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Matching of Large Images Through
Coupled Decomposition
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Abstract— In this paper, we address the problem of fast
and accurate extraction of points that correspond to the same
location (named tie-points) from pairs of large-sized images.
First, we conduct a theoretical analysis of the performance of
the full-image matching approach, demonstrating its limitations
when applied to large images. Subsequently, we introduce a novel
technique to impose spatial constraints on the matching process
without employing subsampled versions of the reference and the
target image, which we name coupled image decomposition. This
technique splits images into corresponding subimages through
a process that is theoretically invariant to geometric transfor-
mations, additive noise, and global radiometric differences, as
well as being robust to local changes. After presenting it, we
demonstrate how coupled image decomposition can be used both
for image registration and for automatic estimation of epipolar
geometry. Finally, coupled image decomposition is tested on a
data set consisting of several planetary images of different size,
varying from less than one megapixel to several hundreds of
megapixels. The reported experimental results, which includes
comparison with full-image matching and state-of-the-art
techniques, demonstrate the substantial computational cost
reduction that can be achieved when matching large images
through coupled decomposition, without at the same time
compromising the overall matching accuracy.

Index Terms— Image matching, high-resolution imaging, image
registration, image decomposition.

I. INTRODUCTION

OVER the last few years, smartphones and digital cameras
have made tens-of-megapixel images available to the

general public, while new domains, such as high-resolution
planetary mapping, have resulted in the release of images
that reach up to several gigapixels (see [1]). As expected, the
size increase raises scalability and computational complexity
issues that make imperative the re-design of a number of image
processing approaches.

Image matching is an essential step in multiple image
processing applications, including image registration, image
retrieval, stereo and 3D reconstruction. When dealing
with large images, feature-based matching techniques are
typically used. The latter employ extracted features (either
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in the form of corresponding tie-points [?], [?], [2], [3]
or characteristic image curves [4], [5]) and perform image
matching using characteristics of these features, thus limiting
the computational cost required to accomplish this task.

The number of features is expected to increase with
the image size, thus even the feature-based matching of
large images becomes a computationally cumbersome task.
State-of-the-art techniques designed to ameliorate image
matching computational speed are mostly focused on the
orthogonal issue, i.e. handling large datasets of “normal-sized”
images [8]–[10]. All these techniques perform full-image
matching, i.e. they don’t impose any spatial constraints on
the matching process. On the contrary, they ignore the actual
image areas from where the tie-points are extracted, even
though these may guide the matching process by defining the
range and size of the tie-point neighbourhood, thus reducing
the required time for matching large images.

When dealing with large images the most common way
to circumvent the substantial computational cost is through
pyramidal schemes. These are techniques that employ a
number of sub-sampled versions of the reference and the
target image to propagate matching results from the coarsest
to the finest resolution. However, pyramidal schemes are fully
dependent on the successful matching of all intermediate
resolution versions, which is a non-trivial task for a large range
of images (e.g. images of low contrast, images with a small
number of distinctive features, etc.). If there are any mistakes
made at any one level of the pyramid, these mistakes will be
hugely amplified at the finest resolution level.

Additional challenges arise when images have partially
changed. For example, when dealing with planetary images of
the same area acquired at different times, it is straightforward
that due to natural processes such as dust deposition or
geological phenomena, the images may not be perfectly
co-aligned. In such applications, it is desirable to have a
sub-image ranking according to the matching quality that was
achieved. In this way, a measure is attained that enables a
discrimination between un-changed and potentially-changed
areas. The latter may be subsequently either discarded from
the matching output or become the input to a semantic
analysis stage aiming to recognise the change (e.g. this may
signify some unidentified dynamic natural processes [9], [10]).

In order to address the aforementioned issues, we present a
novel adaptive image manipulation technique, which we name
“coupled image decomposition”. This is a two-step, iterative,
global-to-local algorithm. At each iteration, the corresponding
images (or sub-images) are initially coupled, before a
concurrent image decomposition process generates multiple
corresponding sub-images. The coupled decomposition
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Fig. 1. Flowchart of the image matching pipeline from image input
until tie-point extraction. The solid-lines in the flowchart corresponds to the
typical processing used in image matching. The dashed lines show the newly
introduced parts of the flowchart.

algorithm output defines an image neighbourhood for each
feature in the first image and restricts matching into the
corresponding neighbourhood in the other image. As a
result, image matching is performed at the sub-image level,
i.e. in pairs of sub-images that are matched independently
from each other, thus significantly reducing the required
computational time. Moreover, as it will be both theoretically
and experimentally shown, this approach achieves an increase
in the number of correctly identified tie-points, which can be
used to enhance the overall matching accuracy. Finally, on top
of the coupled decomposition algorithm, we introduce a tech-
nique that exploits the information redundancy of sub-image
matching to improve the automatic estimation of the epipolar
geometry as well as assess the sub-image matching quality.

The rest of the paper is organized as follows: related
work is presented in Section II, followed by a theoretical
analysis of the shortcomings of full-image matching of large
images in Section III. Subsequently, the coupled decomposi-
tion method is presented in Section IV. In Section V, image
matching and fundamental matrix estimation using coupled
decomposition is introduced, while experimental validation is
performed in Section VI. Section VII concludes the work.

II. RELATED WORK

A. Tie-Point Matching

A standard tie-point matching pipeline for two input
images, W , and Z [11] consists of two independently executed
parts, i.e. the extraction of descriptive points p, q from
W and Z respectively, and their subsequent matching
(solid-line flowchart on Fig. 1). The latter can be considered as
the definition of a function f from the set Sp (p ∈ Sp) to the
set Sq ∪ ∅ (q ∈ Sq) [6], based exclusively on local descriptors
estimated at each point of Sp and Sq . Note that apart from
the Sp subset that is mapped to ∅, which signify points
of Sp that don’t have a match to Sq , this function is bijective
(i.e. one-to-one).

The most commonly used local descriptor in
image matching tasks is the Scale-Invariant Feature
Transform (SIFT) [11], which is a 128-dimensional local
orientation histogram. Popular recent SIFT extensions and
variations, such as SURF [12], GLOH [13] and DAISY [2]
have been found to suffer from accuracy, compactness or
speed loss respectively when compared with SIFT. As a matter
of fact, there is evidence that SURF is not as accurate as
SIFT in image matching applications [2], while GLOH and
DAISY are slower than SIFT [13], [14], the latter being also
less compact since it employs 200-dimension feature vectors.

No matter which descriptor is employed, when dealing with
either large datasets of small images or very large images, the
most time-consuming stage of the pipeline is point matching.
Actually, the computational cost of a brute-force search
(i.e. that examines all (p, q) ∈ (Sp X Sq)) may become
prohibitive, while the use of efficient algorithms such as
kd-tree search [15] and ball-tree search [16] are undermined
by the high SIFT dimensionality [11], due to the curse of
dimensionality [17].

The developed approaches for reducing the computational
cost of point matching are designed either for applications
in which the target image is compared to a large number of
reference images or for applications in which the target image
and the (single) reference image are exceptionally large. The
former approaches typically perform matching through fast
approximate nearest neighbour algorithms, such as priority
search [18]. While recent variations limit the approximation
error either by employing multiple kd-trees having between
them a constant angle offset [7] or through a bi-directional
image matching scheme [8], such techniques have non-trivial
approximation errors, which may be tolerated or not depending
on the application.

On the other hand, matching of large images usually
involves some sort of pyramidal scheme in order to reduce
the computational cost. Pyramidal schemes employ a set of
sub-sampled versions of the reference and the target image.
Matching is performed by propagating results from the coars-
est to the finest level, in order to limit the computational
time. In [19] the full images are matched only at the coarsest
resolution, with the results being propagated and updated at
progressively finer resolution. In a recent pyramidal technique,
which was introduced in [20], coarse level registration results
are used to decompose the images into 4 corresponding
sub-images (using the center as the splitting point), which
are subsequently independently matched in a finer level.
This iterative algorithm starts from small sub-sampled images
(128 × 128 or 256 × 256 pixels) and doubles the resolution
at each step, until reaching the actual image dimensions.
Finally, a similar approach was proposed in [21]. Matching
is performed in a progressively finer resolution, while the
matchings that are established at the coarsest levels are used
to decompose the image planes into corresponding sub-images
through Voronoi tessellation.

Pyramidal approaches follow the assumption that both the
images and the image descriptors are robust to extreme
scale differences (which in [20] case may reach up to 107).
Unfortunately, this is not generally true, since theoretical scale
invariance can be achieved only when the image resolution
satisfies the Nyquist sampling criterion [22]. For a large
range of images, including the majority of remote sensing
products, this criterion is far from being satisfied, since it
would require spatial frequency much more coarser than the
actual ones. Additionally, this approach generates a more
sparse set of tie-points than matching at full resolution, since
the latter are typically extracted from extrema (e.g. corners)
and the generation of coarse resolution versions is equivalent
to image blurring. As a result, pyramidal schemes often fail to
approximate the correct registration at the coarsest levels, an
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error that is propagated to the finer ones, thus contaminating
the final matching outcome.

However, a technique that decomposes the reference and
the target image into corresponding sub-images would be very
useful not only for alleviating the overall computational cost
but also for controlling the matching false acceptance and
false rejection rates. This becomes apparent from the fact that
typically a match is declared if the ratio of the distance of
a query point p from its second nearest q2 neighbour to the
distance from its nearest neighbour q1 (p ∈ Sp , q1, q2 ∈ Sq)
is above a threshold. This approach raises scalability issues.
since the second nearest neighbour distance over the nearest
neighbour distance ratio depends on the size of Sq . When Sq is
large enough and point p matches to q1 then there is a high
probability that by mistake q2 is so similar to p that it will
be erroneously omitted. On the contrary, when the set Sq is
small and point p doesn’t match to q1 then it is possible by
mistake that q2 will be less similar than is required to correctly
discard the match. Consequently, an increased false rejection
rate is expected when the size of Sq is large enough, while an
increased false acceptance rate occurs when the size of Sq is
rather small. A global ratio threshold may bias the algorithm
towards achieving a low false acceptance ratio even when a
false rejection ratio is of major importance, e.g. when dealing
with textureless or low-contrast images. This is especially the
case when RANSAC [23] (or an analogous algorithm) can
successfully prune erroneous matches in a post-processing step
when the false rejection-false acceptance trade-off must be
carefully examined so as to as to limit the number of correct
matches that are missed (errors of omission).

B. Matching of Remote Sensing Spacecraft Images

Remotely sensed images of large areas of the earth and
planetary surfaces constitute an image sub-class with several
special characteristics, which render their matching a very
challenging task. Firstly, matching accuracy is of fundamental
importance. Actually, any matching error is likely to result in
distortions being reprojected in geocoded images and/or maps,
which are going to be used in tasks that require high accuracy.
For example, images taken by Mars orbiters, with a resolution
on the order of metres per pixel, have been extensively used as
part of the selection of landing sites for Mars lander and rover
missions [24], [25]. It is likely that any error in the employed
maps would jeopardize the mission outcome. As a result,
approaches that might compromise accuracy are avoided as
far as one is able to.

On the other hand, a typical remote sensing image is on
the order of tens-to-hundreds of megapixels, and can reach
up to 10 gigapixels (e.g. such as the 25cm high-resolution
Mars images from the HiRISE camera [1]). Thus, brute-force
tie-point matching are very likely to result in a prohibitive
computational cost. The combined requirements for high
accuracy and reliability with a realistic computational time
leads to the manual decomposition of the input images into
corresponding, non-overlapping sub-images. However, such
a task is cumbersome, un-scalable and subject to human
errors. Alternatively, a pyramidal scheme may be employed
(see [19]). However, pyramidal schemes induce severe

Fig. 2. An example of corresponding image pairs from Martian imagery.

performance degradations when dealing with texureless areas,
which are very common in planetary data, since the scenery
often involves extended flat or dusty areas such as valleys,
with a small number of distinctive features (Fig. 2).

Moreover, remote sensing images arise from sampling of a
2D projection of the 3D land surface. As a result, the remote
sensing image is independent from the sampling frequency
of the input image (i.e. the pixel resolution) only if the
latter satisfy the Nyquist sampling criterion [22]. In a typical
remote sensing scenario, this implies very fine pixel resolution,
i.e. on the order of millimetres. Such a resolution is not
currently available. Consequently, in this type of image,
a scaling variance due to aliasing is to be expected.

Image matching of remote sensing images, especially plan-
etary images of bodies with atmospheres, also has to deal with
the fact that the planet’s surface is exposed to unpredictable
local changes, due to weather or dust/aerosol/pollution
phenomena [26], seasonal processes [9], clouds, possible
impacts by large meteorites which do not burn up in the thin
atmosphere, etc. These are often impossible to model due to
the currently limited understanding of the natural mechanisms
that trigger them. Apparently, it would be desirable to identify
such local changes, not only to discard them from the image
matching process but additionally because they refer to an
unknown natural process whose extent is unknown.

Finally, remote sensing images are commonly acquired
using pushbroom cameras, i.e. line cameras that acquire
images perpendicular to the spacecraft flight direction,
which scan distinct surface areas as the spacecraft flies
forward [27]. It has been shown that matching images
from pushbroom cameras only partially satisfy typical
linear epipolar constraints, i.e. the epipolarity curves may
not be considered linear but only partially linear [27]. This
property provides additional merit for an algorithm that would
automatically decompose image pairs into corresponding
sub-images, as the one that is described analytically in the
next section.

III. FULL-IMAGE MATCHING OF LARGE IMAGES

Full-image matching of large images is associated with an
increased computational cost, since image matching by default
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has quadratic computational complexity. In this section we are
going to show that full-image matching of large images is also
associated with degraded accuracy, which can not be improved
through parameter tuning.

This analysis derives from the fact that matches are
typically identified through the nearest neighbour distance
ratio (NNDR), i.e. the ratio of the distance to the nearest
neighbour over the distance to the second nearest neighbour.
For example, in the original SIFT publication [11] a point
in the reference image was declared matched if NNDR was
less than a threshold H = 0.8, while it was further claimed
that the exact threshold value is not critical on the matching
performance.

When matching two sets of feature points coming
respectively from the reference and the target image, it is
fair to assume that the distances between a feature point
in the reference image that does not have any match in
the target image and all NW feature points in the target
image are random, i.e. coming from a distribution fD(d)
(the corresponding cdf is FD(d)). Then the joint distribution
of the distance to the nearest neighbour d1 and the second
nearest neighbour d2 is [28]:

fD1,D2(d1, d2) = NW (NW − 1)F NW −2
D1

(d1) fD1(d1) fD2(d2)

(1)

where d1 ≤ d2. The probability P of correct rejection is the
probability of d1 ≤ H d2, i.e.,

P = NW (NW − 1)

∫ ∞

−∞
F NW −2

D1
(d1) fD1(d1)

(

∫ Hd1

d1

fD2(d2)dd2)dd1

=
∫ ∞

−∞
F NW −2

D1
(d1)(FD1(H d1) − FD1(d1)) fD1(d1)dd1

(2)

By expanding Eq. (2) we get:

P = NW (NW − 1)[
∫ ∞

−∞
FD1(H d1)F NW −2

D1
(d1) fD1(d1)dd1

−
∫ ∞

−∞
F NW −1

D1
(d1) fD1(d1)dd1] (3)

Since
∫ ∞
−∞ NW F NW −1

D1
(d1) fD1(d1)dd1 = 1 the above equation

is re-written as:

P = NW (NW − 1)

∫ ∞

−∞
FD1(H d1)F NW −2

D1
(d1) fD1(d1)dd1

−(NW − 1) (4)

Finally, [FD1(H d1)F NW −1
D1

(d1)]′ = H f D1(d1)F NW −1
D1

(d1) +
(NW − 1)FD1(H d1)F NW −2

D1
(d1) fD1(d1), so

P = NW (1 − H
∫ ∞

−∞
fD1(d1)F NW −1

D1
(d1)dd1) − (NW − 1)

(5)

or

P = 1 − NW H
∫ ∞

−∞
fD1(d1)F NW −1

D1
(d1)dd1 (6)

Fig. 3. The F-score dependence from the tie-point number NW and the
NNDR threshold H as a function of the non-matching distance standard
deviation σ . Black-coloured pixels correspond to F-score=1, white-coloured
pixel to F-score=0 and grey-coloured pixels to all intermediate values, using
linear colour stretch.

Consequently, the mis-detection ratio Emd is

Emd = NW H
∫ ∞

−∞
fD1(d1)F NW −1

D1
(d1)dd1 (7)

Eq. (7) implies that the mis-detection ratio is determined
by the distribution fD(d), the threshold H and the number
of tie-points in the target image NW . Following a similar
rational we can conclude that the false rejection ratio and
the mis-classification ratio is also determined by the above
parameters, along with the distribution of the matching feature
point distances gD(d). Consequently, this parameterisation can
be employed to examine matching performance dependence
from the number of points NW and the NNDR threshold H .

In this implementation, it is assumed that correct matches
show consistently low distance values, thus gD(d) was selected
as a uniform distribution with minimum value 0.01 and
maximum value 0.1. On the other hand, fD(d) was supposed
to be a normal distribution, with mean value 0.5 (since distance
takes a value within the range [0, 1]) and variable standard
deviation σ . The above selections reduce the number of
degrees of freedom to 3: the standard deviation σ , the thresh-
old H and the number of tie-points in the target image NW .

The matching quality measure in this case is the F-score,
i.e. the harmonic mean of the information retrieval mea-
sures, Recall and Precision [29]. F-scores were estimated
using the above model by sampling NW , H and σ .
More specifically, F-score was estimated for NW equal
to 100, 300, 1000, 3000, 10000, 30000, 100000 and 300000.
On the other hand, σ samples were taken in the interval
[0.05, 0.4] using a step 0.005 and H in the interval [1.1, 2]
using a step 0.01.

As a result, for each NW value, a matrix M of dimension
71×91 was retrieved. M(i, j) value is the estimated F-score
when σ = 0.05 + 0.005(i − 1) and H = 1.1 + 0.01( j − 1).
These tables were quantised and visualised in Figure 3.
Black-coloured pixels correspond to F = 1, whille white-
coloured pixels to F = 0. All intermediate F-score values
are drawn using a linear grey-scale stretch, i.e. F-score
x corresponds to grey level 255x . We selected to demonstrate
these results as grey-level images because the purpose of
this synthetic experiment is not to give quantitative F-score
estimates but rather to examine the qualitative dependence
of F from NW and H .
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As expected, Fig. 3 confirms that higher standard deviation
of the non-matching distance scores results in lower perfor-
mance. As a matter of fact, σ expresses the inherent matching
ambiguity that varies according to the content of the image,
the camera parameters, the imaging conditions, etc as well as
the capability of the employed descriptor to index the local
image content. A rough discrimination can be generated by
labeling matchings with low σ values as “inherently easy”
while matchings with high σ values as “inherently hard”.

Fig. 3 shows that while the former class seems rather robust
to the number of tie-points NW , the latter’s performance is
severely degraded when the number of tie-points increase.
Consequently, a full-image matching of large images is
exposed to unpredictable parameters (such as those modeled
through σ ) and for a significant range of images (e.g. remote
sensing spacecraft images) is expected to lead to poor
matching performance. Moreover, the matching performance
can not be tuned through NNDR threshold H , since
H values do not seem to play a critical role in the matching
performance, especially for large NW values. As a matter
of fact, Fig. 3 implies that avoiding the selection of a very
low H value seems to be the only necessary H tuning.

This inability of H to effect accurate matching of large
images suggests the need to limit the number of candidate
matches. The latter can be achieved by imposing spatial
constraints on the matching process. In the next section we
introduce such a technique, named coupled decomposition.

IV. COUPLED IMAGE DECOMPOSITION

The image matching pipeline is illustrated in Fig. 1. The
solid lines denote the previously established process while
the dashed ones represent the ones introduced in this work
for the coupled decomposition step. As already discussed
in Section II-A, in the state-of-the-art approach, initially inter-
est point detection is conducted on the reference and the target
image (e.g. through a Harris-Laplace detector [30]), before
processing the extracted informative image points to generate
local descriptors (usually SIFT [11]). Thus, a point is projected
from image space to descriptor space. During matching, each
target image descriptor is matched with a reference image
descriptor or discarded if no match is found (possibly using a
tree structure to facilitate efficient queries), and the matches
are reprojected from the descriptor space to the image space.
This approach does not impose any spatial constraints on the
matching process, which is fully conducted in the descriptor
space, while pyramidal schemes impose spatial constraints
based on sub-sampled versions of the images, a strategy that
is problematic when dealing with large images. Instead, in
this section we introduce a novel technique, named coupled
decomposition, imposing spatial constraints on pairs of images
using only the full resolution images, which subsequently are
matched.

A. Line and Point Invariants

We assume that Z and W are the reference and the target
input images, respectively. As a matter of fact Z , (as well
as W ) is used to represent both the reference (target) image
per se as well as its luminance at a point pi (q j ), in which case

this is denoted as Z(pi) (W (q j )), or Z(xi , yi ) (W (x ′
j , y ′

j )) if
the point coordinates are given. Moreover, for a pair of points
pi and p j , θi j is the angle between the vector pi p j with the
horizontal line that pass through pi .

Using the above nomenclature, the profile S̄(pi , θ) is
defined as the set of points p j of Z for which θi j = θ or
θi j = θ + π , i.e. the set of points of a line passing from pi .
We further define the mean profile Z̄(pi , θ,�) as the mean
luminance of the profile points:

Z̄(pi , θ,�) = E[p j ], p j ∈ Z , θi j = θ or θi j = θ + π (8)

In the above equation E[.] is the expected value operator.
Moreover, since the only available information is the image
luminance in integer coordinates, the mean profile depends
on the employed interpolation method, �. Nevertheless, since
the luminance variation caused by different interpolation is
usually small and is further reduced through averaging, we
assume that Z̄(pi , θ,�1) ≈ Z̄(pi , θ,�2) = Z̄(pi , θ) for two
different interpolation methods �1,�2.

Through the mean profile, we define for each point p a
function f Z̄ ,p(θ) that maps each angle θ to the mean profile
Z̄(p, θ). If two images, Z and W , differ only in terms of
geometric transformations and additive noise (i.e. Z can be
reproduced from W after a set of geometric transformations
and noise addition) and if p and q are two corresponding
points in Z and W (i.e. p is where point q is mapped through
the geometric transformations) then the following equation
stands:

f Z̄ ,p(θ) = fW̄ ,q(θ + φ) (9)

In the above equation φ signifies the orientation angle
difference of W and Z .

Finally, in order to find two corresponding points in
Z and W , two different approaches are proposed, depending
on the image matching scenario. More specifically, when
Z and W completely overlap Z and W centroids are selected
as corresponding points, since geometric transformations and
additive noise leaves the image centroid invariant, i.e.:

(
∑

xi Z(xi , yi ),
∑

yi Z(xi , yi ))

= (
∑

x ′
j W (x ′

j , y ′
j ),

∑
y ′

j W (x ′
j , y j )) (10)

However, when the reference and the target image overlap only
partially then the reference and the target image centroid are
not expected to correspond. When dealing with partially over-
lapping image pairs, a 1-element sample of the set of matches
is proposed to be used as the corresponding point. More specif-
ically, this is estimated by matching one by one the feature
points extracted from Z with the complete set of feature points
extracted from W , until an unique match is identified. The
matching point coordinates in Z and W determine the pair
of corresponding points. In the rest of this paper, the two
variations are going to be named mean-based coupled decom-
position and match-based coupled decomposition, respectively.

B. Coupled Image Decomposition Algorithm

The coupled image decomposition algorithm is presented
in Alg. 1. The input of the algorithm consists of the reference
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Algorithm 1 Coupled Image Decomposition Algorithm

image, Z and the target image, W . The coupled decomposition
algorithm starts by estimating the corresponding points
p and q respectively and by estimating the profile functions
f Z̄ ,p(θ) and fW̄ ,q(θ) on them. As a matter of fact, since
the profile functions are continuous, we employ a quantised
version of them, which aggregates the mean profiles for
angle ranges of �θ . As �θ gets smaller the quantised profile
function becomes the profile functions introduced in the
previous subsection.

From Eq. 9 it is assumed that fW̄ ,q(θ) is a (circularly)
translated version of f Z̄ ,p(θ). The angle translation
parameter φ is the one that maximizes the profile vector
correlation. Consequently, a polar coordinate system fit in p
with the axis at angle θ (relative to a horizontal line passing
through p) corresponds to a polar coordinate system fit
in q with the axis at angle θ + φ. This property is used to
decompose images into corresponding pairs of sub-images,
Zi and Wi .

The sub-images Zi (as well as Wi ) are actually radial
sections of the polar co-ordinate system that is defined on
the point p (q). For simplicity reasons, we use a constant
angular range for each radial section. For example, if the
corresponding point is the point p1 and 4 radial sections are
used then the range of each radial section is π/2 and the
first, second, third and fourth sub-image would include the
image points pi for which 0 ≤ θ1i ≤ π/2, π/2 ≤ θ1i ≤ π,
π ≤ θ1i ≤ 3π/2 and 3π/2 ≤ θ1i ≤ 2π , respectively.

For each of the corresponding sub-images, the coupled
decomposition process is iterated, until the maximum number
of iterations is reached. The algorithm output is a set of flags
that determine for each W and Z pixel the sub-image that
they belong to. If W and Z differ only in terms of geometric
transformations and additive noise, then points in Zi would
correspond to points in Wi and vice versa. Consequently,
instead of matching the complete images Z and W, image
matching can be performed on a set of corresponding sub-
images Zi and Wi .

The parameters that control coupled decomposition output
are the quantization step �θ , the number of iterations K
and the number of radial sections M . In order to tackle
cases in which the differences between Z and W are not
limited to geometric transformations and additive noise, the
sub-images Zi , Wi are enlarged by a factor (1 + a) before

Fig. 4. (a) Z image plane and the centroid perturbations when decomposing
Z coupled to W ′ instead of W . The grey rectangle in the bottom-right corner
represents the image region that W −W ′ differ, while the solid and the dashed
lines the sub-image boundaries when decomposing Z coupled to W and W ′,
respectively. (b) |R| mean value histogram when using image pair 1 (Table I)
and 105 runs. At each run λ1 was randomly selected (λmax = 0.1) and pixels
were randomly changed in the bottom-right corner until it was reached. Then
λ2, λ3 was estimated from the image, and finally R from Eq. 14.

matching. The overlap ratio a is the fourth parameter of this
algorithm.

C. Algorithm Properties

1) Robustness and Invariance: Mean-based coupled
decomposition is by default invariant to image rotation, trans-
lation and scaling. Moreover, the estimation of both centroid
points and profile vectors in Algorithm 1 includes exclusively
mean pixel values. As a result, the mean-based coupled
decomposition outcome is expected to be invariant to both
additive white noise and global radiometric differences due to
different lighting conditions or transparency of the atmosphere.
Similar conclusions can be drawn for match-based coupled
decomposition, except from the non-theoretical invariance
to geometric transforms. However, since the corresponding
points are established through a single matching pair of points,
elaborate features and matching can be employed to confirm
that the corresponding points would be robust to geometric
transforms.

Match-based coupled decomposition is additionally robust
to local changes, i.e. changes that happen only to a limited
image area, since such changes are expected to have limited
effects both on the determination of the corresponding points
and on the points’ mean profiles. On the other hand, robustness
to local changes is not straightforward for the mean-based
coupled decomposition variation.

Actually, in order to examine this property, we assume that
two target images, W and W ′, are to be matched with a refer-
ence image, Z . We further assume that Z and W differ only in
terms of geometric transformations, additive noise and global
radiometric differences, i.e. that by using Z and W we can
achieve perfectly accurate mean-based coupled decomposition
(meaning that no points in Zi , W j , i 	= j refer to the same
point in world coordinates). Additionally, W ′ is considered
identical to W, except an area in the bottom-right corner.
In Fig. 4a, the reference image plane is demonstrated (M = 4),
along with the Z sub-image boundaries for both input pairs,
i.e. Z -W and Z -W ′ (solid and dashed lines, respectively).
We focus this analysis on the top-left sub-image Z1, examining
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whether the boundary “error” triggered by the modification in
the bottom-right sub-image Z2 is propagated to the sub-images
in which Z1 is decomposed in further coupled decomposition
iterations.

Apparently, local change robustness can be examined via
the ratio of the distance of corresponding sub-image centroids.
More specifically, if p0(m1, m2) (p′

0(m1 +d1, m2 +d2)) is the
image centroids of the reference image estimated through cou-
pled decomposition of Z and W (Z and W ′) and p1(m′

1, m′
2)

(p′
1(m

′
1+d ′

1, m′
2 +d ′

2)) is the corresponding top-left sub-image
centroid, then a local change robustness measure R is

R =
√

d ′2
1 + d ′2

2 /

√
d2

1 + d2
2 (11)

R depends on several parameters. In order to simplify the
analysis, it is assumed that i) due to the modification in the
bottom-right area, the centroid is displaced evenly in both
coordinates, i.e. that d1/m1 = d2/m2 = λ1 and ii) the
top-left centroid p1 coordinates are analogous to the image
centroid p0, i.e. that m′

1/m1 = m′
2/m2 = λ2.

The number of pixels that lie in the top-left sub-image is
N1 = m1m2 when decomposing Z coupled with W while
N ′

1 = (1 +λ1)
2m1m2 when decomposing Z coupled with W ′,

i.e. in the second case (λ2
1 + 2λ1)m1m2 additional pixels are

assigned to the top-left sub-image. Consequently,

m′
1 + d ′

1 = λ2m1(1/(1 + λ1)
2)

+λ31(m1 + d1)((λ
2
1 + 2λ1)/(1 + λ1)

2) (12)

where λ2m1 = m′
1 is the top-left sub-image centroid longitude

of the N1 pixels that are common to the top-left sub-image
centroid corresponding to W , and λ31(m1 +d1) is the centroid
longitude of the pixels that are assigned to the top-left sector
only when Z is decomposed coupled with W ′. λ32(m2 + d2)
is the corresponding latitude. By further assuming that
λ31 = λ32 = λ3,√

d ′2
1 + d ′2

2 =
√

m2
1 + m2

2 λ1(λ1 + 2)

×(λ2 − λ3(λ1 + 1))/(1 + λ1)
2 (13)

R = (λ1 + 2)(λ2 − λ3λ1 − λ3)/(1 + λ1)
2 (14)

In Eq. 14, λ1 represents the relative image centroid
perturbation due to a local change, λ2 the normalized original
top-left sub-image centroid position (relative to the image
centroid position) and λ3 the centroid position of the changed
pixels relative to the perturbed image centroid position.

We have experimentally confirmed the validity of the
assumptions of Eq. 11, finding that in the testset employed
in this work, that 98% of the values of (d1m2)/(m1d2)
vary between 0.93 and 1.07 and the 98% of the values
of (m′

1m2)/(
′m2m1) vary from 0.96 and 1.04. Moreover,

the experimentally determined value ranges of λ1, λ2, λ3
are [0, 0.1], [0.3, 0.7] and [λ2, 2λ2]. It can be straightfor-
wardly computed that for this range |R| < 1. For example,
by selecting λ1 to be randomly selected in a range from
0 to λmax , where λmax = 0.01, 0.02, 0.05, 0.1 and averaging
over 105 runs, the estimated mean |R| value was 0.368, 0.372,
0.383 and 0.4, respectively. The results of a small experiment
on a planetary image (Fig. 4b) are in line with the reported

mean |R| values. Such values signify that a local change
disturbing the image centroid position is minimized by > 2.5
at each iteration. Consequently, even when the number of
iterations is small, the mean-based coupled decomposition
outcome is robust to moderate local changes.

Additional evidence for the method robustness is given
by the fact that image matching is typically robust to small
displacements of the image boundaries. As a matter of
fact, if a decomposition in sector centroid p generates a
sub-image Zi with Ni pixels, Ci of which are correctly
matched with pixels of Wi , and p moves by d pixels, then
the number of pixels N ′

i in the new sub-image W ′
i would be

(Ni − d2) ≤ N ′
i ≤ (Ni + d2). Consequently, the expected

value of correctly matched pixels that will be missed is less
than Ci d2/Ni . If Zi is assumed square with size d ′, then the
expected percentage of missed pixels is less than (d/d ′)2.
In mean-based coupled decomposition, d ′ depends on the
image size as well as the total number of iterations, K . Thus,
in the case of large-sized images, the generated sub-image
sizes are on the order of hundreds or thousands of pixels,
which implies that even a misplacement of tens of pixels is
not expected to significantly degrade the algorithm output.

However, when severe local changes are expected,
match-based coupled decomposition is suggested to be
employed instead.

2) Computational Concerns: The most computationally
demanding part of Algorithm 1 is the interpolation required
for the mean profile estimation. However, when dealing with
large images, as in this work, the digital image pixel grid
provides a rather dense image representation, which can be
used to circumvent interpolation in the mean profile estimation
step. More specifically, in order to generate the mean profile,
all image pixels are parsed sequentially and the angle θ1i with
the corresponding image or sub-image centroid p1 is estimated
and quantized, before the pixel illumination is adjusted to the
corresponding mean profile.

In this way each pixel is visited only twice at each iteration
in mean-based coupled decomposition (once for the profile
vector estimation and once for sector centroid estimation)
and only once at each iteration in match-based coupled
decomposition, since the corresponding points are estimated
through matching. Actually, the overall computational
complexity of mean-based coupled decomposition and match-
based coupled decomposition is O(2K (NZ + NW )+Tang) and
O(K (NZ + NW ) + Tang + Tmat), respectively. In the above
equations K is the number of iterations, NZ and NW the num-
ber of pixels at the reference and target image, respectively,
Tang the computational time related to the estimation of the
angle that maximizes the correlation of profile vectors and
Tmat the computational time needed to identify the match-
based corresponding points in Z and W . In large images
Tang and Tmat is negligible, i.e. O(2K (NZ + NW ) + Tmat ) ≈
O(2K (NZ + NW )) and O(K (NZ + NW ) + Tang + Tmat ) ≈
O(K (NZ + NW )). As is subsequently shown, even for very
large-sized images, only a small number of iterations is
required (typically K ≤ 5), while both NZ and NW are much
larger than 106. Consequently, the computational complexity
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Algorithm 2 Tie-Point Extraction Using Coupled
Decomposition

of the coupled decomposition algorithm is linear to the
sum of the total number of pixels in the reference and the
target image, independently whether their size is almost
equal or not. This small increase in the computational cost,
caused by the coupled image decomposition, results on a
significant decrease in the overall computational cost, as will
be demonstrated in the experimental results section.

V. IMAGE MATCHING USING COUPLED DECOMPOSITION

The set of corresponding sub-images, which is the output of
coupled decomposition, can be used to develop several image
matching solutions that focus either on the decrease of the
computational complexity required for image matching or on
exploiting the information redundancy associated with the fact
that all sub-images belong to the same image. In this section,
we introduce two such techniques.

A. Tie-Point Extraction Using Coupled Decomposition

In this rather straightforward technique, the coupled
decomposition outcome is used to impose spatial constraints
on the tie-points of the target image that can be matched to
the tie-points of the reference image. When no overlap is used
(i.e. a = 0%) this is equivalent to decomposing both reference
and target images in corresponding sub-images and performing
tie-point extraction independently on each pair of sub-images,
before aggregating the identified tie-points. A non-zero
overlap rate a can be used to determine the tradeoff between
computational complexity and the number of identified
tie-points. The actual algorithm is presented in Algorithm 2.

The above algorithm achieves a significant reduction in the
required computational time. Supposing that in the reference
image (the target image) the total number of extracted interest
points are CZ (CW ), the candidate matches that need to be
checked are reduced from CZ CW to

∑
CZi CWi , where i is

the sub-image index. In large images, in which CZ and CW

may be on the order of millions, this constitutes a substantial
computational gain. In this section, we demonstrate that the
computational gain increases with K (i.e. the total number
of iterations of Algorithm 1) and decreases with overlap
rate a.

In order to establish this property for mean-based coupled
decomposition, it is initially assumed that a = 0, M is the
number of radial sections per iteration, K the total number

of iterations, and CZ and CW the total number of tie-points
in Z and W , respectively. Then the average number of
tie-points in each sub-image would be CZ /M K and CW /M K .
Moreover, the fact that the image centroid usually lies near the
image center implies that, generally speaking, CZi and CWi

are more probable to take values near their average than
take extremely low or high values, i.e. that the probability
density function maximum and the average value coincide.
It is also fair to assume that the distribution is symmetric
around its mean value since there is no generally applicable
reason for P(CZi ≤ (CZ/M K )) 	= P(CZi ≥ (CZ/M K )) or
P(CWi ≤ (CW /M K )) 	= P(CWi ≥ (CW /M K )). Finally,
CZi and CWi are not expected to be mutually independent,
since coupled decomposition generates pairs of matching
sub-images.

All of the above specifications are satisfied if the distribution
of CZ and CW is a bivariate normal distribution with mean
vector (CZ /M K, CW /M K ). In this case the mean value of the
product CZi CWi is

E[CZi CWi ] = 	Z W σZσW + (CZ CW )/M2K (15)

where σZ (σW ) is the marginal standard deviation of CZi (CWi )
and 	Z W is the correlation coefficient. If the reference and the
target image match 	Z W ≈ 1 and the achieved computational
gain G can be expressed as

G = CZ CW∑
CZi CWi

≈ M2K CZ CW

CZ CW + M2K σZ σW
(16)

If a > 0 and assuming that the number of extracted interest
points is proportional to image size, G becomes

G ≈ M2K

(1 + a)2

CZ CW

CZ CW + M2K σZσW
(17)

Eq. (17) can be refined by considering that when an already
sampled population is sub-sampled, resulting in B output
bins for each input bin, the output standard deviation is

√
B

times smaller than the input one [31]. If σZ0(σW0 ) is the
standard deviation of the reference image (target image) the
feature points distribution at the first iteration, Eq. 17 is
rewritten as:

G ≈ M2K

(1 + a)2

CZ CW

CZ CW + M K+2σZ0σW0

(18)

Since the mean number of points assigned to each sub-image
in the first iteration is CZ /M and CW /M , the final expression
of computational gain G is

G ≈ M2K

(1 + a)2(1 + M K CVZ CVW )
≈ M K

(1 + a)2CVZ CVW
(19)

where CVZ = σZ0 M/CZ , CVW = σW0 M/CW are the
coefficients of variation [31] for the feature point distribution
of the reference and target image, respectively.

While the above analysis stands for the mean-based
coupled decomposition variation it may be extended for the
match-based coupled decomposition variation if the single
corresponding point needed for decomposition is identified
near the center of Z and W . This can be achieved if Z feature
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Algorithm 3 Coupled Decomposition Enhanced Fundamental
Matrix Computation

points are not parsed randomly but according to their distance
from the image center, favouring feature points near the
center of Z .

Note that the computational gain expressed in Eq. (19) refers
to the number of candidate matches that are examined in a
brute-force approach that doesn’t employ any data structure to
organize interest points. However, it is apparent that coupled
decomposition is orthogonal to data structuring, thus it can
be used along with data structuring to further optimize the
computational gain if this is gauged necessary.

B. Partial Fundamental Matrix Estimation and
Sub-Image Matching Assessment

The previous sub-section examined the use of coupled
decomposition for matching of coupled decomposition.
However, coupled decomposition modifies the tie-point
extraction part of image matching. Consequently, coupled
decomposition may be encompassed in multiple matching
schemes, each with a different architecture, objectives, etc.

In this sub-section, we introduce an algorithm that deals
with one of the most common image matching objectives,
i.e. the estimation of the fundamental matrix [32] that
describes the epipolar geometry between two images. Actually,
being a sub-image matching scheme, coupled decomposition
may comply with the partial epipolarity of image pairs
acquired by pushbroom cameras [27], since a distinct
fundamental matrix can be estimated for each sub-image. The
algorithm output also includes a rank of the corresponding sub-
images according to the reprojection error. Coupled decom-
position output is robust to local changes (Section IV-C1),
thus, these are assumed to correspond not just to sub-image
misalignments but also to grey-level image changes.

The algorithm is presented in Algorithm 3. In the first 6
algorithmic steps the matching quality of each corresponding
sub-image is estimated through a common state-of-the-art
practice, used for validation when no ground-truth is available.
More specifically, the tie-points’ set is split into training

and validation sub-sets. The latter is assumed to include
actual matches that are going to validate the accuracy of
the fundamental matrix that is computed through the former.
A fixed number of iterations ensures a decent approximation
of the minimum reprojection error.

The intermediate output of the first 6 steps is a reprojection
error vector, di . If di is a normal distribution sample, then the
mean and the median reprojection error would concur, while
the 84.1% quantile error value would correspond to the sum of
the mean (i.e. the median) and the standard deviation. Taking
into account that 95.5% of a normal distribution N(μ, σ )
values are smaller than T0 = μ + 2σ , T0 is employed as
an outlier detection threshold (μ in the above equation is the
median value).

Summarising, for each sub-image pair with reprojection
error higher than T0 a region is identified as with grey-
scale change (and may be further examined in applications
that require the characterisation of the change), while the
fundamental matrices for the rest of the sub-images are
retrieved.

VI. EXPERIMENTAL RESULTS

A. Datasets and Experimental Setup
The experimental dataset consists of 30 pairs of remote

sensing images from orbiter missions around Mars and Phobos
(Table I). The image pairs differ in relation to the camera and
data type, the resolution, the image size, etc. More specifi-
cally, the 30 pairs can be classified into 6 sub-sets, named
“HiRISE JPG”, “CTX”, “Phobos SRC”, “HRSC”, “Mixed”
and “HiRISE”.

The first and the last sub-sets come from the NASA Mars
Reconnaissance Orbiter (MRO) mission camera HiRISE [1].
The former (pairs 1−6) includes 6 pairs of subsampled images
of 7 − 12 megapixels, which constitute a dataset with a size
similar to the one that is currently available from the latest
smartphones, digital cameras, etc. The latter (pairs 28 − 30)
includes 3 pairs of raw HiRISE images, which depict large
areas of the Martian surface with 25cm per pixel resolution [1],
reaching up to 2.4 gigapixels. The second sub-set (pairs 7−12)
are 6 image pairs taken by the NASA MRO mission Context
Camera (CTX) [33]. The resolution in this dataset is on the
order of few metres per pixel (typically 6 − 12 metres [33]),
while their size vary from 18 to 87 megapixels. The third
subset (pairs 13 − 18) consists of 6 pairs of small planetary
images, which are mainly used to examine the size limits under
which coupled decomposition becomes redundant. These are
less-than-one-megapixel Phobos images taken at a maximum
resolution of 2.3 metre per pixel resolution from the ESA
Super Resolution Channel (SRC) of High Resolution Stereo
Camera (HRSC) which is on board Mars Express mission [34].
The latter mission is also the source of the fourth subset
(pairs 19−24). This consists of 6 pairs of HRSC [34] imagery,
with a resolution of 12.5 − 25 metres per pixel and a size
of 27 to 220 megapixels. Finally, the fifth dataset
(pairs 25 − 27) includes 3 mixed pairs, i.e. an image acquired
from CTX image and another from HRSC.

In the current experimental setup, four measures of
comparison are employed: the computational time T , the
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TABLE I

IMAGE PAIRS DATASET (SEE TEXT FOR FURTHER DETAILS)

number of extracted tie-points C , the rigid mean reprojection
error ErrR and the warping mean reprojection error ErrW .
Rigid mean reprojection errors are used to contrast
fundamental matrix estimation versus partial fundamental
matrix estimation (as discussed in Section V-B), while warping
mean reprojection error is used to compare the tie-point quality
that is achieved from the introduced techniques with the
quality achieved from full-image matching and two techniques
taken from the literature, namely, [22], [23].

The evaluation of the fundamental matrix estimation is
based on the fact that for the employed dataset (as well as most
planetary image datasets) there is no unambiguous ground-
truth to estimate the achieved accuracy. In order to circumvent
this inherent impediment, we estimate the accuracy of the
fundamental matrix estimated from a tie-point set, S1, relative
to another set of tie-points, S2. This is achieved by initially
splitting the sets of tie-points into a training and a testing set,
Sitr and Site, i ∈ {1, 2}. The training and testing sub-sets are
randomly selected so as Sitr ∪ Site = Si , Sitr ∩ Site = ∅,
#(Sitr ) = #(Site). Subsequently, the fundamental matrix com-
puted from S1tr is used to project S1te∪S2 and the fundamental
matrix computed from S2tr is used to project S2te ∪ S1. The
two reprojection errors are linearly combined using weights
proportional to the cardinality (i.e. the number of matched
tie-points) of sets S1, S2.

However, when comparing more than 2 methods the above
measure is not practicable since it requires pairwise compar-
ison of all methods. Consequently, tie-point quality that is
achieved through some image matching method was evaluated
using warping reprojection error. More specifically, for each
image pair of Table I, full-image matching was performed. The
total number of estimated tie-points N is a constant parameter
for all methods. Since sub-image matching consistently esti-
mates more tie-points than full-image matching, RANSAC was
employed to prune these sets to N tie-points. Subsequently, the
tie-point sets were randomly split into a training and a testing
sub-set, the former used to estimate a 3D warping function

and the latter to evaluate the mean reprojection error caused
by the warping function. Finally, the reported error value is
the average of the mean reprojection errors, estimated over
1000 iterations.

Apart from the parameters and algorithms that are examined
in this section, the rest of the implementation is based on
state-of-the-art techniques. Interest point detection was
conducted through Harris-Laplace corner detection [30],
SIFT [11] was selected as the local descriptor, the “gold
standard” method of [32] was used for fundamental matrix
estimation and least squares for warping function parameter
estimation.

B. Parameter Tuning

In this subsection, we test the dependence of the tie-point
matching outcome on the coupled decomposition algorithm
parameters. As explained in Section IV-B, there are
4 parameters involved in coupled decomposition, K , M , a
and �θ . The following analysis is conducted on mean-based
coupled decomposition, however, the examination of match-
based coupled decomposition (which is not presented here
due to length limitations) led to similar conclusions, the only
difference being that overlap seems redundant (i.e. a = 0%
is the default value for match-based coupled decomposition).

The number of sub-images that coupled decomposition
generates is M K. Consequently, both of these two parameters
determine the decomposition coarseness. M is also associated
with the grid shape, while K with the robustness to local
changes (Section IV-C1). When dealing with planetary images,
the robustness to local changes is very important, while
no specific symmetric pattern is expected. Consequently, in
the following experiments, we selected a fixed, small value
for M (M = 4), and used K to examine the dependence of
tie-point performance from the number of generated
sub-images.

In the experiments, we examined five alternatives for K
(1 ≤ K ≤ 5), two profile vector quantization angles
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TABLE II

�θ IMPACT ON THE TIE-POINT MATCHING ALGORITHM. EACH SCORE

IS THE RATIO OF THE MEAN SCORE WHEN �θ = π/720

DIVIDED BY THE MEAN SCORE WHEN �θ = π/180

Fig. 5. A log-linear plot of the coupled decomposition runtime ratio versus
the image size. Red dashed line: TC D/T0. Black solid line: TC D/T1.

(�θ ∈ {π/180, π/720}) and three overlap ratios (a ∈ {0%,
20%, 50%}). The parameter tests were mutually indepen-
dent through the neutralization of the effect of the other
two parameters. For example, when the computational time T
relatively to �θ was examined, then (for each image pair
of Table I) T (K , a,�θ) was estimated for all valid parameter
combinations, and the ratio T̂ of the mean T value of
combinations with �θ = π/720 over the mean T value
of combinations with �θ = π/180 was the evaluation output.

Table II summarizes the algorithm parameters as a function
of the profile vector quantization angle �θ . The reported
scores are the mean and the maximum computational
time (E[T̂ ], Max(T̂ )), the maximum computational time if the
Phobos image pairs are ignored (Max(T̂∗)), the mean, max-
imum and minimum number of tie-points (E[Ĉ], Max(Ĉ),
Min(Ĉ)), the rigid mean reprojection error (E[ ˆErrR]) and
the number of image pairs (out of 30 image pairs) for which
the rigid reprojection error of �θ = π/720 is smaller than the
reprojection error of �θ = π/180 (#( ˆErrR < 1). Each score
is the ratio of the mean score when �θ = π/720 divided by
the mean score when �θ = π/180.

Table II provides evidence that �θ does not play a critical
role in the algorithm performance. As a matter of fact, all
three metrics (i.e. computational cost, tie-point quantity and
reprojection error) seems to fluctuate randomly around 1 for
all large-image pairs. Following these clues, we have decided
in our implementation to use a fixed value of �θ = π/720.

It should be noted that in the small-image pair sub-set
(Phobos sub-set) the relative computational time seems to
increase with �θ . As a matter of fact, the mean computational
time for this sub-set is 1.364, while all 6 pairs exhibit
computational time higher than 1.199. The reason for this
difference between small-image and large-image pairs is that
quantization density has an effect on the required coupled

TABLE III

THE IMPACT OF THE OVERLAP RATIO a ON THE IMAGE MATCHING

ALGORITHM. THE RESULTS ARE NORMALIZED BY DIVIDING

THE ACHIEVED SCORES WITH THOSE CORRESPONDING

TO 0% OVERLAP

TABLE IV

INCREASE OF COMPUTATIONAL TIME AND NUMBER

OF TIE-POINTS VERSUS OVERLAP RATIO a

decomposition time, which constitutes a significant part of the
computational workload only in small-image pairs.

This is further shown in Fig. 5, in which the ratio of the cou-
pled decomposition runtime TC D over the total required image
matching time is plotted. When no coupled decomposition is
used the total time is denoted with T0 (TC D/T0 is shown in the
red line) while when coupled decomposition is used with T1
(TC D/T1 is shown in the black line). Runtime is plotted against
“mean pair size” (i.e. the harmonic mean of the pixel number
of the two images) for the first five datasets. The one excluded
is the HiRISE dataset, for which T0 is prohibitively large. As a
hint, the “largest” included pair is No. 21, for which image
matching without coupled decomposition requires more than
10 days in a 2.7 GHz Intel Core i7, 16Gb RAM workstation.

The size scale represented in Fig. 5 covers images
from less than 1 megapixel to 100 megapixels. It can be
deduced that as the size increases, coupled decomposition
stage constitutes a progressively smaller part of the image
matching workload. Finally, red line shows that TC D > T0
for images smaller than 1 − 2 megapixels. Consequently,
image matching computational time can benefit from coupled
decomposition only when dealing with images larger than
1 − 2 megapixels.

As already noted, three overlap levels were tested, 0%,
20% and 50%. Table III summarizes the overlap ratio impact
in the employed experimental dataset. Actually, the reported
scores in Table III are the mean computational times, the
mean number of estimated tie-points and the mean reprojection
error, both for 20% and 50% overlap. These scores use the
same convention as in Table II, i.e. they are normalised by
the corresponding scores when no overlap is used. The first
conclusion that can be derived from this Table is that a high
overlap ratio enhances both the quality (i.e. the reprojection
error) and the quantity of the extracted tie-points, but with a
large consumption of the available computational resources.

In order to get a more complete insight, the computational
time and number of tie-points scores are reported separately
for each dataset in Table IV. This table provides evidence that
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Fig. 6. Image pair 12 (Table I). The right image is a close-up of the
encircled area of the left image. The image sizes are asymmetrically adjusted
for printing reasons. The actual size of the right image is 1/3 of the left image.

the overlap triggers a quadratic increase in the required com-
putational time when dealing with images of size on the order
of tens of megapixels. As the image size exceeds 1 gigapixel
the computational time increase becomes approximately cubic.
On the other hand, the increase in the quantity of tie-points
doesn’t depend on the image size but on whether the specific
pair setup favours a correct coupled decomposition. For
example, if the local changes on the target image are so
extensive that the assumptions of Algorithm 1 don’t stand,
then the resulting coupled decomposition output discrepancy
may be alleviated through the image enlargement implied by
a non-zero overlap rate. Such a case is demonstrated in Fig. 6,
in which image pair No. 12 is demonstrated. The two images
of pair 12 only partially match, thus the number of points
increase that is achieved via an overlap of 50% is more
than 120%. On the contrary, when the reference and the target
image differ mostly in terms of geometric transformations,
additive noise and global radiometric difference, coupled
decomposition would benefit less from a non-zero degree
of overlap. Consequently, selecting the employed overlap
ratio a depends on an a priori estimate of the extent of the
non-invariant transformations that are required to match the
reference and the target image. In our implementation we
selected a = 20% as a tradeoff between accuracy and speed.

The final parameter that is analysed is the number of
iterations, K . As already mentioned, this is related to the
required local change robustness and the false rejection ratio.
Additionally, as shown in Fig. 7, computational complexity
gain is controlled mainly through the tuning of K . Fig. 7 plots
the logarithm of the computational time required for tie-point
matching (counted in seconds) as a function of the image pair
size, for different K values.

Fig. 7 implies that there is a certain “size zone”, in which
coupled decomposition achieves optimized speed when using a
fixed number for K . So, for images on the order of megapixels
1 − 2 iterations achieve the optimal speed, while K = 3 is
proposed for images of size around 10 megapixels, K = 4

Fig. 7. The logarithm of the required computational time, counted in seconds,
as a function of the pair size.

for images between 30 to 100 megapixels and K = 5 for
images on the order of hundreds of megapixels. Finally, K = 6
gives the fastest image matching pipelines for image pairs with
more than several gigapixels. In this work, K is tuned to the
maximum score that allows each sub-image to have on average
1,000 SIFT points. This score, which is consistent with the
analysis of Section III, implies that 2 ≤ K ≤ 6.

C. Method Comparison

After tuning coupled decomposition algorithms we continue
with the evaluation of their performance, when comparing
both will full-image matching and with other state-of-the-art
techniques. More specifically, the included techniques are:

• The full-image matching algorithm (named F) that
performs straightforward tie-point extraction without
involving coupled decomposition or any other sub-image
matching approach. This is the baseline technique.

• Mean-based coupled decomposition algorithm (named
C Dc), using the parameters implied by the previous
section.

• Match-based coupled decomposition algorithm (named
C Dm ), which also use the parameters implied by the
previous section.

• The pyramidal scheme of [21] (named Pv ), which
establish matchings in the coarsest levels and use them
to decompose the image planes into corresponding
sub-images through Voronoi tessellation, and, finally,

• The pyramidal scheme of [20] (named Pr ), which register
the images in coarse level and decompose the registered
images into 4 corresponding sub-images, using the center
as the splitting point.

As already said, for all methods the number of retrieved
tie-points was the same and determined by F . More
specifically, full-image matching was followed by
RANSAC [23] to prune any erroneous matches. The
number of tie-points retrieved by this method for each
image pair of the dataset is demonstrated in the second
column of Table V. Exception to this is the mixed pairs
(i.e., pairs 25–27), for which full image matching (as well as
the state-of-the-art methods) fails. The number of tie-points
in this case is the number of tie-points estimated from C Dm ,
which is the only non-failing technique.
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TABLE V

TIE-POINT ACCURACY AND COMPUTATIONAL COST OF COUPLED DECOMPOSITION METHODS (C Dc AND C Dm ) IN COMPARISON

TO FULL-IMAGE MATCHING (F ) AND PYRAMIDAL SCHEMES (Pv AND Pr)

Apart from the two first columns, Table V summarises
the performance of the 5 examined techniques regarding
both computational time and warping mean reprojection error.
A first conclusion that can be learned from Table V is the
extreme computational cost of full-image matching when
dealing with large images, which is not justified by its perfor-
mance. As a matter of fact, full image matching may be tens
of times slower than all of the included sub-image matching
techniques, while not being more accurate than them. For
example, full-image matching of image pair 9 requires more
than 3 days and its mean reprojection error is 2.2742 pixels,
while C Dm requires almost 3 hours and its mean reprojection
eror is 0.8797 pixels.

In summary, F is less accurate than C Dc in 16/27 image
pairs, than C Dm in 17/27 image pairs, than Pv in 13/27 image
pairs and than Pr in 5/27 image pairs. When focusing on large
images the full-image accuracy is even worse, as expected
from the analysis of Section 3. From the 4 largest image pairs
(pairs 9, 12, 20 and 21) only for pair 21 full-image matching
performs better than sub-image matching. On the other 3 pairs
its performance is far worse than the maximum achieved from
sub-image matching. More specifically, for pair 9 its mean
reprojection error is 2.59 times larger than C Dm , for pair
12, 7.98 times larger than C Dr and for pair 20, 2.03 times
worse than C Dm . The most characteristic example is pair 9,
which consists of large and noisy images (due to dust in
the atmosphere on the time that they were acquired). The

low-quality of the images along with their large size cause
the full-image matching to be much worse both in terms
of accuracy and of computational cost from all examined
sub-image matching techniques.

Passing on the comparison of individual techniques, from
the 27 image pairs the maximum accuracy was achieved from
C Dm on 12 pairs, from C Dr on 7 pairs, from F on 4 pairs,
from Pv on 3 pairs and from Pr on 1 pair, i.e. the coupled
decomposition technique outperformed pyramidal schemes as
well as full-image matching on 19/27 images. Additionally,
while coupled decomposition is consistently much faster than
full-image matching (reaching up to 26.5 times for image
pair 9 and match-based coupled decomposition) for large
images, it is faster than pyramidal schemes in half of the
examined pairs. More specifically, a coupled decomposition
variation required the least computational time of all 5 tech-
niques in 13/27 image pairs, usually C Dm since the non-zero
overlap ratio of mean-based coupled decomposition increased
the corresponding computational cost. Even when C Dm didn’t
require the least time, it’s cost was near the optimal value.
Actually, C Dm required less than 1.25Topt (where Topt is
the optimal time) for all but 2 image pairs (pairs 5 and 16).
On the other hand, while C Dc computational cost was usually
larger than the rest of the sub-image matching methods,
it never reached prohibitive levels. For the 23 image pairs that
C Dc didn’t fail, 16 required less than 1 hour to match the
input images, while in all cases the computational time was
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less than 4 hours, i.e. more than a level of magnitude less than
the time required for full-image matching.

Note that a “Fail” was declared either when the mean repro-
jection error was more than 100 pixels. From the 5 examined
techniques only C Dm does not fail in any of the image pairs.
The fact that it requires only a single matching (from the full
resolution images) allows us to employ more detailed (and
time consuming) matching techniques, which are robust in
most of the cases. On the contrary, all other techniques fail on
the 3 mixed dataset pairs. C Dc fails additionally on pair 20,
for which the reference and the target image only partially
overlap, thus their centroids are very far from each other.
Pv additionally fails on pair 17, which depicts Phobos from
a great distance and with very different viewing angles, thus
resulting in the performance of all methods in this pair to be
poor.

Pr on the other hand fails on 18/27 image pairs. The reason
is that it requires a series of successful sub-image matchings,
of resolution that is much coarser than the initial resolution.
For example, in image pair 9 the initial matching takes place at
a resolution in which each (sub-sampled) pixel corresponds to
a 68×68 patch in the original image. So extreme sub-sampling
undermines the possibility of correct matching, especially
in images with a small number of distinctive features. The
dependence of Pr from the number of features is also implied
by the fact that the largest image pair that Pr succeed (pair 7)
is also the pair with the largest number of matched (tie-points)
features.

The pyramidal scheme of [21] seems to be much more
robust. Its accuracy is typically worse than coupled decompo-
sition, while its computational complexity is typically on the
same level of C Dc and worse than C Dm . Actually, the compu-
tational complexity of Pv degrades (in comparison to coupled
decomposition) with the image size, since the initialization of
Voronoi decomposition depends on the correct identification
of 3 tie-points. In substantially large images extreme sub-
sampling inhibits the establishment of matching points, thus
Voronoi tessellation initiliases from finer resolutions. The latter
reduce the available number of iterations, which cause larger
sub-images to be matched, i.e. an increased computational
cost. For example, while on all 6 image pairs 1-6 (with less
than 10Mpixels) Pv is faster than C Dc, on 4 out of 6 image
pairs 19-24 (with size 15-200Mpixels) C Dc is faster.

Overall, contrary to both full-image matching and pyramidal
schemes, matching based on coupled decomposition achieves
to combine speed, accuracy and robustness. From the two
introduced variations, C Dm seem to be the most suitable for
a generic selection, being faster in 23/27 pairs and more
accurate in 16/27 pairs. However, C Dc seem to outperform
C Dm when the reference and the target image have the same
resolution and the images fully overlap (pairs 1-12).

D. Fundamental Matrix Estimation Through
Coupled Decomposition

In this subsection, we evaluate the coupled decomposition
potential to enhance the fundamental matrix estimation
for a pair of matching images. Actually, three different

Fig. 8. Computational time of �C D (and �T P ) over the �B F required
time.

levels of coupled decomposition engagement are included
in this setup. More specifically, the three approaches are the
following i) the full-image matching algorithm that performs
straightforward tie-point extraction without involving coupled
decomposition (named �B F ), ii) an algorithm that employs
(mean-based) coupled decomposition as described in
Algorithm 2 but estimates a single, global, fundamental
matrix for the pair of images (named �T P ) and iii) an
algorithm that use both (mean-based) coupled decomposition
and Algorithm 3, as described in Section 3 to estimate a
separate fundamental matrix for each pair of corresponding
sub-images (named �C D).

The computational gain of the algorithm, with the para-
meter selection strategy of sub-section VI-B is demonstrated
in Fig. 8. Apart from the small-image dataset, in all the
other datasets the computational gain is substantial. More
specifically, the mean overall gain is 8.583, while the gain that
was achieved for each dataset varies from 5.74 (HiRISE JPG
dataset) to 13.86 (HRSC dataset). Note that in this comparison
�C D and �T P are not distinguished, since the fundamental
matrix computational time is negligible in comparison to the
one associated with tie-point extraction.

The achieved computational gain does not trigger less
accurate epipolar geometry estimation. This becomes apparent
through the estimation of the rigid mean reprojection error
when using epipolar geometry to transform the target image
to the reference image. In both �B F and �T P variations,
a single fundamental matrix is estimated for the complete
image while in �C D a distinct fundamental matrix for each
(determined through coupled decomposition) sub-image. The
results are summarized in Table VI. Pairs 28-30 are omitted
in this experiment because the computational time related
to �B F was prohibitive.

The scores reported in Table VI show that the abundance of
tie-points that is achieved through coupled decomposition may
be used to enhance the matching accuracy of large-images.
While the matching methodology is rather simple, compared
to sophisticated matching pipelines such as [19], sub-pixel
accuracy is achieved in 12 image pairs through �C D and
in 9 pairs through �T P (compared to 5 pairs through �B F ).
On the contrary, if using �C D (�T P ) in 6 pairs (9 pairs)
the mean reprojection error is above 10 pixels. These are
mostly cases in which the terrain elevation varies significantly
in Z and W or cases in which images have a large scale differ-
ence, such as the mixed sub-set (pairs 25 − 27), thus violating
the assumptions that epipolarity requires. Additionally, this
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TABLE VI

MEAN REPROJECTION ERROR RESULTS

group includes image pairs in which the mean-based coupled
decomposition algorithm assumption that the reference and
the target image centroid refer to the same world coordinates
diverge significantly from reality (e.g. image pairs 20 and 24).

Finally, two special cases are image pairs 15 and 17, in
which only algorithm �C D fails. These are small-sized image
pairs, in which the tie-point sets are so sparse that a tie-point
split into distinct sub-images does not provide the necessary
number of points for a fundamental matrix to be accurately
estimated (pair 15) or even to be estimated at all (pair 17).
This feature implies a lower image size limit, under which
Algorithm 3 cannot be successfully executed.

Note that in 20 out of 27 pairs �T P outperforms �B F

in terms of mean reprojection error. Since, �T P employs
coupled decomposition only to split images into corresponding
sub-images, the above result is consistent with the theoretical
analysis of Section III.

Further evidence for the validity of Section V-A conclusions
are given through the analysis of the results of the Phobos
image sub-set, in contrast to the results of all other sub-sets.
Due to the small size of the Phobos sub-set imagery, the
false acceptance ratio when employing �T P algorithm
increases, thus undermining the accuracy of the subsequent
matching. As a matter of fact, in 3 out of 6 Phobos pairs
�T P exhibit worse mean reprojection error than �B F .
On the contrary, in the 5 large-sized sub-sets, in only 4 out
of 21 images, matching accuracy deteriorates when using
coupled decomposition. These are either images that matching
was already very accurate without performing coupled
decomposition (pairs 2 and 19) or pairs that the reference
and the target image centroid diverge significantly (pair 20).

Finally, �C D outperforms �B F in 21 out of 27 and �T P

in 19 out of 27 image pairs. �C D performs worse than

Fig. 9. Image pair 8 (Table I) and a grey-level changed area.
(a) CTX image B01_009894_1665_XI_13S042W. (b) CTX image
B02_010606_1666_XN_13S042W. (c), (d) The corresponding sub-images of
(a) and (b) respectively with the maximum reprojection error among the set
of 64 corresponding sub-images.

�T P in the Phobos sub-set, since in 4 out of 6 cases the
output is less accurate than the one achieved through the
brute-force approach. On the other hand, image pairs that
are acquired from pushbroom cameras benefit significantly
from �C D , as the results of the CTX sub-set demonstrate.
Actually, the partial epipolarity constraints that are imposed by
�C D achieve to reduce the mean reprojection error up to more
than 10 times compared to both �B F and �T P (pairs 7, 11).

E. Identification of Sub-Image With Grey-Level Changes

An output of Algorithm 3 is a list of sub-images with
grey-level changes. In this section we present an example
of such sub-images, illustrated in Fig. 9. This comes from
image pair 8. The mean-based coupled decomposition method
was followed from Algorithm 3 as described in the previous
section. The focused sub-images are these with the maximum
(rigid) reprojection error. In this example the hill that is in
the middle-right part of images 9(a) and 9(b) is identified as
a pair of sub-images with a grey-level difference. A close-up
demonstrated in Figs. 9(c) and 9(d) reveals that the north slope
of the hill can not be distinguished in the former image, most
probably due to the illumination conditions at the time that
the image was acquired, while it is not so severely shaded in
the latter image.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a novel technique called
coupled image decomposition. This technique has demon-
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strated that it can be used to circumvent the computational cost
boost that is usually associated with the matching of massively
sized images, whilst generating information that may both
enhance the achieved accuracy and estimate local regions that
can not be successfully matched. In the future we are going to
work towards the optimization of image matching accuracy, as
well as the characterization of the grey-scale changed areas so
as to achieve our goal of ending up with an efficient automatic
local change detection approach.
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