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Abstract

There is growing interest in fostering breakthrough technologies that offer ex-

ceptionally high value to society. However, when starting technology projects,

it is impossible to know which of them have the potential to lead to break-

throughs. Therefore, organizations have adopted funding policies in which on-

going projects are subjected to interim evaluations based on which some projects

may be abandoned to release resources for seizing new opportunities. In this

paper, we study which funding policies are optimal when the objective is either

(i) to maximize the expected value of the project portfolio, or (ii) to maximize

the expected number of exceptionally excellent projects that may lead to break-

through technologies. We show that the optimal policy for funding exceptionally

excellent projects is to start a large number of projects and abandon a high pro-

portion of them later, whereas the optimal policy for maximizing the expected

value of the project portfolio is to grant long-term funding to a smaller set of

projects based on initial evaluation. Furthermore, we show how the trade-off

between these two objectives depends on the initial project evaluation accuracy
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and the rate at which this accuracy improves. Our results suggest that this

trade-off is particularly significant when the initial project evaluations are very

uncertain but become more accurate soon after the projects have been launched.

In such a setting, policies that seek to maximize the expected portfolio value

may fail to promote breakthrough technologies.

Keywords: breakthrough technologies, project portfolio selection,

abandonment option

1. Introduction

T Fostering of breakthrough technologies has in recent years become one

of the key objectives of many organizations, such as governmental institutions

and public research funding agencies. The policy interest in breakthrough tech-

nologies stems from the potential of such technologies for creating extensive in-5

dustrial development, enhancing national competitiveness, and generating em-

ployment and export growth (Sharpe et al., 2013). Moreover, breakthrough

technologies may result in the establishment of ‘new technology platforms’ with

applications across a range of products and markets. For instance, Liquid Crys-

tal Displays (LCDs) developed in the 1960s have since grown into a global10

industry with applications ranging from pocket calculators to televisions and

laptops. Also, fiber-optic communication systems developed in the 1970s, to-

gether with successive waves of innovation in optical fibers and fiber amplifiers

in the 1980s, have accelerated the expansion of the Internet age by allowing

huge amounts of data to be transmitted.15

Breakthrough technologies such as those mentioned above are extremely

rare. Therefore, the objective of promoting breakthrough technologies is typi-

cally pursued by trying to identify and fund exceptionally excellent technology-

related activities which have the potential to result in breakthroughs. Govern-

ments, for instance, invest in training highly skilled staff for research labora-20

tories, provide R&D subsidies and grants to private companies and public re-

search institutes, and act as first customers for new technologies through public
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procurement (Sharpe et al., 2013). Many research funding agencies have dedi-

cated programs for supporting exceptional excellence; the National Institutes of

Health (NIH), for instance, have established a high-risk, high-reward research25

program for ‘scientists of exceptional creativity who propose highly innovative

approaches to major contemporary challenges in biomedical research’ (NIH,

2014). The European Research Council (ERC), too, seeks ‘to support the best

of the best scientific effort in Europe’, expecting that ‘its grants will help to

bring about new and unpredictable scientific discoveries – the kind that can30

form the basis of new industries, markets, and broader social innovations of the

future’ (ERC, 2014).

Decisions about which technology-related activities (henceforth referred to as

projects) to fund are typically based on evaluation of project proposals. At the

time of launching a project, however, it is usually impossible to know whether35

the project will be exceptionally excellent. Thus, to avoid the prospect of

committing resources to projects that will ultimately fail, organizations have

adopted flexible funding policies in which on-going projects are subjected to in-

terim evaluations and, based on these evaluations, some projects are abandoned

to release resources for seizing fresh opportunities (O’Connor et al., 2008; Tellis40

et al., 2009; Tian, 2011). The value of such flexibility, called the abandonment

option in the real options literature (Dixit and Pindyck, 1994), has been studied

extensively in contexts where the objective is to maximize the expected value

of the project or project portfolio (e.g., Roberts and Weitzman, 1981; Huchzer-

meier and Loch, 2001; Gustafsson and Salo, 2005; Santiago and Vakili, 2005).45

Yet, to our knowledge no quantitative models have been developed to support

the shaping of policies that promote breakthrough technologies through funding

exceptionally excellent projects.

In this paper, we develop a multi-period project portfolio selection model

and, specifically, establish guidelines for the optimal funding, evaluation, and50

abandonment of projects when the objective is either (i) to maximize the ex-

pected value offered by the projects or (ii) to maximize the expected number of

projects which have exceptionally high values ex post exceeding a given threshold
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level. We establish these guidelines by solving a two-stage stochastic program-

ming problem in which the discrete decision variables consist of (i) the number55

of projects that are launched, re-evaluated, and abandoned and (ii) the num-

ber of periods for which projects will be funded before they are re-evaluated.

We also derive analytic necessary conditions for optimal funding policies, which

allows us to solve the optimization problems with a reasonable computational

effort.60

The results of our model suggest that to maximize the expected value of the

project portfolio, one should provide full funding to those technology projects

which appear the best based on the initial evaluation. This policy differs from

the optimal policy for promoting breakthrough technologies through funding

exceptionally excellent projects, which is to launch a large number of projects,65

re-evaluate most of them after some time and, based on the resulting informa-

tion, abandon a high proportion of on-going projects. The trade-off between

these two objectives is shown to depend largely on the accuracy of the initial

project evaluations and the rate at which this accuracy is improved. This trade-

off is particularly significant, if the initial project evaluations are very uncertain70

but become more accurate quickly after the projects have been launched. The

important implication of these results is that policies which seek to maximize

the expected portfolio value may fall far short of promoting breakthrough tech-

nologies, and vice versa.

2. Related Literature75

Arthur (2009) defines a technology as ‘a collection of phenomena captured

and put to use’. Breakthrough technologies are defined by Sharpe et al. (2013)

as ‘novel and discontinuous innovations that result in significant and irreversible

changes and are based on new, under- or unexploited physical, chemical, and

biological phenomena that allow order of magnitude improvements in the per-80

formance of existing products and/or the creation of entirely new ones’. The

potential for large improvements compared to existing practices is also captured
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by related terms that are often used interchangeably in high technology man-

agement literature, such as radical innovation (Utterback, 1994) and disruptive

technology (Christensen, 1997).85

The promotion of breakthrough technologies and radical innovation has so

far been examined mostly through empirical studies. O’Connor et al. (2008),

for instance, use data from 85 individuals involved with innovation efforts in

large firms and conclude that real options approaches and experimental learn-

ing have strong positive effects on innovation success. Klingebiel and Rammer90

(2011) study the innovation performance of 1500 German companies and note

better performance among those firms that allocate resources to a broad range

of projects and terminate those with unfavorable prospects. Tellis et al. (2009),

building on survey and archival data of 750 firms worldwide, conclude that the

strongest drivers for radical innovation include the willingness to cannibalize on95

the firm’s current assets to get ahead with the next generation of innovation; the

ability to realize the limitations of the current technology and the emergence of

a dominant one; and the tolerance for risks associated with trading the current,

certain profit stream for a new, uncertain one.

From the perspective of public policy, there is plenty of research on the right100

‘mix’ of policy instruments to support the performance of the innovation sys-

tem (Borrás and Equist, 2013; Marxt and Brunner, 2013; Sharpe et al., 2013).

Due to institutional factors, though, the effectiveness of such instruments – in-

cluding government incubators, seed funding, and loan guarantees – may vary

greatly between different countries (Hall and Lerner, 2009). As a general guide-105

line, Lerner (2009) suggests that the policy instruments should be sufficiently

preserving but, on the other hand, their efficacy should be regularly monitored

so that inefficient policy instruments could be abandoned or modified to meet the

needs of the changing market environment. In the context of research funding,

similar conclusions have been made regarding the need for a balance between110

committing to research projects for a sufficiently long period of time on the one

hand, and being able to seize emerging opportunities on the other hand. In

particular, short-term funding has been found to encourage risk averse research
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strategies and to generate proximate and often predictable outcomes, while high

impact research seems to be connected to the explorative mode conducted us-115

ing long-term funding (Bourke and Butler, 1999; Heinze, 2008). Due to scarce

resources, however, the provision of long-term funding necessitates highly selec-

tive funding processes which, in turn, increase the risk of failing to fund projects

that could have resulted in breakthroughs (Melin and Danell, 2006).

Although empirical studies such as these have been carried out, no quan-120

titative models of project selection have been presented to guide the shaping

of optimal policies for promoting breakthrough technologies through funding

exceptionally excellent projects. Instead, the objective of most quantitative

project selection methodologies is to maximize the expected value or utility.

The traditional approach is to compute the (expected) net present value (NPV)125

for each project and to start those projects that have a positive NPV. Since the

1990s, however, this ‘now-or-never’ type NPV approach has been increasingly

complemented and partly replaced by the theory of real options, which helps

determine how much additional value can be gained by exploiting different kinds

of managerial flexibility. This flexibility can result, for instance, from the option130

to postpone the investment until market conditions become more favorable, or

to abandon an on-going project if its interim results fall short of expectations

(see Dixit and Pindyck 1994 for an overview).

The classic result in real options theory is that the more uncertain the

projects’ future benefits are, the higher the value of the real option and the135

greater the delay in taking action (Roberts and Weitzman, 1981; Dixit and

Pindyck, 1994; Alvarez, 2001). Relationships between different kinds of options

and sources of uncertainty have been studied extensively in decision contexts

such as oil and gas investments (Smith and McCardle, 1999), new product de-

velopment (Huchzermeier and Loch, 2001; Santiago and Vakili, 2005), and de-140

velopment of renewable energy technologies (Siddiqui et al., 2007).

Real options analysis helps decide whether and when to invest. In doing so,

most real options approaches assume that (i) there is no strict budget constraint

so that all good projects can be funded and (ii) the value of each project can
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be observed at any given time. These assumptions are fairly realistic when145

considering R&D investment decisions in large private companies, for instance.

In this paper, however, we examine a decision setting that is typically faced by

public organizations, in which (i) there is a fixed budget for each funding period

that is to be allocated among projects with known costs but uncertain benefits

and (ii) the decision maker has limited possibilities for monitoring the progress150

of on-going projects. In this setting, the question is rather in which projects to

invest – in other words, which project portfolio to select – and when to revisit

the investment decision to release resources for new project opportunities. Such

project portfolio selection problems can be supported by methods of portfolio

decision analysis (see Salo et al. 2011 for an overview), which is the modeling155

approach adopted in this paper.

3. Model Framework

3.1. Model description

We consider a multi-period decision process in which the decision-maker, at

the beginning of each period, allocates a fixed budget to a portfolio of technology160

projects. This portfolio is selected based on estimates about the projects’ future

values. This ‘future value’ refers to the extent to which the project generates

results that contribute to the attainment of the decision-maker’s objectives. For

instance, the future value could be interpreted as the number of patents resulting

from the project or, more broadly, as the increase in technological capabilities165

relative to the existing technological frontier.

The future value will be realized at the time when the project is completed,

i.e., at the end of its planned duration. If a project is abandoned prior to com-

pletion, then some value may nevertheless be generated. This salvage value

(Pasternack, 1985; Alvarez, 2001) can represent improved expertise, new collab-170

orative networks, or an early product prototype built by the time of abandon-

ment (Roberts and Weitzman, 1981).
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An exceptionally excellent project (henceforth referred to as exceptional

project) is here defined as one which has an exceptionally high future value.

More specifically, a project is interpreted as an exceptional project if its future175

value is in the upper tail of the prior distribution of the population of project

values such that the probability mass of this tail corresponds to the desired

level of excellence α, e.g., the top 1% or the top 5%. This level of excellence,

together with the prior distribution for the future values, determines the excel-

lence threshold for the value that the project must deliver in order to qualify as180

an exceptional project (see Figure 1 for illustration).

Insert Figure 1 about here.

Defining exceptional projects through a threshold on the projets’ future

values captures the intuition that for an emerging technology to succeed, its

limit must surpass those of traditional technologies (Brown, 1992; Adner and185

Levinthal, 2002). This definition parallels that of Öquist and Benner (2012),

who define breakthrough research as the most highly-cited 10% among scientific

papers worldwide. Huchzermeier and Loch (2001) use an analogous threshold to

model the minimum performance required by the market for a project to yield

a premium profit margin.190

Exceptional projects are assumed to have the potential to result in the de-

velopment of breakthrough technologies. The policy interest in breakthrough

technologies stems from the recognition that they yield extremely high, indi-

rect societal benefits, which are sometimes realized only long after the projects

have been completed. For instance, the invention of the microprocessor in the195

early 1970s led to transformative societal changes by facilitating the develop-

ment of low-cost personal computers and mobile phones. Also, the invention of

the scanning tunnelling microscope in 1981 and its further development through

the invention of the atomic force microscope in 1986 were fundamental to the

subsequent development of nanotechnology, which is widely seen as the driving200

force behind a new industrial revolution (OECD, 2010).
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We assume that the indirect benefits potentially resulting from an excep-

tional technology project will not be realized unless the project is completed.

This condition reflects the empirical finding that breakthrough innovations tend

to require long-term funding to succeed (Heinze, 2008; Azoulay et al., 2011). The205

indirect benefits may, thus, be enabled only if (i) the project is completed and

(ii) its future value is in the top α-tail of the prior distribution for these values.

Nevertheless, the indirect benefits are not captured by the prior distribution

(such as that illustrated in Figure 1) but, instead are much higher than any

value that is likely to result from this distribution.210

At the time of launching projects, estimates about their future value are

uncertain. We assume that the decision-maker has the option to re-evaluate

on-going projects after some time at a given cost and, based on more recent

information, to abandon some of these projects, which in turn frees resources

so that more new projects can be launched. On this basis, we develop a project215

selection and evaluation model to study the multi-period project portfolio se-

lection process with such re-evaluation and abandonment options. This is done

from the perspective of two different objectives: (i) the maximization of the

expected future value of the selected portfolio, and (ii) the maximization of

the expected number of exceptional projects in the portfolio. For each of these220

objectives, we address the following research questions:

• How should the total budget be divided between project funding and eval-

uation costs?

• When should interim evaluations about the projects be acquired?

• What is the value of the option to re-evaluate and abandon projects?225

By addressing these questions, we provide guidelines to support the develop-

ment of optimal policies for project evaluation and funding when the objective

is to maximize either the expected future portfolio value or the number of excep-

tional projects in the portfolio. For this purpose, instead of focusing on a single

realization of a portfolio selection problem, we examine how the multi-period230

9



decision process can be expected to unfold over time. Accordingly, we do not

intend to optimize the funding policy for each period separately but, instead,

determine a static funding policy that would, on average, yield the highest port-

folio value or the highest number of exceptional projects over time. While the

use of a static funding policy may seem rigid from the point of view of private235

companies, the funding policies of public organizations are often fixed within a

relatively static frame for longer periods of time due to various administrative

reasons.

We assume that the technology projects are independent in the sense that

the future value of a given project does not depend on what other projects240

are underway. Practically all technologies complement existing technologies by,

for instance, building on them (Arthur, 2009) or utilizing them as complemen-

tary assets required for generating profits (Teece, 1986); such complementarities

are, however, assumed to be captured by the projects’ future values. The case

in which these future values are independent of one another serves as a use-245

ful benchmark and makes it possible to obtain some analytic results on optimal

funding policies. Nevertheless, interdependencies between projects’ values could

be modeled by introducing ‘dummy’ projects whose values would only be real-

ized if each of the interdependent projects was funded (Liesiö et al., 2008).

To facilitate the interpretation of our results by keeping the model suffi-250

ciently parsimonious, we also make the following simplifying assumptions, each

of which could be relaxed by relatively simple modifications: (i) there are equally

many project proposals in each period, (ii) the projects are of equal duration,

(iii) each project, if funded, consumes one resource unit per period, and (iv)

the probability distributions that characterize the projects’ future values and255

estimates about these values do not change over time.

3.2. Model formulation

3.2.1. Feasible funding policies

We assume that n new project proposals arrive at the beginning of funding

period t. The duration of each project is d periods, meaning that a project260
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launched at the beginning of period t is completed at the end of period t +

d − 1. Depending on the time span of the industry, the length of one period

can be different, varying from half a year to several years, for instance. Out

of n proposals, the decision-maker launches ` projects of which e are funded

conditionally such that they will be re-evaluated after q ≤ d− 1 periods, i.e., at265

the beginning of period t+q ≤ t+d−1. The remaining `−e projects are granted

full funding for d periods. Based on the re-evaluation, a projects are abandoned,

and e − a projects are funded for the remaining duration of d − q periods (for

simplicity, we assume that there is no delay between the beginning of the re-

evaluation process and the decision to abandon/continue projects that have been270

re-evaluated). The number of projects that will be completed out of those n

projects arriving at the beginning of period t is, therefore, (`−e)+(e−a) = `−a.

The decision variables (`, e, a, q) define the funding policy that is applied to the

set of n project proposals arriving in each period. The decision process for

projects arriving at the beginning of period t is illustrated in Figure 2.275

Insert Figure 2 about here.

The same decision process is repeated at the beginning of each period t =

1, 2, . . . The amount of resources consumed in a given period is thus determined

by (i) how many projects have been launched at the beginning of the current and

previous periods but not yet re-evaluated, (ii) how many projects have been re-

evaluated and continued based on the re-evaluation, and (iii) how many projects

are to be re-evaluated at the beginning of the current period. Each project, if

funded, consumes one resource unit per period, and the cost of re-evaluating a

project is ce. The resource consumption C(t) in each period t is, therefore,

C(t) =






t`, if 1 ≤ t ≤ q,

q` + (t − q)(` − a) + ce ∙ e, if q < t < d,

q`
︸︷︷︸

Projects that have not
yet been re-evaluated

+ (d − q)(` − a)
︸ ︷︷ ︸

Projects that have been
re-evaluated and continued

+ ce ∙ e,︸ ︷︷ ︸
Projects re-evaluated in
the current period

if t ≥ d.

(1)
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The last line in (1) shows that the period-wise resource consumption of the

funding policy over an infinite time horizon stabilizes to d`− (d− q)a+ cee after

the initial build-up.

We denote the exogenous budget reserved for each funding period by B. The280

set of feasible funding policies is defined as follows.

Definition 1. The set of feasible funding policies is

PF = {(`, e, a, q) ∈ N4|d` − (d − q)a + cee ≤ B, n ≥ ` ≥ e ≥ a, 1 ≤ q ≤ d − 1}.

(2)

Definition 1 states that a policy is feasible if (i) the period-wise resource con-

sumption does not exceed the budget B, (ii) the number of launched projects

does not exceed that of the project proposals, the number of re-evaluated

projects does not exceed that of the launched projects, and the number of285

abandoned projects does not exceed that of the re-evaluated projects, and (iii)

projects can be re-evaluated one period after they have been launched at the

earliest and one period before completion at the latest.

3.2.2. Valuation model

The funding policy (`, e, a, q) determines the number of projects that are290

launched, re-evaluated, and abandoned. Which projects in particular to launch,

re-evaluate, and abandon, is based on estimates about the projects’ future val-

ues. Because we assume that the funding periods are similar a priori (meaning

that equally many project proposals arrive in each period and the distributions

for the projects’ future values and value estimates are the same), we can deter-295

mine the optimal funding policy by examining the decision process for a single

set of n project proposals (such as the one illustrated in Figure 2).

Let us denote by [v1, . . . , vn] the future values of the n project proposals

such that vi are realizations of independent and identically distributed random

variables Vi ∼ f(v) with a known prior f(v). The future value vi will be realized300

after project i has been completed. If a project is not completed but abandoned

after q < d periods, then the realized salvage value is h(q)vi. Here, the function
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h(q) : {1, . . . , d − 1} → [0, 1) is assumed to be non-decreasing in q, meaning

that if the project is abandoned later, then at least as much – and possibly more

– value can be retrieved as when abandoning the project earlier. Note that the305

indirect benefits possibly resulting from exceptional projects are not captured

by the future values vi.

At the time of the launching decision, the decision-maker does not know the

projects’ future values but observes estimates [s0
1, . . . , s

0
n] thereof. These esti-

mates represent assessments about the future values obtained through quanti-310

tative technology forecasting techniques or other methods of technology futures

analysis (Porter et al., 2004; Walk, 2012).

The estimates are realizations of conditionally independent and identically

distributed random variables (S0
i |Vi = v) ∼ f(s0|v) such that the likelihood

distribution f(s0|v) is known for all v and the estimate for project i does not

depend on the future values of any other projects. Using the estimates s0
i and

the distribution assumptions, Bayes’ rule f(v|s0
i ) ∝ f(s0

i |v)f(v) can be used to

compute the posterior distributions f(v|s0
i ) of the future values (Vi|S0 = s0

i )

of the project proposals given the estimates (see Vilkkumaa et al. 2014 for a

similar valuation model). The means of these posterior distributions are the

projects’ expected future values E[Vi|S0
i = s0

i ] given their initial value estimates

E[Vi|S
0 = s0

i ] =
∫ ∞

−∞
vf(v|s0

i )dv. (3)

Let us denote by sq
i the interim estimate obtained for project i after q periods.

Analogous to s0
i , these estimates represent the updated assessments about the

projects’ future values. The interim estimates are realizations of conditionally

independent and identically distributed random variables (Sq
i |Vi = v) ∼ f(sq |v)

with a known distribution function f(sq|v) for all v. The posterior distributions

f(v|s0
i , s

q
i ) for the projects’ future values (Vi|S0 = s0

i , S
q = sq

i ) given both the

initial and the interim estimates are obtained through Bayes’ rule1 f(v|s0
i , s

q
i ) ∝

f(sq
i |v)f(v|s0

i ). Thus, the expected future value of project i given both the initial

1We assume that given v, Sq
i is conditionally independent of S0

i , i.e., f(sq
i |s

0
i , v) = f(sq

i |v).
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and the interim estimate is

E
[
Vi|S

0
i = s0

i , S
q
i = sq

i

]
=
∫ ∞

−∞
vf(v|s0

i , s
q
i )dv. (4)

By definition, the future values of exceptional projects are greater than or

equal to the excellence threshold μ∗
α which is derived from the desired level of

excellence α and the prior distribution f(v).315

Definition 2. Let vi be a realization of random Vi ∼ f(v), and let μ∗
α be the

excellence threshold such that P(Vi ≥ μ∗
α) =

∫∞
μ∗

α
f(v)dv = α. Project i is an

exceptional project if vi ≥ μ∗
α.

The posterior distributions f(v|s0
i ) and f(v|s0

i , s
q
i ) can now be used to com-

pute the probability that project i is an exceptional project given the observed320

value estimates:

P(Vi ≥ μ∗
α|S

0
i = s0

i ) =
∫ ∞

μ∗
α

f(v|s0
i )dv, (5)

P(Vi ≥ μ∗
α|S

0
i = s0

i , S
q
i = sq

i ) =
∫ ∞

μ∗
α

f(v|s0
i , s

q
i )dv. (6)

All decision variables and model parameters are listed in Table 1.

3.2.3. Optimal funding policies

We next determine the optimal funding policies (`, e, a, q). Toward this end,

let us denote by N = {1, . . . , n} the index set of all new project proposals, by325

L ⊆ N the index set of launched projects, by E ⊆ L the index set of those

launched projects that are to be re-evaluated, and by A ⊆ E the index set of

the projects that are abandoned based on the re-evaluation. These index sets

correspond to funding policy (`, e, a, q) through |L| = `, |E| = e, and |A| = a

(where, for instance, |L| denotes the number of elements in the set L). The330

optimal index sets depend on not only the expectations about the projects’

future values but also the decision objective.

First, we consider the objective of maximizing the expected portfolio value.

Based on the independence assumptions, the expected value of the project port-

folio is the sum of the expected values of the projects it includes. The funding

14



Table 1: List of decision variables and model parameters

Decision variables

` Number of projects launched at the beginning of each period

e Number of projects re-evaluated at the beginning of each period

a Number of projects abandoned at the beginning of each period

q Number of periods after which projects are re-evaluated

Parameters

n Number of new project proposals in each period

d Duration of each project

1 Cost of funding one project for one period (=1)

ce Cost of re-evaluating one project

B Budget for each period

α Level of excellence

f(v) Prior distribution of the projects’ future values

f(s0|v) Distribution of a project’s initial value estimate given its future value

f(sq|v) Distribution of a project’s interim value estimate obtained q periods

after launch, given its future value

h(q) Non-decreasing function with range [0, 1) which determines the fraction of

the project’s future value that can be salvaged if the project is abandoned

q periods after launch

policy that maximizes the expected portfolio value can, therefore, be determined

by solving the two-stage stochastic optimization problem

max
(`,e,a,q)∈PF

ES0
i

[

max
L⊆N ,E⊆L

|L|=`
|E|=e

{ ∑

i∈L\E

E[Vi|S
0
i ]+ES

q
i

[
max
A⊆E
|A|=a

{ ∑

i∈E\A

E[Vi|S
0
i , Sq

i ]+h(q)
∑

i∈A

E[Vi|S
0
i , Sq

i ]
}]}

]

,

(7)

where set of feasible policies PF is as in Definition 1, and the expected values

E[Vi|S0
i ] and E[Vi|S0

i , Sq
i ] are obtained from (3) and (4) with random S0

i and

Sq
i .335

The optimization is carried out in two stages: in the first stage with regard

to the funding policy (`, e, a, q), and in the second stage with regard to the index

sets L, E , and A. The maximization in the second stage is further divided into
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two parts: (i) the determination of the sets L and E of launched and re-evaluated

projects based on the initial estimates only and (ii) the determination of the340

set A of abandoned projects based on both the initial and interim estimates.

Given the funding policy (`, e, a, q), the cardinalities of these index sets remain

constant.

Second, we consider the objective of maximizing the number of completed

projects that qualify as exceptional projects. Given the excellence threshold μ∗
α,

the policy that maximizes this number is the solution to the two-stage stochastic

optimization problem

max
(`,e,a,q)∈PF

ES0
i

[

max
L⊆N ,E⊆L

|L|=`
|E|=e

{ ∑

i∈L\E

P(Vi ≥ μ∗
α|S

0
i )+ES

q
i

[
max
A⊆E
|A|=a

∑

i∈E\A

P(Vi ≥ μ∗
α|S

0
i , Sq

i )
]}
]

,

(8)

where the probabilities P(Vi ≥ μ∗
α|S

0
i ) and P(Vi ≥ μ∗

α|S
0
i , Sq

i ) are obtained

from (5) and (6) with random S0
i and Sq

i .345

The objective function in (8) does not include abandoned projects because

only completed projects are assumed to qualify as exceptional projects. The

optimization is again carried out in two stages. The first term in the second-

stage objective function of (8) sums the probabilities that the projects that have

received full funding based on initial evaluations are indeed exceptional projects.350

The second term sums the probabilities that those projects that have been re-

evaluated and eventually completed are exceptional projects. Because we have

assumed that the projects’ future values are independent and that the value

estimate of project i does not depend on the future values of other projects,

the objective function of (8) gives the expected number of funded (completed)355

exceptional projects.

The value of the abandonment option is defined as the relative improvement

in the portfolio value with the option compared to the portfolio value without

the option, i.e.,

Option value =
Portfolio value with option - Portfolio value without option

Portfolio value without option
.

Here, portfolio value with the option is the optimal value of the objective func-
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tion in (7) or (8), and portfolio value without the option is obtained by setting

e = a ≡ 0 in (7) or (8).

4. Results360

4.1. Parameters

The above model allows us to establish guidelines for funding policies that

yield either the highest expected value or the highest expected number of ex-

ceptional projects over time. Because no analytical solutions can be derived

for problems (7) and (8), these guidelines are obtained by numerical simula-365

tion. In particular, we study how the optimal funding policy and the resulting

option value depend on the problem parameters when both the prior and the

likelihood distributions (and, therefore, the posterior distributions as well) are

normal. The normal distribution is commonly used for modeling the randomness

of many types of real-world phenomena. For instance, due to the central limit370

theorem, the use of a normal likelihood is well justified if the value estimates

are averages over the evaluations of unbiased experts with equal evaluation ac-

curacies. Thus, the qualitative insights provided by this case are informative

even if the underlying distributions are not exactly normal.

We assume that the projects’ future values are realizations of independent375

and identically distributed random variables Vi ∼ N(20, 32). The initial esti-

mates are obtained from the future values by an additive, normally distributed

zero-mean estimation error term such that (S0
i |Vi = vi) = vi + δ0, δ0 ∼ N(0, τ2

0 )

for each i = 1, . . . , n. The interim estimates are modeled similarly such that

(Sq
i |Vi = vi) = vi + δq, δq ∼ N(0, τ2

q ) for each i = 1, . . . , n. Typically, the accu-380

racy of the estimates improves significantly in time (Walk, 2012). We model this

improvement by relating the standard deviation τq of the interim estimate to

the initial estimation error through τq = rqτ0, where r ∈ (0, 1]. This model for

the expected evolution of the standard deviation of the estimation error results

in a cone of uncertainty (Boehm, 1981), where initially very little may be known385

about the future value of a project, but as time goes by, the uncertainty about
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this value reduces geometrically. The rate at which the uncertainty diminishes

is determined by the uncertainty reduction coefficient r.

We consider n = 200 new project proposals in each period. The duration of

each project is d = 4, the cost of funding one project for one period is 1, and

the cost of re-evaluating one project is ce = 0.05. The budget B is set so that

it would correspond to providing full funding to 30% of the project proposals

in each period if no resources were spent on acquiring interim evaluations, i.e.,

B = 0.3 × n × 1 × d = 240. The salvage value is assumed to be h(q) ≡ 0, so

that no value can be retrieved from abandoned projects. We examine how both

the optimal funding policy and the option value change as a function of the

following parameters:

τ0 : Standard deviation of the initial value estimates,

r : Coefficient of uncertainty reduction,

α : Level of excellence.

Sensitivity analyses with respect to changes in n, B, and h(q) are performed in

Section 4.6.390

4.2. Computation of the optimal funding policies

Problems (7) and (8) can be solved by simulating the decision process for

each feasible policy multiple (e.g., 5,000) times, and then selecting the policy

that, on average, yields the highest value or the highest number of exceptional

projects. For fixed (`, e, a, q), the decision process is simulated by first sampling395

future values vi and value estimates s0
i , sq

i from the prior and likelihood dis-

tributions f(v), f(s0|v), and f(sq|v). Then, the objective function (7) or (8) is

evaluated for all possible combinations L, E ,A corresponding to the fixed fund-

ing policy, and the highest objective function value in that simulation round

(i.e., given the particular realization of v) is recorded. These values are then400

averaged over all simulation rounds to obtain the average objective function

values for the fixed funding policy. By repeating this process for each feasible

funding policy (`, e, a, q), one can find the policies that yield the highest aver-
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age portfolio value or the highest average number of exceptional projects in the

portfolio, i.e., the solutions to problems (7) and (8).405

The computation effort can be reduced by the following two propositions.

All proofs are in the Appendix.

Proposition 1. Assume f(v) = N(μ, σ2), f(s0|v) = N(v, τ 2
0 ), and f(sq|v) =

N(v, τ 2
q ) . Then, given a fixed funding policy (`, e, a, q) and estimates s0

i and

sq
i , the optimal index sets for the second-stage optimization problem in both (7)410

and (8) are

A = { i ∈ E | vq
i among the a smallest }, (9)

E = { i ∈ L | v0
i among the e smallest }, (10)

L = { i ∈ N | v0
i among the ` largest }, (11)

where v0
i = E[Vi|S0

i = s0
i ] and vq

i = E[Vi|S0
i = s0

i , S
q
i = sq

i ].

Proposition 1 states that it is optimal to launch those projects with the high-

est initial expected values, to re-evaluate those among the launched projects

with the lowest initial expected values, and to abandon those with the lowest415

expected values given also the interim value estimates. Thus, the funding policy

(`, e, a, q) determines the optimal index sets L, E ,A completely, which consid-

erably speeds up the computation. Without this property, we would have to

enumerate all
(
n
`

)(
`
e

)(
e
a

)
combinations of L, E and A for each choice of `, e

and a. If, for instance, n = 10, ` = 6, e = 4 and a = 2, the number of such420

combinations would be 18,900.

The computation time is further reduced by Proposition 2, which states that

in the optimum, no additional projects can be re-evaluated if all other policy

variables remain the same. Given that (`, a, q) are fixed, the optimal value of e

is, thus, emax = min{`, b 1
ce

(B − d` + (d − q)a)c}. It is therefore not necessary425

to compute the value for any policy (`, e, a, q) where e < emax. If, for instance,

` = 6, a = 2, q = 1, B = 13 and ce = 0.2, we have emax = min{6, 5} = 5,

implying that it is unnecessary to compute the value of policies in which e = 2, 3,

or 4. Using Propositions 1 and 2, the total computation time for all numerical
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results in this paper was approximately two and a half hours using Matlab on430

a standard laptop (2.60 GHz, 8 GB memory).

Proposition 2. If policy (`, e, a, q) is optimal for either (7) or (8), then policy

(`, e + 1, a, q) is infeasible.

4.3. Features of the optimal funding policy

4.3.1. Estimation uncertainty τ0435

Figure 3 illustrates the optimal funding policy for either accurate (τ0 = 2) or

inaccurate (τ0 = 7) initial estimates, when the objective is to either maximize

the expected portfolio value (Figures 3a and 3b), or to maximize the expected

number of funded projects in the top 1% (Figures 3c and 3d). The uncertainty

reduction coefficient is set at r = 0.5, meaning that in each period, the standard440

deviation of the estimation error decreases by 50%. The figures use the following

notation:

R : # of projects that are rejected completely (n − `),

CF : # of projects that receive conditional funding and will be re-evaluated (e),

FF : # of projects that receive full funding for their entire duration (` − e),

C : # of projects that are continued based on the re-evaluation (e − a),

A : # of projects that are abandoned based on the re-evaluation (a).

Each figure profiles the decisions only for those projects launched at the begin-

ning of period 1, thus omitting – for purposes of clarity – the presence of other

projects launched at the beginning of periods 2, 3, and 4.445

Insert Figure 3 about here.

Regardless of the accuracy of the initial estimates, the policy that maximizes

the expected portfolio value is simply to grant full funding to the 60 projects

with the highest initial expected values. This policy differs from the policy

that maximizes the number of exceptional projects, which is to launch a large450

number of projects (` = FF + CF ), re-evaluate most of them (e = CF ) – in

20



fact, all of them, if the initial estimates are inaccurate –, and abandon a large

share of the re-evaluated projects. When the initial estimates are more accurate,

less resources are spent on project evaluation, which allows more projects to be

completed (` − a = FF + C).455

4.3.2. Uncertainty reduction coefficient r and level of excellence α

Figure 4 illustrates the optimal funding policy for fast (r = 0.4) and slow

(r = 0.8) rates of uncertainty reduction when the objective is to maximize the

number of funded projects whose future values are either in the top α = 10% or

top α = 1% of the prior distribution. Here, the standard deviation of the initial460

estimation error is set at τ0 = 7.

If the estimation uncertainty reduces quickly, meaning that the interim es-

timates are much more accurate than the initial ones (Figures 4a and 4c), then

more projects should be launched and abandoned. The more exceptional the

projects the decision-maker wishes to fund (i.e., the smaller α), the larger these465

shares are. On the other hand, if the interim estimates are not significantly more

accurate, then it is optimal to allocate most resources to completing projects

and to spend less resources on evaluation (Figures 4b and 4d). In this case the

optimal policy is more like that in Figures 3a and 3b.

Insert Figure 4 about here.470

Figure 4 shows – perhaps counterintuitively – that the decision-maker should

wait longer before abandoning projects when the accuracy of estimates improves

more quickly: in Figures 4a and 4c projects are abandoned after q = 2 periods,

whereas in Figures 4b and 4d the decision to abandon projects is made after just

q = 1 period. This reflects the trade-off between the number of projects that475

can be completed and the amount of time the decision-maker can wait for the

estimates to become sufficiently accurate to justify the abandonment of many

projects. With r = 0.8 (Figures 4b and 4d), this takes too much time, whereby

resources should mostly be spent on the execution of projects.
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4.3.3. Estimation uncertainty τ0 and uncertainty reduction coefficient r480

Results for the optimal abandonment time q when maximizing the expected

number of projects in the top 1% based on the objective function in (8) are

shown in Figure 5 as a function of the uncertainty reduction coefficient r. In

Figure 5a the initial estimates are moderately inaccurate (τ0 = 6), and in Fig-

ure 5b very inaccurate (τ0 = 13). For reference, the optimal policy for maxi-485

mizing the expected portfolio value based on the objective function in (7) for

each combination of r and τ0 in this setting is not to exercise the option.

Insert Figure 5 about here.

In general, one should wait longer before abandoning projects when the

initial estimates are less accurate. Moreover, Figure 5 shows that the optimal490

abandonment time may first increase and then decrease in r. This reflects the

trade-off between allocating resources either to completing more projects or to

obtaining more accurate evaluations through experimentation. For instance,

Figure 5a illustrates that when r ≤ 0.4, the estimation uncertainty reduces very

fast, whereby the interim evaluations become sufficiently accurate already after495

one period to make decisions about abandoning projects. When 0.5 ≤ r ≤ 0.6,

the accuracy in the estimates improves more slowly, and, hence, the decision-

maker should re-evaluate the projects only after two periods. Finally, when r ≥

0.7, the interim estimates remain inaccurate throughout the projects’ duration,

whereby resources are optimally spent on completing more projects rather than500

launching many projects and abandoning some of them based on more accurate,

but still unreliable, information.

A similar non-monotonic dependence between the expected time-to-decision

and the uncertainty in a project’s profit is discovered by Kwon and Lippman

(2011). Based on a project’s observed profit stream, they use a Bayesian frame-505

work to update the probability that the drift of the project’s profit is either at

a high or a low state. In this setting, they note that the expected optimal time

to either abandon or expand the project first increases and then decreases in
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the volatility of the profit stream.

4.4. Characteristics of the option value510

4.4.1. Estimation uncertainty τ0 and uncertainty reduction coefficient r

Figure 6 shows the option value as a function of the standard deviation τ0 ∈

{0, 1, . . . , 10} of the initial estimation error for different values of the uncertainty

reduction coefficient r, when the objective is to maximize the number of funded

projects among the top 1%. The figure also shows the optimal abandonment515

times q corresponding to each combination of r and τ0. Again, the optimal

policy for maximizing the expected portfolio value for each r and τ0 in this

setting is not to exercise the option, so that the corresponding option value is

zero.

Insert Figure 6 about here.520

The option value decreases in r for all τ0, meaning that the option is more

valuable when the interim estimates are relatively more accurate. However, all

three curves corresponding to different values of r first increase and then start

to decrease after τ0 reaches a certain point. The non-monotonic dependence

of the option value on τ0 stems from the fact that for low values of τ0, the525

initial decision is based on accurate information, and, hence, the option value

is small. On the other hand, if τ0 is very large, the interim estimates are also

quite unreliable since τq = rqτ0, and consequently the option value is small.

At the peak point, the value gained from reducing the standard deviation of

the estimation error by factor rq is maximal. Here, in particular, the highest530

option value (26% increase in the number of exceptional projects in the portfolio

compared to not having the option) is attained when the initial estimates are

very inaccurate (τ0 = 9), given that more accurate estimates can be obtained

relatively quickly (r = 0.4).

A similar non-monotonic relationship between uncertainty and option value535

has been discovered by Siddiqui and Fleten (2010) who study the value of the
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option for an intermediate learning stage between switching from an existing

renewable energy technology to an unconventional technology with uncertain

operating cost, the expected value of which can be reduced during this learning

stage. They show that for low rates of operating cost reduction, the option540

value of the learning stage first increases and then decreases in the long-term

electricity price volatility.

4.4.2. Estimation uncertainty τ0 and level of excellence α

Figure 7 illustrates the option value when maximizing the number of excep-

tional projects in the portfolio as a function of the initial estimation uncertainty545

τ0 for different levels of excellence α. In Figure 7a, the estimation uncertainty

reduces quickly with r = 0.4, and in Figure 7b it reduces slowly with r = 0.8.

As noted before, the option value first increases and then decreases in the ini-

tial estimation uncertainty τ0 and is higher when the uncertainty reduces more

quickly.550

Insert Figure 7 about here.

Interestingly, given that the initial estimates are accurate, the option value

is lower when the decision-maker is interested in truly exceptional projects, i.e.,

those with very high future values (α = 1%). This is because when the initial

estimates are accurate, a large share of the top 1% projects are funded just555

by completing a sufficiently large number of projects, whereby the option value

is small. On the other hand, when the initial estimates are very inaccurate,

the option is more valuable when the decision-maker is interested in projects

in the top 1%. This is due to the fact that it is not necessary to complete

many projects to fund those in the top 1%, given that the information based on560

which the completed projects are selected is very accurate. Thus, it can be very

valuable to experiment on a large number of projects, obtain relatively accurate

estimates about these projects later on and, based on these estimates, commit

resources to only those few projects that are likely to be among the top 1%.
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Based on Figure 7, the abandonment option has the most value (26%) when565

the initial value estimates are very inaccurate (τ0 = 9), the accuracy improves

quickly (r = 0.4), and the decision-maker is interested in truly exceptional

projects (α = 1%). On the other hand, if the initial estimates are very inaccurate

and the accuracy improves slowly, then the option has little value. In this case,

the interim evaluations provide poor justification for abandoning projects, and,570

hence, it pays off to use most resources to completing as many projects as

possible, i.e., to provide full funding to those projects that appear to yield the

most value based on the initial estimates.

4.5. Cross-comparison of funding policies

Next, we compare how the optimal policy for maximizing the expected num-575

ber of exceptional projects performs in terms of expected portfolio value, and

vice versa. Here, the initial estimation uncertainty is τ0 = 8, the uncertainty

reduction coefficient is r = 0.3, and the level of excellence is α = 1%. Table 2

shows the number of completed projects, the expected portfolio value, the ex-

pected average project value (= the expected portfolio value / the number of580

completed projects), and the expected number of exceptional projects in the

portfolio for two policies:

• Policy 1 (optimal for the maximization of the expected portfolio value):

- Full funding for 60 out of 200 project proposals in each period.

• Policy 2 (optimal for the maximization of the expected number of funded585

projects whose future values are in the top 1%):

- Conditional funding for 108 out of 200 project proposals in each pe-

riod,

- All projects re-evaluated after two periods,

- Out of the re-evaluated projects, 99 abandoned and 9 completed.590
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Table 2: Cross-comparison of funding policies with τ0 = 8 and r = 0.3.

Policy 1 Policy 2

Number of completed projects 60 9

Expected portfolio value 1,273 233

Expected average project value 21.22 25.86

Expected number of exceptional projects 1.28 1.68

Table 2 illustrates that the average value of funded projects is higher when

adopting policy 2, which is optimal for funding exceptional projects (25.86 vs.

21.22). Furthermore, given that the expected number of exceptional projects in

the population is n ∙α = 200 ∙1% = 2, the adoption of policy 2 results in funding

1.68/2 = 84% of such projects, whereas only 1.28/2 = 64% of them would be595

funded if policy 1 was adopted. However, due to completing only 9 projects out

of 200 proposals in each period – as opposed to 60 completed projects out of 200

resulting from policy 1 – the expected portfolio value of policy 2 is much lower

than that of policy 1 (233 vs. 1,273). Thus, if the potential for extremely high

indirect benefits of exceptional projects is not accounted for, then policies that600

promote such projects may appear cost-inefficient in the short term. Conversely,

funding policies that are cost-efficient in the short term may fail to pick those

projects that could eventually yield extremely high societal benefits.

Figure 8 illustrates the impact of adopting the ‘wrong’ policy as a function

of the initial estimation uncertainty for fast (r = 0.3), moderate (r = 0.65), and605

slow (r = 0.9) rates of uncertainty reduction. In particular, Figure 8a shows

the percentage of the expected portfolio value obtained by adopting a policy

that maximizes the expected number of exceptional projects compared to what

could have been obtained by adopting a policy that maximizes this value. The

optimal abandonment times for the policies maximizing the expected number610

of exceptional projects are also shown.

Insert Figure 8 about here.
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If the initial estimates are perfectly accurate (τ0 = 0), then the optimal pol-

icy is the same for both objectives, i.e., to simply select the best 60 projects out

of the 200 proposals. On the other hand, the less accurate the initial estimates615

and the slower the accuracy is improved, the more similar the optimal policies

are for maximizing the expected portfolio value and the expected number of

exceptional projects. Thus, there is not much difference in the portfolio values

in Figure 8a when, for instance, r = 0.9 and τ0 ≥ 7. However, if the initial esti-

mates are relatively accurate and/or the estimation accuracy improves quickly,620

then resources are optimally spent on launching many but completing only a

few projects. In this case, the expected portfolio value resulting from the maxi-

mization of the number of exceptional projects is much lower compared to when

maximizing this value; especially so if one should wait for two periods instead

of one before abandoning projects, which is the case when τ0 ≥ 8 for r = 0.3,625

and τ0 ≥ 6 for r = 0.65.

Figure 8b illustrates the percentage of the number of exceptional projects

funded by the policy that maximizes the expected portfolio value compared to

the policy that maximizes the expected number of exceptional projects. Here,

the policy that maximizes the expected portfolio value for each τ0 and r is to not630

exercise the option, whereby no optimal abandonment times are shown. When

the initial estimates are very accurate (τ0 ≤ 2), most of the top 1% projects are

funded just by providing full funding for the best projects based on the initial

evaluation, whereby the difference between the shares of exceptional projects

resulting from the two policies is small. This difference remains small even for635

larger values of τ0 when the uncertainty reduces slowly (r = 0.9), because in this

case the optimal policies are not that different. However, if the initial estimates

are very inaccurate (τ0 = 10) – as they typically are – but more accurate esti-

mates can be obtained later on (r = 0.3), then the failure to use such estimates

to abandon projects and, thus, to release resources for launching more projects640

would result in funding only 75% of those exceptional projects that would be

funded by following the optimal strategy for funding exceptional projects. Be-

cause of the potential for extremely high indirect benefits of exceptional projects,
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such a difference is significant.

4.6. Sensitivity analysis645

Finally, we present results on the impact of the variation in parameters n and

B as well as in the shape of the salvage value function h(q). Table 3 shows the

optimal funding policies with respect to the two objectives for different values

of n such that the initial estimation uncertainty τ0 = 7 is reduced by 50% in

each period, i.e., r = 0.5. The level of excellence is α = 1%, the budget is 1.2n,650

and the salvage value function is linear, h(q) = q/d. For n ≤ 50, the optimal

policy for maximizing the expected portfolio value is to provide full funding

to all launched projects, whereas for larger n it pays off to re-evaluate more

than half of the launched projects and abandon quite a few. This is because

the re-evaluation of e projects out of a smaller number n of proposals would655

require a comparatively larger fraction of resources, as the budget B = 1.2n

is defined in proportion to n. Even though some value can now be retrieved

from abandoned projects, it is still optimal for all n to launch, re-evaluate, and

abandon a larger share of projects when maximizing the number of exceptional

projects than when maximizing the expected portfolio value; which is in line660

with the results presented in this section.

Table 3: Optimal funding policies for different values of n.

Expected value Exceptional projects

`
n

e
n

a
n q `

n
e
n

a
n q

n = 10 30% 0 0 - 30% 30% 10% 2

n = 50 30% 0 0 - 42% 42% 26% 2

n = 200 37% 20% 9% 1 48% 48% 37% 2

n = 500 38% 24% 12% 1 48% 48% 38% 2

Table 4 illustrates the impact of size of the budget B on the optimal funding

policies. Here, n = 200, and the salvage value function is linear, h(q) = q/d.

Budget 120 corresponds to providing full funding for B/(n ∙d) = 120/(200 ∙4) =

15% of the project proposals, budget 240 to 30%, and budget 320 to 40%.665
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The larger the budget, the more projects can be launched, re-evaluated, and

completed ( `
n − a

n ). Again, for all values of B, it is optimal to launch, re-

evaluate, and abandon a larger share of projects when maximizing the expected

number of exceptional projects than when maximizing the expected portfolio

value.

Table 4: Optimal funding policies for different values of B.

Expected value Exceptional projects

`
n

e
n

a
n

`
n − a

n q `
n

e
n

a
n

`
n − a

n q

B = 120 19% 10% 6% 13% 1 22% 22% 15% 7% 2

B = 240 37% 20% 9% 28% 1 48% 48% 37% 11% 2

B = 320 49% 40% 18% 31% 2 64% 64% 49% 15% 2

670

Finally, Table 5 illustrates the optimal policies for different shapes of the sal-

vage value function h(q): constant zero, convex, linear, concave and S-shaped

(see Figure 9). The constant zero h(q) describes, for instance, sequential tech-

nology development projects (Roberts and Weitzman, 1981) in which all stages

must be completed to receive any benefits. The S-shaped salvage value function,675

in turn, is widely used for modeling the performance improvement of technolo-

gies over their lifetimes, whereas the convex salvage value function describes

sharply increasing performance curves such as the improvement in micropro-

cessor transistor density over time (Schilling, 2008). The linear salvage value

function has been criticized for decades for failing to describe project develop-680

ment realistically, especially when little is initially known about the project’s

future value (Godin, 2005); indeed, the linear h(q) as well as the rarely used

concave h(q) are included in this analysis for the sake of reference.

Insert Figure 9 about here.

Here, n = 200, and the budget is B = 240. Because the objective function685

for maximizing the expected number of exceptional projects does not depend

on the salvage value function, the optimal policy for this objective is the same
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for all choices of h(q), namely (95, 95, 73, 2) = (48%, 48%, 37%, 2). When h(q)

in constant zero or convex, the optimal policy for maximizing the expected

portfolio value is to give full funding to all launched projects. This is because a690

large share of a project’s value can be obtained only if the project is completed

– in fact, all of it, if h(q) is constant zero –, whereby it does not pay off to

abandon projects prematurely.

Table 5: Funding policies that maximize the expected portfolio value for different salvage

value functions h(q).

` e a q

h(q) ≡ 0 30% 0 0 -

h(q) convex 30% 0 0 -

h(q) linear 37% 20% 9% 1

h(q) concave 100% 100% 95% 1

h(q) S-shaped 39% 39% 38% 3

The above conclusion does not, however, hold when h(q) is concave or S-

shaped. If the salvage value function is concave, then the expected portfolio695

value would be maximized by launching all 200 projects but abandoning 190

(i.e., 95%) of them after just one period. It may not, however, be very realistic

to assume that almost half of the projects’ benefits would be obtained after

only a quarter of the projects’ duration (Figure 9). Also, if the function h(q)

is S-shaped, then it would be optimal to abandon nearly all launched projects700

just one period before completion. By doing so, one would avoid the costs of

funding projects in the last period, when little additional value is generated.

This kind of a situation could, however, be interpreted such that the projects

are essentially completed at the time of abandonment. Hence, the optimal policy

would actually correspond to providing full funding for all launched projects,705

which is consistent with the results reported in this section.
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5. Discussion and Conclusions

Breakthrough technologies that yield extremely high benefits for society are

very rare. Hence, the fostering of breakthrough technologies is typically pursued

by trying to fund exceptionally valuable technology projects that have the po-710

tential to result in breakthroughs. Our results suggest that if the objective is to

maximize the expected number of exceptional projects, the optimal policy is to

experiment on a large number of projects for some time and, based on this ex-

perimentation, commit resources only to those few projects which appear best.

This policy differs from the policy of maximizing expected portfolio value, which715

is to provide full funding to those projects that appear best based on the initial

value estimates. These differences are important in that a policy which serves

to maximize the expected portfolio value may fail to promote breakthrough

technologies. Conversely, a policy which serves to promote breakthrough tech-

nologies may result in lower average short-term portfolio value, because many720

ongoing projects will be discontinued before completion.

The abandonment option involves a trade-off between allocating resources to

(i) the completion of on-going projects and (ii) the acquisition of more accurate

evaluations to support interim project abandonment decisions. In the absence

of interim evaluations, resources will be tied to projects for their entire duration725

and consequently fewer new projects can be launched, meaning that there is a

risk of failing to launch new projects that could have resulted in a breakthrough.

Still, if more projects are launched and these projects are funded longer, it

follows that more projects will have to be abandoned due to the scarcity of

resources. In fact, the risk of missing out on breakthrough technologies is partly730

decreased by the ability to select which projects should be completed based on

more accurate value information, but partly increased by the fact that fewer

projects can be completed.

In our model, the trade-off between the number of completed projects and

the acquisition of more accurate project evaluations is explicit, as is the de-735

pendence of this trade-off on the accuracy of the initial evaluations and the
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rate at which this accuracy is improved through experimentation. In particular,

our results suggest that the more uncertain the initial evaluations, the more

resources should be devoted to acquiring value information through (i) experi-

menting longer, if the evaluation accuracy improves slowly, or (ii) launching and740

abandoning more projects, if the evaluation accuracy improves quickly.

The rate at which the evaluation accuracy improves depends on several fac-

tors, such as the nature of the technological field or the phase of the innovation

process. Nevertheless, in some cases both the initial evaluation accuracy and

rate at which the accuracy is improved can be affected by allocating more re-745

sources to project evaluation through obtaining more evaluations of each project

or using more competent evaluators, for instance. Our model could be extended

to support such resource allocation decisions by (i) treating the evaluation cost

ce as a decision variable instead of a constant, and (ii) modeling the standard

deviation τ0 of the initial estimation error and the uncertainty reduction coeffi-750

cient r as decreasing functions of ce. Other model parameters, too, can be used

to capture various information that is likely to influence policy making: for in-

stance, differences in the size and stage of development of the national economy

could be accounted for by using different kinds of prior distributions f(v) for

the projects’ values such that higher mean values and longer upper tails of f(v)755

would be associated with larger and more developed economies.

The model could also be extended to cases in which k ≥ 2 instead of just one

interim evaluation may be acquired. The decision variables in such a multistage

model would correspond to the number of projects that are, in the beginning of

each stage, funded for their remaining duration, funded until the next evaluation760

stage, or abandoned. Then, the analytic results of Proposition 1 would hold

for decisions made at any given stage of this process, but the exponentially

increasing number of feasible combinations of decision variables would make it

very time-consuming to compute optimal funding policies for larger values of

k. To keep the computational effort at a reasonable level, optimality conditions765

such as that in Proposition 2 would need to be derived for multistage funding

policies as well.
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Funding practices in which the continuation of funding is based on interim

evaluation of projects are widely used by private companies (Sahlman, 1990;

Tellis et al., 2009; Klingebiel and Rammer, 2011). For example, when devel-770

oping a new oil field, a firm may scale back planned investments to limit its

downside exposure if oil prices, production rates, or reserves turn out to be be-

low expectations (Smith and McCardle, 1999). Staged funding is also standard

practice for venture capitalist firms (Tian, 2011; Li and Chi, 2013). This is

partly due to the need to establish incentives for the start-up entrepreneur to775

meet the stage targets (Gompers, 1995), but also due to the inability to pre-

dict accurately based on the business plan whether the start-up is going to be

successful (Blank, 2013).

In comparison, many well-known research funding agencies which empha-

size the objective of promoting breakthrough research are effectively employing780

funding policies which, in our model, resemble those that maximize the expected

portfolio value. Specifically, these agencies typically commit to funding all ap-

proved projects for a long time, e.g., for up to five years (Heinze, 2008), which

also means that the process of launching projects is highly selective. Indeed,

the success rate of applications to the high-risk, high-reward programme of the785

NIH is 5% (Gewin, 2012). Much in the same vein, the success rate for ERC

starting grants has remained below 16% over the years, reaching an all-time low

of 3.4% in 20072.

Our model is generic and, hence, relevant to different project portfolio se-

lection contexts. Yet, our model does not account for the specific details that790

appear in different project selection settings. For instance, we do not explicitly

distinguish between different phases of technology development and commer-

cialization, or between different public policy instruments for supporting break-

through innovations. Furthermore, there may be important differences between

research grants that are awarded based on the applicant’s track record and those795

that are selected based on a peer review that is focused on the submitted applica-

2Source: http://erc.europa.eu/statistics-0, retrieved February 19, 2015.
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tion alone. There may also be administrative reasons for why private companies

have embraced the abandonment option in their funding policies, while most re-

search funding agencies have not. This notwithstanding, our model serves to

highlight that breakthrough technologies can be best fostered by (i) experi-800

menting by initiating a large set of technology projects, and (ii) committing

resources only to those projects that, based on the experimentation, seem to

have the potential to result in breakthroughs.
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Appendix

Proof of Proposition 1: Given the initial estimates s0
i , the posterior distributions

for the projects’ future values (Vi|S0
i = s0

i ) are f(v|s0
i ) = N(v0

i , ρ2
0) ∀i ∈ N , where the

variance ρ2
0 = σ2τ2

0 /(σ2 + τ2
0 ) is the same for all projects. Prior to observing the in-815

terim estimates sq
i , the projects’ posterior distributions are f(v|Sq

i , s0
i ) = N(E[Vi|S0

i =

s0
i , S

q
i ], ρ2

q), where the variance ρ2
q = r2qτ2

0 ρ2
0/(ρ2

0 + r2qτ2
0 ) is the same for all projects.

The expected values are random variables E[Vi|S0
i = s0

i , S
q
i ] ∼ N(v0

i , ξ2
q ), where the

variance ξ2
q = ρ4

0/(ρ2
0 + r2qτ2

0 ) = ρ2
0 − ρ2

q is the same for all projects.

We introduce random variables Xi = E[g(Vi)|S0
i = s0

i , S
q
i ], i ∈ N , where g :

R → R is a non-decreasing function. Particularly, if g(t) = gL(t) = t, then Xi =

E[Vi|S0
i = s0

i , S
q
i ], and by the law of total expectation ES

q
i
[Xi] = ES

q
i
[E[Vi|S0

i =

s0
i , S

q
i ]] = E[Vi|S0

i = s0
i ]. If, in turn, g(t) is the step function

gS(t) =






0 for all t < μ∗
α

1 for all t ≥ μ∗
α,
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then Xi = P(Vi ≥ μ∗
α|S

0
i = s0

i , S
q
i ), and by the law of total expectation ES

q
i
[Xi] =820

E[gS(Vi)|S0
i = s0

i ] = P(Vi ≥ μ∗
α|S

0
i = s0

i ).

Using this notation, we can define a general portfolio selection problem for a fixed

funding policy (`, e, a, q) and a set of fixed initial estimates s0
i , i ∈ N :

max
L⊆N ,E⊆L
|L|=`, E|=e

{ ∑

i∈L\E

ES
q
i
[Xi] + ESq

[
max
A⊆E
|A|=a

{ ∑

i∈E\A

Xi + h(q)
∑

i∈A

Xi]
}]}

, (12)

which corresponds to the inner problem of (7) if g = gL and h : {1, . . . , d−1} → [0, 1),

and to the inner problem of (8) if g = gS and h(q) ≡ 0. To prove the proposition, it

is thus sufficient to show that (9)–(11) hold for Problem (12) for any feasible policy

(`, e, a, q). To accomplish this we establish that

v0
k > v0

j ⇔ ES
q
k
[Xk] > ES

q
j
[Xj ] ⇔ FXk (x) � FXj (x) ∀x, (13)

which follows from the fact that the cumulative distribution function of Xi is FXi(x) =

Φ((x − v0
i )/ξq) if g = gL, and

FXi(x) =






0, x ≤ 0,

Φ
(μ∗

α+ρqΦ−1(x)−v0
i

ξq

)
, 0 < x < 1,

1, x ≥ 1,

if g = gS (Taboga, 2012).

Proof of (9) Take any L̂ ⊆ N and Ê ⊆ L̂, such that |L̂| = ` and |Ê | = e. When

choosing which project to abandon (i.e., A), the interim estimates sq
i are known so

that also the realizations of the random variables Xi = E[g(Vi)|S0
i = s0

i , S
q
i ], i ∈ Ê are825

known; denote these by xi = E[g(Vi)|S0
i = s0

i , S
q
i = sq

i ], i ∈ Ê . Take any Â ⊆ Ê such

that |Â| = a, and assume there exist j ∈ Ê \ Â and k ∈ Â such that xk > xj . Then,

evaluating the objective function of the inner maximization of problem in (12) at (i)

A = Â and at (ii) A = Â \ {k} ∪ {j}, and computing the difference between these

values gives830

(i)
︷ ︸︸ ︷∑

i∈Ê\Â

xi + h(q)
∑

i∈Â

xi −[

(ii)
︷ ︸︸ ︷∑

i∈(Ê\Â)\{j}∪{k}

xi + h(q)
∑

i∈Â\{k}∪{j}

xi] =

xj + h(q)xk − xk − h(q)xj = (1 − h(q))(xj − xk) < 0,

where the inequality is implied by the assumption that xk > xj and the fact that

h(q) ∈ [0, 1). Hence, the objective function could be improved by abandoning project

j instead of k.
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Proof of (10). Take any L̂ ⊆ N and Ê ⊆ L̂ such that |L̂| = ` and |Ê | = e. Assume

there exist j ∈ L̂ \ Ê and k ∈ Ê such that v0
k > v0

j . Let X(1) ≥ . . . ≥ X(e−1) be835

the order statistics of the random variables Xi, i ∈ Ê \ {k} and let Ps:s =
∑s

i=s X(i).

Then, evaluating the objective function of problem (12) at (i) L = L̂, E = Ê and at

(ii) L = L̂, E = Ê \{k} ∪ {j}, and computing the difference gives

(i)
︷ ︸︸ ︷∑

i∈L̂\Ê

ES
q
i
[Xi] + ESq

[
max

{
P1:e−a + h(q)(Xk + Pe−a+1:e−1), (P1:e−a−1 + Xk) + h(q)Pe−a:e−1

}]

−

(ii)
︷ ︸︸ ︷∑

i∈(L̂\Ê)\{j}∪{k}

ES
q
i
[Xi] − ESq

[
max

{
P1:e−a + h(q)(Xj + Pe−a+1:e−1), (P1:e−a−1 + Xj) + h(q)Pe−a:e−1

}]
=

ESq
[
Xj + P1:e−a−1 + h(q)Pe−a+1:e−1 + max

{
X(e−a) + h(q)Xk, h(q)X(e−a) + Xk

}]

−ESq
[
Xk + P1:e−a−1 + h(q)Pe−a+1:e−1 + max

{
X(e−a) + h(q)Xj , h(q)X(e−a) + Xj

}]
=

ESq [max
{
X(e−a) + h(q)Xk, h(q)X(e−a) + Xk

}
− Xk] − ESq [max

{
X(e−a) + h(q)Xj , h(q)X(e−a) + Xj

}
− Xj ] =

ESq [max
{
X(e−a) − (1 − h(q))Xk, h(q)X(e−a)

}
] − ESq [max

{
X(e−a) − (1 − h(q))Xj , h(q)X(e−a)

}
] =

ESq [max
{
(h(q) − 1)Xk, (h(q) − 1)X(e−a)

}
+ X(e−a)] − ESq [max

{
(h(q) − 1)Xj , (h(q) − 1)X(e−a)

}
+ X(e−a)] =

(h(q) − 1)
︸ ︷︷ ︸

<0

(
ESq [min{Xk, X(e−a)}] − ESq [min{Xj , X(e−a)}]
︸ ︷︷ ︸

>0 by (13)

)
< 0.

Hence the objective function value could be improved by evaluating project j instead

of k.840

Proof of (11). Take any L̂ ⊆ N and Ê ⊆ L̂, such that |L̂| = ` and |Ê | = e. Assume

there exists j ∈ L̂ and k /∈ L̂ such that v0
k > v0

j .

First, assume j /∈ Ê . Let X(1) ≥ . . . ≥ X(|E|) be the order statistics of the random

variables Xi, i ∈ Ê and let Ps:s =
∑s

i=s X(i). Evaluating the objective function of

problem (12) at (i) L = L̂, E = Ê and at (ii) L = L̂ \ {j}∪ {k}, E = Ê , and computing845

the difference gives

(i)
︷ ︸︸ ︷∑

i∈L̂\Ê

ES
q
i
[Xi] + ESq [P1:e−a + h(q)Pe−a+1:e]−

(ii)
︷ ︸︸ ︷
[ ∑

i∈(L̂\Ê)\{j}∪{k}

ES
q
i
[Xi] + ESq [P1:e−a + h(q)Pe−a+1:e]

]
=

ES
q
j
[Xj ] − ES

q
k
[Xk] < 0,

where the inequality is implied by (13). Hence the objective function value could be

improved by launching project k instead of j.

Second, assume that j ∈ Ê . Let X(1) ≥ . . . ≥ X(e−1) be the order statistics of

the random variables Xi, i ∈ Ê \ {j} and let Ps:s =
∑s

i=s X(i). Then, evaluating the850

objective function of problem (12) at (i) L = L̂, E = Ê and at (ii) L = L̂ \ {j} ∪ {k},
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E = Ê \{j} ∪ {k}, and computing the difference gives

(i)
︷ ︸︸ ︷∑

i∈L̂\Ê

ES
q
i
[Xi]+ESq

[
max

{
P1:e−a−1 + Xj + h(q)Pe−a:e−1, P1:e−a + h(q)(Pe−a+1:e−1 + Xj)

}]
−

−

(ii)
︷ ︸︸ ︷∑

i∈L̂\Ê

ES
q
i
[Xi] − ESq

[
max

{
P1:e−a−1 + Xk + h(q)Pe−a:e−1, P1:e−a + h(q)(Pe−a+1:e−1 + Xk)

}]
=

ESq

[
max

{
Xj + h(q)X(e−a), X(e−a) + h(q)Xj

}
− max

{
Xk + h(q)X(e−a), X(e−a) + h(q)Xk

}]
=

h(q)ESq [Xj − Xk]
︸ ︷︷ ︸

<0 by (13)

+(1 − h(q))ESq [max{Xj , X(e−a)} − max{Xk, X(e−a)}]
︸ ︷︷ ︸

<0 by (13)

< 0

where the inequality is implied by fact that h(q) ∈ [0, 1). Hence the objective function

value could be improved by launching and evaluating project k instead of j�.

Proof of Proposition 2: Let us use the same notation as in the proof of Proposi-855

tion 1. Let (`, e, a, q) be the optimal solution to (12), which represents both problem (7)

with g = gL, h : {1, . . . , d − 1} → [0, 1) and problem (8) with g = gS , h(q) ≡ 0. To

prove the proposition, it is thus sufficient to show that policy (`, e+1, a, q) is infeasible

for (12). Assume to the contrary that (`, e + 1, a, q) is feasible for (12). Let L̂ and

Ê be the optimal index sets for the optimal policy (`, e, a, q) such that j ∈ L̂ j /∈ Ê .860

Let X(1) ≥ . . . ≥ X(e) be the order statistics of the random variables Xi, i ∈ Ê and

let Ps:s =
∑s

i=s X(i). Then, evaluating the objective function of problem (12) at (i)

L = L̂, E = Ê and at (ii) L = L̂, E = Ê ∪{j} (i.e., |E| = e + 1), and computing the

difference gives

(ii)
︷ ︸︸ ︷∑

i∈L̂\(Ê∪{j})

ES
q
i
[Xi] + ESq

[
max

{
P1:e−a + Xj + h(q)Pe−a+1:e, P1:e−a+1 + h(q)(Pe−a+2:e + Xj)

}]
−

−

(i)
︷ ︸︸ ︷∑

i∈L̂\Ê

ES
q
i
[Xi] − ESq

[
P1:e−a + h(q)Pe−a+1:e

]
=

ES
q
i

[
max{P1:e−a + Xj + h(q)Pe−a+1:e − Xj − P1:e−a − h(q)Pe−a+1:e,

P1:e−a+1 + h(q)(Pe−a+2:e + Xj) − Xj − P1:e−a − h(q)Pe−a+1:e}
]

=

(1 − h(q))
︸ ︷︷ ︸

>0

ESq

[
max

{
0, X(e−a+1) − Xj}

]
> 0,

where the last inequality follows from the fact that X(e−a+1) > Xj with a positive865
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probability. This, however, contradicts the assumption that policy (`, e, a, q) is optimal

for (12), whereby (`, e + 1, a, q) must be infeasible�.
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Figure 1: Illustration of the excellence threshold.
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Figure 2: Portfolio selection process for project proposals arriving at the beginning of period

t.
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Figure 3: The optimal funding policies when the objective is to maximize the expected portfo-

lio value (a)-(b), or the expected number of funded projects among the top 1% (c)-(d). 5,000

simulation rounds (Monte Carlo).
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(b) Top 10%, accuracy improves slowly
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(c) Top 1%, accuracy improves quickly

1 2 3 4
0

50

100

150

200

N
um

be
r 

of
 p

ro
je

ct
s

Period

(d) Top 1%, accuracy improves slowly
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Figure 4: The optimal funding policies for fast (r = 0.4) or slow (r = 0.8) rate of uncertainty

reduction, when the objective is to maximize the expected number of funded projects among

the top 10% or top 1%. 5,000 simulation rounds (Monte Carlo).
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Figure 5: Optimal abandonment time q for maximizing the expected number of exceptional

projects. 5,000 simulation rounds (Monte Carlo).
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Figure 6: Value of the abandonment option in maximizing the expected number of exceptional

projects for different values of τ0 and r. 5,000 simulation rounds (Monte Carlo).
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Figure 7: Value of the abandonment option for different values of τ0 and α. 5,000 simulation

rounds (Monte Carlo).
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Figure 8: (a): The percentage of the expected portfolio value resulting from a policy that

maximizes the expected number of exceptional projects compared to a policy that maximizes

this value. (b): The percentage of exceptional projects funded with a policy that maximizes

the expected portfolio value compared to a policy that maximizes the expected number of

exceptional projects. 5,000 simulation rounds (Monte Carlo).
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Figure 9: Different shapes of the salvage value function h(q).
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