover, GABA 

levels are efficiently critically regulated by GABA transporters, which reach a 

steady-state when extracellular GABA levels are 0.1 – 0.4 μM (Attwell et al., 

1993; Richerson and Wu, 2003; Wu et al., 2007). 

Given the significant presence of γ2-containing receptors on dLGN relay 

neurons in our study, it was intriguing to explore the possibility that these 

receptors may also contribute to dLGN tonic currents. Although diazepam 

significantly enhanced dLGN tonic currents, it is difficult to rule out the 

possibility that diazepam also increased the affinity of γ2-containing receptors 

for GABA, thus recruiting a population of extrasynaptic GABAA receptors that 

may not have been active under control conditions. Moreover, since diazepam 

also prolonged sIPSC decay times (e.g. Nusser et al., 1997; Perrais and 

Ropert, 1999; Mozrzymas et al., 2007), the diazepam-induced enhancement of 

tonic currents may also arise from a summation of sIPSCs, which could not be 

accurately defined due to the relatively high frequency of sIPSCs observed in 

this study. It might therefore be interesting to evaluate the effects of diazepam 

on thalamic relay neurons treated with TTX, since this may significantly reduce 

the baseline frequency of IPSCs. 
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Indeed, a lack of correlation between the 4-PIOL and the BIC induced change in 

tonic currents under control conditions, indicates that the γ2-containing 

receptors that mediate the 4-PIOL response are unlikely to significantly 

contribute to the dLGN tonic currents. Given the low ambient GABA levels 

detected in our slice preparations, and the low GABA sensitivity of γ2-containing 

receptors (Brown et al., 2002; Mortensen et al., 2010, 2011), this finding is 

somewhat unsurprising. However, this does not discount the possibility that γ2-

containing receptors may contribute to dLGN tonic currents when GABA levels 

are significantly increased, for instance, during pathophysiological disease 

states (see General Discussion).  

 

6.3.5. 4-PIOL (10 µM) can bidirectionally modulate dLGN tonic currents 

The dominant agonist profile of 4-PIOL at low ambient GABA concentrations (< 

1 μM), and its weak antagonist profile at higher ambient GABA concentrations 

(~ 3 μM), is similar to the profile observed for recombinant γ2-containing 

receptors (see Fig. 4.11 – Fig. 4.13). However, there appears to be a slight 

discrepancy regarding the GABA concentration at which 4-PIOL switches its 

profile. In thalamic relay neurons, a higher concentration of GABA (3 μM) had to 

be pre-applied to thalamic relay neurons to unveil an antagonist profile for 4-

PIOL, whereas for recombinant α1β3γ2L receptors (Fig. 4.11 – Fig. 4.13), 1 μM 

GABA was sufficient to unveil this profile. One explanation for this slight 

discrepancy, might be that the concentration of GABA pre-applied to slices may 

not reflect the precise GABA concentration experienced by cells in slices, 

possibly due to limitations in drug penetrability, or an incomplete block of GABA 

uptake systems in the slice.  

Overall, our findings indicate that although δ-containing receptors are 

functionally expressed in dLGN relay neurons, the effects of 4-PIOL on dLGN 

tonic currents are dominated by the significant presence of γ2-containing 

receptors. Moreover, 4-PIOL also significantly reduces dLGN phasic currents. 
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6.4. Conclusion 

In dLGN relay neurons: 

  

1. 4-PIOL (10 μM) enhances GABAA receptor mediated tonic currents, 

mainly by activating γ2-containing receptors. 

 

2. 4-PIOL (10 μM) reduces the frequency and amplitude of sIPSCs in dLGN 

relay neurons. 

 

3. At low ambient GABA concentrations (< 1 µM), 10 μM 4-PIOL exhibits a 

dominant agonist profile, but switches to an inhibitor of dLGN tonic 

currents when the ambient GABA concentration is increased (to ~ 3 µM). 
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Chapter 7: General Discussion 

For some time, enhanced tonic currents, arising from elevated ambient GABA 

levels in the brain, have been implicated in the pathology of several neurological 

disorders, including absence seizures, cognitive impairments in DS and AD, 

and motor deficits following stroke (see Section 1.3). Moreover, emerging 

evidence has indicated that antagonists and/or inverse agonists that selectively 

inhibit extrasynaptic α5- and/or δ-containing GABAA receptors may prove 

therapeutically useful as treatments for such conditions. This formed the focus 

of this thesis, which was to explore how to reduce the level of tonic inhibition 

without affecting synaptic inhibition. From a theoretical perspective, we decided 

not to use an overt GABA antagonist, but to explore the subtle antagonist 

properties of GABA partial agonists. In particular, we studied whether 4-PIOL, a 

weak partial agonist with a reported functional antagonist profile, might be 

effective, and therefore useful as a selective inhibitor of GABAA receptor 

mediated tonic currents.  

 

7.1. Summary of key findings 

7.1.1. Stoichiometry of recombinant α4β3δ receptors 

Tonic GABA current relies heavily on extrasynaptic GABAA receptors and often 

this requires the presence of the δ subunit. Since the subunit stoichiometry of δ-

containing receptors has remained elusive, and may affect the pharmacological 

profile of 4-PIOL on GABAA receptors, we first examined the subunit 

stoichiometry of recombinant α4β3δ receptors using a functional 

electrophysiological approach (Patel et al., 2014). Recombinant α4β3δ 

receptors displayed a preferred subunit stoichiometry of 2α:  2β: 1δ, which was 

not altered by varying the cDNA transfection ratio by 10 - fold. These findings 

agree with the previously reported subunit stoichiometry of recombinant α4β3δ 
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receptors, although other groups have reported more variable subunit 

stoichiometries for unconstrained and constrained αβδ receptors (Barrera et al., 

2008; Baur et al., 2009; Kaur et al., 2009; Wagoner and Czajkowski, 2010). 

However, as discussed in Chapter 4 (Section 4.4), some of the variability might 

be explained by differences in expression systems, and/or the use of different α 

or β isoforms (Baur et al., 2009; Kaur et al., 2009; Wagoner and Czajkowski, 

2010). Given this variability, it will be important to establish the precise subunit 

arrangement(s) of native δ-containing receptors GABAA, especially since this 

will critically define the functional and pharmacological properties of native 

extrasynaptic GABAA receptors. 

 

7.1.2. Effects of 4-PIOL on recombinant GABAA receptors 

Promisingly, a low concentration of 4-PIOL (10 µM) inhibited the ‘extrasynaptic-

type’ GABA responses of recombinant α4β2δ receptors, without significantly 

inhibiting the ‘synaptic-type’ GABA responses of recombinant α1β3γ2 receptors, 

as predicted by our theory. By contrast, 4-PIOL (10 µM) did not affect the 

‘extrasynaptic-type’ responses of recombinant α6β2δ receptors, but could 

enhance or inhibit the ‘extrasynaptic-type’ responses of recombinant α1β3γ2 

and α5β3γ2 receptors, depending on the ambient GABA concentration 

(Sieghart and Sperk, 2002; Farrant and Nusser, 2005; Kasugai et al., 2010). 

Therefore, this data predicted that 4-PIOL (10 µM) should not alter α1β3γ2-

mediated phasic currents in neurons, but might significantly inhibit α4β2δ-

mediated tonic currents. Moreover, 4-PIOL was predicted not to alter α6β2δ 

tonic currents, but might be capable of either enhancing the activity of 

extrasynaptic α1β3γ2 or α5β3γ2 receptors, depending on the ambient GABA 

concentration. 
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7.1.3. 4-PIOL regulation of tonic and phasic currents varies between brain areas 

Given that tonic and phasic currents in CGCs are largely thought to be 

mediated by α6βδ and α1βγ2 receptors respectively (Sieghart and Sperk, 2002; 

Farrant and Nusser, 2005), it was perhaps unsurprising that 4-PIOL (10 µM) 

exerted no effect on either tonic or phasic currents in this cell type. 

In hippocampal neurons, 4-PIOL (10 µM) bidirectionally modulated tonic 

currents, depending on the ambient GABA concentration, which might also be 

predicted from the recombinant expression studies, since they are largely 

thought to express α5βγ2-mediated tonic currents, but have also been 

demonstrated to express an extrasynaptic population of α(1-3)βγ2 receptors 

(Kasugai et al., 2010). Unexpectedly however, 4-PIOL also reduced the 

frequency and amplitude of phasic currents in cultured hippocampal neurons 

(discussed below). Also unexpectedly, 4-PIOL (10 µM) enhanced α4β2δ-

mediated tonic currents in dLGN neurons, and simultaneously reduced the 

frequency and amplitude of sIPSCs. By using subtype-selective 

pharmacological tools, it was demonstrated that this 4-PIOL-mediated 

enhancement of tonic currents was likely to be mediated by γ2-containing 

receptors (discussed further in Section 7.2.1), and could be bidirectionally 

modulated by altering the ambient GABA concentration.  

The mechanism(s) that underlie the 4-PIOL mediated reduction in sIPSC 

frequency and amplitude in hippocampal and TC relay neurons (but not CGCs) 

is unknown. Possible explanations to account for reduction in frequency include 

a presynaptic effect on GABA release, possibly by membrane depolarisation or 

hyperpolarisation, or a shunting of action potentials. However, the effect on 

frequency may be complicated by the 4-PIOL-induced increase in RMS 

baseline noise, which might mask small amplitude events. However, it is 

possible that 4-PIOL might be directly inhibiting synaptic receptor isoforms 

which were not studied in our recombinant expression studies. For instance, 

α2βγ2 receptors have also been shown to contribute to phasic currents in 

hippocampal, and young dLGN relay neurons (Okada et al., 2000; Prenosil et 

al., 2006; Peden et al., 2008), and so it would be interesting to assess the 



192 
 

 
 

effects of 4-PIOL on this receptor isoform using a heterologous expression 

system. 

 

7.2. The therapeutic potential of 4-PIOL 

7.2.1. Functional importance of extrasynaptic γ2-containing GABAA receptors? 

Receptors containing the γ2 subunit are typically thought to accumulate at 

synaptic sites. However, immunohistochemical and functional studies indicate 

that a significant number of α1 – α3 subunit, which typically associate with γ2 

subunits, may also exist at extrasynaptic sites in several cell types, including the 

three studied here (Soltesz et al., 1990; Nusser et al., 1998; Mangan et al., 

2005; Thomas et al., 2005; Kasugai et al., 2010). Our study indicates that the 

functional effects of 4-PIOL on tonic currents, at least in dLGN relay neurons 

and hippocampal neurons, are largely dominated by its actions on γ2-containing 

receptors, although we cannot exclude a contribution by δ-containing receptors.  

In dLGN relay neurons, the presence of a THIP-sensitive tonic current 

confirmed the functional expression of δ-containing receptors. However, the 

functional profile of 4-PIOL most closely resembled its actions at recombinant 

γ2-containing receptors, indicating that although δ-GABAA receptors were 

expressed, the number of γ2-containing receptors may significantly outnumber 

δ-containing receptors on the cell surface of dLGN relay neurons. Although our 

data indicate that this population of γ2-containing receptors are unlikely to 

significantly contribute to basal tonic currents, under our experimental 

conditions, it is intriguing to speculate that they may contribute to tonic currents 

in vivo, depending on the ambient GABA concentration, especially if it is raised. 

Moreover, it would be interesting to determine the relative expression levels of 

extrasynaptic δ and γ2-containing receptors, since this will critically determine 

the functional effects of compounds such as 4-PIOL, which can modulate both 

receptor isoforms. These expression levels may vary between different cell 
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types, which might explain why 4-PIOL enhanced tonic currents in hippocampal 

and dLGN relay neurons, but not CGCs. Although all three neuronal populations 

are likely to express extrasynaptic αβγ receptors (Soltesz et al., 1990; Nusser et 

al., 1998; Thomas et al., 2005; Kasugai et al., 2010), CGCs might express 

fewer γ2-containing receptors, relative to δ-containing receptors, possibly 

explaining why the effects of 4-PIOL on CGC tonic currents most similarly 

resembled its actions at recombinant α6βδ receptors. 

 

7.2.2. Ambient GABA levels are low in neuronal preparations 

In all three neuronal preparations, the ambient GABA concentration was 

significantly lower than 1 μM, since exogenous applications of 1 μM GABA 

significantly enhanced tonic currents. However, it is important to note our 

experimental conditions differ from the in vivo situation, which may significantly 

affect ambient GABA levels. For instance, our recordings were performed at 

room temperature. Physiological temperatures have not only been shown to 

increase the GABA sensitivity of GABAA receptors (Jenkins et al., 1999; Perrais 

and Ropert, 1999; Millingen et al., 2011), but may also affect ambient GABA 

levels, by increasing the frequency of sIPSCs and by increasing the efficiency of 

GABA reuptake (Otis and Mody, 1992; Perrais and Ropert, 1999; Mitchell and 

Silver, 2003). Moreover, during recordings, our culture/slice preparations were 

continuously perfused with aCSF, which might lead to a reduction in ambient 

GABA by wash-out effects.  

The previous consensus is that δ-containing receptors desensitize more slowly 

than their γ2-containing counterparts (Farrant and Nusser, 2005), although 

more recent evidence indicates that they may in fact show quite appreciable 

desensitisation, even to low concentrations of GABA (Feng et al., 2009; 

Mortensen et al., 2010; Bright et al., 2011; Houston et al., 2012; McGee et al., 

2013). Consistent with the latter findings, both δ- and γ2-containing receptors 

displayed significant levels of desensitisation in our recombinant expression 

studies. Since both receptor isoforms may exist at extrasynaptic sites, it is 
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interesting to note that at the low ambient GABA levels thought to mediate tonic 

currents (0.1 – 1 μM), recombinant α4/6βδ receptors in fact showed higher 

levels of desensitisation than α1βγ2 receptors (see Fig. 4.11). Thus, while this 

strong desensitisation profile might limit further activation of high affinity δ-

containing receptors, for instance during synaptic spillover (Bright et al., 2011; 

Ye et al., 2013), less desensitised extrasynaptic/perisynaptic γ2-containing 

receptors may instead be able to respond.  

The functional profile of 4-PIOL (at both δ- and γ2-containing receptors) was 

strongly influenced by the ambient GABA concentration, which is perhaps 

unsurprising, given that both 4-PIOL and GABA act via the same orthosteric 

binding site. This was predicted by our theoretical model. The ability of 4-PIOL 

to modulate steady-state GABA currents was considerably diminished by 

raising ambient GABA levels (see Fig. 4.12), a finding that likely reflects a 

reduced ability of 4-PIOL to compete with GABA for this binding site. Similar 

observations have been made for the orthosteric agonist, THIP, whose 

enhancement of δ-mediated tonic currents in CGCs was attenuated at higher 

ambient GABA concentrations (Houston et al., 2012). Thus, when evaluating 

the potential effects of compounds on tonic currents, an important consideration 

to make is how they modulate tonic currents at different ambient GABA 

concentrations. 

 

7.2.3. Therapeutic potential of 4-PIOL  

This project was aimed at selectively reducing tonic currents in conditions 

associated with elevated ambient GABA levels (e.g. absence seizures, 

cognitive impairments and functional recovery from stroke; Brickley and Mody, 

2012; Egawa and Fukuda, 2013; Rudolph and Möhler, 2014; see Section 1.3). 

Our findings indicate that the ability of 4-PIOL to enhance, or reduce, tonic 

currents (at least in hippocampal and TC relay neurons), will critically depend 

on a number of factors, including which GABAA receptor isoforms are 

expressed, their relative expression levels on the neuronal cell surface, and the 
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ambient GABA level. For instance, 4-PIOL might produce a minimal (or no) 

inhibition of tonic currents at GABA concentration > 1 μM, but may actually 

enhance tonic currents if ambient GABA levels are < 1 μM. Thus 4-PIOL might 

exacerbate these conditions at ambient GABA concentrations < 1 μM, 

assuming that a large population of γ2-containing receptors exists at 

extrasynaptic sites. Unfortunately, there is no information as yet regarding the 

extent to which GABA levels are elevated in such conditions. Given its 

enhancement of tonic currents at low ambient GABA concentrations, 4-PIOL 

might instead be useful for neurological conditions which are associated with 

reduced tonic GABAA receptor mediated transmission, such as Fragile X 

syndrome, sleep and psychiatric disorders (Brickley and Mody, 2012; Whissell 

et al., 2014). However, it will first be important to understand why 4-PIOL 

inhibited phasic currents in hippocampal and TC relay neurons. Thus, although 

4-PIOL is unlikely to be useful therapeutically, other low efficacy/potency partial 

agonist may prove therapeutically useful, but their functional effects will need to 

be assessed carefully, against a panel of critical factors, such as those noted 

above. 
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Appendices 

 

Appendix 1: Peak GABA concentration-response curves for α4β2δ and 

α4β3δ receptors 

For HEK293 cells expressing α4β2δ (A) and α4β3δ (B) receptors, average peak GABA 

concentration-response curves were constructed in the absence (black), or presence of 

10 μM (red) or 100 μM (blue) 4-PIOL (n = 5 – 7; mean ± SEM). Each data set was fitted 

using the Hill equation, using a least-squares method, and the continuous (black, red 

and blue) lines represent Hill fits to the mean concentration-response data. 
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